1 /* MMIX-specific support for 64-bit ELF. 2 Copyright (C) 2001-2014 Free Software Foundation, Inc. 3 Contributed by Hans-Peter Nilsson <hp (at) bitrange.com> 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 23 /* No specific ABI or "processor-specific supplement" defined. */ 24 25 /* TODO: 26 - "Traditional" linker relaxation (shrinking whole sections). 27 - Merge reloc stubs jumping to same location. 28 - GETA stub relaxation (call a stub for out of range new 29 R_MMIX_GETA_STUBBABLE). */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "elf-bfd.h" 35 #include "elf/mmix.h" 36 #include "opcode/mmix.h" 37 38 #define MINUS_ONE (((bfd_vma) 0) - 1) 39 40 #define MAX_PUSHJ_STUB_SIZE (5 * 4) 41 42 /* Put these everywhere in new code. */ 43 #define FATAL_DEBUG \ 44 _bfd_abort (__FILE__, __LINE__, \ 45 "Internal: Non-debugged code (test-case missing)") 46 47 #define BAD_CASE(x) \ 48 _bfd_abort (__FILE__, __LINE__, \ 49 "bad case for " #x) 50 51 struct _mmix_elf_section_data 52 { 53 struct bfd_elf_section_data elf; 54 union 55 { 56 struct bpo_reloc_section_info *reloc; 57 struct bpo_greg_section_info *greg; 58 } bpo; 59 60 struct pushj_stub_info 61 { 62 /* Maximum number of stubs needed for this section. */ 63 bfd_size_type n_pushj_relocs; 64 65 /* Size of stubs after a mmix_elf_relax_section round. */ 66 bfd_size_type stubs_size_sum; 67 68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum 69 of these. Allocated in mmix_elf_check_common_relocs. */ 70 bfd_size_type *stub_size; 71 72 /* Offset of next stub during relocation. Somewhat redundant with the 73 above: error coverage is easier and we don't have to reset the 74 stubs_size_sum for relocation. */ 75 bfd_size_type stub_offset; 76 } pjs; 77 78 /* Whether there has been a warning that this section could not be 79 linked due to a specific cause. FIXME: a way to access the 80 linker info or output section, then stuff the limiter guard 81 there. */ 82 bfd_boolean has_warned_bpo; 83 bfd_boolean has_warned_pushj; 84 }; 85 86 #define mmix_elf_section_data(sec) \ 87 ((struct _mmix_elf_section_data *) elf_section_data (sec)) 88 89 /* For each section containing a base-plus-offset (BPO) reloc, we attach 90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise 91 NULL. */ 92 struct bpo_reloc_section_info 93 { 94 /* The base is 1; this is the first number in this section. */ 95 size_t first_base_plus_offset_reloc; 96 97 /* Number of BPO-relocs in this section. */ 98 size_t n_bpo_relocs_this_section; 99 100 /* Running index, used at relocation time. */ 101 size_t bpo_index; 102 103 /* We don't have access to the bfd_link_info struct in 104 mmix_final_link_relocate. What we really want to get at is the 105 global single struct greg_relocation, so we stash it here. */ 106 asection *bpo_greg_section; 107 }; 108 109 /* Helper struct (in global context) for the one below. 110 There's one of these created for every BPO reloc. */ 111 struct bpo_reloc_request 112 { 113 bfd_vma value; 114 115 /* Valid after relaxation. The base is 0; the first register number 116 must be added. The offset is in range 0..255. */ 117 size_t regindex; 118 size_t offset; 119 120 /* The order number for this BPO reloc, corresponding to the order in 121 which BPO relocs were found. Used to create an index after reloc 122 requests are sorted. */ 123 size_t bpo_reloc_no; 124 125 /* Set when the value is computed. Better than coding "guard values" 126 into the other members. Is FALSE only for BPO relocs in a GC:ed 127 section. */ 128 bfd_boolean valid; 129 }; 130 131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated 132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), 133 which is linked into the register contents section 134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the 135 linker; using the same hook as for usual with BPO relocs does not 136 collide. */ 137 struct bpo_greg_section_info 138 { 139 /* After GC, this reflects the number of remaining, non-excluded 140 BPO-relocs. */ 141 size_t n_bpo_relocs; 142 143 /* This is the number of allocated bpo_reloc_requests; the size of 144 sorted_indexes. Valid after the check.*relocs functions are called 145 for all incoming sections. It includes the number of BPO relocs in 146 sections that were GC:ed. */ 147 size_t n_max_bpo_relocs; 148 149 /* A counter used to find out when to fold the BPO gregs, since we 150 don't have a single "after-relaxation" hook. */ 151 size_t n_remaining_bpo_relocs_this_relaxation_round; 152 153 /* The number of linker-allocated GREGs resulting from BPO relocs. 154 This is an approximation after _bfd_mmix_before_linker_allocation 155 and supposedly accurate after mmix_elf_relax_section is called for 156 all incoming non-collected sections. */ 157 size_t n_allocated_bpo_gregs; 158 159 /* Index into reloc_request[], sorted on increasing "value", secondary 160 by increasing index for strict sorting order. */ 161 size_t *bpo_reloc_indexes; 162 163 /* An array of all relocations, with the "value" member filled in by 164 the relaxation function. */ 165 struct bpo_reloc_request *reloc_request; 166 }; 167 168 169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *); 170 171 extern void mmix_elf_symbol_processing (bfd *, asymbol *); 172 173 /* Only intended to be called from a debugger. */ 174 extern void mmix_dump_bpo_gregs 175 (struct bfd_link_info *, bfd_error_handler_type); 176 177 static void 178 mmix_set_relaxable_size (bfd *, asection *, void *); 179 static bfd_reloc_status_type 180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *, 181 asection *, bfd *, char **); 182 static bfd_reloc_status_type 183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma, 184 bfd_signed_vma, bfd_vma, const char *, asection *, 185 char **); 186 187 188 /* Watch out: this currently needs to have elements with the same index as 189 their R_MMIX_ number. */ 190 static reloc_howto_type elf_mmix_howto_table[] = 191 { 192 /* This reloc does nothing. */ 193 HOWTO (R_MMIX_NONE, /* type */ 194 0, /* rightshift */ 195 2, /* size (0 = byte, 1 = short, 2 = long) */ 196 32, /* bitsize */ 197 FALSE, /* pc_relative */ 198 0, /* bitpos */ 199 complain_overflow_bitfield, /* complain_on_overflow */ 200 bfd_elf_generic_reloc, /* special_function */ 201 "R_MMIX_NONE", /* name */ 202 FALSE, /* partial_inplace */ 203 0, /* src_mask */ 204 0, /* dst_mask */ 205 FALSE), /* pcrel_offset */ 206 207 /* An 8 bit absolute relocation. */ 208 HOWTO (R_MMIX_8, /* type */ 209 0, /* rightshift */ 210 0, /* size (0 = byte, 1 = short, 2 = long) */ 211 8, /* bitsize */ 212 FALSE, /* pc_relative */ 213 0, /* bitpos */ 214 complain_overflow_bitfield, /* complain_on_overflow */ 215 bfd_elf_generic_reloc, /* special_function */ 216 "R_MMIX_8", /* name */ 217 FALSE, /* partial_inplace */ 218 0, /* src_mask */ 219 0xff, /* dst_mask */ 220 FALSE), /* pcrel_offset */ 221 222 /* An 16 bit absolute relocation. */ 223 HOWTO (R_MMIX_16, /* type */ 224 0, /* rightshift */ 225 1, /* size (0 = byte, 1 = short, 2 = long) */ 226 16, /* bitsize */ 227 FALSE, /* pc_relative */ 228 0, /* bitpos */ 229 complain_overflow_bitfield, /* complain_on_overflow */ 230 bfd_elf_generic_reloc, /* special_function */ 231 "R_MMIX_16", /* name */ 232 FALSE, /* partial_inplace */ 233 0, /* src_mask */ 234 0xffff, /* dst_mask */ 235 FALSE), /* pcrel_offset */ 236 237 /* An 24 bit absolute relocation. */ 238 HOWTO (R_MMIX_24, /* type */ 239 0, /* rightshift */ 240 2, /* size (0 = byte, 1 = short, 2 = long) */ 241 24, /* bitsize */ 242 FALSE, /* pc_relative */ 243 0, /* bitpos */ 244 complain_overflow_bitfield, /* complain_on_overflow */ 245 bfd_elf_generic_reloc, /* special_function */ 246 "R_MMIX_24", /* name */ 247 FALSE, /* partial_inplace */ 248 ~0xffffff, /* src_mask */ 249 0xffffff, /* dst_mask */ 250 FALSE), /* pcrel_offset */ 251 252 /* A 32 bit absolute relocation. */ 253 HOWTO (R_MMIX_32, /* type */ 254 0, /* rightshift */ 255 2, /* size (0 = byte, 1 = short, 2 = long) */ 256 32, /* bitsize */ 257 FALSE, /* pc_relative */ 258 0, /* bitpos */ 259 complain_overflow_bitfield, /* complain_on_overflow */ 260 bfd_elf_generic_reloc, /* special_function */ 261 "R_MMIX_32", /* name */ 262 FALSE, /* partial_inplace */ 263 0, /* src_mask */ 264 0xffffffff, /* dst_mask */ 265 FALSE), /* pcrel_offset */ 266 267 /* 64 bit relocation. */ 268 HOWTO (R_MMIX_64, /* type */ 269 0, /* rightshift */ 270 4, /* size (0 = byte, 1 = short, 2 = long) */ 271 64, /* bitsize */ 272 FALSE, /* pc_relative */ 273 0, /* bitpos */ 274 complain_overflow_bitfield, /* complain_on_overflow */ 275 bfd_elf_generic_reloc, /* special_function */ 276 "R_MMIX_64", /* name */ 277 FALSE, /* partial_inplace */ 278 0, /* src_mask */ 279 MINUS_ONE, /* dst_mask */ 280 FALSE), /* pcrel_offset */ 281 282 /* An 8 bit PC-relative relocation. */ 283 HOWTO (R_MMIX_PC_8, /* type */ 284 0, /* rightshift */ 285 0, /* size (0 = byte, 1 = short, 2 = long) */ 286 8, /* bitsize */ 287 TRUE, /* pc_relative */ 288 0, /* bitpos */ 289 complain_overflow_bitfield, /* complain_on_overflow */ 290 bfd_elf_generic_reloc, /* special_function */ 291 "R_MMIX_PC_8", /* name */ 292 FALSE, /* partial_inplace */ 293 0, /* src_mask */ 294 0xff, /* dst_mask */ 295 TRUE), /* pcrel_offset */ 296 297 /* An 16 bit PC-relative relocation. */ 298 HOWTO (R_MMIX_PC_16, /* type */ 299 0, /* rightshift */ 300 1, /* size (0 = byte, 1 = short, 2 = long) */ 301 16, /* bitsize */ 302 TRUE, /* pc_relative */ 303 0, /* bitpos */ 304 complain_overflow_bitfield, /* complain_on_overflow */ 305 bfd_elf_generic_reloc, /* special_function */ 306 "R_MMIX_PC_16", /* name */ 307 FALSE, /* partial_inplace */ 308 0, /* src_mask */ 309 0xffff, /* dst_mask */ 310 TRUE), /* pcrel_offset */ 311 312 /* An 24 bit PC-relative relocation. */ 313 HOWTO (R_MMIX_PC_24, /* type */ 314 0, /* rightshift */ 315 2, /* size (0 = byte, 1 = short, 2 = long) */ 316 24, /* bitsize */ 317 TRUE, /* pc_relative */ 318 0, /* bitpos */ 319 complain_overflow_bitfield, /* complain_on_overflow */ 320 bfd_elf_generic_reloc, /* special_function */ 321 "R_MMIX_PC_24", /* name */ 322 FALSE, /* partial_inplace */ 323 ~0xffffff, /* src_mask */ 324 0xffffff, /* dst_mask */ 325 TRUE), /* pcrel_offset */ 326 327 /* A 32 bit absolute PC-relative relocation. */ 328 HOWTO (R_MMIX_PC_32, /* type */ 329 0, /* rightshift */ 330 2, /* size (0 = byte, 1 = short, 2 = long) */ 331 32, /* bitsize */ 332 TRUE, /* pc_relative */ 333 0, /* bitpos */ 334 complain_overflow_bitfield, /* complain_on_overflow */ 335 bfd_elf_generic_reloc, /* special_function */ 336 "R_MMIX_PC_32", /* name */ 337 FALSE, /* partial_inplace */ 338 0, /* src_mask */ 339 0xffffffff, /* dst_mask */ 340 TRUE), /* pcrel_offset */ 341 342 /* 64 bit PC-relative relocation. */ 343 HOWTO (R_MMIX_PC_64, /* type */ 344 0, /* rightshift */ 345 4, /* size (0 = byte, 1 = short, 2 = long) */ 346 64, /* bitsize */ 347 TRUE, /* pc_relative */ 348 0, /* bitpos */ 349 complain_overflow_bitfield, /* complain_on_overflow */ 350 bfd_elf_generic_reloc, /* special_function */ 351 "R_MMIX_PC_64", /* name */ 352 FALSE, /* partial_inplace */ 353 0, /* src_mask */ 354 MINUS_ONE, /* dst_mask */ 355 TRUE), /* pcrel_offset */ 356 357 /* GNU extension to record C++ vtable hierarchy. */ 358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ 359 0, /* rightshift */ 360 0, /* size (0 = byte, 1 = short, 2 = long) */ 361 0, /* bitsize */ 362 FALSE, /* pc_relative */ 363 0, /* bitpos */ 364 complain_overflow_dont, /* complain_on_overflow */ 365 NULL, /* special_function */ 366 "R_MMIX_GNU_VTINHERIT", /* name */ 367 FALSE, /* partial_inplace */ 368 0, /* src_mask */ 369 0, /* dst_mask */ 370 TRUE), /* pcrel_offset */ 371 372 /* GNU extension to record C++ vtable member usage. */ 373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */ 374 0, /* rightshift */ 375 0, /* size (0 = byte, 1 = short, 2 = long) */ 376 0, /* bitsize */ 377 FALSE, /* pc_relative */ 378 0, /* bitpos */ 379 complain_overflow_dont, /* complain_on_overflow */ 380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 381 "R_MMIX_GNU_VTENTRY", /* name */ 382 FALSE, /* partial_inplace */ 383 0, /* src_mask */ 384 0, /* dst_mask */ 385 FALSE), /* pcrel_offset */ 386 387 /* The GETA relocation is supposed to get any address that could 388 possibly be reached by the GETA instruction. It can silently expand 389 to get a 64-bit operand, but will complain if any of the two least 390 significant bits are set. The howto members reflect a simple GETA. */ 391 HOWTO (R_MMIX_GETA, /* type */ 392 2, /* rightshift */ 393 2, /* size (0 = byte, 1 = short, 2 = long) */ 394 19, /* bitsize */ 395 TRUE, /* pc_relative */ 396 0, /* bitpos */ 397 complain_overflow_signed, /* complain_on_overflow */ 398 mmix_elf_reloc, /* special_function */ 399 "R_MMIX_GETA", /* name */ 400 FALSE, /* partial_inplace */ 401 ~0x0100ffff, /* src_mask */ 402 0x0100ffff, /* dst_mask */ 403 TRUE), /* pcrel_offset */ 404 405 HOWTO (R_MMIX_GETA_1, /* type */ 406 2, /* rightshift */ 407 2, /* size (0 = byte, 1 = short, 2 = long) */ 408 19, /* bitsize */ 409 TRUE, /* pc_relative */ 410 0, /* bitpos */ 411 complain_overflow_signed, /* complain_on_overflow */ 412 mmix_elf_reloc, /* special_function */ 413 "R_MMIX_GETA_1", /* name */ 414 FALSE, /* partial_inplace */ 415 ~0x0100ffff, /* src_mask */ 416 0x0100ffff, /* dst_mask */ 417 TRUE), /* pcrel_offset */ 418 419 HOWTO (R_MMIX_GETA_2, /* type */ 420 2, /* rightshift */ 421 2, /* size (0 = byte, 1 = short, 2 = long) */ 422 19, /* bitsize */ 423 TRUE, /* pc_relative */ 424 0, /* bitpos */ 425 complain_overflow_signed, /* complain_on_overflow */ 426 mmix_elf_reloc, /* special_function */ 427 "R_MMIX_GETA_2", /* name */ 428 FALSE, /* partial_inplace */ 429 ~0x0100ffff, /* src_mask */ 430 0x0100ffff, /* dst_mask */ 431 TRUE), /* pcrel_offset */ 432 433 HOWTO (R_MMIX_GETA_3, /* type */ 434 2, /* rightshift */ 435 2, /* size (0 = byte, 1 = short, 2 = long) */ 436 19, /* bitsize */ 437 TRUE, /* pc_relative */ 438 0, /* bitpos */ 439 complain_overflow_signed, /* complain_on_overflow */ 440 mmix_elf_reloc, /* special_function */ 441 "R_MMIX_GETA_3", /* name */ 442 FALSE, /* partial_inplace */ 443 ~0x0100ffff, /* src_mask */ 444 0x0100ffff, /* dst_mask */ 445 TRUE), /* pcrel_offset */ 446 447 /* The conditional branches are supposed to reach any (code) address. 448 It can silently expand to a 64-bit operand, but will emit an error if 449 any of the two least significant bits are set. The howto members 450 reflect a simple branch. */ 451 HOWTO (R_MMIX_CBRANCH, /* type */ 452 2, /* rightshift */ 453 2, /* size (0 = byte, 1 = short, 2 = long) */ 454 19, /* bitsize */ 455 TRUE, /* pc_relative */ 456 0, /* bitpos */ 457 complain_overflow_signed, /* complain_on_overflow */ 458 mmix_elf_reloc, /* special_function */ 459 "R_MMIX_CBRANCH", /* name */ 460 FALSE, /* partial_inplace */ 461 ~0x0100ffff, /* src_mask */ 462 0x0100ffff, /* dst_mask */ 463 TRUE), /* pcrel_offset */ 464 465 HOWTO (R_MMIX_CBRANCH_J, /* type */ 466 2, /* rightshift */ 467 2, /* size (0 = byte, 1 = short, 2 = long) */ 468 19, /* bitsize */ 469 TRUE, /* pc_relative */ 470 0, /* bitpos */ 471 complain_overflow_signed, /* complain_on_overflow */ 472 mmix_elf_reloc, /* special_function */ 473 "R_MMIX_CBRANCH_J", /* name */ 474 FALSE, /* partial_inplace */ 475 ~0x0100ffff, /* src_mask */ 476 0x0100ffff, /* dst_mask */ 477 TRUE), /* pcrel_offset */ 478 479 HOWTO (R_MMIX_CBRANCH_1, /* type */ 480 2, /* rightshift */ 481 2, /* size (0 = byte, 1 = short, 2 = long) */ 482 19, /* bitsize */ 483 TRUE, /* pc_relative */ 484 0, /* bitpos */ 485 complain_overflow_signed, /* complain_on_overflow */ 486 mmix_elf_reloc, /* special_function */ 487 "R_MMIX_CBRANCH_1", /* name */ 488 FALSE, /* partial_inplace */ 489 ~0x0100ffff, /* src_mask */ 490 0x0100ffff, /* dst_mask */ 491 TRUE), /* pcrel_offset */ 492 493 HOWTO (R_MMIX_CBRANCH_2, /* type */ 494 2, /* rightshift */ 495 2, /* size (0 = byte, 1 = short, 2 = long) */ 496 19, /* bitsize */ 497 TRUE, /* pc_relative */ 498 0, /* bitpos */ 499 complain_overflow_signed, /* complain_on_overflow */ 500 mmix_elf_reloc, /* special_function */ 501 "R_MMIX_CBRANCH_2", /* name */ 502 FALSE, /* partial_inplace */ 503 ~0x0100ffff, /* src_mask */ 504 0x0100ffff, /* dst_mask */ 505 TRUE), /* pcrel_offset */ 506 507 HOWTO (R_MMIX_CBRANCH_3, /* type */ 508 2, /* rightshift */ 509 2, /* size (0 = byte, 1 = short, 2 = long) */ 510 19, /* bitsize */ 511 TRUE, /* pc_relative */ 512 0, /* bitpos */ 513 complain_overflow_signed, /* complain_on_overflow */ 514 mmix_elf_reloc, /* special_function */ 515 "R_MMIX_CBRANCH_3", /* name */ 516 FALSE, /* partial_inplace */ 517 ~0x0100ffff, /* src_mask */ 518 0x0100ffff, /* dst_mask */ 519 TRUE), /* pcrel_offset */ 520 521 /* The PUSHJ instruction can reach any (code) address, as long as it's 522 the beginning of a function (no usable restriction). It can silently 523 expand to a 64-bit operand, but will emit an error if any of the two 524 least significant bits are set. It can also expand into a call to a 525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple 526 PUSHJ. */ 527 HOWTO (R_MMIX_PUSHJ, /* type */ 528 2, /* rightshift */ 529 2, /* size (0 = byte, 1 = short, 2 = long) */ 530 19, /* bitsize */ 531 TRUE, /* pc_relative */ 532 0, /* bitpos */ 533 complain_overflow_signed, /* complain_on_overflow */ 534 mmix_elf_reloc, /* special_function */ 535 "R_MMIX_PUSHJ", /* name */ 536 FALSE, /* partial_inplace */ 537 ~0x0100ffff, /* src_mask */ 538 0x0100ffff, /* dst_mask */ 539 TRUE), /* pcrel_offset */ 540 541 HOWTO (R_MMIX_PUSHJ_1, /* type */ 542 2, /* rightshift */ 543 2, /* size (0 = byte, 1 = short, 2 = long) */ 544 19, /* bitsize */ 545 TRUE, /* pc_relative */ 546 0, /* bitpos */ 547 complain_overflow_signed, /* complain_on_overflow */ 548 mmix_elf_reloc, /* special_function */ 549 "R_MMIX_PUSHJ_1", /* name */ 550 FALSE, /* partial_inplace */ 551 ~0x0100ffff, /* src_mask */ 552 0x0100ffff, /* dst_mask */ 553 TRUE), /* pcrel_offset */ 554 555 HOWTO (R_MMIX_PUSHJ_2, /* type */ 556 2, /* rightshift */ 557 2, /* size (0 = byte, 1 = short, 2 = long) */ 558 19, /* bitsize */ 559 TRUE, /* pc_relative */ 560 0, /* bitpos */ 561 complain_overflow_signed, /* complain_on_overflow */ 562 mmix_elf_reloc, /* special_function */ 563 "R_MMIX_PUSHJ_2", /* name */ 564 FALSE, /* partial_inplace */ 565 ~0x0100ffff, /* src_mask */ 566 0x0100ffff, /* dst_mask */ 567 TRUE), /* pcrel_offset */ 568 569 HOWTO (R_MMIX_PUSHJ_3, /* type */ 570 2, /* rightshift */ 571 2, /* size (0 = byte, 1 = short, 2 = long) */ 572 19, /* bitsize */ 573 TRUE, /* pc_relative */ 574 0, /* bitpos */ 575 complain_overflow_signed, /* complain_on_overflow */ 576 mmix_elf_reloc, /* special_function */ 577 "R_MMIX_PUSHJ_3", /* name */ 578 FALSE, /* partial_inplace */ 579 ~0x0100ffff, /* src_mask */ 580 0x0100ffff, /* dst_mask */ 581 TRUE), /* pcrel_offset */ 582 583 /* A JMP is supposed to reach any (code) address. By itself, it can 584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M 585 limit is soon reached if you link the program in wildly different 586 memory segments. The howto members reflect a trivial JMP. */ 587 HOWTO (R_MMIX_JMP, /* type */ 588 2, /* rightshift */ 589 2, /* size (0 = byte, 1 = short, 2 = long) */ 590 27, /* bitsize */ 591 TRUE, /* pc_relative */ 592 0, /* bitpos */ 593 complain_overflow_signed, /* complain_on_overflow */ 594 mmix_elf_reloc, /* special_function */ 595 "R_MMIX_JMP", /* name */ 596 FALSE, /* partial_inplace */ 597 ~0x1ffffff, /* src_mask */ 598 0x1ffffff, /* dst_mask */ 599 TRUE), /* pcrel_offset */ 600 601 HOWTO (R_MMIX_JMP_1, /* type */ 602 2, /* rightshift */ 603 2, /* size (0 = byte, 1 = short, 2 = long) */ 604 27, /* bitsize */ 605 TRUE, /* pc_relative */ 606 0, /* bitpos */ 607 complain_overflow_signed, /* complain_on_overflow */ 608 mmix_elf_reloc, /* special_function */ 609 "R_MMIX_JMP_1", /* name */ 610 FALSE, /* partial_inplace */ 611 ~0x1ffffff, /* src_mask */ 612 0x1ffffff, /* dst_mask */ 613 TRUE), /* pcrel_offset */ 614 615 HOWTO (R_MMIX_JMP_2, /* type */ 616 2, /* rightshift */ 617 2, /* size (0 = byte, 1 = short, 2 = long) */ 618 27, /* bitsize */ 619 TRUE, /* pc_relative */ 620 0, /* bitpos */ 621 complain_overflow_signed, /* complain_on_overflow */ 622 mmix_elf_reloc, /* special_function */ 623 "R_MMIX_JMP_2", /* name */ 624 FALSE, /* partial_inplace */ 625 ~0x1ffffff, /* src_mask */ 626 0x1ffffff, /* dst_mask */ 627 TRUE), /* pcrel_offset */ 628 629 HOWTO (R_MMIX_JMP_3, /* type */ 630 2, /* rightshift */ 631 2, /* size (0 = byte, 1 = short, 2 = long) */ 632 27, /* bitsize */ 633 TRUE, /* pc_relative */ 634 0, /* bitpos */ 635 complain_overflow_signed, /* complain_on_overflow */ 636 mmix_elf_reloc, /* special_function */ 637 "R_MMIX_JMP_3", /* name */ 638 FALSE, /* partial_inplace */ 639 ~0x1ffffff, /* src_mask */ 640 0x1ffffff, /* dst_mask */ 641 TRUE), /* pcrel_offset */ 642 643 /* When we don't emit link-time-relaxable code from the assembler, or 644 when relaxation has done all it can do, these relocs are used. For 645 GETA/PUSHJ/branches. */ 646 HOWTO (R_MMIX_ADDR19, /* type */ 647 2, /* rightshift */ 648 2, /* size (0 = byte, 1 = short, 2 = long) */ 649 19, /* bitsize */ 650 TRUE, /* pc_relative */ 651 0, /* bitpos */ 652 complain_overflow_signed, /* complain_on_overflow */ 653 mmix_elf_reloc, /* special_function */ 654 "R_MMIX_ADDR19", /* name */ 655 FALSE, /* partial_inplace */ 656 ~0x0100ffff, /* src_mask */ 657 0x0100ffff, /* dst_mask */ 658 TRUE), /* pcrel_offset */ 659 660 /* For JMP. */ 661 HOWTO (R_MMIX_ADDR27, /* type */ 662 2, /* rightshift */ 663 2, /* size (0 = byte, 1 = short, 2 = long) */ 664 27, /* bitsize */ 665 TRUE, /* pc_relative */ 666 0, /* bitpos */ 667 complain_overflow_signed, /* complain_on_overflow */ 668 mmix_elf_reloc, /* special_function */ 669 "R_MMIX_ADDR27", /* name */ 670 FALSE, /* partial_inplace */ 671 ~0x1ffffff, /* src_mask */ 672 0x1ffffff, /* dst_mask */ 673 TRUE), /* pcrel_offset */ 674 675 /* A general register or the value 0..255. If a value, then the 676 instruction (offset -3) needs adjusting. */ 677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */ 678 0, /* rightshift */ 679 1, /* size (0 = byte, 1 = short, 2 = long) */ 680 8, /* bitsize */ 681 FALSE, /* pc_relative */ 682 0, /* bitpos */ 683 complain_overflow_bitfield, /* complain_on_overflow */ 684 mmix_elf_reloc, /* special_function */ 685 "R_MMIX_REG_OR_BYTE", /* name */ 686 FALSE, /* partial_inplace */ 687 0, /* src_mask */ 688 0xff, /* dst_mask */ 689 FALSE), /* pcrel_offset */ 690 691 /* A general register. */ 692 HOWTO (R_MMIX_REG, /* type */ 693 0, /* rightshift */ 694 1, /* size (0 = byte, 1 = short, 2 = long) */ 695 8, /* bitsize */ 696 FALSE, /* pc_relative */ 697 0, /* bitpos */ 698 complain_overflow_bitfield, /* complain_on_overflow */ 699 mmix_elf_reloc, /* special_function */ 700 "R_MMIX_REG", /* name */ 701 FALSE, /* partial_inplace */ 702 0, /* src_mask */ 703 0xff, /* dst_mask */ 704 FALSE), /* pcrel_offset */ 705 706 /* A register plus an index, corresponding to the relocation expression. 707 The sizes must correspond to the valid range of the expression, while 708 the bitmasks correspond to what we store in the image. */ 709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ 710 0, /* rightshift */ 711 4, /* size (0 = byte, 1 = short, 2 = long) */ 712 64, /* bitsize */ 713 FALSE, /* pc_relative */ 714 0, /* bitpos */ 715 complain_overflow_bitfield, /* complain_on_overflow */ 716 mmix_elf_reloc, /* special_function */ 717 "R_MMIX_BASE_PLUS_OFFSET", /* name */ 718 FALSE, /* partial_inplace */ 719 0, /* src_mask */ 720 0xffff, /* dst_mask */ 721 FALSE), /* pcrel_offset */ 722 723 /* A "magic" relocation for a LOCAL expression, asserting that the 724 expression is less than the number of global registers. No actual 725 modification of the contents is done. Implementing this as a 726 relocation was less intrusive than e.g. putting such expressions in a 727 section to discard *after* relocation. */ 728 HOWTO (R_MMIX_LOCAL, /* type */ 729 0, /* rightshift */ 730 0, /* size (0 = byte, 1 = short, 2 = long) */ 731 0, /* bitsize */ 732 FALSE, /* pc_relative */ 733 0, /* bitpos */ 734 complain_overflow_dont, /* complain_on_overflow */ 735 mmix_elf_reloc, /* special_function */ 736 "R_MMIX_LOCAL", /* name */ 737 FALSE, /* partial_inplace */ 738 0, /* src_mask */ 739 0, /* dst_mask */ 740 FALSE), /* pcrel_offset */ 741 742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ 743 2, /* rightshift */ 744 2, /* size (0 = byte, 1 = short, 2 = long) */ 745 19, /* bitsize */ 746 TRUE, /* pc_relative */ 747 0, /* bitpos */ 748 complain_overflow_signed, /* complain_on_overflow */ 749 mmix_elf_reloc, /* special_function */ 750 "R_MMIX_PUSHJ_STUBBABLE", /* name */ 751 FALSE, /* partial_inplace */ 752 ~0x0100ffff, /* src_mask */ 753 0x0100ffff, /* dst_mask */ 754 TRUE) /* pcrel_offset */ 755 }; 756 757 758 /* Map BFD reloc types to MMIX ELF reloc types. */ 759 760 struct mmix_reloc_map 761 { 762 bfd_reloc_code_real_type bfd_reloc_val; 763 enum elf_mmix_reloc_type elf_reloc_val; 764 }; 765 766 767 static const struct mmix_reloc_map mmix_reloc_map[] = 768 { 769 {BFD_RELOC_NONE, R_MMIX_NONE}, 770 {BFD_RELOC_8, R_MMIX_8}, 771 {BFD_RELOC_16, R_MMIX_16}, 772 {BFD_RELOC_24, R_MMIX_24}, 773 {BFD_RELOC_32, R_MMIX_32}, 774 {BFD_RELOC_64, R_MMIX_64}, 775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, 776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, 777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, 778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, 779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, 780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, 781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, 782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, 783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, 784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, 785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, 786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, 787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, 788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, 789 {BFD_RELOC_MMIX_REG, R_MMIX_REG}, 790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, 791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, 792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} 793 }; 794 795 static reloc_howto_type * 796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 797 bfd_reloc_code_real_type code) 798 { 799 unsigned int i; 800 801 for (i = 0; 802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); 803 i++) 804 { 805 if (mmix_reloc_map[i].bfd_reloc_val == code) 806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; 807 } 808 809 return NULL; 810 } 811 812 static reloc_howto_type * 813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 814 const char *r_name) 815 { 816 unsigned int i; 817 818 for (i = 0; 819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]); 820 i++) 821 if (elf_mmix_howto_table[i].name != NULL 822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0) 823 return &elf_mmix_howto_table[i]; 824 825 return NULL; 826 } 827 828 static bfd_boolean 829 mmix_elf_new_section_hook (bfd *abfd, asection *sec) 830 { 831 if (!sec->used_by_bfd) 832 { 833 struct _mmix_elf_section_data *sdata; 834 bfd_size_type amt = sizeof (*sdata); 835 836 sdata = bfd_zalloc (abfd, amt); 837 if (sdata == NULL) 838 return FALSE; 839 sec->used_by_bfd = sdata; 840 } 841 842 return _bfd_elf_new_section_hook (abfd, sec); 843 } 844 845 846 /* This function performs the actual bitfiddling and sanity check for a 847 final relocation. Each relocation gets its *worst*-case expansion 848 in size when it arrives here; any reduction in size should have been 849 caught in linker relaxation earlier. When we get here, the relocation 850 looks like the smallest instruction with SWYM:s (nop:s) appended to the 851 max size. We fill in those nop:s. 852 853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) 854 GETA $N,foo 855 -> 856 SETL $N,foo & 0xffff 857 INCML $N,(foo >> 16) & 0xffff 858 INCMH $N,(foo >> 32) & 0xffff 859 INCH $N,(foo >> 48) & 0xffff 860 861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but 862 condbranches needing relaxation might be rare enough to not be 863 worthwhile.) 864 [P]Bcc $N,foo 865 -> 866 [~P]B~cc $N,.+20 867 SETL $255,foo & ... 868 INCML ... 869 INCMH ... 870 INCH ... 871 GO $255,$255,0 872 873 R_MMIX_PUSHJ: (FIXME: Relaxation...) 874 PUSHJ $N,foo 875 -> 876 SETL $255,foo & ... 877 INCML ... 878 INCMH ... 879 INCH ... 880 PUSHGO $N,$255,0 881 882 R_MMIX_JMP: (FIXME: Relaxation...) 883 JMP foo 884 -> 885 SETL $255,foo & ... 886 INCML ... 887 INCMH ... 888 INCH ... 889 GO $255,$255,0 890 891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ 892 893 static bfd_reloc_status_type 894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto, 895 void *datap, bfd_vma addr, bfd_vma value, 896 char **error_message) 897 { 898 bfd *abfd = isec->owner; 899 bfd_reloc_status_type flag = bfd_reloc_ok; 900 bfd_reloc_status_type r; 901 int offs = 0; 902 int reg = 255; 903 904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. 905 We handle the differences here and the common sequence later. */ 906 switch (howto->type) 907 { 908 case R_MMIX_GETA: 909 offs = 0; 910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 911 912 /* We change to an absolute value. */ 913 value += addr; 914 break; 915 916 case R_MMIX_CBRANCH: 917 { 918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; 919 920 /* Invert the condition and prediction bit, and set the offset 921 to five instructions ahead. 922 923 We *can* do better if we want to. If the branch is found to be 924 within limits, we could leave the branch as is; there'll just 925 be a bunch of NOP:s after it. But we shouldn't see this 926 sequence often enough that it's worth doing it. */ 927 928 bfd_put_32 (abfd, 929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) 930 | (24/4)), 931 (bfd_byte *) datap); 932 933 /* Put a "GO $255,$255,0" after the common sequence. */ 934 bfd_put_32 (abfd, 935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, 936 (bfd_byte *) datap + 20); 937 938 /* Common sequence starts at offset 4. */ 939 offs = 4; 940 941 /* We change to an absolute value. */ 942 value += addr; 943 } 944 break; 945 946 case R_MMIX_PUSHJ_STUBBABLE: 947 /* If the address fits, we're fine. */ 948 if ((value & 3) == 0 949 /* Note rightshift 0; see R_MMIX_JMP case below. */ 950 && (r = bfd_check_overflow (complain_overflow_signed, 951 howto->bitsize, 952 0, 953 bfd_arch_bits_per_address (abfd), 954 value)) == bfd_reloc_ok) 955 goto pcrel_mmix_reloc_fits; 956 else 957 { 958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; 959 960 /* We have the bytes at the PUSHJ insn and need to get the 961 position for the stub. There's supposed to be room allocated 962 for the stub. */ 963 bfd_byte *stubcontents 964 = ((bfd_byte *) datap 965 - (addr - (isec->output_section->vma + isec->output_offset)) 966 + size 967 + mmix_elf_section_data (isec)->pjs.stub_offset); 968 bfd_vma stubaddr; 969 970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0) 971 { 972 /* This shouldn't happen when linking to ELF or mmo, so 973 this is an attempt to link to "binary", right? We 974 can't access the output bfd, so we can't verify that 975 assumption. We only know that the critical 976 mmix_elf_check_common_relocs has not been called, 977 which happens when the output format is different 978 from the input format (and is not mmo). */ 979 if (! mmix_elf_section_data (isec)->has_warned_pushj) 980 { 981 /* For the first such error per input section, produce 982 a verbose message. */ 983 *error_message 984 = _("invalid input relocation when producing" 985 " non-ELF, non-mmo format output." 986 "\n Please use the objcopy program to convert from" 987 " ELF or mmo," 988 "\n or assemble using" 989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\""); 990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE; 991 return bfd_reloc_dangerous; 992 } 993 994 /* For subsequent errors, return this one, which is 995 rate-limited but looks a little bit different, 996 hopefully without affecting user-friendliness. */ 997 return bfd_reloc_overflow; 998 } 999 1000 /* The address doesn't fit, so redirect the PUSHJ to the 1001 location of the stub. */ 1002 r = mmix_elf_perform_relocation (isec, 1003 &elf_mmix_howto_table 1004 [R_MMIX_ADDR19], 1005 datap, 1006 addr, 1007 isec->output_section->vma 1008 + isec->output_offset 1009 + size 1010 + (mmix_elf_section_data (isec) 1011 ->pjs.stub_offset) 1012 - addr, 1013 error_message); 1014 if (r != bfd_reloc_ok) 1015 return r; 1016 1017 stubaddr 1018 = (isec->output_section->vma 1019 + isec->output_offset 1020 + size 1021 + mmix_elf_section_data (isec)->pjs.stub_offset); 1022 1023 /* We generate a simple JMP if that suffices, else the whole 5 1024 insn stub. */ 1025 if (bfd_check_overflow (complain_overflow_signed, 1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, 1027 0, 1028 bfd_arch_bits_per_address (abfd), 1029 addr + value - stubaddr) == bfd_reloc_ok) 1030 { 1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); 1032 r = mmix_elf_perform_relocation (isec, 1033 &elf_mmix_howto_table 1034 [R_MMIX_ADDR27], 1035 stubcontents, 1036 stubaddr, 1037 value + addr - stubaddr, 1038 error_message); 1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4; 1040 1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset 1042 > isec->size) 1043 abort (); 1044 1045 return r; 1046 } 1047 else 1048 { 1049 /* Put a "GO $255,0" after the common sequence. */ 1050 bfd_put_32 (abfd, 1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1052 | 0xff00, (bfd_byte *) stubcontents + 16); 1053 1054 /* Prepare for the general code to set the first part of the 1055 linker stub, and */ 1056 value += addr; 1057 datap = stubcontents; 1058 mmix_elf_section_data (isec)->pjs.stub_offset 1059 += MAX_PUSHJ_STUB_SIZE; 1060 } 1061 } 1062 break; 1063 1064 case R_MMIX_PUSHJ: 1065 { 1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 1067 1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */ 1069 bfd_put_32 (abfd, 1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1071 | (inreg << 16) 1072 | 0xff00, 1073 (bfd_byte *) datap + 16); 1074 1075 /* We change to an absolute value. */ 1076 value += addr; 1077 } 1078 break; 1079 1080 case R_MMIX_JMP: 1081 /* This one is a little special. If we get here on a non-relaxing 1082 link, and the destination is actually in range, we don't need to 1083 execute the nops. 1084 If so, we fall through to the bit-fiddling relocs. 1085 1086 FIXME: bfd_check_overflow seems broken; the relocation is 1087 rightshifted before testing, so supply a zero rightshift. */ 1088 1089 if (! ((value & 3) == 0 1090 && (r = bfd_check_overflow (complain_overflow_signed, 1091 howto->bitsize, 1092 0, 1093 bfd_arch_bits_per_address (abfd), 1094 value)) == bfd_reloc_ok)) 1095 { 1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be 1097 modified below, and put a "GO $255,$255,0" after the 1098 address-loading sequence. */ 1099 bfd_put_32 (abfd, 1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1101 | 0xffff00, 1102 (bfd_byte *) datap + 16); 1103 1104 /* We change to an absolute value. */ 1105 value += addr; 1106 break; 1107 } 1108 /* FALLTHROUGH. */ 1109 case R_MMIX_ADDR19: 1110 case R_MMIX_ADDR27: 1111 pcrel_mmix_reloc_fits: 1112 /* These must be in range, or else we emit an error. */ 1113 if ((value & 3) == 0 1114 /* Note rightshift 0; see above. */ 1115 && (r = bfd_check_overflow (complain_overflow_signed, 1116 howto->bitsize, 1117 0, 1118 bfd_arch_bits_per_address (abfd), 1119 value)) == bfd_reloc_ok) 1120 { 1121 bfd_vma in1 1122 = bfd_get_32 (abfd, (bfd_byte *) datap); 1123 bfd_vma highbit; 1124 1125 if ((bfd_signed_vma) value < 0) 1126 { 1127 highbit = 1 << 24; 1128 value += (1 << (howto->bitsize - 1)); 1129 } 1130 else 1131 highbit = 0; 1132 1133 value >>= 2; 1134 1135 bfd_put_32 (abfd, 1136 (in1 & howto->src_mask) 1137 | highbit 1138 | (value & howto->dst_mask), 1139 (bfd_byte *) datap); 1140 1141 return bfd_reloc_ok; 1142 } 1143 else 1144 return bfd_reloc_overflow; 1145 1146 case R_MMIX_BASE_PLUS_OFFSET: 1147 { 1148 struct bpo_reloc_section_info *bpodata 1149 = mmix_elf_section_data (isec)->bpo.reloc; 1150 asection *bpo_greg_section; 1151 struct bpo_greg_section_info *gregdata; 1152 size_t bpo_index; 1153 1154 if (bpodata == NULL) 1155 { 1156 /* This shouldn't happen when linking to ELF or mmo, so 1157 this is an attempt to link to "binary", right? We 1158 can't access the output bfd, so we can't verify that 1159 assumption. We only know that the critical 1160 mmix_elf_check_common_relocs has not been called, which 1161 happens when the output format is different from the 1162 input format (and is not mmo). */ 1163 if (! mmix_elf_section_data (isec)->has_warned_bpo) 1164 { 1165 /* For the first such error per input section, produce 1166 a verbose message. */ 1167 *error_message 1168 = _("invalid input relocation when producing" 1169 " non-ELF, non-mmo format output." 1170 "\n Please use the objcopy program to convert from" 1171 " ELF or mmo," 1172 "\n or compile using the gcc-option" 1173 " \"-mno-base-addresses\"."); 1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE; 1175 return bfd_reloc_dangerous; 1176 } 1177 1178 /* For subsequent errors, return this one, which is 1179 rate-limited but looks a little bit different, 1180 hopefully without affecting user-friendliness. */ 1181 return bfd_reloc_overflow; 1182 } 1183 1184 bpo_greg_section = bpodata->bpo_greg_section; 1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg; 1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; 1187 1188 /* A consistency check: The value we now have in "relocation" must 1189 be the same as the value we stored for that relocation. It 1190 doesn't cost much, so can be left in at all times. */ 1191 if (value != gregdata->reloc_request[bpo_index].value) 1192 { 1193 (*_bfd_error_handler) 1194 (_("%s: Internal inconsistency error for value for\n\ 1195 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"), 1196 bfd_get_filename (isec->owner), 1197 (unsigned long) (value >> 32), (unsigned long) value, 1198 (unsigned long) (gregdata->reloc_request[bpo_index].value 1199 >> 32), 1200 (unsigned long) gregdata->reloc_request[bpo_index].value); 1201 bfd_set_error (bfd_error_bad_value); 1202 return bfd_reloc_overflow; 1203 } 1204 1205 /* Then store the register number and offset for that register 1206 into datap and datap + 1 respectively. */ 1207 bfd_put_8 (abfd, 1208 gregdata->reloc_request[bpo_index].regindex 1209 + bpo_greg_section->output_section->vma / 8, 1210 datap); 1211 bfd_put_8 (abfd, 1212 gregdata->reloc_request[bpo_index].offset, 1213 ((unsigned char *) datap) + 1); 1214 return bfd_reloc_ok; 1215 } 1216 1217 case R_MMIX_REG_OR_BYTE: 1218 case R_MMIX_REG: 1219 if (value > 255) 1220 return bfd_reloc_overflow; 1221 bfd_put_8 (abfd, value, datap); 1222 return bfd_reloc_ok; 1223 1224 default: 1225 BAD_CASE (howto->type); 1226 } 1227 1228 /* This code adds the common SETL/INCML/INCMH/INCH worst-case 1229 sequence. */ 1230 1231 /* Lowest two bits must be 0. We return bfd_reloc_overflow for 1232 everything that looks strange. */ 1233 if (value & 3) 1234 flag = bfd_reloc_overflow; 1235 1236 bfd_put_32 (abfd, 1237 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), 1238 (bfd_byte *) datap + offs); 1239 bfd_put_32 (abfd, 1240 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), 1241 (bfd_byte *) datap + offs + 4); 1242 bfd_put_32 (abfd, 1243 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), 1244 (bfd_byte *) datap + offs + 8); 1245 bfd_put_32 (abfd, 1246 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), 1247 (bfd_byte *) datap + offs + 12); 1248 1249 return flag; 1250 } 1251 1252 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ 1253 1254 static void 1255 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, 1256 arelent *cache_ptr, 1257 Elf_Internal_Rela *dst) 1258 { 1259 unsigned int r_type; 1260 1261 r_type = ELF64_R_TYPE (dst->r_info); 1262 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max); 1263 cache_ptr->howto = &elf_mmix_howto_table[r_type]; 1264 } 1265 1266 /* Any MMIX-specific relocation gets here at assembly time or when linking 1267 to other formats (such as mmo); this is the relocation function from 1268 the reloc_table. We don't get here for final pure ELF linking. */ 1269 1270 static bfd_reloc_status_type 1271 mmix_elf_reloc (bfd *abfd, 1272 arelent *reloc_entry, 1273 asymbol *symbol, 1274 void * data, 1275 asection *input_section, 1276 bfd *output_bfd, 1277 char **error_message) 1278 { 1279 bfd_vma relocation; 1280 bfd_reloc_status_type r; 1281 asection *reloc_target_output_section; 1282 bfd_reloc_status_type flag = bfd_reloc_ok; 1283 bfd_vma output_base = 0; 1284 1285 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 1286 input_section, output_bfd, error_message); 1287 1288 /* If that was all that was needed (i.e. this isn't a final link, only 1289 some segment adjustments), we're done. */ 1290 if (r != bfd_reloc_continue) 1291 return r; 1292 1293 if (bfd_is_und_section (symbol->section) 1294 && (symbol->flags & BSF_WEAK) == 0 1295 && output_bfd == (bfd *) NULL) 1296 return bfd_reloc_undefined; 1297 1298 /* Is the address of the relocation really within the section? */ 1299 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 1300 return bfd_reloc_outofrange; 1301 1302 /* Work out which section the relocation is targeted at and the 1303 initial relocation command value. */ 1304 1305 /* Get symbol value. (Common symbols are special.) */ 1306 if (bfd_is_com_section (symbol->section)) 1307 relocation = 0; 1308 else 1309 relocation = symbol->value; 1310 1311 reloc_target_output_section = bfd_get_output_section (symbol); 1312 1313 /* Here the variable relocation holds the final address of the symbol we 1314 are relocating against, plus any addend. */ 1315 if (output_bfd) 1316 output_base = 0; 1317 else 1318 output_base = reloc_target_output_section->vma; 1319 1320 relocation += output_base + symbol->section->output_offset; 1321 1322 if (output_bfd != (bfd *) NULL) 1323 { 1324 /* Add in supplied addend. */ 1325 relocation += reloc_entry->addend; 1326 1327 /* This is a partial relocation, and we want to apply the 1328 relocation to the reloc entry rather than the raw data. 1329 Modify the reloc inplace to reflect what we now know. */ 1330 reloc_entry->addend = relocation; 1331 reloc_entry->address += input_section->output_offset; 1332 return flag; 1333 } 1334 1335 return mmix_final_link_relocate (reloc_entry->howto, input_section, 1336 data, reloc_entry->address, 1337 reloc_entry->addend, relocation, 1338 bfd_asymbol_name (symbol), 1339 reloc_target_output_section, 1340 error_message); 1341 } 1342 1343 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it 1345 for guidance if you're thinking of copying this. */ 1346 1347 static bfd_boolean 1348 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 1349 struct bfd_link_info *info, 1350 bfd *input_bfd, 1351 asection *input_section, 1352 bfd_byte *contents, 1353 Elf_Internal_Rela *relocs, 1354 Elf_Internal_Sym *local_syms, 1355 asection **local_sections) 1356 { 1357 Elf_Internal_Shdr *symtab_hdr; 1358 struct elf_link_hash_entry **sym_hashes; 1359 Elf_Internal_Rela *rel; 1360 Elf_Internal_Rela *relend; 1361 bfd_size_type size; 1362 size_t pjsno = 0; 1363 1364 size = input_section->rawsize ? input_section->rawsize : input_section->size; 1365 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1366 sym_hashes = elf_sym_hashes (input_bfd); 1367 relend = relocs + input_section->reloc_count; 1368 1369 /* Zero the stub area before we start. */ 1370 if (input_section->rawsize != 0 1371 && input_section->size > input_section->rawsize) 1372 memset (contents + input_section->rawsize, 0, 1373 input_section->size - input_section->rawsize); 1374 1375 for (rel = relocs; rel < relend; rel ++) 1376 { 1377 reloc_howto_type *howto; 1378 unsigned long r_symndx; 1379 Elf_Internal_Sym *sym; 1380 asection *sec; 1381 struct elf_link_hash_entry *h; 1382 bfd_vma relocation; 1383 bfd_reloc_status_type r; 1384 const char *name = NULL; 1385 int r_type; 1386 bfd_boolean undefined_signalled = FALSE; 1387 1388 r_type = ELF64_R_TYPE (rel->r_info); 1389 1390 if (r_type == R_MMIX_GNU_VTINHERIT 1391 || r_type == R_MMIX_GNU_VTENTRY) 1392 continue; 1393 1394 r_symndx = ELF64_R_SYM (rel->r_info); 1395 1396 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); 1397 h = NULL; 1398 sym = NULL; 1399 sec = NULL; 1400 1401 if (r_symndx < symtab_hdr->sh_info) 1402 { 1403 sym = local_syms + r_symndx; 1404 sec = local_sections [r_symndx]; 1405 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1406 1407 name = bfd_elf_string_from_elf_section (input_bfd, 1408 symtab_hdr->sh_link, 1409 sym->st_name); 1410 if (name == NULL) 1411 name = bfd_section_name (input_bfd, sec); 1412 } 1413 else 1414 { 1415 bfd_boolean unresolved_reloc, ignored; 1416 1417 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1418 r_symndx, symtab_hdr, sym_hashes, 1419 h, sec, relocation, 1420 unresolved_reloc, undefined_signalled, 1421 ignored); 1422 name = h->root.root.string; 1423 } 1424 1425 if (sec != NULL && discarded_section (sec)) 1426 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 1427 rel, 1, relend, howto, 0, contents); 1428 1429 if (info->relocatable) 1430 { 1431 /* This is a relocatable link. For most relocs we don't have to 1432 change anything, unless the reloc is against a section 1433 symbol, in which case we have to adjust according to where 1434 the section symbol winds up in the output section. */ 1435 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1436 rel->r_addend += sec->output_offset; 1437 1438 /* For PUSHJ stub relocs however, we may need to change the 1439 reloc and the section contents, if the reloc doesn't reach 1440 beyond the end of the output section and previous stubs. 1441 Then we change the section contents to be a PUSHJ to the end 1442 of the input section plus stubs (we can do that without using 1443 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ 1444 at the stub location. */ 1445 if (r_type == R_MMIX_PUSHJ_STUBBABLE) 1446 { 1447 /* We've already checked whether we need a stub; use that 1448 knowledge. */ 1449 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] 1450 != 0) 1451 { 1452 Elf_Internal_Rela relcpy; 1453 1454 if (mmix_elf_section_data (input_section) 1455 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) 1456 abort (); 1457 1458 /* There's already a PUSHJ insn there, so just fill in 1459 the offset bits to the stub. */ 1460 if (mmix_final_link_relocate (elf_mmix_howto_table 1461 + R_MMIX_ADDR19, 1462 input_section, 1463 contents, 1464 rel->r_offset, 1465 0, 1466 input_section 1467 ->output_section->vma 1468 + input_section->output_offset 1469 + size 1470 + mmix_elf_section_data (input_section) 1471 ->pjs.stub_offset, 1472 NULL, NULL, NULL) != bfd_reloc_ok) 1473 return FALSE; 1474 1475 /* Put a JMP insn at the stub; it goes with the 1476 R_MMIX_JMP reloc. */ 1477 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, 1478 contents 1479 + size 1480 + mmix_elf_section_data (input_section) 1481 ->pjs.stub_offset); 1482 1483 /* Change the reloc to be at the stub, and to a full 1484 R_MMIX_JMP reloc. */ 1485 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); 1486 rel->r_offset 1487 = (size 1488 + mmix_elf_section_data (input_section) 1489 ->pjs.stub_offset); 1490 1491 mmix_elf_section_data (input_section)->pjs.stub_offset 1492 += MAX_PUSHJ_STUB_SIZE; 1493 1494 /* Shift this reloc to the end of the relocs to maintain 1495 the r_offset sorted reloc order. */ 1496 relcpy = *rel; 1497 memmove (rel, rel + 1, (char *) relend - (char *) rel); 1498 relend[-1] = relcpy; 1499 1500 /* Back up one reloc, or else we'd skip the next reloc 1501 in turn. */ 1502 rel--; 1503 } 1504 1505 pjsno++; 1506 } 1507 continue; 1508 } 1509 1510 r = mmix_final_link_relocate (howto, input_section, 1511 contents, rel->r_offset, 1512 rel->r_addend, relocation, name, sec, NULL); 1513 1514 if (r != bfd_reloc_ok) 1515 { 1516 bfd_boolean check_ok = TRUE; 1517 const char * msg = (const char *) NULL; 1518 1519 switch (r) 1520 { 1521 case bfd_reloc_overflow: 1522 check_ok = info->callbacks->reloc_overflow 1523 (info, (h ? &h->root : NULL), name, howto->name, 1524 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 1525 break; 1526 1527 case bfd_reloc_undefined: 1528 /* We may have sent this message above. */ 1529 if (! undefined_signalled) 1530 check_ok = info->callbacks->undefined_symbol 1531 (info, name, input_bfd, input_section, rel->r_offset, 1532 TRUE); 1533 undefined_signalled = TRUE; 1534 break; 1535 1536 case bfd_reloc_outofrange: 1537 msg = _("internal error: out of range error"); 1538 break; 1539 1540 case bfd_reloc_notsupported: 1541 msg = _("internal error: unsupported relocation error"); 1542 break; 1543 1544 case bfd_reloc_dangerous: 1545 msg = _("internal error: dangerous relocation"); 1546 break; 1547 1548 default: 1549 msg = _("internal error: unknown error"); 1550 break; 1551 } 1552 1553 if (msg) 1554 check_ok = info->callbacks->warning 1555 (info, msg, name, input_bfd, input_section, rel->r_offset); 1556 1557 if (! check_ok) 1558 return FALSE; 1559 } 1560 } 1561 1562 return TRUE; 1563 } 1564 1565 /* Perform a single relocation. By default we use the standard BFD 1567 routines. A few relocs we have to do ourselves. */ 1568 1569 static bfd_reloc_status_type 1570 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section, 1571 bfd_byte *contents, bfd_vma r_offset, 1572 bfd_signed_vma r_addend, bfd_vma relocation, 1573 const char *symname, asection *symsec, 1574 char **error_message) 1575 { 1576 bfd_reloc_status_type r = bfd_reloc_ok; 1577 bfd_vma addr 1578 = (input_section->output_section->vma 1579 + input_section->output_offset 1580 + r_offset); 1581 bfd_signed_vma srel 1582 = (bfd_signed_vma) relocation + r_addend; 1583 1584 switch (howto->type) 1585 { 1586 /* All these are PC-relative. */ 1587 case R_MMIX_PUSHJ_STUBBABLE: 1588 case R_MMIX_PUSHJ: 1589 case R_MMIX_CBRANCH: 1590 case R_MMIX_ADDR19: 1591 case R_MMIX_GETA: 1592 case R_MMIX_ADDR27: 1593 case R_MMIX_JMP: 1594 contents += r_offset; 1595 1596 srel -= (input_section->output_section->vma 1597 + input_section->output_offset 1598 + r_offset); 1599 1600 r = mmix_elf_perform_relocation (input_section, howto, contents, 1601 addr, srel, error_message); 1602 break; 1603 1604 case R_MMIX_BASE_PLUS_OFFSET: 1605 if (symsec == NULL) 1606 return bfd_reloc_undefined; 1607 1608 /* Check that we're not relocating against a register symbol. */ 1609 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1610 MMIX_REG_CONTENTS_SECTION_NAME) == 0 1611 || strcmp (bfd_get_section_name (symsec->owner, symsec), 1612 MMIX_REG_SECTION_NAME) == 0) 1613 { 1614 /* Note: This is separated out into two messages in order 1615 to ease the translation into other languages. */ 1616 if (symname == NULL || *symname == 0) 1617 (*_bfd_error_handler) 1618 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"), 1619 bfd_get_filename (input_section->owner), 1620 bfd_get_section_name (symsec->owner, symsec)); 1621 else 1622 (*_bfd_error_handler) 1623 (_("%s: base-plus-offset relocation against register symbol: %s in %s"), 1624 bfd_get_filename (input_section->owner), symname, 1625 bfd_get_section_name (symsec->owner, symsec)); 1626 return bfd_reloc_overflow; 1627 } 1628 goto do_mmix_reloc; 1629 1630 case R_MMIX_REG_OR_BYTE: 1631 case R_MMIX_REG: 1632 /* For now, we handle these alike. They must refer to an register 1633 symbol, which is either relative to the register section and in 1634 the range 0..255, or is in the register contents section with vma 1635 regno * 8. */ 1636 1637 /* FIXME: A better way to check for reg contents section? 1638 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ 1639 if (symsec == NULL) 1640 return bfd_reloc_undefined; 1641 1642 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1643 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1644 { 1645 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1646 { 1647 /* The bfd_reloc_outofrange return value, though intuitively 1648 a better value, will not get us an error. */ 1649 return bfd_reloc_overflow; 1650 } 1651 srel /= 8; 1652 } 1653 else if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1654 MMIX_REG_SECTION_NAME) == 0) 1655 { 1656 if (srel < 0 || srel > 255) 1657 /* The bfd_reloc_outofrange return value, though intuitively a 1658 better value, will not get us an error. */ 1659 return bfd_reloc_overflow; 1660 } 1661 else 1662 { 1663 /* Note: This is separated out into two messages in order 1664 to ease the translation into other languages. */ 1665 if (symname == NULL || *symname == 0) 1666 (*_bfd_error_handler) 1667 (_("%s: register relocation against non-register symbol: (unknown) in %s"), 1668 bfd_get_filename (input_section->owner), 1669 bfd_get_section_name (symsec->owner, symsec)); 1670 else 1671 (*_bfd_error_handler) 1672 (_("%s: register relocation against non-register symbol: %s in %s"), 1673 bfd_get_filename (input_section->owner), symname, 1674 bfd_get_section_name (symsec->owner, symsec)); 1675 1676 /* The bfd_reloc_outofrange return value, though intuitively a 1677 better value, will not get us an error. */ 1678 return bfd_reloc_overflow; 1679 } 1680 do_mmix_reloc: 1681 contents += r_offset; 1682 r = mmix_elf_perform_relocation (input_section, howto, contents, 1683 addr, srel, error_message); 1684 break; 1685 1686 case R_MMIX_LOCAL: 1687 /* This isn't a real relocation, it's just an assertion that the 1688 final relocation value corresponds to a local register. We 1689 ignore the actual relocation; nothing is changed. */ 1690 { 1691 asection *regsec 1692 = bfd_get_section_by_name (input_section->output_section->owner, 1693 MMIX_REG_CONTENTS_SECTION_NAME); 1694 bfd_vma first_global; 1695 1696 /* Check that this is an absolute value, or a reference to the 1697 register contents section or the register (symbol) section. 1698 Absolute numbers can get here as undefined section. Undefined 1699 symbols are signalled elsewhere, so there's no conflict in us 1700 accidentally handling it. */ 1701 if (!bfd_is_abs_section (symsec) 1702 && !bfd_is_und_section (symsec) 1703 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1704 MMIX_REG_CONTENTS_SECTION_NAME) != 0 1705 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1706 MMIX_REG_SECTION_NAME) != 0) 1707 { 1708 (*_bfd_error_handler) 1709 (_("%s: directive LOCAL valid only with a register or absolute value"), 1710 bfd_get_filename (input_section->owner)); 1711 1712 return bfd_reloc_overflow; 1713 } 1714 1715 /* If we don't have a register contents section, then $255 is the 1716 first global register. */ 1717 if (regsec == NULL) 1718 first_global = 255; 1719 else 1720 { 1721 first_global 1722 = bfd_get_section_vma (input_section->output_section->owner, 1723 regsec) / 8; 1724 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1725 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1726 { 1727 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1728 /* The bfd_reloc_outofrange return value, though 1729 intuitively a better value, will not get us an error. */ 1730 return bfd_reloc_overflow; 1731 srel /= 8; 1732 } 1733 } 1734 1735 if ((bfd_vma) srel >= first_global) 1736 { 1737 /* FIXME: Better error message. */ 1738 (*_bfd_error_handler) 1739 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."), 1740 bfd_get_filename (input_section->owner), (long) srel, (long) first_global); 1741 1742 return bfd_reloc_overflow; 1743 } 1744 } 1745 r = bfd_reloc_ok; 1746 break; 1747 1748 default: 1749 r = _bfd_final_link_relocate (howto, input_section->owner, input_section, 1750 contents, r_offset, 1751 relocation, r_addend); 1752 } 1753 1754 return r; 1755 } 1756 1757 /* Return the section that should be marked against GC for a given 1759 relocation. */ 1760 1761 static asection * 1762 mmix_elf_gc_mark_hook (asection *sec, 1763 struct bfd_link_info *info, 1764 Elf_Internal_Rela *rel, 1765 struct elf_link_hash_entry *h, 1766 Elf_Internal_Sym *sym) 1767 { 1768 if (h != NULL) 1769 switch (ELF64_R_TYPE (rel->r_info)) 1770 { 1771 case R_MMIX_GNU_VTINHERIT: 1772 case R_MMIX_GNU_VTENTRY: 1773 return NULL; 1774 } 1775 1776 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1777 } 1778 1779 /* Update relocation info for a GC-excluded section. We could supposedly 1780 perform the allocation after GC, but there's no suitable hook between 1781 GC (or section merge) and the point when all input sections must be 1782 present. Better to waste some memory and (perhaps) a little time. */ 1783 1784 static bfd_boolean 1785 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 1786 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1787 asection *sec, 1788 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 1789 { 1790 struct bpo_reloc_section_info *bpodata 1791 = mmix_elf_section_data (sec)->bpo.reloc; 1792 asection *allocated_gregs_section; 1793 1794 /* If no bpodata here, we have nothing to do. */ 1795 if (bpodata == NULL) 1796 return TRUE; 1797 1798 allocated_gregs_section = bpodata->bpo_greg_section; 1799 1800 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs 1801 -= bpodata->n_bpo_relocs_this_section; 1802 1803 return TRUE; 1804 } 1805 1806 /* Sort register relocs to come before expanding relocs. */ 1808 1809 static int 1810 mmix_elf_sort_relocs (const void * p1, const void * p2) 1811 { 1812 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; 1813 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; 1814 int r1_is_reg, r2_is_reg; 1815 1816 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive 1817 insns. */ 1818 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) 1819 return 1; 1820 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) 1821 return -1; 1822 1823 r1_is_reg 1824 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE 1825 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); 1826 r2_is_reg 1827 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE 1828 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); 1829 if (r1_is_reg != r2_is_reg) 1830 return r2_is_reg - r1_is_reg; 1831 1832 /* Neither or both are register relocs. Then sort on full offset. */ 1833 if (r1->r_offset > r2->r_offset) 1834 return 1; 1835 else if (r1->r_offset < r2->r_offset) 1836 return -1; 1837 return 0; 1838 } 1839 1840 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ 1841 1842 static bfd_boolean 1843 mmix_elf_check_common_relocs (bfd *abfd, 1844 struct bfd_link_info *info, 1845 asection *sec, 1846 const Elf_Internal_Rela *relocs) 1847 { 1848 bfd *bpo_greg_owner = NULL; 1849 asection *allocated_gregs_section = NULL; 1850 struct bpo_greg_section_info *gregdata = NULL; 1851 struct bpo_reloc_section_info *bpodata = NULL; 1852 const Elf_Internal_Rela *rel; 1853 const Elf_Internal_Rela *rel_end; 1854 1855 /* We currently have to abuse this COFF-specific member, since there's 1856 no target-machine-dedicated member. There's no alternative outside 1857 the bfd_link_info struct; we can't specialize a hash-table since 1858 they're different between ELF and mmo. */ 1859 bpo_greg_owner = (bfd *) info->base_file; 1860 1861 rel_end = relocs + sec->reloc_count; 1862 for (rel = relocs; rel < rel_end; rel++) 1863 { 1864 switch (ELF64_R_TYPE (rel->r_info)) 1865 { 1866 /* This relocation causes a GREG allocation. We need to count 1867 them, and we need to create a section for them, so we need an 1868 object to fake as the owner of that section. We can't use 1869 the ELF dynobj for this, since the ELF bits assume lots of 1870 DSO-related stuff if that member is non-NULL. */ 1871 case R_MMIX_BASE_PLUS_OFFSET: 1872 /* We don't do anything with this reloc for a relocatable link. */ 1873 if (info->relocatable) 1874 break; 1875 1876 if (bpo_greg_owner == NULL) 1877 { 1878 bpo_greg_owner = abfd; 1879 info->base_file = bpo_greg_owner; 1880 } 1881 1882 if (allocated_gregs_section == NULL) 1883 allocated_gregs_section 1884 = bfd_get_section_by_name (bpo_greg_owner, 1885 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1886 1887 if (allocated_gregs_section == NULL) 1888 { 1889 allocated_gregs_section 1890 = bfd_make_section_with_flags (bpo_greg_owner, 1891 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, 1892 (SEC_HAS_CONTENTS 1893 | SEC_IN_MEMORY 1894 | SEC_LINKER_CREATED)); 1895 /* Setting both SEC_ALLOC and SEC_LOAD means the section is 1896 treated like any other section, and we'd get errors for 1897 address overlap with the text section. Let's set none of 1898 those flags, as that is what currently happens for usual 1899 GREG allocations, and that works. */ 1900 if (allocated_gregs_section == NULL 1901 || !bfd_set_section_alignment (bpo_greg_owner, 1902 allocated_gregs_section, 1903 3)) 1904 return FALSE; 1905 1906 gregdata = (struct bpo_greg_section_info *) 1907 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); 1908 if (gregdata == NULL) 1909 return FALSE; 1910 mmix_elf_section_data (allocated_gregs_section)->bpo.greg 1911 = gregdata; 1912 } 1913 else if (gregdata == NULL) 1914 gregdata 1915 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; 1916 1917 /* Get ourselves some auxiliary info for the BPO-relocs. */ 1918 if (bpodata == NULL) 1919 { 1920 /* No use doing a separate iteration pass to find the upper 1921 limit - just use the number of relocs. */ 1922 bpodata = (struct bpo_reloc_section_info *) 1923 bfd_alloc (bpo_greg_owner, 1924 sizeof (struct bpo_reloc_section_info) 1925 * (sec->reloc_count + 1)); 1926 if (bpodata == NULL) 1927 return FALSE; 1928 mmix_elf_section_data (sec)->bpo.reloc = bpodata; 1929 bpodata->first_base_plus_offset_reloc 1930 = bpodata->bpo_index 1931 = gregdata->n_max_bpo_relocs; 1932 bpodata->bpo_greg_section 1933 = allocated_gregs_section; 1934 bpodata->n_bpo_relocs_this_section = 0; 1935 } 1936 1937 bpodata->n_bpo_relocs_this_section++; 1938 gregdata->n_max_bpo_relocs++; 1939 1940 /* We don't get another chance to set this before GC; we've not 1941 set up any hook that runs before GC. */ 1942 gregdata->n_bpo_relocs 1943 = gregdata->n_max_bpo_relocs; 1944 break; 1945 1946 case R_MMIX_PUSHJ_STUBBABLE: 1947 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; 1948 break; 1949 } 1950 } 1951 1952 /* Allocate per-reloc stub storage and initialize it to the max stub 1953 size. */ 1954 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) 1955 { 1956 size_t i; 1957 1958 mmix_elf_section_data (sec)->pjs.stub_size 1959 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs 1960 * sizeof (mmix_elf_section_data (sec) 1961 ->pjs.stub_size[0])); 1962 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) 1963 return FALSE; 1964 1965 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) 1966 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; 1967 } 1968 1969 return TRUE; 1970 } 1971 1972 /* Look through the relocs for a section during the first phase. */ 1973 1974 static bfd_boolean 1975 mmix_elf_check_relocs (bfd *abfd, 1976 struct bfd_link_info *info, 1977 asection *sec, 1978 const Elf_Internal_Rela *relocs) 1979 { 1980 Elf_Internal_Shdr *symtab_hdr; 1981 struct elf_link_hash_entry **sym_hashes; 1982 const Elf_Internal_Rela *rel; 1983 const Elf_Internal_Rela *rel_end; 1984 1985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1986 sym_hashes = elf_sym_hashes (abfd); 1987 1988 /* First we sort the relocs so that any register relocs come before 1989 expansion-relocs to the same insn. FIXME: Not done for mmo. */ 1990 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 1991 mmix_elf_sort_relocs); 1992 1993 /* Do the common part. */ 1994 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) 1995 return FALSE; 1996 1997 if (info->relocatable) 1998 return TRUE; 1999 2000 rel_end = relocs + sec->reloc_count; 2001 for (rel = relocs; rel < rel_end; rel++) 2002 { 2003 struct elf_link_hash_entry *h; 2004 unsigned long r_symndx; 2005 2006 r_symndx = ELF64_R_SYM (rel->r_info); 2007 if (r_symndx < symtab_hdr->sh_info) 2008 h = NULL; 2009 else 2010 { 2011 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2012 while (h->root.type == bfd_link_hash_indirect 2013 || h->root.type == bfd_link_hash_warning) 2014 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2015 2016 /* PR15323, ref flags aren't set for references in the same 2017 object. */ 2018 h->root.non_ir_ref = 1; 2019 } 2020 2021 switch (ELF64_R_TYPE (rel->r_info)) 2022 { 2023 /* This relocation describes the C++ object vtable hierarchy. 2024 Reconstruct it for later use during GC. */ 2025 case R_MMIX_GNU_VTINHERIT: 2026 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2027 return FALSE; 2028 break; 2029 2030 /* This relocation describes which C++ vtable entries are actually 2031 used. Record for later use during GC. */ 2032 case R_MMIX_GNU_VTENTRY: 2033 BFD_ASSERT (h != NULL); 2034 if (h != NULL 2035 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2036 return FALSE; 2037 break; 2038 } 2039 } 2040 2041 return TRUE; 2042 } 2043 2044 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. 2045 Copied from elf_link_add_object_symbols. */ 2046 2047 bfd_boolean 2048 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info) 2049 { 2050 asection *o; 2051 2052 for (o = abfd->sections; o != NULL; o = o->next) 2053 { 2054 Elf_Internal_Rela *internal_relocs; 2055 bfd_boolean ok; 2056 2057 if ((o->flags & SEC_RELOC) == 0 2058 || o->reloc_count == 0 2059 || ((info->strip == strip_all || info->strip == strip_debugger) 2060 && (o->flags & SEC_DEBUGGING) != 0) 2061 || bfd_is_abs_section (o->output_section)) 2062 continue; 2063 2064 internal_relocs 2065 = _bfd_elf_link_read_relocs (abfd, o, NULL, 2066 (Elf_Internal_Rela *) NULL, 2067 info->keep_memory); 2068 if (internal_relocs == NULL) 2069 return FALSE; 2070 2071 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); 2072 2073 if (! info->keep_memory) 2074 free (internal_relocs); 2075 2076 if (! ok) 2077 return FALSE; 2078 } 2079 2080 return TRUE; 2081 } 2082 2083 /* Change symbols relative to the reg contents section to instead be to 2085 the register section, and scale them down to correspond to the register 2086 number. */ 2087 2088 static int 2089 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, 2090 const char *name ATTRIBUTE_UNUSED, 2091 Elf_Internal_Sym *sym, 2092 asection *input_sec, 2093 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 2094 { 2095 if (input_sec != NULL 2096 && input_sec->name != NULL 2097 && ELF_ST_TYPE (sym->st_info) != STT_SECTION 2098 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) 2099 { 2100 sym->st_value /= 8; 2101 sym->st_shndx = SHN_REGISTER; 2102 } 2103 2104 return 1; 2105 } 2106 2107 /* We fake a register section that holds values that are register numbers. 2108 Having a SHN_REGISTER and register section translates better to other 2109 formats (e.g. mmo) than for example a STT_REGISTER attribute. 2110 This section faking is based on a construct in elf32-mips.c. */ 2111 static asection mmix_elf_reg_section; 2112 static asymbol mmix_elf_reg_section_symbol; 2113 static asymbol *mmix_elf_reg_section_symbol_ptr; 2114 2115 /* Handle the special section numbers that a symbol may use. */ 2116 2117 void 2118 mmix_elf_symbol_processing (abfd, asym) 2119 bfd *abfd ATTRIBUTE_UNUSED; 2120 asymbol *asym; 2121 { 2122 elf_symbol_type *elfsym; 2123 2124 elfsym = (elf_symbol_type *) asym; 2125 switch (elfsym->internal_elf_sym.st_shndx) 2126 { 2127 case SHN_REGISTER: 2128 if (mmix_elf_reg_section.name == NULL) 2129 { 2130 /* Initialize the register section. */ 2131 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME; 2132 mmix_elf_reg_section.flags = SEC_NO_FLAGS; 2133 mmix_elf_reg_section.output_section = &mmix_elf_reg_section; 2134 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol; 2135 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr; 2136 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME; 2137 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM; 2138 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section; 2139 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol; 2140 } 2141 asym->section = &mmix_elf_reg_section; 2142 break; 2143 2144 default: 2145 break; 2146 } 2147 } 2148 2149 /* Given a BFD section, try to locate the corresponding ELF section 2150 index. */ 2151 2152 static bfd_boolean 2153 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED, 2154 asection * sec, 2155 int * retval) 2156 { 2157 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0) 2158 *retval = SHN_REGISTER; 2159 else 2160 return FALSE; 2161 2162 return TRUE; 2163 } 2164 2165 /* Hook called by the linker routine which adds symbols from an object 2166 file. We must handle the special SHN_REGISTER section number here. 2167 2168 We also check that we only have *one* each of the section-start 2169 symbols, since otherwise having two with the same value would cause 2170 them to be "merged", but with the contents serialized. */ 2171 2172 static bfd_boolean 2173 mmix_elf_add_symbol_hook (bfd *abfd, 2174 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2175 Elf_Internal_Sym *sym, 2176 const char **namep ATTRIBUTE_UNUSED, 2177 flagword *flagsp ATTRIBUTE_UNUSED, 2178 asection **secp, 2179 bfd_vma *valp ATTRIBUTE_UNUSED) 2180 { 2181 if (sym->st_shndx == SHN_REGISTER) 2182 { 2183 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); 2184 (*secp)->flags |= SEC_LINKER_CREATED; 2185 } 2186 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' 2187 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) 2188 { 2189 /* See if we have another one. */ 2190 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, 2191 *namep, 2192 FALSE, 2193 FALSE, 2194 FALSE); 2195 2196 if (h != NULL && h->type != bfd_link_hash_undefined) 2197 { 2198 /* How do we get the asymbol (or really: the filename) from h? 2199 h->u.def.section->owner is NULL. */ 2200 ((*_bfd_error_handler) 2201 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"), 2202 bfd_get_filename (abfd), *namep, 2203 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX))); 2204 bfd_set_error (bfd_error_bad_value); 2205 return FALSE; 2206 } 2207 } 2208 2209 return TRUE; 2210 } 2211 2212 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ 2213 2214 static bfd_boolean 2215 mmix_elf_is_local_label_name (bfd *abfd, const char *name) 2216 { 2217 const char *colpos; 2218 int digits; 2219 2220 /* Also include the default local-label definition. */ 2221 if (_bfd_elf_is_local_label_name (abfd, name)) 2222 return TRUE; 2223 2224 if (*name != 'L') 2225 return FALSE; 2226 2227 /* If there's no ":", or more than one, it's not a local symbol. */ 2228 colpos = strchr (name, ':'); 2229 if (colpos == NULL || strchr (colpos + 1, ':') != NULL) 2230 return FALSE; 2231 2232 /* Check that there are remaining characters and that they are digits. */ 2233 if (colpos[1] == 0) 2234 return FALSE; 2235 2236 digits = strspn (colpos + 1, "0123456789"); 2237 return digits != 0 && colpos[1 + digits] == 0; 2238 } 2239 2240 /* We get rid of the register section here. */ 2241 2242 bfd_boolean 2243 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info) 2244 { 2245 /* We never output a register section, though we create one for 2246 temporary measures. Check that nobody entered contents into it. */ 2247 asection *reg_section; 2248 2249 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); 2250 2251 if (reg_section != NULL) 2252 { 2253 /* FIXME: Pass error state gracefully. */ 2254 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS) 2255 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n")); 2256 2257 /* Really remove the section, if it hasn't already been done. */ 2258 if (!bfd_section_removed_from_list (abfd, reg_section)) 2259 { 2260 bfd_section_list_remove (abfd, reg_section); 2261 --abfd->section_count; 2262 } 2263 } 2264 2265 if (! bfd_elf_final_link (abfd, info)) 2266 return FALSE; 2267 2268 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by 2269 the regular linker machinery. We do it here, like other targets with 2270 special sections. */ 2271 if (info->base_file != NULL) 2272 { 2273 asection *greg_section 2274 = bfd_get_section_by_name ((bfd *) info->base_file, 2275 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2276 if (!bfd_set_section_contents (abfd, 2277 greg_section->output_section, 2278 greg_section->contents, 2279 (file_ptr) greg_section->output_offset, 2280 greg_section->size)) 2281 return FALSE; 2282 } 2283 return TRUE; 2284 } 2285 2286 /* We need to include the maximum size of PUSHJ-stubs in the initial 2287 section size. This is expected to shrink during linker relaxation. */ 2288 2289 static void 2290 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED, 2291 asection *sec, 2292 void *ptr) 2293 { 2294 struct bfd_link_info *info = ptr; 2295 2296 /* Make sure we only do this for section where we know we want this, 2297 otherwise we might end up resetting the size of COMMONs. */ 2298 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) 2299 return; 2300 2301 sec->rawsize = sec->size; 2302 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2303 * MAX_PUSHJ_STUB_SIZE); 2304 2305 /* For use in relocatable link, we start with a max stubs size. See 2306 mmix_elf_relax_section. */ 2307 if (info->relocatable && sec->output_section) 2308 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum 2309 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2310 * MAX_PUSHJ_STUB_SIZE); 2311 } 2312 2313 /* Initialize stuff for the linker-generated GREGs to match 2314 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ 2315 2316 bfd_boolean 2317 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2318 struct bfd_link_info *info) 2319 { 2320 asection *bpo_gregs_section; 2321 bfd *bpo_greg_owner; 2322 struct bpo_greg_section_info *gregdata; 2323 size_t n_gregs; 2324 bfd_vma gregs_size; 2325 size_t i; 2326 size_t *bpo_reloc_indexes; 2327 bfd *ibfd; 2328 2329 /* Set the initial size of sections. */ 2330 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 2331 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); 2332 2333 /* The bpo_greg_owner bfd is supposed to have been set by 2334 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. 2335 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2336 bpo_greg_owner = (bfd *) info->base_file; 2337 if (bpo_greg_owner == NULL) 2338 return TRUE; 2339 2340 bpo_gregs_section 2341 = bfd_get_section_by_name (bpo_greg_owner, 2342 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2343 2344 if (bpo_gregs_section == NULL) 2345 return TRUE; 2346 2347 /* We use the target-data handle in the ELF section data. */ 2348 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2349 if (gregdata == NULL) 2350 return FALSE; 2351 2352 n_gregs = gregdata->n_bpo_relocs; 2353 gregdata->n_allocated_bpo_gregs = n_gregs; 2354 2355 /* When this reaches zero during relaxation, all entries have been 2356 filled in and the size of the linker gregs can be calculated. */ 2357 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; 2358 2359 /* Set the zeroth-order estimate for the GREGs size. */ 2360 gregs_size = n_gregs * 8; 2361 2362 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size)) 2363 return FALSE; 2364 2365 /* Allocate and set up the GREG arrays. They're filled in at relaxation 2366 time. Note that we must use the max number ever noted for the array, 2367 since the index numbers were created before GC. */ 2368 gregdata->reloc_request 2369 = bfd_zalloc (bpo_greg_owner, 2370 sizeof (struct bpo_reloc_request) 2371 * gregdata->n_max_bpo_relocs); 2372 2373 gregdata->bpo_reloc_indexes 2374 = bpo_reloc_indexes 2375 = bfd_alloc (bpo_greg_owner, 2376 gregdata->n_max_bpo_relocs 2377 * sizeof (size_t)); 2378 if (bpo_reloc_indexes == NULL) 2379 return FALSE; 2380 2381 /* The default order is an identity mapping. */ 2382 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2383 { 2384 bpo_reloc_indexes[i] = i; 2385 gregdata->reloc_request[i].bpo_reloc_no = i; 2386 } 2387 2388 return TRUE; 2389 } 2390 2391 /* Fill in contents in the linker allocated gregs. Everything is 2393 calculated at this point; we just move the contents into place here. */ 2394 2395 bfd_boolean 2396 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2397 struct bfd_link_info *link_info) 2398 { 2399 asection *bpo_gregs_section; 2400 bfd *bpo_greg_owner; 2401 struct bpo_greg_section_info *gregdata; 2402 size_t n_gregs; 2403 size_t i, j; 2404 size_t lastreg; 2405 bfd_byte *contents; 2406 2407 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs 2408 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such 2409 object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2410 bpo_greg_owner = (bfd *) link_info->base_file; 2411 if (bpo_greg_owner == NULL) 2412 return TRUE; 2413 2414 bpo_gregs_section 2415 = bfd_get_section_by_name (bpo_greg_owner, 2416 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2417 2418 /* This can't happen without DSO handling. When DSOs are handled 2419 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such 2420 section. */ 2421 if (bpo_gregs_section == NULL) 2422 return TRUE; 2423 2424 /* We use the target-data handle in the ELF section data. */ 2425 2426 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2427 if (gregdata == NULL) 2428 return FALSE; 2429 2430 n_gregs = gregdata->n_allocated_bpo_gregs; 2431 2432 bpo_gregs_section->contents 2433 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); 2434 if (contents == NULL) 2435 return FALSE; 2436 2437 /* Sanity check: If these numbers mismatch, some relocation has not been 2438 accounted for and the rest of gregdata is probably inconsistent. 2439 It's a bug, but it's more helpful to identify it than segfaulting 2440 below. */ 2441 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round 2442 != gregdata->n_bpo_relocs) 2443 { 2444 (*_bfd_error_handler) 2445 (_("Internal inconsistency: remaining %u != max %u.\n\ 2446 Please report this bug."), 2447 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2448 gregdata->n_bpo_relocs); 2449 return FALSE; 2450 } 2451 2452 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) 2453 if (gregdata->reloc_request[i].regindex != lastreg) 2454 { 2455 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, 2456 contents + j * 8); 2457 lastreg = gregdata->reloc_request[i].regindex; 2458 j++; 2459 } 2460 2461 return TRUE; 2462 } 2463 2464 /* Sort valid relocs to come before non-valid relocs, then on increasing 2465 value. */ 2466 2467 static int 2468 bpo_reloc_request_sort_fn (const void * p1, const void * p2) 2469 { 2470 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; 2471 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; 2472 2473 /* Primary function is validity; non-valid relocs sorted after valid 2474 ones. */ 2475 if (r1->valid != r2->valid) 2476 return r2->valid - r1->valid; 2477 2478 /* Then sort on value. Don't simplify and return just the difference of 2479 the values: the upper bits of the 64-bit value would be truncated on 2480 a host with 32-bit ints. */ 2481 if (r1->value != r2->value) 2482 return r1->value > r2->value ? 1 : -1; 2483 2484 /* As a last re-sort, use the relocation number, so we get a stable 2485 sort. The *addresses* aren't stable since items are swapped during 2486 sorting. It depends on the qsort implementation if this actually 2487 happens. */ 2488 return r1->bpo_reloc_no > r2->bpo_reloc_no 2489 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); 2490 } 2491 2492 /* For debug use only. Dumps the global register allocations resulting 2493 from base-plus-offset relocs. */ 2494 2495 void 2496 mmix_dump_bpo_gregs (link_info, pf) 2497 struct bfd_link_info *link_info; 2498 bfd_error_handler_type pf; 2499 { 2500 bfd *bpo_greg_owner; 2501 asection *bpo_gregs_section; 2502 struct bpo_greg_section_info *gregdata; 2503 unsigned int i; 2504 2505 if (link_info == NULL || link_info->base_file == NULL) 2506 return; 2507 2508 bpo_greg_owner = (bfd *) link_info->base_file; 2509 2510 bpo_gregs_section 2511 = bfd_get_section_by_name (bpo_greg_owner, 2512 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2513 2514 if (bpo_gregs_section == NULL) 2515 return; 2516 2517 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2518 if (gregdata == NULL) 2519 return; 2520 2521 if (pf == NULL) 2522 pf = _bfd_error_handler; 2523 2524 /* These format strings are not translated. They are for debug purposes 2525 only and never displayed to an end user. Should they escape, we 2526 surely want them in original. */ 2527 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ 2528 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, 2529 gregdata->n_max_bpo_relocs, 2530 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2531 gregdata->n_allocated_bpo_gregs); 2532 2533 if (gregdata->reloc_request) 2534 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2535 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", 2536 i, 2537 (gregdata->bpo_reloc_indexes != NULL 2538 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), 2539 gregdata->reloc_request[i].bpo_reloc_no, 2540 gregdata->reloc_request[i].valid, 2541 2542 (unsigned long) (gregdata->reloc_request[i].value >> 32), 2543 (unsigned long) gregdata->reloc_request[i].value, 2544 gregdata->reloc_request[i].regindex, 2545 gregdata->reloc_request[i].offset); 2546 } 2547 2548 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and 2549 when the last such reloc is done, an index-array is sorted according to 2550 the values and iterated over to produce register numbers (indexed by 0 2551 from the first allocated register number) and offsets for use in real 2552 relocation. (N.B.: Relocatable runs are handled, not just punted.) 2553 2554 PUSHJ stub accounting is also done here. 2555 2556 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ 2557 2558 static bfd_boolean 2559 mmix_elf_relax_section (bfd *abfd, 2560 asection *sec, 2561 struct bfd_link_info *link_info, 2562 bfd_boolean *again) 2563 { 2564 Elf_Internal_Shdr *symtab_hdr; 2565 Elf_Internal_Rela *internal_relocs; 2566 Elf_Internal_Rela *irel, *irelend; 2567 asection *bpo_gregs_section = NULL; 2568 struct bpo_greg_section_info *gregdata; 2569 struct bpo_reloc_section_info *bpodata 2570 = mmix_elf_section_data (sec)->bpo.reloc; 2571 /* The initialization is to quiet compiler warnings. The value is to 2572 spot a missing actual initialization. */ 2573 size_t bpono = (size_t) -1; 2574 size_t pjsno = 0; 2575 Elf_Internal_Sym *isymbuf = NULL; 2576 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; 2577 2578 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; 2579 2580 /* Assume nothing changes. */ 2581 *again = FALSE; 2582 2583 /* We don't have to do anything if this section does not have relocs, or 2584 if this is not a code section. */ 2585 if ((sec->flags & SEC_RELOC) == 0 2586 || sec->reloc_count == 0 2587 || (sec->flags & SEC_CODE) == 0 2588 || (sec->flags & SEC_LINKER_CREATED) != 0 2589 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, 2590 then nothing to do. */ 2591 || (bpodata == NULL 2592 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) 2593 return TRUE; 2594 2595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2596 2597 if (bpodata != NULL) 2598 { 2599 bpo_gregs_section = bpodata->bpo_greg_section; 2600 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2601 bpono = bpodata->first_base_plus_offset_reloc; 2602 } 2603 else 2604 gregdata = NULL; 2605 2606 /* Get a copy of the native relocations. */ 2607 internal_relocs 2608 = _bfd_elf_link_read_relocs (abfd, sec, NULL, 2609 (Elf_Internal_Rela *) NULL, 2610 link_info->keep_memory); 2611 if (internal_relocs == NULL) 2612 goto error_return; 2613 2614 /* Walk through them looking for relaxing opportunities. */ 2615 irelend = internal_relocs + sec->reloc_count; 2616 for (irel = internal_relocs; irel < irelend; irel++) 2617 { 2618 bfd_vma symval; 2619 struct elf_link_hash_entry *h = NULL; 2620 2621 /* We only process two relocs. */ 2622 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET 2623 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) 2624 continue; 2625 2626 /* We process relocs in a distinctly different way when this is a 2627 relocatable link (for one, we don't look at symbols), so we avoid 2628 mixing its code with that for the "normal" relaxation. */ 2629 if (link_info->relocatable) 2630 { 2631 /* The only transformation in a relocatable link is to generate 2632 a full stub at the location of the stub calculated for the 2633 input section, if the relocated stub location, the end of the 2634 output section plus earlier stubs, cannot be reached. Thus 2635 relocatable linking can only lead to worse code, but it still 2636 works. */ 2637 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) 2638 { 2639 /* If we can reach the end of the output-section and beyond 2640 any current stubs, then we don't need a stub for this 2641 reloc. The relaxed order of output stub allocation may 2642 not exactly match the straightforward order, so we always 2643 assume presence of output stubs, which will allow 2644 relaxation only on relocations indifferent to the 2645 presence of output stub allocations for other relocations 2646 and thus the order of output stub allocation. */ 2647 if (bfd_check_overflow (complain_overflow_signed, 2648 19, 2649 0, 2650 bfd_arch_bits_per_address (abfd), 2651 /* Output-stub location. */ 2652 sec->output_section->rawsize 2653 + (mmix_elf_section_data (sec 2654 ->output_section) 2655 ->pjs.stubs_size_sum) 2656 /* Location of this PUSHJ reloc. */ 2657 - (sec->output_offset + irel->r_offset) 2658 /* Don't count *this* stub twice. */ 2659 - (mmix_elf_section_data (sec) 2660 ->pjs.stub_size[pjsno] 2661 + MAX_PUSHJ_STUB_SIZE)) 2662 == bfd_reloc_ok) 2663 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2664 2665 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2666 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2667 2668 pjsno++; 2669 } 2670 2671 continue; 2672 } 2673 2674 /* Get the value of the symbol referred to by the reloc. */ 2675 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2676 { 2677 /* A local symbol. */ 2678 Elf_Internal_Sym *isym; 2679 asection *sym_sec; 2680 2681 /* Read this BFD's local symbols if we haven't already. */ 2682 if (isymbuf == NULL) 2683 { 2684 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2685 if (isymbuf == NULL) 2686 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2687 symtab_hdr->sh_info, 0, 2688 NULL, NULL, NULL); 2689 if (isymbuf == 0) 2690 goto error_return; 2691 } 2692 2693 isym = isymbuf + ELF64_R_SYM (irel->r_info); 2694 if (isym->st_shndx == SHN_UNDEF) 2695 sym_sec = bfd_und_section_ptr; 2696 else if (isym->st_shndx == SHN_ABS) 2697 sym_sec = bfd_abs_section_ptr; 2698 else if (isym->st_shndx == SHN_COMMON) 2699 sym_sec = bfd_com_section_ptr; 2700 else 2701 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2702 symval = (isym->st_value 2703 + sym_sec->output_section->vma 2704 + sym_sec->output_offset); 2705 } 2706 else 2707 { 2708 unsigned long indx; 2709 2710 /* An external symbol. */ 2711 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2712 h = elf_sym_hashes (abfd)[indx]; 2713 BFD_ASSERT (h != NULL); 2714 if (h->root.type != bfd_link_hash_defined 2715 && h->root.type != bfd_link_hash_defweak) 2716 { 2717 /* This appears to be a reference to an undefined symbol. Just 2718 ignore it--it will be caught by the regular reloc processing. 2719 We need to keep BPO reloc accounting consistent, though 2720 else we'll abort instead of emitting an error message. */ 2721 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET 2722 && gregdata != NULL) 2723 { 2724 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2725 bpono++; 2726 } 2727 continue; 2728 } 2729 2730 symval = (h->root.u.def.value 2731 + h->root.u.def.section->output_section->vma 2732 + h->root.u.def.section->output_offset); 2733 } 2734 2735 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) 2736 { 2737 bfd_vma value = symval + irel->r_addend; 2738 bfd_vma dot 2739 = (sec->output_section->vma 2740 + sec->output_offset 2741 + irel->r_offset); 2742 bfd_vma stubaddr 2743 = (sec->output_section->vma 2744 + sec->output_offset 2745 + size 2746 + mmix_elf_section_data (sec)->pjs.stubs_size_sum); 2747 2748 if ((value & 3) == 0 2749 && bfd_check_overflow (complain_overflow_signed, 2750 19, 2751 0, 2752 bfd_arch_bits_per_address (abfd), 2753 value - dot 2754 - (value > dot 2755 ? mmix_elf_section_data (sec) 2756 ->pjs.stub_size[pjsno] 2757 : 0)) 2758 == bfd_reloc_ok) 2759 /* If the reloc fits, no stub is needed. */ 2760 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2761 else 2762 /* Maybe we can get away with just a JMP insn? */ 2763 if ((value & 3) == 0 2764 && bfd_check_overflow (complain_overflow_signed, 2765 27, 2766 0, 2767 bfd_arch_bits_per_address (abfd), 2768 value - stubaddr 2769 - (value > dot 2770 ? mmix_elf_section_data (sec) 2771 ->pjs.stub_size[pjsno] - 4 2772 : 0)) 2773 == bfd_reloc_ok) 2774 /* Yep, account for a stub consisting of a single JMP insn. */ 2775 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; 2776 else 2777 /* Nope, go for the full insn stub. It doesn't seem useful to 2778 emit the intermediate sizes; those will only be useful for 2779 a >64M program assuming contiguous code. */ 2780 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] 2781 = MAX_PUSHJ_STUB_SIZE; 2782 2783 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2784 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2785 pjsno++; 2786 continue; 2787 } 2788 2789 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ 2790 2791 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value 2792 = symval + irel->r_addend; 2793 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE; 2794 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2795 } 2796 2797 /* Check if that was the last BPO-reloc. If so, sort the values and 2798 calculate how many registers we need to cover them. Set the size of 2799 the linker gregs, and if the number of registers changed, indicate 2800 that we need to relax some more because we have more work to do. */ 2801 if (gregdata != NULL 2802 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) 2803 { 2804 size_t i; 2805 bfd_vma prev_base; 2806 size_t regindex; 2807 2808 /* First, reset the remaining relocs for the next round. */ 2809 gregdata->n_remaining_bpo_relocs_this_relaxation_round 2810 = gregdata->n_bpo_relocs; 2811 2812 qsort (gregdata->reloc_request, 2813 gregdata->n_max_bpo_relocs, 2814 sizeof (struct bpo_reloc_request), 2815 bpo_reloc_request_sort_fn); 2816 2817 /* Recalculate indexes. When we find a change (however unlikely 2818 after the initial iteration), we know we need to relax again, 2819 since items in the GREG-array are sorted by increasing value and 2820 stored in the relaxation phase. */ 2821 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2822 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2823 != i) 2824 { 2825 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2826 = i; 2827 *again = TRUE; 2828 } 2829 2830 /* Allocate register numbers (indexing from 0). Stop at the first 2831 non-valid reloc. */ 2832 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; 2833 i < gregdata->n_bpo_relocs; 2834 i++) 2835 { 2836 if (gregdata->reloc_request[i].value > prev_base + 255) 2837 { 2838 regindex++; 2839 prev_base = gregdata->reloc_request[i].value; 2840 } 2841 gregdata->reloc_request[i].regindex = regindex; 2842 gregdata->reloc_request[i].offset 2843 = gregdata->reloc_request[i].value - prev_base; 2844 } 2845 2846 /* If it's not the same as the last time, we need to relax again, 2847 because the size of the section has changed. I'm not sure we 2848 actually need to do any adjustments since the shrinking happens 2849 at the start of this section, but better safe than sorry. */ 2850 if (gregdata->n_allocated_bpo_gregs != regindex + 1) 2851 { 2852 gregdata->n_allocated_bpo_gregs = regindex + 1; 2853 *again = TRUE; 2854 } 2855 2856 bpo_gregs_section->size = (regindex + 1) * 8; 2857 } 2858 2859 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2860 { 2861 if (! link_info->keep_memory) 2862 free (isymbuf); 2863 else 2864 { 2865 /* Cache the symbols for elf_link_input_bfd. */ 2866 symtab_hdr->contents = (unsigned char *) isymbuf; 2867 } 2868 } 2869 2870 if (internal_relocs != NULL 2871 && elf_section_data (sec)->relocs != internal_relocs) 2872 free (internal_relocs); 2873 2874 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2875 abort (); 2876 2877 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2878 { 2879 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; 2880 *again = TRUE; 2881 } 2882 2883 return TRUE; 2884 2885 error_return: 2886 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2887 free (isymbuf); 2888 if (internal_relocs != NULL 2889 && elf_section_data (sec)->relocs != internal_relocs) 2890 free (internal_relocs); 2891 return FALSE; 2892 } 2893 2894 #define ELF_ARCH bfd_arch_mmix 2896 #define ELF_MACHINE_CODE EM_MMIX 2897 2898 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). 2899 However, that's too much for something somewhere in the linker part of 2900 BFD; perhaps the start-address has to be a non-zero multiple of this 2901 number, or larger than this number. The symptom is that the linker 2902 complains: "warning: allocated section `.text' not in segment". We 2903 settle for 64k; the page-size used in examples is 8k. 2904 #define ELF_MAXPAGESIZE 0x10000 2905 2906 Unfortunately, this causes excessive padding in the supposedly small 2907 for-education programs that are the expected usage (where people would 2908 inspect output). We stick to 256 bytes just to have *some* default 2909 alignment. */ 2910 #define ELF_MAXPAGESIZE 0x100 2911 2912 #define TARGET_BIG_SYM mmix_elf64_vec 2913 #define TARGET_BIG_NAME "elf64-mmix" 2914 2915 #define elf_info_to_howto_rel NULL 2916 #define elf_info_to_howto mmix_info_to_howto_rela 2917 #define elf_backend_relocate_section mmix_elf_relocate_section 2918 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook 2919 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook 2920 2921 #define elf_backend_link_output_symbol_hook \ 2922 mmix_elf_link_output_symbol_hook 2923 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook 2924 2925 #define elf_backend_check_relocs mmix_elf_check_relocs 2926 #define elf_backend_symbol_processing mmix_elf_symbol_processing 2927 #define elf_backend_omit_section_dynsym \ 2928 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 2929 2930 #define bfd_elf64_bfd_is_local_label_name \ 2931 mmix_elf_is_local_label_name 2932 2933 #define elf_backend_may_use_rel_p 0 2934 #define elf_backend_may_use_rela_p 1 2935 #define elf_backend_default_use_rela_p 1 2936 2937 #define elf_backend_can_gc_sections 1 2938 #define elf_backend_section_from_bfd_section \ 2939 mmix_elf_section_from_bfd_section 2940 2941 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook 2942 #define bfd_elf64_bfd_final_link mmix_elf_final_link 2943 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section 2944 2945 #include "elf64-target.h" 2946