1 /* libs/pixelflinger/scanline.cpp 2 ** 3 ** Copyright 2006-2011, The Android Open Source Project 4 ** 5 ** Licensed under the Apache License, Version 2.0 (the "License"); 6 ** you may not use this file except in compliance with the License. 7 ** You may obtain a copy of the License at 8 ** 9 ** http://www.apache.org/licenses/LICENSE-2.0 10 ** 11 ** Unless required by applicable law or agreed to in writing, software 12 ** distributed under the License is distributed on an "AS IS" BASIS, 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 ** See the License for the specific language governing permissions and 15 ** limitations under the License. 16 */ 17 18 #define LOG_TAG "pixelflinger" 19 20 #include <assert.h> 21 #include <stdio.h> 22 #include <stdlib.h> 23 #include <string.h> 24 25 #include <cutils/memory.h> 26 #include <log/log.h> 27 28 #include "buffer.h" 29 #include "scanline.h" 30 31 #include "codeflinger/CodeCache.h" 32 #include "codeflinger/GGLAssembler.h" 33 #if defined(__arm__) 34 #include "codeflinger/ARMAssembler.h" 35 #elif defined(__aarch64__) 36 #include "codeflinger/Arm64Assembler.h" 37 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6 38 #include "codeflinger/MIPSAssembler.h" 39 #elif defined(__mips__) && defined(__LP64__) 40 #include "codeflinger/MIPS64Assembler.h" 41 #endif 42 //#include "codeflinger/ARMAssemblerOptimizer.h" 43 44 // ---------------------------------------------------------------------------- 45 46 #define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline 47 #define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic 48 #define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic 49 #define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen 50 51 #ifdef NDEBUG 52 # define ANDROID_RELEASE 53 # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED 54 #else 55 # define ANDROID_DEBUG 56 # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED 57 #endif 58 59 #if defined(__arm__) || (defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))) || defined(__aarch64__) 60 # define ANDROID_ARM_CODEGEN 1 61 #else 62 # define ANDROID_ARM_CODEGEN 0 63 #endif 64 65 #define DEBUG__CODEGEN_ONLY 0 66 67 /* Set to 1 to dump to the log the states that need a new 68 * code-generated scanline callback, i.e. those that don't 69 * have a corresponding shortcut function. 70 */ 71 #define DEBUG_NEEDS 0 72 73 #if defined( __mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__)) 74 #define ASSEMBLY_SCRATCH_SIZE 4096 75 #elif defined(__aarch64__) 76 #define ASSEMBLY_SCRATCH_SIZE 8192 77 #else 78 #define ASSEMBLY_SCRATCH_SIZE 2048 79 #endif 80 81 // ---------------------------------------------------------------------------- 82 namespace android { 83 // ---------------------------------------------------------------------------- 84 85 static void init_y(context_t*, int32_t); 86 static void init_y_noop(context_t*, int32_t); 87 static void init_y_packed(context_t*, int32_t); 88 static void init_y_error(context_t*, int32_t); 89 90 static void step_y__generic(context_t* c); 91 static void step_y__nop(context_t*); 92 static void step_y__smooth(context_t* c); 93 static void step_y__tmu(context_t* c); 94 static void step_y__w(context_t* c); 95 96 static void scanline(context_t* c); 97 static void scanline_perspective(context_t* c); 98 static void scanline_perspective_single(context_t* c); 99 static void scanline_t32cb16blend(context_t* c); 100 static void scanline_t32cb16blend_dither(context_t* c); 101 static void scanline_t32cb16blend_srca(context_t* c); 102 static void scanline_t32cb16blend_clamp(context_t* c); 103 static void scanline_t32cb16blend_clamp_dither(context_t* c); 104 static void scanline_t32cb16blend_clamp_mod(context_t* c); 105 static void scanline_x32cb16blend_clamp_mod(context_t* c); 106 static void scanline_t32cb16blend_clamp_mod_dither(context_t* c); 107 static void scanline_x32cb16blend_clamp_mod_dither(context_t* c); 108 static void scanline_t32cb16(context_t* c); 109 static void scanline_t32cb16_dither(context_t* c); 110 static void scanline_t32cb16_clamp(context_t* c); 111 static void scanline_t32cb16_clamp_dither(context_t* c); 112 static void scanline_col32cb16blend(context_t* c); 113 static void scanline_t16cb16_clamp(context_t* c); 114 static void scanline_t16cb16blend_clamp_mod(context_t* c); 115 static void scanline_memcpy(context_t* c); 116 static void scanline_memset8(context_t* c); 117 static void scanline_memset16(context_t* c); 118 static void scanline_memset32(context_t* c); 119 static void scanline_noop(context_t* c); 120 static void scanline_set(context_t* c); 121 static void scanline_clear(context_t* c); 122 123 static void rect_generic(context_t* c, size_t yc); 124 static void rect_memcpy(context_t* c, size_t yc); 125 126 #if defined( __arm__) 127 extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t); 128 extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct); 129 extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct); 130 extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct); 131 #elif defined(__aarch64__) 132 extern "C" void scanline_t32cb16blend_arm64(uint16_t*, uint32_t*, size_t); 133 extern "C" void scanline_col32cb16blend_arm64(uint16_t *dst, uint32_t col, size_t ct); 134 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6 135 extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t); 136 #elif defined(__mips__) && defined(__LP64__) 137 extern "C" void scanline_t32cb16blend_mips64(uint16_t*, uint32_t*, size_t); 138 extern "C" void scanline_col32cb16blend_mips64(uint16_t *dst, uint32_t col, size_t ct); 139 #endif 140 141 // ---------------------------------------------------------------------------- 142 143 static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix) 144 { 145 return uint16_t( ((pix << 8) & 0xf800) | 146 ((pix >> 5) & 0x07e0) | 147 ((pix >> 19) & 0x001f) ); 148 } 149 150 struct shortcut_t { 151 needs_filter_t filter; 152 const char* desc; 153 void (*scanline)(context_t*); 154 void (*init_y)(context_t*, int32_t); 155 }; 156 157 // Keep in sync with needs 158 159 /* To understand the values here, have a look at: 160 * system/core/include/private/pixelflinger/ggl_context.h 161 * 162 * Especially the lines defining and using GGL_RESERVE_NEEDS 163 * 164 * Quick reminders: 165 * - the last nibble of the first value is the destination buffer format. 166 * - the last nibble of the third value is the source texture format 167 * - formats: 4=rgb565 1=abgr8888 2=xbgr8888 168 * 169 * In the descriptions below: 170 * 171 * SRC means we copy the source pixels to the destination 172 * 173 * SRC_OVER means we blend the source pixels to the destination 174 * with dstFactor = 1-srcA, srcFactor=1 (premultiplied source). 175 * This mode is otherwise called 'blend'. 176 * 177 * SRCA_OVER means we blend the source pixels to the destination 178 * with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source). 179 * This mode is otherwise called 'blend_srca' 180 * 181 * clamp means we fetch source pixels from a texture with u/v clamping 182 * 183 * mod means the source pixels are modulated (multiplied) by the 184 * a/r/g/b of the current context's color. Typically used for 185 * fade-in / fade-out. 186 * 187 * dither means we dither 32 bit values to 16 bits 188 */ 189 static shortcut_t shortcuts[] = { 190 { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } }, 191 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 192 "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop }, 193 { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } }, 194 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 195 "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop }, 196 /* same as first entry, but with dithering */ 197 { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } }, 198 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 199 "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop }, 200 /* same as second entry, but with dithering */ 201 { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } }, 202 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 203 "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop }, 204 /* this is used during the boot animation - CHEAT: ignore dithering */ 205 { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } }, 206 { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } }, 207 "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop }, 208 /* special case for arbitrary texture coordinates (think scaling) */ 209 { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } }, 210 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 211 "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y }, 212 { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } }, 213 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 214 "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y }, 215 /* another case used during emulation */ 216 { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } }, 217 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 218 "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y }, 219 /* and this */ 220 { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } }, 221 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 222 "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y }, 223 { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } }, 224 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 225 "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y }, 226 { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } }, 227 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 228 "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y }, 229 { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } }, 230 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 231 "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, 232 { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } }, 233 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 234 "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y }, 235 { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } }, 236 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 237 "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, 238 { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } }, 239 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 240 "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y }, 241 { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } }, 242 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 243 "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y }, 244 { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } }, 245 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } }, 246 "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y }, 247 { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } }, 248 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } }, 249 "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed }, 250 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, 251 { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } }, 252 "(nop) alpha test", scanline_noop, init_y_noop }, 253 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, 254 { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } }, 255 "(nop) depth test", scanline_noop, init_y_noop }, 256 { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } }, 257 { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } }, 258 "(nop) logic_op", scanline_noop, init_y_noop }, 259 { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } }, 260 { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } }, 261 "(nop) color mask", scanline_noop, init_y_noop }, 262 { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } }, 263 { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, 264 "(set) logic_op", scanline_set, init_y_noop }, 265 { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } }, 266 { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } }, 267 "(clear) logic_op", scanline_clear, init_y_noop }, 268 { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } }, 269 { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } }, 270 "(clear) blending 0/0", scanline_clear, init_y_noop }, 271 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } }, 272 { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } }, 273 "(error) invalid color-buffer format", scanline_noop, init_y_error }, 274 }; 275 static const needs_filter_t noblend1to1 = { 276 // (disregard dithering, see below) 277 { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } }, 278 { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } } 279 }; 280 static const needs_filter_t fill16noblend = { 281 { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } }, 282 { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } } 283 }; 284 285 // ---------------------------------------------------------------------------- 286 287 #if ANDROID_ARM_CODEGEN 288 289 #if defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__)) 290 static CodeCache gCodeCache(32 * 1024); 291 #elif defined(__aarch64__) 292 static CodeCache gCodeCache(48 * 1024); 293 #else 294 static CodeCache gCodeCache(12 * 1024); 295 #endif 296 297 class ScanlineAssembly : public Assembly { 298 AssemblyKey<needs_t> mKey; 299 public: 300 ScanlineAssembly(needs_t needs, size_t size) 301 : Assembly(size), mKey(needs) { } 302 const AssemblyKey<needs_t>& key() const { return mKey; } 303 }; 304 #endif 305 306 // ---------------------------------------------------------------------------- 307 308 void ggl_init_scanline(context_t* c) 309 { 310 c->init_y = init_y; 311 c->step_y = step_y__generic; 312 c->scanline = scanline; 313 } 314 315 void ggl_uninit_scanline(context_t* c) 316 { 317 if (c->state.buffers.coverage) 318 free(c->state.buffers.coverage); 319 #if ANDROID_ARM_CODEGEN 320 if (c->scanline_as) 321 c->scanline_as->decStrong(c); 322 #endif 323 } 324 325 // ---------------------------------------------------------------------------- 326 327 static void pick_scanline(context_t* c) 328 { 329 #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0)) 330 331 #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC 332 c->init_y = init_y; 333 c->step_y = step_y__generic; 334 c->scanline = scanline; 335 return; 336 #endif 337 338 //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n", 339 // c->state.needs.n, c->state.needs.p, 340 // c->state.needs.t[0], c->state.needs.t[1]); 341 342 // first handle the special case that we cannot test with a filter 343 const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n); 344 if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) { 345 if (c->state.needs.match(noblend1to1)) { 346 // this will match regardless of dithering state, since both 347 // src and dest have the same format anyway, there is no dithering 348 // to be done. 349 const GGLFormat* f = 350 &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]); 351 if ((f->components == GGL_RGB) || 352 (f->components == GGL_RGBA) || 353 (f->components == GGL_LUMINANCE) || 354 (f->components == GGL_LUMINANCE_ALPHA)) 355 { 356 // format must have all of RGB components 357 // (so the current color doesn't show through) 358 c->scanline = scanline_memcpy; 359 c->init_y = init_y_noop; 360 return; 361 } 362 } 363 } 364 365 if (c->state.needs.match(fill16noblend)) { 366 c->init_y = init_y_packed; 367 switch (c->formats[cb_format].size) { 368 case 1: c->scanline = scanline_memset8; return; 369 case 2: c->scanline = scanline_memset16; return; 370 case 4: c->scanline = scanline_memset32; return; 371 } 372 } 373 374 const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t); 375 for (int i=0 ; i<numFilters ; i++) { 376 if (c->state.needs.match(shortcuts[i].filter)) { 377 c->scanline = shortcuts[i].scanline; 378 c->init_y = shortcuts[i].init_y; 379 return; 380 } 381 } 382 383 #if DEBUG_NEEDS 384 ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x", 385 c->state.needs.n, c->state.needs.p, 386 c->state.needs.t[0], c->state.needs.t[1]); 387 #endif 388 389 #endif // DEBUG__CODEGEN_ONLY 390 391 c->init_y = init_y; 392 c->step_y = step_y__generic; 393 394 #if ANDROID_ARM_CODEGEN 395 // we're going to have to generate some code... 396 // here, generate code for our pixel pipeline 397 const AssemblyKey<needs_t> key(c->state.needs); 398 sp<Assembly> assembly = gCodeCache.lookup(key); 399 if (assembly == 0) { 400 // create a new assembly region 401 sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs, 402 ASSEMBLY_SCRATCH_SIZE); 403 // initialize our assembler 404 #if defined(__arm__) 405 GGLAssembler assembler( new ARMAssembler(a) ); 406 //GGLAssembler assembler( 407 // new ARMAssemblerOptimizer(new ARMAssembler(a)) ); 408 #endif 409 #if defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6 410 GGLAssembler assembler( new ArmToMipsAssembler(a) ); 411 #elif defined(__mips__) && defined(__LP64__) 412 GGLAssembler assembler( new ArmToMips64Assembler(a) ); 413 #elif defined(__aarch64__) 414 GGLAssembler assembler( new ArmToArm64Assembler(a) ); 415 #endif 416 // generate the scanline code for the given needs 417 bool err = assembler.scanline(c->state.needs, c) != 0; 418 if (ggl_likely(!err)) { 419 // finally, cache this assembly 420 err = gCodeCache.cache(a->key(), a) < 0; 421 } 422 if (ggl_unlikely(err)) { 423 ALOGE("error generating or caching assembly. Reverting to NOP."); 424 c->scanline = scanline_noop; 425 c->init_y = init_y_noop; 426 c->step_y = step_y__nop; 427 return; 428 } 429 assembly = a; 430 } 431 432 // release the previous assembly 433 if (c->scanline_as) { 434 c->scanline_as->decStrong(c); 435 } 436 437 //ALOGI("using generated pixel-pipeline"); 438 c->scanline_as = assembly.get(); 439 c->scanline_as->incStrong(c); // hold on to assembly 440 c->scanline = (void(*)(context_t* c))assembly->base(); 441 #else 442 // ALOGW("using generic (slow) pixel-pipeline"); 443 c->scanline = scanline; 444 #endif 445 } 446 447 void ggl_pick_scanline(context_t* c) 448 { 449 pick_scanline(c); 450 if ((c->state.enables & GGL_ENABLE_W) && 451 (c->state.enables & GGL_ENABLE_TMUS)) 452 { 453 c->span = c->scanline; 454 c->scanline = scanline_perspective; 455 if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) { 456 // only one TMU enabled 457 c->scanline = scanline_perspective_single; 458 } 459 } 460 } 461 462 // ---------------------------------------------------------------------------- 463 464 static void blending(context_t* c, pixel_t* fragment, pixel_t* fb); 465 static void blend_factor(context_t* c, pixel_t* r, uint32_t factor, 466 const pixel_t* src, const pixel_t* dst); 467 static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv); 468 469 #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) 470 471 // no need to compile the generic-pipeline, it can't be reached 472 void scanline(context_t*) 473 { 474 } 475 476 #else 477 478 void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv) 479 { 480 if (su && sv) { 481 if (su > sv) { 482 v = ggl_expand(v, sv, su); 483 sv = su; 484 } else if (su < sv) { 485 u = ggl_expand(u, su, sv); 486 su = sv; 487 } 488 } 489 } 490 491 void blending(context_t* c, pixel_t* fragment, pixel_t* fb) 492 { 493 rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]); 494 rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]); 495 rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]); 496 rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]); 497 498 pixel_t sf, df; 499 blend_factor(c, &sf, c->state.blend.src, fragment, fb); 500 blend_factor(c, &df, c->state.blend.dst, fragment, fb); 501 502 fragment->c[1] = 503 gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1])); 504 fragment->c[2] = 505 gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2])); 506 fragment->c[3] = 507 gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3])); 508 509 if (c->state.blend.alpha_separate) { 510 blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb); 511 blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb); 512 } 513 514 fragment->c[0] = 515 gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0])); 516 517 // clamp to 1.0 518 if (fragment->c[0] >= (1LU<<fragment->s[0])) 519 fragment->c[0] = (1<<fragment->s[0])-1; 520 if (fragment->c[1] >= (1LU<<fragment->s[1])) 521 fragment->c[1] = (1<<fragment->s[1])-1; 522 if (fragment->c[2] >= (1LU<<fragment->s[2])) 523 fragment->c[2] = (1<<fragment->s[2])-1; 524 if (fragment->c[3] >= (1LU<<fragment->s[3])) 525 fragment->c[3] = (1<<fragment->s[3])-1; 526 } 527 528 static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0) 529 { 530 if (!size) 531 return def; 532 533 // scale to 16 bits 534 if (size > 16) { 535 x >>= (size - 16); 536 } else if (size < 16) { 537 x = ggl_expand(x, size, 16); 538 } 539 x += x >> 15; 540 return x; 541 } 542 543 void blend_factor(context_t* /*c*/, pixel_t* r, 544 uint32_t factor, const pixel_t* src, const pixel_t* dst) 545 { 546 switch (factor) { 547 case GGL_ZERO: 548 r->c[1] = 549 r->c[2] = 550 r->c[3] = 551 r->c[0] = 0; 552 break; 553 case GGL_ONE: 554 r->c[1] = 555 r->c[2] = 556 r->c[3] = 557 r->c[0] = FIXED_ONE; 558 break; 559 case GGL_DST_COLOR: 560 r->c[1] = blendfactor(dst->c[1], dst->s[1]); 561 r->c[2] = blendfactor(dst->c[2], dst->s[2]); 562 r->c[3] = blendfactor(dst->c[3], dst->s[3]); 563 r->c[0] = blendfactor(dst->c[0], dst->s[0]); 564 break; 565 case GGL_SRC_COLOR: 566 r->c[1] = blendfactor(src->c[1], src->s[1]); 567 r->c[2] = blendfactor(src->c[2], src->s[2]); 568 r->c[3] = blendfactor(src->c[3], src->s[3]); 569 r->c[0] = blendfactor(src->c[0], src->s[0]); 570 break; 571 case GGL_ONE_MINUS_DST_COLOR: 572 r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]); 573 r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]); 574 r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]); 575 r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]); 576 break; 577 case GGL_ONE_MINUS_SRC_COLOR: 578 r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]); 579 r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]); 580 r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]); 581 r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]); 582 break; 583 case GGL_SRC_ALPHA: 584 r->c[1] = 585 r->c[2] = 586 r->c[3] = 587 r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE); 588 break; 589 case GGL_ONE_MINUS_SRC_ALPHA: 590 r->c[1] = 591 r->c[2] = 592 r->c[3] = 593 r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE); 594 break; 595 case GGL_DST_ALPHA: 596 r->c[1] = 597 r->c[2] = 598 r->c[3] = 599 r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE); 600 break; 601 case GGL_ONE_MINUS_DST_ALPHA: 602 r->c[1] = 603 r->c[2] = 604 r->c[3] = 605 r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE); 606 break; 607 case GGL_SRC_ALPHA_SATURATE: 608 // XXX: GGL_SRC_ALPHA_SATURATE 609 break; 610 } 611 } 612 613 static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap) 614 { 615 GGLfixed d; 616 if (tx_wrap == GGL_REPEAT) { 617 d = (uint32_t(coord)>>16) * size; 618 } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics 619 const GGLfixed clamp_min = FIXED_HALF; 620 const GGLfixed clamp_max = (size << 16) - FIXED_HALF; 621 if (coord < clamp_min) coord = clamp_min; 622 if (coord > clamp_max) coord = clamp_max; 623 d = coord; 624 } else { // 1:1 625 const GGLfixed clamp_min = 0; 626 const GGLfixed clamp_max = (size << 16); 627 if (coord < clamp_min) coord = clamp_min; 628 if (coord > clamp_max) coord = clamp_max; 629 d = coord; 630 } 631 return d; 632 } 633 634 static inline 635 GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len) 636 { 637 const int32_t end = dvdx * (len-1) + v; 638 if (end < 0) 639 v -= end; 640 v &= ~(v>>31); 641 return v; 642 } 643 644 void scanline(context_t* c) 645 { 646 const uint32_t enables = c->state.enables; 647 const int xs = c->iterators.xl; 648 const int x1 = c->iterators.xr; 649 int xc = x1 - xs; 650 const int16_t* covPtr = c->state.buffers.coverage + xs; 651 652 // All iterated values are sampled at the pixel center 653 654 // reset iterators for that scanline... 655 GGLcolor r, g, b, a; 656 iterators_t& ci = c->iterators; 657 if (enables & GGL_ENABLE_SMOOTH) { 658 r = (xs * c->shade.drdx) + ci.ydrdy; 659 g = (xs * c->shade.dgdx) + ci.ydgdy; 660 b = (xs * c->shade.dbdx) + ci.ydbdy; 661 a = (xs * c->shade.dadx) + ci.ydady; 662 r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc); 663 g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc); 664 b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc); 665 a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc); 666 } else { 667 r = ci.ydrdy; 668 g = ci.ydgdy; 669 b = ci.ydbdy; 670 a = ci.ydady; 671 } 672 673 // z iterators are 1.31 674 GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy; 675 GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy; 676 677 struct { 678 GGLfixed s, t; 679 } tc[GGL_TEXTURE_UNIT_COUNT]; 680 if (enables & GGL_ENABLE_TMUS) { 681 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 682 if (c->state.texture[i].enable) { 683 texture_iterators_t& ti = c->state.texture[i].iterators; 684 if (enables & GGL_ENABLE_W) { 685 tc[i].s = ti.ydsdy; 686 tc[i].t = ti.ydtdy; 687 } else { 688 tc[i].s = (xs * ti.dsdx) + ti.ydsdy; 689 tc[i].t = (xs * ti.dtdx) + ti.ydtdy; 690 } 691 } 692 } 693 } 694 695 pixel_t fragment; 696 pixel_t texel; 697 pixel_t fb; 698 699 uint32_t x = xs; 700 uint32_t y = c->iterators.y; 701 702 while (xc--) { 703 704 { // just a scope 705 706 // read color (convert to 8 bits by keeping only the integer part) 707 fragment.s[1] = fragment.s[2] = 708 fragment.s[3] = fragment.s[0] = 8; 709 fragment.c[1] = r >> (GGL_COLOR_BITS-8); 710 fragment.c[2] = g >> (GGL_COLOR_BITS-8); 711 fragment.c[3] = b >> (GGL_COLOR_BITS-8); 712 fragment.c[0] = a >> (GGL_COLOR_BITS-8); 713 714 // texturing 715 if (enables & GGL_ENABLE_TMUS) { 716 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 717 texture_t& tx = c->state.texture[i]; 718 if (!tx.enable) 719 continue; 720 texture_iterators_t& ti = tx.iterators; 721 int32_t u, v; 722 723 // s-coordinate 724 if (tx.s_coord != GGL_ONE_TO_ONE) { 725 const int w = tx.surface.width; 726 u = wrapping(tc[i].s, w, tx.s_wrap); 727 tc[i].s += ti.dsdx; 728 } else { 729 u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF; 730 } 731 732 // t-coordinate 733 if (tx.t_coord != GGL_ONE_TO_ONE) { 734 const int h = tx.surface.height; 735 v = wrapping(tc[i].t, h, tx.t_wrap); 736 tc[i].t += ti.dtdx; 737 } else { 738 v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF; 739 } 740 741 // read texture 742 if (tx.mag_filter == GGL_NEAREST && 743 tx.min_filter == GGL_NEAREST) 744 { 745 u >>= 16; 746 v >>= 16; 747 tx.surface.read(&tx.surface, c, u, v, &texel); 748 } else { 749 const int w = tx.surface.width; 750 const int h = tx.surface.height; 751 u -= FIXED_HALF; 752 v -= FIXED_HALF; 753 int u0 = u >> 16; 754 int v0 = v >> 16; 755 int u1 = u0 + 1; 756 int v1 = v0 + 1; 757 if (tx.s_wrap == GGL_REPEAT) { 758 if (u0<0) u0 += w; 759 if (u1<0) u1 += w; 760 if (u0>=w) u0 -= w; 761 if (u1>=w) u1 -= w; 762 } else { 763 if (u0<0) u0 = 0; 764 if (u1<0) u1 = 0; 765 if (u0>=w) u0 = w-1; 766 if (u1>=w) u1 = w-1; 767 } 768 if (tx.t_wrap == GGL_REPEAT) { 769 if (v0<0) v0 += h; 770 if (v1<0) v1 += h; 771 if (v0>=h) v0 -= h; 772 if (v1>=h) v1 -= h; 773 } else { 774 if (v0<0) v0 = 0; 775 if (v1<0) v1 = 0; 776 if (v0>=h) v0 = h-1; 777 if (v1>=h) v1 = h-1; 778 } 779 pixel_t texels[4]; 780 uint32_t mm[4]; 781 tx.surface.read(&tx.surface, c, u0, v0, &texels[0]); 782 tx.surface.read(&tx.surface, c, u0, v1, &texels[1]); 783 tx.surface.read(&tx.surface, c, u1, v0, &texels[2]); 784 tx.surface.read(&tx.surface, c, u1, v1, &texels[3]); 785 u = (u >> 12) & 0xF; 786 v = (v >> 12) & 0xF; 787 u += u>>3; 788 v += v>>3; 789 mm[0] = (0x10 - u) * (0x10 - v); 790 mm[1] = (0x10 - u) * v; 791 mm[2] = u * (0x10 - v); 792 mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]); 793 for (int j=0 ; j<4 ; j++) { 794 texel.s[j] = texels[0].s[j]; 795 if (!texel.s[j]) continue; 796 texel.s[j] += 8; 797 texel.c[j] = texels[0].c[j]*mm[0] + 798 texels[1].c[j]*mm[1] + 799 texels[2].c[j]*mm[2] + 800 texels[3].c[j]*mm[3] ; 801 } 802 } 803 804 // Texture environnement... 805 for (int j=0 ; j<4 ; j++) { 806 uint32_t& Cf = fragment.c[j]; 807 uint32_t& Ct = texel.c[j]; 808 uint8_t& sf = fragment.s[j]; 809 uint8_t& st = texel.s[j]; 810 uint32_t At = texel.c[0]; 811 uint8_t sat = texel.s[0]; 812 switch (tx.env) { 813 case GGL_REPLACE: 814 if (st) { 815 Cf = Ct; 816 sf = st; 817 } 818 break; 819 case GGL_MODULATE: 820 if (st) { 821 uint32_t factor = Ct + (Ct>>(st-1)); 822 Cf = (Cf * factor) >> st; 823 } 824 break; 825 case GGL_DECAL: 826 if (sat) { 827 rescale(Cf, sf, Ct, st); 828 Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat; 829 } 830 break; 831 case GGL_BLEND: 832 if (st) { 833 uint32_t Cc = tx.env_color[i]; 834 if (sf>8) Cc = (Cc * ((1<<sf)-1))>>8; 835 else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf); 836 uint32_t factor = Ct + (Ct>>(st-1)); 837 Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st; 838 } 839 break; 840 case GGL_ADD: 841 if (st) { 842 rescale(Cf, sf, Ct, st); 843 Cf += Ct; 844 } 845 break; 846 } 847 } 848 } 849 } 850 851 // coverage application 852 if (enables & GGL_ENABLE_AA) { 853 int16_t cf = *covPtr++; 854 fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15; 855 } 856 857 // alpha-test 858 if (enables & GGL_ENABLE_ALPHA_TEST) { 859 GGLcolor ref = c->state.alpha_test.ref; 860 GGLcolor alpha = (uint64_t(fragment.c[0]) * 861 ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1); 862 switch (c->state.alpha_test.func) { 863 case GGL_NEVER: goto discard; 864 case GGL_LESS: if (alpha<ref) break; goto discard; 865 case GGL_EQUAL: if (alpha==ref) break; goto discard; 866 case GGL_LEQUAL: if (alpha<=ref) break; goto discard; 867 case GGL_GREATER: if (alpha>ref) break; goto discard; 868 case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard; 869 case GGL_GEQUAL: if (alpha>=ref) break; goto discard; 870 } 871 } 872 873 // depth test 874 if (c->state.buffers.depth.format) { 875 if (enables & GGL_ENABLE_DEPTH_TEST) { 876 surface_t* cb = &(c->state.buffers.depth); 877 uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y)); 878 uint16_t zz = uint32_t(z)>>(16); 879 uint16_t depth = *p; 880 switch (c->state.depth_test.func) { 881 case GGL_NEVER: goto discard; 882 case GGL_LESS: if (zz<depth) break; goto discard; 883 case GGL_EQUAL: if (zz==depth) break; goto discard; 884 case GGL_LEQUAL: if (zz<=depth) break; goto discard; 885 case GGL_GREATER: if (zz>depth) break; goto discard; 886 case GGL_NOTEQUAL: if (zz!=depth) break; goto discard; 887 case GGL_GEQUAL: if (zz>=depth) break; goto discard; 888 } 889 // depth buffer is not enabled, if depth-test is not enabled 890 /* 891 fragment.s[1] = fragment.s[2] = 892 fragment.s[3] = fragment.s[0] = 8; 893 fragment.c[1] = 894 fragment.c[2] = 895 fragment.c[3] = 896 fragment.c[0] = 255 - (zz>>8); 897 */ 898 if (c->state.mask.depth) { 899 *p = zz; 900 } 901 } 902 } 903 904 // fog 905 if (enables & GGL_ENABLE_FOG) { 906 for (int i=1 ; i<=3 ; i++) { 907 GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF; 908 uint32_t& c = fragment.c[i]; 909 uint8_t& s = fragment.s[i]; 910 c = (c * 0x10000) / ((1<<s)-1); 911 c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f)); 912 s = 16; 913 } 914 } 915 916 // blending 917 if (enables & GGL_ENABLE_BLENDING) { 918 fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind 919 fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0; 920 c->state.buffers.color.read( 921 &(c->state.buffers.color), c, x, y, &fb); 922 blending( c, &fragment, &fb ); 923 } 924 925 // write 926 c->state.buffers.color.write( 927 &(c->state.buffers.color), c, x, y, &fragment); 928 } 929 930 discard: 931 // iterate... 932 x += 1; 933 if (enables & GGL_ENABLE_SMOOTH) { 934 r += c->shade.drdx; 935 g += c->shade.dgdx; 936 b += c->shade.dbdx; 937 a += c->shade.dadx; 938 } 939 z += c->shade.dzdx; 940 f += c->shade.dfdx; 941 } 942 } 943 944 #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED) 945 946 // ---------------------------------------------------------------------------- 947 #if 0 948 #pragma mark - 949 #pragma mark Scanline 950 #endif 951 952 /* Used to parse a 32-bit source texture linearly. Usage is: 953 * 954 * horz_iterator32 hi(context); 955 * while (...) { 956 * uint32_t src_pixel = hi.get_pixel32(); 957 * ... 958 * } 959 * 960 * Use only for one-to-one texture mapping. 961 */ 962 struct horz_iterator32 { 963 explicit horz_iterator32(context_t* c) { 964 const int x = c->iterators.xl; 965 const int y = c->iterators.y; 966 texture_t& tx = c->state.texture[0]; 967 const int32_t u = (tx.shade.is0>>16) + x; 968 const int32_t v = (tx.shade.it0>>16) + y; 969 m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v)); 970 } 971 uint32_t get_pixel32() { 972 return *m_src++; 973 } 974 protected: 975 uint32_t* m_src; 976 }; 977 978 /* A variant for 16-bit source textures. */ 979 struct horz_iterator16 { 980 explicit horz_iterator16(context_t* c) { 981 const int x = c->iterators.xl; 982 const int y = c->iterators.y; 983 texture_t& tx = c->state.texture[0]; 984 const int32_t u = (tx.shade.is0>>16) + x; 985 const int32_t v = (tx.shade.it0>>16) + y; 986 m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v)); 987 } 988 uint16_t get_pixel16() { 989 return *m_src++; 990 } 991 protected: 992 uint16_t* m_src; 993 }; 994 995 /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP. 996 * After initialization, call get_src16() or get_src32() to get the current 997 * texture pixel value. 998 */ 999 struct clamp_iterator { 1000 explicit clamp_iterator(context_t* c) { 1001 const int xs = c->iterators.xl; 1002 texture_t& tx = c->state.texture[0]; 1003 texture_iterators_t& ti = tx.iterators; 1004 m_s = (xs * ti.dsdx) + ti.ydsdy; 1005 m_t = (xs * ti.dtdx) + ti.ydtdy; 1006 m_ds = ti.dsdx; 1007 m_dt = ti.dtdx; 1008 m_width_m1 = tx.surface.width - 1; 1009 m_height_m1 = tx.surface.height - 1; 1010 m_data = tx.surface.data; 1011 m_stride = tx.surface.stride; 1012 } 1013 uint16_t get_pixel16() { 1014 int u, v; 1015 get_uv(u, v); 1016 uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v)); 1017 return src[0]; 1018 } 1019 uint32_t get_pixel32() { 1020 int u, v; 1021 get_uv(u, v); 1022 uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v)); 1023 return src[0]; 1024 } 1025 private: 1026 void get_uv(int& u, int& v) { 1027 int uu = m_s >> 16; 1028 int vv = m_t >> 16; 1029 if (uu < 0) 1030 uu = 0; 1031 if (uu > m_width_m1) 1032 uu = m_width_m1; 1033 if (vv < 0) 1034 vv = 0; 1035 if (vv > m_height_m1) 1036 vv = m_height_m1; 1037 u = uu; 1038 v = vv; 1039 m_s += m_ds; 1040 m_t += m_dt; 1041 } 1042 1043 GGLfixed m_s, m_t; 1044 GGLfixed m_ds, m_dt; 1045 int m_width_m1, m_height_m1; 1046 uint8_t* m_data; 1047 int m_stride; 1048 }; 1049 1050 /* 1051 * The 'horizontal clamp iterator' variant corresponds to the case where 1052 * the 'v' coordinate doesn't change. This is useful to avoid one mult and 1053 * extra adds / checks per pixels, if the blending/processing operation after 1054 * this is very fast. 1055 */ 1056 static int is_context_horizontal(const context_t* c) { 1057 return (c->state.texture[0].iterators.dtdx == 0); 1058 } 1059 1060 struct horz_clamp_iterator { 1061 uint16_t get_pixel16() { 1062 int u = m_s >> 16; 1063 m_s += m_ds; 1064 if (u < 0) 1065 u = 0; 1066 if (u > m_width_m1) 1067 u = m_width_m1; 1068 const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data); 1069 return src[u]; 1070 } 1071 uint32_t get_pixel32() { 1072 int u = m_s >> 16; 1073 m_s += m_ds; 1074 if (u < 0) 1075 u = 0; 1076 if (u > m_width_m1) 1077 u = m_width_m1; 1078 const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data); 1079 return src[u]; 1080 } 1081 protected: 1082 void init(const context_t* c, int shift); 1083 GGLfixed m_s; 1084 GGLfixed m_ds; 1085 int m_width_m1; 1086 const uint8_t* m_data; 1087 }; 1088 1089 void horz_clamp_iterator::init(const context_t* c, int shift) 1090 { 1091 const int xs = c->iterators.xl; 1092 const texture_t& tx = c->state.texture[0]; 1093 const texture_iterators_t& ti = tx.iterators; 1094 m_s = (xs * ti.dsdx) + ti.ydsdy; 1095 m_ds = ti.dsdx; 1096 m_width_m1 = tx.surface.width-1; 1097 m_data = tx.surface.data; 1098 1099 GGLfixed t = (xs * ti.dtdx) + ti.ydtdy; 1100 int v = t >> 16; 1101 if (v < 0) 1102 v = 0; 1103 else if (v >= (int)tx.surface.height) 1104 v = (int)tx.surface.height-1; 1105 1106 m_data += (tx.surface.stride*v) << shift; 1107 } 1108 1109 struct horz_clamp_iterator16 : horz_clamp_iterator { 1110 explicit horz_clamp_iterator16(const context_t* c) { 1111 init(c,1); 1112 }; 1113 }; 1114 1115 struct horz_clamp_iterator32 : horz_clamp_iterator { 1116 explicit horz_clamp_iterator32(context_t* c) { 1117 init(c,2); 1118 }; 1119 }; 1120 1121 /* This is used to perform dithering operations. 1122 */ 1123 struct ditherer { 1124 explicit ditherer(const context_t* c) { 1125 const int x = c->iterators.xl; 1126 const int y = c->iterators.y; 1127 m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ]; 1128 m_index = x & GGL_DITHER_MASK; 1129 } 1130 void step(void) { 1131 m_index++; 1132 } 1133 int get_value(void) { 1134 int ret = m_line[m_index & GGL_DITHER_MASK]; 1135 m_index++; 1136 return ret; 1137 } 1138 uint16_t abgr8888ToRgb565(uint32_t s) { 1139 uint32_t r = s & 0xff; 1140 uint32_t g = (s >> 8) & 0xff; 1141 uint32_t b = (s >> 16) & 0xff; 1142 return rgb888ToRgb565(r,g,b); 1143 } 1144 /* The following assumes that r/g/b are in the 0..255 range each */ 1145 uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) { 1146 int threshold = get_value(); 1147 /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */ 1148 r += (threshold >> (GGL_DITHER_BITS-8 +5)); 1149 g += (threshold >> (GGL_DITHER_BITS-8 +6)); 1150 b += (threshold >> (GGL_DITHER_BITS-8 +5)); 1151 if (r > 0xff) 1152 r = 0xff; 1153 if (g > 0xff) 1154 g = 0xff; 1155 if (b > 0xff) 1156 b = 0xff; 1157 return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3)); 1158 } 1159 protected: 1160 const uint8_t* m_line; 1161 int m_index; 1162 }; 1163 1164 /* This structure is used to blend (SRC_OVER) 32-bit source pixels 1165 * onto 16-bit destination ones. Usage is simply: 1166 * 1167 * blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>) 1168 */ 1169 struct blender_32to16 { 1170 explicit blender_32to16(context_t* /*c*/) { } 1171 void write(uint32_t s, uint16_t* dst) { 1172 if (s == 0) 1173 return; 1174 s = GGL_RGBA_TO_HOST(s); 1175 int sA = (s>>24); 1176 if (sA == 0xff) { 1177 *dst = convertAbgr8888ToRgb565(s); 1178 } else { 1179 int f = 0x100 - (sA + (sA>>7)); 1180 int sR = (s >> ( 3))&0x1F; 1181 int sG = (s >> ( 8+2))&0x3F; 1182 int sB = (s >> (16+3))&0x1F; 1183 uint16_t d = *dst; 1184 int dR = (d>>11)&0x1f; 1185 int dG = (d>>5)&0x3f; 1186 int dB = (d)&0x1f; 1187 sR += (f*dR)>>8; 1188 sG += (f*dG)>>8; 1189 sB += (f*dB)>>8; 1190 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1191 } 1192 } 1193 void write(uint32_t s, uint16_t* dst, ditherer& di) { 1194 if (s == 0) { 1195 di.step(); 1196 return; 1197 } 1198 s = GGL_RGBA_TO_HOST(s); 1199 int sA = (s>>24); 1200 if (sA == 0xff) { 1201 *dst = di.abgr8888ToRgb565(s); 1202 } else { 1203 int threshold = di.get_value() << (8 - GGL_DITHER_BITS); 1204 int f = 0x100 - (sA + (sA>>7)); 1205 int sR = (s >> ( 3))&0x1F; 1206 int sG = (s >> ( 8+2))&0x3F; 1207 int sB = (s >> (16+3))&0x1F; 1208 uint16_t d = *dst; 1209 int dR = (d>>11)&0x1f; 1210 int dG = (d>>5)&0x3f; 1211 int dB = (d)&0x1f; 1212 sR = ((sR << 8) + f*dR + threshold)>>8; 1213 sG = ((sG << 8) + f*dG + threshold)>>8; 1214 sB = ((sB << 8) + f*dB + threshold)>>8; 1215 if (sR > 0x1f) sR = 0x1f; 1216 if (sG > 0x3f) sG = 0x3f; 1217 if (sB > 0x1f) sB = 0x1f; 1218 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1219 } 1220 } 1221 }; 1222 1223 /* This blender does the same for the 'blend_srca' operation. 1224 * where dstFactor=srcA*(1-srcA) srcFactor=srcA 1225 */ 1226 struct blender_32to16_srcA { 1227 explicit blender_32to16_srcA(const context_t* /*c*/) { } 1228 void write(uint32_t s, uint16_t* dst) { 1229 if (!s) { 1230 return; 1231 } 1232 uint16_t d = *dst; 1233 s = GGL_RGBA_TO_HOST(s); 1234 int sR = (s >> ( 3))&0x1F; 1235 int sG = (s >> ( 8+2))&0x3F; 1236 int sB = (s >> (16+3))&0x1F; 1237 int sA = (s>>24); 1238 int f1 = (sA + (sA>>7)); 1239 int f2 = 0x100-f1; 1240 int dR = (d>>11)&0x1f; 1241 int dG = (d>>5)&0x3f; 1242 int dB = (d)&0x1f; 1243 sR = (f1*sR + f2*dR)>>8; 1244 sG = (f1*sG + f2*dG)>>8; 1245 sB = (f1*sB + f2*dB)>>8; 1246 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1247 } 1248 }; 1249 1250 /* Common init code the modulating blenders */ 1251 struct blender_modulate { 1252 void init(const context_t* c) { 1253 const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8); 1254 const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8); 1255 const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8); 1256 const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); 1257 m_r = r + (r >> 7); 1258 m_g = g + (g >> 7); 1259 m_b = b + (b >> 7); 1260 m_a = a + (a >> 7); 1261 } 1262 protected: 1263 int m_r, m_g, m_b, m_a; 1264 }; 1265 1266 /* This blender does a normal blend after modulation. 1267 */ 1268 struct blender_32to16_modulate : blender_modulate { 1269 explicit blender_32to16_modulate(const context_t* c) { 1270 init(c); 1271 } 1272 void write(uint32_t s, uint16_t* dst) { 1273 // blend source and destination 1274 if (!s) { 1275 return; 1276 } 1277 s = GGL_RGBA_TO_HOST(s); 1278 1279 /* We need to modulate s */ 1280 uint32_t sA = (s >> 24); 1281 uint32_t sB = (s >> 16) & 0xff; 1282 uint32_t sG = (s >> 8) & 0xff; 1283 uint32_t sR = s & 0xff; 1284 1285 sA = (sA*m_a) >> 8; 1286 /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */ 1287 sR = (sR*m_r) >> (8 - 5); 1288 sG = (sG*m_g) >> (8 - 6); 1289 sB = (sB*m_b) >> (8 - 5); 1290 1291 /* Now do a normal blend */ 1292 int f = 0x100 - (sA + (sA>>7)); 1293 uint16_t d = *dst; 1294 int dR = (d>>11)&0x1f; 1295 int dG = (d>>5)&0x3f; 1296 int dB = (d)&0x1f; 1297 sR = (sR + f*dR)>>8; 1298 sG = (sG + f*dG)>>8; 1299 sB = (sB + f*dB)>>8; 1300 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1301 } 1302 void write(uint32_t s, uint16_t* dst, ditherer& di) { 1303 // blend source and destination 1304 if (!s) { 1305 di.step(); 1306 return; 1307 } 1308 s = GGL_RGBA_TO_HOST(s); 1309 1310 /* We need to modulate s */ 1311 uint32_t sA = (s >> 24); 1312 uint32_t sB = (s >> 16) & 0xff; 1313 uint32_t sG = (s >> 8) & 0xff; 1314 uint32_t sR = s & 0xff; 1315 1316 sA = (sA*m_a) >> 8; 1317 /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */ 1318 sR = (sR*m_r) >> (8 - 5); 1319 sG = (sG*m_g) >> (8 - 6); 1320 sB = (sB*m_b) >> (8 - 5); 1321 1322 /* Scale threshold to 0.8 fixed float format */ 1323 int threshold = di.get_value() << (8 - GGL_DITHER_BITS); 1324 int f = 0x100 - (sA + (sA>>7)); 1325 uint16_t d = *dst; 1326 int dR = (d>>11)&0x1f; 1327 int dG = (d>>5)&0x3f; 1328 int dB = (d)&0x1f; 1329 sR = (sR + f*dR + threshold)>>8; 1330 sG = (sG + f*dG + threshold)>>8; 1331 sB = (sB + f*dB + threshold)>>8; 1332 if (sR > 0x1f) sR = 0x1f; 1333 if (sG > 0x3f) sG = 0x3f; 1334 if (sB > 0x1f) sB = 0x1f; 1335 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1336 } 1337 }; 1338 1339 /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */ 1340 struct blender_x32to16_modulate : blender_modulate { 1341 explicit blender_x32to16_modulate(const context_t* c) { 1342 init(c); 1343 } 1344 void write(uint32_t s, uint16_t* dst) { 1345 s = GGL_RGBA_TO_HOST(s); 1346 1347 uint32_t sB = (s >> 16) & 0xff; 1348 uint32_t sG = (s >> 8) & 0xff; 1349 uint32_t sR = s & 0xff; 1350 1351 /* Keep R/G/B in 5.8 or 6.8 format */ 1352 sR = (sR*m_r) >> (8 - 5); 1353 sG = (sG*m_g) >> (8 - 6); 1354 sB = (sB*m_b) >> (8 - 5); 1355 1356 int f = 0x100 - m_a; 1357 uint16_t d = *dst; 1358 int dR = (d>>11)&0x1f; 1359 int dG = (d>>5)&0x3f; 1360 int dB = (d)&0x1f; 1361 sR = (sR + f*dR)>>8; 1362 sG = (sG + f*dG)>>8; 1363 sB = (sB + f*dB)>>8; 1364 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1365 } 1366 void write(uint32_t s, uint16_t* dst, ditherer& di) { 1367 s = GGL_RGBA_TO_HOST(s); 1368 1369 uint32_t sB = (s >> 16) & 0xff; 1370 uint32_t sG = (s >> 8) & 0xff; 1371 uint32_t sR = s & 0xff; 1372 1373 sR = (sR*m_r) >> (8 - 5); 1374 sG = (sG*m_g) >> (8 - 6); 1375 sB = (sB*m_b) >> (8 - 5); 1376 1377 /* Now do a normal blend */ 1378 int threshold = di.get_value() << (8 - GGL_DITHER_BITS); 1379 int f = 0x100 - m_a; 1380 uint16_t d = *dst; 1381 int dR = (d>>11)&0x1f; 1382 int dG = (d>>5)&0x3f; 1383 int dB = (d)&0x1f; 1384 sR = (sR + f*dR + threshold)>>8; 1385 sG = (sG + f*dG + threshold)>>8; 1386 sB = (sB + f*dB + threshold)>>8; 1387 if (sR > 0x1f) sR = 0x1f; 1388 if (sG > 0x3f) sG = 0x3f; 1389 if (sB > 0x1f) sB = 0x1f; 1390 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1391 } 1392 }; 1393 1394 /* Same as above, but source is 16bit rgb565 */ 1395 struct blender_16to16_modulate : blender_modulate { 1396 explicit blender_16to16_modulate(const context_t* c) { 1397 init(c); 1398 } 1399 void write(uint16_t s16, uint16_t* dst) { 1400 uint32_t s = s16; 1401 1402 uint32_t sR = s >> 11; 1403 uint32_t sG = (s >> 5) & 0x3f; 1404 uint32_t sB = s & 0x1f; 1405 1406 sR = (sR*m_r); 1407 sG = (sG*m_g); 1408 sB = (sB*m_b); 1409 1410 int f = 0x100 - m_a; 1411 uint16_t d = *dst; 1412 int dR = (d>>11)&0x1f; 1413 int dG = (d>>5)&0x3f; 1414 int dB = (d)&0x1f; 1415 sR = (sR + f*dR)>>8; 1416 sG = (sG + f*dG)>>8; 1417 sB = (sB + f*dB)>>8; 1418 *dst = uint16_t((sR<<11)|(sG<<5)|sB); 1419 } 1420 }; 1421 1422 /* This is used to iterate over a 16-bit destination color buffer. 1423 * Usage is: 1424 * 1425 * dst_iterator16 di(context); 1426 * while (di.count--) { 1427 * <do stuff with dest pixel at di.dst> 1428 * di.dst++; 1429 * } 1430 */ 1431 struct dst_iterator16 { 1432 explicit dst_iterator16(const context_t* c) { 1433 const int x = c->iterators.xl; 1434 const int width = c->iterators.xr - x; 1435 const int32_t y = c->iterators.y; 1436 const surface_t* cb = &(c->state.buffers.color); 1437 count = width; 1438 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 1439 } 1440 int count; 1441 uint16_t* dst; 1442 }; 1443 1444 1445 static void scanline_t32cb16_clamp(context_t* c) 1446 { 1447 dst_iterator16 di(c); 1448 1449 if (is_context_horizontal(c)) { 1450 /* Special case for simple horizontal scaling */ 1451 horz_clamp_iterator32 ci(c); 1452 while (di.count--) { 1453 uint32_t s = ci.get_pixel32(); 1454 *di.dst++ = convertAbgr8888ToRgb565(s); 1455 } 1456 } else { 1457 /* General case */ 1458 clamp_iterator ci(c); 1459 while (di.count--) { 1460 uint32_t s = ci.get_pixel32(); 1461 *di.dst++ = convertAbgr8888ToRgb565(s); 1462 } 1463 } 1464 } 1465 1466 static void scanline_t32cb16_dither(context_t* c) 1467 { 1468 horz_iterator32 si(c); 1469 dst_iterator16 di(c); 1470 ditherer dither(c); 1471 1472 while (di.count--) { 1473 uint32_t s = si.get_pixel32(); 1474 *di.dst++ = dither.abgr8888ToRgb565(s); 1475 } 1476 } 1477 1478 static void scanline_t32cb16_clamp_dither(context_t* c) 1479 { 1480 dst_iterator16 di(c); 1481 ditherer dither(c); 1482 1483 if (is_context_horizontal(c)) { 1484 /* Special case for simple horizontal scaling */ 1485 horz_clamp_iterator32 ci(c); 1486 while (di.count--) { 1487 uint32_t s = ci.get_pixel32(); 1488 *di.dst++ = dither.abgr8888ToRgb565(s); 1489 } 1490 } else { 1491 /* General case */ 1492 clamp_iterator ci(c); 1493 while (di.count--) { 1494 uint32_t s = ci.get_pixel32(); 1495 *di.dst++ = dither.abgr8888ToRgb565(s); 1496 } 1497 } 1498 } 1499 1500 static void scanline_t32cb16blend_dither(context_t* c) 1501 { 1502 dst_iterator16 di(c); 1503 ditherer dither(c); 1504 blender_32to16 bl(c); 1505 horz_iterator32 hi(c); 1506 while (di.count--) { 1507 uint32_t s = hi.get_pixel32(); 1508 bl.write(s, di.dst, dither); 1509 di.dst++; 1510 } 1511 } 1512 1513 static void scanline_t32cb16blend_clamp(context_t* c) 1514 { 1515 dst_iterator16 di(c); 1516 blender_32to16 bl(c); 1517 1518 if (is_context_horizontal(c)) { 1519 horz_clamp_iterator32 ci(c); 1520 while (di.count--) { 1521 uint32_t s = ci.get_pixel32(); 1522 bl.write(s, di.dst); 1523 di.dst++; 1524 } 1525 } else { 1526 clamp_iterator ci(c); 1527 while (di.count--) { 1528 uint32_t s = ci.get_pixel32(); 1529 bl.write(s, di.dst); 1530 di.dst++; 1531 } 1532 } 1533 } 1534 1535 static void scanline_t32cb16blend_clamp_dither(context_t* c) 1536 { 1537 dst_iterator16 di(c); 1538 ditherer dither(c); 1539 blender_32to16 bl(c); 1540 1541 clamp_iterator ci(c); 1542 while (di.count--) { 1543 uint32_t s = ci.get_pixel32(); 1544 bl.write(s, di.dst, dither); 1545 di.dst++; 1546 } 1547 } 1548 1549 void scanline_t32cb16blend_clamp_mod(context_t* c) 1550 { 1551 dst_iterator16 di(c); 1552 blender_32to16_modulate bl(c); 1553 1554 clamp_iterator ci(c); 1555 while (di.count--) { 1556 uint32_t s = ci.get_pixel32(); 1557 bl.write(s, di.dst); 1558 di.dst++; 1559 } 1560 } 1561 1562 void scanline_t32cb16blend_clamp_mod_dither(context_t* c) 1563 { 1564 dst_iterator16 di(c); 1565 blender_32to16_modulate bl(c); 1566 ditherer dither(c); 1567 1568 clamp_iterator ci(c); 1569 while (di.count--) { 1570 uint32_t s = ci.get_pixel32(); 1571 bl.write(s, di.dst, dither); 1572 di.dst++; 1573 } 1574 } 1575 1576 /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */ 1577 void scanline_x32cb16blend_clamp_mod(context_t* c) 1578 { 1579 dst_iterator16 di(c); 1580 blender_x32to16_modulate bl(c); 1581 1582 clamp_iterator ci(c); 1583 while (di.count--) { 1584 uint32_t s = ci.get_pixel32(); 1585 bl.write(s, di.dst); 1586 di.dst++; 1587 } 1588 } 1589 1590 void scanline_x32cb16blend_clamp_mod_dither(context_t* c) 1591 { 1592 dst_iterator16 di(c); 1593 blender_x32to16_modulate bl(c); 1594 ditherer dither(c); 1595 1596 clamp_iterator ci(c); 1597 while (di.count--) { 1598 uint32_t s = ci.get_pixel32(); 1599 bl.write(s, di.dst, dither); 1600 di.dst++; 1601 } 1602 } 1603 1604 void scanline_t16cb16_clamp(context_t* c) 1605 { 1606 dst_iterator16 di(c); 1607 1608 /* Special case for simple horizontal scaling */ 1609 if (is_context_horizontal(c)) { 1610 horz_clamp_iterator16 ci(c); 1611 while (di.count--) { 1612 *di.dst++ = ci.get_pixel16(); 1613 } 1614 } else { 1615 clamp_iterator ci(c); 1616 while (di.count--) { 1617 *di.dst++ = ci.get_pixel16(); 1618 } 1619 } 1620 } 1621 1622 1623 1624 template <typename T, typename U> 1625 static inline __attribute__((const)) 1626 T interpolate(int y, T v0, U dvdx, U dvdy) { 1627 // interpolates in pixel's centers 1628 // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx) 1629 return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1)); 1630 } 1631 1632 // ---------------------------------------------------------------------------- 1633 #if 0 1634 #pragma mark - 1635 #endif 1636 1637 void init_y(context_t* c, int32_t ys) 1638 { 1639 const uint32_t enables = c->state.enables; 1640 1641 // compute iterators... 1642 iterators_t& ci = c->iterators; 1643 1644 // sample in the center 1645 ci.y = ys; 1646 1647 if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) { 1648 ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy); 1649 ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy); 1650 ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy); 1651 } 1652 1653 if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) { 1654 ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy); 1655 ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy); 1656 ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy); 1657 ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady); 1658 c->step_y = step_y__smooth; 1659 } else { 1660 ci.ydrdy = c->shade.r0; 1661 ci.ydgdy = c->shade.g0; 1662 ci.ydbdy = c->shade.b0; 1663 ci.ydady = c->shade.a0; 1664 // XXX: do only if needed, or make sure this is fast 1665 c->packed = ggl_pack_color(c, c->state.buffers.color.format, 1666 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); 1667 c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, 1668 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady); 1669 } 1670 1671 // initialize the variables we need in the shader 1672 generated_vars_t& gen = c->generated_vars; 1673 gen.argb[GGLFormat::ALPHA].c = ci.ydady; 1674 gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx; 1675 gen.argb[GGLFormat::RED ].c = ci.ydrdy; 1676 gen.argb[GGLFormat::RED ].dx = c->shade.drdx; 1677 gen.argb[GGLFormat::GREEN].c = ci.ydgdy; 1678 gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx; 1679 gen.argb[GGLFormat::BLUE ].c = ci.ydbdy; 1680 gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx; 1681 gen.dzdx = c->shade.dzdx; 1682 gen.f = ci.ydfdy; 1683 gen.dfdx = c->shade.dfdx; 1684 1685 if (enables & GGL_ENABLE_TMUS) { 1686 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1687 texture_t& t = c->state.texture[i]; 1688 if (!t.enable) continue; 1689 1690 texture_iterators_t& ti = t.iterators; 1691 if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) { 1692 // we need to set all of these to 0 because in some cases 1693 // step_y__generic() or step_y__tmu() will be used and 1694 // therefore will update dtdy, however, in 1:1 mode 1695 // this is always done by the scanline rasterizer. 1696 ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0; 1697 ti.ydsdy = t.shade.is0; 1698 ti.ydtdy = t.shade.it0; 1699 } else { 1700 const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16); 1701 const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16); 1702 ti.sscale = t.shade.sscale + adjustSWrap; 1703 ti.tscale = t.shade.tscale + adjustTWrap; 1704 if (!(enables & GGL_ENABLE_W)) { 1705 // S coordinate 1706 const int32_t sscale = ti.sscale; 1707 const int32_t sy = interpolate(ys, 1708 t.shade.is0, t.shade.idsdx, t.shade.idsdy); 1709 if (sscale>=0) { 1710 ti.ydsdy= sy << sscale; 1711 ti.dsdx = t.shade.idsdx << sscale; 1712 ti.dsdy = t.shade.idsdy << sscale; 1713 } else { 1714 ti.ydsdy= sy >> -sscale; 1715 ti.dsdx = t.shade.idsdx >> -sscale; 1716 ti.dsdy = t.shade.idsdy >> -sscale; 1717 } 1718 // T coordinate 1719 const int32_t tscale = ti.tscale; 1720 const int32_t ty = interpolate(ys, 1721 t.shade.it0, t.shade.idtdx, t.shade.idtdy); 1722 if (tscale>=0) { 1723 ti.ydtdy= ty << tscale; 1724 ti.dtdx = t.shade.idtdx << tscale; 1725 ti.dtdy = t.shade.idtdy << tscale; 1726 } else { 1727 ti.ydtdy= ty >> -tscale; 1728 ti.dtdx = t.shade.idtdx >> -tscale; 1729 ti.dtdy = t.shade.idtdy >> -tscale; 1730 } 1731 } 1732 } 1733 // mirror for generated code... 1734 generated_tex_vars_t& gen = c->generated_vars.texture[i]; 1735 gen.width = t.surface.width; 1736 gen.height = t.surface.height; 1737 gen.stride = t.surface.stride; 1738 gen.data = uintptr_t(t.surface.data); 1739 gen.dsdx = ti.dsdx; 1740 gen.dtdx = ti.dtdx; 1741 } 1742 } 1743 1744 // choose the y-stepper 1745 c->step_y = step_y__nop; 1746 if (enables & GGL_ENABLE_FOG) { 1747 c->step_y = step_y__generic; 1748 } else if (enables & GGL_ENABLE_TMUS) { 1749 if (enables & GGL_ENABLE_SMOOTH) { 1750 c->step_y = step_y__generic; 1751 } else if (enables & GGL_ENABLE_W) { 1752 c->step_y = step_y__w; 1753 } else { 1754 c->step_y = step_y__tmu; 1755 } 1756 } else { 1757 if (enables & GGL_ENABLE_SMOOTH) { 1758 c->step_y = step_y__smooth; 1759 } 1760 } 1761 1762 // choose the rectangle blitter 1763 c->rect = rect_generic; 1764 if ((c->step_y == step_y__nop) && 1765 (c->scanline == scanline_memcpy)) 1766 { 1767 c->rect = rect_memcpy; 1768 } 1769 } 1770 1771 void init_y_packed(context_t* c, int32_t y0) 1772 { 1773 uint8_t f = c->state.buffers.color.format; 1774 c->packed = ggl_pack_color(c, f, 1775 c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); 1776 c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888, 1777 c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0); 1778 c->iterators.y = y0; 1779 c->step_y = step_y__nop; 1780 // choose the rectangle blitter 1781 c->rect = rect_generic; 1782 if (c->scanline == scanline_memcpy) { 1783 c->rect = rect_memcpy; 1784 } 1785 } 1786 1787 void init_y_noop(context_t* c, int32_t y0) 1788 { 1789 c->iterators.y = y0; 1790 c->step_y = step_y__nop; 1791 // choose the rectangle blitter 1792 c->rect = rect_generic; 1793 if (c->scanline == scanline_memcpy) { 1794 c->rect = rect_memcpy; 1795 } 1796 } 1797 1798 void init_y_error(context_t* c, int32_t y0) 1799 { 1800 // woooops, shoud never happen, 1801 // fail gracefully (don't display anything) 1802 init_y_noop(c, y0); 1803 ALOGE("color-buffer has an invalid format!"); 1804 } 1805 1806 // ---------------------------------------------------------------------------- 1807 #if 0 1808 #pragma mark - 1809 #endif 1810 1811 void step_y__generic(context_t* c) 1812 { 1813 const uint32_t enables = c->state.enables; 1814 1815 // iterate... 1816 iterators_t& ci = c->iterators; 1817 ci.y += 1; 1818 1819 if (enables & GGL_ENABLE_SMOOTH) { 1820 ci.ydrdy += c->shade.drdy; 1821 ci.ydgdy += c->shade.dgdy; 1822 ci.ydbdy += c->shade.dbdy; 1823 ci.ydady += c->shade.dady; 1824 } 1825 1826 const uint32_t mask = 1827 GGL_ENABLE_DEPTH_TEST | 1828 GGL_ENABLE_W | 1829 GGL_ENABLE_FOG; 1830 if (enables & mask) { 1831 ci.ydzdy += c->shade.dzdy; 1832 ci.ydwdy += c->shade.dwdy; 1833 ci.ydfdy += c->shade.dfdy; 1834 } 1835 1836 if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) { 1837 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1838 if (c->state.texture[i].enable) { 1839 texture_iterators_t& ti = c->state.texture[i].iterators; 1840 ti.ydsdy += ti.dsdy; 1841 ti.ydtdy += ti.dtdy; 1842 } 1843 } 1844 } 1845 } 1846 1847 void step_y__nop(context_t* c) 1848 { 1849 c->iterators.y += 1; 1850 c->iterators.ydzdy += c->shade.dzdy; 1851 } 1852 1853 void step_y__smooth(context_t* c) 1854 { 1855 iterators_t& ci = c->iterators; 1856 ci.y += 1; 1857 ci.ydrdy += c->shade.drdy; 1858 ci.ydgdy += c->shade.dgdy; 1859 ci.ydbdy += c->shade.dbdy; 1860 ci.ydady += c->shade.dady; 1861 ci.ydzdy += c->shade.dzdy; 1862 } 1863 1864 void step_y__w(context_t* c) 1865 { 1866 iterators_t& ci = c->iterators; 1867 ci.y += 1; 1868 ci.ydzdy += c->shade.dzdy; 1869 ci.ydwdy += c->shade.dwdy; 1870 } 1871 1872 void step_y__tmu(context_t* c) 1873 { 1874 iterators_t& ci = c->iterators; 1875 ci.y += 1; 1876 ci.ydzdy += c->shade.dzdy; 1877 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1878 if (c->state.texture[i].enable) { 1879 texture_iterators_t& ti = c->state.texture[i].iterators; 1880 ti.ydsdy += ti.dsdy; 1881 ti.ydtdy += ti.dtdy; 1882 } 1883 } 1884 } 1885 1886 // ---------------------------------------------------------------------------- 1887 #if 0 1888 #pragma mark - 1889 #endif 1890 1891 void scanline_perspective(context_t* c) 1892 { 1893 struct { 1894 union { 1895 struct { 1896 int32_t s, sq; 1897 int32_t t, tq; 1898 } sqtq; 1899 struct { 1900 int32_t v, q; 1901 } st[2]; 1902 }; 1903 } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16))); 1904 1905 // XXX: we should have a special case when dwdx = 0 1906 1907 // 32 pixels spans works okay. 16 is a lot better, 1908 // but hey, it's a software renderer... 1909 const uint32_t SPAN_BITS = 5; 1910 const uint32_t ys = c->iterators.y; 1911 const uint32_t xs = c->iterators.xl; 1912 const uint32_t x1 = c->iterators.xr; 1913 const uint32_t xc = x1 - xs; 1914 uint32_t remainder = xc & ((1<<SPAN_BITS)-1); 1915 uint32_t numSpans = xc >> SPAN_BITS; 1916 1917 const iterators_t& ci = c->iterators; 1918 int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy; 1919 int32_t q0 = gglRecipQ(w0, 30); 1920 const int iwscale = 32 - gglClz(q0); 1921 1922 const int32_t dwdx = c->shade.dwdx << SPAN_BITS; 1923 int32_t xl = c->iterators.xl; 1924 1925 // We process s & t with a loop to reduce the code size 1926 // (and i-cache pressure). 1927 1928 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1929 const texture_t& tmu = c->state.texture[i]; 1930 if (!tmu.enable) continue; 1931 int32_t s = tmu.shade.is0 + 1932 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + 1933 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); 1934 int32_t t = tmu.shade.it0 + 1935 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + 1936 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); 1937 tc[i].sqtq.s = s; 1938 tc[i].sqtq.t = t; 1939 tc[i].sqtq.sq = gglMulx(s, q0, iwscale); 1940 tc[i].sqtq.tq = gglMulx(t, q0, iwscale); 1941 } 1942 1943 int32_t span = 0; 1944 do { 1945 int32_t w1; 1946 if (ggl_likely(numSpans)) { 1947 w1 = w0 + dwdx; 1948 } else { 1949 if (remainder) { 1950 // finish off the scanline... 1951 span = remainder; 1952 w1 = (c->shade.dwdx * span) + w0; 1953 } else { 1954 break; 1955 } 1956 } 1957 int32_t q1 = gglRecipQ(w1, 30); 1958 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) { 1959 texture_t& tmu = c->state.texture[i]; 1960 if (!tmu.enable) continue; 1961 texture_iterators_t& ti = tmu.iterators; 1962 1963 for (int j=0 ; j<2 ; j++) { 1964 int32_t v = tc[i].st[j].v; 1965 if (span) v += (tmu.shade.st[j].dx)*span; 1966 else v += (tmu.shade.st[j].dx)<<SPAN_BITS; 1967 const int32_t v0 = tc[i].st[j].q; 1968 const int32_t v1 = gglMulx(v, q1, iwscale); 1969 int32_t dvdx = v1 - v0; 1970 if (span) dvdx /= span; 1971 else dvdx >>= SPAN_BITS; 1972 tc[i].st[j].v = v; 1973 tc[i].st[j].q = v1; 1974 1975 const int scale = ti.st[j].scale + (iwscale - 30); 1976 if (scale >= 0) { 1977 ti.st[j].ydvdy = v0 << scale; 1978 ti.st[j].dvdx = dvdx << scale; 1979 } else { 1980 ti.st[j].ydvdy = v0 >> -scale; 1981 ti.st[j].dvdx = dvdx >> -scale; 1982 } 1983 } 1984 generated_tex_vars_t& gen = c->generated_vars.texture[i]; 1985 gen.dsdx = ti.st[0].dvdx; 1986 gen.dtdx = ti.st[1].dvdx; 1987 } 1988 c->iterators.xl = xl; 1989 c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS)); 1990 w0 = w1; 1991 q0 = q1; 1992 c->span(c); 1993 } while(numSpans--); 1994 } 1995 1996 void scanline_perspective_single(context_t* c) 1997 { 1998 // 32 pixels spans works okay. 16 is a lot better, 1999 // but hey, it's a software renderer... 2000 const uint32_t SPAN_BITS = 5; 2001 const uint32_t ys = c->iterators.y; 2002 const uint32_t xs = c->iterators.xl; 2003 const uint32_t x1 = c->iterators.xr; 2004 const uint32_t xc = x1 - xs; 2005 2006 const iterators_t& ci = c->iterators; 2007 int32_t w = (xs * c->shade.dwdx) + ci.ydwdy; 2008 int32_t iw = gglRecipQ(w, 30); 2009 const int iwscale = 32 - gglClz(iw); 2010 2011 const int i = 31 - gglClz(c->state.enabled_tmu); 2012 generated_tex_vars_t& gen = c->generated_vars.texture[i]; 2013 texture_t& tmu = c->state.texture[i]; 2014 texture_iterators_t& ti = tmu.iterators; 2015 const int sscale = ti.sscale + (iwscale - 30); 2016 const int tscale = ti.tscale + (iwscale - 30); 2017 int32_t s = tmu.shade.is0 + 2018 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) + 2019 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1); 2020 int32_t t = tmu.shade.it0 + 2021 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) + 2022 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1); 2023 int32_t s0 = gglMulx(s, iw, iwscale); 2024 int32_t t0 = gglMulx(t, iw, iwscale); 2025 int32_t xl = c->iterators.xl; 2026 2027 int32_t sq, tq, dsdx, dtdx; 2028 int32_t premainder = xc & ((1<<SPAN_BITS)-1); 2029 uint32_t numSpans = xc >> SPAN_BITS; 2030 if (c->shade.dwdx == 0) { 2031 // XXX: we could choose to do this if the error is small enough 2032 numSpans = 0; 2033 premainder = xc; 2034 goto no_perspective; 2035 } 2036 2037 if (premainder) { 2038 w += c->shade.dwdx * premainder; 2039 iw = gglRecipQ(w, 30); 2040 no_perspective: 2041 s += tmu.shade.idsdx * premainder; 2042 t += tmu.shade.idtdx * premainder; 2043 sq = gglMulx(s, iw, iwscale); 2044 tq = gglMulx(t, iw, iwscale); 2045 dsdx = (sq - s0) / premainder; 2046 dtdx = (tq - t0) / premainder; 2047 c->iterators.xl = xl; 2048 c->iterators.xr = xl = xl + premainder; 2049 goto finish; 2050 } 2051 2052 while (numSpans--) { 2053 w += c->shade.dwdx << SPAN_BITS; 2054 s += tmu.shade.idsdx << SPAN_BITS; 2055 t += tmu.shade.idtdx << SPAN_BITS; 2056 iw = gglRecipQ(w, 30); 2057 sq = gglMulx(s, iw, iwscale); 2058 tq = gglMulx(t, iw, iwscale); 2059 dsdx = (sq - s0) >> SPAN_BITS; 2060 dtdx = (tq - t0) >> SPAN_BITS; 2061 c->iterators.xl = xl; 2062 c->iterators.xr = xl = xl + (1<<SPAN_BITS); 2063 finish: 2064 if (sscale >= 0) { 2065 ti.ydsdy = s0 << sscale; 2066 ti.dsdx = dsdx << sscale; 2067 } else { 2068 ti.ydsdy = s0 >>-sscale; 2069 ti.dsdx = dsdx >>-sscale; 2070 } 2071 if (tscale >= 0) { 2072 ti.ydtdy = t0 << tscale; 2073 ti.dtdx = dtdx << tscale; 2074 } else { 2075 ti.ydtdy = t0 >>-tscale; 2076 ti.dtdx = dtdx >>-tscale; 2077 } 2078 s0 = sq; 2079 t0 = tq; 2080 gen.dsdx = ti.dsdx; 2081 gen.dtdx = ti.dtdx; 2082 c->span(c); 2083 } 2084 } 2085 2086 // ---------------------------------------------------------------------------- 2087 2088 void scanline_col32cb16blend(context_t* c) 2089 { 2090 int32_t x = c->iterators.xl; 2091 size_t ct = c->iterators.xr - x; 2092 int32_t y = c->iterators.y; 2093 surface_t* cb = &(c->state.buffers.color); 2094 union { 2095 uint16_t* dst; 2096 uint32_t* dst32; 2097 }; 2098 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2099 2100 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__)) 2101 #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN 2102 scanline_col32cb16blend_neon(dst, &(c->packed8888), ct); 2103 #else // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN 2104 scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct); 2105 #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN 2106 #elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__aarch64__)) 2107 scanline_col32cb16blend_arm64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct); 2108 #elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__mips__) && defined(__LP64__))) 2109 scanline_col32cb16blend_mips64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct); 2110 #else 2111 uint32_t s = GGL_RGBA_TO_HOST(c->packed8888); 2112 int sA = (s>>24); 2113 int f = 0x100 - (sA + (sA>>7)); 2114 while (ct--) { 2115 uint16_t d = *dst; 2116 int dR = (d>>11)&0x1f; 2117 int dG = (d>>5)&0x3f; 2118 int dB = (d)&0x1f; 2119 int sR = (s >> ( 3))&0x1F; 2120 int sG = (s >> ( 8+2))&0x3F; 2121 int sB = (s >> (16+3))&0x1F; 2122 sR += (f*dR)>>8; 2123 sG += (f*dG)>>8; 2124 sB += (f*dB)>>8; 2125 *dst++ = uint16_t((sR<<11)|(sG<<5)|sB); 2126 } 2127 #endif 2128 2129 } 2130 2131 void scanline_t32cb16(context_t* c) 2132 { 2133 int32_t x = c->iterators.xl; 2134 size_t ct = c->iterators.xr - x; 2135 int32_t y = c->iterators.y; 2136 surface_t* cb = &(c->state.buffers.color); 2137 union { 2138 uint16_t* dst; 2139 uint32_t* dst32; 2140 }; 2141 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2142 2143 surface_t* tex = &(c->state.texture[0].surface); 2144 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2145 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2146 uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v)); 2147 int sR, sG, sB; 2148 uint32_t s, d; 2149 2150 if (ct==1 || uintptr_t(dst)&2) { 2151 last_one: 2152 s = GGL_RGBA_TO_HOST( *src++ ); 2153 *dst++ = convertAbgr8888ToRgb565(s); 2154 ct--; 2155 } 2156 2157 while (ct >= 2) { 2158 #if BYTE_ORDER == BIG_ENDIAN 2159 s = GGL_RGBA_TO_HOST( *src++ ); 2160 d = convertAbgr8888ToRgb565_hi16(s); 2161 2162 s = GGL_RGBA_TO_HOST( *src++ ); 2163 d |= convertAbgr8888ToRgb565(s); 2164 #else 2165 s = GGL_RGBA_TO_HOST( *src++ ); 2166 d = convertAbgr8888ToRgb565(s); 2167 2168 s = GGL_RGBA_TO_HOST( *src++ ); 2169 d |= convertAbgr8888ToRgb565(s) << 16; 2170 #endif 2171 *dst32++ = d; 2172 ct -= 2; 2173 } 2174 2175 if (ct > 0) { 2176 goto last_one; 2177 } 2178 } 2179 2180 void scanline_t32cb16blend(context_t* c) 2181 { 2182 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || defined(__aarch64__) || \ 2183 (defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))))) 2184 int32_t x = c->iterators.xl; 2185 size_t ct = c->iterators.xr - x; 2186 int32_t y = c->iterators.y; 2187 surface_t* cb = &(c->state.buffers.color); 2188 uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2189 2190 surface_t* tex = &(c->state.texture[0].surface); 2191 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2192 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2193 uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v)); 2194 2195 #ifdef __arm__ 2196 scanline_t32cb16blend_arm(dst, src, ct); 2197 #elif defined(__aarch64__) 2198 scanline_t32cb16blend_arm64(dst, src, ct); 2199 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6 2200 scanline_t32cb16blend_mips(dst, src, ct); 2201 #elif defined(__mips__) && defined(__LP64__) 2202 scanline_t32cb16blend_mips64(dst, src, ct); 2203 #endif 2204 #else 2205 dst_iterator16 di(c); 2206 horz_iterator32 hi(c); 2207 blender_32to16 bl(c); 2208 while (di.count--) { 2209 uint32_t s = hi.get_pixel32(); 2210 bl.write(s, di.dst); 2211 di.dst++; 2212 } 2213 #endif 2214 } 2215 2216 void scanline_t32cb16blend_srca(context_t* c) 2217 { 2218 dst_iterator16 di(c); 2219 horz_iterator32 hi(c); 2220 blender_32to16_srcA blender(c); 2221 2222 while (di.count--) { 2223 uint32_t s = hi.get_pixel32(); 2224 blender.write(s,di.dst); 2225 di.dst++; 2226 } 2227 } 2228 2229 void scanline_t16cb16blend_clamp_mod(context_t* c) 2230 { 2231 const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8); 2232 if (a == 0) { 2233 return; 2234 } 2235 2236 if (a == 255) { 2237 scanline_t16cb16_clamp(c); 2238 return; 2239 } 2240 2241 dst_iterator16 di(c); 2242 blender_16to16_modulate blender(c); 2243 clamp_iterator ci(c); 2244 2245 while (di.count--) { 2246 uint16_t s = ci.get_pixel16(); 2247 blender.write(s, di.dst); 2248 di.dst++; 2249 } 2250 } 2251 2252 void scanline_memcpy(context_t* c) 2253 { 2254 int32_t x = c->iterators.xl; 2255 size_t ct = c->iterators.xr - x; 2256 int32_t y = c->iterators.y; 2257 surface_t* cb = &(c->state.buffers.color); 2258 const GGLFormat* fp = &(c->formats[cb->format]); 2259 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2260 (x + (cb->stride * y)) * fp->size; 2261 2262 surface_t* tex = &(c->state.texture[0].surface); 2263 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2264 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2265 uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) + 2266 (u + (tex->stride * v)) * fp->size; 2267 2268 const size_t size = ct * fp->size; 2269 memcpy(dst, src, size); 2270 } 2271 2272 void scanline_memset8(context_t* c) 2273 { 2274 int32_t x = c->iterators.xl; 2275 size_t ct = c->iterators.xr - x; 2276 int32_t y = c->iterators.y; 2277 surface_t* cb = &(c->state.buffers.color); 2278 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y)); 2279 uint32_t packed = c->packed; 2280 memset(dst, packed, ct); 2281 } 2282 2283 void scanline_memset16(context_t* c) 2284 { 2285 int32_t x = c->iterators.xl; 2286 size_t ct = c->iterators.xr - x; 2287 int32_t y = c->iterators.y; 2288 surface_t* cb = &(c->state.buffers.color); 2289 uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y)); 2290 uint32_t packed = c->packed; 2291 android_memset16(dst, packed, ct*2); 2292 } 2293 2294 void scanline_memset32(context_t* c) 2295 { 2296 int32_t x = c->iterators.xl; 2297 size_t ct = c->iterators.xr - x; 2298 int32_t y = c->iterators.y; 2299 surface_t* cb = &(c->state.buffers.color); 2300 uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y)); 2301 uint32_t packed = GGL_HOST_TO_RGBA(c->packed); 2302 android_memset32(dst, packed, ct*4); 2303 } 2304 2305 void scanline_clear(context_t* c) 2306 { 2307 int32_t x = c->iterators.xl; 2308 size_t ct = c->iterators.xr - x; 2309 int32_t y = c->iterators.y; 2310 surface_t* cb = &(c->state.buffers.color); 2311 const GGLFormat* fp = &(c->formats[cb->format]); 2312 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2313 (x + (cb->stride * y)) * fp->size; 2314 const size_t size = ct * fp->size; 2315 memset(dst, 0, size); 2316 } 2317 2318 void scanline_set(context_t* c) 2319 { 2320 int32_t x = c->iterators.xl; 2321 size_t ct = c->iterators.xr - x; 2322 int32_t y = c->iterators.y; 2323 surface_t* cb = &(c->state.buffers.color); 2324 const GGLFormat* fp = &(c->formats[cb->format]); 2325 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2326 (x + (cb->stride * y)) * fp->size; 2327 const size_t size = ct * fp->size; 2328 memset(dst, 0xFF, size); 2329 } 2330 2331 void scanline_noop(context_t* /*c*/) 2332 { 2333 } 2334 2335 void rect_generic(context_t* c, size_t yc) 2336 { 2337 do { 2338 c->scanline(c); 2339 c->step_y(c); 2340 } while (--yc); 2341 } 2342 2343 void rect_memcpy(context_t* c, size_t yc) 2344 { 2345 int32_t x = c->iterators.xl; 2346 size_t ct = c->iterators.xr - x; 2347 int32_t y = c->iterators.y; 2348 surface_t* cb = &(c->state.buffers.color); 2349 const GGLFormat* fp = &(c->formats[cb->format]); 2350 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + 2351 (x + (cb->stride * y)) * fp->size; 2352 2353 surface_t* tex = &(c->state.texture[0].surface); 2354 const int32_t u = (c->state.texture[0].shade.is0>>16) + x; 2355 const int32_t v = (c->state.texture[0].shade.it0>>16) + y; 2356 uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) + 2357 (u + (tex->stride * v)) * fp->size; 2358 2359 if (cb->stride == tex->stride && ct == size_t(cb->stride)) { 2360 memcpy(dst, src, ct * fp->size * yc); 2361 } else { 2362 const size_t size = ct * fp->size; 2363 const size_t dbpr = cb->stride * fp->size; 2364 const size_t sbpr = tex->stride * fp->size; 2365 do { 2366 memcpy(dst, src, size); 2367 dst += dbpr; 2368 src += sbpr; 2369 } while (--yc); 2370 } 2371 } 2372 // ---------------------------------------------------------------------------- 2373 }; // namespace android 2374 2375