/external/eigen/unsupported/test/ |
minres.cpp | 21 // Diagonal preconditioner
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
Companion.h | 225 //First row, first column excluding the diagonal 237 //Middle rows and columns excluding the diagonal 241 // column norm, excluding the diagonal 244 // row norm, excluding the diagonal 256 //Last row, last column excluding the diagonal
|
/external/eigen/Eigen/src/Cholesky/ |
LDLT.h | 37 * is lower triangular with a unit diagonal and D is a diagonal matrix. 162 /** \returns the coefficients of the diagonal matrix D */ 163 inline Diagonal<const MatrixType> vectorD() const 166 return m_matrix.diagonal(); 275 * part correspond to the coefficients of L (its diagonal is equal to 1 and 276 * is not stored), and the diagonal entries correspond to D. 316 // Find largest diagonal element 318 mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); 351 temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint() [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
MatrixUtils.java | 195 * Returns a diagonal matrix with specified elements. 197 * @param diagonal diagonal elements of the matrix (the array elements 199 * @return diagonal matrix 202 public static RealMatrix createRealDiagonalMatrix(final double[] diagonal) { 203 final RealMatrix m = createRealMatrix(diagonal.length, diagonal.length); 204 for (int i = 0; i < diagonal.length; ++i) { 205 m.setEntry(i, i, diagonal[i]); 211 * Returns a diagonal matrix with specified elements [all...] |
CholeskyDecompositionImpl.java | 38 /** Default threshold above which off-diagonal elements are considered too different 42 /** Default threshold below which diagonal elements are considered null 83 * @param relativeSymmetryThreshold threshold above which off-diagonal 85 * @param absolutePositivityThreshold threshold below which diagonal 116 // check off-diagonal elements (and reset them to 0) 135 // check diagonal element
|
QRDecompositionImpl.java | 47 * <p>The elements BELOW the diagonal are the elements of the UPPER triangular 48 * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors 53 /** The diagonal elements of R. */ 158 // copy the diagonal from rDiag and the upper triangle of qr 256 * <p>The elements BELOW the diagonal are the elements of the UPPER triangular 257 * matrix R, and the rows ABOVE the diagonal are the Householder reflector vectors 262 /** The diagonal elements of R. */ 268 * @param rDiag diagonal elements of R
|
EigenDecomposition.java | 58 * Returns the block diagonal matrix D of the decomposition. 59 * <p>D is a block diagonal matrix.</p> 60 * <p>Real eigenvalues are on the diagonal while complex values are on
|
/external/eigen/test/ |
sparse_basic.cpp | 499 // test diagonal 504 VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); 505 DenseVector d = m2.diagonal(); 506 VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); 507 d = m2.diagonal().array(); 508 VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); 509 VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); 512 m2.diagonal() += refMat2.diagonal() [all...] |
product_mmtr.cpp | 23 ref3.diagonal() = DEST.diagonal(); \
|
miscmatrices.cpp | 34 square.diagonal() = VectorType::Ones(rows);
|
geo_alignedbox.cpp | 127 VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() ); 128 VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() ); 154 VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );
|
evaluators.cpp | 373 // test Diagonal 374 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal()); 376 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1)); 377 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>()); 381 copy_using_evaluator(mat1.diagonal(1), vec1); 382 mat2.diagonal(1) = vec1; 385 copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1)); 386 mat2.diagonal<-1>() = mat2.diagonal(1) [all...] |
/external/eigen/bench/ |
eig33.cpp | 94 scaledMat.diagonal().array() -= shift; 123 // tmp.diagonal().array() -= evals(0); 127 // tmp.diagonal().array() -= evals(1); 131 // tmp.diagonal().array() -= evals(2); 143 tmp.diagonal ().array () -= evals (2); 147 tmp.diagonal ().array () -= evals (1);
|
/external/eigen/Eigen/src/Core/products/ |
TriangularMatrixMatrix.h | 143 triangularBuffer.diagonal().setZero(); 145 triangularBuffer.diagonal().setOnes(); 169 // 2 - the diagonal block => special kernel 170 // 3 - the dense panel below (lower case) or above (upper case) the diagonal block => GEPP 172 // the block diagonal, if any: 212 // the part below (lower case) or above (upper case) the diagonal => GEPP 290 triangularBuffer.diagonal().setZero(); 292 triangularBuffer.diagonal().setOnes();
|
/external/eigen/Eigen/src/Eigenvalues/ |
GeneralizedEigenSolver.h | 32 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and 324 m_alphas.coeffRef(i) = mS.diagonal().coeff(i); 325 m_betas.coeffRef(i) = mT.diagonal().coeff(i); 362 // We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T 367 RealScalar a = mT.diagonal().coeff(i), 368 b = mT.diagonal().coeff(i+1); 371 // ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug.
|
ComplexEigenSolver.h | 32 * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on 33 * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as 269 // The eigenvalues are on the diagonal of T. 274 m_eivalues = m_schur.matrixT().diagonal(); 293 // Compute X such that T = X D X^(-1), where D is the diagonal of T.
|
/external/bison/lib/ |
bitsetv.h | 50 the same as transitive closure but with all bits on the diagonal
|
/external/eigen/Eigen/ |
IterativeLinearSolvers | 27 * - DiagonalPreconditioner - also called Jacobi preconditioner, work very well on diagonal dominant matrices.
|
/external/libopus/silk/fixed/ |
regularize_correlations_FIX.c | 34 /* Add noise to matrix diagonal */
|
/external/libopus/silk/float/ |
regularize_correlations_FLP.c | 34 /* Add noise to matrix diagonal */
|
/external/eigen/Eigen/src/SparseCore/ |
SparseDiagonalProduct.h | 15 // The product of a diagonal matrix with a sparse matrix can be easily 45 explicit product_evaluator(const XprType& xpr) : Base(xpr.rhs(), xpr.lhs().diagonal()) {} 56 explicit product_evaluator(const XprType& xpr) : Base(xpr.lhs(), xpr.rhs().diagonal().transpose()) {}
|
/external/eigen/unsupported/Eigen/src/IterativeSolvers/ |
Scaling.h | 67 * Compute the left and right diagonal matrices to scale the input matrix @p mat 69 * FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal.
|
/sdk/files/ |
devices.xml | 12 <d:diagonal-length>3.7</d:diagonal-length> 87 <d:diagonal-length>4</d:diagonal-length> 200 <d:diagonal-length>4.65</d:diagonal-length> <!-- In inches --> 331 <d:diagonal-length>7.27</d:diagonal-length> 410 <d:diagonal-length>4.7</d:diagonal-length [all...] |
/external/eigen/Eigen/src/Core/ |
SelfAdjointView.h | 222 /** \returns a const expression of the main diagonal of the matrix \c *this 224 * This method simply returns the diagonal of the nested expression, thus by-passing the SelfAdjointView decorator. 226 * \sa MatrixBase::diagonal(), class Diagonal */ 228 typename MatrixType::ConstDiagonalReturnType diagonal() const function in class:Eigen::SelfAdjointView
|
/external/gemmlowp/internal/ |
kernel.h | 73 // There is also a third possibility, "diagonal order", 123 enum class CellOrder { DepthMajor, WidthMajor, Diagonal }; 175 case CellOrder::Diagonal: 176 return "Diagonal"; 191 case CellOrder::Diagonal:
|