Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "runtime.h"
     18 
     19 // sys/mount.h has to come before linux/fs.h due to redefinition of MS_RDONLY, MS_BIND, etc
     20 #include <sys/mount.h>
     21 #ifdef __linux__
     22 #include <linux/fs.h>
     23 #include <sys/prctl.h>
     24 #endif
     25 
     26 #include <signal.h>
     27 #include <sys/syscall.h>
     28 #include "base/memory_tool.h"
     29 #if defined(__APPLE__)
     30 #include <crt_externs.h>  // for _NSGetEnviron
     31 #endif
     32 
     33 #include <cstdio>
     34 #include <cstdlib>
     35 #include <limits>
     36 #include <memory_representation.h>
     37 #include <vector>
     38 #include <fcntl.h>
     39 
     40 #include "android-base/strings.h"
     41 
     42 #include "aot_class_linker.h"
     43 #include "arch/arm/quick_method_frame_info_arm.h"
     44 #include "arch/arm/registers_arm.h"
     45 #include "arch/arm64/quick_method_frame_info_arm64.h"
     46 #include "arch/arm64/registers_arm64.h"
     47 #include "arch/instruction_set_features.h"
     48 #include "arch/mips/quick_method_frame_info_mips.h"
     49 #include "arch/mips/registers_mips.h"
     50 #include "arch/mips64/quick_method_frame_info_mips64.h"
     51 #include "arch/mips64/registers_mips64.h"
     52 #include "arch/x86/quick_method_frame_info_x86.h"
     53 #include "arch/x86/registers_x86.h"
     54 #include "arch/x86_64/quick_method_frame_info_x86_64.h"
     55 #include "arch/x86_64/registers_x86_64.h"
     56 #include "art_field-inl.h"
     57 #include "art_method-inl.h"
     58 #include "asm_support.h"
     59 #include "asm_support_check.h"
     60 #include "atomic.h"
     61 #include "base/arena_allocator.h"
     62 #include "base/dumpable.h"
     63 #include "base/enums.h"
     64 #include "base/stl_util.h"
     65 #include "base/systrace.h"
     66 #include "base/unix_file/fd_file.h"
     67 #include "class_linker-inl.h"
     68 #include "compiler_callbacks.h"
     69 #include "debugger.h"
     70 #include "elf_file.h"
     71 #include "entrypoints/runtime_asm_entrypoints.h"
     72 #include "experimental_flags.h"
     73 #include "fault_handler.h"
     74 #include "gc/accounting/card_table-inl.h"
     75 #include "gc/heap.h"
     76 #include "gc/scoped_gc_critical_section.h"
     77 #include "gc/space/image_space.h"
     78 #include "gc/space/space-inl.h"
     79 #include "gc/system_weak.h"
     80 #include "handle_scope-inl.h"
     81 #include "image-inl.h"
     82 #include "instrumentation.h"
     83 #include "intern_table.h"
     84 #include "interpreter/interpreter.h"
     85 #include "java_vm_ext.h"
     86 #include "jit/jit.h"
     87 #include "jit/jit_code_cache.h"
     88 #include "jit/profile_saver.h"
     89 #include "jni_internal.h"
     90 #include "linear_alloc.h"
     91 #include "mirror/array.h"
     92 #include "mirror/class-inl.h"
     93 #include "mirror/class_ext.h"
     94 #include "mirror/class_loader.h"
     95 #include "mirror/emulated_stack_frame.h"
     96 #include "mirror/field.h"
     97 #include "mirror/method.h"
     98 #include "mirror/method_handle_impl.h"
     99 #include "mirror/method_handles_lookup.h"
    100 #include "mirror/method_type.h"
    101 #include "mirror/stack_trace_element.h"
    102 #include "mirror/throwable.h"
    103 #include "monitor.h"
    104 #include "native/dalvik_system_DexFile.h"
    105 #include "native/dalvik_system_VMDebug.h"
    106 #include "native/dalvik_system_VMRuntime.h"
    107 #include "native/dalvik_system_VMStack.h"
    108 #include "native/dalvik_system_ZygoteHooks.h"
    109 #include "native/java_lang_Class.h"
    110 #include "native/java_lang_Object.h"
    111 #include "native/java_lang_String.h"
    112 #include "native/java_lang_StringFactory.h"
    113 #include "native/java_lang_System.h"
    114 #include "native/java_lang_Thread.h"
    115 #include "native/java_lang_Throwable.h"
    116 #include "native/java_lang_VMClassLoader.h"
    117 #include "native/java_lang_Void.h"
    118 #include "native/java_lang_invoke_MethodHandleImpl.h"
    119 #include "native/java_lang_ref_FinalizerReference.h"
    120 #include "native/java_lang_ref_Reference.h"
    121 #include "native/java_lang_reflect_Array.h"
    122 #include "native/java_lang_reflect_Constructor.h"
    123 #include "native/java_lang_reflect_Executable.h"
    124 #include "native/java_lang_reflect_Field.h"
    125 #include "native/java_lang_reflect_Method.h"
    126 #include "native/java_lang_reflect_Parameter.h"
    127 #include "native/java_lang_reflect_Proxy.h"
    128 #include "native/java_util_concurrent_atomic_AtomicLong.h"
    129 #include "native/libcore_util_CharsetUtils.h"
    130 #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
    131 #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
    132 #include "native/sun_misc_Unsafe.h"
    133 #include "native_bridge_art_interface.h"
    134 #include "native_stack_dump.h"
    135 #include "nativehelper/JniConstants.h"
    136 #include "nativehelper/ScopedLocalRef.h"
    137 #include "oat_file.h"
    138 #include "oat_file_manager.h"
    139 #include "object_callbacks.h"
    140 #include "os.h"
    141 #include "parsed_options.h"
    142 #include "quick/quick_method_frame_info.h"
    143 #include "reflection.h"
    144 #include "runtime_callbacks.h"
    145 #include "runtime_options.h"
    146 #include "scoped_thread_state_change-inl.h"
    147 #include "sigchain.h"
    148 #include "signal_catcher.h"
    149 #include "signal_set.h"
    150 #include "thread.h"
    151 #include "thread_list.h"
    152 #include "ti/agent.h"
    153 #include "trace.h"
    154 #include "transaction.h"
    155 #include "utils.h"
    156 #include "vdex_file.h"
    157 #include "verifier/method_verifier.h"
    158 #include "well_known_classes.h"
    159 
    160 #ifdef ART_TARGET_ANDROID
    161 #include <android/set_abort_message.h>
    162 #endif
    163 
    164 namespace art {
    165 
    166 // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
    167 static constexpr bool kEnableJavaStackTraceHandler = false;
    168 // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
    169 // linking.
    170 static constexpr double kLowMemoryMinLoadFactor = 0.5;
    171 static constexpr double kLowMemoryMaxLoadFactor = 0.8;
    172 static constexpr double kNormalMinLoadFactor = 0.4;
    173 static constexpr double kNormalMaxLoadFactor = 0.7;
    174 
    175 // Extra added to the default heap growth multiplier. Used to adjust the GC ergonomics for the read
    176 // barrier config.
    177 static constexpr double kExtraDefaultHeapGrowthMultiplier = kUseReadBarrier ? 1.0 : 0.0;
    178 
    179 Runtime* Runtime::instance_ = nullptr;
    180 
    181 struct TraceConfig {
    182   Trace::TraceMode trace_mode;
    183   Trace::TraceOutputMode trace_output_mode;
    184   std::string trace_file;
    185   size_t trace_file_size;
    186 };
    187 
    188 namespace {
    189 #ifdef __APPLE__
    190 inline char** GetEnviron() {
    191   // When Google Test is built as a framework on MacOS X, the environ variable
    192   // is unavailable. Apple's documentation (man environ) recommends using
    193   // _NSGetEnviron() instead.
    194   return *_NSGetEnviron();
    195 }
    196 #else
    197 // Some POSIX platforms expect you to declare environ. extern "C" makes
    198 // it reside in the global namespace.
    199 extern "C" char** environ;
    200 inline char** GetEnviron() { return environ; }
    201 #endif
    202 }  // namespace
    203 
    204 Runtime::Runtime()
    205     : resolution_method_(nullptr),
    206       imt_conflict_method_(nullptr),
    207       imt_unimplemented_method_(nullptr),
    208       instruction_set_(kNone),
    209       compiler_callbacks_(nullptr),
    210       is_zygote_(false),
    211       must_relocate_(false),
    212       is_concurrent_gc_enabled_(true),
    213       is_explicit_gc_disabled_(false),
    214       dex2oat_enabled_(true),
    215       image_dex2oat_enabled_(true),
    216       default_stack_size_(0),
    217       heap_(nullptr),
    218       max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
    219       monitor_list_(nullptr),
    220       monitor_pool_(nullptr),
    221       thread_list_(nullptr),
    222       intern_table_(nullptr),
    223       class_linker_(nullptr),
    224       signal_catcher_(nullptr),
    225       use_tombstoned_traces_(false),
    226       java_vm_(nullptr),
    227       fault_message_lock_("Fault message lock"),
    228       fault_message_(""),
    229       threads_being_born_(0),
    230       shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
    231       shutting_down_(false),
    232       shutting_down_started_(false),
    233       started_(false),
    234       finished_starting_(false),
    235       vfprintf_(nullptr),
    236       exit_(nullptr),
    237       abort_(nullptr),
    238       stats_enabled_(false),
    239       is_running_on_memory_tool_(RUNNING_ON_MEMORY_TOOL),
    240       instrumentation_(),
    241       main_thread_group_(nullptr),
    242       system_thread_group_(nullptr),
    243       system_class_loader_(nullptr),
    244       dump_gc_performance_on_shutdown_(false),
    245       preinitialization_transaction_(nullptr),
    246       verify_(verifier::VerifyMode::kNone),
    247       allow_dex_file_fallback_(true),
    248       target_sdk_version_(0),
    249       implicit_null_checks_(false),
    250       implicit_so_checks_(false),
    251       implicit_suspend_checks_(false),
    252       no_sig_chain_(false),
    253       force_native_bridge_(false),
    254       is_native_bridge_loaded_(false),
    255       is_native_debuggable_(false),
    256       is_java_debuggable_(false),
    257       zygote_max_failed_boots_(0),
    258       experimental_flags_(ExperimentalFlags::kNone),
    259       oat_file_manager_(nullptr),
    260       is_low_memory_mode_(false),
    261       safe_mode_(false),
    262       dump_native_stack_on_sig_quit_(true),
    263       pruned_dalvik_cache_(false),
    264       // Initially assume we perceive jank in case the process state is never updated.
    265       process_state_(kProcessStateJankPerceptible),
    266       zygote_no_threads_(false) {
    267   static_assert(Runtime::kCalleeSaveSize ==
    268                     static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
    269 
    270   CheckAsmSupportOffsetsAndSizes();
    271   std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
    272   interpreter::CheckInterpreterAsmConstants();
    273   callbacks_.reset(new RuntimeCallbacks());
    274   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
    275     deoptimization_counts_[i] = 0u;
    276   }
    277 }
    278 
    279 Runtime::~Runtime() {
    280   ScopedTrace trace("Runtime shutdown");
    281   if (is_native_bridge_loaded_) {
    282     UnloadNativeBridge();
    283   }
    284 
    285   Thread* self = Thread::Current();
    286   const bool attach_shutdown_thread = self == nullptr;
    287   if (attach_shutdown_thread) {
    288     CHECK(AttachCurrentThread("Shutdown thread", false, nullptr, false));
    289     self = Thread::Current();
    290   } else {
    291     LOG(WARNING) << "Current thread not detached in Runtime shutdown";
    292   }
    293 
    294   if (dump_gc_performance_on_shutdown_) {
    295     // This can't be called from the Heap destructor below because it
    296     // could call RosAlloc::InspectAll() which needs the thread_list
    297     // to be still alive.
    298     heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
    299   }
    300 
    301   if (jit_ != nullptr) {
    302     // Stop the profile saver thread before marking the runtime as shutting down.
    303     // The saver will try to dump the profiles before being sopped and that
    304     // requires holding the mutator lock.
    305     jit_->StopProfileSaver();
    306   }
    307 
    308   {
    309     ScopedTrace trace2("Wait for shutdown cond");
    310     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    311     shutting_down_started_ = true;
    312     while (threads_being_born_ > 0) {
    313       shutdown_cond_->Wait(self);
    314     }
    315     shutting_down_ = true;
    316   }
    317   // Shutdown and wait for the daemons.
    318   CHECK(self != nullptr);
    319   if (IsFinishedStarting()) {
    320     ScopedTrace trace2("Waiting for Daemons");
    321     self->ClearException();
    322     self->GetJniEnv()->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
    323                                             WellKnownClasses::java_lang_Daemons_stop);
    324   }
    325 
    326   Trace::Shutdown();
    327 
    328   // Report death. Clients me require a working thread, still, so do it before GC completes and
    329   // all non-daemon threads are done.
    330   {
    331     ScopedObjectAccess soa(self);
    332     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
    333   }
    334 
    335   if (attach_shutdown_thread) {
    336     DetachCurrentThread();
    337     self = nullptr;
    338   }
    339 
    340   // Make sure to let the GC complete if it is running.
    341   heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
    342   heap_->DeleteThreadPool();
    343   if (jit_ != nullptr) {
    344     ScopedTrace trace2("Delete jit");
    345     VLOG(jit) << "Deleting jit thread pool";
    346     // Delete thread pool before the thread list since we don't want to wait forever on the
    347     // JIT compiler threads.
    348     jit_->DeleteThreadPool();
    349   }
    350 
    351   // Make sure our internal threads are dead before we start tearing down things they're using.
    352   Dbg::StopJdwp();
    353   delete signal_catcher_;
    354 
    355   // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
    356   {
    357     ScopedTrace trace2("Delete thread list");
    358     thread_list_->ShutDown();
    359   }
    360 
    361   // TODO Maybe do some locking.
    362   for (auto& agent : agents_) {
    363     agent.Unload();
    364   }
    365 
    366   // TODO Maybe do some locking
    367   for (auto& plugin : plugins_) {
    368     plugin.Unload();
    369   }
    370 
    371   // Finally delete the thread list.
    372   delete thread_list_;
    373 
    374   // Delete the JIT after thread list to ensure that there is no remaining threads which could be
    375   // accessing the instrumentation when we delete it.
    376   if (jit_ != nullptr) {
    377     VLOG(jit) << "Deleting jit";
    378     jit_.reset(nullptr);
    379   }
    380 
    381   // Shutdown the fault manager if it was initialized.
    382   fault_manager.Shutdown();
    383 
    384   ScopedTrace trace2("Delete state");
    385   delete monitor_list_;
    386   delete monitor_pool_;
    387   delete class_linker_;
    388   delete heap_;
    389   delete intern_table_;
    390   delete oat_file_manager_;
    391   Thread::Shutdown();
    392   QuasiAtomic::Shutdown();
    393   verifier::MethodVerifier::Shutdown();
    394 
    395   // Destroy allocators before shutting down the MemMap because they may use it.
    396   java_vm_.reset();
    397   linear_alloc_.reset();
    398   low_4gb_arena_pool_.reset();
    399   arena_pool_.reset();
    400   jit_arena_pool_.reset();
    401   protected_fault_page_.reset();
    402   MemMap::Shutdown();
    403 
    404   // TODO: acquire a static mutex on Runtime to avoid racing.
    405   CHECK(instance_ == nullptr || instance_ == this);
    406   instance_ = nullptr;
    407 }
    408 
    409 struct AbortState {
    410   void Dump(std::ostream& os) const {
    411     if (gAborting > 1) {
    412       os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
    413       DumpRecursiveAbort(os);
    414       return;
    415     }
    416     gAborting++;
    417     os << "Runtime aborting...\n";
    418     if (Runtime::Current() == nullptr) {
    419       os << "(Runtime does not yet exist!)\n";
    420       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
    421       return;
    422     }
    423     Thread* self = Thread::Current();
    424 
    425     // Dump all threads first and then the aborting thread. While this is counter the logical flow,
    426     // it improves the chance of relevant data surviving in the Android logs.
    427 
    428     DumpAllThreads(os, self);
    429 
    430     if (self == nullptr) {
    431       os << "(Aborting thread was not attached to runtime!)\n";
    432       DumpKernelStack(os, GetTid(), "  kernel: ", false);
    433       DumpNativeStack(os, GetTid(), nullptr, "  native: ", nullptr);
    434     } else {
    435       os << "Aborting thread:\n";
    436       if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
    437         DumpThread(os, self);
    438       } else {
    439         if (Locks::mutator_lock_->SharedTryLock(self)) {
    440           DumpThread(os, self);
    441           Locks::mutator_lock_->SharedUnlock(self);
    442         }
    443       }
    444     }
    445   }
    446 
    447   // No thread-safety analysis as we do explicitly test for holding the mutator lock.
    448   void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
    449     DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
    450     self->Dump(os);
    451     if (self->IsExceptionPending()) {
    452       mirror::Throwable* exception = self->GetException();
    453       os << "Pending exception " << exception->Dump();
    454     }
    455   }
    456 
    457   void DumpAllThreads(std::ostream& os, Thread* self) const {
    458     Runtime* runtime = Runtime::Current();
    459     if (runtime != nullptr) {
    460       ThreadList* thread_list = runtime->GetThreadList();
    461       if (thread_list != nullptr) {
    462         bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
    463         bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
    464         if (!tll_already_held || !ml_already_held) {
    465           os << "Dumping all threads without appropriate locks held:"
    466               << (!tll_already_held ? " thread list lock" : "")
    467               << (!ml_already_held ? " mutator lock" : "")
    468               << "\n";
    469         }
    470         os << "All threads:\n";
    471         thread_list->Dump(os);
    472       }
    473     }
    474   }
    475 
    476   // For recursive aborts.
    477   void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
    478     // The only thing we'll attempt is dumping the native stack of the current thread. We will only
    479     // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
    480     // die.
    481     // Note: as we're using a global counter for the recursive abort detection, there is a potential
    482     //       race here and it is not OK to just print when the counter is "2" (one from
    483     //       Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
    484     static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
    485     if (gAborting < kOnlyPrintWhenRecursionLessThan) {
    486       gAborting++;
    487       DumpNativeStack(os, GetTid());
    488     }
    489   }
    490 };
    491 
    492 void Runtime::Abort(const char* msg) {
    493   auto old_value = gAborting.fetch_add(1);  // set before taking any locks
    494 
    495 #ifdef ART_TARGET_ANDROID
    496   if (old_value == 0) {
    497     // Only set the first abort message.
    498     android_set_abort_message(msg);
    499   }
    500 #else
    501   UNUSED(old_value);
    502 #endif
    503 
    504 #ifdef ART_TARGET_ANDROID
    505   android_set_abort_message(msg);
    506 #endif
    507 
    508   // Ensure that we don't have multiple threads trying to abort at once,
    509   // which would result in significantly worse diagnostics.
    510   MutexLock mu(Thread::Current(), *Locks::abort_lock_);
    511 
    512   // Get any pending output out of the way.
    513   fflush(nullptr);
    514 
    515   // Many people have difficulty distinguish aborts from crashes,
    516   // so be explicit.
    517   // Note: use cerr on the host to print log lines immediately, so we get at least some output
    518   //       in case of recursive aborts. We lose annotation with the source file and line number
    519   //       here, which is a minor issue. The same is significantly more complicated on device,
    520   //       which is why we ignore the issue there.
    521   AbortState state;
    522   if (kIsTargetBuild) {
    523     LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
    524   } else {
    525     std::cerr << Dumpable<AbortState>(state);
    526   }
    527 
    528   // Sometimes we dump long messages, and the Android abort message only retains the first line.
    529   // In those cases, just log the message again, to avoid logcat limits.
    530   if (msg != nullptr && strchr(msg, '\n') != nullptr) {
    531     LOG(FATAL_WITHOUT_ABORT) << msg;
    532   }
    533 
    534   // Call the abort hook if we have one.
    535   if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
    536     LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
    537     Runtime::Current()->abort_();
    538     // notreached
    539     LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
    540   }
    541 
    542 #if defined(__GLIBC__)
    543   // TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
    544   // which POSIX defines in terms of raise(3), which POSIX defines in terms
    545   // of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
    546   // libpthread, which means the stacks we dump would be useless. Calling
    547   // tgkill(2) directly avoids that.
    548   syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
    549   // TODO: LLVM installs it's own SIGABRT handler so exit to be safe... Can we disable that in LLVM?
    550   // If not, we could use sigaction(3) before calling tgkill(2) and lose this call to exit(3).
    551   exit(1);
    552 #else
    553   abort();
    554 #endif
    555   // notreached
    556 }
    557 
    558 void Runtime::PreZygoteFork() {
    559   heap_->PreZygoteFork();
    560 }
    561 
    562 void Runtime::CallExitHook(jint status) {
    563   if (exit_ != nullptr) {
    564     ScopedThreadStateChange tsc(Thread::Current(), kNative);
    565     exit_(status);
    566     LOG(WARNING) << "Exit hook returned instead of exiting!";
    567   }
    568 }
    569 
    570 void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
    571   GetInternTable()->SweepInternTableWeaks(visitor);
    572   GetMonitorList()->SweepMonitorList(visitor);
    573   GetJavaVM()->SweepJniWeakGlobals(visitor);
    574   GetHeap()->SweepAllocationRecords(visitor);
    575   if (GetJit() != nullptr) {
    576     // Visit JIT literal tables. Objects in these tables are classes and strings
    577     // and only classes can be affected by class unloading. The strings always
    578     // stay alive as they are strongly interned.
    579     // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
    580     // from mutators. See b/32167580.
    581     GetJit()->GetCodeCache()->SweepRootTables(visitor);
    582   }
    583 
    584   // All other generic system-weak holders.
    585   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
    586     holder->Sweep(visitor);
    587   }
    588 }
    589 
    590 bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
    591                            bool ignore_unrecognized,
    592                            RuntimeArgumentMap* runtime_options) {
    593   InitLogging(/* argv */ nullptr, Abort);  // Calls Locks::Init() as a side effect.
    594   bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
    595   if (!parsed) {
    596     LOG(ERROR) << "Failed to parse options";
    597     return false;
    598   }
    599   return true;
    600 }
    601 
    602 // Callback to check whether it is safe to call Abort (e.g., to use a call to
    603 // LOG(FATAL)).  It is only safe to call Abort if the runtime has been created,
    604 // properly initialized, and has not shut down.
    605 static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
    606   Runtime* runtime = Runtime::Current();
    607   return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
    608 }
    609 
    610 bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
    611   // TODO: acquire a static mutex on Runtime to avoid racing.
    612   if (Runtime::instance_ != nullptr) {
    613     return false;
    614   }
    615   instance_ = new Runtime;
    616   Locks::SetClientCallback(IsSafeToCallAbort);
    617   if (!instance_->Init(std::move(runtime_options))) {
    618     // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
    619     // leak memory, instead. Fix the destructor. b/19100793.
    620     // delete instance_;
    621     instance_ = nullptr;
    622     return false;
    623   }
    624   return true;
    625 }
    626 
    627 bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
    628   RuntimeArgumentMap runtime_options;
    629   return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
    630       Create(std::move(runtime_options));
    631 }
    632 
    633 static jobject CreateSystemClassLoader(Runtime* runtime) {
    634   if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
    635     return nullptr;
    636   }
    637 
    638   ScopedObjectAccess soa(Thread::Current());
    639   ClassLinker* cl = Runtime::Current()->GetClassLinker();
    640   auto pointer_size = cl->GetImagePointerSize();
    641 
    642   StackHandleScope<2> hs(soa.Self());
    643   Handle<mirror::Class> class_loader_class(
    644       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader)));
    645   CHECK(cl->EnsureInitialized(soa.Self(), class_loader_class, true, true));
    646 
    647   ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
    648       "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
    649   CHECK(getSystemClassLoader != nullptr);
    650   CHECK(getSystemClassLoader->IsStatic());
    651 
    652   JValue result = InvokeWithJValues(soa,
    653                                     nullptr,
    654                                     jni::EncodeArtMethod(getSystemClassLoader),
    655                                     nullptr);
    656   JNIEnv* env = soa.Self()->GetJniEnv();
    657   ScopedLocalRef<jobject> system_class_loader(env, soa.AddLocalReference<jobject>(result.GetL()));
    658   CHECK(system_class_loader.get() != nullptr);
    659 
    660   soa.Self()->SetClassLoaderOverride(system_class_loader.get());
    661 
    662   Handle<mirror::Class> thread_class(
    663       hs.NewHandle(soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread)));
    664   CHECK(cl->EnsureInitialized(soa.Self(), thread_class, true, true));
    665 
    666   ArtField* contextClassLoader =
    667       thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
    668   CHECK(contextClassLoader != nullptr);
    669 
    670   // We can't run in a transaction yet.
    671   contextClassLoader->SetObject<false>(
    672       soa.Self()->GetPeer(),
    673       soa.Decode<mirror::ClassLoader>(system_class_loader.get()).Ptr());
    674 
    675   return env->NewGlobalRef(system_class_loader.get());
    676 }
    677 
    678 std::string Runtime::GetPatchoatExecutable() const {
    679   if (!patchoat_executable_.empty()) {
    680     return patchoat_executable_;
    681   }
    682   std::string patchoat_executable(GetAndroidRoot());
    683   patchoat_executable += (kIsDebugBuild ? "/bin/patchoatd" : "/bin/patchoat");
    684   return patchoat_executable;
    685 }
    686 
    687 std::string Runtime::GetCompilerExecutable() const {
    688   if (!compiler_executable_.empty()) {
    689     return compiler_executable_;
    690   }
    691   std::string compiler_executable(GetAndroidRoot());
    692   compiler_executable += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
    693   return compiler_executable;
    694 }
    695 
    696 bool Runtime::Start() {
    697   VLOG(startup) << "Runtime::Start entering";
    698 
    699   CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
    700 
    701   // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
    702   // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
    703 #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
    704   if (kIsDebugBuild) {
    705     CHECK_EQ(prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY), 0);
    706   }
    707 #endif
    708 
    709   // Restore main thread state to kNative as expected by native code.
    710   Thread* self = Thread::Current();
    711 
    712   self->TransitionFromRunnableToSuspended(kNative);
    713 
    714   started_ = true;
    715 
    716   if (!IsImageDex2OatEnabled() || !GetHeap()->HasBootImageSpace()) {
    717     ScopedObjectAccess soa(self);
    718     StackHandleScope<2> hs(soa.Self());
    719 
    720     auto class_class(hs.NewHandle<mirror::Class>(mirror::Class::GetJavaLangClass()));
    721     auto field_class(hs.NewHandle<mirror::Class>(mirror::Field::StaticClass()));
    722 
    723     class_linker_->EnsureInitialized(soa.Self(), class_class, true, true);
    724     // Field class is needed for register_java_net_InetAddress in libcore, b/28153851.
    725     class_linker_->EnsureInitialized(soa.Self(), field_class, true, true);
    726   }
    727 
    728   // InitNativeMethods needs to be after started_ so that the classes
    729   // it touches will have methods linked to the oat file if necessary.
    730   {
    731     ScopedTrace trace2("InitNativeMethods");
    732     InitNativeMethods();
    733   }
    734 
    735   // Initialize well known thread group values that may be accessed threads while attaching.
    736   InitThreadGroups(self);
    737 
    738   Thread::FinishStartup();
    739 
    740   // Create the JIT either if we have to use JIT compilation or save profiling info. This is
    741   // done after FinishStartup as the JIT pool needs Java thread peers, which require the main
    742   // ThreadGroup to exist.
    743   //
    744   // TODO(calin): We use the JIT class as a proxy for JIT compilation and for
    745   // recoding profiles. Maybe we should consider changing the name to be more clear it's
    746   // not only about compiling. b/28295073.
    747   if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
    748     std::string error_msg;
    749     if (!IsZygote()) {
    750     // If we are the zygote then we need to wait until after forking to create the code cache
    751     // due to SELinux restrictions on r/w/x memory regions.
    752       CreateJit();
    753     } else if (jit_options_->UseJitCompilation()) {
    754       if (!jit::Jit::LoadCompilerLibrary(&error_msg)) {
    755         // Try to load compiler pre zygote to reduce PSS. b/27744947
    756         LOG(WARNING) << "Failed to load JIT compiler with error " << error_msg;
    757       }
    758     }
    759   }
    760 
    761   // Send the start phase event. We have to wait till here as this is when the main thread peer
    762   // has just been generated, important root clinits have been run and JNI is completely functional.
    763   {
    764     ScopedObjectAccess soa(self);
    765     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
    766   }
    767 
    768   system_class_loader_ = CreateSystemClassLoader(this);
    769 
    770   if (!is_zygote_) {
    771     if (is_native_bridge_loaded_) {
    772       PreInitializeNativeBridge(".");
    773     }
    774     NativeBridgeAction action = force_native_bridge_
    775         ? NativeBridgeAction::kInitialize
    776         : NativeBridgeAction::kUnload;
    777     InitNonZygoteOrPostFork(self->GetJniEnv(),
    778                             /* is_system_server */ false,
    779                             action,
    780                             GetInstructionSetString(kRuntimeISA));
    781   }
    782 
    783   // Send the initialized phase event. Send it before starting daemons, as otherwise
    784   // sending thread events becomes complicated.
    785   {
    786     ScopedObjectAccess soa(self);
    787     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
    788   }
    789 
    790   StartDaemonThreads();
    791 
    792   {
    793     ScopedObjectAccess soa(self);
    794     self->GetJniEnv()->locals.AssertEmpty();
    795   }
    796 
    797   VLOG(startup) << "Runtime::Start exiting";
    798   finished_starting_ = true;
    799 
    800   if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
    801     ScopedThreadStateChange tsc(self, kWaitingForMethodTracingStart);
    802     Trace::Start(trace_config_->trace_file.c_str(),
    803                  -1,
    804                  static_cast<int>(trace_config_->trace_file_size),
    805                  0,
    806                  trace_config_->trace_output_mode,
    807                  trace_config_->trace_mode,
    808                  0);
    809   }
    810 
    811   return true;
    812 }
    813 
    814 void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
    815   DCHECK_GT(threads_being_born_, 0U);
    816   threads_being_born_--;
    817   if (shutting_down_started_ && threads_being_born_ == 0) {
    818     shutdown_cond_->Broadcast(Thread::Current());
    819   }
    820 }
    821 
    822 void Runtime::InitNonZygoteOrPostFork(
    823     JNIEnv* env, bool is_system_server, NativeBridgeAction action, const char* isa) {
    824   is_zygote_ = false;
    825 
    826   if (is_native_bridge_loaded_) {
    827     switch (action) {
    828       case NativeBridgeAction::kUnload:
    829         UnloadNativeBridge();
    830         is_native_bridge_loaded_ = false;
    831         break;
    832 
    833       case NativeBridgeAction::kInitialize:
    834         InitializeNativeBridge(env, isa);
    835         break;
    836     }
    837   }
    838 
    839   // Create the thread pools.
    840   heap_->CreateThreadPool();
    841   // Reset the gc performance data at zygote fork so that the GCs
    842   // before fork aren't attributed to an app.
    843   heap_->ResetGcPerformanceInfo();
    844 
    845   // We may want to collect profiling samples for system server, but we never want to JIT there.
    846   if ((!is_system_server || !jit_options_->UseJitCompilation()) &&
    847       !safe_mode_ &&
    848       (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) &&
    849       jit_ == nullptr) {
    850     // Note that when running ART standalone (not zygote, nor zygote fork),
    851     // the jit may have already been created.
    852     CreateJit();
    853   }
    854 
    855   StartSignalCatcher();
    856 
    857   // Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
    858   // this will pause the runtime, so we probably want this to come last.
    859   Dbg::StartJdwp();
    860 }
    861 
    862 void Runtime::StartSignalCatcher() {
    863   if (!is_zygote_) {
    864     signal_catcher_ = new SignalCatcher(stack_trace_file_, use_tombstoned_traces_);
    865   }
    866 }
    867 
    868 bool Runtime::IsShuttingDown(Thread* self) {
    869   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    870   return IsShuttingDownLocked();
    871 }
    872 
    873 void Runtime::StartDaemonThreads() {
    874   ScopedTrace trace(__FUNCTION__);
    875   VLOG(startup) << "Runtime::StartDaemonThreads entering";
    876 
    877   Thread* self = Thread::Current();
    878 
    879   // Must be in the kNative state for calling native methods.
    880   CHECK_EQ(self->GetState(), kNative);
    881 
    882   JNIEnv* env = self->GetJniEnv();
    883   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
    884                             WellKnownClasses::java_lang_Daemons_start);
    885   if (env->ExceptionCheck()) {
    886     env->ExceptionDescribe();
    887     LOG(FATAL) << "Error starting java.lang.Daemons";
    888   }
    889 
    890   VLOG(startup) << "Runtime::StartDaemonThreads exiting";
    891 }
    892 
    893 // Attempts to open dex files from image(s). Given the image location, try to find the oat file
    894 // and open it to get the stored dex file. If the image is the first for a multi-image boot
    895 // classpath, go on and also open the other images.
    896 static bool OpenDexFilesFromImage(const std::string& image_location,
    897                                   std::vector<std::unique_ptr<const DexFile>>* dex_files,
    898                                   size_t* failures) {
    899   DCHECK(dex_files != nullptr) << "OpenDexFilesFromImage: out-param is nullptr";
    900 
    901   // Use a work-list approach, so that we can easily reuse the opening code.
    902   std::vector<std::string> image_locations;
    903   image_locations.push_back(image_location);
    904 
    905   for (size_t index = 0; index < image_locations.size(); ++index) {
    906     std::string system_filename;
    907     bool has_system = false;
    908     std::string cache_filename_unused;
    909     bool dalvik_cache_exists_unused;
    910     bool has_cache_unused;
    911     bool is_global_cache_unused;
    912     bool found_image = gc::space::ImageSpace::FindImageFilename(image_locations[index].c_str(),
    913                                                                 kRuntimeISA,
    914                                                                 &system_filename,
    915                                                                 &has_system,
    916                                                                 &cache_filename_unused,
    917                                                                 &dalvik_cache_exists_unused,
    918                                                                 &has_cache_unused,
    919                                                                 &is_global_cache_unused);
    920 
    921     if (!found_image || !has_system) {
    922       return false;
    923     }
    924 
    925     // We are falling back to non-executable use of the oat file because patching failed, presumably
    926     // due to lack of space.
    927     std::string vdex_filename =
    928         ImageHeader::GetVdexLocationFromImageLocation(system_filename.c_str());
    929     std::string oat_filename =
    930         ImageHeader::GetOatLocationFromImageLocation(system_filename.c_str());
    931     std::string oat_location =
    932         ImageHeader::GetOatLocationFromImageLocation(image_locations[index].c_str());
    933     // Note: in the multi-image case, the image location may end in ".jar," and not ".art." Handle
    934     //       that here.
    935     if (android::base::EndsWith(oat_location, ".jar")) {
    936       oat_location.replace(oat_location.length() - 3, 3, "oat");
    937     }
    938     std::string error_msg;
    939 
    940     std::unique_ptr<VdexFile> vdex_file(VdexFile::Open(vdex_filename,
    941                                                        false /* writable */,
    942                                                        false /* low_4gb */,
    943                                                        false, /* unquicken */
    944                                                        &error_msg));
    945     if (vdex_file.get() == nullptr) {
    946       return false;
    947     }
    948 
    949     std::unique_ptr<File> file(OS::OpenFileForReading(oat_filename.c_str()));
    950     if (file.get() == nullptr) {
    951       return false;
    952     }
    953     std::unique_ptr<ElfFile> elf_file(ElfFile::Open(file.get(),
    954                                                     false /* writable */,
    955                                                     false /* program_header_only */,
    956                                                     false /* low_4gb */,
    957                                                     &error_msg));
    958     if (elf_file.get() == nullptr) {
    959       return false;
    960     }
    961     std::unique_ptr<const OatFile> oat_file(
    962         OatFile::OpenWithElfFile(elf_file.release(),
    963                                  vdex_file.release(),
    964                                  oat_location,
    965                                  nullptr,
    966                                  &error_msg));
    967     if (oat_file == nullptr) {
    968       LOG(WARNING) << "Unable to use '" << oat_filename << "' because " << error_msg;
    969       return false;
    970     }
    971 
    972     for (const OatFile::OatDexFile* oat_dex_file : oat_file->GetOatDexFiles()) {
    973       if (oat_dex_file == nullptr) {
    974         *failures += 1;
    975         continue;
    976       }
    977       std::unique_ptr<const DexFile> dex_file = oat_dex_file->OpenDexFile(&error_msg);
    978       if (dex_file.get() == nullptr) {
    979         *failures += 1;
    980       } else {
    981         dex_files->push_back(std::move(dex_file));
    982       }
    983     }
    984 
    985     if (index == 0) {
    986       // First file. See if this is a multi-image environment, and if so, enqueue the other images.
    987       const OatHeader& boot_oat_header = oat_file->GetOatHeader();
    988       const char* boot_cp = boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
    989       if (boot_cp != nullptr) {
    990         gc::space::ImageSpace::ExtractMultiImageLocations(image_locations[0],
    991                                                           boot_cp,
    992                                                           &image_locations);
    993       }
    994     }
    995 
    996     Runtime::Current()->GetOatFileManager().RegisterOatFile(std::move(oat_file));
    997   }
    998   return true;
    999 }
   1000 
   1001 
   1002 static size_t OpenDexFiles(const std::vector<std::string>& dex_filenames,
   1003                            const std::vector<std::string>& dex_locations,
   1004                            const std::string& image_location,
   1005                            std::vector<std::unique_ptr<const DexFile>>* dex_files) {
   1006   DCHECK(dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
   1007   size_t failure_count = 0;
   1008   if (!image_location.empty() && OpenDexFilesFromImage(image_location, dex_files, &failure_count)) {
   1009     return failure_count;
   1010   }
   1011   failure_count = 0;
   1012   for (size_t i = 0; i < dex_filenames.size(); i++) {
   1013     const char* dex_filename = dex_filenames[i].c_str();
   1014     const char* dex_location = dex_locations[i].c_str();
   1015     static constexpr bool kVerifyChecksum = true;
   1016     std::string error_msg;
   1017     if (!OS::FileExists(dex_filename)) {
   1018       LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
   1019       continue;
   1020     }
   1021     if (!DexFile::Open(dex_filename, dex_location, kVerifyChecksum, &error_msg, dex_files)) {
   1022       LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
   1023       ++failure_count;
   1024     }
   1025   }
   1026   return failure_count;
   1027 }
   1028 
   1029 void Runtime::SetSentinel(mirror::Object* sentinel) {
   1030   CHECK(sentinel_.Read() == nullptr);
   1031   CHECK(sentinel != nullptr);
   1032   CHECK(!heap_->IsMovableObject(sentinel));
   1033   sentinel_ = GcRoot<mirror::Object>(sentinel);
   1034 }
   1035 
   1036 bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
   1037   // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
   1038   // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
   1039   env_snapshot_.TakeSnapshot();
   1040 
   1041   RuntimeArgumentMap runtime_options(std::move(runtime_options_in));
   1042   ScopedTrace trace(__FUNCTION__);
   1043   CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
   1044 
   1045   MemMap::Init();
   1046 
   1047   // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
   1048   // If we cannot reserve it, log a warning.
   1049   // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
   1050   //       is out-of-the-way enough that it should not collide with boot image mapping.
   1051   // Note: Don't request an error message. That will lead to a maps dump in the case of failure,
   1052   //       leading to logspam.
   1053   {
   1054     constexpr uintptr_t kSentinelAddr =
   1055         RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), kPageSize);
   1056     protected_fault_page_.reset(MemMap::MapAnonymous("Sentinel fault page",
   1057                                                      reinterpret_cast<uint8_t*>(kSentinelAddr),
   1058                                                      kPageSize,
   1059                                                      PROT_NONE,
   1060                                                      /* low_4g */ true,
   1061                                                      /* reuse */ false,
   1062                                                      /* error_msg */ nullptr));
   1063     if (protected_fault_page_ == nullptr) {
   1064       LOG(WARNING) << "Could not reserve sentinel fault page";
   1065     } else if (reinterpret_cast<uintptr_t>(protected_fault_page_->Begin()) != kSentinelAddr) {
   1066       LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
   1067       protected_fault_page_.reset();
   1068     }
   1069   }
   1070 
   1071   using Opt = RuntimeArgumentMap;
   1072   VLOG(startup) << "Runtime::Init -verbose:startup enabled";
   1073 
   1074   QuasiAtomic::Startup();
   1075 
   1076   oat_file_manager_ = new OatFileManager;
   1077 
   1078   Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
   1079   Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
   1080                 runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
   1081 
   1082   boot_class_path_string_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
   1083   class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
   1084   properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
   1085 
   1086   compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
   1087   patchoat_executable_ = runtime_options.ReleaseOrDefault(Opt::PatchOat);
   1088   must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
   1089   is_zygote_ = runtime_options.Exists(Opt::Zygote);
   1090   is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
   1091   dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::Dex2Oat);
   1092   image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
   1093   dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
   1094 
   1095   vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
   1096   exit_ = runtime_options.GetOrDefault(Opt::HookExit);
   1097   abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
   1098 
   1099   default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
   1100   use_tombstoned_traces_ = runtime_options.GetOrDefault(Opt::UseTombstonedTraces);
   1101 #if !defined(ART_TARGET_ANDROID)
   1102   CHECK(!use_tombstoned_traces_)
   1103       << "-Xusetombstonedtraces is only supported in an Android environment";
   1104 #endif
   1105   stack_trace_file_ = runtime_options.ReleaseOrDefault(Opt::StackTraceFile);
   1106 
   1107   compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
   1108   compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
   1109   for (StringPiece option : Runtime::Current()->GetCompilerOptions()) {
   1110     if (option.starts_with("--debuggable")) {
   1111       SetJavaDebuggable(true);
   1112       break;
   1113     }
   1114   }
   1115   image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
   1116   image_location_ = runtime_options.GetOrDefault(Opt::Image);
   1117 
   1118   max_spins_before_thin_lock_inflation_ =
   1119       runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
   1120 
   1121   monitor_list_ = new MonitorList;
   1122   monitor_pool_ = MonitorPool::Create();
   1123   thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
   1124   intern_table_ = new InternTable;
   1125 
   1126   verify_ = runtime_options.GetOrDefault(Opt::Verify);
   1127   allow_dex_file_fallback_ = !runtime_options.Exists(Opt::NoDexFileFallback);
   1128 
   1129   no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
   1130   force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
   1131 
   1132   Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
   1133 
   1134   fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
   1135 
   1136   if (runtime_options.GetOrDefault(Opt::Interpret)) {
   1137     GetInstrumentation()->ForceInterpretOnly();
   1138   }
   1139 
   1140   zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
   1141   experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
   1142   is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
   1143   madvise_random_access_ = runtime_options.GetOrDefault(Opt::MadviseRandomAccess);
   1144 
   1145   plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
   1146   agents_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
   1147   // TODO Add back in -agentlib
   1148   // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
   1149   //   agents_.push_back(lib);
   1150   // }
   1151 
   1152   float foreground_heap_growth_multiplier;
   1153   if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
   1154     // If low memory mode, use 1.0 as the multiplier by default.
   1155     foreground_heap_growth_multiplier = 1.0f;
   1156   } else {
   1157     foreground_heap_growth_multiplier =
   1158         runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) +
   1159             kExtraDefaultHeapGrowthMultiplier;
   1160   }
   1161   XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
   1162   heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
   1163                        runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
   1164                        runtime_options.GetOrDefault(Opt::HeapMinFree),
   1165                        runtime_options.GetOrDefault(Opt::HeapMaxFree),
   1166                        runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
   1167                        foreground_heap_growth_multiplier,
   1168                        runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
   1169                        runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
   1170                        runtime_options.GetOrDefault(Opt::Image),
   1171                        runtime_options.GetOrDefault(Opt::ImageInstructionSet),
   1172                        // Override the collector type to CC if the read barrier config.
   1173                        kUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
   1174                        kUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground)
   1175                                        : runtime_options.GetOrDefault(Opt::BackgroundGc),
   1176                        runtime_options.GetOrDefault(Opt::LargeObjectSpace),
   1177                        runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
   1178                        runtime_options.GetOrDefault(Opt::ParallelGCThreads),
   1179                        runtime_options.GetOrDefault(Opt::ConcGCThreads),
   1180                        runtime_options.Exists(Opt::LowMemoryMode),
   1181                        runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
   1182                        runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
   1183                        runtime_options.Exists(Opt::IgnoreMaxFootprint),
   1184                        runtime_options.GetOrDefault(Opt::UseTLAB),
   1185                        xgc_option.verify_pre_gc_heap_,
   1186                        xgc_option.verify_pre_sweeping_heap_,
   1187                        xgc_option.verify_post_gc_heap_,
   1188                        xgc_option.verify_pre_gc_rosalloc_,
   1189                        xgc_option.verify_pre_sweeping_rosalloc_,
   1190                        xgc_option.verify_post_gc_rosalloc_,
   1191                        xgc_option.gcstress_,
   1192                        xgc_option.measure_,
   1193                        runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
   1194                        runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs));
   1195 
   1196   if (!heap_->HasBootImageSpace() && !allow_dex_file_fallback_) {
   1197     LOG(ERROR) << "Dex file fallback disabled, cannot continue without image.";
   1198     return false;
   1199   }
   1200 
   1201   dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
   1202 
   1203   if (runtime_options.Exists(Opt::JdwpOptions)) {
   1204     Dbg::ConfigureJdwp(runtime_options.GetOrDefault(Opt::JdwpOptions));
   1205   }
   1206   callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
   1207   callbacks_->AddClassLoadCallback(Dbg::GetClassLoadCallback());
   1208 
   1209   jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
   1210   if (IsAotCompiler()) {
   1211     // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
   1212     // this case.
   1213     // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
   1214     // null and we don't create the jit.
   1215     jit_options_->SetUseJitCompilation(false);
   1216     jit_options_->SetSaveProfilingInfo(false);
   1217   }
   1218 
   1219   // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
   1220   // can't be trimmed as easily.
   1221   const bool use_malloc = IsAotCompiler();
   1222   arena_pool_.reset(new ArenaPool(use_malloc, /* low_4gb */ false));
   1223   jit_arena_pool_.reset(
   1224       new ArenaPool(/* use_malloc */ false, /* low_4gb */ false, "CompilerMetadata"));
   1225 
   1226   if (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA)) {
   1227     // 4gb, no malloc. Explanation in header.
   1228     low_4gb_arena_pool_.reset(new ArenaPool(/* use_malloc */ false, /* low_4gb */ true));
   1229   }
   1230   linear_alloc_.reset(CreateLinearAlloc());
   1231 
   1232   BlockSignals();
   1233   InitPlatformSignalHandlers();
   1234 
   1235   // Change the implicit checks flags based on runtime architecture.
   1236   switch (kRuntimeISA) {
   1237     case kArm:
   1238     case kThumb2:
   1239     case kX86:
   1240     case kArm64:
   1241     case kX86_64:
   1242     case kMips:
   1243     case kMips64:
   1244       implicit_null_checks_ = true;
   1245       // Installing stack protection does not play well with valgrind.
   1246       implicit_so_checks_ = !(RUNNING_ON_MEMORY_TOOL && kMemoryToolIsValgrind);
   1247       break;
   1248     default:
   1249       // Keep the defaults.
   1250       break;
   1251   }
   1252 
   1253   if (!no_sig_chain_) {
   1254     // Dex2Oat's Runtime does not need the signal chain or the fault handler.
   1255     if (implicit_null_checks_ || implicit_so_checks_ || implicit_suspend_checks_) {
   1256       fault_manager.Init();
   1257 
   1258       // These need to be in a specific order.  The null point check handler must be
   1259       // after the suspend check and stack overflow check handlers.
   1260       //
   1261       // Note: the instances attach themselves to the fault manager and are handled by it. The manager
   1262       //       will delete the instance on Shutdown().
   1263       if (implicit_suspend_checks_) {
   1264         new SuspensionHandler(&fault_manager);
   1265       }
   1266 
   1267       if (implicit_so_checks_) {
   1268         new StackOverflowHandler(&fault_manager);
   1269       }
   1270 
   1271       if (implicit_null_checks_) {
   1272         new NullPointerHandler(&fault_manager);
   1273       }
   1274 
   1275       if (kEnableJavaStackTraceHandler) {
   1276         new JavaStackTraceHandler(&fault_manager);
   1277       }
   1278     }
   1279   }
   1280 
   1281   std::string error_msg;
   1282   java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
   1283   if (java_vm_.get() == nullptr) {
   1284     LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
   1285     return false;
   1286   }
   1287 
   1288   // Add the JniEnv handler.
   1289   // TODO Refactor this stuff.
   1290   java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
   1291 
   1292   Thread::Startup();
   1293 
   1294   // ClassLinker needs an attached thread, but we can't fully attach a thread without creating
   1295   // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
   1296   // thread, we do not get a java peer.
   1297   Thread* self = Thread::Attach("main", false, nullptr, false);
   1298   CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
   1299   CHECK(self != nullptr);
   1300 
   1301   self->SetCanCallIntoJava(!IsAotCompiler());
   1302 
   1303   // Set us to runnable so tools using a runtime can allocate and GC by default
   1304   self->TransitionFromSuspendedToRunnable();
   1305 
   1306   // Now we're attached, we can take the heap locks and validate the heap.
   1307   GetHeap()->EnableObjectValidation();
   1308 
   1309   CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
   1310   if (UNLIKELY(IsAotCompiler())) {
   1311     class_linker_ = new AotClassLinker(intern_table_);
   1312   } else {
   1313     class_linker_ = new ClassLinker(intern_table_);
   1314   }
   1315   if (GetHeap()->HasBootImageSpace()) {
   1316     bool result = class_linker_->InitFromBootImage(&error_msg);
   1317     if (!result) {
   1318       LOG(ERROR) << "Could not initialize from image: " << error_msg;
   1319       return false;
   1320     }
   1321     if (kIsDebugBuild) {
   1322       for (auto image_space : GetHeap()->GetBootImageSpaces()) {
   1323         image_space->VerifyImageAllocations();
   1324       }
   1325     }
   1326     if (boot_class_path_string_.empty()) {
   1327       // The bootclasspath is not explicitly specified: construct it from the loaded dex files.
   1328       const std::vector<const DexFile*>& boot_class_path = GetClassLinker()->GetBootClassPath();
   1329       std::vector<std::string> dex_locations;
   1330       dex_locations.reserve(boot_class_path.size());
   1331       for (const DexFile* dex_file : boot_class_path) {
   1332         dex_locations.push_back(dex_file->GetLocation());
   1333       }
   1334       boot_class_path_string_ = android::base::Join(dex_locations, ':');
   1335     }
   1336     {
   1337       ScopedTrace trace2("AddImageStringsToTable");
   1338       GetInternTable()->AddImagesStringsToTable(heap_->GetBootImageSpaces());
   1339     }
   1340     if (IsJavaDebuggable()) {
   1341       // Now that we have loaded the boot image, deoptimize its methods if we are running
   1342       // debuggable, as the code may have been compiled non-debuggable.
   1343       DeoptimizeBootImage();
   1344     }
   1345   } else {
   1346     std::vector<std::string> dex_filenames;
   1347     Split(boot_class_path_string_, ':', &dex_filenames);
   1348 
   1349     std::vector<std::string> dex_locations;
   1350     if (!runtime_options.Exists(Opt::BootClassPathLocations)) {
   1351       dex_locations = dex_filenames;
   1352     } else {
   1353       dex_locations = runtime_options.GetOrDefault(Opt::BootClassPathLocations);
   1354       CHECK_EQ(dex_filenames.size(), dex_locations.size());
   1355     }
   1356 
   1357     std::vector<std::unique_ptr<const DexFile>> boot_class_path;
   1358     if (runtime_options.Exists(Opt::BootClassPathDexList)) {
   1359       boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
   1360     } else {
   1361       OpenDexFiles(dex_filenames,
   1362                    dex_locations,
   1363                    runtime_options.GetOrDefault(Opt::Image),
   1364                    &boot_class_path);
   1365     }
   1366     instruction_set_ = runtime_options.GetOrDefault(Opt::ImageInstructionSet);
   1367     if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
   1368       LOG(ERROR) << "Could not initialize without image: " << error_msg;
   1369       return false;
   1370     }
   1371 
   1372     // TODO: Should we move the following to InitWithoutImage?
   1373     SetInstructionSet(instruction_set_);
   1374     for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
   1375       CalleeSaveType type = CalleeSaveType(i);
   1376       if (!HasCalleeSaveMethod(type)) {
   1377         SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
   1378       }
   1379     }
   1380   }
   1381 
   1382   CHECK(class_linker_ != nullptr);
   1383 
   1384   verifier::MethodVerifier::Init();
   1385 
   1386   if (runtime_options.Exists(Opt::MethodTrace)) {
   1387     trace_config_.reset(new TraceConfig());
   1388     trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
   1389     trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
   1390     trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
   1391     trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
   1392         Trace::TraceOutputMode::kStreaming :
   1393         Trace::TraceOutputMode::kFile;
   1394   }
   1395 
   1396   // TODO: move this to just be an Trace::Start argument
   1397   Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
   1398 
   1399   // Pre-allocate an OutOfMemoryError for the double-OOME case.
   1400   self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
   1401                           "OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
   1402                           "no stack trace available");
   1403   pre_allocated_OutOfMemoryError_ = GcRoot<mirror::Throwable>(self->GetException());
   1404   self->ClearException();
   1405 
   1406   // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
   1407   // ahead of checking the application's class loader.
   1408   self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
   1409                           "Class not found using the boot class loader; no stack trace available");
   1410   pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(self->GetException());
   1411   self->ClearException();
   1412 
   1413   // Runtime initialization is largely done now.
   1414   // We load plugins first since that can modify the runtime state slightly.
   1415   // Load all plugins
   1416   for (auto& plugin : plugins_) {
   1417     std::string err;
   1418     if (!plugin.Load(&err)) {
   1419       LOG(FATAL) << plugin << " failed to load: " << err;
   1420     }
   1421   }
   1422 
   1423   // Look for a native bridge.
   1424   //
   1425   // The intended flow here is, in the case of a running system:
   1426   //
   1427   // Runtime::Init() (zygote):
   1428   //   LoadNativeBridge -> dlopen from cmd line parameter.
   1429   //  |
   1430   //  V
   1431   // Runtime::Start() (zygote):
   1432   //   No-op wrt native bridge.
   1433   //  |
   1434   //  | start app
   1435   //  V
   1436   // DidForkFromZygote(action)
   1437   //   action = kUnload -> dlclose native bridge.
   1438   //   action = kInitialize -> initialize library
   1439   //
   1440   //
   1441   // The intended flow here is, in the case of a simple dalvikvm call:
   1442   //
   1443   // Runtime::Init():
   1444   //   LoadNativeBridge -> dlopen from cmd line parameter.
   1445   //  |
   1446   //  V
   1447   // Runtime::Start():
   1448   //   DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
   1449   //   No-op wrt native bridge.
   1450   {
   1451     std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
   1452     is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
   1453   }
   1454 
   1455   // Startup agents
   1456   // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
   1457   for (auto& agent : agents_) {
   1458     // TODO Check err
   1459     int res = 0;
   1460     std::string err = "";
   1461     ti::Agent::LoadError result = agent.Load(&res, &err);
   1462     if (result == ti::Agent::kInitializationError) {
   1463       LOG(FATAL) << "Unable to initialize agent!";
   1464     } else if (result != ti::Agent::kNoError) {
   1465       LOG(ERROR) << "Unable to load an agent: " << err;
   1466     }
   1467   }
   1468   {
   1469     ScopedObjectAccess soa(self);
   1470     callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
   1471   }
   1472 
   1473   VLOG(startup) << "Runtime::Init exiting";
   1474 
   1475   return true;
   1476 }
   1477 
   1478 static bool EnsureJvmtiPlugin(Runtime* runtime,
   1479                               std::vector<Plugin>* plugins,
   1480                               std::string* error_msg) {
   1481   constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
   1482 
   1483   // Is the plugin already loaded?
   1484   for (const Plugin& p : *plugins) {
   1485     if (p.GetLibrary() == plugin_name) {
   1486       return true;
   1487     }
   1488   }
   1489 
   1490   // Is the process debuggable? Otherwise, do not attempt to load the plugin.
   1491   if (!runtime->IsJavaDebuggable()) {
   1492     *error_msg = "Process is not debuggable.";
   1493     return false;
   1494   }
   1495 
   1496   Plugin new_plugin = Plugin::Create(plugin_name);
   1497 
   1498   if (!new_plugin.Load(error_msg)) {
   1499     return false;
   1500   }
   1501 
   1502   plugins->push_back(std::move(new_plugin));
   1503   return true;
   1504 }
   1505 
   1506 // Attach a new agent and add it to the list of runtime agents
   1507 //
   1508 // TODO: once we decide on the threading model for agents,
   1509 //   revisit this and make sure we're doing this on the right thread
   1510 //   (and we synchronize access to any shared data structures like "agents_")
   1511 //
   1512 void Runtime::AttachAgent(const std::string& agent_arg) {
   1513   std::string error_msg;
   1514   if (!EnsureJvmtiPlugin(this, &plugins_, &error_msg)) {
   1515     LOG(WARNING) << "Could not load plugin: " << error_msg;
   1516     ScopedObjectAccess soa(Thread::Current());
   1517     ThrowIOException("%s", error_msg.c_str());
   1518     return;
   1519   }
   1520 
   1521   ti::Agent agent(agent_arg);
   1522 
   1523   int res = 0;
   1524   ti::Agent::LoadError result = agent.Attach(&res, &error_msg);
   1525 
   1526   if (result == ti::Agent::kNoError) {
   1527     agents_.push_back(std::move(agent));
   1528   } else {
   1529     LOG(WARNING) << "Agent attach failed (result=" << result << ") : " << error_msg;
   1530     ScopedObjectAccess soa(Thread::Current());
   1531     ThrowIOException("%s", error_msg.c_str());
   1532   }
   1533 }
   1534 
   1535 void Runtime::InitNativeMethods() {
   1536   VLOG(startup) << "Runtime::InitNativeMethods entering";
   1537   Thread* self = Thread::Current();
   1538   JNIEnv* env = self->GetJniEnv();
   1539 
   1540   // Must be in the kNative state for calling native methods (JNI_OnLoad code).
   1541   CHECK_EQ(self->GetState(), kNative);
   1542 
   1543   // First set up JniConstants, which is used by both the runtime's built-in native
   1544   // methods and libcore.
   1545   JniConstants::init(env);
   1546 
   1547   // Then set up the native methods provided by the runtime itself.
   1548   RegisterRuntimeNativeMethods(env);
   1549 
   1550   // Initialize classes used in JNI. The initialization requires runtime native
   1551   // methods to be loaded first.
   1552   WellKnownClasses::Init(env);
   1553 
   1554   // Then set up libjavacore / libopenjdk, which are just a regular JNI libraries with
   1555   // a regular JNI_OnLoad. Most JNI libraries can just use System.loadLibrary, but
   1556   // libcore can't because it's the library that implements System.loadLibrary!
   1557   {
   1558     std::string error_msg;
   1559     if (!java_vm_->LoadNativeLibrary(env, "libjavacore.so", nullptr, nullptr, &error_msg)) {
   1560       LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
   1561     }
   1562   }
   1563   {
   1564     constexpr const char* kOpenJdkLibrary = kIsDebugBuild
   1565                                                 ? "libopenjdkd.so"
   1566                                                 : "libopenjdk.so";
   1567     std::string error_msg;
   1568     if (!java_vm_->LoadNativeLibrary(env, kOpenJdkLibrary, nullptr, nullptr, &error_msg)) {
   1569       LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
   1570     }
   1571   }
   1572 
   1573   // Initialize well known classes that may invoke runtime native methods.
   1574   WellKnownClasses::LateInit(env);
   1575 
   1576   VLOG(startup) << "Runtime::InitNativeMethods exiting";
   1577 }
   1578 
   1579 void Runtime::ReclaimArenaPoolMemory() {
   1580   arena_pool_->LockReclaimMemory();
   1581 }
   1582 
   1583 void Runtime::InitThreadGroups(Thread* self) {
   1584   JNIEnvExt* env = self->GetJniEnv();
   1585   ScopedJniEnvLocalRefState env_state(env);
   1586   main_thread_group_ =
   1587       env->NewGlobalRef(env->GetStaticObjectField(
   1588           WellKnownClasses::java_lang_ThreadGroup,
   1589           WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
   1590   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
   1591   system_thread_group_ =
   1592       env->NewGlobalRef(env->GetStaticObjectField(
   1593           WellKnownClasses::java_lang_ThreadGroup,
   1594           WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
   1595   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
   1596 }
   1597 
   1598 jobject Runtime::GetMainThreadGroup() const {
   1599   CHECK(main_thread_group_ != nullptr || IsAotCompiler());
   1600   return main_thread_group_;
   1601 }
   1602 
   1603 jobject Runtime::GetSystemThreadGroup() const {
   1604   CHECK(system_thread_group_ != nullptr || IsAotCompiler());
   1605   return system_thread_group_;
   1606 }
   1607 
   1608 jobject Runtime::GetSystemClassLoader() const {
   1609   CHECK(system_class_loader_ != nullptr || IsAotCompiler());
   1610   return system_class_loader_;
   1611 }
   1612 
   1613 void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
   1614   register_dalvik_system_DexFile(env);
   1615   register_dalvik_system_VMDebug(env);
   1616   register_dalvik_system_VMRuntime(env);
   1617   register_dalvik_system_VMStack(env);
   1618   register_dalvik_system_ZygoteHooks(env);
   1619   register_java_lang_Class(env);
   1620   register_java_lang_Object(env);
   1621   register_java_lang_invoke_MethodHandleImpl(env);
   1622   register_java_lang_ref_FinalizerReference(env);
   1623   register_java_lang_reflect_Array(env);
   1624   register_java_lang_reflect_Constructor(env);
   1625   register_java_lang_reflect_Executable(env);
   1626   register_java_lang_reflect_Field(env);
   1627   register_java_lang_reflect_Method(env);
   1628   register_java_lang_reflect_Parameter(env);
   1629   register_java_lang_reflect_Proxy(env);
   1630   register_java_lang_ref_Reference(env);
   1631   register_java_lang_String(env);
   1632   register_java_lang_StringFactory(env);
   1633   register_java_lang_System(env);
   1634   register_java_lang_Thread(env);
   1635   register_java_lang_Throwable(env);
   1636   register_java_lang_VMClassLoader(env);
   1637   register_java_lang_Void(env);
   1638   register_java_util_concurrent_atomic_AtomicLong(env);
   1639   register_libcore_util_CharsetUtils(env);
   1640   register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
   1641   register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
   1642   register_sun_misc_Unsafe(env);
   1643 }
   1644 
   1645 std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
   1646   os << GetDeoptimizationKindName(kind);
   1647   return os;
   1648 }
   1649 
   1650 void Runtime::DumpDeoptimizations(std::ostream& os) {
   1651   for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
   1652     if (deoptimization_counts_[i] != 0) {
   1653       os << "Number of "
   1654          << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
   1655          << " deoptimizations: "
   1656          << deoptimization_counts_[i]
   1657          << "\n";
   1658     }
   1659   }
   1660 }
   1661 
   1662 void Runtime::DumpForSigQuit(std::ostream& os) {
   1663   GetClassLinker()->DumpForSigQuit(os);
   1664   GetInternTable()->DumpForSigQuit(os);
   1665   GetJavaVM()->DumpForSigQuit(os);
   1666   GetHeap()->DumpForSigQuit(os);
   1667   oat_file_manager_->DumpForSigQuit(os);
   1668   if (GetJit() != nullptr) {
   1669     GetJit()->DumpForSigQuit(os);
   1670   } else {
   1671     os << "Running non JIT\n";
   1672   }
   1673   DumpDeoptimizations(os);
   1674   TrackedAllocators::Dump(os);
   1675   os << "\n";
   1676 
   1677   thread_list_->DumpForSigQuit(os);
   1678   BaseMutex::DumpAll(os);
   1679 
   1680   // Inform anyone else who is interested in SigQuit.
   1681   {
   1682     ScopedObjectAccess soa(Thread::Current());
   1683     callbacks_->SigQuit();
   1684   }
   1685 }
   1686 
   1687 void Runtime::DumpLockHolders(std::ostream& os) {
   1688   uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
   1689   pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
   1690   pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
   1691   pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
   1692   if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
   1693     os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
   1694        << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
   1695        << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
   1696        << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
   1697   }
   1698 }
   1699 
   1700 void Runtime::SetStatsEnabled(bool new_state) {
   1701   Thread* self = Thread::Current();
   1702   MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
   1703   if (new_state == true) {
   1704     GetStats()->Clear(~0);
   1705     // TODO: wouldn't it make more sense to clear _all_ threads' stats?
   1706     self->GetStats()->Clear(~0);
   1707     if (stats_enabled_ != new_state) {
   1708       GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
   1709     }
   1710   } else if (stats_enabled_ != new_state) {
   1711     GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
   1712   }
   1713   stats_enabled_ = new_state;
   1714 }
   1715 
   1716 void Runtime::ResetStats(int kinds) {
   1717   GetStats()->Clear(kinds & 0xffff);
   1718   // TODO: wouldn't it make more sense to clear _all_ threads' stats?
   1719   Thread::Current()->GetStats()->Clear(kinds >> 16);
   1720 }
   1721 
   1722 int32_t Runtime::GetStat(int kind) {
   1723   RuntimeStats* stats;
   1724   if (kind < (1<<16)) {
   1725     stats = GetStats();
   1726   } else {
   1727     stats = Thread::Current()->GetStats();
   1728     kind >>= 16;
   1729   }
   1730   switch (kind) {
   1731   case KIND_ALLOCATED_OBJECTS:
   1732     return stats->allocated_objects;
   1733   case KIND_ALLOCATED_BYTES:
   1734     return stats->allocated_bytes;
   1735   case KIND_FREED_OBJECTS:
   1736     return stats->freed_objects;
   1737   case KIND_FREED_BYTES:
   1738     return stats->freed_bytes;
   1739   case KIND_GC_INVOCATIONS:
   1740     return stats->gc_for_alloc_count;
   1741   case KIND_CLASS_INIT_COUNT:
   1742     return stats->class_init_count;
   1743   case KIND_CLASS_INIT_TIME:
   1744     // Convert ns to us, reduce to 32 bits.
   1745     return static_cast<int>(stats->class_init_time_ns / 1000);
   1746   case KIND_EXT_ALLOCATED_OBJECTS:
   1747   case KIND_EXT_ALLOCATED_BYTES:
   1748   case KIND_EXT_FREED_OBJECTS:
   1749   case KIND_EXT_FREED_BYTES:
   1750     return 0;  // backward compatibility
   1751   default:
   1752     LOG(FATAL) << "Unknown statistic " << kind;
   1753     return -1;  // unreachable
   1754   }
   1755 }
   1756 
   1757 void Runtime::BlockSignals() {
   1758   SignalSet signals;
   1759   signals.Add(SIGPIPE);
   1760   // SIGQUIT is used to dump the runtime's state (including stack traces).
   1761   signals.Add(SIGQUIT);
   1762   // SIGUSR1 is used to initiate a GC.
   1763   signals.Add(SIGUSR1);
   1764   signals.Block();
   1765 }
   1766 
   1767 bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
   1768                                   bool create_peer) {
   1769   ScopedTrace trace(__FUNCTION__);
   1770   return Thread::Attach(thread_name, as_daemon, thread_group, create_peer) != nullptr;
   1771 }
   1772 
   1773 void Runtime::DetachCurrentThread() {
   1774   ScopedTrace trace(__FUNCTION__);
   1775   Thread* self = Thread::Current();
   1776   if (self == nullptr) {
   1777     LOG(FATAL) << "attempting to detach thread that is not attached";
   1778   }
   1779   if (self->HasManagedStack()) {
   1780     LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
   1781   }
   1782   thread_list_->Unregister(self);
   1783 }
   1784 
   1785 mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryError() {
   1786   mirror::Throwable* oome = pre_allocated_OutOfMemoryError_.Read();
   1787   if (oome == nullptr) {
   1788     LOG(ERROR) << "Failed to return pre-allocated OOME";
   1789   }
   1790   return oome;
   1791 }
   1792 
   1793 mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
   1794   mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
   1795   if (ncdfe == nullptr) {
   1796     LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
   1797   }
   1798   return ncdfe;
   1799 }
   1800 
   1801 void Runtime::VisitConstantRoots(RootVisitor* visitor) {
   1802   // Visit the classes held as static in mirror classes, these can be visited concurrently and only
   1803   // need to be visited once per GC since they never change.
   1804   mirror::Class::VisitRoots(visitor);
   1805   mirror::Constructor::VisitRoots(visitor);
   1806   mirror::Reference::VisitRoots(visitor);
   1807   mirror::Method::VisitRoots(visitor);
   1808   mirror::StackTraceElement::VisitRoots(visitor);
   1809   mirror::String::VisitRoots(visitor);
   1810   mirror::Throwable::VisitRoots(visitor);
   1811   mirror::Field::VisitRoots(visitor);
   1812   mirror::MethodType::VisitRoots(visitor);
   1813   mirror::MethodHandleImpl::VisitRoots(visitor);
   1814   mirror::MethodHandlesLookup::VisitRoots(visitor);
   1815   mirror::EmulatedStackFrame::VisitRoots(visitor);
   1816   mirror::ClassExt::VisitRoots(visitor);
   1817   mirror::CallSite::VisitRoots(visitor);
   1818   // Visit all the primitive array types classes.
   1819   mirror::PrimitiveArray<uint8_t>::VisitRoots(visitor);   // BooleanArray
   1820   mirror::PrimitiveArray<int8_t>::VisitRoots(visitor);    // ByteArray
   1821   mirror::PrimitiveArray<uint16_t>::VisitRoots(visitor);  // CharArray
   1822   mirror::PrimitiveArray<double>::VisitRoots(visitor);    // DoubleArray
   1823   mirror::PrimitiveArray<float>::VisitRoots(visitor);     // FloatArray
   1824   mirror::PrimitiveArray<int32_t>::VisitRoots(visitor);   // IntArray
   1825   mirror::PrimitiveArray<int64_t>::VisitRoots(visitor);   // LongArray
   1826   mirror::PrimitiveArray<int16_t>::VisitRoots(visitor);   // ShortArray
   1827   // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
   1828   // null.
   1829   BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
   1830   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
   1831   if (HasResolutionMethod()) {
   1832     resolution_method_->VisitRoots(buffered_visitor, pointer_size);
   1833   }
   1834   if (HasImtConflictMethod()) {
   1835     imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
   1836   }
   1837   if (imt_unimplemented_method_ != nullptr) {
   1838     imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
   1839   }
   1840   for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
   1841     auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
   1842     if (m != nullptr) {
   1843       m->VisitRoots(buffered_visitor, pointer_size);
   1844     }
   1845   }
   1846 }
   1847 
   1848 void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1849   intern_table_->VisitRoots(visitor, flags);
   1850   class_linker_->VisitRoots(visitor, flags);
   1851   heap_->VisitAllocationRecords(visitor);
   1852   if ((flags & kVisitRootFlagNewRoots) == 0) {
   1853     // Guaranteed to have no new roots in the constant roots.
   1854     VisitConstantRoots(visitor);
   1855   }
   1856   Dbg::VisitRoots(visitor);
   1857 }
   1858 
   1859 void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
   1860   if (preinitialization_transaction_ != nullptr) {
   1861     preinitialization_transaction_->VisitRoots(visitor);
   1862   }
   1863 }
   1864 
   1865 void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
   1866   java_vm_->VisitRoots(visitor);
   1867   sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   1868   pre_allocated_OutOfMemoryError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   1869   pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
   1870   verifier::MethodVerifier::VisitStaticRoots(visitor);
   1871   VisitTransactionRoots(visitor);
   1872 }
   1873 
   1874 void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1875   VisitThreadRoots(visitor, flags);
   1876   VisitNonThreadRoots(visitor);
   1877 }
   1878 
   1879 void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1880   thread_list_->VisitRoots(visitor, flags);
   1881 }
   1882 
   1883 void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
   1884   VisitNonConcurrentRoots(visitor, flags);
   1885   VisitConcurrentRoots(visitor, flags);
   1886 }
   1887 
   1888 void Runtime::VisitImageRoots(RootVisitor* visitor) {
   1889   for (auto* space : GetHeap()->GetContinuousSpaces()) {
   1890     if (space->IsImageSpace()) {
   1891       auto* image_space = space->AsImageSpace();
   1892       const auto& image_header = image_space->GetImageHeader();
   1893       for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
   1894         auto* obj = image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i));
   1895         if (obj != nullptr) {
   1896           auto* after_obj = obj;
   1897           visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
   1898           CHECK_EQ(after_obj, obj);
   1899         }
   1900       }
   1901     }
   1902   }
   1903 }
   1904 
   1905 static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) {
   1906   const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
   1907   const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
   1908   const size_t method_size = ArtMethod::Size(image_pointer_size);
   1909   LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
   1910       Thread::Current(),
   1911       linear_alloc,
   1912       1);
   1913   ArtMethod* method = &method_array->At(0, method_size, method_alignment);
   1914   CHECK(method != nullptr);
   1915   method->SetDexMethodIndex(DexFile::kDexNoIndex);
   1916   CHECK(method->IsRuntimeMethod());
   1917   return method;
   1918 }
   1919 
   1920 ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
   1921   ClassLinker* const class_linker = GetClassLinker();
   1922   ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
   1923   // When compiling, the code pointer will get set later when the image is loaded.
   1924   const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   1925   if (IsAotCompiler()) {
   1926     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   1927   } else {
   1928     method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
   1929   }
   1930   // Create empty conflict table.
   1931   method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count*/0u, linear_alloc),
   1932                               pointer_size);
   1933   return method;
   1934 }
   1935 
   1936 void Runtime::SetImtConflictMethod(ArtMethod* method) {
   1937   CHECK(method != nullptr);
   1938   CHECK(method->IsRuntimeMethod());
   1939   imt_conflict_method_ = method;
   1940 }
   1941 
   1942 ArtMethod* Runtime::CreateResolutionMethod() {
   1943   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
   1944   // When compiling, the code pointer will get set later when the image is loaded.
   1945   if (IsAotCompiler()) {
   1946     PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   1947     method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   1948   } else {
   1949     method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
   1950   }
   1951   return method;
   1952 }
   1953 
   1954 ArtMethod* Runtime::CreateCalleeSaveMethod() {
   1955   auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
   1956   PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
   1957   method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
   1958   DCHECK_NE(instruction_set_, kNone);
   1959   DCHECK(method->IsRuntimeMethod());
   1960   return method;
   1961 }
   1962 
   1963 void Runtime::DisallowNewSystemWeaks() {
   1964   CHECK(!kUseReadBarrier);
   1965   monitor_list_->DisallowNewMonitors();
   1966   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
   1967   java_vm_->DisallowNewWeakGlobals();
   1968   heap_->DisallowNewAllocationRecords();
   1969   if (GetJit() != nullptr) {
   1970     GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
   1971   }
   1972 
   1973   // All other generic system-weak holders.
   1974   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   1975     holder->Disallow();
   1976   }
   1977 }
   1978 
   1979 void Runtime::AllowNewSystemWeaks() {
   1980   CHECK(!kUseReadBarrier);
   1981   monitor_list_->AllowNewMonitors();
   1982   intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal);  // TODO: Do this in the sweeping.
   1983   java_vm_->AllowNewWeakGlobals();
   1984   heap_->AllowNewAllocationRecords();
   1985   if (GetJit() != nullptr) {
   1986     GetJit()->GetCodeCache()->AllowInlineCacheAccess();
   1987   }
   1988 
   1989   // All other generic system-weak holders.
   1990   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   1991     holder->Allow();
   1992   }
   1993 }
   1994 
   1995 void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
   1996   // This is used for the read barrier case that uses the thread-local
   1997   // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
   1998   // (see ThreadList::RunCheckpoint).
   1999   monitor_list_->BroadcastForNewMonitors();
   2000   intern_table_->BroadcastForNewInterns();
   2001   java_vm_->BroadcastForNewWeakGlobals();
   2002   heap_->BroadcastForNewAllocationRecords();
   2003   if (GetJit() != nullptr) {
   2004     GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
   2005   }
   2006 
   2007   // All other generic system-weak holders.
   2008   for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
   2009     holder->Broadcast(broadcast_for_checkpoint);
   2010   }
   2011 }
   2012 
   2013 void Runtime::SetInstructionSet(InstructionSet instruction_set) {
   2014   instruction_set_ = instruction_set;
   2015   if ((instruction_set_ == kThumb2) || (instruction_set_ == kArm)) {
   2016     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2017       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2018       callee_save_method_frame_infos_[i] = arm::ArmCalleeSaveMethodFrameInfo(type);
   2019     }
   2020   } else if (instruction_set_ == kMips) {
   2021     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2022       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2023       callee_save_method_frame_infos_[i] = mips::MipsCalleeSaveMethodFrameInfo(type);
   2024     }
   2025   } else if (instruction_set_ == kMips64) {
   2026     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2027       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2028       callee_save_method_frame_infos_[i] = mips64::Mips64CalleeSaveMethodFrameInfo(type);
   2029     }
   2030   } else if (instruction_set_ == kX86) {
   2031     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2032       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2033       callee_save_method_frame_infos_[i] = x86::X86CalleeSaveMethodFrameInfo(type);
   2034     }
   2035   } else if (instruction_set_ == kX86_64) {
   2036     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2037       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2038       callee_save_method_frame_infos_[i] = x86_64::X86_64CalleeSaveMethodFrameInfo(type);
   2039     }
   2040   } else if (instruction_set_ == kArm64) {
   2041     for (int i = 0; i != kCalleeSaveSize; ++i) {
   2042       CalleeSaveType type = static_cast<CalleeSaveType>(i);
   2043       callee_save_method_frame_infos_[i] = arm64::Arm64CalleeSaveMethodFrameInfo(type);
   2044     }
   2045   } else {
   2046     UNIMPLEMENTED(FATAL) << instruction_set_;
   2047   }
   2048 }
   2049 
   2050 void Runtime::ClearInstructionSet() {
   2051   instruction_set_ = InstructionSet::kNone;
   2052 }
   2053 
   2054 void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
   2055   DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
   2056   CHECK(method != nullptr);
   2057   callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
   2058 }
   2059 
   2060 void Runtime::ClearCalleeSaveMethods() {
   2061   for (size_t i = 0; i < kCalleeSaveSize; ++i) {
   2062     callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
   2063   }
   2064 }
   2065 
   2066 void Runtime::RegisterAppInfo(const std::vector<std::string>& code_paths,
   2067                               const std::string& profile_output_filename) {
   2068   if (jit_.get() == nullptr) {
   2069     // We are not JITing. Nothing to do.
   2070     return;
   2071   }
   2072 
   2073   VLOG(profiler) << "Register app with " << profile_output_filename
   2074       << " " << android::base::Join(code_paths, ':');
   2075 
   2076   if (profile_output_filename.empty()) {
   2077     LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
   2078     return;
   2079   }
   2080   if (!FileExists(profile_output_filename)) {
   2081     LOG(WARNING) << "JIT profile information will not be recorded: profile file does not exits.";
   2082     return;
   2083   }
   2084   if (code_paths.empty()) {
   2085     LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
   2086     return;
   2087   }
   2088 
   2089   jit_->StartProfileSaver(profile_output_filename, code_paths);
   2090 }
   2091 
   2092 // Transaction support.
   2093 void Runtime::EnterTransactionMode(Transaction* transaction) {
   2094   DCHECK(IsAotCompiler());
   2095   DCHECK(transaction != nullptr);
   2096   DCHECK(!IsActiveTransaction());
   2097   preinitialization_transaction_ = transaction;
   2098 }
   2099 
   2100 void Runtime::ExitTransactionMode() {
   2101   DCHECK(IsAotCompiler());
   2102   DCHECK(IsActiveTransaction());
   2103   preinitialization_transaction_ = nullptr;
   2104 }
   2105 
   2106 bool Runtime::IsTransactionAborted() const {
   2107   if (!IsActiveTransaction()) {
   2108     return false;
   2109   } else {
   2110     DCHECK(IsAotCompiler());
   2111     return preinitialization_transaction_->IsAborted();
   2112   }
   2113 }
   2114 
   2115 void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
   2116   DCHECK(IsAotCompiler());
   2117   DCHECK(IsActiveTransaction());
   2118   // Throwing an exception may cause its class initialization. If we mark the transaction
   2119   // aborted before that, we may warn with a false alarm. Throwing the exception before
   2120   // marking the transaction aborted avoids that.
   2121   preinitialization_transaction_->ThrowAbortError(self, &abort_message);
   2122   preinitialization_transaction_->Abort(abort_message);
   2123 }
   2124 
   2125 void Runtime::ThrowTransactionAbortError(Thread* self) {
   2126   DCHECK(IsAotCompiler());
   2127   DCHECK(IsActiveTransaction());
   2128   // Passing nullptr means we rethrow an exception with the earlier transaction abort message.
   2129   preinitialization_transaction_->ThrowAbortError(self, nullptr);
   2130 }
   2131 
   2132 void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, MemberOffset field_offset,
   2133                                       uint8_t value, bool is_volatile) const {
   2134   DCHECK(IsAotCompiler());
   2135   DCHECK(IsActiveTransaction());
   2136   preinitialization_transaction_->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
   2137 }
   2138 
   2139 void Runtime::RecordWriteFieldByte(mirror::Object* obj, MemberOffset field_offset,
   2140                                    int8_t value, bool is_volatile) const {
   2141   DCHECK(IsAotCompiler());
   2142   DCHECK(IsActiveTransaction());
   2143   preinitialization_transaction_->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
   2144 }
   2145 
   2146 void Runtime::RecordWriteFieldChar(mirror::Object* obj, MemberOffset field_offset,
   2147                                    uint16_t value, bool is_volatile) const {
   2148   DCHECK(IsAotCompiler());
   2149   DCHECK(IsActiveTransaction());
   2150   preinitialization_transaction_->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
   2151 }
   2152 
   2153 void Runtime::RecordWriteFieldShort(mirror::Object* obj, MemberOffset field_offset,
   2154                                     int16_t value, bool is_volatile) const {
   2155   DCHECK(IsAotCompiler());
   2156   DCHECK(IsActiveTransaction());
   2157   preinitialization_transaction_->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
   2158 }
   2159 
   2160 void Runtime::RecordWriteField32(mirror::Object* obj, MemberOffset field_offset,
   2161                                  uint32_t value, bool is_volatile) const {
   2162   DCHECK(IsAotCompiler());
   2163   DCHECK(IsActiveTransaction());
   2164   preinitialization_transaction_->RecordWriteField32(obj, field_offset, value, is_volatile);
   2165 }
   2166 
   2167 void Runtime::RecordWriteField64(mirror::Object* obj, MemberOffset field_offset,
   2168                                  uint64_t value, bool is_volatile) const {
   2169   DCHECK(IsAotCompiler());
   2170   DCHECK(IsActiveTransaction());
   2171   preinitialization_transaction_->RecordWriteField64(obj, field_offset, value, is_volatile);
   2172 }
   2173 
   2174 void Runtime::RecordWriteFieldReference(mirror::Object* obj,
   2175                                         MemberOffset field_offset,
   2176                                         ObjPtr<mirror::Object> value,
   2177                                         bool is_volatile) const {
   2178   DCHECK(IsAotCompiler());
   2179   DCHECK(IsActiveTransaction());
   2180   preinitialization_transaction_->RecordWriteFieldReference(obj,
   2181                                                             field_offset,
   2182                                                             value.Ptr(),
   2183                                                             is_volatile);
   2184 }
   2185 
   2186 void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) const {
   2187   DCHECK(IsAotCompiler());
   2188   DCHECK(IsActiveTransaction());
   2189   preinitialization_transaction_->RecordWriteArray(array, index, value);
   2190 }
   2191 
   2192 void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) const {
   2193   DCHECK(IsAotCompiler());
   2194   DCHECK(IsActiveTransaction());
   2195   preinitialization_transaction_->RecordStrongStringInsertion(s);
   2196 }
   2197 
   2198 void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) const {
   2199   DCHECK(IsAotCompiler());
   2200   DCHECK(IsActiveTransaction());
   2201   preinitialization_transaction_->RecordWeakStringInsertion(s);
   2202 }
   2203 
   2204 void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) const {
   2205   DCHECK(IsAotCompiler());
   2206   DCHECK(IsActiveTransaction());
   2207   preinitialization_transaction_->RecordStrongStringRemoval(s);
   2208 }
   2209 
   2210 void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) const {
   2211   DCHECK(IsAotCompiler());
   2212   DCHECK(IsActiveTransaction());
   2213   preinitialization_transaction_->RecordWeakStringRemoval(s);
   2214 }
   2215 
   2216 void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
   2217                                   dex::StringIndex string_idx) const {
   2218   DCHECK(IsAotCompiler());
   2219   DCHECK(IsActiveTransaction());
   2220   preinitialization_transaction_->RecordResolveString(dex_cache, string_idx);
   2221 }
   2222 
   2223 void Runtime::SetFaultMessage(const std::string& message) {
   2224   MutexLock mu(Thread::Current(), fault_message_lock_);
   2225   fault_message_ = message;
   2226 }
   2227 
   2228 void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
   2229     const {
   2230   if (GetInstrumentation()->InterpretOnly()) {
   2231     argv->push_back("--compiler-filter=quicken");
   2232   }
   2233 
   2234   // Make the dex2oat instruction set match that of the launching runtime. If we have multiple
   2235   // architecture support, dex2oat may be compiled as a different instruction-set than that
   2236   // currently being executed.
   2237   std::string instruction_set("--instruction-set=");
   2238   instruction_set += GetInstructionSetString(kRuntimeISA);
   2239   argv->push_back(instruction_set);
   2240 
   2241   std::unique_ptr<const InstructionSetFeatures> features(InstructionSetFeatures::FromCppDefines());
   2242   std::string feature_string("--instruction-set-features=");
   2243   feature_string += features->GetFeatureString();
   2244   argv->push_back(feature_string);
   2245 }
   2246 
   2247 void Runtime::CreateJit() {
   2248   CHECK(!IsAotCompiler());
   2249   if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
   2250     DCHECK(!jit_options_->UseJitCompilation());
   2251   }
   2252   std::string error_msg;
   2253   jit_.reset(jit::Jit::Create(jit_options_.get(), &error_msg));
   2254   if (jit_.get() == nullptr) {
   2255     LOG(WARNING) << "Failed to create JIT " << error_msg;
   2256     return;
   2257   }
   2258 
   2259   // In case we have a profile path passed as a command line argument,
   2260   // register the current class path for profiling now. Note that we cannot do
   2261   // this before we create the JIT and having it here is the most convenient way.
   2262   // This is used when testing profiles with dalvikvm command as there is no
   2263   // framework to register the dex files for profiling.
   2264   if (jit_options_->GetSaveProfilingInfo() &&
   2265       !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
   2266     std::vector<std::string> dex_filenames;
   2267     Split(class_path_string_, ':', &dex_filenames);
   2268     RegisterAppInfo(dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath());
   2269   }
   2270 }
   2271 
   2272 bool Runtime::CanRelocate() const {
   2273   return !IsAotCompiler() || compiler_callbacks_->IsRelocationPossible();
   2274 }
   2275 
   2276 bool Runtime::IsCompilingBootImage() const {
   2277   return IsCompiler() && compiler_callbacks_->IsBootImage();
   2278 }
   2279 
   2280 void Runtime::SetResolutionMethod(ArtMethod* method) {
   2281   CHECK(method != nullptr);
   2282   CHECK(method->IsRuntimeMethod()) << method;
   2283   resolution_method_ = method;
   2284 }
   2285 
   2286 void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
   2287   CHECK(method != nullptr);
   2288   CHECK(method->IsRuntimeMethod());
   2289   imt_unimplemented_method_ = method;
   2290 }
   2291 
   2292 void Runtime::FixupConflictTables() {
   2293   // We can only do this after the class linker is created.
   2294   const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
   2295   if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
   2296     imt_unimplemented_method_->SetImtConflictTable(
   2297         ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
   2298         pointer_size);
   2299   }
   2300   if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
   2301     imt_conflict_method_->SetImtConflictTable(
   2302           ClassLinker::CreateImtConflictTable(/*count*/0u, GetLinearAlloc(), pointer_size),
   2303           pointer_size);
   2304   }
   2305 }
   2306 
   2307 bool Runtime::IsVerificationEnabled() const {
   2308   return verify_ == verifier::VerifyMode::kEnable ||
   2309       verify_ == verifier::VerifyMode::kSoftFail;
   2310 }
   2311 
   2312 bool Runtime::IsVerificationSoftFail() const {
   2313   return verify_ == verifier::VerifyMode::kSoftFail;
   2314 }
   2315 
   2316 bool Runtime::IsAsyncDeoptimizeable(uintptr_t code) const {
   2317   // We only support async deopt (ie the compiled code is not explicitly asking for
   2318   // deopt, but something else like the debugger) in debuggable JIT code.
   2319   // We could look at the oat file where `code` is being defined,
   2320   // and check whether it's been compiled debuggable, but we decided to
   2321   // only rely on the JIT for debuggable apps.
   2322   return IsJavaDebuggable() &&
   2323       GetJit() != nullptr &&
   2324       GetJit()->GetCodeCache()->ContainsPc(reinterpret_cast<const void*>(code));
   2325 }
   2326 
   2327 LinearAlloc* Runtime::CreateLinearAlloc() {
   2328   // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
   2329   // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
   2330   // when we have 64 bit ArtMethod pointers.
   2331   return (IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA))
   2332       ? new LinearAlloc(low_4gb_arena_pool_.get())
   2333       : new LinearAlloc(arena_pool_.get());
   2334 }
   2335 
   2336 double Runtime::GetHashTableMinLoadFactor() const {
   2337   return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
   2338 }
   2339 
   2340 double Runtime::GetHashTableMaxLoadFactor() const {
   2341   return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
   2342 }
   2343 
   2344 void Runtime::UpdateProcessState(ProcessState process_state) {
   2345   ProcessState old_process_state = process_state_;
   2346   process_state_ = process_state;
   2347   GetHeap()->UpdateProcessState(old_process_state, process_state);
   2348 }
   2349 
   2350 void Runtime::RegisterSensitiveThread() const {
   2351   Thread::SetJitSensitiveThread();
   2352 }
   2353 
   2354 // Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
   2355 bool Runtime::UseJitCompilation() const {
   2356   return (jit_ != nullptr) && jit_->UseJitCompilation();
   2357 }
   2358 
   2359 void Runtime::EnvSnapshot::TakeSnapshot() {
   2360   char** env = GetEnviron();
   2361   for (size_t i = 0; env[i] != nullptr; ++i) {
   2362     name_value_pairs_.emplace_back(new std::string(env[i]));
   2363   }
   2364   // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
   2365   // for quick use by GetSnapshot.  This avoids allocation and copying cost at Exec.
   2366   c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
   2367   for (size_t i = 0; env[i] != nullptr; ++i) {
   2368     c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
   2369   }
   2370   c_env_vector_[name_value_pairs_.size()] = nullptr;
   2371 }
   2372 
   2373 char** Runtime::EnvSnapshot::GetSnapshot() const {
   2374   return c_env_vector_.get();
   2375 }
   2376 
   2377 void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
   2378   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   2379                                   gc::kGcCauseAddRemoveSystemWeakHolder,
   2380                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
   2381   // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
   2382   //       a critical section.
   2383   system_weak_holders_.push_back(holder);
   2384 }
   2385 
   2386 void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
   2387   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   2388                                   gc::kGcCauseAddRemoveSystemWeakHolder,
   2389                                   gc::kCollectorTypeAddRemoveSystemWeakHolder);
   2390   auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
   2391   if (it != system_weak_holders_.end()) {
   2392     system_weak_holders_.erase(it);
   2393   }
   2394 }
   2395 
   2396 RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
   2397   return callbacks_.get();
   2398 }
   2399 
   2400 // Used to patch boot image method entry point to interpreter bridge.
   2401 class UpdateEntryPointsClassVisitor : public ClassVisitor {
   2402  public:
   2403   explicit UpdateEntryPointsClassVisitor(instrumentation::Instrumentation* instrumentation)
   2404       : instrumentation_(instrumentation) {}
   2405 
   2406   bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES(Locks::mutator_lock_) {
   2407     auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
   2408     for (auto& m : klass->GetMethods(pointer_size)) {
   2409       const void* code = m.GetEntryPointFromQuickCompiledCode();
   2410       if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
   2411           !m.IsNative() &&
   2412           !m.IsProxyMethod()) {
   2413         instrumentation_->UpdateMethodsCodeForJavaDebuggable(&m, GetQuickToInterpreterBridge());
   2414       }
   2415     }
   2416     return true;
   2417   }
   2418 
   2419  private:
   2420   instrumentation::Instrumentation* const instrumentation_;
   2421 };
   2422 
   2423 void Runtime::SetJavaDebuggable(bool value) {
   2424   is_java_debuggable_ = value;
   2425   // Do not call DeoptimizeBootImage just yet, the runtime may still be starting up.
   2426 }
   2427 
   2428 void Runtime::DeoptimizeBootImage() {
   2429   // If we've already started and we are setting this runtime to debuggable,
   2430   // we patch entry points of methods in boot image to interpreter bridge, as
   2431   // boot image code may be AOT compiled as not debuggable.
   2432   if (!GetInstrumentation()->IsForcedInterpretOnly()) {
   2433     ScopedObjectAccess soa(Thread::Current());
   2434     UpdateEntryPointsClassVisitor visitor(GetInstrumentation());
   2435     GetClassLinker()->VisitClasses(&visitor);
   2436   }
   2437 }
   2438 
   2439 }  // namespace art
   2440