Home | History | Annotate | Download | only in sensors
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /* this implements a sensors hardware library for the Android emulator.
     18  * the following code should be built as a shared library that will be
     19  * placed into /system/lib/hw/sensors.goldfish.so
     20  *
     21  * it will be loaded by the code in hardware/libhardware/hardware.c
     22  * which is itself called from com_android_server_SensorService.cpp
     23  */
     24 
     25 
     26 /* we connect with the emulator through the "sensors" qemud service
     27  */
     28 #define  SENSORS_SERVICE_NAME "sensors"
     29 
     30 #define LOG_TAG "QemuSensors"
     31 
     32 #include <unistd.h>
     33 #include <fcntl.h>
     34 #include <errno.h>
     35 #include <string.h>
     36 #include <log/log.h>
     37 #include <cutils/sockets.h>
     38 #include <hardware/sensors.h>
     39 
     40 #if 0
     41 #define  D(...)  ALOGD(__VA_ARGS__)
     42 #else
     43 #define  D(...)  ((void)0)
     44 #endif
     45 
     46 #define  E(...)  ALOGE(__VA_ARGS__)
     47 
     48 #include "qemud.h"
     49 
     50 /** SENSOR IDS AND NAMES
     51  **/
     52 
     53 #define MAX_NUM_SENSORS 10
     54 
     55 #define SUPPORTED_SENSORS  ((1<<MAX_NUM_SENSORS)-1)
     56 
     57 #define  ID_BASE                        SENSORS_HANDLE_BASE
     58 #define  ID_ACCELERATION                (ID_BASE+0)
     59 #define  ID_GYROSCOPE                   (ID_BASE+1)
     60 #define  ID_MAGNETIC_FIELD              (ID_BASE+2)
     61 #define  ID_ORIENTATION                 (ID_BASE+3)
     62 #define  ID_TEMPERATURE                 (ID_BASE+4)
     63 #define  ID_PROXIMITY                   (ID_BASE+5)
     64 #define  ID_LIGHT                       (ID_BASE+6)
     65 #define  ID_PRESSURE                    (ID_BASE+7)
     66 #define  ID_HUMIDITY                    (ID_BASE+8)
     67 #define  ID_MAGNETIC_FIELD_UNCALIBRATED (ID_BASE+9)
     68 
     69 #define  SENSORS_ACCELERATION                 (1 << ID_ACCELERATION)
     70 #define  SENSORS_GYROSCOPE                    (1 << ID_GYROSCOPE)
     71 #define  SENSORS_MAGNETIC_FIELD               (1 << ID_MAGNETIC_FIELD)
     72 #define  SENSORS_ORIENTATION                  (1 << ID_ORIENTATION)
     73 #define  SENSORS_TEMPERATURE                  (1 << ID_TEMPERATURE)
     74 #define  SENSORS_PROXIMITY                    (1 << ID_PROXIMITY)
     75 #define  SENSORS_LIGHT                        (1 << ID_LIGHT)
     76 #define  SENSORS_PRESSURE                     (1 << ID_PRESSURE)
     77 #define  SENSORS_HUMIDITY                     (1 << ID_HUMIDITY)
     78 #define  SENSORS_MAGNETIC_FIELD_UNCALIBRATED  (1 << ID_MAGNETIC_FIELD_UNCALIBRATED)
     79 
     80 #define  ID_CHECK(x)  ((unsigned)((x) - ID_BASE) < MAX_NUM_SENSORS)
     81 
     82 #define  SENSORS_LIST  \
     83     SENSOR_(ACCELERATION,"acceleration") \
     84     SENSOR_(GYROSCOPE,"gyroscope") \
     85     SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
     86     SENSOR_(ORIENTATION,"orientation") \
     87     SENSOR_(TEMPERATURE,"temperature") \
     88     SENSOR_(PROXIMITY,"proximity") \
     89     SENSOR_(LIGHT, "light") \
     90     SENSOR_(PRESSURE, "pressure") \
     91     SENSOR_(HUMIDITY, "humidity") \
     92     SENSOR_(MAGNETIC_FIELD_UNCALIBRATED,"magnetic-field-uncalibrated") \
     93 
     94 static const struct {
     95     const char*  name;
     96     int          id; } _sensorIds[MAX_NUM_SENSORS] =
     97 {
     98 #define SENSOR_(x,y)  { y, ID_##x },
     99     SENSORS_LIST
    100 #undef  SENSOR_
    101 };
    102 
    103 static const char*
    104 _sensorIdToName( int  id )
    105 {
    106     int  nn;
    107     for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
    108         if (id == _sensorIds[nn].id)
    109             return _sensorIds[nn].name;
    110     return "<UNKNOWN>";
    111 }
    112 
    113 static int
    114 _sensorIdFromName( const char*  name )
    115 {
    116     int  nn;
    117 
    118     if (name == NULL)
    119         return -1;
    120 
    121     for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
    122         if (!strcmp(name, _sensorIds[nn].name))
    123             return _sensorIds[nn].id;
    124 
    125     return -1;
    126 }
    127 
    128 /* return the current time in nanoseconds */
    129 static int64_t now_ns(void) {
    130     struct timespec  ts;
    131     clock_gettime(CLOCK_MONOTONIC, &ts);
    132     return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
    133 }
    134 
    135 /** SENSORS POLL DEVICE
    136  **
    137  ** This one is used to read sensor data from the hardware.
    138  ** We implement this by simply reading the data from the
    139  ** emulator through the QEMUD channel.
    140  **/
    141 
    142 typedef struct SensorDevice {
    143     struct sensors_poll_device_1  device;
    144     sensors_event_t               sensors[MAX_NUM_SENSORS];
    145     uint32_t                      pendingSensors;
    146     int64_t                       timeStart;
    147     int64_t                       timeOffset;
    148     uint32_t                      active_sensors;
    149     int                           fd;
    150     pthread_mutex_t               lock;
    151 } SensorDevice;
    152 
    153 /* Grab the file descriptor to the emulator's sensors service pipe.
    154  * This function returns a file descriptor on success, or -errno on
    155  * failure, and assumes the SensorDevice instance's lock is held.
    156  *
    157  * This is needed because set_delay(), poll() and activate() can be called
    158  * from different threads, and poll() is blocking.
    159  *
    160  * Note that the emulator's sensors service creates a new client for each
    161  * connection through qemud_channel_open(), where each client has its own
    162  * delay and set of activated sensors. This precludes calling
    163  * qemud_channel_open() on each request, because a typical emulated system
    164  * will do something like:
    165  *
    166  * 1) On a first thread, de-activate() all sensors first, then call poll(),
    167  *    which results in the thread blocking.
    168  *
    169  * 2) On a second thread, slightly later, call set_delay() then activate()
    170  *    to enable the acceleration sensor.
    171  *
    172  * The system expects this to unblock the first thread which will receive
    173  * new sensor events after the activate() call in 2).
    174  *
    175  * This cannot work if both threads don't use the same connection.
    176  *
    177  * TODO(digit): This protocol is brittle, implement another control channel
    178  *              for set_delay()/activate()/batch() when supporting HAL 1.3
    179  */
    180 static int sensor_device_get_fd_locked(SensorDevice* dev) {
    181     /* Create connection to service on first call */
    182     if (dev->fd < 0) {
    183         dev->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
    184         if (dev->fd < 0) {
    185             int ret = -errno;
    186             E("%s: Could not open connection to service: %s", __FUNCTION__,
    187                 strerror(-ret));
    188             return ret;
    189         }
    190     }
    191     return dev->fd;
    192 }
    193 
    194 /* Send a command to the sensors virtual device. |dev| is a device instance and
    195  * |cmd| is a zero-terminated command string. Return 0 on success, or -errno
    196  * on failure. */
    197 static int sensor_device_send_command_locked(SensorDevice* dev,
    198                                              const char* cmd) {
    199     int fd = sensor_device_get_fd_locked(dev);
    200     if (fd < 0) {
    201         return fd;
    202     }
    203 
    204     int ret = 0;
    205     if (qemud_channel_send(fd, cmd, strlen(cmd)) < 0) {
    206         ret = -errno;
    207         E("%s(fd=%d): ERROR: %s", __FUNCTION__, fd, strerror(errno));
    208     }
    209     return ret;
    210 }
    211 
    212 /* Pick up one pending sensor event. On success, this returns the sensor
    213  * id, and sets |*event| accordingly. On failure, i.e. if there are no
    214  * pending events, return -EINVAL.
    215  *
    216  * Note: The device's lock must be acquired.
    217  */
    218 static int sensor_device_pick_pending_event_locked(SensorDevice* d,
    219                                                    sensors_event_t*  event)
    220 {
    221     uint32_t mask = SUPPORTED_SENSORS & d->pendingSensors;
    222     if (mask) {
    223         uint32_t i = 31 - __builtin_clz(mask);
    224         d->pendingSensors &= ~(1U << i);
    225         // Copy the structure
    226         *event = d->sensors[i];
    227 
    228         if (d->sensors[i].type == SENSOR_TYPE_META_DATA) {
    229             // sensor_device_poll_event_locked() will leave
    230             // the meta-data in place until we have it.
    231             // Set |type| to something other than META_DATA
    232             // so sensor_device_poll_event_locked() can
    233             // continue.
    234             d->sensors[i].type = SENSOR_TYPE_META_DATA + 1;
    235         } else {
    236             event->sensor = i;
    237             event->version = sizeof(*event);
    238         }
    239 
    240         D("%s: %d [%f, %f, %f]", __FUNCTION__,
    241                 i,
    242                 event->data[0],
    243                 event->data[1],
    244                 event->data[2]);
    245         return i;
    246     }
    247     E("No sensor to return!!! pendingSensors=0x%08x", d->pendingSensors);
    248     // we may end-up in a busy loop, slow things down, just in case.
    249     usleep(1000);
    250     return -EINVAL;
    251 }
    252 
    253 /* Block until new sensor events are reported by the emulator, or if a
    254  * 'wake' command is received through the service. On succes, return 0
    255  * and updates the |pendingEvents| and |sensors| fields of |dev|.
    256  * On failure, return -errno.
    257  *
    258  * Note: The device lock must be acquired when calling this function, and
    259  *       will still be held on return. However, the function releases the
    260  *       lock temporarily during the blocking wait.
    261  */
    262 static int sensor_device_poll_event_locked(SensorDevice* dev)
    263 {
    264     D("%s: dev=%p", __FUNCTION__, dev);
    265 
    266     int fd = sensor_device_get_fd_locked(dev);
    267     if (fd < 0) {
    268         E("%s: Could not get pipe channel: %s", __FUNCTION__, strerror(-fd));
    269         return fd;
    270     }
    271 
    272     // Accumulate pending events into |events| and |new_sensors| mask
    273     // until a 'sync' or 'wake' command is received. This also simplifies the
    274     // code a bit.
    275     uint32_t new_sensors = 0U;
    276     sensors_event_t* events = dev->sensors;
    277 
    278     int64_t event_time = -1;
    279     int ret = 0;
    280 
    281     for (;;) {
    282         /* Release the lock since we're going to block on recv() */
    283         pthread_mutex_unlock(&dev->lock);
    284 
    285         /* read the next event */
    286         char buff[256];
    287         int len = qemud_channel_recv(fd, buff, sizeof(buff) - 1U);
    288         /* re-acquire the lock to modify the device state. */
    289         pthread_mutex_lock(&dev->lock);
    290 
    291         if (len < 0) {
    292             ret = -errno;
    293             E("%s(fd=%d): Could not receive event data len=%d, errno=%d: %s",
    294               __FUNCTION__, fd, len, errno, strerror(errno));
    295             break;
    296         }
    297         buff[len] = 0;
    298         D("%s(fd=%d): received [%s]", __FUNCTION__, fd, buff);
    299 
    300 
    301         /* "wake" is sent from the emulator to exit this loop. */
    302         /* TODO(digit): Is it still needed? */
    303         if (!strcmp((const char*)buff, "wake")) {
    304             ret = 0x7FFFFFFF;
    305             break;
    306         }
    307 
    308         float params[3];
    309 
    310         // If the existing entry for this sensor is META_DATA,
    311         // do not overwrite it. We can resume saving sensor
    312         // values after that meta data has been received.
    313 
    314         /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
    315         if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2)
    316                 == 3) {
    317             new_sensors |= SENSORS_ACCELERATION;
    318             if (events[ID_ACCELERATION].type == SENSOR_TYPE_META_DATA) continue;
    319             events[ID_ACCELERATION].acceleration.x = params[0];
    320             events[ID_ACCELERATION].acceleration.y = params[1];
    321             events[ID_ACCELERATION].acceleration.z = params[2];
    322             events[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
    323             continue;
    324         }
    325 
    326         /* "gyroscope:<x>:<y>:<z>" corresponds to a gyroscope event */
    327         if (sscanf(buff, "gyroscope:%g:%g:%g", params+0, params+1, params+2)
    328                 == 3) {
    329             new_sensors |= SENSORS_GYROSCOPE;
    330             if (events[ID_GYROSCOPE].type == SENSOR_TYPE_META_DATA) continue;
    331             events[ID_GYROSCOPE].gyro.x = params[0];
    332             events[ID_GYROSCOPE].gyro.y = params[1];
    333             events[ID_GYROSCOPE].gyro.z = params[2];
    334             events[ID_GYROSCOPE].type = SENSOR_TYPE_GYROSCOPE;
    335             continue;
    336         }
    337 
    338         /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation
    339          * changes */
    340         if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2)
    341                 == 3) {
    342             new_sensors |= SENSORS_ORIENTATION;
    343             if (events[ID_ORIENTATION].type == SENSOR_TYPE_META_DATA) continue;
    344             events[ID_ORIENTATION].orientation.azimuth = params[0];
    345             events[ID_ORIENTATION].orientation.pitch   = params[1];
    346             events[ID_ORIENTATION].orientation.roll    = params[2];
    347             events[ID_ORIENTATION].orientation.status  =
    348                     SENSOR_STATUS_ACCURACY_HIGH;
    349             events[ID_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
    350             continue;
    351         }
    352 
    353         /* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic
    354          * field */
    355         if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2)
    356                 == 3) {
    357             new_sensors |= SENSORS_MAGNETIC_FIELD;
    358             if (events[ID_MAGNETIC_FIELD].type == SENSOR_TYPE_META_DATA) continue;
    359             events[ID_MAGNETIC_FIELD].magnetic.x = params[0];
    360             events[ID_MAGNETIC_FIELD].magnetic.y = params[1];
    361             events[ID_MAGNETIC_FIELD].magnetic.z = params[2];
    362             events[ID_MAGNETIC_FIELD].magnetic.status =
    363                     SENSOR_STATUS_ACCURACY_HIGH;
    364             events[ID_MAGNETIC_FIELD].type = SENSOR_TYPE_MAGNETIC_FIELD;
    365             continue;
    366         }
    367 
    368         if (sscanf(buff, "magnetic-uncalibrated:%g:%g:%g", params+0, params+1, params+2)
    369                 == 3) {
    370             new_sensors |= SENSORS_MAGNETIC_FIELD_UNCALIBRATED;
    371             if (events[ID_MAGNETIC_FIELD_UNCALIBRATED].type == SENSOR_TYPE_META_DATA) continue;
    372             events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.x = params[0];
    373             events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.y = params[1];
    374             events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.z = params[2];
    375             events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.status =
    376                     SENSOR_STATUS_ACCURACY_HIGH;
    377             events[ID_MAGNETIC_FIELD_UNCALIBRATED].type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
    378             continue;
    379         }
    380 
    381         /* "temperature:<celsius>" */
    382         if (sscanf(buff, "temperature:%g", params+0) == 1) {
    383             new_sensors |= SENSORS_TEMPERATURE;
    384             if (events[ID_TEMPERATURE].type == SENSOR_TYPE_META_DATA) continue;
    385             events[ID_TEMPERATURE].temperature = params[0];
    386             events[ID_TEMPERATURE].type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
    387             continue;
    388         }
    389 
    390         /* "proximity:<value>" */
    391         if (sscanf(buff, "proximity:%g", params+0) == 1) {
    392             new_sensors |= SENSORS_PROXIMITY;
    393             if (events[ID_PROXIMITY].type == SENSOR_TYPE_META_DATA) continue;
    394             events[ID_PROXIMITY].distance = params[0];
    395             events[ID_PROXIMITY].type = SENSOR_TYPE_PROXIMITY;
    396             continue;
    397         }
    398         /* "light:<lux>" */
    399         if (sscanf(buff, "light:%g", params+0) == 1) {
    400             new_sensors |= SENSORS_LIGHT;
    401             if (events[ID_LIGHT].type == SENSOR_TYPE_META_DATA) continue;
    402             events[ID_LIGHT].light = params[0];
    403             events[ID_LIGHT].type = SENSOR_TYPE_LIGHT;
    404             continue;
    405         }
    406 
    407         /* "pressure:<hpa>" */
    408         if (sscanf(buff, "pressure:%g", params+0) == 1) {
    409             new_sensors |= SENSORS_PRESSURE;
    410             if (events[ID_PRESSURE].type == SENSOR_TYPE_META_DATA) continue;
    411             events[ID_PRESSURE].pressure = params[0];
    412             events[ID_PRESSURE].type = SENSOR_TYPE_PRESSURE;
    413             continue;
    414         }
    415 
    416         /* "humidity:<percent>" */
    417         if (sscanf(buff, "humidity:%g", params+0) == 1) {
    418             new_sensors |= SENSORS_HUMIDITY;
    419             if (events[ID_HUMIDITY].type == SENSOR_TYPE_META_DATA) continue;
    420             events[ID_HUMIDITY].relative_humidity = params[0];
    421             events[ID_HUMIDITY].type = SENSOR_TYPE_RELATIVE_HUMIDITY;
    422             continue;
    423         }
    424 
    425         /* "sync:<time>" is sent after a series of sensor events.
    426          * where 'time' is expressed in micro-seconds and corresponds
    427          * to the VM time when the real poll occured.
    428          */
    429         if (sscanf(buff, "sync:%lld", &event_time) == 1) {
    430             if (new_sensors) {
    431                 goto out;
    432             }
    433             D("huh ? sync without any sensor data ?");
    434             continue;
    435         }
    436         D("huh ? unsupported command");
    437     }
    438 out:
    439     if (new_sensors) {
    440         /* update the time of each new sensor event. */
    441         dev->pendingSensors |= new_sensors;
    442         int64_t t = (event_time < 0) ? 0 : event_time * 1000LL;
    443 
    444         /* Use the time at the first "sync:" as the base for later
    445          * time values.
    446          * CTS tests require sensors to return an event timestamp (sync) that is
    447          * strictly before the time of the event arrival. We don't actually have
    448          * a time syncronization protocol here, and the only data point is the
    449          * "sync:" timestamp - which is an emulator's timestamp of a clock that
    450          * is synced with the guest clock, and it only the timestamp after all
    451          * events were sent.
    452          * To make it work, let's compare the calculated timestamp with current
    453          * time and take the lower value - we don't believe in events from the
    454          * future anyway.
    455          */
    456         const int64_t now = now_ns();
    457 
    458         if (dev->timeStart == 0) {
    459             dev->timeStart  = now;
    460             dev->timeOffset = dev->timeStart - t;
    461         }
    462         t += dev->timeOffset;
    463         if (t > now) {
    464             t = now;
    465         }
    466 
    467         while (new_sensors) {
    468             uint32_t i = 31 - __builtin_clz(new_sensors);
    469             new_sensors &= ~(1U << i);
    470             dev->sensors[i].timestamp = t;
    471         }
    472     }
    473     return ret;
    474 }
    475 
    476 /** SENSORS POLL DEVICE FUNCTIONS **/
    477 
    478 static int sensor_device_close(struct hw_device_t* dev0)
    479 {
    480     SensorDevice* dev = (void*)dev0;
    481     // Assume that there are no other threads blocked on poll()
    482     if (dev->fd >= 0) {
    483         close(dev->fd);
    484         dev->fd = -1;
    485     }
    486     pthread_mutex_destroy(&dev->lock);
    487     free(dev);
    488     return 0;
    489 }
    490 
    491 /* Return an array of sensor data. This function blocks until there is sensor
    492  * related events to report. On success, it will write the events into the
    493  * |data| array, which contains |count| items. The function returns the number
    494  * of events written into the array, which shall never be greater than |count|.
    495  * On error, return -errno code.
    496  *
    497  * Note that according to the sensor HAL [1], it shall never return 0!
    498  *
    499  * [1] http://source.android.com/devices/sensors/hal-interface.html
    500  */
    501 static int sensor_device_poll(struct sensors_poll_device_t *dev0,
    502                               sensors_event_t* data, int count)
    503 {
    504     SensorDevice* dev = (void*)dev0;
    505     D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
    506 
    507     if (count <= 0) {
    508         return -EINVAL;
    509     }
    510 
    511     int result = 0;
    512     pthread_mutex_lock(&dev->lock);
    513     if (!dev->pendingSensors) {
    514         /* Block until there are pending events. Note that this releases
    515          * the lock during the blocking call, then re-acquires it before
    516          * returning. */
    517         int ret = sensor_device_poll_event_locked(dev);
    518         if (ret < 0) {
    519             result = ret;
    520             goto out;
    521         }
    522         if (!dev->pendingSensors) {
    523             /* 'wake' event received before any sensor data. */
    524             result = -EIO;
    525             goto out;
    526         }
    527     }
    528     /* Now read as many pending events as needed. */
    529     int i;
    530     for (i = 0; i < count; i++)  {
    531         if (!dev->pendingSensors) {
    532             break;
    533         }
    534         int ret = sensor_device_pick_pending_event_locked(dev, data);
    535         if (ret < 0) {
    536             if (!result) {
    537                 result = ret;
    538             }
    539             break;
    540         }
    541         data++;
    542         result++;
    543     }
    544 out:
    545     pthread_mutex_unlock(&dev->lock);
    546     D("%s: result=%d", __FUNCTION__, result);
    547     return result;
    548 }
    549 
    550 static int sensor_device_activate(struct sensors_poll_device_t *dev0,
    551                                   int handle,
    552                                   int enabled)
    553 {
    554     SensorDevice* dev = (void*)dev0;
    555 
    556     D("%s: handle=%s (%d) enabled=%d", __FUNCTION__,
    557         _sensorIdToName(handle), handle, enabled);
    558 
    559     /* Sanity check */
    560     if (!ID_CHECK(handle)) {
    561         E("%s: bad handle ID", __FUNCTION__);
    562         return -EINVAL;
    563     }
    564 
    565     /* Exit early if sensor is already enabled/disabled. */
    566     uint32_t mask = (1U << handle);
    567     uint32_t sensors = enabled ? mask : 0;
    568 
    569     pthread_mutex_lock(&dev->lock);
    570 
    571     uint32_t active = dev->active_sensors;
    572     uint32_t new_sensors = (active & ~mask) | (sensors & mask);
    573     uint32_t changed = active ^ new_sensors;
    574 
    575     int ret = 0;
    576     if (changed) {
    577         /* Send command to the emulator. */
    578         char command[64];
    579         snprintf(command,
    580                  sizeof command,
    581                  "set:%s:%d",
    582                  _sensorIdToName(handle),
    583                  enabled != 0);
    584 
    585         ret = sensor_device_send_command_locked(dev, command);
    586         if (ret < 0) {
    587             E("%s: when sending command errno=%d: %s", __FUNCTION__, -ret,
    588               strerror(-ret));
    589         } else {
    590             dev->active_sensors = new_sensors;
    591         }
    592     }
    593     pthread_mutex_unlock(&dev->lock);
    594     return ret;
    595 }
    596 
    597 static int sensor_device_default_flush(
    598         struct sensors_poll_device_1* dev0,
    599         int handle) {
    600 
    601     SensorDevice* dev = (void*)dev0;
    602 
    603     D("%s: handle=%s (%d)", __FUNCTION__,
    604         _sensorIdToName(handle), handle);
    605 
    606     /* Sanity check */
    607     if (!ID_CHECK(handle)) {
    608         E("%s: bad handle ID", __FUNCTION__);
    609         return -EINVAL;
    610     }
    611 
    612     pthread_mutex_lock(&dev->lock);
    613     dev->sensors[handle].version = META_DATA_VERSION;
    614     dev->sensors[handle].type = SENSOR_TYPE_META_DATA;
    615     dev->sensors[handle].sensor = 0;
    616     dev->sensors[handle].timestamp = 0;
    617     dev->sensors[handle].meta_data.sensor = handle;
    618     dev->sensors[handle].meta_data.what = META_DATA_FLUSH_COMPLETE;
    619     dev->pendingSensors |= (1U << handle);
    620     pthread_mutex_unlock(&dev->lock);
    621 
    622     return 0;
    623 }
    624 
    625 static int sensor_device_set_delay(struct sensors_poll_device_t *dev0,
    626                                    int handle __unused,
    627                                    int64_t ns)
    628 {
    629     SensorDevice* dev = (void*)dev0;
    630 
    631     int ms = (int)(ns / 1000000);
    632     D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
    633 
    634     char command[64];
    635     snprintf(command, sizeof command, "set-delay:%d", ms);
    636 
    637     pthread_mutex_lock(&dev->lock);
    638     int ret = sensor_device_send_command_locked(dev, command);
    639     pthread_mutex_unlock(&dev->lock);
    640     if (ret < 0) {
    641         E("%s: Could not send command: %s", __FUNCTION__, strerror(-ret));
    642     }
    643     return ret;
    644 }
    645 
    646 static int sensor_device_default_batch(
    647      struct sensors_poll_device_1* dev,
    648      int sensor_handle,
    649      int flags,
    650      int64_t sampling_period_ns,
    651      int64_t max_report_latency_ns) {
    652     return sensor_device_set_delay(dev, sensor_handle, sampling_period_ns);
    653 }
    654 
    655 /** MODULE REGISTRATION SUPPORT
    656  **
    657  ** This is required so that hardware/libhardware/hardware.c
    658  ** will dlopen() this library appropriately.
    659  **/
    660 
    661 /*
    662  * the following is the list of all supported sensors.
    663  * this table is used to build sSensorList declared below
    664  * according to which hardware sensors are reported as
    665  * available from the emulator (see get_sensors_list below)
    666  *
    667  * note: numerical values for maxRange/resolution/power for
    668  *       all sensors but light, pressure and humidity were
    669  *       taken from the reference AK8976A implementation
    670  */
    671 static const struct sensor_t sSensorListInit[] = {
    672         { .name       = "Goldfish 3-axis Accelerometer",
    673           .vendor     = "The Android Open Source Project",
    674           .version    = 1,
    675           .handle     = ID_ACCELERATION,
    676           .type       = SENSOR_TYPE_ACCELEROMETER,
    677           .maxRange   = 2.8f,
    678           .resolution = 1.0f/4032.0f,
    679           .power      = 3.0f,
    680           .minDelay   = 10000,
    681           .maxDelay   = 60 * 1000 * 1000,
    682           .fifoReservedEventCount = 0,
    683           .fifoMaxEventCount =   0,
    684           .stringType =         0,
    685           .requiredPermission = 0,
    686           .flags = SENSOR_FLAG_CONTINUOUS_MODE,
    687           .reserved   = {}
    688         },
    689 
    690         { .name       = "Goldfish 3-axis Gyroscope",
    691           .vendor     = "The Android Open Source Project",
    692           .version    = 1,
    693           .handle     = ID_GYROSCOPE,
    694           .type       = SENSOR_TYPE_GYROSCOPE,
    695           .maxRange   = 11.1111111,
    696           .resolution = 1.0f/1000.0f,
    697           .power      = 3.0f,
    698           .minDelay   = 10000,
    699           .maxDelay   = 60 * 1000 * 1000,
    700           .reserved   = {}
    701         },
    702 
    703         { .name       = "Goldfish 3-axis Magnetic field sensor",
    704           .vendor     = "The Android Open Source Project",
    705           .version    = 1,
    706           .handle     = ID_MAGNETIC_FIELD,
    707           .type       = SENSOR_TYPE_MAGNETIC_FIELD,
    708           .maxRange   = 2000.0f,
    709           .resolution = 1.0f,
    710           .power      = 6.7f,
    711           .minDelay   = 10000,
    712           .maxDelay   = 60 * 1000 * 1000,
    713           .fifoReservedEventCount = 0,
    714           .fifoMaxEventCount =   0,
    715           .stringType =         0,
    716           .requiredPermission = 0,
    717           .flags = SENSOR_FLAG_CONTINUOUS_MODE,
    718           .reserved   = {}
    719         },
    720 
    721         { .name       = "Goldfish Orientation sensor",
    722           .vendor     = "The Android Open Source Project",
    723           .version    = 1,
    724           .handle     = ID_ORIENTATION,
    725           .type       = SENSOR_TYPE_ORIENTATION,
    726           .maxRange   = 360.0f,
    727           .resolution = 1.0f,
    728           .power      = 9.7f,
    729           .minDelay   = 10000,
    730           .maxDelay   = 60 * 1000 * 1000,
    731           .fifoReservedEventCount = 0,
    732           .fifoMaxEventCount =   0,
    733           .stringType =         0,
    734           .requiredPermission = 0,
    735           .flags = SENSOR_FLAG_CONTINUOUS_MODE,
    736           .reserved   = {}
    737         },
    738 
    739         { .name       = "Goldfish Temperature sensor",
    740           .vendor     = "The Android Open Source Project",
    741           .version    = 1,
    742           .handle     = ID_TEMPERATURE,
    743           .type       = SENSOR_TYPE_AMBIENT_TEMPERATURE,
    744           .maxRange   = 80.0f,
    745           .resolution = 1.0f,
    746           .power      = 0.0f,
    747           .minDelay   = 10000,
    748           .maxDelay   = 60 * 1000 * 1000,
    749           .fifoReservedEventCount = 0,
    750           .fifoMaxEventCount =   0,
    751           .stringType =         0,
    752           .requiredPermission = 0,
    753           .flags = SENSOR_FLAG_CONTINUOUS_MODE,
    754           .reserved   = {}
    755         },
    756 
    757         { .name       = "Goldfish Proximity sensor",
    758           .vendor     = "The Android Open Source Project",
    759           .version    = 1,
    760           .handle     = ID_PROXIMITY,
    761           .type       = SENSOR_TYPE_PROXIMITY,
    762           .maxRange   = 1.0f,
    763           .resolution = 1.0f,
    764           .power      = 20.0f,
    765           .minDelay   = 10000,
    766           .maxDelay   = 60 * 1000 * 1000,
    767           .fifoReservedEventCount = 0,
    768           .fifoMaxEventCount =   0,
    769           .stringType =         0,
    770           .requiredPermission = 0,
    771           .flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE,
    772           .reserved   = {}
    773         },
    774 
    775         { .name       = "Goldfish Light sensor",
    776           .vendor     = "The Android Open Source Project",
    777           .version    = 1,
    778           .handle     = ID_LIGHT,
    779           .type       = SENSOR_TYPE_LIGHT,
    780           .maxRange   = 40000.0f,
    781           .resolution = 1.0f,
    782           .power      = 20.0f,
    783           .minDelay   = 10000,
    784           .maxDelay   = 60 * 1000 * 1000,
    785           .fifoReservedEventCount = 0,
    786           .fifoMaxEventCount =   0,
    787           .stringType =         0,
    788           .requiredPermission = 0,
    789           .flags = SENSOR_FLAG_ON_CHANGE_MODE,
    790           .reserved   = {}
    791         },
    792 
    793         { .name       = "Goldfish Pressure sensor",
    794           .vendor     = "The Android Open Source Project",
    795           .version    = 1,
    796           .handle     = ID_PRESSURE,
    797           .type       = SENSOR_TYPE_PRESSURE,
    798           .maxRange   = 800.0f,
    799           .resolution = 1.0f,
    800           .power      = 20.0f,
    801           .minDelay   = 10000,
    802           .maxDelay   = 60 * 1000 * 1000,
    803           .fifoReservedEventCount = 0,
    804           .fifoMaxEventCount =   0,
    805           .stringType =         0,
    806           .requiredPermission = 0,
    807           .flags = SENSOR_FLAG_CONTINUOUS_MODE,
    808           .reserved   = {}
    809         },
    810 
    811         { .name       = "Goldfish Humidity sensor",
    812           .vendor     = "The Android Open Source Project",
    813           .version    = 1,
    814           .handle     = ID_HUMIDITY,
    815           .type       = SENSOR_TYPE_RELATIVE_HUMIDITY,
    816           .maxRange   = 100.0f,
    817           .resolution = 1.0f,
    818           .power      = 20.0f,
    819           .minDelay   = 10000,
    820           .maxDelay   = 60 * 1000 * 1000,
    821           .fifoReservedEventCount = 0,
    822           .fifoMaxEventCount =   0,
    823           .stringType =         0,
    824           .requiredPermission = 0,
    825           .flags = SENSOR_FLAG_CONTINUOUS_MODE,
    826           .reserved   = {}
    827         },
    828 
    829         { .name       = "Goldfish 3-axis Magnetic field sensor (uncalibrated)",
    830           .vendor     = "The Android Open Source Project",
    831           .version    = 1,
    832           .handle     = ID_MAGNETIC_FIELD_UNCALIBRATED,
    833           .type       = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED,
    834           .maxRange   = 2000.0f,
    835           .resolution = 1.0f,
    836           .power      = 6.7f,
    837           .minDelay   = 10000,
    838           .maxDelay   = 60 * 1000 * 1000,
    839           .reserved   = {}
    840         },
    841 };
    842 
    843 static struct sensor_t  sSensorList[MAX_NUM_SENSORS];
    844 
    845 static int sensors__get_sensors_list(struct sensors_module_t* module __unused,
    846         struct sensor_t const** list)
    847 {
    848     int  fd = qemud_channel_open(SENSORS_SERVICE_NAME);
    849     char buffer[12];
    850     int  mask, nn, count;
    851     int  ret = 0;
    852 
    853     if (fd < 0) {
    854         E("%s: no qemud connection", __FUNCTION__);
    855         goto out;
    856     }
    857     ret = qemud_channel_send(fd, "list-sensors", -1);
    858     if (ret < 0) {
    859         E("%s: could not query sensor list: %s", __FUNCTION__,
    860           strerror(errno));
    861         goto out;
    862     }
    863     ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
    864     if (ret < 0) {
    865         E("%s: could not receive sensor list: %s", __FUNCTION__,
    866           strerror(errno));
    867         goto out;
    868     }
    869     buffer[ret] = 0;
    870 
    871     /* the result is a integer used as a mask for available sensors */
    872     mask  = atoi(buffer);
    873     count = 0;
    874     for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
    875         if (((1 << nn) & mask) == 0)
    876             continue;
    877         sSensorList[count++] = sSensorListInit[nn];
    878     }
    879     D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
    880     *list = sSensorList;
    881 
    882     ret = count;
    883 out:
    884     if (fd >= 0) {
    885         close(fd);
    886     }
    887     return ret;
    888 }
    889 
    890 
    891 static int
    892 open_sensors(const struct hw_module_t* module,
    893              const char*               name,
    894              struct hw_device_t*      *device)
    895 {
    896     int  status = -EINVAL;
    897 
    898     D("%s: name=%s", __FUNCTION__, name);
    899 
    900     if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
    901         SensorDevice *dev = malloc(sizeof(*dev));
    902 
    903         memset(dev, 0, sizeof(*dev));
    904 
    905         dev->device.common.tag     = HARDWARE_DEVICE_TAG;
    906         dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
    907         dev->device.common.module  = (struct hw_module_t*) module;
    908         dev->device.common.close   = sensor_device_close;
    909         dev->device.poll           = sensor_device_poll;
    910         dev->device.activate       = sensor_device_activate;
    911         dev->device.setDelay       = sensor_device_set_delay;
    912 
    913         // (dev->sensors[i].type == SENSOR_TYPE_META_DATA) is
    914         // sticky. Don't start off with that setting.
    915         for (int idx = 0; idx < MAX_NUM_SENSORS; idx++) {
    916             dev->sensors[idx].type = SENSOR_TYPE_META_DATA + 1;
    917         }
    918 
    919         // Version 1.3-specific functions
    920         dev->device.batch       = sensor_device_default_batch;
    921         dev->device.flush       = sensor_device_default_flush;
    922 
    923         dev->fd = -1;
    924         pthread_mutex_init(&dev->lock, NULL);
    925 
    926         *device = &dev->device.common;
    927         status  = 0;
    928     }
    929     return status;
    930 }
    931 
    932 
    933 static struct hw_module_methods_t sensors_module_methods = {
    934     .open = open_sensors
    935 };
    936 
    937 struct sensors_module_t HAL_MODULE_INFO_SYM = {
    938     .common = {
    939         .tag = HARDWARE_MODULE_TAG,
    940         .version_major = 1,
    941         .version_minor = 3,
    942         .id = SENSORS_HARDWARE_MODULE_ID,
    943         .name = "Goldfish SENSORS Module",
    944         .author = "The Android Open Source Project",
    945         .methods = &sensors_module_methods,
    946     },
    947     .get_sensors_list = sensors__get_sensors_list
    948 };
    949