Home | History | Annotate | Download | only in UmfPackSupport
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_UMFPACKSUPPORT_H
     11 #define EIGEN_UMFPACKSUPPORT_H
     12 
     13 namespace Eigen {
     14 
     15 /* TODO extract L, extract U, compute det, etc... */
     16 
     17 // generic double/complex<double> wrapper functions:
     18 
     19 
     20 inline void umfpack_defaults(double control[UMFPACK_CONTROL], double)
     21 { umfpack_di_defaults(control); }
     22 
     23 inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>)
     24 { umfpack_zi_defaults(control); }
     25 
     26 inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double)
     27 { umfpack_di_report_info(control, info);}
     28 
     29 inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>)
     30 { umfpack_zi_report_info(control, info);}
     31 
     32 inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double)
     33 { umfpack_di_report_status(control, status);}
     34 
     35 inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>)
     36 { umfpack_zi_report_status(control, status);}
     37 
     38 inline void umfpack_report_control(double control[UMFPACK_CONTROL], double)
     39 { umfpack_di_report_control(control);}
     40 
     41 inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>)
     42 { umfpack_zi_report_control(control);}
     43 
     44 inline void umfpack_free_numeric(void **Numeric, double)
     45 { umfpack_di_free_numeric(Numeric); *Numeric = 0; }
     46 
     47 inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
     48 { umfpack_zi_free_numeric(Numeric); *Numeric = 0; }
     49 
     50 inline void umfpack_free_symbolic(void **Symbolic, double)
     51 { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; }
     52 
     53 inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
     54 { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; }
     55 
     56 inline int umfpack_symbolic(int n_row,int n_col,
     57                             const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
     58                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
     59 {
     60   return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
     61 }
     62 
     63 inline int umfpack_symbolic(int n_row,int n_col,
     64                             const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
     65                             const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
     66 {
     67   return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info);
     68 }
     69 
     70 inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
     71                             void *Symbolic, void **Numeric,
     72                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
     73 {
     74   return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
     75 }
     76 
     77 inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
     78                             void *Symbolic, void **Numeric,
     79                             const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
     80 {
     81   return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info);
     82 }
     83 
     84 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
     85                           double X[], const double B[], void *Numeric,
     86                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
     87 {
     88   return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
     89 }
     90 
     91 inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
     92                           std::complex<double> X[], const std::complex<double> B[], void *Numeric,
     93                           const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
     94 {
     95   return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info);
     96 }
     97 
     98 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
     99 {
    100   return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
    101 }
    102 
    103 inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
    104 {
    105   return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
    106 }
    107 
    108 inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
    109                                int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
    110 {
    111   return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
    112 }
    113 
    114 inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
    115                                int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
    116 {
    117   double& lx0_real = numext::real_ref(Lx[0]);
    118   double& ux0_real = numext::real_ref(Ux[0]);
    119   double& dx0_real = numext::real_ref(Dx[0]);
    120   return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q,
    121                                 Dx?&dx0_real:0,0,do_recip,Rs,Numeric);
    122 }
    123 
    124 inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
    125 {
    126   return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
    127 }
    128 
    129 inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
    130 {
    131   double& mx_real = numext::real_ref(*Mx);
    132   return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info);
    133 }
    134 
    135 
    136 /** \ingroup UmfPackSupport_Module
    137   * \brief A sparse LU factorization and solver based on UmfPack
    138   *
    139   * This class allows to solve for A.X = B sparse linear problems via a LU factorization
    140   * using the UmfPack library. The sparse matrix A must be squared and full rank.
    141   * The vectors or matrices X and B can be either dense or sparse.
    142   *
    143   * \warning The input matrix A should be in a \b compressed and \b column-major form.
    144   * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
    145   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
    146   *
    147   * \implsparsesolverconcept
    148   *
    149   * \sa \ref TutorialSparseSolverConcept, class SparseLU
    150   */
    151 template<typename _MatrixType>
    152 class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> >
    153 {
    154   protected:
    155     typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base;
    156     using Base::m_isInitialized;
    157   public:
    158     using Base::_solve_impl;
    159     typedef _MatrixType MatrixType;
    160     typedef typename MatrixType::Scalar Scalar;
    161     typedef typename MatrixType::RealScalar RealScalar;
    162     typedef typename MatrixType::StorageIndex StorageIndex;
    163     typedef Matrix<Scalar,Dynamic,1> Vector;
    164     typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    165     typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
    166     typedef SparseMatrix<Scalar> LUMatrixType;
    167     typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType;
    168     typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef;
    169     enum {
    170       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    171       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    172     };
    173 
    174   public:
    175 
    176     typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl;
    177     typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo;
    178 
    179     UmfPackLU()
    180       : m_dummy(0,0), mp_matrix(m_dummy)
    181     {
    182       init();
    183     }
    184 
    185     template<typename InputMatrixType>
    186     explicit UmfPackLU(const InputMatrixType& matrix)
    187       : mp_matrix(matrix)
    188     {
    189       init();
    190       compute(matrix);
    191     }
    192 
    193     ~UmfPackLU()
    194     {
    195       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
    196       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
    197     }
    198 
    199     inline Index rows() const { return mp_matrix.rows(); }
    200     inline Index cols() const { return mp_matrix.cols(); }
    201 
    202     /** \brief Reports whether previous computation was successful.
    203       *
    204       * \returns \c Success if computation was succesful,
    205       *          \c NumericalIssue if the matrix.appears to be negative.
    206       */
    207     ComputationInfo info() const
    208     {
    209       eigen_assert(m_isInitialized && "Decomposition is not initialized.");
    210       return m_info;
    211     }
    212 
    213     inline const LUMatrixType& matrixL() const
    214     {
    215       if (m_extractedDataAreDirty) extractData();
    216       return m_l;
    217     }
    218 
    219     inline const LUMatrixType& matrixU() const
    220     {
    221       if (m_extractedDataAreDirty) extractData();
    222       return m_u;
    223     }
    224 
    225     inline const IntColVectorType& permutationP() const
    226     {
    227       if (m_extractedDataAreDirty) extractData();
    228       return m_p;
    229     }
    230 
    231     inline const IntRowVectorType& permutationQ() const
    232     {
    233       if (m_extractedDataAreDirty) extractData();
    234       return m_q;
    235     }
    236 
    237     /** Computes the sparse Cholesky decomposition of \a matrix
    238      *  Note that the matrix should be column-major, and in compressed format for best performance.
    239      *  \sa SparseMatrix::makeCompressed().
    240      */
    241     template<typename InputMatrixType>
    242     void compute(const InputMatrixType& matrix)
    243     {
    244       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
    245       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
    246       grab(matrix.derived());
    247       analyzePattern_impl();
    248       factorize_impl();
    249     }
    250 
    251     /** Performs a symbolic decomposition on the sparcity of \a matrix.
    252       *
    253       * This function is particularly useful when solving for several problems having the same structure.
    254       *
    255       * \sa factorize(), compute()
    256       */
    257     template<typename InputMatrixType>
    258     void analyzePattern(const InputMatrixType& matrix)
    259     {
    260       if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar());
    261       if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar());
    262 
    263       grab(matrix.derived());
    264 
    265       analyzePattern_impl();
    266     }
    267 
    268     /** Provides the return status code returned by UmfPack during the numeric
    269       * factorization.
    270       *
    271       * \sa factorize(), compute()
    272       */
    273     inline int umfpackFactorizeReturncode() const
    274     {
    275       eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()");
    276       return m_fact_errorCode;
    277     }
    278 
    279     /** Provides access to the control settings array used by UmfPack.
    280       *
    281       * If this array contains NaN's, the default values are used.
    282       *
    283       * See UMFPACK documentation for details.
    284       */
    285     inline const UmfpackControl& umfpackControl() const
    286     {
    287       return m_control;
    288     }
    289 
    290     /** Provides access to the control settings array used by UmfPack.
    291       *
    292       * If this array contains NaN's, the default values are used.
    293       *
    294       * See UMFPACK documentation for details.
    295       */
    296     inline UmfpackControl& umfpackControl()
    297     {
    298       return m_control;
    299     }
    300 
    301     /** Performs a numeric decomposition of \a matrix
    302       *
    303       * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed.
    304       *
    305       * \sa analyzePattern(), compute()
    306       */
    307     template<typename InputMatrixType>
    308     void factorize(const InputMatrixType& matrix)
    309     {
    310       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
    311       if(m_numeric)
    312         umfpack_free_numeric(&m_numeric,Scalar());
    313 
    314       grab(matrix.derived());
    315 
    316       factorize_impl();
    317     }
    318 
    319     /** Prints the current UmfPack control settings.
    320       *
    321       * \sa umfpackControl()
    322       */
    323     void umfpackReportControl()
    324     {
    325       umfpack_report_control(m_control.data(), Scalar());
    326     }
    327 
    328     /** Prints statistics collected by UmfPack.
    329       *
    330       * \sa analyzePattern(), compute()
    331       */
    332     void umfpackReportInfo()
    333     {
    334       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
    335       umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar());
    336     }
    337 
    338     /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical factorization).
    339       *
    340       * \sa analyzePattern(), compute()
    341       */
    342     void umfpackReportStatus() {
    343       eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()");
    344       umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar());
    345     }
    346 
    347     /** \internal */
    348     template<typename BDerived,typename XDerived>
    349     bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const;
    350 
    351     Scalar determinant() const;
    352 
    353     void extractData() const;
    354 
    355   protected:
    356 
    357     void init()
    358     {
    359       m_info                  = InvalidInput;
    360       m_isInitialized         = false;
    361       m_numeric               = 0;
    362       m_symbolic              = 0;
    363       m_extractedDataAreDirty = true;
    364 
    365       umfpack_defaults(m_control.data(), Scalar());
    366     }
    367 
    368     void analyzePattern_impl()
    369     {
    370       m_fact_errorCode = umfpack_symbolic(internal::convert_index<int>(mp_matrix.rows()),
    371                                           internal::convert_index<int>(mp_matrix.cols()),
    372                                           mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
    373                                           &m_symbolic, m_control.data(), m_umfpackInfo.data());
    374 
    375       m_isInitialized = true;
    376       m_info = m_fact_errorCode ? InvalidInput : Success;
    377       m_analysisIsOk = true;
    378       m_factorizationIsOk = false;
    379       m_extractedDataAreDirty = true;
    380     }
    381 
    382     void factorize_impl()
    383     {
    384 
    385       m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
    386                                          m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data());
    387 
    388       m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue;
    389       m_factorizationIsOk = true;
    390       m_extractedDataAreDirty = true;
    391     }
    392 
    393     template<typename MatrixDerived>
    394     void grab(const EigenBase<MatrixDerived> &A)
    395     {
    396       mp_matrix.~UmfpackMatrixRef();
    397       ::new (&mp_matrix) UmfpackMatrixRef(A.derived());
    398     }
    399 
    400     void grab(const UmfpackMatrixRef &A)
    401     {
    402       if(&(A.derived()) != &mp_matrix)
    403       {
    404         mp_matrix.~UmfpackMatrixRef();
    405         ::new (&mp_matrix) UmfpackMatrixRef(A);
    406       }
    407     }
    408 
    409     // cached data to reduce reallocation, etc.
    410     mutable LUMatrixType m_l;
    411     int m_fact_errorCode;
    412     UmfpackControl m_control;
    413     mutable UmfpackInfo m_umfpackInfo;
    414 
    415     mutable LUMatrixType m_u;
    416     mutable IntColVectorType m_p;
    417     mutable IntRowVectorType m_q;
    418 
    419     UmfpackMatrixType m_dummy;
    420     UmfpackMatrixRef mp_matrix;
    421 
    422     void* m_numeric;
    423     void* m_symbolic;
    424 
    425     mutable ComputationInfo m_info;
    426     int m_factorizationIsOk;
    427     int m_analysisIsOk;
    428     mutable bool m_extractedDataAreDirty;
    429 
    430   private:
    431     UmfPackLU(const UmfPackLU& ) { }
    432 };
    433 
    434 
    435 template<typename MatrixType>
    436 void UmfPackLU<MatrixType>::extractData() const
    437 {
    438   if (m_extractedDataAreDirty)
    439   {
    440     // get size of the data
    441     int lnz, unz, rows, cols, nz_udiag;
    442     umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
    443 
    444     // allocate data
    445     m_l.resize(rows,(std::min)(rows,cols));
    446     m_l.resizeNonZeros(lnz);
    447 
    448     m_u.resize((std::min)(rows,cols),cols);
    449     m_u.resizeNonZeros(unz);
    450 
    451     m_p.resize(rows);
    452     m_q.resize(cols);
    453 
    454     // extract
    455     umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(),
    456                         m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(),
    457                         m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
    458 
    459     m_extractedDataAreDirty = false;
    460   }
    461 }
    462 
    463 template<typename MatrixType>
    464 typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const
    465 {
    466   Scalar det;
    467   umfpack_get_determinant(&det, 0, m_numeric, 0);
    468   return det;
    469 }
    470 
    471 template<typename MatrixType>
    472 template<typename BDerived,typename XDerived>
    473 bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const
    474 {
    475   Index rhsCols = b.cols();
    476   eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet");
    477   eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet");
    478   eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve");
    479 
    480   int errorCode;
    481   Scalar* x_ptr = 0;
    482   Matrix<Scalar,Dynamic,1> x_tmp;
    483   if(x.innerStride()!=1)
    484   {
    485     x_tmp.resize(x.rows());
    486     x_ptr = x_tmp.data();
    487   }
    488   for (int j=0; j<rhsCols; ++j)
    489   {
    490     if(x.innerStride()==1)
    491       x_ptr = &x.col(j).coeffRef(0);
    492     errorCode = umfpack_solve(UMFPACK_A,
    493         mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(),
    494         x_ptr, &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), m_umfpackInfo.data());
    495     if(x.innerStride()!=1)
    496       x.col(j) = x_tmp;
    497     if (errorCode!=0)
    498       return false;
    499   }
    500 
    501   return true;
    502 }
    503 
    504 } // end namespace Eigen
    505 
    506 #endif // EIGEN_UMFPACKSUPPORT_H
    507