Home | History | Annotate | Download | only in AArch64
      1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "AArch64TargetTransformInfo.h"
     11 #include "MCTargetDesc/AArch64AddressingModes.h"
     12 #include "llvm/Analysis/TargetTransformInfo.h"
     13 #include "llvm/Analysis/LoopInfo.h"
     14 #include "llvm/CodeGen/BasicTTIImpl.h"
     15 #include "llvm/Support/Debug.h"
     16 #include "llvm/Target/CostTable.h"
     17 #include "llvm/Target/TargetLowering.h"
     18 #include <algorithm>
     19 using namespace llvm;
     20 
     21 #define DEBUG_TYPE "aarch64tti"
     22 
     23 /// \brief Calculate the cost of materializing a 64-bit value. This helper
     24 /// method might only calculate a fraction of a larger immediate. Therefore it
     25 /// is valid to return a cost of ZERO.
     26 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
     27   // Check if the immediate can be encoded within an instruction.
     28   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
     29     return 0;
     30 
     31   if (Val < 0)
     32     Val = ~Val;
     33 
     34   // Calculate how many moves we will need to materialize this constant.
     35   unsigned LZ = countLeadingZeros((uint64_t)Val);
     36   return (64 - LZ + 15) / 16;
     37 }
     38 
     39 /// \brief Calculate the cost of materializing the given constant.
     40 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
     41   assert(Ty->isIntegerTy());
     42 
     43   unsigned BitSize = Ty->getPrimitiveSizeInBits();
     44   if (BitSize == 0)
     45     return ~0U;
     46 
     47   // Sign-extend all constants to a multiple of 64-bit.
     48   APInt ImmVal = Imm;
     49   if (BitSize & 0x3f)
     50     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
     51 
     52   // Split the constant into 64-bit chunks and calculate the cost for each
     53   // chunk.
     54   int Cost = 0;
     55   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
     56     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
     57     int64_t Val = Tmp.getSExtValue();
     58     Cost += getIntImmCost(Val);
     59   }
     60   // We need at least one instruction to materialze the constant.
     61   return std::max(1, Cost);
     62 }
     63 
     64 int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
     65                                   const APInt &Imm, Type *Ty) {
     66   assert(Ty->isIntegerTy());
     67 
     68   unsigned BitSize = Ty->getPrimitiveSizeInBits();
     69   // There is no cost model for constants with a bit size of 0. Return TCC_Free
     70   // here, so that constant hoisting will ignore this constant.
     71   if (BitSize == 0)
     72     return TTI::TCC_Free;
     73 
     74   unsigned ImmIdx = ~0U;
     75   switch (Opcode) {
     76   default:
     77     return TTI::TCC_Free;
     78   case Instruction::GetElementPtr:
     79     // Always hoist the base address of a GetElementPtr.
     80     if (Idx == 0)
     81       return 2 * TTI::TCC_Basic;
     82     return TTI::TCC_Free;
     83   case Instruction::Store:
     84     ImmIdx = 0;
     85     break;
     86   case Instruction::Add:
     87   case Instruction::Sub:
     88   case Instruction::Mul:
     89   case Instruction::UDiv:
     90   case Instruction::SDiv:
     91   case Instruction::URem:
     92   case Instruction::SRem:
     93   case Instruction::And:
     94   case Instruction::Or:
     95   case Instruction::Xor:
     96   case Instruction::ICmp:
     97     ImmIdx = 1;
     98     break;
     99   // Always return TCC_Free for the shift value of a shift instruction.
    100   case Instruction::Shl:
    101   case Instruction::LShr:
    102   case Instruction::AShr:
    103     if (Idx == 1)
    104       return TTI::TCC_Free;
    105     break;
    106   case Instruction::Trunc:
    107   case Instruction::ZExt:
    108   case Instruction::SExt:
    109   case Instruction::IntToPtr:
    110   case Instruction::PtrToInt:
    111   case Instruction::BitCast:
    112   case Instruction::PHI:
    113   case Instruction::Call:
    114   case Instruction::Select:
    115   case Instruction::Ret:
    116   case Instruction::Load:
    117     break;
    118   }
    119 
    120   if (Idx == ImmIdx) {
    121     int NumConstants = (BitSize + 63) / 64;
    122     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
    123     return (Cost <= NumConstants * TTI::TCC_Basic)
    124                ? static_cast<int>(TTI::TCC_Free)
    125                : Cost;
    126   }
    127   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
    128 }
    129 
    130 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
    131                                   const APInt &Imm, Type *Ty) {
    132   assert(Ty->isIntegerTy());
    133 
    134   unsigned BitSize = Ty->getPrimitiveSizeInBits();
    135   // There is no cost model for constants with a bit size of 0. Return TCC_Free
    136   // here, so that constant hoisting will ignore this constant.
    137   if (BitSize == 0)
    138     return TTI::TCC_Free;
    139 
    140   switch (IID) {
    141   default:
    142     return TTI::TCC_Free;
    143   case Intrinsic::sadd_with_overflow:
    144   case Intrinsic::uadd_with_overflow:
    145   case Intrinsic::ssub_with_overflow:
    146   case Intrinsic::usub_with_overflow:
    147   case Intrinsic::smul_with_overflow:
    148   case Intrinsic::umul_with_overflow:
    149     if (Idx == 1) {
    150       int NumConstants = (BitSize + 63) / 64;
    151       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
    152       return (Cost <= NumConstants * TTI::TCC_Basic)
    153                  ? static_cast<int>(TTI::TCC_Free)
    154                  : Cost;
    155     }
    156     break;
    157   case Intrinsic::experimental_stackmap:
    158     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
    159       return TTI::TCC_Free;
    160     break;
    161   case Intrinsic::experimental_patchpoint_void:
    162   case Intrinsic::experimental_patchpoint_i64:
    163     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
    164       return TTI::TCC_Free;
    165     break;
    166   }
    167   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
    168 }
    169 
    170 TargetTransformInfo::PopcntSupportKind
    171 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
    172   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
    173   if (TyWidth == 32 || TyWidth == 64)
    174     return TTI::PSK_FastHardware;
    175   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
    176   return TTI::PSK_Software;
    177 }
    178 
    179 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
    180   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    181   assert(ISD && "Invalid opcode");
    182 
    183   EVT SrcTy = TLI->getValueType(DL, Src);
    184   EVT DstTy = TLI->getValueType(DL, Dst);
    185 
    186   if (!SrcTy.isSimple() || !DstTy.isSimple())
    187     return BaseT::getCastInstrCost(Opcode, Dst, Src);
    188 
    189   static const TypeConversionCostTblEntry
    190   ConversionTbl[] = {
    191     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
    192     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
    193     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
    194     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
    195 
    196     // The number of shll instructions for the extension.
    197     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    198     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    199     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    200     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    201     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    202     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    203     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    204     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    205     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    206     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    207     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    208     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    209     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    210     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    211     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    212     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    213 
    214     // LowerVectorINT_TO_FP:
    215     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    216     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    217     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
    218     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    219     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    220     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
    221 
    222     // Complex: to v2f32
    223     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    224     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    225     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
    226     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    227     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    228     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
    229 
    230     // Complex: to v4f32
    231     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
    232     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
    233     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
    234     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
    235 
    236     // Complex: to v8f32
    237     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    238     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
    239     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    240     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
    241 
    242     // Complex: to v16f32
    243     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
    244     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
    245 
    246     // Complex: to v2f64
    247     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    248     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    249     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
    250     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    251     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    252     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
    253 
    254 
    255     // LowerVectorFP_TO_INT
    256     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
    257     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
    258     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
    259     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
    260     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
    261     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
    262 
    263     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
    264     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
    265     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
    266     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
    267     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
    268     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
    269     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
    270 
    271     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
    272     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
    273     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
    274     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
    275     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
    276 
    277     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
    278     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
    279     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
    280     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
    281     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
    282     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
    283     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
    284   };
    285 
    286   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
    287                                                  DstTy.getSimpleVT(),
    288                                                  SrcTy.getSimpleVT()))
    289     return Entry->Cost;
    290 
    291   return BaseT::getCastInstrCost(Opcode, Dst, Src);
    292 }
    293 
    294 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
    295                                              VectorType *VecTy,
    296                                              unsigned Index) {
    297 
    298   // Make sure we were given a valid extend opcode.
    299   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
    300          "Invalid opcode");
    301 
    302   // We are extending an element we extract from a vector, so the source type
    303   // of the extend is the element type of the vector.
    304   auto *Src = VecTy->getElementType();
    305 
    306   // Sign- and zero-extends are for integer types only.
    307   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
    308 
    309   // Get the cost for the extract. We compute the cost (if any) for the extend
    310   // below.
    311   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
    312 
    313   // Legalize the types.
    314   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
    315   auto DstVT = TLI->getValueType(DL, Dst);
    316   auto SrcVT = TLI->getValueType(DL, Src);
    317 
    318   // If the resulting type is still a vector and the destination type is legal,
    319   // we may get the extension for free. If not, get the default cost for the
    320   // extend.
    321   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
    322     return Cost + getCastInstrCost(Opcode, Dst, Src);
    323 
    324   // The destination type should be larger than the element type. If not, get
    325   // the default cost for the extend.
    326   if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
    327     return Cost + getCastInstrCost(Opcode, Dst, Src);
    328 
    329   switch (Opcode) {
    330   default:
    331     llvm_unreachable("Opcode should be either SExt or ZExt");
    332 
    333   // For sign-extends, we only need a smov, which performs the extension
    334   // automatically.
    335   case Instruction::SExt:
    336     return Cost;
    337 
    338   // For zero-extends, the extend is performed automatically by a umov unless
    339   // the destination type is i64 and the element type is i8 or i16.
    340   case Instruction::ZExt:
    341     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
    342       return Cost;
    343   }
    344 
    345   // If we are unable to perform the extend for free, get the default cost.
    346   return Cost + getCastInstrCost(Opcode, Dst, Src);
    347 }
    348 
    349 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
    350                                        unsigned Index) {
    351   assert(Val->isVectorTy() && "This must be a vector type");
    352 
    353   if (Index != -1U) {
    354     // Legalize the type.
    355     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
    356 
    357     // This type is legalized to a scalar type.
    358     if (!LT.second.isVector())
    359       return 0;
    360 
    361     // The type may be split. Normalize the index to the new type.
    362     unsigned Width = LT.second.getVectorNumElements();
    363     Index = Index % Width;
    364 
    365     // The element at index zero is already inside the vector.
    366     if (Index == 0)
    367       return 0;
    368   }
    369 
    370   // All other insert/extracts cost this much.
    371   return ST->getVectorInsertExtractBaseCost();
    372 }
    373 
    374 int AArch64TTIImpl::getArithmeticInstrCost(
    375     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
    376     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
    377     TTI::OperandValueProperties Opd2PropInfo) {
    378   // Legalize the type.
    379   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
    380 
    381   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    382 
    383   if (ISD == ISD::SDIV &&
    384       Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
    385       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
    386     // On AArch64, scalar signed division by constants power-of-two are
    387     // normally expanded to the sequence ADD + CMP + SELECT + SRA.
    388     // The OperandValue properties many not be same as that of previous
    389     // operation; conservatively assume OP_None.
    390     int Cost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
    391                                       TargetTransformInfo::OP_None,
    392                                       TargetTransformInfo::OP_None);
    393     Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
    394                                    TargetTransformInfo::OP_None,
    395                                    TargetTransformInfo::OP_None);
    396     Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
    397                                    TargetTransformInfo::OP_None,
    398                                    TargetTransformInfo::OP_None);
    399     Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
    400                                    TargetTransformInfo::OP_None,
    401                                    TargetTransformInfo::OP_None);
    402     return Cost;
    403   }
    404 
    405   switch (ISD) {
    406   default:
    407     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
    408                                          Opd1PropInfo, Opd2PropInfo);
    409   case ISD::ADD:
    410   case ISD::MUL:
    411   case ISD::XOR:
    412   case ISD::OR:
    413   case ISD::AND:
    414     // These nodes are marked as 'custom' for combining purposes only.
    415     // We know that they are legal. See LowerAdd in ISelLowering.
    416     return 1 * LT.first;
    417   }
    418 }
    419 
    420 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
    421   // Address computations in vectorized code with non-consecutive addresses will
    422   // likely result in more instructions compared to scalar code where the
    423   // computation can more often be merged into the index mode. The resulting
    424   // extra micro-ops can significantly decrease throughput.
    425   unsigned NumVectorInstToHideOverhead = 10;
    426 
    427   if (Ty->isVectorTy() && IsComplex)
    428     return NumVectorInstToHideOverhead;
    429 
    430   // In many cases the address computation is not merged into the instruction
    431   // addressing mode.
    432   return 1;
    433 }
    434 
    435 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    436                                        Type *CondTy) {
    437 
    438   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    439   // We don't lower some vector selects well that are wider than the register
    440   // width.
    441   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
    442     // We would need this many instructions to hide the scalarization happening.
    443     const int AmortizationCost = 20;
    444     static const TypeConversionCostTblEntry
    445     VectorSelectTbl[] = {
    446       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
    447       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
    448       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
    449       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
    450       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
    451       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
    452     };
    453 
    454     EVT SelCondTy = TLI->getValueType(DL, CondTy);
    455     EVT SelValTy = TLI->getValueType(DL, ValTy);
    456     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
    457       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
    458                                                      SelCondTy.getSimpleVT(),
    459                                                      SelValTy.getSimpleVT()))
    460         return Entry->Cost;
    461     }
    462   }
    463   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    464 }
    465 
    466 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
    467                                     unsigned Alignment, unsigned AddressSpace) {
    468   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
    469 
    470   if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
    471       Src->getVectorElementType()->isIntegerTy(64)) {
    472     // Unaligned stores are extremely inefficient. We don't split
    473     // unaligned v2i64 stores because the negative impact that has shown in
    474     // practice on inlined memcpy code.
    475     // We make v2i64 stores expensive so that we will only vectorize if there
    476     // are 6 other instructions getting vectorized.
    477     int AmortizationCost = 6;
    478 
    479     return LT.first * 2 * AmortizationCost;
    480   }
    481 
    482   if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
    483       Src->getVectorNumElements() < 8) {
    484     // We scalarize the loads/stores because there is not v.4b register and we
    485     // have to promote the elements to v.4h.
    486     unsigned NumVecElts = Src->getVectorNumElements();
    487     unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
    488     // We generate 2 instructions per vector element.
    489     return NumVectorizableInstsToAmortize * NumVecElts * 2;
    490   }
    491 
    492   return LT.first;
    493 }
    494 
    495 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    496                                                unsigned Factor,
    497                                                ArrayRef<unsigned> Indices,
    498                                                unsigned Alignment,
    499                                                unsigned AddressSpace) {
    500   assert(Factor >= 2 && "Invalid interleave factor");
    501   assert(isa<VectorType>(VecTy) && "Expect a vector type");
    502 
    503   if (Factor <= TLI->getMaxSupportedInterleaveFactor()) {
    504     unsigned NumElts = VecTy->getVectorNumElements();
    505     Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
    506     unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
    507 
    508     // ldN/stN only support legal vector types of size 64 or 128 in bits.
    509     if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
    510       return Factor;
    511   }
    512 
    513   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
    514                                            Alignment, AddressSpace);
    515 }
    516 
    517 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
    518   int Cost = 0;
    519   for (auto *I : Tys) {
    520     if (!I->isVectorTy())
    521       continue;
    522     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
    523       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
    524         getMemoryOpCost(Instruction::Load, I, 128, 0);
    525   }
    526   return Cost;
    527 }
    528 
    529 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
    530   return ST->getMaxInterleaveFactor();
    531 }
    532 
    533 void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
    534                                              TTI::UnrollingPreferences &UP) {
    535   // Enable partial unrolling and runtime unrolling.
    536   BaseT::getUnrollingPreferences(L, UP);
    537 
    538   // For inner loop, it is more likely to be a hot one, and the runtime check
    539   // can be promoted out from LICM pass, so the overhead is less, let's try
    540   // a larger threshold to unroll more loops.
    541   if (L->getLoopDepth() > 1)
    542     UP.PartialThreshold *= 2;
    543 
    544   // Disable partial & runtime unrolling on -Os.
    545   UP.PartialOptSizeThreshold = 0;
    546 }
    547 
    548 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    549                                                          Type *ExpectedType) {
    550   switch (Inst->getIntrinsicID()) {
    551   default:
    552     return nullptr;
    553   case Intrinsic::aarch64_neon_st2:
    554   case Intrinsic::aarch64_neon_st3:
    555   case Intrinsic::aarch64_neon_st4: {
    556     // Create a struct type
    557     StructType *ST = dyn_cast<StructType>(ExpectedType);
    558     if (!ST)
    559       return nullptr;
    560     unsigned NumElts = Inst->getNumArgOperands() - 1;
    561     if (ST->getNumElements() != NumElts)
    562       return nullptr;
    563     for (unsigned i = 0, e = NumElts; i != e; ++i) {
    564       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
    565         return nullptr;
    566     }
    567     Value *Res = UndefValue::get(ExpectedType);
    568     IRBuilder<> Builder(Inst);
    569     for (unsigned i = 0, e = NumElts; i != e; ++i) {
    570       Value *L = Inst->getArgOperand(i);
    571       Res = Builder.CreateInsertValue(Res, L, i);
    572     }
    573     return Res;
    574   }
    575   case Intrinsic::aarch64_neon_ld2:
    576   case Intrinsic::aarch64_neon_ld3:
    577   case Intrinsic::aarch64_neon_ld4:
    578     if (Inst->getType() == ExpectedType)
    579       return Inst;
    580     return nullptr;
    581   }
    582 }
    583 
    584 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
    585                                         MemIntrinsicInfo &Info) {
    586   switch (Inst->getIntrinsicID()) {
    587   default:
    588     break;
    589   case Intrinsic::aarch64_neon_ld2:
    590   case Intrinsic::aarch64_neon_ld3:
    591   case Intrinsic::aarch64_neon_ld4:
    592     Info.ReadMem = true;
    593     Info.WriteMem = false;
    594     Info.IsSimple = true;
    595     Info.NumMemRefs = 1;
    596     Info.PtrVal = Inst->getArgOperand(0);
    597     break;
    598   case Intrinsic::aarch64_neon_st2:
    599   case Intrinsic::aarch64_neon_st3:
    600   case Intrinsic::aarch64_neon_st4:
    601     Info.ReadMem = false;
    602     Info.WriteMem = true;
    603     Info.IsSimple = true;
    604     Info.NumMemRefs = 1;
    605     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
    606     break;
    607   }
    608 
    609   switch (Inst->getIntrinsicID()) {
    610   default:
    611     return false;
    612   case Intrinsic::aarch64_neon_ld2:
    613   case Intrinsic::aarch64_neon_st2:
    614     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
    615     break;
    616   case Intrinsic::aarch64_neon_ld3:
    617   case Intrinsic::aarch64_neon_st3:
    618     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
    619     break;
    620   case Intrinsic::aarch64_neon_ld4:
    621   case Intrinsic::aarch64_neon_st4:
    622     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
    623     break;
    624   }
    625   return true;
    626 }
    627 
    628 unsigned AArch64TTIImpl::getCacheLineSize() {
    629   return ST->getCacheLineSize();
    630 }
    631 
    632 unsigned AArch64TTIImpl::getPrefetchDistance() {
    633   return ST->getPrefetchDistance();
    634 }
    635 
    636 unsigned AArch64TTIImpl::getMinPrefetchStride() {
    637   return ST->getMinPrefetchStride();
    638 }
    639 
    640 unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
    641   return ST->getMaxPrefetchIterationsAhead();
    642 }
    643