Home | History | Annotate | Download | only in X86
      1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a pass that optimizes call sequences on x86.
     11 // Currently, it converts movs of function parameters onto the stack into
     12 // pushes. This is beneficial for two main reasons:
     13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
     14 // 2) It is possible to push memory arguments directly. So, if the
     15 //    the transformation is performed pre-reg-alloc, it can help relieve
     16 //    register pressure.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #include <algorithm>
     21 
     22 #include "X86.h"
     23 #include "X86InstrInfo.h"
     24 #include "X86MachineFunctionInfo.h"
     25 #include "X86Subtarget.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/CodeGen/MachineFunctionPass.h"
     28 #include "llvm/CodeGen/MachineInstrBuilder.h"
     29 #include "llvm/CodeGen/MachineModuleInfo.h"
     30 #include "llvm/CodeGen/MachineRegisterInfo.h"
     31 #include "llvm/CodeGen/Passes.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 #include "llvm/Target/TargetInstrInfo.h"
     36 
     37 using namespace llvm;
     38 
     39 #define DEBUG_TYPE "x86-cf-opt"
     40 
     41 static cl::opt<bool>
     42     NoX86CFOpt("no-x86-call-frame-opt",
     43                cl::desc("Avoid optimizing x86 call frames for size"),
     44                cl::init(false), cl::Hidden);
     45 
     46 namespace {
     47 class X86CallFrameOptimization : public MachineFunctionPass {
     48 public:
     49   X86CallFrameOptimization() : MachineFunctionPass(ID) {}
     50 
     51   bool runOnMachineFunction(MachineFunction &MF) override;
     52 
     53 private:
     54   // Information we know about a particular call site
     55   struct CallContext {
     56     CallContext()
     57         : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
     58           MovVector(4, nullptr), NoStackParams(false), UsePush(false) {}
     59 
     60     // Iterator referring to the frame setup instruction
     61     MachineBasicBlock::iterator FrameSetup;
     62 
     63     // Actual call instruction
     64     MachineInstr *Call;
     65 
     66     // A copy of the stack pointer
     67     MachineInstr *SPCopy;
     68 
     69     // The total displacement of all passed parameters
     70     int64_t ExpectedDist;
     71 
     72     // The sequence of movs used to pass the parameters
     73     SmallVector<MachineInstr *, 4> MovVector;
     74 
     75     // True if this call site has no stack parameters
     76     bool NoStackParams;
     77 
     78     // True if this call site can use push instructions
     79     bool UsePush;
     80   };
     81 
     82   typedef SmallVector<CallContext, 8> ContextVector;
     83 
     84   bool isLegal(MachineFunction &MF);
     85 
     86   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
     87 
     88   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
     89                        MachineBasicBlock::iterator I, CallContext &Context);
     90 
     91   void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
     92 
     93   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
     94                                    unsigned Reg);
     95 
     96   enum InstClassification { Convert, Skip, Exit };
     97 
     98   InstClassification classifyInstruction(MachineBasicBlock &MBB,
     99                                          MachineBasicBlock::iterator MI,
    100                                          const X86RegisterInfo &RegInfo,
    101                                          DenseSet<unsigned int> &UsedRegs);
    102 
    103   const char *getPassName() const override { return "X86 Optimize Call Frame"; }
    104 
    105   const TargetInstrInfo *TII;
    106   const X86FrameLowering *TFL;
    107   const X86Subtarget *STI;
    108   MachineRegisterInfo *MRI;
    109   unsigned SlotSize;
    110   unsigned Log2SlotSize;
    111   static char ID;
    112 };
    113 
    114 char X86CallFrameOptimization::ID = 0;
    115 } // end anonymous namespace
    116 
    117 FunctionPass *llvm::createX86CallFrameOptimization() {
    118   return new X86CallFrameOptimization();
    119 }
    120 
    121 // This checks whether the transformation is legal.
    122 // Also returns false in cases where it's potentially legal, but
    123 // we don't even want to try.
    124 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
    125   if (NoX86CFOpt.getValue())
    126     return false;
    127 
    128   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
    129   // in the compact unwind encoding that Darwin uses. So, bail if there
    130   // is a danger of that being generated.
    131   if (STI->isTargetDarwin() &&
    132       (!MF.getMMI().getLandingPads().empty() ||
    133        (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
    134     return false;
    135 
    136   // It is not valid to change the stack pointer outside the prolog/epilog
    137   // on 64-bit Windows.
    138   if (STI->isTargetWin64())
    139     return false;
    140 
    141   // You would expect straight-line code between call-frame setup and
    142   // call-frame destroy. You would be wrong. There are circumstances (e.g.
    143   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
    144   // end up with the setup and the destroy in different basic blocks.
    145   // This is bad, and breaks SP adjustment.
    146   // So, check that all of the frames in the function are closed inside
    147   // the same block, and, for good measure, that there are no nested frames.
    148   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
    149   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
    150   for (MachineBasicBlock &BB : MF) {
    151     bool InsideFrameSequence = false;
    152     for (MachineInstr &MI : BB) {
    153       if (MI.getOpcode() == FrameSetupOpcode) {
    154         if (InsideFrameSequence)
    155           return false;
    156         InsideFrameSequence = true;
    157       } else if (MI.getOpcode() == FrameDestroyOpcode) {
    158         if (!InsideFrameSequence)
    159           return false;
    160         InsideFrameSequence = false;
    161       }
    162     }
    163 
    164     if (InsideFrameSequence)
    165       return false;
    166   }
    167 
    168   return true;
    169 }
    170 
    171 // Check whether this transformation is profitable for a particular
    172 // function - in terms of code size.
    173 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
    174                                             ContextVector &CallSeqVector) {
    175   // This transformation is always a win when we do not expect to have
    176   // a reserved call frame. Under other circumstances, it may be either
    177   // a win or a loss, and requires a heuristic.
    178   bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
    179   if (CannotReserveFrame)
    180     return true;
    181 
    182   unsigned StackAlign = TFL->getStackAlignment();
    183 
    184   int64_t Advantage = 0;
    185   for (auto CC : CallSeqVector) {
    186     // Call sites where no parameters are passed on the stack
    187     // do not affect the cost, since there needs to be no
    188     // stack adjustment.
    189     if (CC.NoStackParams)
    190       continue;
    191 
    192     if (!CC.UsePush) {
    193       // If we don't use pushes for a particular call site,
    194       // we pay for not having a reserved call frame with an
    195       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
    196       // depending on the size of the constant.
    197       // TODO: Callee-pop functions should have a smaller penalty, because
    198       // an add is needed even with a reserved call frame.
    199       Advantage -= 6;
    200     } else {
    201       // We can use pushes. First, account for the fixed costs.
    202       // We'll need a add after the call.
    203       Advantage -= 3;
    204       // If we have to realign the stack, we'll also need a sub before
    205       if (CC.ExpectedDist % StackAlign)
    206         Advantage -= 3;
    207       // Now, for each push, we save ~3 bytes. For small constants, we actually,
    208       // save more (up to 5 bytes), but 3 should be a good approximation.
    209       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
    210     }
    211   }
    212 
    213   return Advantage >= 0;
    214 }
    215 
    216 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
    217   STI = &MF.getSubtarget<X86Subtarget>();
    218   TII = STI->getInstrInfo();
    219   TFL = STI->getFrameLowering();
    220   MRI = &MF.getRegInfo();
    221 
    222   const X86RegisterInfo &RegInfo =
    223       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
    224   SlotSize = RegInfo.getSlotSize();
    225   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
    226   Log2SlotSize = Log2_32(SlotSize);
    227 
    228   if (!isLegal(MF))
    229     return false;
    230 
    231   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
    232 
    233   bool Changed = false;
    234 
    235   ContextVector CallSeqVector;
    236 
    237   for (auto &MBB : MF)
    238     for (auto &MI : MBB)
    239       if (MI.getOpcode() == FrameSetupOpcode) {
    240         CallContext Context;
    241         collectCallInfo(MF, MBB, MI, Context);
    242         CallSeqVector.push_back(Context);
    243       }
    244 
    245   if (!isProfitable(MF, CallSeqVector))
    246     return false;
    247 
    248   for (auto CC : CallSeqVector) {
    249     if (CC.UsePush) {
    250       adjustCallSequence(MF, CC);
    251       Changed = true;
    252     }
    253   }
    254 
    255   return Changed;
    256 }
    257 
    258 X86CallFrameOptimization::InstClassification
    259 X86CallFrameOptimization::classifyInstruction(
    260     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
    261     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
    262   if (MI == MBB.end())
    263     return Exit;
    264 
    265   // The instructions we actually care about are movs onto the stack
    266   int Opcode = MI->getOpcode();
    267   if (Opcode == X86::MOV32mi   || Opcode == X86::MOV32mr ||
    268       Opcode == X86::MOV64mi32 || Opcode == X86::MOV64mr)
    269     return Convert;
    270 
    271   // Not all calling conventions have only stack MOVs between the stack
    272   // adjust and the call.
    273 
    274   // We want to tolerate other instructions, to cover more cases.
    275   // In particular:
    276   // a) PCrel calls, where we expect an additional COPY of the basereg.
    277   // b) Passing frame-index addresses.
    278   // c) Calling conventions that have inreg parameters. These generate
    279   //    both copies and movs into registers.
    280   // To avoid creating lots of special cases, allow any instruction
    281   // that does not write into memory, does not def or use the stack
    282   // pointer, and does not def any register that was used by a preceding
    283   // push.
    284   // (Reading from memory is allowed, even if referenced through a
    285   // frame index, since these will get adjusted properly in PEI)
    286 
    287   // The reason for the last condition is that the pushes can't replace
    288   // the movs in place, because the order must be reversed.
    289   // So if we have a MOV32mr that uses EDX, then an instruction that defs
    290   // EDX, and then the call, after the transformation the push will use
    291   // the modified version of EDX, and not the original one.
    292   // Since we are still in SSA form at this point, we only need to
    293   // make sure we don't clobber any *physical* registers that were
    294   // used by an earlier mov that will become a push.
    295 
    296   if (MI->isCall() || MI->mayStore())
    297     return Exit;
    298 
    299   for (const MachineOperand &MO : MI->operands()) {
    300     if (!MO.isReg())
    301       continue;
    302     unsigned int Reg = MO.getReg();
    303     if (!RegInfo.isPhysicalRegister(Reg))
    304       continue;
    305     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
    306       return Exit;
    307     if (MO.isDef()) {
    308       for (unsigned int U : UsedRegs)
    309         if (RegInfo.regsOverlap(Reg, U))
    310           return Exit;
    311     }
    312   }
    313 
    314   return Skip;
    315 }
    316 
    317 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
    318                                                MachineBasicBlock &MBB,
    319                                                MachineBasicBlock::iterator I,
    320                                                CallContext &Context) {
    321   // Check that this particular call sequence is amenable to the
    322   // transformation.
    323   const X86RegisterInfo &RegInfo =
    324       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
    325   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
    326 
    327   // We expect to enter this at the beginning of a call sequence
    328   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
    329   MachineBasicBlock::iterator FrameSetup = I++;
    330   Context.FrameSetup = FrameSetup;
    331 
    332   // How much do we adjust the stack? This puts an upper bound on
    333   // the number of parameters actually passed on it.
    334   unsigned int MaxAdjust =
    335       FrameSetup->getOperand(0).getImm() >> Log2SlotSize;
    336 
    337   // A zero adjustment means no stack parameters
    338   if (!MaxAdjust) {
    339     Context.NoStackParams = true;
    340     return;
    341   }
    342 
    343   // For globals in PIC mode, we can have some LEAs here.
    344   // Ignore them, they don't bother us.
    345   // TODO: Extend this to something that covers more cases.
    346   while (I->getOpcode() == X86::LEA32r)
    347     ++I;
    348 
    349   unsigned StackPtr = RegInfo.getStackRegister();
    350   // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
    351   // register here.  If it's there, use that virtual register as stack pointer
    352   // instead.
    353   if (I->isCopy() && I->getOperand(0).isReg() && I->getOperand(1).isReg() &&
    354       I->getOperand(1).getReg() == StackPtr) {
    355     Context.SPCopy = &*I++;
    356     StackPtr = Context.SPCopy->getOperand(0).getReg();
    357   }
    358 
    359   // Scan the call setup sequence for the pattern we're looking for.
    360   // We only handle a simple case - a sequence of store instructions that
    361   // push a sequence of stack-slot-aligned values onto the stack, with
    362   // no gaps between them.
    363   if (MaxAdjust > 4)
    364     Context.MovVector.resize(MaxAdjust, nullptr);
    365 
    366   InstClassification Classification;
    367   DenseSet<unsigned int> UsedRegs;
    368 
    369   while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
    370          Exit) {
    371     if (Classification == Skip) {
    372       ++I;
    373       continue;
    374     }
    375 
    376     // We know the instruction has a supported store opcode.
    377     // We only want movs of the form:
    378     // mov imm/reg, k(%StackPtr)
    379     // If we run into something else, bail.
    380     // Note that AddrBaseReg may, counter to its name, not be a register,
    381     // but rather a frame index.
    382     // TODO: Support the fi case. This should probably work now that we
    383     // have the infrastructure to track the stack pointer within a call
    384     // sequence.
    385     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
    386         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
    387         !I->getOperand(X86::AddrScaleAmt).isImm() ||
    388         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
    389         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
    390         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
    391         !I->getOperand(X86::AddrDisp).isImm())
    392       return;
    393 
    394     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
    395     assert(StackDisp >= 0 &&
    396            "Negative stack displacement when passing parameters");
    397 
    398     // We really don't want to consider the unaligned case.
    399     if (StackDisp & (SlotSize - 1))
    400       return;
    401     StackDisp >>= Log2SlotSize;
    402 
    403     assert((size_t)StackDisp < Context.MovVector.size() &&
    404            "Function call has more parameters than the stack is adjusted for.");
    405 
    406     // If the same stack slot is being filled twice, something's fishy.
    407     if (Context.MovVector[StackDisp] != nullptr)
    408       return;
    409     Context.MovVector[StackDisp] = &*I;
    410 
    411     for (const MachineOperand &MO : I->uses()) {
    412       if (!MO.isReg())
    413         continue;
    414       unsigned int Reg = MO.getReg();
    415       if (RegInfo.isPhysicalRegister(Reg))
    416         UsedRegs.insert(Reg);
    417     }
    418 
    419     ++I;
    420   }
    421 
    422   // We now expect the end of the sequence. If we stopped early,
    423   // or reached the end of the block without finding a call, bail.
    424   if (I == MBB.end() || !I->isCall())
    425     return;
    426 
    427   Context.Call = &*I;
    428   if ((++I)->getOpcode() != FrameDestroyOpcode)
    429     return;
    430 
    431   // Now, go through the vector, and see that we don't have any gaps,
    432   // but only a series of MOVs.
    433   auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
    434   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
    435     if (*MMI == nullptr)
    436       break;
    437 
    438   // If the call had no parameters, do nothing
    439   if (MMI == Context.MovVector.begin())
    440     return;
    441 
    442   // We are either at the last parameter, or a gap.
    443   // Make sure it's not a gap
    444   for (; MMI != MME; ++MMI)
    445     if (*MMI != nullptr)
    446       return;
    447 
    448   Context.UsePush = true;
    449 }
    450 
    451 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
    452                                                   const CallContext &Context) {
    453   // Ok, we can in fact do the transformation for this call.
    454   // Do not remove the FrameSetup instruction, but adjust the parameters.
    455   // PEI will end up finalizing the handling of this.
    456   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
    457   MachineBasicBlock &MBB = *(FrameSetup->getParent());
    458   FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
    459 
    460   DebugLoc DL = FrameSetup->getDebugLoc();
    461   bool Is64Bit = STI->is64Bit();
    462   // Now, iterate through the vector in reverse order, and replace the movs
    463   // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
    464   // replace uses.
    465   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
    466     MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
    467     MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
    468     MachineBasicBlock::iterator Push = nullptr;
    469     unsigned PushOpcode;
    470     switch (MOV->getOpcode()) {
    471     default:
    472       llvm_unreachable("Unexpected Opcode!");
    473     case X86::MOV32mi:
    474     case X86::MOV64mi32:
    475       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
    476       // If the operand is a small (8-bit) immediate, we can use a
    477       // PUSH instruction with a shorter encoding.
    478       // Note that isImm() may fail even though this is a MOVmi, because
    479       // the operand can also be a symbol.
    480       if (PushOp.isImm()) {
    481         int64_t Val = PushOp.getImm();
    482         if (isInt<8>(Val))
    483           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
    484       }
    485       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
    486                  .addOperand(PushOp);
    487       break;
    488     case X86::MOV32mr:
    489     case X86::MOV64mr:
    490       unsigned int Reg = PushOp.getReg();
    491 
    492       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
    493       // in preparation for the PUSH64. The upper 32 bits can be undef.
    494       if (Is64Bit && MOV->getOpcode() == X86::MOV32mr) {
    495         unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
    496         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
    497         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
    498         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
    499           .addReg(UndefReg)
    500           .addOperand(PushOp)
    501           .addImm(X86::sub_32bit);
    502       }
    503 
    504       // If PUSHrmm is not slow on this target, try to fold the source of the
    505       // push into the instruction.
    506       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
    507 
    508       // Check that this is legal to fold. Right now, we're extremely
    509       // conservative about that.
    510       MachineInstr *DefMov = nullptr;
    511       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
    512         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
    513         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
    514 
    515         unsigned NumOps = DefMov->getDesc().getNumOperands();
    516         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
    517           Push->addOperand(DefMov->getOperand(i));
    518 
    519         DefMov->eraseFromParent();
    520       } else {
    521         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
    522         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
    523                    .addReg(Reg)
    524                    .getInstr();
    525       }
    526       break;
    527     }
    528 
    529     // For debugging, when using SP-based CFA, we need to adjust the CFA
    530     // offset after each push.
    531     // TODO: This is needed only if we require precise CFA.
    532     if (!TFL->hasFP(MF))
    533       TFL->BuildCFI(
    534           MBB, std::next(Push), DL,
    535           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
    536 
    537     MBB.erase(MOV);
    538   }
    539 
    540   // The stack-pointer copy is no longer used in the call sequences.
    541   // There should not be any other users, but we can't commit to that, so:
    542   if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
    543     Context.SPCopy->eraseFromParent();
    544 
    545   // Once we've done this, we need to make sure PEI doesn't assume a reserved
    546   // frame.
    547   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
    548   FuncInfo->setHasPushSequences(true);
    549 }
    550 
    551 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
    552     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
    553   // Do an extremely restricted form of load folding.
    554   // ISel will often create patterns like:
    555   // movl    4(%edi), %eax
    556   // movl    8(%edi), %ecx
    557   // movl    12(%edi), %edx
    558   // movl    %edx, 8(%esp)
    559   // movl    %ecx, 4(%esp)
    560   // movl    %eax, (%esp)
    561   // call
    562   // Get rid of those with prejudice.
    563   if (!TargetRegisterInfo::isVirtualRegister(Reg))
    564     return nullptr;
    565 
    566   // Make sure this is the only use of Reg.
    567   if (!MRI->hasOneNonDBGUse(Reg))
    568     return nullptr;
    569 
    570   MachineInstr &DefMI = *MRI->getVRegDef(Reg);
    571 
    572   // Make sure the def is a MOV from memory.
    573   // If the def is in another block, give up.
    574   if ((DefMI.getOpcode() != X86::MOV32rm &&
    575        DefMI.getOpcode() != X86::MOV64rm) ||
    576       DefMI.getParent() != FrameSetup->getParent())
    577     return nullptr;
    578 
    579   // Make sure we don't have any instructions between DefMI and the
    580   // push that make folding the load illegal.
    581   for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
    582     if (I->isLoadFoldBarrier())
    583       return nullptr;
    584 
    585   return &DefMI;
    586 }
    587