Home | History | Annotate | Download | only in X86
      1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the X86 implementation of TargetFrameLowering class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "X86FrameLowering.h"
     15 #include "X86InstrBuilder.h"
     16 #include "X86InstrInfo.h"
     17 #include "X86MachineFunctionInfo.h"
     18 #include "X86Subtarget.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/Analysis/EHPersonalities.h"
     22 #include "llvm/CodeGen/MachineFrameInfo.h"
     23 #include "llvm/CodeGen/MachineFunction.h"
     24 #include "llvm/CodeGen/MachineInstrBuilder.h"
     25 #include "llvm/CodeGen/MachineModuleInfo.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/WinEHFuncInfo.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/MC/MCAsmInfo.h"
     31 #include "llvm/MC/MCSymbol.h"
     32 #include "llvm/Target/TargetOptions.h"
     33 #include "llvm/Support/Debug.h"
     34 #include <cstdlib>
     35 
     36 using namespace llvm;
     37 
     38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
     39                                    unsigned StackAlignOverride)
     40     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
     41                           STI.is64Bit() ? -8 : -4),
     42       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
     43   // Cache a bunch of frame-related predicates for this subtarget.
     44   SlotSize = TRI->getSlotSize();
     45   Is64Bit = STI.is64Bit();
     46   IsLP64 = STI.isTarget64BitLP64();
     47   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
     48   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
     49   StackPtr = TRI->getStackRegister();
     50 }
     51 
     52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
     53   return !MF.getFrameInfo()->hasVarSizedObjects() &&
     54          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
     55 }
     56 
     57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
     58 /// call frame pseudos can be simplified.  Having a FP, as in the default
     59 /// implementation, is not sufficient here since we can't always use it.
     60 /// Use a more nuanced condition.
     61 bool
     62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
     63   return hasReservedCallFrame(MF) ||
     64          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
     65          TRI->hasBasePointer(MF);
     66 }
     67 
     68 // needsFrameIndexResolution - Do we need to perform FI resolution for
     69 // this function. Normally, this is required only when the function
     70 // has any stack objects. However, FI resolution actually has another job,
     71 // not apparent from the title - it resolves callframesetup/destroy
     72 // that were not simplified earlier.
     73 // So, this is required for x86 functions that have push sequences even
     74 // when there are no stack objects.
     75 bool
     76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
     77   return MF.getFrameInfo()->hasStackObjects() ||
     78          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
     79 }
     80 
     81 /// hasFP - Return true if the specified function should have a dedicated frame
     82 /// pointer register.  This is true if the function has variable sized allocas
     83 /// or if frame pointer elimination is disabled.
     84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
     85   const MachineFrameInfo *MFI = MF.getFrameInfo();
     86   const MachineModuleInfo &MMI = MF.getMMI();
     87 
     88   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
     89           TRI->needsStackRealignment(MF) ||
     90           MFI->hasVarSizedObjects() ||
     91           MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
     92           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
     93           MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
     94           MFI->hasStackMap() || MFI->hasPatchPoint() ||
     95           MFI->hasCopyImplyingStackAdjustment());
     96 }
     97 
     98 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
     99   if (IsLP64) {
    100     if (isInt<8>(Imm))
    101       return X86::SUB64ri8;
    102     return X86::SUB64ri32;
    103   } else {
    104     if (isInt<8>(Imm))
    105       return X86::SUB32ri8;
    106     return X86::SUB32ri;
    107   }
    108 }
    109 
    110 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
    111   if (IsLP64) {
    112     if (isInt<8>(Imm))
    113       return X86::ADD64ri8;
    114     return X86::ADD64ri32;
    115   } else {
    116     if (isInt<8>(Imm))
    117       return X86::ADD32ri8;
    118     return X86::ADD32ri;
    119   }
    120 }
    121 
    122 static unsigned getSUBrrOpcode(unsigned isLP64) {
    123   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
    124 }
    125 
    126 static unsigned getADDrrOpcode(unsigned isLP64) {
    127   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
    128 }
    129 
    130 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
    131   if (IsLP64) {
    132     if (isInt<8>(Imm))
    133       return X86::AND64ri8;
    134     return X86::AND64ri32;
    135   }
    136   if (isInt<8>(Imm))
    137     return X86::AND32ri8;
    138   return X86::AND32ri;
    139 }
    140 
    141 static unsigned getLEArOpcode(unsigned IsLP64) {
    142   return IsLP64 ? X86::LEA64r : X86::LEA32r;
    143 }
    144 
    145 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
    146 /// when it reaches the "return" instruction. We can then pop a stack object
    147 /// to this register without worry about clobbering it.
    148 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
    149                                        MachineBasicBlock::iterator &MBBI,
    150                                        const X86RegisterInfo *TRI,
    151                                        bool Is64Bit) {
    152   const MachineFunction *MF = MBB.getParent();
    153   const Function *F = MF->getFunction();
    154   if (!F || MF->getMMI().callsEHReturn())
    155     return 0;
    156 
    157   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
    158 
    159   unsigned Opc = MBBI->getOpcode();
    160   switch (Opc) {
    161   default: return 0;
    162   case TargetOpcode::PATCHABLE_RET:
    163   case X86::RET:
    164   case X86::RETL:
    165   case X86::RETQ:
    166   case X86::RETIL:
    167   case X86::RETIQ:
    168   case X86::TCRETURNdi:
    169   case X86::TCRETURNri:
    170   case X86::TCRETURNmi:
    171   case X86::TCRETURNdi64:
    172   case X86::TCRETURNri64:
    173   case X86::TCRETURNmi64:
    174   case X86::EH_RETURN:
    175   case X86::EH_RETURN64: {
    176     SmallSet<uint16_t, 8> Uses;
    177     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
    178       MachineOperand &MO = MBBI->getOperand(i);
    179       if (!MO.isReg() || MO.isDef())
    180         continue;
    181       unsigned Reg = MO.getReg();
    182       if (!Reg)
    183         continue;
    184       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    185         Uses.insert(*AI);
    186     }
    187 
    188     for (auto CS : AvailableRegs)
    189       if (!Uses.count(CS) && CS != X86::RIP)
    190         return CS;
    191   }
    192   }
    193 
    194   return 0;
    195 }
    196 
    197 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
    198   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
    199     unsigned Reg = RegMask.PhysReg;
    200 
    201     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
    202         Reg == X86::AH || Reg == X86::AL)
    203       return true;
    204   }
    205 
    206   return false;
    207 }
    208 
    209 /// Check if the flags need to be preserved before the terminators.
    210 /// This would be the case, if the eflags is live-in of the region
    211 /// composed by the terminators or live-out of that region, without
    212 /// being defined by a terminator.
    213 static bool
    214 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
    215   for (const MachineInstr &MI : MBB.terminators()) {
    216     bool BreakNext = false;
    217     for (const MachineOperand &MO : MI.operands()) {
    218       if (!MO.isReg())
    219         continue;
    220       unsigned Reg = MO.getReg();
    221       if (Reg != X86::EFLAGS)
    222         continue;
    223 
    224       // This terminator needs an eflags that is not defined
    225       // by a previous another terminator:
    226       // EFLAGS is live-in of the region composed by the terminators.
    227       if (!MO.isDef())
    228         return true;
    229       // This terminator defines the eflags, i.e., we don't need to preserve it.
    230       // However, we still need to check this specific terminator does not
    231       // read a live-in value.
    232       BreakNext = true;
    233     }
    234     // We found a definition of the eflags, no need to preserve them.
    235     if (BreakNext)
    236       return false;
    237   }
    238 
    239   // None of the terminators use or define the eflags.
    240   // Check if they are live-out, that would imply we need to preserve them.
    241   for (const MachineBasicBlock *Succ : MBB.successors())
    242     if (Succ->isLiveIn(X86::EFLAGS))
    243       return true;
    244 
    245   return false;
    246 }
    247 
    248 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
    249 /// stack pointer by a constant value.
    250 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
    251                                     MachineBasicBlock::iterator &MBBI,
    252                                     int64_t NumBytes, bool InEpilogue) const {
    253   bool isSub = NumBytes < 0;
    254   uint64_t Offset = isSub ? -NumBytes : NumBytes;
    255 
    256   uint64_t Chunk = (1LL << 31) - 1;
    257   DebugLoc DL = MBB.findDebugLoc(MBBI);
    258 
    259   while (Offset) {
    260     if (Offset > Chunk) {
    261       // Rather than emit a long series of instructions for large offsets,
    262       // load the offset into a register and do one sub/add
    263       unsigned Reg = 0;
    264 
    265       if (isSub && !isEAXLiveIn(MBB))
    266         Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
    267       else
    268         Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    269 
    270       if (Reg) {
    271         unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
    272         BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
    273           .addImm(Offset);
    274         Opc = isSub
    275           ? getSUBrrOpcode(Is64Bit)
    276           : getADDrrOpcode(Is64Bit);
    277         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    278           .addReg(StackPtr)
    279           .addReg(Reg);
    280         MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    281         Offset = 0;
    282         continue;
    283       }
    284     }
    285 
    286     uint64_t ThisVal = std::min(Offset, Chunk);
    287     if (ThisVal == (Is64Bit ? 8 : 4)) {
    288       // Use push / pop instead.
    289       unsigned Reg = isSub
    290         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
    291         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
    292       if (Reg) {
    293         unsigned Opc = isSub
    294           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
    295           : (Is64Bit ? X86::POP64r  : X86::POP32r);
    296         MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
    297           .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
    298         if (isSub)
    299           MI->setFlag(MachineInstr::FrameSetup);
    300         else
    301           MI->setFlag(MachineInstr::FrameDestroy);
    302         Offset -= ThisVal;
    303         continue;
    304       }
    305     }
    306 
    307     MachineInstrBuilder MI = BuildStackAdjustment(
    308         MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
    309     if (isSub)
    310       MI.setMIFlag(MachineInstr::FrameSetup);
    311     else
    312       MI.setMIFlag(MachineInstr::FrameDestroy);
    313 
    314     Offset -= ThisVal;
    315   }
    316 }
    317 
    318 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
    319     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    320     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
    321   assert(Offset != 0 && "zero offset stack adjustment requested");
    322 
    323   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
    324   // is tricky.
    325   bool UseLEA;
    326   if (!InEpilogue) {
    327     // Check if inserting the prologue at the beginning
    328     // of MBB would require to use LEA operations.
    329     // We need to use LEA operations if EFLAGS is live in, because
    330     // it means an instruction will read it before it gets defined.
    331     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
    332   } else {
    333     // If we can use LEA for SP but we shouldn't, check that none
    334     // of the terminators uses the eflags. Otherwise we will insert
    335     // a ADD that will redefine the eflags and break the condition.
    336     // Alternatively, we could move the ADD, but this may not be possible
    337     // and is an optimization anyway.
    338     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
    339     if (UseLEA && !STI.useLeaForSP())
    340       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
    341     // If that assert breaks, that means we do not do the right thing
    342     // in canUseAsEpilogue.
    343     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
    344            "We shouldn't have allowed this insertion point");
    345   }
    346 
    347   MachineInstrBuilder MI;
    348   if (UseLEA) {
    349     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
    350                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
    351                               StackPtr),
    352                       StackPtr, false, Offset);
    353   } else {
    354     bool IsSub = Offset < 0;
    355     uint64_t AbsOffset = IsSub ? -Offset : Offset;
    356     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
    357                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
    358     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
    359              .addReg(StackPtr)
    360              .addImm(AbsOffset);
    361     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
    362   }
    363   return MI;
    364 }
    365 
    366 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
    367                                      MachineBasicBlock::iterator &MBBI,
    368                                      bool doMergeWithPrevious) const {
    369   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
    370       (!doMergeWithPrevious && MBBI == MBB.end()))
    371     return 0;
    372 
    373   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
    374   MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
    375                                                        : std::next(MBBI);
    376   unsigned Opc = PI->getOpcode();
    377   int Offset = 0;
    378 
    379   if (!doMergeWithPrevious && NI != MBB.end() &&
    380       NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) {
    381     // Don't merge with the next instruction if it has CFI.
    382     return Offset;
    383   }
    384 
    385   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
    386        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
    387       PI->getOperand(0).getReg() == StackPtr){
    388     assert(PI->getOperand(1).getReg() == StackPtr);
    389     Offset += PI->getOperand(2).getImm();
    390     MBB.erase(PI);
    391     if (!doMergeWithPrevious) MBBI = NI;
    392   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
    393              PI->getOperand(0).getReg() == StackPtr &&
    394              PI->getOperand(1).getReg() == StackPtr &&
    395              PI->getOperand(2).getImm() == 1 &&
    396              PI->getOperand(3).getReg() == X86::NoRegister &&
    397              PI->getOperand(5).getReg() == X86::NoRegister) {
    398     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
    399     Offset += PI->getOperand(4).getImm();
    400     MBB.erase(PI);
    401     if (!doMergeWithPrevious) MBBI = NI;
    402   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
    403               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
    404              PI->getOperand(0).getReg() == StackPtr) {
    405     assert(PI->getOperand(1).getReg() == StackPtr);
    406     Offset -= PI->getOperand(2).getImm();
    407     MBB.erase(PI);
    408     if (!doMergeWithPrevious) MBBI = NI;
    409   }
    410 
    411   return Offset;
    412 }
    413 
    414 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
    415                                 MachineBasicBlock::iterator MBBI,
    416                                 const DebugLoc &DL,
    417                                 const MCCFIInstruction &CFIInst) const {
    418   MachineFunction &MF = *MBB.getParent();
    419   unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
    420   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
    421       .addCFIIndex(CFIIndex);
    422 }
    423 
    424 void X86FrameLowering::emitCalleeSavedFrameMoves(
    425     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
    426     const DebugLoc &DL) const {
    427   MachineFunction &MF = *MBB.getParent();
    428   MachineFrameInfo *MFI = MF.getFrameInfo();
    429   MachineModuleInfo &MMI = MF.getMMI();
    430   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
    431 
    432   // Add callee saved registers to move list.
    433   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
    434   if (CSI.empty()) return;
    435 
    436   // Calculate offsets.
    437   for (std::vector<CalleeSavedInfo>::const_iterator
    438          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
    439     int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
    440     unsigned Reg = I->getReg();
    441 
    442     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
    443     BuildCFI(MBB, MBBI, DL,
    444              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
    445   }
    446 }
    447 
    448 MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
    449                                                MachineBasicBlock &MBB,
    450                                                MachineBasicBlock::iterator MBBI,
    451                                                const DebugLoc &DL,
    452                                                bool InProlog) const {
    453   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
    454   if (STI.isTargetWindowsCoreCLR()) {
    455     if (InProlog) {
    456       return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
    457     } else {
    458       return emitStackProbeInline(MF, MBB, MBBI, DL, false);
    459     }
    460   } else {
    461     return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
    462   }
    463 }
    464 
    465 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
    466                                         MachineBasicBlock &PrologMBB) const {
    467   const StringRef ChkStkStubSymbol = "__chkstk_stub";
    468   MachineInstr *ChkStkStub = nullptr;
    469 
    470   for (MachineInstr &MI : PrologMBB) {
    471     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
    472         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
    473       ChkStkStub = &MI;
    474       break;
    475     }
    476   }
    477 
    478   if (ChkStkStub != nullptr) {
    479     assert(!ChkStkStub->isBundled() &&
    480            "Not expecting bundled instructions here");
    481     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
    482     assert(std::prev(MBBI).operator==(ChkStkStub) &&
    483       "MBBI expected after __chkstk_stub.");
    484     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
    485     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
    486     ChkStkStub->eraseFromParent();
    487   }
    488 }
    489 
    490 MachineInstr *X86FrameLowering::emitStackProbeInline(
    491     MachineFunction &MF, MachineBasicBlock &MBB,
    492     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
    493   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
    494   assert(STI.is64Bit() && "different expansion needed for 32 bit");
    495   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
    496   const TargetInstrInfo &TII = *STI.getInstrInfo();
    497   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
    498 
    499   // RAX contains the number of bytes of desired stack adjustment.
    500   // The handling here assumes this value has already been updated so as to
    501   // maintain stack alignment.
    502   //
    503   // We need to exit with RSP modified by this amount and execute suitable
    504   // page touches to notify the OS that we're growing the stack responsibly.
    505   // All stack probing must be done without modifying RSP.
    506   //
    507   // MBB:
    508   //    SizeReg = RAX;
    509   //    ZeroReg = 0
    510   //    CopyReg = RSP
    511   //    Flags, TestReg = CopyReg - SizeReg
    512   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
    513   //    LimitReg = gs magic thread env access
    514   //    if FinalReg >= LimitReg goto ContinueMBB
    515   // RoundBB:
    516   //    RoundReg = page address of FinalReg
    517   // LoopMBB:
    518   //    LoopReg = PHI(LimitReg,ProbeReg)
    519   //    ProbeReg = LoopReg - PageSize
    520   //    [ProbeReg] = 0
    521   //    if (ProbeReg > RoundReg) goto LoopMBB
    522   // ContinueMBB:
    523   //    RSP = RSP - RAX
    524   //    [rest of original MBB]
    525 
    526   // Set up the new basic blocks
    527   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
    528   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
    529   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
    530 
    531   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
    532   MF.insert(MBBIter, RoundMBB);
    533   MF.insert(MBBIter, LoopMBB);
    534   MF.insert(MBBIter, ContinueMBB);
    535 
    536   // Split MBB and move the tail portion down to ContinueMBB.
    537   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
    538   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
    539   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
    540 
    541   // Some useful constants
    542   const int64_t ThreadEnvironmentStackLimit = 0x10;
    543   const int64_t PageSize = 0x1000;
    544   const int64_t PageMask = ~(PageSize - 1);
    545 
    546   // Registers we need. For the normal case we use virtual
    547   // registers. For the prolog expansion we use RAX, RCX and RDX.
    548   MachineRegisterInfo &MRI = MF.getRegInfo();
    549   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
    550   const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
    551                                     : MRI.createVirtualRegister(RegClass),
    552                  ZeroReg = InProlog ? (unsigned)X86::RCX
    553                                     : MRI.createVirtualRegister(RegClass),
    554                  CopyReg = InProlog ? (unsigned)X86::RDX
    555                                     : MRI.createVirtualRegister(RegClass),
    556                  TestReg = InProlog ? (unsigned)X86::RDX
    557                                     : MRI.createVirtualRegister(RegClass),
    558                  FinalReg = InProlog ? (unsigned)X86::RDX
    559                                      : MRI.createVirtualRegister(RegClass),
    560                  RoundedReg = InProlog ? (unsigned)X86::RDX
    561                                        : MRI.createVirtualRegister(RegClass),
    562                  LimitReg = InProlog ? (unsigned)X86::RCX
    563                                      : MRI.createVirtualRegister(RegClass),
    564                  JoinReg = InProlog ? (unsigned)X86::RCX
    565                                     : MRI.createVirtualRegister(RegClass),
    566                  ProbeReg = InProlog ? (unsigned)X86::RCX
    567                                      : MRI.createVirtualRegister(RegClass);
    568 
    569   // SP-relative offsets where we can save RCX and RDX.
    570   int64_t RCXShadowSlot = 0;
    571   int64_t RDXShadowSlot = 0;
    572 
    573   // If inlining in the prolog, save RCX and RDX.
    574   // Future optimization: don't save or restore if not live in.
    575   if (InProlog) {
    576     // Compute the offsets. We need to account for things already
    577     // pushed onto the stack at this point: return address, frame
    578     // pointer (if used), and callee saves.
    579     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    580     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
    581     const bool HasFP = hasFP(MF);
    582     RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
    583     RDXShadowSlot = RCXShadowSlot + 8;
    584     // Emit the saves.
    585     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
    586                  RCXShadowSlot)
    587         .addReg(X86::RCX);
    588     addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
    589                  RDXShadowSlot)
    590         .addReg(X86::RDX);
    591   } else {
    592     // Not in the prolog. Copy RAX to a virtual reg.
    593     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
    594   }
    595 
    596   // Add code to MBB to check for overflow and set the new target stack pointer
    597   // to zero if so.
    598   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
    599       .addReg(ZeroReg, RegState::Undef)
    600       .addReg(ZeroReg, RegState::Undef);
    601   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
    602   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
    603       .addReg(CopyReg)
    604       .addReg(SizeReg);
    605   BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
    606       .addReg(TestReg)
    607       .addReg(ZeroReg);
    608 
    609   // FinalReg now holds final stack pointer value, or zero if
    610   // allocation would overflow. Compare against the current stack
    611   // limit from the thread environment block. Note this limit is the
    612   // lowest touched page on the stack, not the point at which the OS
    613   // will cause an overflow exception, so this is just an optimization
    614   // to avoid unnecessarily touching pages that are below the current
    615   // SP but already commited to the stack by the OS.
    616   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
    617       .addReg(0)
    618       .addImm(1)
    619       .addReg(0)
    620       .addImm(ThreadEnvironmentStackLimit)
    621       .addReg(X86::GS);
    622   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
    623   // Jump if the desired stack pointer is at or above the stack limit.
    624   BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
    625 
    626   // Add code to roundMBB to round the final stack pointer to a page boundary.
    627   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
    628       .addReg(FinalReg)
    629       .addImm(PageMask);
    630   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
    631 
    632   // LimitReg now holds the current stack limit, RoundedReg page-rounded
    633   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
    634   // and probe until we reach RoundedReg.
    635   if (!InProlog) {
    636     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
    637         .addReg(LimitReg)
    638         .addMBB(RoundMBB)
    639         .addReg(ProbeReg)
    640         .addMBB(LoopMBB);
    641   }
    642 
    643   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
    644                false, -PageSize);
    645 
    646   // Probe by storing a byte onto the stack.
    647   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
    648       .addReg(ProbeReg)
    649       .addImm(1)
    650       .addReg(0)
    651       .addImm(0)
    652       .addReg(0)
    653       .addImm(0);
    654   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
    655       .addReg(RoundedReg)
    656       .addReg(ProbeReg);
    657   BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
    658 
    659   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
    660 
    661   // If in prolog, restore RDX and RCX.
    662   if (InProlog) {
    663     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
    664                          X86::RCX),
    665                  X86::RSP, false, RCXShadowSlot);
    666     addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
    667                          X86::RDX),
    668                  X86::RSP, false, RDXShadowSlot);
    669   }
    670 
    671   // Now that the probing is done, add code to continueMBB to update
    672   // the stack pointer for real.
    673   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
    674       .addReg(X86::RSP)
    675       .addReg(SizeReg);
    676 
    677   // Add the control flow edges we need.
    678   MBB.addSuccessor(ContinueMBB);
    679   MBB.addSuccessor(RoundMBB);
    680   RoundMBB->addSuccessor(LoopMBB);
    681   LoopMBB->addSuccessor(ContinueMBB);
    682   LoopMBB->addSuccessor(LoopMBB);
    683 
    684   // Mark all the instructions added to the prolog as frame setup.
    685   if (InProlog) {
    686     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
    687       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
    688     }
    689     for (MachineInstr &MI : *RoundMBB) {
    690       MI.setFlag(MachineInstr::FrameSetup);
    691     }
    692     for (MachineInstr &MI : *LoopMBB) {
    693       MI.setFlag(MachineInstr::FrameSetup);
    694     }
    695     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
    696          CMBBI != ContinueMBBI; ++CMBBI) {
    697       CMBBI->setFlag(MachineInstr::FrameSetup);
    698     }
    699   }
    700 
    701   // Possible TODO: physreg liveness for InProlog case.
    702 
    703   return &*ContinueMBBI;
    704 }
    705 
    706 MachineInstr *X86FrameLowering::emitStackProbeCall(
    707     MachineFunction &MF, MachineBasicBlock &MBB,
    708     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
    709   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
    710 
    711   unsigned CallOp;
    712   if (Is64Bit)
    713     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
    714   else
    715     CallOp = X86::CALLpcrel32;
    716 
    717   const char *Symbol;
    718   if (Is64Bit) {
    719     if (STI.isTargetCygMing()) {
    720       Symbol = "___chkstk_ms";
    721     } else {
    722       Symbol = "__chkstk";
    723     }
    724   } else if (STI.isTargetCygMing())
    725     Symbol = "_alloca";
    726   else
    727     Symbol = "_chkstk";
    728 
    729   MachineInstrBuilder CI;
    730   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
    731 
    732   // All current stack probes take AX and SP as input, clobber flags, and
    733   // preserve all registers. x86_64 probes leave RSP unmodified.
    734   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
    735     // For the large code model, we have to call through a register. Use R11,
    736     // as it is scratch in all supported calling conventions.
    737     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
    738         .addExternalSymbol(Symbol);
    739     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
    740   } else {
    741     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
    742   }
    743 
    744   unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
    745   unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
    746   CI.addReg(AX, RegState::Implicit)
    747       .addReg(SP, RegState::Implicit)
    748       .addReg(AX, RegState::Define | RegState::Implicit)
    749       .addReg(SP, RegState::Define | RegState::Implicit)
    750       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
    751 
    752   if (Is64Bit) {
    753     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
    754     // themselves. It also does not clobber %rax so we can reuse it when
    755     // adjusting %rsp.
    756     BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
    757         .addReg(X86::RSP)
    758         .addReg(X86::RAX);
    759   }
    760 
    761   if (InProlog) {
    762     // Apply the frame setup flag to all inserted instrs.
    763     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
    764       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
    765   }
    766 
    767   return &*MBBI;
    768 }
    769 
    770 MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
    771     MachineFunction &MF, MachineBasicBlock &MBB,
    772     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
    773 
    774   assert(InProlog && "ChkStkStub called outside prolog!");
    775 
    776   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
    777       .addExternalSymbol("__chkstk_stub");
    778 
    779   return &*MBBI;
    780 }
    781 
    782 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
    783   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
    784   // and might require smaller successive adjustments.
    785   const uint64_t Win64MaxSEHOffset = 128;
    786   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
    787   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
    788   return SEHFrameOffset & -16;
    789 }
    790 
    791 // If we're forcing a stack realignment we can't rely on just the frame
    792 // info, we need to know the ABI stack alignment as well in case we
    793 // have a call out.  Otherwise just make sure we have some alignment - we'll
    794 // go with the minimum SlotSize.
    795 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
    796   const MachineFrameInfo *MFI = MF.getFrameInfo();
    797   uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
    798   unsigned StackAlign = getStackAlignment();
    799   if (MF.getFunction()->hasFnAttribute("stackrealign")) {
    800     if (MFI->hasCalls())
    801       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
    802     else if (MaxAlign < SlotSize)
    803       MaxAlign = SlotSize;
    804   }
    805   return MaxAlign;
    806 }
    807 
    808 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
    809                                           MachineBasicBlock::iterator MBBI,
    810                                           const DebugLoc &DL, unsigned Reg,
    811                                           uint64_t MaxAlign) const {
    812   uint64_t Val = -MaxAlign;
    813   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
    814   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
    815                          .addReg(Reg)
    816                          .addImm(Val)
    817                          .setMIFlag(MachineInstr::FrameSetup);
    818 
    819   // The EFLAGS implicit def is dead.
    820   MI->getOperand(3).setIsDead();
    821 }
    822 
    823 /// emitPrologue - Push callee-saved registers onto the stack, which
    824 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
    825 /// space for local variables. Also emit labels used by the exception handler to
    826 /// generate the exception handling frames.
    827 
    828 /*
    829   Here's a gist of what gets emitted:
    830 
    831   ; Establish frame pointer, if needed
    832   [if needs FP]
    833       push  %rbp
    834       .cfi_def_cfa_offset 16
    835       .cfi_offset %rbp, -16
    836       .seh_pushreg %rpb
    837       mov  %rsp, %rbp
    838       .cfi_def_cfa_register %rbp
    839 
    840   ; Spill general-purpose registers
    841   [for all callee-saved GPRs]
    842       pushq %<reg>
    843       [if not needs FP]
    844          .cfi_def_cfa_offset (offset from RETADDR)
    845       .seh_pushreg %<reg>
    846 
    847   ; If the required stack alignment > default stack alignment
    848   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
    849   ; of unknown size in the stack frame.
    850   [if stack needs re-alignment]
    851       and  $MASK, %rsp
    852 
    853   ; Allocate space for locals
    854   [if target is Windows and allocated space > 4096 bytes]
    855       ; Windows needs special care for allocations larger
    856       ; than one page.
    857       mov $NNN, %rax
    858       call ___chkstk_ms/___chkstk
    859       sub  %rax, %rsp
    860   [else]
    861       sub  $NNN, %rsp
    862 
    863   [if needs FP]
    864       .seh_stackalloc (size of XMM spill slots)
    865       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
    866   [else]
    867       .seh_stackalloc NNN
    868 
    869   ; Spill XMMs
    870   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
    871   ; they may get spilled on any platform, if the current function
    872   ; calls @llvm.eh.unwind.init
    873   [if needs FP]
    874       [for all callee-saved XMM registers]
    875           movaps  %<xmm reg>, -MMM(%rbp)
    876       [for all callee-saved XMM registers]
    877           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
    878               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
    879   [else]
    880       [for all callee-saved XMM registers]
    881           movaps  %<xmm reg>, KKK(%rsp)
    882       [for all callee-saved XMM registers]
    883           .seh_savexmm %<xmm reg>, KKK
    884 
    885   .seh_endprologue
    886 
    887   [if needs base pointer]
    888       mov  %rsp, %rbx
    889       [if needs to restore base pointer]
    890           mov %rsp, -MMM(%rbp)
    891 
    892   ; Emit CFI info
    893   [if needs FP]
    894       [for all callee-saved registers]
    895           .cfi_offset %<reg>, (offset from %rbp)
    896   [else]
    897        .cfi_def_cfa_offset (offset from RETADDR)
    898       [for all callee-saved registers]
    899           .cfi_offset %<reg>, (offset from %rsp)
    900 
    901   Notes:
    902   - .seh directives are emitted only for Windows 64 ABI
    903   - .cfi directives are emitted for all other ABIs
    904   - for 32-bit code, substitute %e?? registers for %r??
    905 */
    906 
    907 void X86FrameLowering::emitPrologue(MachineFunction &MF,
    908                                     MachineBasicBlock &MBB) const {
    909   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
    910          "MF used frame lowering for wrong subtarget");
    911   MachineBasicBlock::iterator MBBI = MBB.begin();
    912   MachineFrameInfo *MFI = MF.getFrameInfo();
    913   const Function *Fn = MF.getFunction();
    914   MachineModuleInfo &MMI = MF.getMMI();
    915   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
    916   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
    917   uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
    918   bool IsFunclet = MBB.isEHFuncletEntry();
    919   EHPersonality Personality = EHPersonality::Unknown;
    920   if (Fn->hasPersonalityFn())
    921     Personality = classifyEHPersonality(Fn->getPersonalityFn());
    922   bool FnHasClrFunclet =
    923       MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
    924   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
    925   bool HasFP = hasFP(MF);
    926   bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
    927   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
    928   bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
    929   bool NeedsDwarfCFI =
    930       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
    931   unsigned FramePtr = TRI->getFrameRegister(MF);
    932   const unsigned MachineFramePtr =
    933       STI.isTarget64BitILP32()
    934           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
    935   unsigned BasePtr = TRI->getBaseRegister();
    936 
    937   // Debug location must be unknown since the first debug location is used
    938   // to determine the end of the prologue.
    939   DebugLoc DL;
    940 
    941   // Add RETADDR move area to callee saved frame size.
    942   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
    943   if (TailCallReturnAddrDelta && IsWin64Prologue)
    944     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
    945 
    946   if (TailCallReturnAddrDelta < 0)
    947     X86FI->setCalleeSavedFrameSize(
    948       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
    949 
    950   bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
    951 
    952   // The default stack probe size is 4096 if the function has no stackprobesize
    953   // attribute.
    954   unsigned StackProbeSize = 4096;
    955   if (Fn->hasFnAttribute("stack-probe-size"))
    956     Fn->getFnAttribute("stack-probe-size")
    957         .getValueAsString()
    958         .getAsInteger(0, StackProbeSize);
    959 
    960   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
    961   // function, and use up to 128 bytes of stack space, don't have a frame
    962   // pointer, calls, or dynamic alloca then we do not need to adjust the
    963   // stack pointer (we fit in the Red Zone). We also check that we don't
    964   // push and pop from the stack.
    965   if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
    966       !TRI->needsStackRealignment(MF) &&
    967       !MFI->hasVarSizedObjects() &&             // No dynamic alloca.
    968       !MFI->adjustsStack() &&                   // No calls.
    969       !IsWin64CC &&                             // Win64 has no Red Zone
    970       !MFI->hasCopyImplyingStackAdjustment() && // Don't push and pop.
    971       !MF.shouldSplitStack()) {                 // Regular stack
    972     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
    973     if (HasFP) MinSize += SlotSize;
    974     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
    975     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
    976     MFI->setStackSize(StackSize);
    977   }
    978 
    979   // Insert stack pointer adjustment for later moving of return addr.  Only
    980   // applies to tail call optimized functions where the callee argument stack
    981   // size is bigger than the callers.
    982   if (TailCallReturnAddrDelta < 0) {
    983     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
    984                          /*InEpilogue=*/false)
    985         .setMIFlag(MachineInstr::FrameSetup);
    986   }
    987 
    988   // Mapping for machine moves:
    989   //
    990   //   DST: VirtualFP AND
    991   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
    992   //        ELSE                        => DW_CFA_def_cfa
    993   //
    994   //   SRC: VirtualFP AND
    995   //        DST: Register               => DW_CFA_def_cfa_register
    996   //
    997   //   ELSE
    998   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
    999   //        REG < 64                    => DW_CFA_offset + Reg
   1000   //        ELSE                        => DW_CFA_offset_extended
   1001 
   1002   uint64_t NumBytes = 0;
   1003   int stackGrowth = -SlotSize;
   1004 
   1005   // Find the funclet establisher parameter
   1006   unsigned Establisher = X86::NoRegister;
   1007   if (IsClrFunclet)
   1008     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
   1009   else if (IsFunclet)
   1010     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
   1011 
   1012   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
   1013     // Immediately spill establisher into the home slot.
   1014     // The runtime cares about this.
   1015     // MOV64mr %rdx, 16(%rsp)
   1016     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
   1017     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
   1018         .addReg(Establisher)
   1019         .setMIFlag(MachineInstr::FrameSetup);
   1020     MBB.addLiveIn(Establisher);
   1021   }
   1022 
   1023   if (HasFP) {
   1024     // Calculate required stack adjustment.
   1025     uint64_t FrameSize = StackSize - SlotSize;
   1026     // If required, include space for extra hidden slot for stashing base pointer.
   1027     if (X86FI->getRestoreBasePointer())
   1028       FrameSize += SlotSize;
   1029 
   1030     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
   1031 
   1032     // Callee-saved registers are pushed on stack before the stack is realigned.
   1033     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
   1034       NumBytes = alignTo(NumBytes, MaxAlign);
   1035 
   1036     // Get the offset of the stack slot for the EBP register, which is
   1037     // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
   1038     // Update the frame offset adjustment.
   1039     if (!IsFunclet)
   1040       MFI->setOffsetAdjustment(-NumBytes);
   1041     else
   1042       assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
   1043              "should calculate same local variable offset for funclets");
   1044 
   1045     // Save EBP/RBP into the appropriate stack slot.
   1046     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
   1047       .addReg(MachineFramePtr, RegState::Kill)
   1048       .setMIFlag(MachineInstr::FrameSetup);
   1049 
   1050     if (NeedsDwarfCFI) {
   1051       // Mark the place where EBP/RBP was saved.
   1052       // Define the current CFA rule to use the provided offset.
   1053       assert(StackSize);
   1054       BuildCFI(MBB, MBBI, DL,
   1055                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
   1056 
   1057       // Change the rule for the FramePtr to be an "offset" rule.
   1058       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
   1059       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
   1060                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
   1061     }
   1062 
   1063     if (NeedsWinCFI) {
   1064       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
   1065           .addImm(FramePtr)
   1066           .setMIFlag(MachineInstr::FrameSetup);
   1067     }
   1068 
   1069     if (!IsWin64Prologue && !IsFunclet) {
   1070       // Update EBP with the new base value.
   1071       BuildMI(MBB, MBBI, DL,
   1072               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
   1073               FramePtr)
   1074           .addReg(StackPtr)
   1075           .setMIFlag(MachineInstr::FrameSetup);
   1076 
   1077       if (NeedsDwarfCFI) {
   1078         // Mark effective beginning of when frame pointer becomes valid.
   1079         // Define the current CFA to use the EBP/RBP register.
   1080         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
   1081         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
   1082                                     nullptr, DwarfFramePtr));
   1083       }
   1084     }
   1085 
   1086     // Mark the FramePtr as live-in in every block. Don't do this again for
   1087     // funclet prologues.
   1088     if (!IsFunclet) {
   1089       for (MachineBasicBlock &EveryMBB : MF)
   1090         EveryMBB.addLiveIn(MachineFramePtr);
   1091     }
   1092   } else {
   1093     assert(!IsFunclet && "funclets without FPs not yet implemented");
   1094     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
   1095   }
   1096 
   1097   // For EH funclets, only allocate enough space for outgoing calls. Save the
   1098   // NumBytes value that we would've used for the parent frame.
   1099   unsigned ParentFrameNumBytes = NumBytes;
   1100   if (IsFunclet)
   1101     NumBytes = getWinEHFuncletFrameSize(MF);
   1102 
   1103   // Skip the callee-saved push instructions.
   1104   bool PushedRegs = false;
   1105   int StackOffset = 2 * stackGrowth;
   1106 
   1107   while (MBBI != MBB.end() &&
   1108          MBBI->getFlag(MachineInstr::FrameSetup) &&
   1109          (MBBI->getOpcode() == X86::PUSH32r ||
   1110           MBBI->getOpcode() == X86::PUSH64r)) {
   1111     PushedRegs = true;
   1112     unsigned Reg = MBBI->getOperand(0).getReg();
   1113     ++MBBI;
   1114 
   1115     if (!HasFP && NeedsDwarfCFI) {
   1116       // Mark callee-saved push instruction.
   1117       // Define the current CFA rule to use the provided offset.
   1118       assert(StackSize);
   1119       BuildCFI(MBB, MBBI, DL,
   1120                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
   1121       StackOffset += stackGrowth;
   1122     }
   1123 
   1124     if (NeedsWinCFI) {
   1125       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
   1126           MachineInstr::FrameSetup);
   1127     }
   1128   }
   1129 
   1130   // Realign stack after we pushed callee-saved registers (so that we'll be
   1131   // able to calculate their offsets from the frame pointer).
   1132   // Don't do this for Win64, it needs to realign the stack after the prologue.
   1133   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
   1134     assert(HasFP && "There should be a frame pointer if stack is realigned.");
   1135     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
   1136   }
   1137 
   1138   // If there is an SUB32ri of ESP immediately before this instruction, merge
   1139   // the two. This can be the case when tail call elimination is enabled and
   1140   // the callee has more arguments then the caller.
   1141   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
   1142 
   1143   // Adjust stack pointer: ESP -= numbytes.
   1144 
   1145   // Windows and cygwin/mingw require a prologue helper routine when allocating
   1146   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
   1147   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
   1148   // stack and adjust the stack pointer in one go.  The 64-bit version of
   1149   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
   1150   // responsible for adjusting the stack pointer.  Touching the stack at 4K
   1151   // increments is necessary to ensure that the guard pages used by the OS
   1152   // virtual memory manager are allocated in correct sequence.
   1153   uint64_t AlignedNumBytes = NumBytes;
   1154   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
   1155     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
   1156   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
   1157     // Check whether EAX is livein for this block.
   1158     bool isEAXAlive = isEAXLiveIn(MBB);
   1159 
   1160     if (isEAXAlive) {
   1161       // Sanity check that EAX is not livein for this function.
   1162       // It should not be, so throw an assert.
   1163       assert(!Is64Bit && "EAX is livein in x64 case!");
   1164 
   1165       // Save EAX
   1166       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
   1167         .addReg(X86::EAX, RegState::Kill)
   1168         .setMIFlag(MachineInstr::FrameSetup);
   1169     }
   1170 
   1171     if (Is64Bit) {
   1172       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
   1173       // Function prologue is responsible for adjusting the stack pointer.
   1174       if (isUInt<32>(NumBytes)) {
   1175         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
   1176             .addImm(NumBytes)
   1177             .setMIFlag(MachineInstr::FrameSetup);
   1178       } else if (isInt<32>(NumBytes)) {
   1179         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
   1180             .addImm(NumBytes)
   1181             .setMIFlag(MachineInstr::FrameSetup);
   1182       } else {
   1183         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
   1184             .addImm(NumBytes)
   1185             .setMIFlag(MachineInstr::FrameSetup);
   1186       }
   1187     } else {
   1188       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
   1189       // We'll also use 4 already allocated bytes for EAX.
   1190       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
   1191           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
   1192           .setMIFlag(MachineInstr::FrameSetup);
   1193     }
   1194 
   1195     // Call __chkstk, __chkstk_ms, or __alloca.
   1196     emitStackProbe(MF, MBB, MBBI, DL, true);
   1197 
   1198     if (isEAXAlive) {
   1199       // Restore EAX
   1200       MachineInstr *MI =
   1201           addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
   1202                        StackPtr, false, NumBytes - 4);
   1203       MI->setFlag(MachineInstr::FrameSetup);
   1204       MBB.insert(MBBI, MI);
   1205     }
   1206   } else if (NumBytes) {
   1207     emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
   1208   }
   1209 
   1210   if (NeedsWinCFI && NumBytes)
   1211     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
   1212         .addImm(NumBytes)
   1213         .setMIFlag(MachineInstr::FrameSetup);
   1214 
   1215   int SEHFrameOffset = 0;
   1216   unsigned SPOrEstablisher;
   1217   if (IsFunclet) {
   1218     if (IsClrFunclet) {
   1219       // The establisher parameter passed to a CLR funclet is actually a pointer
   1220       // to the (mostly empty) frame of its nearest enclosing funclet; we have
   1221       // to find the root function establisher frame by loading the PSPSym from
   1222       // the intermediate frame.
   1223       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
   1224       MachinePointerInfo NoInfo;
   1225       MBB.addLiveIn(Establisher);
   1226       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
   1227                    Establisher, false, PSPSlotOffset)
   1228           .addMemOperand(MF.getMachineMemOperand(
   1229               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
   1230       ;
   1231       // Save the root establisher back into the current funclet's (mostly
   1232       // empty) frame, in case a sub-funclet or the GC needs it.
   1233       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
   1234                    false, PSPSlotOffset)
   1235           .addReg(Establisher)
   1236           .addMemOperand(
   1237               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
   1238                                                   MachineMemOperand::MOVolatile,
   1239                                       SlotSize, SlotSize));
   1240     }
   1241     SPOrEstablisher = Establisher;
   1242   } else {
   1243     SPOrEstablisher = StackPtr;
   1244   }
   1245 
   1246   if (IsWin64Prologue && HasFP) {
   1247     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
   1248     // this calculation on the incoming establisher, which holds the value of
   1249     // RSP from the parent frame at the end of the prologue.
   1250     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
   1251     if (SEHFrameOffset)
   1252       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
   1253                    SPOrEstablisher, false, SEHFrameOffset);
   1254     else
   1255       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
   1256           .addReg(SPOrEstablisher);
   1257 
   1258     // If this is not a funclet, emit the CFI describing our frame pointer.
   1259     if (NeedsWinCFI && !IsFunclet) {
   1260       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
   1261           .addImm(FramePtr)
   1262           .addImm(SEHFrameOffset)
   1263           .setMIFlag(MachineInstr::FrameSetup);
   1264       if (isAsynchronousEHPersonality(Personality))
   1265         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
   1266     }
   1267   } else if (IsFunclet && STI.is32Bit()) {
   1268     // Reset EBP / ESI to something good for funclets.
   1269     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
   1270     // If we're a catch funclet, we can be returned to via catchret. Save ESP
   1271     // into the registration node so that the runtime will restore it for us.
   1272     if (!MBB.isCleanupFuncletEntry()) {
   1273       assert(Personality == EHPersonality::MSVC_CXX);
   1274       unsigned FrameReg;
   1275       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
   1276       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
   1277       // ESP is the first field, so no extra displacement is needed.
   1278       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
   1279                    false, EHRegOffset)
   1280           .addReg(X86::ESP);
   1281     }
   1282   }
   1283 
   1284   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
   1285     const MachineInstr &FrameInstr = *MBBI;
   1286     ++MBBI;
   1287 
   1288     if (NeedsWinCFI) {
   1289       int FI;
   1290       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
   1291         if (X86::FR64RegClass.contains(Reg)) {
   1292           unsigned IgnoredFrameReg;
   1293           int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
   1294           Offset += SEHFrameOffset;
   1295 
   1296           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
   1297               .addImm(Reg)
   1298               .addImm(Offset)
   1299               .setMIFlag(MachineInstr::FrameSetup);
   1300         }
   1301       }
   1302     }
   1303   }
   1304 
   1305   if (NeedsWinCFI)
   1306     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
   1307         .setMIFlag(MachineInstr::FrameSetup);
   1308 
   1309   if (FnHasClrFunclet && !IsFunclet) {
   1310     // Save the so-called Initial-SP (i.e. the value of the stack pointer
   1311     // immediately after the prolog)  into the PSPSlot so that funclets
   1312     // and the GC can recover it.
   1313     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
   1314     auto PSPInfo = MachinePointerInfo::getFixedStack(
   1315         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
   1316     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
   1317                  PSPSlotOffset)
   1318         .addReg(StackPtr)
   1319         .addMemOperand(MF.getMachineMemOperand(
   1320             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
   1321             SlotSize, SlotSize));
   1322   }
   1323 
   1324   // Realign stack after we spilled callee-saved registers (so that we'll be
   1325   // able to calculate their offsets from the frame pointer).
   1326   // Win64 requires aligning the stack after the prologue.
   1327   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
   1328     assert(HasFP && "There should be a frame pointer if stack is realigned.");
   1329     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
   1330   }
   1331 
   1332   // We already dealt with stack realignment and funclets above.
   1333   if (IsFunclet && STI.is32Bit())
   1334     return;
   1335 
   1336   // If we need a base pointer, set it up here. It's whatever the value
   1337   // of the stack pointer is at this point. Any variable size objects
   1338   // will be allocated after this, so we can still use the base pointer
   1339   // to reference locals.
   1340   if (TRI->hasBasePointer(MF)) {
   1341     // Update the base pointer with the current stack pointer.
   1342     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
   1343     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
   1344       .addReg(SPOrEstablisher)
   1345       .setMIFlag(MachineInstr::FrameSetup);
   1346     if (X86FI->getRestoreBasePointer()) {
   1347       // Stash value of base pointer.  Saving RSP instead of EBP shortens
   1348       // dependence chain. Used by SjLj EH.
   1349       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
   1350       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
   1351                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
   1352         .addReg(SPOrEstablisher)
   1353         .setMIFlag(MachineInstr::FrameSetup);
   1354     }
   1355 
   1356     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
   1357       // Stash the value of the frame pointer relative to the base pointer for
   1358       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
   1359       // it recovers the frame pointer from the base pointer rather than the
   1360       // other way around.
   1361       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
   1362       unsigned UsedReg;
   1363       int Offset =
   1364           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
   1365       assert(UsedReg == BasePtr);
   1366       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
   1367           .addReg(FramePtr)
   1368           .setMIFlag(MachineInstr::FrameSetup);
   1369     }
   1370   }
   1371 
   1372   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
   1373     // Mark end of stack pointer adjustment.
   1374     if (!HasFP && NumBytes) {
   1375       // Define the current CFA rule to use the provided offset.
   1376       assert(StackSize);
   1377       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
   1378                                   nullptr, -StackSize + stackGrowth));
   1379     }
   1380 
   1381     // Emit DWARF info specifying the offsets of the callee-saved registers.
   1382     if (PushedRegs)
   1383       emitCalleeSavedFrameMoves(MBB, MBBI, DL);
   1384   }
   1385 
   1386   // X86 Interrupt handling function cannot assume anything about the direction
   1387   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
   1388   // in each prologue of interrupt handler function.
   1389   //
   1390   // FIXME: Create "cld" instruction only in these cases:
   1391   // 1. The interrupt handling function uses any of the "rep" instructions.
   1392   // 2. Interrupt handling function calls another function.
   1393   //
   1394   if (Fn->getCallingConv() == CallingConv::X86_INTR)
   1395     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
   1396         .setMIFlag(MachineInstr::FrameSetup);
   1397 }
   1398 
   1399 bool X86FrameLowering::canUseLEAForSPInEpilogue(
   1400     const MachineFunction &MF) const {
   1401   // We can't use LEA instructions for adjusting the stack pointer if this is a
   1402   // leaf function in the Win64 ABI.  Only ADD instructions may be used to
   1403   // deallocate the stack.
   1404   // This means that we can use LEA for SP in two situations:
   1405   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
   1406   // 2. We *have* a frame pointer which means we are permitted to use LEA.
   1407   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
   1408 }
   1409 
   1410 static bool isFuncletReturnInstr(MachineInstr &MI) {
   1411   switch (MI.getOpcode()) {
   1412   case X86::CATCHRET:
   1413   case X86::CLEANUPRET:
   1414     return true;
   1415   default:
   1416     return false;
   1417   }
   1418   llvm_unreachable("impossible");
   1419 }
   1420 
   1421 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
   1422 // stack. It holds a pointer to the bottom of the root function frame.  The
   1423 // establisher frame pointer passed to a nested funclet may point to the
   1424 // (mostly empty) frame of its parent funclet, but it will need to find
   1425 // the frame of the root function to access locals.  To facilitate this,
   1426 // every funclet copies the pointer to the bottom of the root function
   1427 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
   1428 // same offset for the PSPSym in the root function frame that's used in the
   1429 // funclets' frames allows each funclet to dynamically accept any ancestor
   1430 // frame as its establisher argument (the runtime doesn't guarantee the
   1431 // immediate parent for some reason lost to history), and also allows the GC,
   1432 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
   1433 // frame with only a single offset reported for the entire method.
   1434 unsigned
   1435 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
   1436   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
   1437   unsigned SPReg;
   1438   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
   1439                                               /*IgnoreSPUpdates*/ true);
   1440   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
   1441   return static_cast<unsigned>(Offset);
   1442 }
   1443 
   1444 unsigned
   1445 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
   1446   // This is the size of the pushed CSRs.
   1447   unsigned CSSize =
   1448       MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
   1449   // This is the amount of stack a funclet needs to allocate.
   1450   unsigned UsedSize;
   1451   EHPersonality Personality =
   1452       classifyEHPersonality(MF.getFunction()->getPersonalityFn());
   1453   if (Personality == EHPersonality::CoreCLR) {
   1454     // CLR funclets need to hold enough space to include the PSPSym, at the
   1455     // same offset from the stack pointer (immediately after the prolog) as it
   1456     // resides at in the main function.
   1457     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
   1458   } else {
   1459     // Other funclets just need enough stack for outgoing call arguments.
   1460     UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
   1461   }
   1462   // RBP is not included in the callee saved register block. After pushing RBP,
   1463   // everything is 16 byte aligned. Everything we allocate before an outgoing
   1464   // call must also be 16 byte aligned.
   1465   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
   1466   // Subtract out the size of the callee saved registers. This is how much stack
   1467   // each funclet will allocate.
   1468   return FrameSizeMinusRBP - CSSize;
   1469 }
   1470 
   1471 static bool isTailCallOpcode(unsigned Opc) {
   1472     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
   1473         Opc == X86::TCRETURNmi ||
   1474         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
   1475         Opc == X86::TCRETURNmi64;
   1476 }
   1477 
   1478 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
   1479                                     MachineBasicBlock &MBB) const {
   1480   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1481   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1482   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
   1483   unsigned RetOpcode = MBBI->getOpcode();
   1484   DebugLoc DL;
   1485   if (MBBI != MBB.end())
   1486     DL = MBBI->getDebugLoc();
   1487   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
   1488   const bool Is64BitILP32 = STI.isTarget64BitILP32();
   1489   unsigned FramePtr = TRI->getFrameRegister(MF);
   1490   unsigned MachineFramePtr =
   1491       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
   1492 
   1493   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
   1494   bool NeedsWinCFI =
   1495       IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
   1496   bool IsFunclet = isFuncletReturnInstr(*MBBI);
   1497   MachineBasicBlock *TargetMBB = nullptr;
   1498 
   1499   // Get the number of bytes to allocate from the FrameInfo.
   1500   uint64_t StackSize = MFI->getStackSize();
   1501   uint64_t MaxAlign = calculateMaxStackAlign(MF);
   1502   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
   1503   uint64_t NumBytes = 0;
   1504 
   1505   if (MBBI->getOpcode() == X86::CATCHRET) {
   1506     // SEH shouldn't use catchret.
   1507     assert(!isAsynchronousEHPersonality(
   1508                classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
   1509            "SEH should not use CATCHRET");
   1510 
   1511     NumBytes = getWinEHFuncletFrameSize(MF);
   1512     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
   1513     TargetMBB = MBBI->getOperand(0).getMBB();
   1514 
   1515     // Pop EBP.
   1516     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
   1517             MachineFramePtr)
   1518         .setMIFlag(MachineInstr::FrameDestroy);
   1519   } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
   1520     NumBytes = getWinEHFuncletFrameSize(MF);
   1521     assert(hasFP(MF) && "EH funclets without FP not yet implemented");
   1522     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
   1523             MachineFramePtr)
   1524         .setMIFlag(MachineInstr::FrameDestroy);
   1525   } else if (hasFP(MF)) {
   1526     // Calculate required stack adjustment.
   1527     uint64_t FrameSize = StackSize - SlotSize;
   1528     NumBytes = FrameSize - CSSize;
   1529 
   1530     // Callee-saved registers were pushed on stack before the stack was
   1531     // realigned.
   1532     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
   1533       NumBytes = alignTo(FrameSize, MaxAlign);
   1534 
   1535     // Pop EBP.
   1536     BuildMI(MBB, MBBI, DL,
   1537             TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
   1538         .setMIFlag(MachineInstr::FrameDestroy);
   1539   } else {
   1540     NumBytes = StackSize - CSSize;
   1541   }
   1542   uint64_t SEHStackAllocAmt = NumBytes;
   1543 
   1544   // Skip the callee-saved pop instructions.
   1545   while (MBBI != MBB.begin()) {
   1546     MachineBasicBlock::iterator PI = std::prev(MBBI);
   1547     unsigned Opc = PI->getOpcode();
   1548 
   1549     if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
   1550         (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
   1551         Opc != X86::DBG_VALUE && !PI->isTerminator())
   1552       break;
   1553 
   1554     --MBBI;
   1555   }
   1556   MachineBasicBlock::iterator FirstCSPop = MBBI;
   1557 
   1558   if (TargetMBB) {
   1559     // Fill EAX/RAX with the address of the target block.
   1560     unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
   1561     if (STI.is64Bit()) {
   1562       // LEA64r TargetMBB(%rip), %rax
   1563       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
   1564           .addReg(X86::RIP)
   1565           .addImm(0)
   1566           .addReg(0)
   1567           .addMBB(TargetMBB)
   1568           .addReg(0);
   1569     } else {
   1570       // MOV32ri $TargetMBB, %eax
   1571       BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
   1572           .addMBB(TargetMBB);
   1573     }
   1574     // Record that we've taken the address of TargetMBB and no longer just
   1575     // reference it in a terminator.
   1576     TargetMBB->setHasAddressTaken();
   1577   }
   1578 
   1579   if (MBBI != MBB.end())
   1580     DL = MBBI->getDebugLoc();
   1581 
   1582   // If there is an ADD32ri or SUB32ri of ESP immediately before this
   1583   // instruction, merge the two instructions.
   1584   if (NumBytes || MFI->hasVarSizedObjects())
   1585     NumBytes += mergeSPUpdates(MBB, MBBI, true);
   1586 
   1587   // If dynamic alloca is used, then reset esp to point to the last callee-saved
   1588   // slot before popping them off! Same applies for the case, when stack was
   1589   // realigned. Don't do this if this was a funclet epilogue, since the funclets
   1590   // will not do realignment or dynamic stack allocation.
   1591   if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
   1592       !IsFunclet) {
   1593     if (TRI->needsStackRealignment(MF))
   1594       MBBI = FirstCSPop;
   1595     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
   1596     uint64_t LEAAmount =
   1597         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
   1598 
   1599     // There are only two legal forms of epilogue:
   1600     // - add SEHAllocationSize, %rsp
   1601     // - lea SEHAllocationSize(%FramePtr), %rsp
   1602     //
   1603     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
   1604     // However, we may use this sequence if we have a frame pointer because the
   1605     // effects of the prologue can safely be undone.
   1606     if (LEAAmount != 0) {
   1607       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
   1608       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
   1609                    FramePtr, false, LEAAmount);
   1610       --MBBI;
   1611     } else {
   1612       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
   1613       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
   1614         .addReg(FramePtr);
   1615       --MBBI;
   1616     }
   1617   } else if (NumBytes) {
   1618     // Adjust stack pointer back: ESP += numbytes.
   1619     emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
   1620     --MBBI;
   1621   }
   1622 
   1623   // Windows unwinder will not invoke function's exception handler if IP is
   1624   // either in prologue or in epilogue.  This behavior causes a problem when a
   1625   // call immediately precedes an epilogue, because the return address points
   1626   // into the epilogue.  To cope with that, we insert an epilogue marker here,
   1627   // then replace it with a 'nop' if it ends up immediately after a CALL in the
   1628   // final emitted code.
   1629   if (NeedsWinCFI)
   1630     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
   1631 
   1632   if (!isTailCallOpcode(RetOpcode)) {
   1633     // Add the return addr area delta back since we are not tail calling.
   1634     int Offset = -1 * X86FI->getTCReturnAddrDelta();
   1635     assert(Offset >= 0 && "TCDelta should never be positive");
   1636     if (Offset) {
   1637       MBBI = MBB.getFirstTerminator();
   1638 
   1639       // Check for possible merge with preceding ADD instruction.
   1640       Offset += mergeSPUpdates(MBB, MBBI, true);
   1641       emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
   1642     }
   1643   }
   1644 }
   1645 
   1646 // NOTE: this only has a subset of the full frame index logic. In
   1647 // particular, the FI < 0 and AfterFPPop logic is handled in
   1648 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
   1649 // (probably?) it should be moved into here.
   1650 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
   1651                                              unsigned &FrameReg) const {
   1652   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1653 
   1654   // We can't calculate offset from frame pointer if the stack is realigned,
   1655   // so enforce usage of stack/base pointer.  The base pointer is used when we
   1656   // have dynamic allocas in addition to dynamic realignment.
   1657   if (TRI->hasBasePointer(MF))
   1658     FrameReg = TRI->getBaseRegister();
   1659   else if (TRI->needsStackRealignment(MF))
   1660     FrameReg = TRI->getStackRegister();
   1661   else
   1662     FrameReg = TRI->getFrameRegister(MF);
   1663 
   1664   // Offset will hold the offset from the stack pointer at function entry to the
   1665   // object.
   1666   // We need to factor in additional offsets applied during the prologue to the
   1667   // frame, base, and stack pointer depending on which is used.
   1668   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1669   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1670   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
   1671   uint64_t StackSize = MFI->getStackSize();
   1672   bool HasFP = hasFP(MF);
   1673   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
   1674   int64_t FPDelta = 0;
   1675 
   1676   if (IsWin64Prologue) {
   1677     assert(!MFI->hasCalls() || (StackSize % 16) == 8);
   1678 
   1679     // Calculate required stack adjustment.
   1680     uint64_t FrameSize = StackSize - SlotSize;
   1681     // If required, include space for extra hidden slot for stashing base pointer.
   1682     if (X86FI->getRestoreBasePointer())
   1683       FrameSize += SlotSize;
   1684     uint64_t NumBytes = FrameSize - CSSize;
   1685 
   1686     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
   1687     if (FI && FI == X86FI->getFAIndex())
   1688       return -SEHFrameOffset;
   1689 
   1690     // FPDelta is the offset from the "traditional" FP location of the old base
   1691     // pointer followed by return address and the location required by the
   1692     // restricted Win64 prologue.
   1693     // Add FPDelta to all offsets below that go through the frame pointer.
   1694     FPDelta = FrameSize - SEHFrameOffset;
   1695     assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
   1696            "FPDelta isn't aligned per the Win64 ABI!");
   1697   }
   1698 
   1699 
   1700   if (TRI->hasBasePointer(MF)) {
   1701     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
   1702     if (FI < 0) {
   1703       // Skip the saved EBP.
   1704       return Offset + SlotSize + FPDelta;
   1705     } else {
   1706       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1707       return Offset + StackSize;
   1708     }
   1709   } else if (TRI->needsStackRealignment(MF)) {
   1710     if (FI < 0) {
   1711       // Skip the saved EBP.
   1712       return Offset + SlotSize + FPDelta;
   1713     } else {
   1714       assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
   1715       return Offset + StackSize;
   1716     }
   1717     // FIXME: Support tail calls
   1718   } else {
   1719     if (!HasFP)
   1720       return Offset + StackSize;
   1721 
   1722     // Skip the saved EBP.
   1723     Offset += SlotSize;
   1724 
   1725     // Skip the RETADDR move area
   1726     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   1727     if (TailCallReturnAddrDelta < 0)
   1728       Offset -= TailCallReturnAddrDelta;
   1729   }
   1730 
   1731   return Offset + FPDelta;
   1732 }
   1733 
   1734 int
   1735 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
   1736                                                  int FI, unsigned &FrameReg,
   1737                                                  bool IgnoreSPUpdates) const {
   1738 
   1739   const MachineFrameInfo *MFI = MF.getFrameInfo();
   1740   // Does not include any dynamic realign.
   1741   const uint64_t StackSize = MFI->getStackSize();
   1742   // LLVM arranges the stack as follows:
   1743   //   ...
   1744   //   ARG2
   1745   //   ARG1
   1746   //   RETADDR
   1747   //   PUSH RBP   <-- RBP points here
   1748   //   PUSH CSRs
   1749   //   ~~~~~~~    <-- possible stack realignment (non-win64)
   1750   //   ...
   1751   //   STACK OBJECTS
   1752   //   ...        <-- RSP after prologue points here
   1753   //   ~~~~~~~    <-- possible stack realignment (win64)
   1754   //
   1755   // if (hasVarSizedObjects()):
   1756   //   ...        <-- "base pointer" (ESI/RBX) points here
   1757   //   DYNAMIC ALLOCAS
   1758   //   ...        <-- RSP points here
   1759   //
   1760   // Case 1: In the simple case of no stack realignment and no dynamic
   1761   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
   1762   // with fixed offsets from RSP.
   1763   //
   1764   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
   1765   // stack objects are addressed with RBP and regular stack objects with RSP.
   1766   //
   1767   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
   1768   // to address stack arguments for outgoing calls and nothing else. The "base
   1769   // pointer" points to local variables, and RBP points to fixed objects.
   1770   //
   1771   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
   1772   // answer we give is relative to the SP after the prologue, and not the
   1773   // SP in the middle of the function.
   1774 
   1775   if (MFI->isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
   1776       !STI.isTargetWin64())
   1777     return getFrameIndexReference(MF, FI, FrameReg);
   1778 
   1779   // If !hasReservedCallFrame the function might have SP adjustement in the
   1780   // body.  So, even though the offset is statically known, it depends on where
   1781   // we are in the function.
   1782   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
   1783   if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
   1784     return getFrameIndexReference(MF, FI, FrameReg);
   1785 
   1786   // We don't handle tail calls, and shouldn't be seeing them either.
   1787   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
   1788          "we don't handle this case!");
   1789 
   1790   // Fill in FrameReg output argument.
   1791   FrameReg = TRI->getStackRegister();
   1792 
   1793   // This is how the math works out:
   1794   //
   1795   //  %rsp grows (i.e. gets lower) left to right. Each box below is
   1796   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
   1797   //  get to.
   1798   //
   1799   //    ----------------------------------
   1800   //    | BP | Obj0 | Obj1 | ... | ObjN |
   1801   //    ----------------------------------
   1802   //    ^    ^      ^                   ^
   1803   //    A    B      C                   E
   1804   //
   1805   // A is the incoming stack pointer.
   1806   // (B - A) is the local area offset (-8 for x86-64) [1]
   1807   // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
   1808   //
   1809   // |(E - B)| is the StackSize (absolute value, positive).  For a
   1810   // stack that grown down, this works out to be (B - E). [3]
   1811   //
   1812   // E is also the value of %rsp after stack has been set up, and we
   1813   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
   1814   // (C - E) == (C - A) - (B - A) + (B - E)
   1815   //            { Using [1], [2] and [3] above }
   1816   //         == getObjectOffset - LocalAreaOffset + StackSize
   1817   //
   1818 
   1819   // Get the Offset from the StackPointer
   1820   int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
   1821 
   1822   return Offset + StackSize;
   1823 }
   1824 
   1825 bool X86FrameLowering::assignCalleeSavedSpillSlots(
   1826     MachineFunction &MF, const TargetRegisterInfo *TRI,
   1827     std::vector<CalleeSavedInfo> &CSI) const {
   1828   MachineFrameInfo *MFI = MF.getFrameInfo();
   1829   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   1830 
   1831   unsigned CalleeSavedFrameSize = 0;
   1832   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
   1833 
   1834   if (hasFP(MF)) {
   1835     // emitPrologue always spills frame register the first thing.
   1836     SpillSlotOffset -= SlotSize;
   1837     MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
   1838 
   1839     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
   1840     // the frame register, we can delete it from CSI list and not have to worry
   1841     // about avoiding it later.
   1842     unsigned FPReg = TRI->getFrameRegister(MF);
   1843     for (unsigned i = 0; i < CSI.size(); ++i) {
   1844       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
   1845         CSI.erase(CSI.begin() + i);
   1846         break;
   1847       }
   1848     }
   1849   }
   1850 
   1851   // Assign slots for GPRs. It increases frame size.
   1852   for (unsigned i = CSI.size(); i != 0; --i) {
   1853     unsigned Reg = CSI[i - 1].getReg();
   1854 
   1855     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
   1856       continue;
   1857 
   1858     SpillSlotOffset -= SlotSize;
   1859     CalleeSavedFrameSize += SlotSize;
   1860 
   1861     int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
   1862     CSI[i - 1].setFrameIdx(SlotIndex);
   1863   }
   1864 
   1865   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
   1866 
   1867   // Assign slots for XMMs.
   1868   for (unsigned i = CSI.size(); i != 0; --i) {
   1869     unsigned Reg = CSI[i - 1].getReg();
   1870     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
   1871       continue;
   1872 
   1873     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1874     // ensure alignment
   1875     SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
   1876     // spill into slot
   1877     SpillSlotOffset -= RC->getSize();
   1878     int SlotIndex =
   1879         MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
   1880     CSI[i - 1].setFrameIdx(SlotIndex);
   1881     MFI->ensureMaxAlignment(RC->getAlignment());
   1882   }
   1883 
   1884   return true;
   1885 }
   1886 
   1887 bool X86FrameLowering::spillCalleeSavedRegisters(
   1888     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
   1889     const std::vector<CalleeSavedInfo> &CSI,
   1890     const TargetRegisterInfo *TRI) const {
   1891   DebugLoc DL = MBB.findDebugLoc(MI);
   1892 
   1893   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
   1894   // for us, and there are no XMM CSRs on Win32.
   1895   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
   1896     return true;
   1897 
   1898   // Push GPRs. It increases frame size.
   1899   const MachineFunction &MF = *MBB.getParent();
   1900   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
   1901   for (unsigned i = CSI.size(); i != 0; --i) {
   1902     unsigned Reg = CSI[i - 1].getReg();
   1903 
   1904     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
   1905       continue;
   1906 
   1907     const MachineRegisterInfo &MRI = MF.getRegInfo();
   1908     bool isLiveIn = MRI.isLiveIn(Reg);
   1909     if (!isLiveIn)
   1910       MBB.addLiveIn(Reg);
   1911 
   1912     // Decide whether we can add a kill flag to the use.
   1913     bool CanKill = !isLiveIn;
   1914     // Check if any subregister is live-in
   1915     if (CanKill) {
   1916       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
   1917         if (MRI.isLiveIn(*AReg)) {
   1918           CanKill = false;
   1919           break;
   1920         }
   1921       }
   1922     }
   1923 
   1924     // Do not set a kill flag on values that are also marked as live-in. This
   1925     // happens with the @llvm-returnaddress intrinsic and with arguments
   1926     // passed in callee saved registers.
   1927     // Omitting the kill flags is conservatively correct even if the live-in
   1928     // is not used after all.
   1929     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
   1930       .setMIFlag(MachineInstr::FrameSetup);
   1931   }
   1932 
   1933   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
   1934   // It can be done by spilling XMMs to stack frame.
   1935   for (unsigned i = CSI.size(); i != 0; --i) {
   1936     unsigned Reg = CSI[i-1].getReg();
   1937     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
   1938       continue;
   1939     // Add the callee-saved register as live-in. It's killed at the spill.
   1940     MBB.addLiveIn(Reg);
   1941     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1942 
   1943     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
   1944                             TRI);
   1945     --MI;
   1946     MI->setFlag(MachineInstr::FrameSetup);
   1947     ++MI;
   1948   }
   1949 
   1950   return true;
   1951 }
   1952 
   1953 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
   1954                                                MachineBasicBlock::iterator MI,
   1955                                         const std::vector<CalleeSavedInfo> &CSI,
   1956                                           const TargetRegisterInfo *TRI) const {
   1957   if (CSI.empty())
   1958     return false;
   1959 
   1960   if (isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
   1961     // Don't restore CSRs in 32-bit EH funclets. Matches
   1962     // spillCalleeSavedRegisters.
   1963     if (STI.is32Bit())
   1964       return true;
   1965     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
   1966     // funclets. emitEpilogue transforms these to normal jumps.
   1967     if (MI->getOpcode() == X86::CATCHRET) {
   1968       const Function *Func = MBB.getParent()->getFunction();
   1969       bool IsSEH = isAsynchronousEHPersonality(
   1970           classifyEHPersonality(Func->getPersonalityFn()));
   1971       if (IsSEH)
   1972         return true;
   1973     }
   1974   }
   1975 
   1976   DebugLoc DL = MBB.findDebugLoc(MI);
   1977 
   1978   // Reload XMMs from stack frame.
   1979   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1980     unsigned Reg = CSI[i].getReg();
   1981     if (X86::GR64RegClass.contains(Reg) ||
   1982         X86::GR32RegClass.contains(Reg))
   1983       continue;
   1984 
   1985     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
   1986     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
   1987   }
   1988 
   1989   // POP GPRs.
   1990   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
   1991   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
   1992     unsigned Reg = CSI[i].getReg();
   1993     if (!X86::GR64RegClass.contains(Reg) &&
   1994         !X86::GR32RegClass.contains(Reg))
   1995       continue;
   1996 
   1997     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
   1998         .setMIFlag(MachineInstr::FrameDestroy);
   1999   }
   2000   return true;
   2001 }
   2002 
   2003 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
   2004                                             BitVector &SavedRegs,
   2005                                             RegScavenger *RS) const {
   2006   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
   2007 
   2008   MachineFrameInfo *MFI = MF.getFrameInfo();
   2009 
   2010   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   2011   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
   2012 
   2013   if (TailCallReturnAddrDelta < 0) {
   2014     // create RETURNADDR area
   2015     //   arg
   2016     //   arg
   2017     //   RETADDR
   2018     //   { ...
   2019     //     RETADDR area
   2020     //     ...
   2021     //   }
   2022     //   [EBP]
   2023     MFI->CreateFixedObject(-TailCallReturnAddrDelta,
   2024                            TailCallReturnAddrDelta - SlotSize, true);
   2025   }
   2026 
   2027   // Spill the BasePtr if it's used.
   2028   if (TRI->hasBasePointer(MF)) {
   2029     SavedRegs.set(TRI->getBaseRegister());
   2030 
   2031     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
   2032     if (MF.getMMI().hasEHFunclets()) {
   2033       int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
   2034       X86FI->setHasSEHFramePtrSave(true);
   2035       X86FI->setSEHFramePtrSaveIndex(FI);
   2036     }
   2037   }
   2038 }
   2039 
   2040 static bool
   2041 HasNestArgument(const MachineFunction *MF) {
   2042   const Function *F = MF->getFunction();
   2043   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   2044        I != E; I++) {
   2045     if (I->hasNestAttr())
   2046       return true;
   2047   }
   2048   return false;
   2049 }
   2050 
   2051 /// GetScratchRegister - Get a temp register for performing work in the
   2052 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
   2053 /// and the properties of the function either one or two registers will be
   2054 /// needed. Set primary to true for the first register, false for the second.
   2055 static unsigned
   2056 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
   2057   CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
   2058 
   2059   // Erlang stuff.
   2060   if (CallingConvention == CallingConv::HiPE) {
   2061     if (Is64Bit)
   2062       return Primary ? X86::R14 : X86::R13;
   2063     else
   2064       return Primary ? X86::EBX : X86::EDI;
   2065   }
   2066 
   2067   if (Is64Bit) {
   2068     if (IsLP64)
   2069       return Primary ? X86::R11 : X86::R12;
   2070     else
   2071       return Primary ? X86::R11D : X86::R12D;
   2072   }
   2073 
   2074   bool IsNested = HasNestArgument(&MF);
   2075 
   2076   if (CallingConvention == CallingConv::X86_FastCall ||
   2077       CallingConvention == CallingConv::Fast) {
   2078     if (IsNested)
   2079       report_fatal_error("Segmented stacks does not support fastcall with "
   2080                          "nested function.");
   2081     return Primary ? X86::EAX : X86::ECX;
   2082   }
   2083   if (IsNested)
   2084     return Primary ? X86::EDX : X86::EAX;
   2085   return Primary ? X86::ECX : X86::EAX;
   2086 }
   2087 
   2088 // The stack limit in the TCB is set to this many bytes above the actual stack
   2089 // limit.
   2090 static const uint64_t kSplitStackAvailable = 256;
   2091 
   2092 void X86FrameLowering::adjustForSegmentedStacks(
   2093     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
   2094   MachineFrameInfo *MFI = MF.getFrameInfo();
   2095   uint64_t StackSize;
   2096   unsigned TlsReg, TlsOffset;
   2097   DebugLoc DL;
   2098 
   2099   // To support shrink-wrapping we would need to insert the new blocks
   2100   // at the right place and update the branches to PrologueMBB.
   2101   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
   2102 
   2103   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
   2104   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   2105          "Scratch register is live-in");
   2106 
   2107   if (MF.getFunction()->isVarArg())
   2108     report_fatal_error("Segmented stacks do not support vararg functions.");
   2109   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
   2110       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
   2111       !STI.isTargetDragonFly())
   2112     report_fatal_error("Segmented stacks not supported on this platform.");
   2113 
   2114   // Eventually StackSize will be calculated by a link-time pass; which will
   2115   // also decide whether checking code needs to be injected into this particular
   2116   // prologue.
   2117   StackSize = MFI->getStackSize();
   2118 
   2119   // Do not generate a prologue for functions with a stack of size zero
   2120   if (StackSize == 0)
   2121     return;
   2122 
   2123   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
   2124   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
   2125   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   2126   bool IsNested = false;
   2127 
   2128   // We need to know if the function has a nest argument only in 64 bit mode.
   2129   if (Is64Bit)
   2130     IsNested = HasNestArgument(&MF);
   2131 
   2132   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
   2133   // allocMBB needs to be last (terminating) instruction.
   2134 
   2135   for (const auto &LI : PrologueMBB.liveins()) {
   2136     allocMBB->addLiveIn(LI);
   2137     checkMBB->addLiveIn(LI);
   2138   }
   2139 
   2140   if (IsNested)
   2141     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
   2142 
   2143   MF.push_front(allocMBB);
   2144   MF.push_front(checkMBB);
   2145 
   2146   // When the frame size is less than 256 we just compare the stack
   2147   // boundary directly to the value of the stack pointer, per gcc.
   2148   bool CompareStackPointer = StackSize < kSplitStackAvailable;
   2149 
   2150   // Read the limit off the current stacklet off the stack_guard location.
   2151   if (Is64Bit) {
   2152     if (STI.isTargetLinux()) {
   2153       TlsReg = X86::FS;
   2154       TlsOffset = IsLP64 ? 0x70 : 0x40;
   2155     } else if (STI.isTargetDarwin()) {
   2156       TlsReg = X86::GS;
   2157       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
   2158     } else if (STI.isTargetWin64()) {
   2159       TlsReg = X86::GS;
   2160       TlsOffset = 0x28; // pvArbitrary, reserved for application use
   2161     } else if (STI.isTargetFreeBSD()) {
   2162       TlsReg = X86::FS;
   2163       TlsOffset = 0x18;
   2164     } else if (STI.isTargetDragonFly()) {
   2165       TlsReg = X86::FS;
   2166       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
   2167     } else {
   2168       report_fatal_error("Segmented stacks not supported on this platform.");
   2169     }
   2170 
   2171     if (CompareStackPointer)
   2172       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
   2173     else
   2174       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
   2175         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   2176 
   2177     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
   2178       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   2179   } else {
   2180     if (STI.isTargetLinux()) {
   2181       TlsReg = X86::GS;
   2182       TlsOffset = 0x30;
   2183     } else if (STI.isTargetDarwin()) {
   2184       TlsReg = X86::GS;
   2185       TlsOffset = 0x48 + 90*4;
   2186     } else if (STI.isTargetWin32()) {
   2187       TlsReg = X86::FS;
   2188       TlsOffset = 0x14; // pvArbitrary, reserved for application use
   2189     } else if (STI.isTargetDragonFly()) {
   2190       TlsReg = X86::FS;
   2191       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
   2192     } else if (STI.isTargetFreeBSD()) {
   2193       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
   2194     } else {
   2195       report_fatal_error("Segmented stacks not supported on this platform.");
   2196     }
   2197 
   2198     if (CompareStackPointer)
   2199       ScratchReg = X86::ESP;
   2200     else
   2201       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
   2202         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
   2203 
   2204     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
   2205         STI.isTargetDragonFly()) {
   2206       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
   2207         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
   2208     } else if (STI.isTargetDarwin()) {
   2209 
   2210       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
   2211       unsigned ScratchReg2;
   2212       bool SaveScratch2;
   2213       if (CompareStackPointer) {
   2214         // The primary scratch register is available for holding the TLS offset.
   2215         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
   2216         SaveScratch2 = false;
   2217       } else {
   2218         // Need to use a second register to hold the TLS offset
   2219         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
   2220 
   2221         // Unfortunately, with fastcc the second scratch register may hold an
   2222         // argument.
   2223         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
   2224       }
   2225 
   2226       // If Scratch2 is live-in then it needs to be saved.
   2227       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
   2228              "Scratch register is live-in and not saved");
   2229 
   2230       if (SaveScratch2)
   2231         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
   2232           .addReg(ScratchReg2, RegState::Kill);
   2233 
   2234       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
   2235         .addImm(TlsOffset);
   2236       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
   2237         .addReg(ScratchReg)
   2238         .addReg(ScratchReg2).addImm(1).addReg(0)
   2239         .addImm(0)
   2240         .addReg(TlsReg);
   2241 
   2242       if (SaveScratch2)
   2243         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
   2244     }
   2245   }
   2246 
   2247   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
   2248   // It jumps to normal execution of the function body.
   2249   BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
   2250 
   2251   // On 32 bit we first push the arguments size and then the frame size. On 64
   2252   // bit, we pass the stack frame size in r10 and the argument size in r11.
   2253   if (Is64Bit) {
   2254     // Functions with nested arguments use R10, so it needs to be saved across
   2255     // the call to _morestack
   2256 
   2257     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
   2258     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
   2259     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
   2260     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
   2261     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
   2262 
   2263     if (IsNested)
   2264       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
   2265 
   2266     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
   2267       .addImm(StackSize);
   2268     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
   2269       .addImm(X86FI->getArgumentStackSize());
   2270   } else {
   2271     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   2272       .addImm(X86FI->getArgumentStackSize());
   2273     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
   2274       .addImm(StackSize);
   2275   }
   2276 
   2277   // __morestack is in libgcc
   2278   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
   2279     // Under the large code model, we cannot assume that __morestack lives
   2280     // within 2^31 bytes of the call site, so we cannot use pc-relative
   2281     // addressing. We cannot perform the call via a temporary register,
   2282     // as the rax register may be used to store the static chain, and all
   2283     // other suitable registers may be either callee-save or used for
   2284     // parameter passing. We cannot use the stack at this point either
   2285     // because __morestack manipulates the stack directly.
   2286     //
   2287     // To avoid these issues, perform an indirect call via a read-only memory
   2288     // location containing the address.
   2289     //
   2290     // This solution is not perfect, as it assumes that the .rodata section
   2291     // is laid out within 2^31 bytes of each function body, but this seems
   2292     // to be sufficient for JIT.
   2293     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
   2294         .addReg(X86::RIP)
   2295         .addImm(0)
   2296         .addReg(0)
   2297         .addExternalSymbol("__morestack_addr")
   2298         .addReg(0);
   2299     MF.getMMI().setUsesMorestackAddr(true);
   2300   } else {
   2301     if (Is64Bit)
   2302       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
   2303         .addExternalSymbol("__morestack");
   2304     else
   2305       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
   2306         .addExternalSymbol("__morestack");
   2307   }
   2308 
   2309   if (IsNested)
   2310     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
   2311   else
   2312     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
   2313 
   2314   allocMBB->addSuccessor(&PrologueMBB);
   2315 
   2316   checkMBB->addSuccessor(allocMBB);
   2317   checkMBB->addSuccessor(&PrologueMBB);
   2318 
   2319 #ifdef EXPENSIVE_CHECKS
   2320   MF.verify();
   2321 #endif
   2322 }
   2323 
   2324 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
   2325 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
   2326 /// to fields it needs, through a named metadata node "hipe.literals" containing
   2327 /// name-value pairs.
   2328 static unsigned getHiPELiteral(
   2329     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
   2330   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
   2331     MDNode *Node = HiPELiteralsMD->getOperand(i);
   2332     if (Node->getNumOperands() != 2) continue;
   2333     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
   2334     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
   2335     if (!NodeName || !NodeVal) continue;
   2336     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
   2337     if (ValConst && NodeName->getString() == LiteralName) {
   2338       return ValConst->getZExtValue();
   2339     }
   2340   }
   2341 
   2342   report_fatal_error("HiPE literal " + LiteralName
   2343                      + " required but not provided");
   2344 }
   2345 
   2346 /// Erlang programs may need a special prologue to handle the stack size they
   2347 /// might need at runtime. That is because Erlang/OTP does not implement a C
   2348 /// stack but uses a custom implementation of hybrid stack/heap architecture.
   2349 /// (for more information see Eric Stenman's Ph.D. thesis:
   2350 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
   2351 ///
   2352 /// CheckStack:
   2353 ///       temp0 = sp - MaxStack
   2354 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   2355 /// OldStart:
   2356 ///       ...
   2357 /// IncStack:
   2358 ///       call inc_stack   # doubles the stack space
   2359 ///       temp0 = sp - MaxStack
   2360 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
   2361 void X86FrameLowering::adjustForHiPEPrologue(
   2362     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
   2363   MachineFrameInfo *MFI = MF.getFrameInfo();
   2364   DebugLoc DL;
   2365 
   2366   // To support shrink-wrapping we would need to insert the new blocks
   2367   // at the right place and update the branches to PrologueMBB.
   2368   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
   2369 
   2370   // HiPE-specific values
   2371   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
   2372     ->getNamedMetadata("hipe.literals");
   2373   if (!HiPELiteralsMD)
   2374     report_fatal_error(
   2375         "Can't generate HiPE prologue without runtime parameters");
   2376   const unsigned HipeLeafWords
   2377     = getHiPELiteral(HiPELiteralsMD,
   2378                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
   2379   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
   2380   const unsigned Guaranteed = HipeLeafWords * SlotSize;
   2381   unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
   2382                             MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
   2383   unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
   2384 
   2385   assert(STI.isTargetLinux() &&
   2386          "HiPE prologue is only supported on Linux operating systems.");
   2387 
   2388   // Compute the largest caller's frame that is needed to fit the callees'
   2389   // frames. This 'MaxStack' is computed from:
   2390   //
   2391   // a) the fixed frame size, which is the space needed for all spilled temps,
   2392   // b) outgoing on-stack parameter areas, and
   2393   // c) the minimum stack space this function needs to make available for the
   2394   //    functions it calls (a tunable ABI property).
   2395   if (MFI->hasCalls()) {
   2396     unsigned MoreStackForCalls = 0;
   2397 
   2398     for (auto &MBB : MF) {
   2399       for (auto &MI : MBB) {
   2400         if (!MI.isCall())
   2401           continue;
   2402 
   2403         // Get callee operand.
   2404         const MachineOperand &MO = MI.getOperand(0);
   2405 
   2406         // Only take account of global function calls (no closures etc.).
   2407         if (!MO.isGlobal())
   2408           continue;
   2409 
   2410         const Function *F = dyn_cast<Function>(MO.getGlobal());
   2411         if (!F)
   2412           continue;
   2413 
   2414         // Do not update 'MaxStack' for primitive and built-in functions
   2415         // (encoded with names either starting with "erlang."/"bif_" or not
   2416         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
   2417         // "_", such as the BIF "suspend_0") as they are executed on another
   2418         // stack.
   2419         if (F->getName().find("erlang.") != StringRef::npos ||
   2420             F->getName().find("bif_") != StringRef::npos ||
   2421             F->getName().find_first_of("._") == StringRef::npos)
   2422           continue;
   2423 
   2424         unsigned CalleeStkArity =
   2425           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
   2426         if (HipeLeafWords - 1 > CalleeStkArity)
   2427           MoreStackForCalls = std::max(MoreStackForCalls,
   2428                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
   2429       }
   2430     }
   2431     MaxStack += MoreStackForCalls;
   2432   }
   2433 
   2434   // If the stack frame needed is larger than the guaranteed then runtime checks
   2435   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
   2436   if (MaxStack > Guaranteed) {
   2437     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
   2438     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
   2439 
   2440     for (const auto &LI : PrologueMBB.liveins()) {
   2441       stackCheckMBB->addLiveIn(LI);
   2442       incStackMBB->addLiveIn(LI);
   2443     }
   2444 
   2445     MF.push_front(incStackMBB);
   2446     MF.push_front(stackCheckMBB);
   2447 
   2448     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
   2449     unsigned LEAop, CMPop, CALLop;
   2450     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
   2451     if (Is64Bit) {
   2452       SPReg = X86::RSP;
   2453       PReg  = X86::RBP;
   2454       LEAop = X86::LEA64r;
   2455       CMPop = X86::CMP64rm;
   2456       CALLop = X86::CALL64pcrel32;
   2457     } else {
   2458       SPReg = X86::ESP;
   2459       PReg  = X86::EBP;
   2460       LEAop = X86::LEA32r;
   2461       CMPop = X86::CMP32rm;
   2462       CALLop = X86::CALLpcrel32;
   2463     }
   2464 
   2465     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
   2466     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
   2467            "HiPE prologue scratch register is live-in");
   2468 
   2469     // Create new MBB for StackCheck:
   2470     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
   2471                  SPReg, false, -MaxStack);
   2472     // SPLimitOffset is in a fixed heap location (pointed by BP).
   2473     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
   2474                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   2475     BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
   2476 
   2477     // Create new MBB for IncStack:
   2478     BuildMI(incStackMBB, DL, TII.get(CALLop)).
   2479       addExternalSymbol("inc_stack_0");
   2480     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
   2481                  SPReg, false, -MaxStack);
   2482     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
   2483                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
   2484     BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
   2485 
   2486     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
   2487     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
   2488     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
   2489     incStackMBB->addSuccessor(incStackMBB, {1, 100});
   2490   }
   2491 #ifdef EXPENSIVE_CHECKS
   2492   MF.verify();
   2493 #endif
   2494 }
   2495 
   2496 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
   2497                                            MachineBasicBlock::iterator MBBI,
   2498                                            const DebugLoc &DL,
   2499                                            int Offset) const {
   2500 
   2501   if (Offset <= 0)
   2502     return false;
   2503 
   2504   if (Offset % SlotSize)
   2505     return false;
   2506 
   2507   int NumPops = Offset / SlotSize;
   2508   // This is only worth it if we have at most 2 pops.
   2509   if (NumPops != 1 && NumPops != 2)
   2510     return false;
   2511 
   2512   // Handle only the trivial case where the adjustment directly follows
   2513   // a call. This is the most common one, anyway.
   2514   if (MBBI == MBB.begin())
   2515     return false;
   2516   MachineBasicBlock::iterator Prev = std::prev(MBBI);
   2517   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
   2518     return false;
   2519 
   2520   unsigned Regs[2];
   2521   unsigned FoundRegs = 0;
   2522 
   2523   auto RegMask = Prev->getOperand(1);
   2524 
   2525   auto &RegClass =
   2526       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
   2527   // Try to find up to NumPops free registers.
   2528   for (auto Candidate : RegClass) {
   2529 
   2530     // Poor man's liveness:
   2531     // Since we're immediately after a call, any register that is clobbered
   2532     // by the call and not defined by it can be considered dead.
   2533     if (!RegMask.clobbersPhysReg(Candidate))
   2534       continue;
   2535 
   2536     bool IsDef = false;
   2537     for (const MachineOperand &MO : Prev->implicit_operands()) {
   2538       if (MO.isReg() && MO.isDef() &&
   2539           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
   2540         IsDef = true;
   2541         break;
   2542       }
   2543     }
   2544 
   2545     if (IsDef)
   2546       continue;
   2547 
   2548     Regs[FoundRegs++] = Candidate;
   2549     if (FoundRegs == (unsigned)NumPops)
   2550       break;
   2551   }
   2552 
   2553   if (FoundRegs == 0)
   2554     return false;
   2555 
   2556   // If we found only one free register, but need two, reuse the same one twice.
   2557   while (FoundRegs < (unsigned)NumPops)
   2558     Regs[FoundRegs++] = Regs[0];
   2559 
   2560   for (int i = 0; i < NumPops; ++i)
   2561     BuildMI(MBB, MBBI, DL,
   2562             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
   2563 
   2564   return true;
   2565 }
   2566 
   2567 MachineBasicBlock::iterator X86FrameLowering::
   2568 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
   2569                               MachineBasicBlock::iterator I) const {
   2570   bool reserveCallFrame = hasReservedCallFrame(MF);
   2571   unsigned Opcode = I->getOpcode();
   2572   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
   2573   DebugLoc DL = I->getDebugLoc();
   2574   uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
   2575   uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
   2576   I = MBB.erase(I);
   2577 
   2578   if (!reserveCallFrame) {
   2579     // If the stack pointer can be changed after prologue, turn the
   2580     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
   2581     // adjcallstackdown instruction into 'add ESP, <amt>'
   2582 
   2583     // We need to keep the stack aligned properly.  To do this, we round the
   2584     // amount of space needed for the outgoing arguments up to the next
   2585     // alignment boundary.
   2586     unsigned StackAlign = getStackAlignment();
   2587     Amount = alignTo(Amount, StackAlign);
   2588 
   2589     MachineModuleInfo &MMI = MF.getMMI();
   2590     const Function *Fn = MF.getFunction();
   2591     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
   2592     bool DwarfCFI = !WindowsCFI &&
   2593                     (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
   2594 
   2595     // If we have any exception handlers in this function, and we adjust
   2596     // the SP before calls, we may need to indicate this to the unwinder
   2597     // using GNU_ARGS_SIZE. Note that this may be necessary even when
   2598     // Amount == 0, because the preceding function may have set a non-0
   2599     // GNU_ARGS_SIZE.
   2600     // TODO: We don't need to reset this between subsequent functions,
   2601     // if it didn't change.
   2602     bool HasDwarfEHHandlers = !WindowsCFI &&
   2603                               !MF.getMMI().getLandingPads().empty();
   2604 
   2605     if (HasDwarfEHHandlers && !isDestroy &&
   2606         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
   2607       BuildCFI(MBB, I, DL,
   2608                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
   2609 
   2610     if (Amount == 0)
   2611       return I;
   2612 
   2613     // Factor out the amount that gets handled inside the sequence
   2614     // (Pushes of argument for frame setup, callee pops for frame destroy)
   2615     Amount -= InternalAmt;
   2616 
   2617     // TODO: This is needed only if we require precise CFA.
   2618     // If this is a callee-pop calling convention, emit a CFA adjust for
   2619     // the amount the callee popped.
   2620     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
   2621       BuildCFI(MBB, I, DL,
   2622                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
   2623 
   2624     // Add Amount to SP to destroy a frame, or subtract to setup.
   2625     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
   2626     int64_t CfaAdjustment = -StackAdjustment;
   2627 
   2628     if (StackAdjustment) {
   2629       // Merge with any previous or following adjustment instruction. Note: the
   2630       // instructions merged with here do not have CFI, so their stack
   2631       // adjustments do not feed into CfaAdjustment.
   2632       StackAdjustment += mergeSPUpdates(MBB, I, true);
   2633       StackAdjustment += mergeSPUpdates(MBB, I, false);
   2634 
   2635       if (StackAdjustment) {
   2636         if (!(Fn->optForMinSize() &&
   2637               adjustStackWithPops(MBB, I, DL, StackAdjustment)))
   2638           BuildStackAdjustment(MBB, I, DL, StackAdjustment,
   2639                                /*InEpilogue=*/false);
   2640       }
   2641     }
   2642 
   2643     if (DwarfCFI && !hasFP(MF)) {
   2644       // If we don't have FP, but need to generate unwind information,
   2645       // we need to set the correct CFA offset after the stack adjustment.
   2646       // How much we adjust the CFA offset depends on whether we're emitting
   2647       // CFI only for EH purposes or for debugging. EH only requires the CFA
   2648       // offset to be correct at each call site, while for debugging we want
   2649       // it to be more precise.
   2650 
   2651       // TODO: When not using precise CFA, we also need to adjust for the
   2652       // InternalAmt here.
   2653       if (CfaAdjustment) {
   2654         BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(
   2655                                  nullptr, CfaAdjustment));
   2656       }
   2657     }
   2658 
   2659     return I;
   2660   }
   2661 
   2662   if (isDestroy && InternalAmt) {
   2663     // If we are performing frame pointer elimination and if the callee pops
   2664     // something off the stack pointer, add it back.  We do this until we have
   2665     // more advanced stack pointer tracking ability.
   2666     // We are not tracking the stack pointer adjustment by the callee, so make
   2667     // sure we restore the stack pointer immediately after the call, there may
   2668     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
   2669     MachineBasicBlock::iterator CI = I;
   2670     MachineBasicBlock::iterator B = MBB.begin();
   2671     while (CI != B && !std::prev(CI)->isCall())
   2672       --CI;
   2673     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
   2674   }
   2675 
   2676   return I;
   2677 }
   2678 
   2679 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
   2680   assert(MBB.getParent() && "Block is not attached to a function!");
   2681   const MachineFunction &MF = *MBB.getParent();
   2682   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
   2683 }
   2684 
   2685 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
   2686   assert(MBB.getParent() && "Block is not attached to a function!");
   2687 
   2688   // Win64 has strict requirements in terms of epilogue and we are
   2689   // not taking a chance at messing with them.
   2690   // I.e., unless this block is already an exit block, we can't use
   2691   // it as an epilogue.
   2692   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
   2693     return false;
   2694 
   2695   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
   2696     return true;
   2697 
   2698   // If we cannot use LEA to adjust SP, we may need to use ADD, which
   2699   // clobbers the EFLAGS. Check that we do not need to preserve it,
   2700   // otherwise, conservatively assume this is not
   2701   // safe to insert the epilogue here.
   2702   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
   2703 }
   2704 
   2705 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
   2706   // If we may need to emit frameless compact unwind information, give
   2707   // up as this is currently broken: PR25614.
   2708   return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
   2709          // The lowering of segmented stack and HiPE only support entry blocks
   2710          // as prologue blocks: PR26107.
   2711          // This limitation may be lifted if we fix:
   2712          // - adjustForSegmentedStacks
   2713          // - adjustForHiPEPrologue
   2714          MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
   2715          !MF.shouldSplitStack();
   2716 }
   2717 
   2718 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
   2719     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
   2720     const DebugLoc &DL, bool RestoreSP) const {
   2721   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
   2722   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
   2723   assert(STI.is32Bit() && !Uses64BitFramePtr &&
   2724          "restoring EBP/ESI on non-32-bit target");
   2725 
   2726   MachineFunction &MF = *MBB.getParent();
   2727   unsigned FramePtr = TRI->getFrameRegister(MF);
   2728   unsigned BasePtr = TRI->getBaseRegister();
   2729   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
   2730   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
   2731   MachineFrameInfo *MFI = MF.getFrameInfo();
   2732 
   2733   // FIXME: Don't set FrameSetup flag in catchret case.
   2734 
   2735   int FI = FuncInfo.EHRegNodeFrameIndex;
   2736   int EHRegSize = MFI->getObjectSize(FI);
   2737 
   2738   if (RestoreSP) {
   2739     // MOV32rm -EHRegSize(%ebp), %esp
   2740     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
   2741                  X86::EBP, true, -EHRegSize)
   2742         .setMIFlag(MachineInstr::FrameSetup);
   2743   }
   2744 
   2745   unsigned UsedReg;
   2746   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
   2747   int EndOffset = -EHRegOffset - EHRegSize;
   2748   FuncInfo.EHRegNodeEndOffset = EndOffset;
   2749 
   2750   if (UsedReg == FramePtr) {
   2751     // ADD $offset, %ebp
   2752     unsigned ADDri = getADDriOpcode(false, EndOffset);
   2753     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
   2754         .addReg(FramePtr)
   2755         .addImm(EndOffset)
   2756         .setMIFlag(MachineInstr::FrameSetup)
   2757         ->getOperand(3)
   2758         .setIsDead();
   2759     assert(EndOffset >= 0 &&
   2760            "end of registration object above normal EBP position!");
   2761   } else if (UsedReg == BasePtr) {
   2762     // LEA offset(%ebp), %esi
   2763     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
   2764                  FramePtr, false, EndOffset)
   2765         .setMIFlag(MachineInstr::FrameSetup);
   2766     // MOV32rm SavedEBPOffset(%esi), %ebp
   2767     assert(X86FI->getHasSEHFramePtrSave());
   2768     int Offset =
   2769         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
   2770     assert(UsedReg == BasePtr);
   2771     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
   2772                  UsedReg, true, Offset)
   2773         .setMIFlag(MachineInstr::FrameSetup);
   2774   } else {
   2775     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
   2776   }
   2777   return MBBI;
   2778 }
   2779 
   2780 namespace {
   2781 // Struct used by orderFrameObjects to help sort the stack objects.
   2782 struct X86FrameSortingObject {
   2783   bool IsValid = false;         // true if we care about this Object.
   2784   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
   2785   unsigned ObjectSize = 0;      // Size of Object in bytes.
   2786   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
   2787   unsigned ObjectNumUses = 0;   // Object static number of uses.
   2788 };
   2789 
   2790 // The comparison function we use for std::sort to order our local
   2791 // stack symbols. The current algorithm is to use an estimated
   2792 // "density". This takes into consideration the size and number of
   2793 // uses each object has in order to roughly minimize code size.
   2794 // So, for example, an object of size 16B that is referenced 5 times
   2795 // will get higher priority than 4 4B objects referenced 1 time each.
   2796 // It's not perfect and we may be able to squeeze a few more bytes out of
   2797 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
   2798 // fringe end can have special consideration, given their size is less
   2799 // important, etc.), but the algorithmic complexity grows too much to be
   2800 // worth the extra gains we get. This gets us pretty close.
   2801 // The final order leaves us with objects with highest priority going
   2802 // at the end of our list.
   2803 struct X86FrameSortingComparator {
   2804   inline bool operator()(const X86FrameSortingObject &A,
   2805                          const X86FrameSortingObject &B) {
   2806     uint64_t DensityAScaled, DensityBScaled;
   2807 
   2808     // For consistency in our comparison, all invalid objects are placed
   2809     // at the end. This also allows us to stop walking when we hit the
   2810     // first invalid item after it's all sorted.
   2811     if (!A.IsValid)
   2812       return false;
   2813     if (!B.IsValid)
   2814       return true;
   2815 
   2816     // The density is calculated by doing :
   2817     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
   2818     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
   2819     // Since this approach may cause inconsistencies in
   2820     // the floating point <, >, == comparisons, depending on the floating
   2821     // point model with which the compiler was built, we're going
   2822     // to scale both sides by multiplying with
   2823     // A.ObjectSize * B.ObjectSize. This ends up factoring away
   2824     // the division and, with it, the need for any floating point
   2825     // arithmetic.
   2826     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
   2827       static_cast<uint64_t>(B.ObjectSize);
   2828     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
   2829       static_cast<uint64_t>(A.ObjectSize);
   2830 
   2831     // If the two densities are equal, prioritize highest alignment
   2832     // objects. This allows for similar alignment objects
   2833     // to be packed together (given the same density).
   2834     // There's room for improvement here, also, since we can pack
   2835     // similar alignment (different density) objects next to each
   2836     // other to save padding. This will also require further
   2837     // complexity/iterations, and the overall gain isn't worth it,
   2838     // in general. Something to keep in mind, though.
   2839     if (DensityAScaled == DensityBScaled)
   2840       return A.ObjectAlignment < B.ObjectAlignment;
   2841 
   2842     return DensityAScaled < DensityBScaled;
   2843   }
   2844 };
   2845 } // namespace
   2846 
   2847 // Order the symbols in the local stack.
   2848 // We want to place the local stack objects in some sort of sensible order.
   2849 // The heuristic we use is to try and pack them according to static number
   2850 // of uses and size of object in order to minimize code size.
   2851 void X86FrameLowering::orderFrameObjects(
   2852     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
   2853   const MachineFrameInfo *MFI = MF.getFrameInfo();
   2854 
   2855   // Don't waste time if there's nothing to do.
   2856   if (ObjectsToAllocate.empty())
   2857     return;
   2858 
   2859   // Create an array of all MFI objects. We won't need all of these
   2860   // objects, but we're going to create a full array of them to make
   2861   // it easier to index into when we're counting "uses" down below.
   2862   // We want to be able to easily/cheaply access an object by simply
   2863   // indexing into it, instead of having to search for it every time.
   2864   std::vector<X86FrameSortingObject> SortingObjects(MFI->getObjectIndexEnd());
   2865 
   2866   // Walk the objects we care about and mark them as such in our working
   2867   // struct.
   2868   for (auto &Obj : ObjectsToAllocate) {
   2869     SortingObjects[Obj].IsValid = true;
   2870     SortingObjects[Obj].ObjectIndex = Obj;
   2871     SortingObjects[Obj].ObjectAlignment = MFI->getObjectAlignment(Obj);
   2872     // Set the size.
   2873     int ObjectSize = MFI->getObjectSize(Obj);
   2874     if (ObjectSize == 0)
   2875       // Variable size. Just use 4.
   2876       SortingObjects[Obj].ObjectSize = 4;
   2877     else
   2878       SortingObjects[Obj].ObjectSize = ObjectSize;
   2879   }
   2880 
   2881   // Count the number of uses for each object.
   2882   for (auto &MBB : MF) {
   2883     for (auto &MI : MBB) {
   2884       if (MI.isDebugValue())
   2885         continue;
   2886       for (const MachineOperand &MO : MI.operands()) {
   2887         // Check to see if it's a local stack symbol.
   2888         if (!MO.isFI())
   2889           continue;
   2890         int Index = MO.getIndex();
   2891         // Check to see if it falls within our range, and is tagged
   2892         // to require ordering.
   2893         if (Index >= 0 && Index < MFI->getObjectIndexEnd() &&
   2894             SortingObjects[Index].IsValid)
   2895           SortingObjects[Index].ObjectNumUses++;
   2896       }
   2897     }
   2898   }
   2899 
   2900   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
   2901   // info).
   2902   std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
   2903                    X86FrameSortingComparator());
   2904 
   2905   // Now modify the original list to represent the final order that
   2906   // we want. The order will depend on whether we're going to access them
   2907   // from the stack pointer or the frame pointer. For SP, the list should
   2908   // end up with the END containing objects that we want with smaller offsets.
   2909   // For FP, it should be flipped.
   2910   int i = 0;
   2911   for (auto &Obj : SortingObjects) {
   2912     // All invalid items are sorted at the end, so it's safe to stop.
   2913     if (!Obj.IsValid)
   2914       break;
   2915     ObjectsToAllocate[i++] = Obj.ObjectIndex;
   2916   }
   2917 
   2918   // Flip it if we're accessing off of the FP.
   2919   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
   2920     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
   2921 }
   2922 
   2923 
   2924 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
   2925   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
   2926   unsigned Offset = 16;
   2927   // RBP is immediately pushed.
   2928   Offset += SlotSize;
   2929   // All callee-saved registers are then pushed.
   2930   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
   2931   // Every funclet allocates enough stack space for the largest outgoing call.
   2932   Offset += getWinEHFuncletFrameSize(MF);
   2933   return Offset;
   2934 }
   2935 
   2936 void X86FrameLowering::processFunctionBeforeFrameFinalized(
   2937     MachineFunction &MF, RegScavenger *RS) const {
   2938   // If this function isn't doing Win64-style C++ EH, we don't need to do
   2939   // anything.
   2940   const Function *Fn = MF.getFunction();
   2941   if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
   2942       classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
   2943     return;
   2944 
   2945   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
   2946   // relative to RSP after the prologue.  Find the offset of the last fixed
   2947   // object, so that we can allocate a slot immediately following it. If there
   2948   // were no fixed objects, use offset -SlotSize, which is immediately after the
   2949   // return address. Fixed objects have negative frame indices.
   2950   MachineFrameInfo *MFI = MF.getFrameInfo();
   2951   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
   2952   int64_t MinFixedObjOffset = -SlotSize;
   2953   for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
   2954     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
   2955 
   2956   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
   2957     for (WinEHHandlerType &H : TBME.HandlerArray) {
   2958       int FrameIndex = H.CatchObj.FrameIndex;
   2959       if (FrameIndex != INT_MAX) {
   2960         // Ensure alignment.
   2961         unsigned Align = MFI->getObjectAlignment(FrameIndex);
   2962         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
   2963         MinFixedObjOffset -= MFI->getObjectSize(FrameIndex);
   2964         MFI->setObjectOffset(FrameIndex, MinFixedObjOffset);
   2965       }
   2966     }
   2967   }
   2968 
   2969   // Ensure alignment.
   2970   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
   2971   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
   2972   int UnwindHelpFI =
   2973       MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
   2974   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
   2975 
   2976   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
   2977   // other frame setup instructions.
   2978   MachineBasicBlock &MBB = MF.front();
   2979   auto MBBI = MBB.begin();
   2980   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
   2981     ++MBBI;
   2982 
   2983   DebugLoc DL = MBB.findDebugLoc(MBBI);
   2984   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
   2985                     UnwindHelpFI)
   2986       .addImm(-2);
   2987 }
   2988