Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements a TargetTransformInfo analysis pass specific to the
     11 /// X86 target machine. It uses the target's detailed information to provide
     12 /// more precise answers to certain TTI queries, while letting the target
     13 /// independent and default TTI implementations handle the rest.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86TargetTransformInfo.h"
     18 #include "llvm/Analysis/TargetTransformInfo.h"
     19 #include "llvm/CodeGen/BasicTTIImpl.h"
     20 #include "llvm/IR/IntrinsicInst.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Target/CostTable.h"
     23 #include "llvm/Target/TargetLowering.h"
     24 
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "x86tti"
     28 
     29 //===----------------------------------------------------------------------===//
     30 //
     31 // X86 cost model.
     32 //
     33 //===----------------------------------------------------------------------===//
     34 
     35 TargetTransformInfo::PopcntSupportKind
     36 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
     37   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
     38   // TODO: Currently the __builtin_popcount() implementation using SSE3
     39   //   instructions is inefficient. Once the problem is fixed, we should
     40   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
     41   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
     42 }
     43 
     44 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
     45   if (Vector && !ST->hasSSE1())
     46     return 0;
     47 
     48   if (ST->is64Bit()) {
     49     if (Vector && ST->hasAVX512())
     50       return 32;
     51     return 16;
     52   }
     53   return 8;
     54 }
     55 
     56 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
     57   if (Vector) {
     58     if (ST->hasAVX512()) return 512;
     59     if (ST->hasAVX()) return 256;
     60     if (ST->hasSSE1()) return 128;
     61     return 0;
     62   }
     63 
     64   if (ST->is64Bit())
     65     return 64;
     66 
     67   return 32;
     68 }
     69 
     70 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
     71   // If the loop will not be vectorized, don't interleave the loop.
     72   // Let regular unroll to unroll the loop, which saves the overflow
     73   // check and memory check cost.
     74   if (VF == 1)
     75     return 1;
     76 
     77   if (ST->isAtom())
     78     return 1;
     79 
     80   // Sandybridge and Haswell have multiple execution ports and pipelined
     81   // vector units.
     82   if (ST->hasAVX())
     83     return 4;
     84 
     85   return 2;
     86 }
     87 
     88 int X86TTIImpl::getArithmeticInstrCost(
     89     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
     90     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
     91     TTI::OperandValueProperties Opd2PropInfo) {
     92   // Legalize the type.
     93   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
     94 
     95   int ISD = TLI->InstructionOpcodeToISD(Opcode);
     96   assert(ISD && "Invalid opcode");
     97 
     98   if (ISD == ISD::SDIV &&
     99       Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    100       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
    101     // On X86, vector signed division by constants power-of-two are
    102     // normally expanded to the sequence SRA + SRL + ADD + SRA.
    103     // The OperandValue properties many not be same as that of previous
    104     // operation;conservatively assume OP_None.
    105     int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
    106                                           Op2Info, TargetTransformInfo::OP_None,
    107                                           TargetTransformInfo::OP_None);
    108     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
    109                                    TargetTransformInfo::OP_None,
    110                                    TargetTransformInfo::OP_None);
    111     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
    112                                    TargetTransformInfo::OP_None,
    113                                    TargetTransformInfo::OP_None);
    114 
    115     return Cost;
    116   }
    117 
    118   static const CostTblEntry AVX2UniformConstCostTable[] = {
    119     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
    120 
    121     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
    122     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
    123     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
    124     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
    125   };
    126 
    127   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    128       ST->hasAVX2()) {
    129     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
    130                                             LT.second))
    131       return LT.first * Entry->Cost;
    132   }
    133 
    134   static const CostTblEntry AVX512CostTable[] = {
    135     { ISD::SHL,     MVT::v16i32,    1 },
    136     { ISD::SRL,     MVT::v16i32,    1 },
    137     { ISD::SRA,     MVT::v16i32,    1 },
    138     { ISD::SHL,     MVT::v8i64,    1 },
    139     { ISD::SRL,     MVT::v8i64,    1 },
    140     { ISD::SRA,     MVT::v8i64,    1 },
    141   };
    142 
    143   if (ST->hasAVX512()) {
    144     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
    145       return LT.first * Entry->Cost;
    146   }
    147 
    148   static const CostTblEntry AVX2CostTable[] = {
    149     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
    150     // customize them to detect the cases where shift amount is a scalar one.
    151     { ISD::SHL,     MVT::v4i32,    1 },
    152     { ISD::SRL,     MVT::v4i32,    1 },
    153     { ISD::SRA,     MVT::v4i32,    1 },
    154     { ISD::SHL,     MVT::v8i32,    1 },
    155     { ISD::SRL,     MVT::v8i32,    1 },
    156     { ISD::SRA,     MVT::v8i32,    1 },
    157     { ISD::SHL,     MVT::v2i64,    1 },
    158     { ISD::SRL,     MVT::v2i64,    1 },
    159     { ISD::SHL,     MVT::v4i64,    1 },
    160     { ISD::SRL,     MVT::v4i64,    1 },
    161   };
    162 
    163   // Look for AVX2 lowering tricks.
    164   if (ST->hasAVX2()) {
    165     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
    166         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
    167          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
    168       // On AVX2, a packed v16i16 shift left by a constant build_vector
    169       // is lowered into a vector multiply (vpmullw).
    170       return LT.first;
    171 
    172     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
    173       return LT.first * Entry->Cost;
    174   }
    175 
    176   static const CostTblEntry XOPCostTable[] = {
    177     // 128bit shifts take 1cy, but right shifts require negation beforehand.
    178     { ISD::SHL,     MVT::v16i8,    1 },
    179     { ISD::SRL,     MVT::v16i8,    2 },
    180     { ISD::SRA,     MVT::v16i8,    2 },
    181     { ISD::SHL,     MVT::v8i16,    1 },
    182     { ISD::SRL,     MVT::v8i16,    2 },
    183     { ISD::SRA,     MVT::v8i16,    2 },
    184     { ISD::SHL,     MVT::v4i32,    1 },
    185     { ISD::SRL,     MVT::v4i32,    2 },
    186     { ISD::SRA,     MVT::v4i32,    2 },
    187     { ISD::SHL,     MVT::v2i64,    1 },
    188     { ISD::SRL,     MVT::v2i64,    2 },
    189     { ISD::SRA,     MVT::v2i64,    2 },
    190     // 256bit shifts require splitting if AVX2 didn't catch them above.
    191     { ISD::SHL,     MVT::v32i8,    2 },
    192     { ISD::SRL,     MVT::v32i8,    4 },
    193     { ISD::SRA,     MVT::v32i8,    4 },
    194     { ISD::SHL,     MVT::v16i16,   2 },
    195     { ISD::SRL,     MVT::v16i16,   4 },
    196     { ISD::SRA,     MVT::v16i16,   4 },
    197     { ISD::SHL,     MVT::v8i32,    2 },
    198     { ISD::SRL,     MVT::v8i32,    4 },
    199     { ISD::SRA,     MVT::v8i32,    4 },
    200     { ISD::SHL,     MVT::v4i64,    2 },
    201     { ISD::SRL,     MVT::v4i64,    4 },
    202     { ISD::SRA,     MVT::v4i64,    4 },
    203   };
    204 
    205   // Look for XOP lowering tricks.
    206   if (ST->hasXOP()) {
    207     if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second))
    208       return LT.first * Entry->Cost;
    209   }
    210 
    211   static const CostTblEntry AVX2CustomCostTable[] = {
    212     { ISD::SHL,  MVT::v32i8,      11 }, // vpblendvb sequence.
    213     { ISD::SHL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
    214 
    215     { ISD::SRL,  MVT::v32i8,      11 }, // vpblendvb sequence.
    216     { ISD::SRL,  MVT::v16i16,     10 }, // extend/vpsrlvd/pack sequence.
    217 
    218     { ISD::SRA,  MVT::v32i8,      24 }, // vpblendvb sequence.
    219     { ISD::SRA,  MVT::v16i16,     10 }, // extend/vpsravd/pack sequence.
    220     { ISD::SRA,  MVT::v2i64,       4 }, // srl/xor/sub sequence.
    221     { ISD::SRA,  MVT::v4i64,       4 }, // srl/xor/sub sequence.
    222 
    223     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
    224     { ISD::SDIV,  MVT::v32i8,  32*20 },
    225     { ISD::SDIV,  MVT::v16i16, 16*20 },
    226     { ISD::SDIV,  MVT::v8i32,  8*20 },
    227     { ISD::SDIV,  MVT::v4i64,  4*20 },
    228     { ISD::UDIV,  MVT::v32i8,  32*20 },
    229     { ISD::UDIV,  MVT::v16i16, 16*20 },
    230     { ISD::UDIV,  MVT::v8i32,  8*20 },
    231     { ISD::UDIV,  MVT::v4i64,  4*20 },
    232   };
    233 
    234   // Look for AVX2 lowering tricks for custom cases.
    235   if (ST->hasAVX2()) {
    236     if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD,
    237                                             LT.second))
    238       return LT.first * Entry->Cost;
    239   }
    240 
    241   static const CostTblEntry
    242   SSE2UniformConstCostTable[] = {
    243     // We don't correctly identify costs of casts because they are marked as
    244     // custom.
    245     // Constant splats are cheaper for the following instructions.
    246     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
    247     { ISD::SHL,  MVT::v32i8,  2 }, // psllw.
    248     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
    249     { ISD::SHL,  MVT::v16i16, 2 }, // psllw.
    250     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
    251     { ISD::SHL,  MVT::v8i32,  2 }, // pslld
    252     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
    253     { ISD::SHL,  MVT::v4i64,  2 }, // psllq.
    254 
    255     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
    256     { ISD::SRL,  MVT::v32i8,  2 }, // psrlw.
    257     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
    258     { ISD::SRL,  MVT::v16i16, 2 }, // psrlw.
    259     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
    260     { ISD::SRL,  MVT::v8i32,  2 }, // psrld.
    261     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
    262     { ISD::SRL,  MVT::v4i64,  2 }, // psrlq.
    263 
    264     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
    265     { ISD::SRA,  MVT::v32i8,  8 }, // psrlw, pand, pxor, psubb.
    266     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
    267     { ISD::SRA,  MVT::v16i16, 2 }, // psraw.
    268     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
    269     { ISD::SRA,  MVT::v8i32,  2 }, // psrad.
    270     { ISD::SRA,  MVT::v2i64,  4 }, // 2 x psrad + shuffle.
    271     { ISD::SRA,  MVT::v4i64,  8 }, // 2 x psrad + shuffle.
    272 
    273     { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
    274     { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
    275     { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
    276     { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
    277   };
    278 
    279   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    280       ST->hasSSE2()) {
    281     // pmuldq sequence.
    282     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
    283       return LT.first * 15;
    284 
    285     if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
    286                                             LT.second))
    287       return LT.first * Entry->Cost;
    288   }
    289 
    290   if (ISD == ISD::SHL &&
    291       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
    292     MVT VT = LT.second;
    293     // Vector shift left by non uniform constant can be lowered
    294     // into vector multiply (pmullw/pmulld).
    295     if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
    296         (VT == MVT::v4i32 && ST->hasSSE41()))
    297       return LT.first;
    298 
    299     // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
    300     // sequence of extract + two vector multiply + insert.
    301     if ((VT == MVT::v8i32 || VT == MVT::v16i16) &&
    302        (ST->hasAVX() && !ST->hasAVX2()))
    303       ISD = ISD::MUL;
    304 
    305     // A vector shift left by non uniform constant is converted
    306     // into a vector multiply; the new multiply is eventually
    307     // lowered into a sequence of shuffles and 2 x pmuludq.
    308     if (VT == MVT::v4i32 && ST->hasSSE2())
    309       ISD = ISD::MUL;
    310   }
    311 
    312   static const CostTblEntry SSE2CostTable[] = {
    313     // We don't correctly identify costs of casts because they are marked as
    314     // custom.
    315     // For some cases, where the shift amount is a scalar we would be able
    316     // to generate better code. Unfortunately, when this is the case the value
    317     // (the splat) will get hoisted out of the loop, thereby making it invisible
    318     // to ISel. The cost model must return worst case assumptions because it is
    319     // used for vectorization and we don't want to make vectorized code worse
    320     // than scalar code.
    321     { ISD::SHL,  MVT::v16i8,    26 }, // cmpgtb sequence.
    322     { ISD::SHL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
    323     { ISD::SHL,  MVT::v8i16,    32 }, // cmpgtb sequence.
    324     { ISD::SHL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
    325     { ISD::SHL,  MVT::v4i32,   2*5 }, // We optimized this using mul.
    326     { ISD::SHL,  MVT::v8i32, 2*2*5 }, // We optimized this using mul.
    327     { ISD::SHL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
    328     { ISD::SHL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
    329 
    330     { ISD::SRL,  MVT::v16i8,    26 }, // cmpgtb sequence.
    331     { ISD::SRL,  MVT::v32i8,  2*26 }, // cmpgtb sequence.
    332     { ISD::SRL,  MVT::v8i16,    32 }, // cmpgtb sequence.
    333     { ISD::SRL,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
    334     { ISD::SRL,  MVT::v4i32,    16 }, // Shift each lane + blend.
    335     { ISD::SRL,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
    336     { ISD::SRL,  MVT::v2i64,     4 }, // splat+shuffle sequence.
    337     { ISD::SRL,  MVT::v4i64,   2*4 }, // splat+shuffle sequence.
    338 
    339     { ISD::SRA,  MVT::v16i8,    54 }, // unpacked cmpgtb sequence.
    340     { ISD::SRA,  MVT::v32i8,  2*54 }, // unpacked cmpgtb sequence.
    341     { ISD::SRA,  MVT::v8i16,    32 }, // cmpgtb sequence.
    342     { ISD::SRA,  MVT::v16i16, 2*32 }, // cmpgtb sequence.
    343     { ISD::SRA,  MVT::v4i32,    16 }, // Shift each lane + blend.
    344     { ISD::SRA,  MVT::v8i32,  2*16 }, // Shift each lane + blend.
    345     { ISD::SRA,  MVT::v2i64,    12 }, // srl/xor/sub sequence.
    346     { ISD::SRA,  MVT::v4i64,  2*12 }, // srl/xor/sub sequence.
    347 
    348     // It is not a good idea to vectorize division. We have to scalarize it and
    349     // in the process we will often end up having to spilling regular
    350     // registers. The overhead of division is going to dominate most kernels
    351     // anyways so try hard to prevent vectorization of division - it is
    352     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
    353     // to hide "20 cycles" for each lane.
    354     { ISD::SDIV,  MVT::v16i8,  16*20 },
    355     { ISD::SDIV,  MVT::v8i16,  8*20 },
    356     { ISD::SDIV,  MVT::v4i32,  4*20 },
    357     { ISD::SDIV,  MVT::v2i64,  2*20 },
    358     { ISD::UDIV,  MVT::v16i8,  16*20 },
    359     { ISD::UDIV,  MVT::v8i16,  8*20 },
    360     { ISD::UDIV,  MVT::v4i32,  4*20 },
    361     { ISD::UDIV,  MVT::v2i64,  2*20 },
    362   };
    363 
    364   if (ST->hasSSE2()) {
    365     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
    366       return LT.first * Entry->Cost;
    367   }
    368 
    369   static const CostTblEntry AVX1CostTable[] = {
    370     // We don't have to scalarize unsupported ops. We can issue two half-sized
    371     // operations and we only need to extract the upper YMM half.
    372     // Two ops + 1 extract + 1 insert = 4.
    373     { ISD::MUL,     MVT::v16i16,   4 },
    374     { ISD::MUL,     MVT::v8i32,    4 },
    375     { ISD::SUB,     MVT::v8i32,    4 },
    376     { ISD::ADD,     MVT::v8i32,    4 },
    377     { ISD::SUB,     MVT::v4i64,    4 },
    378     { ISD::ADD,     MVT::v4i64,    4 },
    379     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
    380     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
    381     // Because we believe v4i64 to be a legal type, we must also include the
    382     // split factor of two in the cost table. Therefore, the cost here is 18
    383     // instead of 9.
    384     { ISD::MUL,     MVT::v4i64,    18 },
    385   };
    386 
    387   // Look for AVX1 lowering tricks.
    388   if (ST->hasAVX() && !ST->hasAVX2()) {
    389     MVT VT = LT.second;
    390 
    391     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT))
    392       return LT.first * Entry->Cost;
    393   }
    394 
    395   // Custom lowering of vectors.
    396   static const CostTblEntry CustomLowered[] = {
    397     // A v2i64/v4i64 and multiply is custom lowered as a series of long
    398     // multiplies(3), shifts(4) and adds(2).
    399     { ISD::MUL,     MVT::v2i64,    9 },
    400     { ISD::MUL,     MVT::v4i64,    9 },
    401   };
    402   if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second))
    403     return LT.first * Entry->Cost;
    404 
    405   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
    406   // 2x pmuludq, 2x shuffle.
    407   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
    408       !ST->hasSSE41())
    409     return LT.first * 6;
    410 
    411   // Fallback to the default implementation.
    412   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
    413 }
    414 
    415 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
    416                                Type *SubTp) {
    417   // We only estimate the cost of reverse and alternate shuffles.
    418   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
    419     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    420 
    421   if (Kind == TTI::SK_Reverse) {
    422     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    423     int Cost = 1;
    424     if (LT.second.getSizeInBits() > 128)
    425       Cost = 3; // Extract + insert + copy.
    426 
    427     // Multiple by the number of parts.
    428     return Cost * LT.first;
    429   }
    430 
    431   if (Kind == TTI::SK_Alternate) {
    432     // 64-bit packed float vectors (v2f32) are widened to type v4f32.
    433     // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
    434     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    435 
    436     // The backend knows how to generate a single VEX.256 version of
    437     // instruction VPBLENDW if the target supports AVX2.
    438     if (ST->hasAVX2() && LT.second == MVT::v16i16)
    439       return LT.first;
    440 
    441     static const CostTblEntry AVXAltShuffleTbl[] = {
    442       {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
    443       {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
    444 
    445       {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
    446       {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
    447 
    448       // This shuffle is custom lowered into a sequence of:
    449       //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
    450       {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
    451 
    452       // This shuffle is custom lowered into a long sequence of:
    453       //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
    454       {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
    455     };
    456 
    457     if (ST->hasAVX())
    458       if (const auto *Entry = CostTableLookup(AVXAltShuffleTbl,
    459                                               ISD::VECTOR_SHUFFLE, LT.second))
    460         return LT.first * Entry->Cost;
    461 
    462     static const CostTblEntry SSE41AltShuffleTbl[] = {
    463       // These are lowered into movsd.
    464       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
    465       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
    466 
    467       // packed float vectors with four elements are lowered into BLENDI dag
    468       // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
    469       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
    470       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
    471 
    472       // This shuffle generates a single pshufw.
    473       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
    474 
    475       // There is no instruction that matches a v16i8 alternate shuffle.
    476       // The backend will expand it into the sequence 'pshufb + pshufb + or'.
    477       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
    478     };
    479 
    480     if (ST->hasSSE41())
    481       if (const auto *Entry = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE,
    482                                               LT.second))
    483         return LT.first * Entry->Cost;
    484 
    485     static const CostTblEntry SSSE3AltShuffleTbl[] = {
    486       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    487       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    488 
    489       // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
    490       // the sequence 'shufps + pshufd'
    491       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
    492       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
    493 
    494       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
    495       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
    496     };
    497 
    498     if (ST->hasSSSE3())
    499       if (const auto *Entry = CostTableLookup(SSSE3AltShuffleTbl,
    500                                               ISD::VECTOR_SHUFFLE, LT.second))
    501         return LT.first * Entry->Cost;
    502 
    503     static const CostTblEntry SSEAltShuffleTbl[] = {
    504       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
    505       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
    506 
    507       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
    508       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
    509 
    510       // This is expanded into a long sequence of four extract + four insert.
    511       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
    512 
    513       // 8 x (pinsrw + pextrw + and + movb + movzb + or)
    514       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
    515     };
    516 
    517     // Fall-back (SSE3 and SSE2).
    518     if (const auto *Entry = CostTableLookup(SSEAltShuffleTbl,
    519                                             ISD::VECTOR_SHUFFLE, LT.second))
    520       return LT.first * Entry->Cost;
    521     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    522   }
    523 
    524   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
    525 }
    526 
    527 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
    528   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    529   assert(ISD && "Invalid opcode");
    530 
    531   // FIXME: Need a better design of the cost table to handle non-simple types of
    532   // potential massive combinations (elem_num x src_type x dst_type).
    533 
    534   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
    535     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
    536     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
    537     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
    538     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
    539     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
    540     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
    541 
    542     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f32, 1 },
    543     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f32, 1 },
    544     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f32, 1 },
    545     { ISD::FP_TO_UINT,  MVT::v2i64, MVT::v2f64, 1 },
    546     { ISD::FP_TO_UINT,  MVT::v4i64, MVT::v4f64, 1 },
    547     { ISD::FP_TO_UINT,  MVT::v8i64, MVT::v8f64, 1 },
    548   };
    549 
    550   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
    551   // 256-bit wide vectors.
    552 
    553   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
    554     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
    555     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
    556     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
    557 
    558     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
    559     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
    560     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
    561     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
    562 
    563     // v16i1 -> v16i32 - load + broadcast
    564     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
    565     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
    566     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
    567     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
    568     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
    569     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
    570     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
    571     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
    572     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
    573     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
    574 
    575     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
    576     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
    577     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
    578     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
    579     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
    580     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
    581     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
    582     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
    583     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
    584     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
    585 
    586     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
    587     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
    588     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
    589     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
    590     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
    591     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
    592     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
    593     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
    594     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
    595     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
    596     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
    597     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
    598     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
    599     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
    600     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
    601     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
    602     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
    603     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
    604     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
    605     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
    606     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
    607     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64, 12 },
    608     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64, 26 },
    609 
    610     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
    611     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
    612     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
    613     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
    614   };
    615 
    616   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
    617     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    618     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
    619     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    620     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
    621     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    622     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
    623     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    624     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
    625     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    626     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
    627     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    628     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    629     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    630     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
    631     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    632     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
    633 
    634     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
    635     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
    636     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
    637     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
    638     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
    639     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
    640 
    641     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
    642     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
    643 
    644     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
    645   };
    646 
    647   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
    648     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
    649     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
    650     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
    651     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
    652     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
    653     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
    654     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
    655     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
    656     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    657     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
    658     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
    659     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    660     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    661     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
    662     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    663     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
    664 
    665     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
    666     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
    667     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
    668     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
    669     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
    670     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
    671     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
    672 
    673     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
    674     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
    675     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
    676     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
    677     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
    678     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
    679     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
    680     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
    681     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    682     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    683     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
    684     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
    685 
    686     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
    687     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
    688     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
    689     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
    690     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
    691     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
    692     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    693     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
    694     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    695     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
    696     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
    697     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
    698     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
    699     // The generic code to compute the scalar overhead is currently broken.
    700     // Workaround this limitation by estimating the scalarization overhead
    701     // here. We have roughly 10 instructions per scalar element.
    702     // Multiply that by the vector width.
    703     // FIXME: remove that when PR19268 is fixed.
    704     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 10 },
    705     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 20 },
    706     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
    707     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
    708 
    709     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
    710     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
    711     // This node is expanded into scalarized operations but BasicTTI is overly
    712     // optimistic estimating its cost.  It computes 3 per element (one
    713     // vector-extract, one scalar conversion and one vector-insert).  The
    714     // problem is that the inserts form a read-modify-write chain so latency
    715     // should be factored in too.  Inflating the cost per element by 1.
    716     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
    717     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
    718 
    719     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
    720     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
    721   };
    722 
    723   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
    724     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
    725     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
    726     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
    727     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
    728     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
    729     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
    730 
    731     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
    732     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
    733     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
    734     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
    735     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
    736     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
    737     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
    738     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
    739     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
    740     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
    741     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
    742     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
    743     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
    744     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
    745     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
    746     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
    747     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
    748     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
    749 
    750     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 },
    751     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
    752     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
    753     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
    754     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
    755     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
    756     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
    757 
    758   };
    759 
    760   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
    761     // These are somewhat magic numbers justified by looking at the output of
    762     // Intel's IACA, running some kernels and making sure when we take
    763     // legalization into account the throughput will be overestimated.
    764     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    765     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    766     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    767     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    768     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
    769     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    770     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    771     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    772 
    773     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    774     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    775     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    776     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    777     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    778     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
    779     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    780     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    781 
    782     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
    783     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
    784     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
    785     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
    786     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
    787     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
    788     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
    789     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
    790     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
    791     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
    792     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
    793     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
    794     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
    795     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
    796     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
    797     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
    798     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
    799     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
    800     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
    801     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
    802     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
    803     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
    804     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
    805     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
    806 
    807     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  4 },
    808     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 },
    809     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
    810     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
    811     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
    812     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
    813     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
    814     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
    815     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
    816   };
    817 
    818   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
    819   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
    820 
    821   if (ST->hasSSE2() && !ST->hasAVX()) {
    822     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
    823                                                    LTDest.second, LTSrc.second))
    824       return LTSrc.first * Entry->Cost;
    825   }
    826 
    827   EVT SrcTy = TLI->getValueType(DL, Src);
    828   EVT DstTy = TLI->getValueType(DL, Dst);
    829 
    830   // The function getSimpleVT only handles simple value types.
    831   if (!SrcTy.isSimple() || !DstTy.isSimple())
    832     return BaseT::getCastInstrCost(Opcode, Dst, Src);
    833 
    834   if (ST->hasDQI())
    835     if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
    836                                                    DstTy.getSimpleVT(),
    837                                                    SrcTy.getSimpleVT()))
    838       return Entry->Cost;
    839 
    840   if (ST->hasAVX512())
    841     if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
    842                                                    DstTy.getSimpleVT(),
    843                                                    SrcTy.getSimpleVT()))
    844       return Entry->Cost;
    845 
    846   if (ST->hasAVX2()) {
    847     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
    848                                                    DstTy.getSimpleVT(),
    849                                                    SrcTy.getSimpleVT()))
    850       return Entry->Cost;
    851   }
    852 
    853   if (ST->hasAVX()) {
    854     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
    855                                                    DstTy.getSimpleVT(),
    856                                                    SrcTy.getSimpleVT()))
    857       return Entry->Cost;
    858   }
    859 
    860   if (ST->hasSSE41()) {
    861     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
    862                                                    DstTy.getSimpleVT(),
    863                                                    SrcTy.getSimpleVT()))
    864       return Entry->Cost;
    865   }
    866 
    867   if (ST->hasSSE2()) {
    868     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
    869                                                    DstTy.getSimpleVT(),
    870                                                    SrcTy.getSimpleVT()))
    871       return Entry->Cost;
    872   }
    873 
    874   return BaseT::getCastInstrCost(Opcode, Dst, Src);
    875 }
    876 
    877 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
    878   // Legalize the type.
    879   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
    880 
    881   MVT MTy = LT.second;
    882 
    883   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    884   assert(ISD && "Invalid opcode");
    885 
    886   static const CostTblEntry SSE2CostTbl[] = {
    887     { ISD::SETCC,   MVT::v2i64,   8 },
    888     { ISD::SETCC,   MVT::v4i32,   1 },
    889     { ISD::SETCC,   MVT::v8i16,   1 },
    890     { ISD::SETCC,   MVT::v16i8,   1 },
    891   };
    892 
    893   static const CostTblEntry SSE42CostTbl[] = {
    894     { ISD::SETCC,   MVT::v2f64,   1 },
    895     { ISD::SETCC,   MVT::v4f32,   1 },
    896     { ISD::SETCC,   MVT::v2i64,   1 },
    897   };
    898 
    899   static const CostTblEntry AVX1CostTbl[] = {
    900     { ISD::SETCC,   MVT::v4f64,   1 },
    901     { ISD::SETCC,   MVT::v8f32,   1 },
    902     // AVX1 does not support 8-wide integer compare.
    903     { ISD::SETCC,   MVT::v4i64,   4 },
    904     { ISD::SETCC,   MVT::v8i32,   4 },
    905     { ISD::SETCC,   MVT::v16i16,  4 },
    906     { ISD::SETCC,   MVT::v32i8,   4 },
    907   };
    908 
    909   static const CostTblEntry AVX2CostTbl[] = {
    910     { ISD::SETCC,   MVT::v4i64,   1 },
    911     { ISD::SETCC,   MVT::v8i32,   1 },
    912     { ISD::SETCC,   MVT::v16i16,  1 },
    913     { ISD::SETCC,   MVT::v32i8,   1 },
    914   };
    915 
    916   static const CostTblEntry AVX512CostTbl[] = {
    917     { ISD::SETCC,   MVT::v8i64,   1 },
    918     { ISD::SETCC,   MVT::v16i32,  1 },
    919     { ISD::SETCC,   MVT::v8f64,   1 },
    920     { ISD::SETCC,   MVT::v16f32,  1 },
    921   };
    922 
    923   if (ST->hasAVX512())
    924     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
    925       return LT.first * Entry->Cost;
    926 
    927   if (ST->hasAVX2())
    928     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
    929       return LT.first * Entry->Cost;
    930 
    931   if (ST->hasAVX())
    932     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
    933       return LT.first * Entry->Cost;
    934 
    935   if (ST->hasSSE42())
    936     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
    937       return LT.first * Entry->Cost;
    938 
    939   if (ST->hasSSE2())
    940     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
    941       return LT.first * Entry->Cost;
    942 
    943   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    944 }
    945 
    946 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
    947                                       ArrayRef<Type *> Tys, FastMathFlags FMF) {
    948   static const CostTblEntry XOPCostTbl[] = {
    949     { ISD::BITREVERSE, MVT::v4i64,   4 },
    950     { ISD::BITREVERSE, MVT::v8i32,   4 },
    951     { ISD::BITREVERSE, MVT::v16i16,  4 },
    952     { ISD::BITREVERSE, MVT::v32i8,   4 },
    953     { ISD::BITREVERSE, MVT::v2i64,   1 },
    954     { ISD::BITREVERSE, MVT::v4i32,   1 },
    955     { ISD::BITREVERSE, MVT::v8i16,   1 },
    956     { ISD::BITREVERSE, MVT::v16i8,   1 },
    957     { ISD::BITREVERSE, MVT::i64,     3 },
    958     { ISD::BITREVERSE, MVT::i32,     3 },
    959     { ISD::BITREVERSE, MVT::i16,     3 },
    960     { ISD::BITREVERSE, MVT::i8,      3 }
    961   };
    962   static const CostTblEntry AVX2CostTbl[] = {
    963     { ISD::BITREVERSE, MVT::v4i64,   5 },
    964     { ISD::BITREVERSE, MVT::v8i32,   5 },
    965     { ISD::BITREVERSE, MVT::v16i16,  5 },
    966     { ISD::BITREVERSE, MVT::v32i8,   5 },
    967     { ISD::BSWAP,      MVT::v4i64,   1 },
    968     { ISD::BSWAP,      MVT::v8i32,   1 },
    969     { ISD::BSWAP,      MVT::v16i16,  1 }
    970   };
    971   static const CostTblEntry AVX1CostTbl[] = {
    972     { ISD::BITREVERSE, MVT::v4i64,  10 },
    973     { ISD::BITREVERSE, MVT::v8i32,  10 },
    974     { ISD::BITREVERSE, MVT::v16i16, 10 },
    975     { ISD::BITREVERSE, MVT::v32i8,  10 },
    976     { ISD::BSWAP,      MVT::v4i64,   4 },
    977     { ISD::BSWAP,      MVT::v8i32,   4 },
    978     { ISD::BSWAP,      MVT::v16i16,  4 }
    979   };
    980   static const CostTblEntry SSSE3CostTbl[] = {
    981     { ISD::BITREVERSE, MVT::v2i64,   5 },
    982     { ISD::BITREVERSE, MVT::v4i32,   5 },
    983     { ISD::BITREVERSE, MVT::v8i16,   5 },
    984     { ISD::BITREVERSE, MVT::v16i8,   5 },
    985     { ISD::BSWAP,      MVT::v2i64,   1 },
    986     { ISD::BSWAP,      MVT::v4i32,   1 },
    987     { ISD::BSWAP,      MVT::v8i16,   1 }
    988   };
    989   static const CostTblEntry SSE2CostTbl[] = {
    990     { ISD::BSWAP,      MVT::v2i64,   7 },
    991     { ISD::BSWAP,      MVT::v4i32,   7 },
    992     { ISD::BSWAP,      MVT::v8i16,   7 }
    993   };
    994 
    995   unsigned ISD = ISD::DELETED_NODE;
    996   switch (IID) {
    997   default:
    998     break;
    999   case Intrinsic::bitreverse:
   1000     ISD = ISD::BITREVERSE;
   1001     break;
   1002   case Intrinsic::bswap:
   1003     ISD = ISD::BSWAP;
   1004     break;
   1005   }
   1006 
   1007   // Legalize the type.
   1008   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
   1009   MVT MTy = LT.second;
   1010 
   1011   // Attempt to lookup cost.
   1012   if (ST->hasXOP())
   1013     if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
   1014       return LT.first * Entry->Cost;
   1015 
   1016   if (ST->hasAVX2())
   1017     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
   1018       return LT.first * Entry->Cost;
   1019 
   1020   if (ST->hasAVX())
   1021     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
   1022       return LT.first * Entry->Cost;
   1023 
   1024   if (ST->hasSSSE3())
   1025     if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
   1026       return LT.first * Entry->Cost;
   1027 
   1028   if (ST->hasSSE2())
   1029     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
   1030       return LT.first * Entry->Cost;
   1031 
   1032   return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
   1033 }
   1034 
   1035 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
   1036                                       ArrayRef<Value *> Args, FastMathFlags FMF) {
   1037   return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
   1038 }
   1039 
   1040 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
   1041   assert(Val->isVectorTy() && "This must be a vector type");
   1042 
   1043   Type *ScalarType = Val->getScalarType();
   1044 
   1045   if (Index != -1U) {
   1046     // Legalize the type.
   1047     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
   1048 
   1049     // This type is legalized to a scalar type.
   1050     if (!LT.second.isVector())
   1051       return 0;
   1052 
   1053     // The type may be split. Normalize the index to the new type.
   1054     unsigned Width = LT.second.getVectorNumElements();
   1055     Index = Index % Width;
   1056 
   1057     // Floating point scalars are already located in index #0.
   1058     if (ScalarType->isFloatingPointTy() && Index == 0)
   1059       return 0;
   1060   }
   1061 
   1062   // Add to the base cost if we know that the extracted element of a vector is
   1063   // destined to be moved to and used in the integer register file.
   1064   int RegisterFileMoveCost = 0;
   1065   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
   1066     RegisterFileMoveCost = 1;
   1067 
   1068   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
   1069 }
   1070 
   1071 int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
   1072   assert (Ty->isVectorTy() && "Can only scalarize vectors");
   1073   int Cost = 0;
   1074 
   1075   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
   1076     if (Insert)
   1077       Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
   1078     if (Extract)
   1079       Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
   1080   }
   1081 
   1082   return Cost;
   1083 }
   1084 
   1085 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
   1086                                 unsigned AddressSpace) {
   1087   // Handle non-power-of-two vectors such as <3 x float>
   1088   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
   1089     unsigned NumElem = VTy->getVectorNumElements();
   1090 
   1091     // Handle a few common cases:
   1092     // <3 x float>
   1093     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
   1094       // Cost = 64 bit store + extract + 32 bit store.
   1095       return 3;
   1096 
   1097     // <3 x double>
   1098     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
   1099       // Cost = 128 bit store + unpack + 64 bit store.
   1100       return 3;
   1101 
   1102     // Assume that all other non-power-of-two numbers are scalarized.
   1103     if (!isPowerOf2_32(NumElem)) {
   1104       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
   1105                                         AddressSpace);
   1106       int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
   1107                                                Opcode == Instruction::Store);
   1108       return NumElem * Cost + SplitCost;
   1109     }
   1110   }
   1111 
   1112   // Legalize the type.
   1113   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
   1114   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
   1115          "Invalid Opcode");
   1116 
   1117   // Each load/store unit costs 1.
   1118   int Cost = LT.first * 1;
   1119 
   1120   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
   1121   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
   1122   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
   1123     Cost *= 2;
   1124 
   1125   return Cost;
   1126 }
   1127 
   1128 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
   1129                                       unsigned Alignment,
   1130                                       unsigned AddressSpace) {
   1131   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
   1132   if (!SrcVTy)
   1133     // To calculate scalar take the regular cost, without mask
   1134     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
   1135 
   1136   unsigned NumElem = SrcVTy->getVectorNumElements();
   1137   VectorType *MaskTy =
   1138     VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
   1139   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
   1140       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
   1141       !isPowerOf2_32(NumElem)) {
   1142     // Scalarization
   1143     int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
   1144     int ScalarCompareCost = getCmpSelInstrCost(
   1145         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
   1146     int BranchCost = getCFInstrCost(Instruction::Br);
   1147     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
   1148 
   1149     int ValueSplitCost = getScalarizationOverhead(
   1150         SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
   1151     int MemopCost =
   1152         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
   1153                                          Alignment, AddressSpace);
   1154     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
   1155   }
   1156 
   1157   // Legalize the type.
   1158   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
   1159   auto VT = TLI->getValueType(DL, SrcVTy);
   1160   int Cost = 0;
   1161   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
   1162       LT.second.getVectorNumElements() == NumElem)
   1163     // Promotion requires expand/truncate for data and a shuffle for mask.
   1164     Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
   1165             getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
   1166 
   1167   else if (LT.second.getVectorNumElements() > NumElem) {
   1168     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
   1169                                             LT.second.getVectorNumElements());
   1170     // Expanding requires fill mask with zeroes
   1171     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
   1172   }
   1173   if (!ST->hasAVX512())
   1174     return Cost + LT.first*4; // Each maskmov costs 4
   1175 
   1176   // AVX-512 masked load/store is cheapper
   1177   return Cost+LT.first;
   1178 }
   1179 
   1180 int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
   1181   // Address computations in vectorized code with non-consecutive addresses will
   1182   // likely result in more instructions compared to scalar code where the
   1183   // computation can more often be merged into the index mode. The resulting
   1184   // extra micro-ops can significantly decrease throughput.
   1185   unsigned NumVectorInstToHideOverhead = 10;
   1186 
   1187   if (Ty->isVectorTy() && IsComplex)
   1188     return NumVectorInstToHideOverhead;
   1189 
   1190   return BaseT::getAddressComputationCost(Ty, IsComplex);
   1191 }
   1192 
   1193 int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
   1194                                  bool IsPairwise) {
   1195 
   1196   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
   1197 
   1198   MVT MTy = LT.second;
   1199 
   1200   int ISD = TLI->InstructionOpcodeToISD(Opcode);
   1201   assert(ISD && "Invalid opcode");
   1202 
   1203   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
   1204   // and make it as the cost.
   1205 
   1206   static const CostTblEntry SSE42CostTblPairWise[] = {
   1207     { ISD::FADD,  MVT::v2f64,   2 },
   1208     { ISD::FADD,  MVT::v4f32,   4 },
   1209     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
   1210     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
   1211     { ISD::ADD,   MVT::v8i16,   5 },
   1212   };
   1213 
   1214   static const CostTblEntry AVX1CostTblPairWise[] = {
   1215     { ISD::FADD,  MVT::v4f32,   4 },
   1216     { ISD::FADD,  MVT::v4f64,   5 },
   1217     { ISD::FADD,  MVT::v8f32,   7 },
   1218     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
   1219     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
   1220     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
   1221     { ISD::ADD,   MVT::v8i16,   5 },
   1222     { ISD::ADD,   MVT::v8i32,   5 },
   1223   };
   1224 
   1225   static const CostTblEntry SSE42CostTblNoPairWise[] = {
   1226     { ISD::FADD,  MVT::v2f64,   2 },
   1227     { ISD::FADD,  MVT::v4f32,   4 },
   1228     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
   1229     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
   1230     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
   1231   };
   1232 
   1233   static const CostTblEntry AVX1CostTblNoPairWise[] = {
   1234     { ISD::FADD,  MVT::v4f32,   3 },
   1235     { ISD::FADD,  MVT::v4f64,   3 },
   1236     { ISD::FADD,  MVT::v8f32,   4 },
   1237     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
   1238     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
   1239     { ISD::ADD,   MVT::v4i64,   3 },
   1240     { ISD::ADD,   MVT::v8i16,   4 },
   1241     { ISD::ADD,   MVT::v8i32,   5 },
   1242   };
   1243 
   1244   if (IsPairwise) {
   1245     if (ST->hasAVX())
   1246       if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
   1247         return LT.first * Entry->Cost;
   1248 
   1249     if (ST->hasSSE42())
   1250       if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
   1251         return LT.first * Entry->Cost;
   1252   } else {
   1253     if (ST->hasAVX())
   1254       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
   1255         return LT.first * Entry->Cost;
   1256 
   1257     if (ST->hasSSE42())
   1258       if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
   1259         return LT.first * Entry->Cost;
   1260   }
   1261 
   1262   return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
   1263 }
   1264 
   1265 /// \brief Calculate the cost of materializing a 64-bit value. This helper
   1266 /// method might only calculate a fraction of a larger immediate. Therefore it
   1267 /// is valid to return a cost of ZERO.
   1268 int X86TTIImpl::getIntImmCost(int64_t Val) {
   1269   if (Val == 0)
   1270     return TTI::TCC_Free;
   1271 
   1272   if (isInt<32>(Val))
   1273     return TTI::TCC_Basic;
   1274 
   1275   return 2 * TTI::TCC_Basic;
   1276 }
   1277 
   1278 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
   1279   assert(Ty->isIntegerTy());
   1280 
   1281   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1282   if (BitSize == 0)
   1283     return ~0U;
   1284 
   1285   // Never hoist constants larger than 128bit, because this might lead to
   1286   // incorrect code generation or assertions in codegen.
   1287   // Fixme: Create a cost model for types larger than i128 once the codegen
   1288   // issues have been fixed.
   1289   if (BitSize > 128)
   1290     return TTI::TCC_Free;
   1291 
   1292   if (Imm == 0)
   1293     return TTI::TCC_Free;
   1294 
   1295   // Sign-extend all constants to a multiple of 64-bit.
   1296   APInt ImmVal = Imm;
   1297   if (BitSize & 0x3f)
   1298     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
   1299 
   1300   // Split the constant into 64-bit chunks and calculate the cost for each
   1301   // chunk.
   1302   int Cost = 0;
   1303   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
   1304     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
   1305     int64_t Val = Tmp.getSExtValue();
   1306     Cost += getIntImmCost(Val);
   1307   }
   1308   // We need at least one instruction to materialize the constant.
   1309   return std::max(1, Cost);
   1310 }
   1311 
   1312 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
   1313                               Type *Ty) {
   1314   assert(Ty->isIntegerTy());
   1315 
   1316   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1317   // There is no cost model for constants with a bit size of 0. Return TCC_Free
   1318   // here, so that constant hoisting will ignore this constant.
   1319   if (BitSize == 0)
   1320     return TTI::TCC_Free;
   1321 
   1322   unsigned ImmIdx = ~0U;
   1323   switch (Opcode) {
   1324   default:
   1325     return TTI::TCC_Free;
   1326   case Instruction::GetElementPtr:
   1327     // Always hoist the base address of a GetElementPtr. This prevents the
   1328     // creation of new constants for every base constant that gets constant
   1329     // folded with the offset.
   1330     if (Idx == 0)
   1331       return 2 * TTI::TCC_Basic;
   1332     return TTI::TCC_Free;
   1333   case Instruction::Store:
   1334     ImmIdx = 0;
   1335     break;
   1336   case Instruction::ICmp:
   1337     // This is an imperfect hack to prevent constant hoisting of
   1338     // compares that might be trying to check if a 64-bit value fits in
   1339     // 32-bits. The backend can optimize these cases using a right shift by 32.
   1340     // Ideally we would check the compare predicate here. There also other
   1341     // similar immediates the backend can use shifts for.
   1342     if (Idx == 1 && Imm.getBitWidth() == 64) {
   1343       uint64_t ImmVal = Imm.getZExtValue();
   1344       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
   1345         return TTI::TCC_Free;
   1346     }
   1347     ImmIdx = 1;
   1348     break;
   1349   case Instruction::And:
   1350     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
   1351     // by using a 32-bit operation with implicit zero extension. Detect such
   1352     // immediates here as the normal path expects bit 31 to be sign extended.
   1353     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
   1354       return TTI::TCC_Free;
   1355     // Fallthrough
   1356   case Instruction::Add:
   1357   case Instruction::Sub:
   1358   case Instruction::Mul:
   1359   case Instruction::UDiv:
   1360   case Instruction::SDiv:
   1361   case Instruction::URem:
   1362   case Instruction::SRem:
   1363   case Instruction::Or:
   1364   case Instruction::Xor:
   1365     ImmIdx = 1;
   1366     break;
   1367   // Always return TCC_Free for the shift value of a shift instruction.
   1368   case Instruction::Shl:
   1369   case Instruction::LShr:
   1370   case Instruction::AShr:
   1371     if (Idx == 1)
   1372       return TTI::TCC_Free;
   1373     break;
   1374   case Instruction::Trunc:
   1375   case Instruction::ZExt:
   1376   case Instruction::SExt:
   1377   case Instruction::IntToPtr:
   1378   case Instruction::PtrToInt:
   1379   case Instruction::BitCast:
   1380   case Instruction::PHI:
   1381   case Instruction::Call:
   1382   case Instruction::Select:
   1383   case Instruction::Ret:
   1384   case Instruction::Load:
   1385     break;
   1386   }
   1387 
   1388   if (Idx == ImmIdx) {
   1389     int NumConstants = (BitSize + 63) / 64;
   1390     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
   1391     return (Cost <= NumConstants * TTI::TCC_Basic)
   1392                ? static_cast<int>(TTI::TCC_Free)
   1393                : Cost;
   1394   }
   1395 
   1396   return X86TTIImpl::getIntImmCost(Imm, Ty);
   1397 }
   1398 
   1399 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
   1400                               Type *Ty) {
   1401   assert(Ty->isIntegerTy());
   1402 
   1403   unsigned BitSize = Ty->getPrimitiveSizeInBits();
   1404   // There is no cost model for constants with a bit size of 0. Return TCC_Free
   1405   // here, so that constant hoisting will ignore this constant.
   1406   if (BitSize == 0)
   1407     return TTI::TCC_Free;
   1408 
   1409   switch (IID) {
   1410   default:
   1411     return TTI::TCC_Free;
   1412   case Intrinsic::sadd_with_overflow:
   1413   case Intrinsic::uadd_with_overflow:
   1414   case Intrinsic::ssub_with_overflow:
   1415   case Intrinsic::usub_with_overflow:
   1416   case Intrinsic::smul_with_overflow:
   1417   case Intrinsic::umul_with_overflow:
   1418     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
   1419       return TTI::TCC_Free;
   1420     break;
   1421   case Intrinsic::experimental_stackmap:
   1422     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1423       return TTI::TCC_Free;
   1424     break;
   1425   case Intrinsic::experimental_patchpoint_void:
   1426   case Intrinsic::experimental_patchpoint_i64:
   1427     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
   1428       return TTI::TCC_Free;
   1429     break;
   1430   }
   1431   return X86TTIImpl::getIntImmCost(Imm, Ty);
   1432 }
   1433 
   1434 // Return an average cost of Gather / Scatter instruction, maybe improved later
   1435 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
   1436                                 unsigned Alignment, unsigned AddressSpace) {
   1437 
   1438   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
   1439   unsigned VF = SrcVTy->getVectorNumElements();
   1440 
   1441   // Try to reduce index size from 64 bit (default for GEP)
   1442   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
   1443   // operation will use 16 x 64 indices which do not fit in a zmm and needs
   1444   // to split. Also check that the base pointer is the same for all lanes,
   1445   // and that there's at most one variable index.
   1446   auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
   1447     unsigned IndexSize = DL.getPointerSizeInBits();
   1448     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
   1449     if (IndexSize < 64 || !GEP)
   1450       return IndexSize;
   1451 
   1452     unsigned NumOfVarIndices = 0;
   1453     Value *Ptrs = GEP->getPointerOperand();
   1454     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
   1455       return IndexSize;
   1456     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
   1457       if (isa<Constant>(GEP->getOperand(i)))
   1458         continue;
   1459       Type *IndxTy = GEP->getOperand(i)->getType();
   1460       if (IndxTy->isVectorTy())
   1461         IndxTy = IndxTy->getVectorElementType();
   1462       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
   1463           !isa<SExtInst>(GEP->getOperand(i))) ||
   1464          ++NumOfVarIndices > 1)
   1465         return IndexSize; // 64
   1466     }
   1467     return (unsigned)32;
   1468   };
   1469 
   1470 
   1471   // Trying to reduce IndexSize to 32 bits for vector 16.
   1472   // By default the IndexSize is equal to pointer size.
   1473   unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
   1474     DL.getPointerSizeInBits();
   1475 
   1476   Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
   1477                                                     IndexSize), VF);
   1478   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
   1479   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
   1480   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
   1481   if (SplitFactor > 1) {
   1482     // Handle splitting of vector of pointers
   1483     Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
   1484     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
   1485                                          AddressSpace);
   1486   }
   1487 
   1488   // The gather / scatter cost is given by Intel architects. It is a rough
   1489   // number since we are looking at one instruction in a time.
   1490   const int GSOverhead = 2;
   1491   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
   1492                                            Alignment, AddressSpace);
   1493 }
   1494 
   1495 /// Return the cost of full scalarization of gather / scatter operation.
   1496 ///
   1497 /// Opcode - Load or Store instruction.
   1498 /// SrcVTy - The type of the data vector that should be gathered or scattered.
   1499 /// VariableMask - The mask is non-constant at compile time.
   1500 /// Alignment - Alignment for one element.
   1501 /// AddressSpace - pointer[s] address space.
   1502 ///
   1503 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
   1504                                 bool VariableMask, unsigned Alignment,
   1505                                 unsigned AddressSpace) {
   1506   unsigned VF = SrcVTy->getVectorNumElements();
   1507 
   1508   int MaskUnpackCost = 0;
   1509   if (VariableMask) {
   1510     VectorType *MaskTy =
   1511       VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
   1512     MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
   1513     int ScalarCompareCost =
   1514       getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
   1515                          nullptr);
   1516     int BranchCost = getCFInstrCost(Instruction::Br);
   1517     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
   1518   }
   1519 
   1520   // The cost of the scalar loads/stores.
   1521   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
   1522                                           Alignment, AddressSpace);
   1523 
   1524   int InsertExtractCost = 0;
   1525   if (Opcode == Instruction::Load)
   1526     for (unsigned i = 0; i < VF; ++i)
   1527       // Add the cost of inserting each scalar load into the vector
   1528       InsertExtractCost +=
   1529         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
   1530   else
   1531     for (unsigned i = 0; i < VF; ++i)
   1532       // Add the cost of extracting each element out of the data vector
   1533       InsertExtractCost +=
   1534         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
   1535 
   1536   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
   1537 }
   1538 
   1539 /// Calculate the cost of Gather / Scatter operation
   1540 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
   1541                                        Value *Ptr, bool VariableMask,
   1542                                        unsigned Alignment) {
   1543   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
   1544   unsigned VF = SrcVTy->getVectorNumElements();
   1545   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
   1546   if (!PtrTy && Ptr->getType()->isVectorTy())
   1547     PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
   1548   assert(PtrTy && "Unexpected type for Ptr argument");
   1549   unsigned AddressSpace = PtrTy->getAddressSpace();
   1550 
   1551   bool Scalarize = false;
   1552   if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
   1553       (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
   1554     Scalarize = true;
   1555   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
   1556   // Vector-4 of gather/scatter instruction does not exist on KNL.
   1557   // We can extend it to 8 elements, but zeroing upper bits of
   1558   // the mask vector will add more instructions. Right now we give the scalar
   1559   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction is
   1560   // better in the VariableMask case.
   1561   if (VF == 2 || (VF == 4 && !ST->hasVLX()))
   1562     Scalarize = true;
   1563 
   1564   if (Scalarize)
   1565     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, AddressSpace);
   1566 
   1567   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
   1568 }
   1569 
   1570 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
   1571   Type *ScalarTy = DataTy->getScalarType();
   1572   int DataWidth = isa<PointerType>(ScalarTy) ?
   1573     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
   1574 
   1575   return (DataWidth >= 32 && ST->hasAVX()) ||
   1576          (DataWidth >= 8 && ST->hasBWI());
   1577 }
   1578 
   1579 bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
   1580   return isLegalMaskedLoad(DataType);
   1581 }
   1582 
   1583 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
   1584   // This function is called now in two cases: from the Loop Vectorizer
   1585   // and from the Scalarizer.
   1586   // When the Loop Vectorizer asks about legality of the feature,
   1587   // the vectorization factor is not calculated yet. The Loop Vectorizer
   1588   // sends a scalar type and the decision is based on the width of the
   1589   // scalar element.
   1590   // Later on, the cost model will estimate usage this intrinsic based on
   1591   // the vector type.
   1592   // The Scalarizer asks again about legality. It sends a vector type.
   1593   // In this case we can reject non-power-of-2 vectors.
   1594   if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
   1595     return false;
   1596   Type *ScalarTy = DataTy->getScalarType();
   1597   int DataWidth = isa<PointerType>(ScalarTy) ?
   1598     DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
   1599 
   1600   // AVX-512 allows gather and scatter
   1601   return DataWidth >= 32 && ST->hasAVX512();
   1602 }
   1603 
   1604 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
   1605   return isLegalMaskedGather(DataType);
   1606 }
   1607 
   1608 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
   1609                                      const Function *Callee) const {
   1610   const TargetMachine &TM = getTLI()->getTargetMachine();
   1611 
   1612   // Work this as a subsetting of subtarget features.
   1613   const FeatureBitset &CallerBits =
   1614       TM.getSubtargetImpl(*Caller)->getFeatureBits();
   1615   const FeatureBitset &CalleeBits =
   1616       TM.getSubtargetImpl(*Callee)->getFeatureBits();
   1617 
   1618   // FIXME: This is likely too limiting as it will include subtarget features
   1619   // that we might not care about for inlining, but it is conservatively
   1620   // correct.
   1621   return (CallerBits & CalleeBits) == CalleeBits;
   1622 }
   1623