Home | History | Annotate | Download | only in jumper
      1 /*
      2  * Copyright 2017 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkJumper.h"
      9 #include "SkJumper_misc.h"     // SI, unaligned_load(), bit_cast()
     10 #include "SkJumper_vectors.h"  // F, I32, U32, U16, U8, cast(), expand()
     11 
     12 // Our fundamental vector depth is our pixel stride.
     13 static const size_t kStride = sizeof(F) / sizeof(float);
     14 
     15 // A reminder:
     16 // Code guarded by defined(JUMPER) can assume that it will be compiled by Clang
     17 // and that F, I32, etc. are kStride-deep ext_vector_types of the appropriate type.
     18 // Otherwise, F, I32, etc. just alias the basic scalar types (and so kStride == 1).
     19 
     20 // You can use most constants in this file, but in a few rare exceptions we read from this struct.
     21 using K = const SkJumper_constants;
     22 
     23 // A little wrapper macro to name Stages differently depending on the instruction set.
     24 // That lets us link together several options.
     25 #if !defined(JUMPER)
     26     #define WRAP(name) sk_##name
     27 #elif defined(__aarch64__)
     28     #define WRAP(name) sk_##name##_aarch64
     29 #elif defined(__arm__)
     30     #define WRAP(name) sk_##name##_vfp4
     31 #elif defined(__AVX2__)
     32     #define WRAP(name) sk_##name##_hsw
     33 #elif defined(__AVX__)
     34     #define WRAP(name) sk_##name##_avx
     35 #elif defined(__SSE4_1__)
     36     #define WRAP(name) sk_##name##_sse41
     37 #elif defined(__SSE2__)
     38     #define WRAP(name) sk_##name##_sse2
     39 #endif
     40 
     41 // We're finally going to get to what a Stage function looks like!
     42 //    tail == 0 ~~> work on a full kStride pixels
     43 //    tail != 0 ~~> work on only the first tail pixels
     44 // tail is always < kStride.
     45 //
     46 // We keep program the second argument, so that it's passed in rsi for load_and_inc().
     47 using Stage = void(K* k, void** program, size_t x, size_t y, size_t tail, F,F,F,F, F,F,F,F);
     48 
     49 #if defined(JUMPER) && defined(__AVX__)
     50     // We really want to make sure all paths go through this function's (implicit) vzeroupper.
     51     // If they don't, we'll experience severe slowdowns when we first use SSE instructions again.
     52     __attribute__((disable_tail_calls))
     53 #endif
     54 MAYBE_MSABI
     55 extern "C" void WRAP(start_pipeline)(size_t x, size_t y, size_t limit, void** program, K* k) {
     56 #if defined(JUMPER)
     57     F v;
     58 #else
     59     F v{};
     60 #endif
     61     auto start = (Stage*)load_and_inc(program);
     62     while (x + kStride <= limit) {
     63         start(k,program,x,y,0,    v,v,v,v, v,v,v,v);
     64         x += kStride;
     65     }
     66     if (size_t tail = limit - x) {
     67         start(k,program,x,y,tail, v,v,v,v, v,v,v,v);
     68     }
     69 }
     70 
     71 #if defined(JUMPER) && defined(__AVX__)
     72     // We really want to make sure all paths go through this function's (implicit) vzeroupper.
     73     // If they don't, we'll experience severe slowdowns when we first use SSE instructions again.
     74     __attribute__((disable_tail_calls))
     75 #endif
     76 #if defined(JUMPER)
     77     __attribute__((flatten))  // Force-inline the call to start_pipeline().
     78 #endif
     79 MAYBE_MSABI
     80 extern "C" void WRAP(start_pipeline_2d)(size_t x, size_t y, size_t xlimit, size_t ylimit,
     81                                         void** program, K* k) {
     82     for (; y < ylimit; y++) {
     83         WRAP(start_pipeline)(x,y,xlimit, program, k);
     84     }
     85 }
     86 
     87 #define STAGE(name)                                                                   \
     88     SI void name##_k(K* k, LazyCtx ctx, size_t x, size_t y, size_t tail,              \
     89                      F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);             \
     90     extern "C" void WRAP(name)(K* k, void** program, size_t x, size_t y, size_t tail, \
     91                                F r, F g, F b, F a, F dr, F dg, F db, F da) {          \
     92         LazyCtx ctx(program);                                                         \
     93         name##_k(k,ctx,x,y,tail, r,g,b,a, dr,dg,db,da);                               \
     94         auto next = (Stage*)load_and_inc(program);                                    \
     95         next(k,program,x,y,tail, r,g,b,a, dr,dg,db,da);                               \
     96     }                                                                                 \
     97     SI void name##_k(K* k, LazyCtx ctx, size_t x, size_t y, size_t tail,              \
     98                      F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
     99 
    100 
    101 // just_return() is a simple no-op stage that only exists to end the chain,
    102 // returning back up to start_pipeline(), and from there to the caller.
    103 extern "C" void WRAP(just_return)(K*, void**, size_t,size_t,size_t, F,F,F,F, F,F,F,F) {}
    104 
    105 
    106 // We could start defining normal Stages now.  But first, some helper functions.
    107 
    108 // These load() and store() methods are tail-aware,
    109 // but focus mainly on keeping the at-stride tail==0 case fast.
    110 
    111 template <typename V, typename T>
    112 SI V load(const T* src, size_t tail) {
    113 #if defined(JUMPER)
    114     __builtin_assume(tail < kStride);
    115     if (__builtin_expect(tail, 0)) {
    116         V v{};  // Any inactive lanes are zeroed.
    117         switch (tail) {
    118             case 7: v[6] = src[6];
    119             case 6: v[5] = src[5];
    120             case 5: v[4] = src[4];
    121             case 4: memcpy(&v, src, 4*sizeof(T)); break;
    122             case 3: v[2] = src[2];
    123             case 2: memcpy(&v, src, 2*sizeof(T)); break;
    124             case 1: memcpy(&v, src, 1*sizeof(T)); break;
    125         }
    126         return v;
    127     }
    128 #endif
    129     return unaligned_load<V>(src);
    130 }
    131 
    132 template <typename V, typename T>
    133 SI void store(T* dst, V v, size_t tail) {
    134 #if defined(JUMPER)
    135     __builtin_assume(tail < kStride);
    136     if (__builtin_expect(tail, 0)) {
    137         switch (tail) {
    138             case 7: dst[6] = v[6];
    139             case 6: dst[5] = v[5];
    140             case 5: dst[4] = v[4];
    141             case 4: memcpy(dst, &v, 4*sizeof(T)); break;
    142             case 3: dst[2] = v[2];
    143             case 2: memcpy(dst, &v, 2*sizeof(T)); break;
    144             case 1: memcpy(dst, &v, 1*sizeof(T)); break;
    145         }
    146         return;
    147     }
    148 #endif
    149     unaligned_store(dst, v);
    150 }
    151 
    152 // AVX adds some mask loads and stores that make for shorter, faster code.
    153 #if defined(JUMPER) && defined(__AVX__)
    154     SI U32 mask(size_t tail) {
    155         // We go a little out of our way to avoid needing large constant values here.
    156 
    157         // It's easiest to build the mask as 8 8-bit values, either 0x00 or 0xff.
    158         // Start fully on, then shift away lanes from the top until we've got our mask.
    159         uint64_t mask = 0xffffffffffffffff >> 8*(kStride-tail);
    160 
    161         // Sign-extend each mask lane to its full width, 0x00000000 or 0xffffffff.
    162         using S8  = int8_t  __attribute__((ext_vector_type(8)));
    163         using S32 = int32_t __attribute__((ext_vector_type(8)));
    164         return (U32)__builtin_convertvector(unaligned_load<S8>(&mask), S32);
    165     }
    166 
    167     template <>
    168     inline U32 load(const uint32_t* src, size_t tail) {
    169         __builtin_assume(tail < kStride);
    170         if (__builtin_expect(tail, 0)) {
    171             return (U32)_mm256_maskload_ps((const float*)src, mask(tail));
    172         }
    173         return unaligned_load<U32>(src);
    174     }
    175 
    176     template <>
    177     inline void store(uint32_t* dst, U32 v, size_t tail) {
    178         __builtin_assume(tail < kStride);
    179         if (__builtin_expect(tail, 0)) {
    180             return _mm256_maskstore_ps((float*)dst, mask(tail), (F)v);
    181         }
    182         unaligned_store(dst, v);
    183     }
    184 #endif
    185 
    186 SI F from_byte(U8 b) {
    187     return cast(expand(b)) * (1/255.0f);
    188 }
    189 SI void from_565(U16 _565, F* r, F* g, F* b) {
    190     U32 wide = expand(_565);
    191     *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
    192     *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
    193     *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
    194 }
    195 SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
    196     U32 wide = expand(_4444);
    197     *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
    198     *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
    199     *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
    200     *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
    201 }
    202 SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
    203     *r = cast((_8888      ) & 0xff) * (1/255.0f);
    204     *g = cast((_8888 >>  8) & 0xff) * (1/255.0f);
    205     *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
    206     *a = cast((_8888 >> 24)       ) * (1/255.0f);
    207 }
    208 
    209 template <typename T>
    210 SI U32 ix_and_ptr(T** ptr, const SkJumper_MemoryCtx* ctx, F x, F y) {
    211     *ptr = (const T*)ctx->pixels;
    212     return trunc_(y)*ctx->stride + trunc_(x);
    213 }
    214 
    215 // Now finally, normal Stages!
    216 
    217 STAGE(seed_shader) {
    218     // It's important for speed to explicitly cast(x) and cast(y),
    219     // which has the effect of splatting them to vectors before converting to floats.
    220     // On Intel this breaks a data dependency on previous loop iterations' registers.
    221     r = cast(x) + 0.5f + unaligned_load<F>(k->iota_F);
    222     g = cast(y) + 0.5f;
    223     b = 1.0f;
    224     a = 0;
    225     dr = dg = db = da = 0;
    226 }
    227 
    228 STAGE(dither) {
    229     auto rate = *(const float*)ctx;
    230 
    231     // Get [(x,y), (x+1,y), (x+2,y), ...] loaded up in integer vectors.
    232     U32 X = x + unaligned_load<U32>(k->iota_U32),
    233         Y = y;
    234 
    235     // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
    236     // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
    237 
    238     // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
    239     Y ^= X;
    240 
    241     // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
    242     // for 2^6 == 64 == 8x8 matrix values.  If X=abc and Y=def, we make fcebda.
    243     U32 M = (Y & 1) << 5 | (X & 1) << 4
    244           | (Y & 2) << 2 | (X & 2) << 1
    245           | (Y & 4) >> 1 | (X & 4) >> 2;
    246 
    247     // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
    248     // We want to make sure our dither is less than 0.5 in either direction to keep exact values
    249     // like 0 and 1 unchanged after rounding.
    250     F dither = cast(M) * (2/128.0f) - (63/128.0f);
    251 
    252     r += rate*dither;
    253     g += rate*dither;
    254     b += rate*dither;
    255 
    256     r = max(0, min(r, a));
    257     g = max(0, min(g, a));
    258     b = max(0, min(b, a));
    259 }
    260 
    261 // load 4 floats from memory, and splat them into r,g,b,a
    262 STAGE(uniform_color) {
    263     auto rgba = (const float*)ctx;
    264     r = rgba[0];
    265     g = rgba[1];
    266     b = rgba[2];
    267     a = rgba[3];
    268 }
    269 
    270 // splats opaque-black into r,g,b,a
    271 STAGE(black_color) {
    272     r = g = b = 0.0f;
    273     a = 1.0f;
    274 }
    275 
    276 STAGE(white_color) {
    277     r = g = b = a = 1.0f;
    278 }
    279 
    280 // load registers r,g,b,a from context (mirrors store_rgba)
    281 STAGE(load_rgba) {
    282     auto ptr = (const float*)ctx;
    283     r = unaligned_load<F>(ptr + 0*kStride);
    284     g = unaligned_load<F>(ptr + 1*kStride);
    285     b = unaligned_load<F>(ptr + 2*kStride);
    286     a = unaligned_load<F>(ptr + 3*kStride);
    287 }
    288 
    289 // store registers r,g,b,a into context (mirrors load_rgba)
    290 STAGE(store_rgba) {
    291     auto ptr = (float*)ctx;
    292     unaligned_store(ptr + 0*kStride, r);
    293     unaligned_store(ptr + 1*kStride, g);
    294     unaligned_store(ptr + 2*kStride, b);
    295     unaligned_store(ptr + 3*kStride, a);
    296 }
    297 
    298 // Most blend modes apply the same logic to each channel.
    299 #define BLEND_MODE(name)                       \
    300     SI F name##_channel(F s, F d, F sa, F da); \
    301     STAGE(name) {                              \
    302         r = name##_channel(r,dr,a,da);         \
    303         g = name##_channel(g,dg,a,da);         \
    304         b = name##_channel(b,db,a,da);         \
    305         a = name##_channel(a,da,a,da);         \
    306     }                                          \
    307     SI F name##_channel(F s, F d, F sa, F da)
    308 
    309 SI F inv(F x) { return 1.0f - x; }
    310 SI F two(F x) { return x + x; }
    311 
    312 BLEND_MODE(clear)    { return 0; }
    313 BLEND_MODE(srcatop)  { return s*da + d*inv(sa); }
    314 BLEND_MODE(dstatop)  { return d*sa + s*inv(da); }
    315 BLEND_MODE(srcin)    { return s * da; }
    316 BLEND_MODE(dstin)    { return d * sa; }
    317 BLEND_MODE(srcout)   { return s * inv(da); }
    318 BLEND_MODE(dstout)   { return d * inv(sa); }
    319 BLEND_MODE(srcover)  { return mad(d, inv(sa), s); }
    320 BLEND_MODE(dstover)  { return mad(s, inv(da), d); }
    321 
    322 BLEND_MODE(modulate) { return s*d; }
    323 BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
    324 BLEND_MODE(plus_)    { return s + d; }
    325 BLEND_MODE(screen)   { return s + d - s*d; }
    326 BLEND_MODE(xor_)     { return s*inv(da) + d*inv(sa); }
    327 #undef BLEND_MODE
    328 
    329 // Most other blend modes apply the same logic to colors, and srcover to alpha.
    330 #define BLEND_MODE(name)                       \
    331     SI F name##_channel(F s, F d, F sa, F da); \
    332     STAGE(name) {                              \
    333         r = name##_channel(r,dr,a,da);         \
    334         g = name##_channel(g,dg,a,da);         \
    335         b = name##_channel(b,db,a,da);         \
    336         a = mad(da, inv(a), a);                \
    337     }                                          \
    338     SI F name##_channel(F s, F d, F sa, F da)
    339 
    340 BLEND_MODE(darken)     { return s + d -     max(s*da, d*sa) ; }
    341 BLEND_MODE(lighten)    { return s + d -     min(s*da, d*sa) ; }
    342 BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
    343 BLEND_MODE(exclusion)  { return s + d - two(s*d); }
    344 
    345 BLEND_MODE(colorburn) {
    346     return if_then_else(d == da, d + s*inv(da),
    347            if_then_else(s ==  0, s + d*inv(sa),
    348                                  sa*(da - min(da, (da-d)*sa/s)) + s*inv(da) + d*inv(sa)));
    349 }
    350 BLEND_MODE(colordodge) {
    351     return if_then_else(d ==  0, d + s*inv(da),
    352            if_then_else(s == sa, s + d*inv(sa),
    353                                  sa*min(da, (d*sa)/(sa - s)) + s*inv(da) + d*inv(sa)));
    354 }
    355 BLEND_MODE(hardlight) {
    356     return s*inv(da) + d*inv(sa)
    357          + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
    358 }
    359 BLEND_MODE(overlay) {
    360     return s*inv(da) + d*inv(sa)
    361          + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
    362 }
    363 
    364 BLEND_MODE(softlight) {
    365     F m  = if_then_else(da > 0, d / da, 0),
    366       s2 = two(s),
    367       m4 = two(two(m));
    368 
    369     // The logic forks three ways:
    370     //    1. dark src?
    371     //    2. light src, dark dst?
    372     //    3. light src, light dst?
    373     F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)),     // Used in case 1.
    374       darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m,  // Used in case 2.
    375       liteDst = rcp(rsqrt(m)) - m,                 // Used in case 3.
    376       liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
    377     return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc);      // 1 or (2 or 3)?
    378 }
    379 #undef BLEND_MODE
    380 
    381 // We're basing our implemenation of non-separable blend modes on
    382 //   https://www.w3.org/TR/compositing-1/#blendingnonseparable.
    383 // and
    384 //   https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
    385 // They're equivalent, but ES' math has been better simplified.
    386 //
    387 // Anything extra we add beyond that is to make the math work with premul inputs.
    388 
    389 SI F max(F r, F g, F b) { return max(r, max(g, b)); }
    390 SI F min(F r, F g, F b) { return min(r, min(g, b)); }
    391 
    392 SI F sat(F r, F g, F b) { return max(r,g,b) - min(r,g,b); }
    393 SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
    394 
    395 SI void set_sat(F* r, F* g, F* b, F s) {
    396     F mn  = min(*r,*g,*b),
    397       mx  = max(*r,*g,*b),
    398       sat = mx - mn;
    399 
    400     // Map min channel to 0, max channel to s, and scale the middle proportionally.
    401     auto scale = [=](F c) {
    402         return if_then_else(sat == 0, 0, (c - mn) * s / sat);
    403     };
    404     *r = scale(*r);
    405     *g = scale(*g);
    406     *b = scale(*b);
    407 }
    408 SI void set_lum(F* r, F* g, F* b, F l) {
    409     F diff = l - lum(*r, *g, *b);
    410     *r += diff;
    411     *g += diff;
    412     *b += diff;
    413 }
    414 SI void clip_color(F* r, F* g, F* b, F a) {
    415     F mn = min(*r, *g, *b),
    416       mx = max(*r, *g, *b),
    417       l  = lum(*r, *g, *b);
    418 
    419     auto clip = [=](F c) {
    420         c = if_then_else(mn >= 0, c, l + (c - l) * (    l) / (l - mn)   );
    421         c = if_then_else(mx >  a,    l + (c - l) * (a - l) / (mx - l), c);
    422         c = max(c, 0);  // Sometimes without this we may dip just a little negative.
    423         return c;
    424     };
    425     *r = clip(*r);
    426     *g = clip(*g);
    427     *b = clip(*b);
    428 }
    429 
    430 STAGE(hue) {
    431     F R = r*a,
    432       G = g*a,
    433       B = b*a;
    434 
    435     set_sat(&R, &G, &B, sat(dr,dg,db)*a);
    436     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
    437     clip_color(&R,&G,&B, a*da);
    438 
    439     r = r*inv(da) + dr*inv(a) + R;
    440     g = g*inv(da) + dg*inv(a) + G;
    441     b = b*inv(da) + db*inv(a) + B;
    442     a = a + da - a*da;
    443 }
    444 STAGE(saturation) {
    445     F R = dr*a,
    446       G = dg*a,
    447       B = db*a;
    448 
    449     set_sat(&R, &G, &B, sat( r, g, b)*da);
    450     set_lum(&R, &G, &B, lum(dr,dg,db)* a);  // (This is not redundant.)
    451     clip_color(&R,&G,&B, a*da);
    452 
    453     r = r*inv(da) + dr*inv(a) + R;
    454     g = g*inv(da) + dg*inv(a) + G;
    455     b = b*inv(da) + db*inv(a) + B;
    456     a = a + da - a*da;
    457 }
    458 STAGE(color) {
    459     F R = r*da,
    460       G = g*da,
    461       B = b*da;
    462 
    463     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
    464     clip_color(&R,&G,&B, a*da);
    465 
    466     r = r*inv(da) + dr*inv(a) + R;
    467     g = g*inv(da) + dg*inv(a) + G;
    468     b = b*inv(da) + db*inv(a) + B;
    469     a = a + da - a*da;
    470 }
    471 STAGE(luminosity) {
    472     F R = dr*a,
    473       G = dg*a,
    474       B = db*a;
    475 
    476     set_lum(&R, &G, &B, lum(r,g,b)*da);
    477     clip_color(&R,&G,&B, a*da);
    478 
    479     r = r*inv(da) + dr*inv(a) + R;
    480     g = g*inv(da) + dg*inv(a) + G;
    481     b = b*inv(da) + db*inv(a) + B;
    482     a = a + da - a*da;
    483 }
    484 
    485 STAGE(srcover_rgba_8888) {
    486     auto ptr = *(uint32_t**)ctx + x;
    487 
    488     U32 dst = load<U32>(ptr, tail);
    489     dr = cast((dst      ) & 0xff);
    490     dg = cast((dst >>  8) & 0xff);
    491     db = cast((dst >> 16) & 0xff);
    492     da = cast((dst >> 24)       );
    493     // {dr,dg,db,da} are in [0,255]
    494     // { r, g, b, a} are in [0,  1]
    495 
    496     r = mad(dr, inv(a), r*255.0f);
    497     g = mad(dg, inv(a), g*255.0f);
    498     b = mad(db, inv(a), b*255.0f);
    499     a = mad(da, inv(a), a*255.0f);
    500     // { r, g, b, a} are now in [0,255]
    501 
    502     dst = round(r, 1.0f)
    503         | round(g, 1.0f) <<  8
    504         | round(b, 1.0f) << 16
    505         | round(a, 1.0f) << 24;
    506     store(ptr, dst, tail);
    507 }
    508 
    509 STAGE(clamp_0) {
    510     r = max(r, 0);
    511     g = max(g, 0);
    512     b = max(b, 0);
    513     a = max(a, 0);
    514 }
    515 
    516 STAGE(clamp_1) {
    517     r = min(r, 1.0f);
    518     g = min(g, 1.0f);
    519     b = min(b, 1.0f);
    520     a = min(a, 1.0f);
    521 }
    522 
    523 STAGE(clamp_a) {
    524     a = min(a, 1.0f);
    525     r = min(r, a);
    526     g = min(g, a);
    527     b = min(b, a);
    528 }
    529 
    530 STAGE(clamp_a_dst) {
    531     da = min(da, 1.0f);
    532     dr = min(dr, da);
    533     dg = min(dg, da);
    534     db = min(db, da);
    535 }
    536 
    537 STAGE(set_rgb) {
    538     auto rgb = (const float*)ctx;
    539     r = rgb[0];
    540     g = rgb[1];
    541     b = rgb[2];
    542 }
    543 STAGE(swap_rb) {
    544     auto tmp = r;
    545     r = b;
    546     b = tmp;
    547 }
    548 
    549 STAGE(move_src_dst) {
    550     dr = r;
    551     dg = g;
    552     db = b;
    553     da = a;
    554 }
    555 STAGE(move_dst_src) {
    556     r = dr;
    557     g = dg;
    558     b = db;
    559     a = da;
    560 }
    561 
    562 STAGE(premul) {
    563     r = r * a;
    564     g = g * a;
    565     b = b * a;
    566 }
    567 STAGE(premul_dst) {
    568     dr = dr * da;
    569     dg = dg * da;
    570     db = db * da;
    571 }
    572 STAGE(unpremul) {
    573     auto scale = if_then_else(a == 0, 0, 1.0f / a);
    574     r *= scale;
    575     g *= scale;
    576     b *= scale;
    577 }
    578 
    579 SI F from_srgb(F s) {
    580     auto lo = s * (1/12.92f);
    581     auto hi = mad(s*s, mad(s, 0.3000f, 0.6975f), 0.0025f);
    582     return if_then_else(s < 0.055f, lo, hi);
    583 }
    584 
    585 STAGE(from_srgb) {
    586     r = from_srgb(r);
    587     g = from_srgb(g);
    588     b = from_srgb(b);
    589 }
    590 STAGE(from_srgb_dst) {
    591     dr = from_srgb(dr);
    592     dg = from_srgb(dg);
    593     db = from_srgb(db);
    594 }
    595 STAGE(to_srgb) {
    596     auto fn = [&](F l) {
    597         // We tweak c and d for each instruction set to make sure fn(1) is exactly 1.
    598     #if defined(JUMPER) && defined(__SSE2__)
    599         const float c = 1.130048394203f,
    600                     d = 0.141357362270f;
    601     #elif defined(JUMPER) && (defined(__aarch64__) || defined(__arm__))
    602         const float c = 1.129999995232f,
    603                     d = 0.141381442547f;
    604     #else
    605         const float c = 1.129999995232f,
    606                     d = 0.141377761960f;
    607     #endif
    608         F t = rsqrt(l);
    609         auto lo = l * 12.92f;
    610         auto hi = mad(t, mad(t, -0.0024542345f, 0.013832027f), c)
    611                 * rcp(d + t);
    612         return if_then_else(l < 0.00465985f, lo, hi);
    613     };
    614     r = fn(r);
    615     g = fn(g);
    616     b = fn(b);
    617 }
    618 
    619 STAGE(rgb_to_hsl) {
    620     F mx = max(max(r,g), b),
    621       mn = min(min(r,g), b),
    622       d = mx - mn,
    623       d_rcp = 1.0f / d;
    624 
    625     F h = (1/6.0f) *
    626           if_then_else(mx == mn, 0,
    627           if_then_else(mx ==  r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
    628           if_then_else(mx ==  g, (b-r)*d_rcp + 2.0f,
    629                                  (r-g)*d_rcp + 4.0f)));
    630 
    631     F l = (mx + mn) * 0.5f;
    632     F s = if_then_else(mx == mn, 0,
    633                        d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
    634 
    635     r = h;
    636     g = s;
    637     b = l;
    638 }
    639 STAGE(hsl_to_rgb) {
    640     F h = r,
    641       s = g,
    642       l = b;
    643 
    644     F q = l + if_then_else(l >= 0.5f, s - l*s, l*s),
    645       p = 2.0f*l - q;
    646 
    647     auto hue_to_rgb = [&](F t) {
    648         t = fract(t);
    649 
    650         F r = p;
    651         r = if_then_else(t >= 4/6.0f, r, p + (q-p)*(4.0f - 6.0f*t));
    652         r = if_then_else(t >= 3/6.0f, r, q);
    653         r = if_then_else(t >= 1/6.0f, r, p + (q-p)*(       6.0f*t));
    654         return r;
    655     };
    656 
    657     r = if_then_else(s == 0, l, hue_to_rgb(h + (1/3.0f)));
    658     g = if_then_else(s == 0, l, hue_to_rgb(h           ));
    659     b = if_then_else(s == 0, l, hue_to_rgb(h - (1/3.0f)));
    660 }
    661 
    662 STAGE(scale_1_float) {
    663     auto c = *(const float*)ctx;
    664 
    665     r = r * c;
    666     g = g * c;
    667     b = b * c;
    668     a = a * c;
    669 }
    670 STAGE(scale_u8) {
    671     auto ptr = *(const uint8_t**)ctx + x;
    672 
    673     auto scales = load<U8>(ptr, tail);
    674     auto c = from_byte(scales);
    675 
    676     r = r * c;
    677     g = g * c;
    678     b = b * c;
    679     a = a * c;
    680 }
    681 
    682 SI F lerp(F from, F to, F t) {
    683     return mad(to-from, t, from);
    684 }
    685 
    686 STAGE(lerp_1_float) {
    687     auto c = *(const float*)ctx;
    688 
    689     r = lerp(dr, r, c);
    690     g = lerp(dg, g, c);
    691     b = lerp(db, b, c);
    692     a = lerp(da, a, c);
    693 }
    694 STAGE(lerp_u8) {
    695     auto ptr = *(const uint8_t**)ctx + x;
    696 
    697     auto scales = load<U8>(ptr, tail);
    698     auto c = from_byte(scales);
    699 
    700     r = lerp(dr, r, c);
    701     g = lerp(dg, g, c);
    702     b = lerp(db, b, c);
    703     a = lerp(da, a, c);
    704 }
    705 STAGE(lerp_565) {
    706     auto ptr = *(const uint16_t**)ctx + x;
    707 
    708     F cr,cg,cb;
    709     from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
    710 
    711     r = lerp(dr, r, cr);
    712     g = lerp(dg, g, cg);
    713     b = lerp(db, b, cb);
    714     a = max(lerp(da, a, cr), lerp(da, a, cg), lerp(da, a, cb));
    715 }
    716 
    717 STAGE(load_tables) {
    718     auto c = (const SkJumper_LoadTablesCtx*)ctx;
    719 
    720     auto px = load<U32>((const uint32_t*)c->src + x, tail);
    721     r = gather(c->r, (px      ) & 0xff);
    722     g = gather(c->g, (px >>  8) & 0xff);
    723     b = gather(c->b, (px >> 16) & 0xff);
    724     a = cast(        (px >> 24)) * (1/255.0f);
    725 }
    726 STAGE(load_tables_u16_be) {
    727     auto c = (const SkJumper_LoadTablesCtx*)ctx;
    728     auto ptr = (const uint16_t*)c->src + 4*x;
    729 
    730     U16 R,G,B,A;
    731     load4(ptr, tail, &R,&G,&B,&A);
    732 
    733     // c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
    734     r = gather(c->r, expand(R) & 0xff);
    735     g = gather(c->g, expand(G) & 0xff);
    736     b = gather(c->b, expand(B) & 0xff);
    737     a = (1/65535.0f) * cast(expand(bswap(A)));
    738 }
    739 STAGE(load_tables_rgb_u16_be) {
    740     auto c = (const SkJumper_LoadTablesCtx*)ctx;
    741     auto ptr = (const uint16_t*)c->src + 3*x;
    742 
    743     U16 R,G,B;
    744     load3(ptr, tail, &R,&G,&B);
    745 
    746     // c->src is big-endian, so & 0xff grabs the 8 most signficant bits.
    747     r = gather(c->r, expand(R) & 0xff);
    748     g = gather(c->g, expand(G) & 0xff);
    749     b = gather(c->b, expand(B) & 0xff);
    750     a = 1.0f;
    751 }
    752 
    753 STAGE(byte_tables) {
    754     struct Tables { const uint8_t *r, *g, *b, *a; };
    755     auto tables = (const Tables*)ctx;
    756 
    757     r = from_byte(gather(tables->r, round(r, 255.0f)));
    758     g = from_byte(gather(tables->g, round(g, 255.0f)));
    759     b = from_byte(gather(tables->b, round(b, 255.0f)));
    760     a = from_byte(gather(tables->a, round(a, 255.0f)));
    761 }
    762 
    763 STAGE(byte_tables_rgb) {
    764     struct Tables { const uint8_t *r, *g, *b; int n; };
    765     auto tables = (const Tables*)ctx;
    766 
    767     F scale = tables->n - 1;
    768     r = from_byte(gather(tables->r, round(r, scale)));
    769     g = from_byte(gather(tables->g, round(g, scale)));
    770     b = from_byte(gather(tables->b, round(b, scale)));
    771 }
    772 
    773 SI F table(F v, const SkJumper_TableCtx* ctx) {
    774     return gather(ctx->table, round(v, ctx->size - 1));
    775 }
    776 STAGE(table_r) { r = table(r, ctx); }
    777 STAGE(table_g) { g = table(g, ctx); }
    778 STAGE(table_b) { b = table(b, ctx); }
    779 STAGE(table_a) { a = table(a, ctx); }
    780 
    781 SI F parametric(F v, const SkJumper_ParametricTransferFunction* ctx) {
    782     F r = if_then_else(v <= ctx->D, mad(ctx->C, v, ctx->F)
    783                                   , approx_powf(mad(ctx->A, v, ctx->B), ctx->G) + ctx->E);
    784     return min(max(r, 0), 1.0f);  // Clamp to [0,1], with argument order mattering to handle NaN.
    785 }
    786 STAGE(parametric_r) { r = parametric(r, ctx); }
    787 STAGE(parametric_g) { g = parametric(g, ctx); }
    788 STAGE(parametric_b) { b = parametric(b, ctx); }
    789 STAGE(parametric_a) { a = parametric(a, ctx); }
    790 
    791 STAGE(lab_to_xyz) {
    792     F L = r * 100.0f,
    793       A = g * 255.0f - 128.0f,
    794       B = b * 255.0f - 128.0f;
    795 
    796     F Y = (L + 16.0f) * (1/116.0f),
    797       X = Y + A*(1/500.0f),
    798       Z = Y - B*(1/200.0f);
    799 
    800     X = if_then_else(X*X*X > 0.008856f, X*X*X, (X - (16/116.0f)) * (1/7.787f));
    801     Y = if_then_else(Y*Y*Y > 0.008856f, Y*Y*Y, (Y - (16/116.0f)) * (1/7.787f));
    802     Z = if_then_else(Z*Z*Z > 0.008856f, Z*Z*Z, (Z - (16/116.0f)) * (1/7.787f));
    803 
    804     // Adjust to D50 illuminant.
    805     r = X * 0.96422f;
    806     g = Y           ;
    807     b = Z * 0.82521f;
    808 }
    809 
    810 STAGE(load_a8) {
    811     auto ptr = *(const uint8_t**)ctx + x;
    812 
    813     r = g = b = 0.0f;
    814     a = from_byte(load<U8>(ptr, tail));
    815 }
    816 STAGE(load_a8_dst) {
    817     auto ptr = *(const uint8_t**)ctx + x;
    818 
    819     dr = dg = db = 0.0f;
    820     da = from_byte(load<U8>(ptr, tail));
    821 }
    822 STAGE(gather_a8) {
    823     const uint8_t* ptr;
    824     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
    825     r = g = b = 0.0f;
    826     a = from_byte(gather(ptr, ix));
    827 }
    828 STAGE(store_a8) {
    829     auto ptr = *(uint8_t**)ctx + x;
    830 
    831     U8 packed = pack(pack(round(a, 255.0f)));
    832     store(ptr, packed, tail);
    833 }
    834 
    835 STAGE(load_g8) {
    836     auto ptr = *(const uint8_t**)ctx + x;
    837 
    838     r = g = b = from_byte(load<U8>(ptr, tail));
    839     a = 1.0f;
    840 }
    841 STAGE(load_g8_dst) {
    842     auto ptr = *(const uint8_t**)ctx + x;
    843 
    844     dr = dg = db = from_byte(load<U8>(ptr, tail));
    845     da = 1.0f;
    846 }
    847 STAGE(gather_g8) {
    848     const uint8_t* ptr;
    849     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
    850     r = g = b = from_byte(gather(ptr, ix));
    851     a = 1.0f;
    852 }
    853 
    854 STAGE(load_565) {
    855     auto ptr = *(const uint16_t**)ctx + x;
    856 
    857     from_565(load<U16>(ptr, tail), &r,&g,&b);
    858     a = 1.0f;
    859 }
    860 STAGE(load_565_dst) {
    861     auto ptr = *(const uint16_t**)ctx + x;
    862 
    863     from_565(load<U16>(ptr, tail), &dr,&dg,&db);
    864     da = 1.0f;
    865 }
    866 STAGE(gather_565) {
    867     const uint16_t* ptr;
    868     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
    869     from_565(gather(ptr, ix), &r,&g,&b);
    870     a = 1.0f;
    871 }
    872 STAGE(store_565) {
    873     auto ptr = *(uint16_t**)ctx + x;
    874 
    875     U16 px = pack( round(r, 31.0f) << 11
    876                  | round(g, 63.0f) <<  5
    877                  | round(b, 31.0f)      );
    878     store(ptr, px, tail);
    879 }
    880 
    881 STAGE(load_4444) {
    882     auto ptr = *(const uint16_t**)ctx + x;
    883     from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
    884 }
    885 STAGE(load_4444_dst) {
    886     auto ptr = *(const uint16_t**)ctx + x;
    887     from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
    888 }
    889 STAGE(gather_4444) {
    890     const uint16_t* ptr;
    891     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
    892     from_4444(gather(ptr, ix), &r,&g,&b,&a);
    893 }
    894 STAGE(store_4444) {
    895     auto ptr = *(uint16_t**)ctx + x;
    896     U16 px = pack( round(r, 15.0f) << 12
    897                  | round(g, 15.0f) <<  8
    898                  | round(b, 15.0f) <<  4
    899                  | round(a, 15.0f)      );
    900     store(ptr, px, tail);
    901 }
    902 
    903 STAGE(load_8888) {
    904     auto ptr = *(const uint32_t**)ctx + x;
    905     from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
    906 }
    907 STAGE(load_8888_dst) {
    908     auto ptr = *(const uint32_t**)ctx + x;
    909     from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
    910 }
    911 STAGE(gather_8888) {
    912     const uint32_t* ptr;
    913     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
    914     from_8888(gather(ptr, ix), &r,&g,&b,&a);
    915 }
    916 STAGE(store_8888) {
    917     auto ptr = *(uint32_t**)ctx + x;
    918 
    919     U32 px = round(r, 255.0f)
    920            | round(g, 255.0f) <<  8
    921            | round(b, 255.0f) << 16
    922            | round(a, 255.0f) << 24;
    923     store(ptr, px, tail);
    924 }
    925 
    926 STAGE(store_8888_2d) {
    927     auto c = (const SkJumper_MemoryCtx*)ctx;
    928     auto ptr = (uint32_t*)c->pixels + y*c->stride + x;
    929 
    930     U32 px = round(r, 255.0f)
    931            | round(g, 255.0f) <<  8
    932            | round(b, 255.0f) << 16
    933            | round(a, 255.0f) << 24;
    934     store(ptr, px, tail);
    935 }
    936 
    937 STAGE(load_bgra) {
    938     auto ptr = *(const uint32_t**)ctx + x;
    939     from_8888(load<U32>(ptr, tail), &b,&g,&r,&a);
    940 }
    941 STAGE(load_bgra_dst) {
    942     auto ptr = *(const uint32_t**)ctx + x;
    943     from_8888(load<U32>(ptr, tail), &db,&dg,&dr,&da);
    944 }
    945 STAGE(gather_bgra) {
    946     const uint32_t* ptr;
    947     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
    948     from_8888(gather(ptr, ix), &b,&g,&r,&a);
    949 }
    950 STAGE(store_bgra) {
    951     auto ptr = *(uint32_t**)ctx + x;
    952 
    953     U32 px = round(b, 255.0f)
    954            | round(g, 255.0f) <<  8
    955            | round(r, 255.0f) << 16
    956            | round(a, 255.0f) << 24;
    957     store(ptr, px, tail);
    958 }
    959 
    960 STAGE(load_f16) {
    961     auto ptr = *(const uint64_t**)ctx + x;
    962 
    963     U16 R,G,B,A;
    964     load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
    965     r = from_half(R);
    966     g = from_half(G);
    967     b = from_half(B);
    968     a = from_half(A);
    969 }
    970 STAGE(load_f16_dst) {
    971     auto ptr = *(const uint64_t**)ctx + x;
    972 
    973     U16 R,G,B,A;
    974     load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
    975     dr = from_half(R);
    976     dg = from_half(G);
    977     db = from_half(B);
    978     da = from_half(A);
    979 }
    980 STAGE(gather_f16) {
    981     const uint64_t* ptr;
    982     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
    983     auto px = gather(ptr, ix);
    984 
    985     U16 R,G,B,A;
    986     load4((const uint16_t*)&px,0, &R,&G,&B,&A);
    987     r = from_half(R);
    988     g = from_half(G);
    989     b = from_half(B);
    990     a = from_half(A);
    991 }
    992 STAGE(store_f16) {
    993     auto ptr = *(uint64_t**)ctx + x;
    994     store4((uint16_t*)ptr,tail, to_half(r)
    995                               , to_half(g)
    996                               , to_half(b)
    997                               , to_half(a));
    998 }
    999 
   1000 STAGE(load_u16_be) {
   1001     auto ptr = *(const uint16_t**)ctx + 4*x;
   1002 
   1003     U16 R,G,B,A;
   1004     load4(ptr,tail, &R,&G,&B,&A);
   1005 
   1006     r = (1/65535.0f) * cast(expand(bswap(R)));
   1007     g = (1/65535.0f) * cast(expand(bswap(G)));
   1008     b = (1/65535.0f) * cast(expand(bswap(B)));
   1009     a = (1/65535.0f) * cast(expand(bswap(A)));
   1010 }
   1011 STAGE(load_rgb_u16_be) {
   1012     auto ptr = *(const uint16_t**)ctx + 3*x;
   1013 
   1014     U16 R,G,B;
   1015     load3(ptr,tail, &R,&G,&B);
   1016 
   1017     r = (1/65535.0f) * cast(expand(bswap(R)));
   1018     g = (1/65535.0f) * cast(expand(bswap(G)));
   1019     b = (1/65535.0f) * cast(expand(bswap(B)));
   1020     a = 1.0f;
   1021 }
   1022 STAGE(store_u16_be) {
   1023     auto ptr = *(uint16_t**)ctx + 4*x;
   1024 
   1025     U16 R = bswap(pack(round(r, 65535.0f))),
   1026         G = bswap(pack(round(g, 65535.0f))),
   1027         B = bswap(pack(round(b, 65535.0f))),
   1028         A = bswap(pack(round(a, 65535.0f)));
   1029 
   1030     store4(ptr,tail, R,G,B,A);
   1031 }
   1032 
   1033 STAGE(load_f32) {
   1034     auto ptr = *(const float**)ctx + 4*x;
   1035     load4(ptr,tail, &r,&g,&b,&a);
   1036 }
   1037 STAGE(load_f32_dst) {
   1038     auto ptr = *(const float**)ctx + 4*x;
   1039     load4(ptr,tail, &dr,&dg,&db,&da);
   1040 }
   1041 STAGE(store_f32) {
   1042     auto ptr = *(float**)ctx + 4*x;
   1043     store4(ptr,tail, r,g,b,a);
   1044 }
   1045 
   1046 SI F ulp_before(F f) {
   1047     U32 bits = -1 + unaligned_load<U32>(&f);
   1048     return unaligned_load<F>(&bits);
   1049 }
   1050 
   1051 SI F exclusive_clamp(F v, const SkJumper_TileCtx* ctx) {
   1052     v = max(0,v);
   1053     return min(v, ulp_before(ctx->scale));
   1054 }
   1055 SI F exclusive_repeat(F v, const SkJumper_TileCtx* ctx) {
   1056     v = v - floor_(v*ctx->invScale)*ctx->scale;
   1057     return min(v, ulp_before(ctx->scale));
   1058 }
   1059 SI F exclusive_mirror(F v, const SkJumper_TileCtx* ctx) {
   1060     auto limit = ctx->scale;
   1061     auto invLimit = ctx->invScale;
   1062     v = abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
   1063     return min(v, ulp_before(limit));
   1064 }
   1065 // Clamp x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
   1066 STAGE(clamp_x)  { r = exclusive_clamp (r, (const SkJumper_TileCtx*)ctx); }
   1067 STAGE(clamp_y)  { g = exclusive_clamp (g, (const SkJumper_TileCtx*)ctx); }
   1068 STAGE(repeat_x) { r = exclusive_repeat(r, (const SkJumper_TileCtx*)ctx); }
   1069 STAGE(repeat_y) { g = exclusive_repeat(g, (const SkJumper_TileCtx*)ctx); }
   1070 STAGE(mirror_x) { r = exclusive_mirror(r, (const SkJumper_TileCtx*)ctx); }
   1071 STAGE(mirror_y) { g = exclusive_mirror(g, (const SkJumper_TileCtx*)ctx); }
   1072 
   1073 // Clamp x to [0,1], both sides exclusive (think, gradients).
   1074 STAGE( clamp_x_1) { r = min(max(0, r), 1.0f); }
   1075 STAGE(repeat_x_1) { r = r - floor_(r); }
   1076 STAGE(mirror_x_1) { r = abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f ); }
   1077 
   1078 STAGE(luminance_to_alpha) {
   1079     a = r*0.2126f + g*0.7152f + b*0.0722f;
   1080     r = g = b = 0;
   1081 }
   1082 
   1083 STAGE(matrix_translate) {
   1084     auto m = (const float*)ctx;
   1085 
   1086     r += m[0];
   1087     g += m[1];
   1088 }
   1089 STAGE(matrix_scale_translate) {
   1090     auto m = (const float*)ctx;
   1091 
   1092     r = mad(r,m[2], m[0]);
   1093     g = mad(g,m[3], m[1]);
   1094 }
   1095 STAGE(matrix_2x3) {
   1096     auto m = (const float*)ctx;
   1097 
   1098     auto R = mad(r,m[0], mad(g,m[2], m[4])),
   1099          G = mad(r,m[1], mad(g,m[3], m[5]));
   1100     r = R;
   1101     g = G;
   1102 }
   1103 STAGE(matrix_3x4) {
   1104     auto m = (const float*)ctx;
   1105 
   1106     auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
   1107          G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
   1108          B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
   1109     r = R;
   1110     g = G;
   1111     b = B;
   1112 }
   1113 STAGE(matrix_4x5) {
   1114     auto m = (const float*)ctx;
   1115 
   1116     auto R = mad(r,m[0], mad(g,m[4], mad(b,m[ 8], mad(a,m[12], m[16])))),
   1117          G = mad(r,m[1], mad(g,m[5], mad(b,m[ 9], mad(a,m[13], m[17])))),
   1118          B = mad(r,m[2], mad(g,m[6], mad(b,m[10], mad(a,m[14], m[18])))),
   1119          A = mad(r,m[3], mad(g,m[7], mad(b,m[11], mad(a,m[15], m[19]))));
   1120     r = R;
   1121     g = G;
   1122     b = B;
   1123     a = A;
   1124 }
   1125 STAGE(matrix_4x3) {
   1126     auto m = (const float*)ctx;
   1127     auto X = r,
   1128          Y = g;
   1129 
   1130     r = mad(X, m[0], mad(Y, m[4], m[ 8]));
   1131     g = mad(X, m[1], mad(Y, m[5], m[ 9]));
   1132     b = mad(X, m[2], mad(Y, m[6], m[10]));
   1133     a = mad(X, m[3], mad(Y, m[7], m[11]));
   1134 }
   1135 STAGE(matrix_perspective) {
   1136     // N.B. Unlike the other matrix_ stages, this matrix is row-major.
   1137     auto m = (const float*)ctx;
   1138 
   1139     auto R = mad(r,m[0], mad(g,m[1], m[2])),
   1140          G = mad(r,m[3], mad(g,m[4], m[5])),
   1141          Z = mad(r,m[6], mad(g,m[7], m[8]));
   1142     r = R * rcp(Z);
   1143     g = G * rcp(Z);
   1144 }
   1145 
   1146 SI void gradient_lookup(const SkJumper_GradientCtx* c, U32 idx, F t,
   1147                         F* r, F* g, F* b, F* a) {
   1148     F fr, br, fg, bg, fb, bb, fa, ba;
   1149 #if defined(JUMPER) && defined(__AVX2__)
   1150     if (c->stopCount <=8) {
   1151         fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
   1152         br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
   1153         fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
   1154         bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
   1155         fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
   1156         bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
   1157         fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
   1158         ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
   1159     } else
   1160 #endif
   1161     {
   1162         fr = gather(c->fs[0], idx);
   1163         br = gather(c->bs[0], idx);
   1164         fg = gather(c->fs[1], idx);
   1165         bg = gather(c->bs[1], idx);
   1166         fb = gather(c->fs[2], idx);
   1167         bb = gather(c->bs[2], idx);
   1168         fa = gather(c->fs[3], idx);
   1169         ba = gather(c->bs[3], idx);
   1170     }
   1171 
   1172     *r = mad(t, fr, br);
   1173     *g = mad(t, fg, bg);
   1174     *b = mad(t, fb, bb);
   1175     *a = mad(t, fa, ba);
   1176 }
   1177 
   1178 STAGE(evenly_spaced_gradient) {
   1179     auto c = (const SkJumper_GradientCtx*)ctx;
   1180     auto t = r;
   1181     auto idx = trunc_(t * (c->stopCount-1));
   1182     gradient_lookup(c, idx, t, &r, &g, &b, &a);
   1183 }
   1184 
   1185 STAGE(gauss_a_to_rgba) {
   1186     // x = 1 - x;
   1187     // exp(-x * x * 4) - 0.018f;
   1188     // ... now approximate with quartic
   1189     //
   1190     const float c4 = -2.26661229133605957031f;
   1191     const float c3 = 2.89795351028442382812f;
   1192     const float c2 = 0.21345567703247070312f;
   1193     const float c1 = 0.15489584207534790039f;
   1194     const float c0 = 0.00030726194381713867f;
   1195     a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
   1196     r = a;
   1197     g = a;
   1198     b = a;
   1199 }
   1200 
   1201 STAGE(gradient) {
   1202     auto c = (const SkJumper_GradientCtx*)ctx;
   1203     auto t = r;
   1204     U32 idx = 0;
   1205 
   1206     // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
   1207     for (size_t i = 1; i < c->stopCount; i++) {
   1208         idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
   1209     }
   1210 
   1211     gradient_lookup(c, idx, t, &r, &g, &b, &a);
   1212 }
   1213 
   1214 STAGE(evenly_spaced_2_stop_gradient) {
   1215     struct Ctx { float f[4], b[4]; };
   1216     auto c = (const Ctx*)ctx;
   1217 
   1218     auto t = r;
   1219     r = mad(t, c->f[0], c->b[0]);
   1220     g = mad(t, c->f[1], c->b[1]);
   1221     b = mad(t, c->f[2], c->b[2]);
   1222     a = mad(t, c->f[3], c->b[3]);
   1223 }
   1224 
   1225 STAGE(xy_to_unit_angle) {
   1226     F X = r,
   1227       Y = g;
   1228     F xabs = abs_(X),
   1229       yabs = abs_(Y);
   1230 
   1231     F slope = min(xabs, yabs)/max(xabs, yabs);
   1232     F s = slope * slope;
   1233 
   1234     // Use a 7th degree polynomial to approximate atan.
   1235     // This was generated using sollya.gforge.inria.fr.
   1236     // A float optimized polynomial was generated using the following command.
   1237     // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
   1238     F phi = slope
   1239              * (0.15912117063999176025390625f     + s
   1240              * (-5.185396969318389892578125e-2f   + s
   1241              * (2.476101927459239959716796875e-2f + s
   1242              * (-7.0547382347285747528076171875e-3f))));
   1243 
   1244     phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
   1245     phi = if_then_else(X < 0.0f   , 1.0f/2.0f - phi, phi);
   1246     phi = if_then_else(Y < 0.0f   , 1.0f - phi     , phi);
   1247     phi = if_then_else(phi != phi , 0              , phi);  // Check for NaN.
   1248     r = phi;
   1249 }
   1250 
   1251 STAGE(xy_to_radius) {
   1252     F X2 = r * r,
   1253       Y2 = g * g;
   1254     r = sqrt_(X2 + Y2);
   1255 }
   1256 
   1257 SI F solve_2pt_conical_quadratic(const SkJumper_2PtConicalCtx* c, F x, F y, F (*select)(F, F)) {
   1258     // At this point, (x, y) is mapped into a synthetic gradient space with
   1259     // the start circle centerd on (0, 0), and the end circle centered on (1, 0)
   1260     // (see the stage setup).
   1261     //
   1262     // We're searching along X-axis for x', such that
   1263     //
   1264     //   1) r(x') is a linear interpolation between r0 and r1
   1265     //   2) (x, y) is on the circle C(x', 0, r(x'))
   1266     //
   1267     // Solving this system boils down to a quadratic equation with coefficients
   1268     //
   1269     //   a = 1 - (r1 - r0)^2             <- constant, precomputed in ctx->fCoeffA)
   1270     //
   1271     //   b = -2 * (x + (r1 - r0) * r0)
   1272     //
   1273     //   c = x^2 + y^2 - r0^2
   1274     //
   1275     // Since the start/end circle centers are the extremes of the [0, 1] interval
   1276     // on the X axis, the solution (x') is exactly the t we are looking for.
   1277 
   1278     const F coeffA = c->fCoeffA,
   1279             coeffB = -2 * (x + c->fDR*c->fR0),
   1280             coeffC = x*x + y*y - c->fR0*c->fR0;
   1281 
   1282     const F disc      = mad(coeffB, coeffB, -4 * coeffA * coeffC);
   1283     const F sqrt_disc = sqrt_(disc);
   1284 
   1285     const F invCoeffA = c->fInvCoeffA;
   1286     return select((-coeffB + sqrt_disc) * (invCoeffA * 0.5f),
   1287                   (-coeffB - sqrt_disc) * (invCoeffA * 0.5f));
   1288 }
   1289 
   1290 STAGE(xy_to_2pt_conical_quadratic_max) {
   1291     r = solve_2pt_conical_quadratic(ctx, r, g, max);
   1292 }
   1293 
   1294 STAGE(xy_to_2pt_conical_quadratic_min) {
   1295     r = solve_2pt_conical_quadratic(ctx, r, g, min);
   1296 }
   1297 
   1298 STAGE(xy_to_2pt_conical_linear) {
   1299     auto* c = (const SkJumper_2PtConicalCtx*)ctx;
   1300 
   1301     const F coeffB = -2 * (r + c->fDR*c->fR0),
   1302             coeffC = r*r + g*g - c->fR0*c->fR0;
   1303 
   1304     r = -coeffC / coeffB;
   1305 }
   1306 
   1307 STAGE(mask_2pt_conical_degenerates) {
   1308     auto* c = (SkJumper_2PtConicalCtx*)ctx;
   1309 
   1310     // Compute and save a mask for degenerate values.
   1311     U32 mask = 0xffffffff;
   1312 
   1313     // TODO: mtklein kindly volunteered to revisit this at some point.
   1314 #if defined(JUMPER)
   1315     // Vector comparisons set all bits, so we can use something like this.
   1316     mask = mask & (mad(r, c->fDR, c->fR0) >= 0);  // R(t) >= 0
   1317     mask = mask & (r == r);                       // t != NaN
   1318 #else
   1319     // The portable version is more involved, 'cause we only get one bit back.
   1320     mask = mask & if_then_else(mad(r, c->fDR, c->fR0) >= 0, U32(0xffffffff), U32(0)); // R(t) >= 0
   1321     mask = mask & if_then_else(r == r,                      U32(0xffffffff), U32(0)); // t != NaN
   1322 #endif
   1323 
   1324     unaligned_store(&c->fMask, mask);
   1325 }
   1326 
   1327 STAGE(apply_vector_mask) {
   1328     const U32 mask = unaligned_load<U32>((const uint32_t*)ctx);
   1329     r = bit_cast<F>(bit_cast<U32>(r) & mask);
   1330     g = bit_cast<F>(bit_cast<U32>(g) & mask);
   1331     b = bit_cast<F>(bit_cast<U32>(b) & mask);
   1332     a = bit_cast<F>(bit_cast<U32>(a) & mask);
   1333 }
   1334 
   1335 STAGE(save_xy) {
   1336     auto c = (SkJumper_SamplerCtx*)ctx;
   1337 
   1338     // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
   1339     // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
   1340     // surrounding (x,y) at (0.5,0.5) off-center.
   1341     F fx = fract(r + 0.5f),
   1342       fy = fract(g + 0.5f);
   1343 
   1344     // Samplers will need to load x and fx, or y and fy.
   1345     unaligned_store(c->x,  r);
   1346     unaligned_store(c->y,  g);
   1347     unaligned_store(c->fx, fx);
   1348     unaligned_store(c->fy, fy);
   1349 }
   1350 
   1351 STAGE(accumulate) {
   1352     auto c = (const SkJumper_SamplerCtx*)ctx;
   1353 
   1354     // Bilinear and bicubic filters are both separable, so we produce independent contributions
   1355     // from x and y, multiplying them together here to get each pixel's total scale factor.
   1356     auto scale = unaligned_load<F>(c->scalex)
   1357                * unaligned_load<F>(c->scaley);
   1358     dr = mad(scale, r, dr);
   1359     dg = mad(scale, g, dg);
   1360     db = mad(scale, b, db);
   1361     da = mad(scale, a, da);
   1362 }
   1363 
   1364 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
   1365 // are combined in direct proportion to their area overlapping that logical query pixel.
   1366 // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
   1367 // The y-axis is symmetric.
   1368 
   1369 template <int kScale>
   1370 SI void bilinear_x(SkJumper_SamplerCtx* ctx, F* x) {
   1371     *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
   1372     F fx = unaligned_load<F>(ctx->fx);
   1373 
   1374     F scalex;
   1375     if (kScale == -1) { scalex = 1.0f - fx; }
   1376     if (kScale == +1) { scalex =        fx; }
   1377     unaligned_store(ctx->scalex, scalex);
   1378 }
   1379 template <int kScale>
   1380 SI void bilinear_y(SkJumper_SamplerCtx* ctx, F* y) {
   1381     *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
   1382     F fy = unaligned_load<F>(ctx->fy);
   1383 
   1384     F scaley;
   1385     if (kScale == -1) { scaley = 1.0f - fy; }
   1386     if (kScale == +1) { scaley =        fy; }
   1387     unaligned_store(ctx->scaley, scaley);
   1388 }
   1389 
   1390 STAGE(bilinear_nx) { bilinear_x<-1>(ctx, &r); }
   1391 STAGE(bilinear_px) { bilinear_x<+1>(ctx, &r); }
   1392 STAGE(bilinear_ny) { bilinear_y<-1>(ctx, &g); }
   1393 STAGE(bilinear_py) { bilinear_y<+1>(ctx, &g); }
   1394 
   1395 
   1396 // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
   1397 // pixel center are combined with a non-uniform cubic filter, with higher values near the center.
   1398 //
   1399 // We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
   1400 // See GrCubicEffect for details of this particular filter.
   1401 
   1402 SI F bicubic_near(F t) {
   1403     // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
   1404     return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f));
   1405 }
   1406 SI F bicubic_far(F t) {
   1407     // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
   1408     return (t*t)*mad((7/18.0f), t, (-6/18.0f));
   1409 }
   1410 
   1411 template <int kScale>
   1412 SI void bicubic_x(SkJumper_SamplerCtx* ctx, F* x) {
   1413     *x = unaligned_load<F>(ctx->x) + (kScale * 0.5f);
   1414     F fx = unaligned_load<F>(ctx->fx);
   1415 
   1416     F scalex;
   1417     if (kScale == -3) { scalex = bicubic_far (1.0f - fx); }
   1418     if (kScale == -1) { scalex = bicubic_near(1.0f - fx); }
   1419     if (kScale == +1) { scalex = bicubic_near(       fx); }
   1420     if (kScale == +3) { scalex = bicubic_far (       fx); }
   1421     unaligned_store(ctx->scalex, scalex);
   1422 }
   1423 template <int kScale>
   1424 SI void bicubic_y(SkJumper_SamplerCtx* ctx, F* y) {
   1425     *y = unaligned_load<F>(ctx->y) + (kScale * 0.5f);
   1426     F fy = unaligned_load<F>(ctx->fy);
   1427 
   1428     F scaley;
   1429     if (kScale == -3) { scaley = bicubic_far (1.0f - fy); }
   1430     if (kScale == -1) { scaley = bicubic_near(1.0f - fy); }
   1431     if (kScale == +1) { scaley = bicubic_near(       fy); }
   1432     if (kScale == +3) { scaley = bicubic_far (       fy); }
   1433     unaligned_store(ctx->scaley, scaley);
   1434 }
   1435 
   1436 STAGE(bicubic_n3x) { bicubic_x<-3>(ctx, &r); }
   1437 STAGE(bicubic_n1x) { bicubic_x<-1>(ctx, &r); }
   1438 STAGE(bicubic_p1x) { bicubic_x<+1>(ctx, &r); }
   1439 STAGE(bicubic_p3x) { bicubic_x<+3>(ctx, &r); }
   1440 
   1441 STAGE(bicubic_n3y) { bicubic_y<-3>(ctx, &g); }
   1442 STAGE(bicubic_n1y) { bicubic_y<-1>(ctx, &g); }
   1443 STAGE(bicubic_p1y) { bicubic_y<+1>(ctx, &g); }
   1444 STAGE(bicubic_p3y) { bicubic_y<+3>(ctx, &g); }
   1445 
   1446 STAGE(callback) {
   1447     auto c = (SkJumper_CallbackCtx*)ctx;
   1448     store4(c->rgba,0, r,g,b,a);
   1449     c->fn(c, tail ? tail : kStride);
   1450     load4(c->read_from,0, &r,&g,&b,&a);
   1451 }
   1452