Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2015 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkIntersections.h"
      8 #include "SkLineParameters.h"
      9 #include "SkPathOpsConic.h"
     10 #include "SkPathOpsCubic.h"
     11 #include "SkPathOpsQuad.h"
     12 
     13 // cribbed from the float version in SkGeometry.cpp
     14 static void conic_deriv_coeff(const double src[],
     15                               SkScalar w,
     16                               double coeff[3]) {
     17     const double P20 = src[4] - src[0];
     18     const double P10 = src[2] - src[0];
     19     const double wP10 = w * P10;
     20     coeff[0] = w * P20 - P20;
     21     coeff[1] = P20 - 2 * wP10;
     22     coeff[2] = wP10;
     23 }
     24 
     25 static double conic_eval_tan(const double coord[], SkScalar w, double t) {
     26     double coeff[3];
     27     conic_deriv_coeff(coord, w, coeff);
     28     return t * (t * coeff[0] + coeff[1]) + coeff[2];
     29 }
     30 
     31 int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
     32     double coeff[3];
     33     conic_deriv_coeff(src, w, coeff);
     34 
     35     double tValues[2];
     36     int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
     37     // In extreme cases, the number of roots returned can be 2. Pathops
     38     // will fail later on, so there's no advantage to plumbing in an error
     39     // return here.
     40     // SkASSERT(0 == roots || 1 == roots);
     41 
     42     if (1 == roots) {
     43         t[0] = tValues[0];
     44         return 1;
     45     }
     46     return 0;
     47 }
     48 
     49 SkDVector SkDConic::dxdyAtT(double t) const {
     50     SkDVector result = {
     51         conic_eval_tan(&fPts[0].fX, fWeight, t),
     52         conic_eval_tan(&fPts[0].fY, fWeight, t)
     53     };
     54     if (result.fX == 0 && result.fY == 0) {
     55         if (zero_or_one(t)) {
     56             result = fPts[2] - fPts[0];
     57         } else {
     58             // incomplete
     59             SkDebugf("!k");
     60         }
     61     }
     62     return result;
     63 }
     64 
     65 static double conic_eval_numerator(const double src[], SkScalar w, double t) {
     66     SkASSERT(src);
     67     SkASSERT(t >= 0 && t <= 1);
     68     double src2w = src[2] * w;
     69     double C = src[0];
     70     double A = src[4] - 2 * src2w + C;
     71     double B = 2 * (src2w - C);
     72     return (A * t + B) * t + C;
     73 }
     74 
     75 
     76 static double conic_eval_denominator(SkScalar w, double t) {
     77     double B = 2 * (w - 1);
     78     double C = 1;
     79     double A = -B;
     80     return (A * t + B) * t + C;
     81 }
     82 
     83 bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
     84     return cubic.hullIntersects(*this, isLinear);
     85 }
     86 
     87 SkDPoint SkDConic::ptAtT(double t) const {
     88     if (t == 0) {
     89         return fPts[0];
     90     }
     91     if (t == 1) {
     92         return fPts[2];
     93     }
     94     double denominator = conic_eval_denominator(fWeight, t);
     95     SkDPoint result = {
     96         conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator,
     97         conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator
     98     };
     99     return result;
    100 }
    101 
    102 /* see quad subdivide for point rationale */
    103 /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c
    104    values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume
    105    that it is the same as the point on the new curve t==(0+1)/2.
    106 
    107     d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5);
    108 
    109     conic_poly(dst, unknownW, .5)
    110                   =   a / 4 + (b * unknownW) / 2 + c / 4
    111                   =  (a + c) / 4 + (bx * unknownW) / 2
    112 
    113     conic_weight(unknownW, .5)
    114                   =   unknownW / 2 + 1 / 2
    115 
    116     d / dz                  == ((a + c) / 2 + b * unknownW) / (unknownW + 1)
    117     d / dz * (unknownW + 1) ==  (a + c) / 2 + b * unknownW
    118               unknownW       = ((a + c) / 2 - d / dz) / (d / dz - b)
    119 
    120     Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the
    121     distance of the on-curve point to the control point.
    122  */
    123 SkDConic SkDConic::subDivide(double t1, double t2) const {
    124     double ax, ay, az;
    125     if (t1 == 0) {
    126         ax = fPts[0].fX;
    127         ay = fPts[0].fY;
    128         az = 1;
    129     } else if (t1 != 1) {
    130         ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
    131         ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
    132         az = conic_eval_denominator(fWeight, t1);
    133     } else {
    134         ax = fPts[2].fX;
    135         ay = fPts[2].fY;
    136         az = 1;
    137     }
    138     double midT = (t1 + t2) / 2;
    139     double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
    140     double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
    141     double dz = conic_eval_denominator(fWeight, midT);
    142     double cx, cy, cz;
    143     if (t2 == 1) {
    144         cx = fPts[2].fX;
    145         cy = fPts[2].fY;
    146         cz = 1;
    147     } else if (t2 != 0) {
    148         cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
    149         cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
    150         cz = conic_eval_denominator(fWeight, t2);
    151     } else {
    152         cx = fPts[0].fX;
    153         cy = fPts[0].fY;
    154         cz = 1;
    155     }
    156     double bx = 2 * dx - (ax + cx) / 2;
    157     double by = 2 * dy - (ay + cy) / 2;
    158     double bz = 2 * dz - (az + cz) / 2;
    159     SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}
    160             SkDEBUGPARAMS(fPts.fDebugGlobalState) },
    161             SkDoubleToScalar(bz / sqrt(az * cz)) };
    162     return dst;
    163 }
    164 
    165 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
    166         SkScalar* weight) const {
    167     SkDConic chopped = this->subDivide(t1, t2);
    168     *weight = chopped.fWeight;
    169     return chopped[1];
    170 }
    171