Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2014 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkPatchUtils.h"
      9 
     10 #include "SkColorPriv.h"
     11 #include "SkColorSpace_Base.h"
     12 #include "SkGeometry.h"
     13 #include "SkPM4f.h"
     14 
     15 namespace {
     16     enum CubicCtrlPts {
     17         kTopP0_CubicCtrlPts = 0,
     18         kTopP1_CubicCtrlPts = 1,
     19         kTopP2_CubicCtrlPts = 2,
     20         kTopP3_CubicCtrlPts = 3,
     21 
     22         kRightP0_CubicCtrlPts = 3,
     23         kRightP1_CubicCtrlPts = 4,
     24         kRightP2_CubicCtrlPts = 5,
     25         kRightP3_CubicCtrlPts = 6,
     26 
     27         kBottomP0_CubicCtrlPts = 9,
     28         kBottomP1_CubicCtrlPts = 8,
     29         kBottomP2_CubicCtrlPts = 7,
     30         kBottomP3_CubicCtrlPts = 6,
     31 
     32         kLeftP0_CubicCtrlPts = 0,
     33         kLeftP1_CubicCtrlPts = 11,
     34         kLeftP2_CubicCtrlPts = 10,
     35         kLeftP3_CubicCtrlPts = 9,
     36     };
     37 
     38     // Enum for corner also clockwise.
     39     enum Corner {
     40         kTopLeft_Corner = 0,
     41         kTopRight_Corner,
     42         kBottomRight_Corner,
     43         kBottomLeft_Corner
     44     };
     45 }
     46 
     47 /**
     48  * Evaluator to sample the values of a cubic bezier using forward differences.
     49  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
     50  * adding precalculated values.
     51  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
     52  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
     53  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
     54  * obtaining this value (mh) we could just add this constant step to our first sampled point
     55  * to compute the next one.
     56  *
     57  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
     58  * apply again forward differences and get linear function to which we can apply again forward
     59  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
     60  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
     61  * difference values.
     62  */
     63 
     64 class FwDCubicEvaluator {
     65 
     66 public:
     67 
     68     /**
     69      * Receives the 4 control points of the cubic bezier.
     70      */
     71 
     72     explicit FwDCubicEvaluator(const SkPoint points[4])
     73             : fCoefs(points) {
     74         memcpy(fPoints, points, 4 * sizeof(SkPoint));
     75 
     76         this->restart(1);
     77     }
     78 
     79     /**
     80      * Restarts the forward differences evaluator to the first value of t = 0.
     81      */
     82     void restart(int divisions)  {
     83         fDivisions = divisions;
     84         fCurrent    = 0;
     85         fMax        = fDivisions + 1;
     86         Sk2s h  = Sk2s(1.f / fDivisions);
     87         Sk2s h2 = h * h;
     88         Sk2s h3 = h2 * h;
     89         Sk2s fwDiff3 = Sk2s(6) * fCoefs.fA * h3;
     90         fFwDiff[3] = to_point(fwDiff3);
     91         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
     92         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
     93         fFwDiff[0] = to_point(fCoefs.fD);
     94     }
     95 
     96     /**
     97      * Check if the evaluator is still within the range of 0<=t<=1
     98      */
     99     bool done() const {
    100         return fCurrent > fMax;
    101     }
    102 
    103     /**
    104      * Call next to obtain the SkPoint sampled and move to the next one.
    105      */
    106     SkPoint next() {
    107         SkPoint point = fFwDiff[0];
    108         fFwDiff[0]    += fFwDiff[1];
    109         fFwDiff[1]    += fFwDiff[2];
    110         fFwDiff[2]    += fFwDiff[3];
    111         fCurrent++;
    112         return point;
    113     }
    114 
    115     const SkPoint* getCtrlPoints() const {
    116         return fPoints;
    117     }
    118 
    119 private:
    120     SkCubicCoeff fCoefs;
    121     int fMax, fCurrent, fDivisions;
    122     SkPoint fFwDiff[4], fPoints[4];
    123 };
    124 
    125 ////////////////////////////////////////////////////////////////////////////////
    126 
    127 // size in pixels of each partition per axis, adjust this knob
    128 static const int kPartitionSize = 10;
    129 
    130 /**
    131  * Calculate the approximate arc length given a bezier curve's control points.
    132  */
    133 static SkScalar approx_arc_length(SkPoint* points, int count) {
    134     if (count < 2) {
    135         return 0;
    136     }
    137     SkScalar arcLength = 0;
    138     for (int i = 0; i < count - 1; i++) {
    139         arcLength += SkPoint::Distance(points[i], points[i + 1]);
    140     }
    141     return arcLength;
    142 }
    143 
    144 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
    145                        SkScalar c11) {
    146     SkScalar a = c00 * (1.f - tx) + c10 * tx;
    147     SkScalar b = c01 * (1.f - tx) + c11 * tx;
    148     return a * (1.f - ty) + b * ty;
    149 }
    150 
    151 static Sk4f bilerp(SkScalar tx, SkScalar ty,
    152                    const Sk4f& c00, const Sk4f& c10, const Sk4f& c01, const Sk4f& c11) {
    153     Sk4f a = c00 * (1.f - tx) + c10 * tx;
    154     Sk4f b = c01 * (1.f - tx) + c11 * tx;
    155     return a * (1.f - ty) + b * ty;
    156 }
    157 
    158 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
    159 
    160     // Approximate length of each cubic.
    161     SkPoint pts[kNumPtsCubic];
    162     SkPatchUtils::GetTopCubic(cubics, pts);
    163     matrix->mapPoints(pts, kNumPtsCubic);
    164     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
    165 
    166     SkPatchUtils::GetBottomCubic(cubics, pts);
    167     matrix->mapPoints(pts, kNumPtsCubic);
    168     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
    169 
    170     SkPatchUtils::GetLeftCubic(cubics, pts);
    171     matrix->mapPoints(pts, kNumPtsCubic);
    172     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
    173 
    174     SkPatchUtils::GetRightCubic(cubics, pts);
    175     matrix->mapPoints(pts, kNumPtsCubic);
    176     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
    177 
    178     // Level of detail per axis, based on the larger side between top and bottom or left and right
    179     int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
    180     int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
    181 
    182     return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
    183 }
    184 
    185 void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
    186     points[0] = cubics[kTopP0_CubicCtrlPts];
    187     points[1] = cubics[kTopP1_CubicCtrlPts];
    188     points[2] = cubics[kTopP2_CubicCtrlPts];
    189     points[3] = cubics[kTopP3_CubicCtrlPts];
    190 }
    191 
    192 void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
    193     points[0] = cubics[kBottomP0_CubicCtrlPts];
    194     points[1] = cubics[kBottomP1_CubicCtrlPts];
    195     points[2] = cubics[kBottomP2_CubicCtrlPts];
    196     points[3] = cubics[kBottomP3_CubicCtrlPts];
    197 }
    198 
    199 void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
    200     points[0] = cubics[kLeftP0_CubicCtrlPts];
    201     points[1] = cubics[kLeftP1_CubicCtrlPts];
    202     points[2] = cubics[kLeftP2_CubicCtrlPts];
    203     points[3] = cubics[kLeftP3_CubicCtrlPts];
    204 }
    205 
    206 void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
    207     points[0] = cubics[kRightP0_CubicCtrlPts];
    208     points[1] = cubics[kRightP1_CubicCtrlPts];
    209     points[2] = cubics[kRightP2_CubicCtrlPts];
    210     points[3] = cubics[kRightP3_CubicCtrlPts];
    211 }
    212 
    213 #include "SkPM4fPriv.h"
    214 #include "SkColorSpace_Base.h"
    215 #include "SkColorSpaceXform.h"
    216 
    217 struct SkRGBAf {
    218     float fVec[4];
    219 
    220     static SkRGBAf From4f(const Sk4f& x) {
    221         SkRGBAf c;
    222         x.store(c.fVec);
    223         return c;
    224     }
    225 
    226     static SkRGBAf FromBGRA32(SkColor c) {
    227         return From4f(swizzle_rb(SkNx_cast<float>(Sk4b::Load(&c)) * (1/255.0f)));
    228     }
    229 
    230     Sk4f to4f() const {
    231         return Sk4f::Load(fVec);
    232     }
    233 
    234     SkColor toBGRA32() const {
    235         SkColor color;
    236         SkNx_cast<uint8_t>(swizzle_rb(this->to4f()) * Sk4f(255) + Sk4f(0.5f)).store(&color);
    237         return color;
    238     }
    239 
    240     SkRGBAf premul() const {
    241         float a = fVec[3];
    242         return From4f(this->to4f() * Sk4f(a, a, a, 1));
    243     }
    244 
    245     SkRGBAf unpremul() const {
    246         float a = fVec[3];
    247         float inv = a ? 1/a : 0;
    248         return From4f(this->to4f() * Sk4f(inv, inv, inv, 1));
    249     }
    250 };
    251 
    252 static void skcolor_to_linear(SkRGBAf dst[], const SkColor src[], int count, SkColorSpace* cs,
    253                               bool doPremul) {
    254     if (cs) {
    255         auto srcCS = SkColorSpace::MakeSRGB();
    256         auto dstCS = as_CSB(cs)->makeLinearGamma();
    257         auto op = doPremul ? SkColorSpaceXform::kPremul_AlphaOp
    258                            : SkColorSpaceXform::kPreserve_AlphaOp;
    259         SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat,  dst,
    260                                  srcCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, src,
    261                                  count, op);
    262     } else {
    263         for (int i = 0; i < count; ++i) {
    264             dst[i] = SkRGBAf::FromBGRA32(src[i]);
    265             if (doPremul) {
    266                 dst[i] = dst[i].premul();
    267             }
    268         }
    269     }
    270 }
    271 
    272 static void linear_to_skcolor(SkColor dst[], const SkRGBAf src[], int count, SkColorSpace* cs) {
    273     if (cs) {
    274         auto srcCS = as_CSB(cs)->makeLinearGamma();
    275         auto dstCS = SkColorSpace::MakeSRGB();
    276         SkColorSpaceXform::Apply(dstCS.get(), SkColorSpaceXform::kBGRA_8888_ColorFormat, dst,
    277                                  srcCS.get(), SkColorSpaceXform::kRGBA_F32_ColorFormat,  src,
    278                                  count, SkColorSpaceXform::kPreserve_AlphaOp);
    279     } else {
    280         for (int i = 0; i < count; ++i) {
    281             dst[i] = src[i].toBGRA32();
    282         }
    283     }
    284 }
    285 
    286 static void unpremul(SkRGBAf array[], int count) {
    287     for (int i = 0; i < count; ++i) {
    288         array[i] = array[i].unpremul();
    289     }
    290 }
    291 
    292 sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
    293                                              const SkPoint srcTexCoords[4], int lodX, int lodY,
    294                                              bool interpColorsLinearly) {
    295     if (lodX < 1 || lodY < 1 || nullptr == cubics) {
    296         return nullptr;
    297     }
    298 
    299     // check for overflow in multiplication
    300     const int64_t lodX64 = (lodX + 1),
    301     lodY64 = (lodY + 1),
    302     mult64 = lodX64 * lodY64;
    303     if (mult64 > SK_MaxS32) {
    304         return nullptr;
    305     }
    306 
    307     int vertexCount = SkToS32(mult64);
    308     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
    309     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
    310     if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
    311         float weightX = static_cast<float>(lodX) / (lodX + lodY);
    312         float weightY = static_cast<float>(lodY) / (lodX + lodY);
    313 
    314         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
    315         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
    316         lodX = static_cast<int>(weightX * 200);
    317         lodY = static_cast<int>(weightY * 200);
    318         vertexCount = (lodX + 1) * (lodY + 1);
    319     }
    320     const int indexCount = lodX * lodY * 6;
    321     uint32_t flags = 0;
    322     if (srcTexCoords) {
    323         flags |= SkVertices::kHasTexCoords_BuilderFlag;
    324     }
    325     if (srcColors) {
    326         flags |= SkVertices::kHasColors_BuilderFlag;
    327     }
    328 
    329     SkSTArenaAlloc<2048> alloc;
    330     SkRGBAf* cornerColors = srcColors ? alloc.makeArray<SkRGBAf>(4) : nullptr;
    331     SkRGBAf* tmpColors = srcColors ? alloc.makeArray<SkRGBAf>(vertexCount) : nullptr;
    332     auto convertCS = interpColorsLinearly ? SkColorSpace::MakeSRGB() : nullptr;
    333 
    334     SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
    335     SkPoint* pos = builder.positions();
    336     SkPoint* texs = builder.texCoords();
    337     uint16_t* indices = builder.indices();
    338     bool is_opaque = false;
    339 
    340     /*
    341      *  1. Should we offer this as a runtime choice, as we do in gradients?
    342      *  2. Since drawing the vertices wants premul, shoudl we extend SkVertices to store
    343      *     premul colors (as floats, w/ a colorspace)?
    344      */
    345     bool doPremul = true;
    346     if (cornerColors) {
    347         SkColor c = ~0;
    348         for (int i = 0; i < kNumCorners; i++) {
    349             c &= srcColors[i];
    350         }
    351         is_opaque = (SkColorGetA(c) == 0xFF);
    352         if (is_opaque) {
    353             doPremul = false;   // no need
    354         }
    355 
    356         skcolor_to_linear(cornerColors, srcColors, kNumCorners, convertCS.get(), doPremul);
    357     }
    358 
    359     SkPoint pts[kNumPtsCubic];
    360     SkPatchUtils::GetBottomCubic(cubics, pts);
    361     FwDCubicEvaluator fBottom(pts);
    362     SkPatchUtils::GetTopCubic(cubics, pts);
    363     FwDCubicEvaluator fTop(pts);
    364     SkPatchUtils::GetLeftCubic(cubics, pts);
    365     FwDCubicEvaluator fLeft(pts);
    366     SkPatchUtils::GetRightCubic(cubics, pts);
    367     FwDCubicEvaluator fRight(pts);
    368 
    369     fBottom.restart(lodX);
    370     fTop.restart(lodX);
    371 
    372     SkScalar u = 0.0f;
    373     int stride = lodY + 1;
    374     for (int x = 0; x <= lodX; x++) {
    375         SkPoint bottom = fBottom.next(), top = fTop.next();
    376         fLeft.restart(lodY);
    377         fRight.restart(lodY);
    378         SkScalar v = 0.f;
    379         for (int y = 0; y <= lodY; y++) {
    380             int dataIndex = x * (lodY + 1) + y;
    381 
    382             SkPoint left = fLeft.next(), right = fRight.next();
    383 
    384             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
    385                                        (1.0f - v) * top.y() + v * bottom.y());
    386             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
    387                                        (1.0f - u) * left.y() + u * right.y());
    388             SkPoint s2 = SkPoint::Make(
    389                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
    390                                                      + u * fTop.getCtrlPoints()[3].x())
    391                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
    392                                               + u * fBottom.getCtrlPoints()[3].x()),
    393                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
    394                                                      + u * fTop.getCtrlPoints()[3].y())
    395                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
    396                                               + u * fBottom.getCtrlPoints()[3].y()));
    397             pos[dataIndex] = s0 + s1 - s2;
    398 
    399             if (cornerColors) {
    400                 bilerp(u, v, cornerColors[kTopLeft_Corner].to4f(),
    401                              cornerColors[kTopRight_Corner].to4f(),
    402                              cornerColors[kBottomLeft_Corner].to4f(),
    403                              cornerColors[kBottomRight_Corner].to4f()).store(tmpColors[dataIndex].fVec);
    404                 if (is_opaque) {
    405                     tmpColors[dataIndex].fVec[3] = 1;
    406                 }
    407             }
    408 
    409             if (texs) {
    410                 texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
    411                                                        srcTexCoords[kTopRight_Corner].x(),
    412                                                        srcTexCoords[kBottomLeft_Corner].x(),
    413                                                        srcTexCoords[kBottomRight_Corner].x()),
    414                                                 bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
    415                                                        srcTexCoords[kTopRight_Corner].y(),
    416                                                        srcTexCoords[kBottomLeft_Corner].y(),
    417                                                        srcTexCoords[kBottomRight_Corner].y()));
    418 
    419             }
    420 
    421             if(x < lodX && y < lodY) {
    422                 int i = 6 * (x * lodY + y);
    423                 indices[i] = x * stride + y;
    424                 indices[i + 1] = x * stride + 1 + y;
    425                 indices[i + 2] = (x + 1) * stride + 1 + y;
    426                 indices[i + 3] = indices[i];
    427                 indices[i + 4] = indices[i + 2];
    428                 indices[i + 5] = (x + 1) * stride + y;
    429             }
    430             v = SkScalarClampMax(v + 1.f / lodY, 1);
    431         }
    432         u = SkScalarClampMax(u + 1.f / lodX, 1);
    433     }
    434 
    435     if (tmpColors) {
    436         if (doPremul) {
    437             unpremul(tmpColors, vertexCount);
    438         }
    439         linear_to_skcolor(builder.colors(), tmpColors, vertexCount, convertCS.get());
    440     }
    441     return builder.detach();
    442 }
    443