Home | History | Annotate | Download | only in utils
      1 /*
      2 * Copyright 2017 Google Inc.
      3 *
      4 * Use of this source code is governed by a BSD-style license that can be
      5 * found in the LICENSE file.
      6 */
      7 
      8 #include "SkShadowUtils.h"
      9 #include "SkCanvas.h"
     10 #include "SkColorFilter.h"
     11 #include "SkColorPriv.h"
     12 #include "SkDevice.h"
     13 #include "SkDrawShadowRec.h"
     14 #include "SkPath.h"
     15 #include "SkPM4f.h"
     16 #include "SkRandom.h"
     17 #include "SkRasterPipeline.h"
     18 #include "SkResourceCache.h"
     19 #include "SkShadowTessellator.h"
     20 #include "SkString.h"
     21 #include "SkTLazy.h"
     22 #include "SkVertices.h"
     23 #if SK_SUPPORT_GPU
     24 #include "GrShape.h"
     25 #include "effects/GrBlurredEdgeFragmentProcessor.h"
     26 #endif
     27 
     28 /**
     29 *  Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
     30 *                           then blends with the color's G value.
     31 *                           Final result is black with alpha of Gaussian(B)*G.
     32 *                           The assumption is that the original color's alpha is 1.
     33 */
     34 class SK_API SkGaussianColorFilter : public SkColorFilter {
     35 public:
     36     static sk_sp<SkColorFilter> Make() {
     37         return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
     38     }
     39 
     40 #if SK_SUPPORT_GPU
     41     sk_sp<GrFragmentProcessor> asFragmentProcessor(GrContext*, SkColorSpace*) const override;
     42 #endif
     43 
     44     SK_TO_STRING_OVERRIDE()
     45     SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter)
     46 
     47 protected:
     48     void flatten(SkWriteBuffer&) const override {}
     49     void onAppendStages(SkRasterPipeline* pipeline, SkColorSpace* dstCS, SkArenaAlloc* alloc,
     50                         bool shaderIsOpaque) const override {
     51         pipeline->append(SkRasterPipeline::gauss_a_to_rgba);
     52     }
     53 private:
     54     SkGaussianColorFilter() : INHERITED() {}
     55 
     56     typedef SkColorFilter INHERITED;
     57 };
     58 
     59 sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
     60     return Make();
     61 }
     62 
     63 #ifndef SK_IGNORE_TO_STRING
     64 void SkGaussianColorFilter::toString(SkString* str) const {
     65     str->append("SkGaussianColorFilter ");
     66 }
     67 #endif
     68 
     69 #if SK_SUPPORT_GPU
     70 
     71 sk_sp<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(GrContext*,
     72                                                                       SkColorSpace*) const {
     73     return GrBlurredEdgeFragmentProcessor::Make(GrBlurredEdgeFragmentProcessor::kGaussian_Mode);
     74 }
     75 #endif
     76 
     77 ///////////////////////////////////////////////////////////////////////////////////////////////////
     78 
     79 namespace {
     80 
     81 uint64_t resource_cache_shared_id() {
     82     return 0x2020776f64616873llu;  // 'shadow  '
     83 }
     84 
     85 /** Factory for an ambient shadow mesh with particular shadow properties. */
     86 struct AmbientVerticesFactory {
     87     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
     88     bool fTransparent;
     89     SkVector fOffset;
     90 
     91     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
     92         if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
     93             return false;
     94         }
     95         *translate = that.fOffset;
     96         return true;
     97     }
     98 
     99     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
    100                                    SkVector* translate) const {
    101         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
    102         // pick a canonical place to generate shadow
    103         SkMatrix noTrans(ctm);
    104         if (!ctm.hasPerspective()) {
    105             noTrans[SkMatrix::kMTransX] = 0;
    106             noTrans[SkMatrix::kMTransY] = 0;
    107         }
    108         *translate = fOffset;
    109         return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
    110     }
    111 };
    112 
    113 /** Factory for an spot shadow mesh with particular shadow properties. */
    114 struct SpotVerticesFactory {
    115     enum class OccluderType {
    116         // The umbra cannot be dropped out because either the occluder is not opaque,
    117         // or the center of the umbra is visible.
    118         kTransparent,
    119         // The umbra can be dropped where it is occluded.
    120         kOpaquePartialUmbra,
    121         // It is known that the entire umbra is occluded.
    122         kOpaqueNoUmbra
    123     };
    124 
    125     SkVector fOffset;
    126     SkPoint  fLocalCenter;
    127     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
    128     SkPoint3 fDevLightPos;
    129     SkScalar fLightRadius;
    130     OccluderType fOccluderType;
    131 
    132     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
    133         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
    134             fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
    135             return false;
    136         }
    137         switch (fOccluderType) {
    138             case OccluderType::kTransparent:
    139             case OccluderType::kOpaqueNoUmbra:
    140                 // 'this' and 'that' will either both have no umbra removed or both have all the
    141                 // umbra removed.
    142                 *translate = that.fOffset;
    143                 return true;
    144             case OccluderType::kOpaquePartialUmbra:
    145                 // In this case we partially remove the umbra differently for 'this' and 'that'
    146                 // if the offsets don't match.
    147                 if (fOffset == that.fOffset) {
    148                     translate->set(0, 0);
    149                     return true;
    150                 }
    151                 return false;
    152         }
    153         SkFAIL("Uninitialized occluder type?");
    154         return false;
    155     }
    156 
    157     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
    158                                    SkVector* translate) const {
    159         bool transparent = OccluderType::kTransparent == fOccluderType;
    160         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
    161         if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) {
    162             translate->set(0, 0);
    163             return SkShadowTessellator::MakeSpot(path, ctm, zParams,
    164                                                  fDevLightPos, fLightRadius, transparent);
    165         } else {
    166             // pick a canonical place to generate shadow, with light centered over path
    167             SkMatrix noTrans(ctm);
    168             noTrans[SkMatrix::kMTransX] = 0;
    169             noTrans[SkMatrix::kMTransY] = 0;
    170             SkPoint devCenter(fLocalCenter);
    171             noTrans.mapPoints(&devCenter, 1);
    172             SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
    173             *translate = fOffset;
    174             return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
    175                                                  centerLightPos, fLightRadius, transparent);
    176         }
    177     }
    178 };
    179 
    180 /**
    181  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
    182  * records are immutable this is not itself a Rec. When we need to update it we return this on
    183  * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
    184  * a new Rec with an adjusted size for any deletions/additions.
    185  */
    186 class CachedTessellations : public SkRefCnt {
    187 public:
    188     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
    189 
    190     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
    191                            SkVector* translate) const {
    192         return fAmbientSet.find(ambient, matrix, translate);
    193     }
    194 
    195     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
    196                           const SkMatrix& matrix, SkVector* translate) {
    197         return fAmbientSet.add(devPath, ambient, matrix, translate);
    198     }
    199 
    200     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
    201                            SkVector* translate) const {
    202         return fSpotSet.find(spot, matrix, translate);
    203     }
    204 
    205     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
    206                           const SkMatrix& matrix, SkVector* translate) {
    207         return fSpotSet.add(devPath, spot, matrix, translate);
    208     }
    209 
    210 private:
    211     template <typename FACTORY, int MAX_ENTRIES>
    212     class Set {
    213     public:
    214         size_t size() const { return fSize; }
    215 
    216         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
    217                                SkVector* translate) const {
    218             for (int i = 0; i < MAX_ENTRIES; ++i) {
    219                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
    220                     const SkMatrix& m = fEntries[i].fMatrix;
    221                     if (matrix.hasPerspective() || m.hasPerspective()) {
    222                         if (matrix != fEntries[i].fMatrix) {
    223                             continue;
    224                         }
    225                     } else if (matrix.getScaleX() != m.getScaleX() ||
    226                                matrix.getSkewX() != m.getSkewX() ||
    227                                matrix.getScaleY() != m.getScaleY() ||
    228                                matrix.getSkewY() != m.getSkewY()) {
    229                         continue;
    230                     }
    231                     return fEntries[i].fVertices;
    232                 }
    233             }
    234             return nullptr;
    235         }
    236 
    237         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
    238                               SkVector* translate) {
    239             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
    240             if (!vertices) {
    241                 return nullptr;
    242             }
    243             int i;
    244             if (fCount < MAX_ENTRIES) {
    245                 i = fCount++;
    246             } else {
    247                 i = fRandom.nextULessThan(MAX_ENTRIES);
    248                 fSize -= fEntries[i].fVertices->approximateSize();
    249             }
    250             fEntries[i].fFactory = factory;
    251             fEntries[i].fVertices = vertices;
    252             fEntries[i].fMatrix = matrix;
    253             fSize += vertices->approximateSize();
    254             return vertices;
    255         }
    256 
    257     private:
    258         struct Entry {
    259             FACTORY fFactory;
    260             sk_sp<SkVertices> fVertices;
    261             SkMatrix fMatrix;
    262         };
    263         Entry fEntries[MAX_ENTRIES];
    264         int fCount = 0;
    265         size_t fSize = 0;
    266         SkRandom fRandom;
    267     };
    268 
    269     Set<AmbientVerticesFactory, 4> fAmbientSet;
    270     Set<SpotVerticesFactory, 4> fSpotSet;
    271 };
    272 
    273 /**
    274  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
    275  * path. The key represents the path's geometry and not any shadow params.
    276  */
    277 class CachedTessellationsRec : public SkResourceCache::Rec {
    278 public:
    279     CachedTessellationsRec(const SkResourceCache::Key& key,
    280                            sk_sp<CachedTessellations> tessellations)
    281             : fTessellations(std::move(tessellations)) {
    282         fKey.reset(new uint8_t[key.size()]);
    283         memcpy(fKey.get(), &key, key.size());
    284     }
    285 
    286     const Key& getKey() const override {
    287         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
    288     }
    289 
    290     size_t bytesUsed() const override { return fTessellations->size(); }
    291 
    292     const char* getCategory() const override { return "tessellated shadow masks"; }
    293 
    294     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
    295 
    296     template <typename FACTORY>
    297     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
    298                            SkVector* translate) const {
    299         return fTessellations->find(factory, matrix, translate);
    300     }
    301 
    302 private:
    303     std::unique_ptr<uint8_t[]> fKey;
    304     sk_sp<CachedTessellations> fTessellations;
    305 };
    306 
    307 /**
    308  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
    309  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
    310  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
    311  * to the caller. The caller will update it and reinsert it back into the cache.
    312  */
    313 template <typename FACTORY>
    314 struct FindContext {
    315     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
    316             : fViewMatrix(viewMatrix), fFactory(factory) {}
    317     const SkMatrix* const fViewMatrix;
    318     // If this is valid after Find is called then we found the vertices and they should be drawn
    319     // with fTranslate applied.
    320     sk_sp<SkVertices> fVertices;
    321     SkVector fTranslate = {0, 0};
    322 
    323     // If this is valid after Find then the caller should add the vertices to the tessellation set
    324     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
    325     sk_sp<CachedTessellations> fTessellationsOnFailure;
    326 
    327     const FACTORY* fFactory;
    328 };
    329 
    330 /**
    331  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
    332  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
    333  * necessary translation vector are set on the FindContext.
    334  */
    335 template <typename FACTORY>
    336 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
    337     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
    338     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
    339     findContext->fVertices =
    340             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
    341     if (findContext->fVertices) {
    342         return true;
    343     }
    344     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
    345     // manipulated we will add a new Rec.
    346     findContext->fTessellationsOnFailure = rec.refTessellations();
    347     return false;
    348 }
    349 
    350 class ShadowedPath {
    351 public:
    352     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
    353             : fPath(path)
    354             , fViewMatrix(viewMatrix)
    355 #if SK_SUPPORT_GPU
    356             , fShapeForKey(*path, GrStyle::SimpleFill())
    357 #endif
    358     {}
    359 
    360     const SkPath& path() const { return *fPath; }
    361     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
    362 #if SK_SUPPORT_GPU
    363     /** Negative means the vertices should not be cached for this path. */
    364     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
    365     void writeKey(void* key) const {
    366         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
    367     }
    368     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
    369 #else
    370     int keyBytes() const { return -1; }
    371     void writeKey(void* key) const { SkFAIL("Should never be called"); }
    372     bool isRRect(SkRRect* rrect) { return false; }
    373 #endif
    374 
    375 private:
    376     const SkPath* fPath;
    377     const SkMatrix* fViewMatrix;
    378 #if SK_SUPPORT_GPU
    379     GrShape fShapeForKey;
    380 #endif
    381 };
    382 
    383 // This creates a domain of keys in SkResourceCache used by this file.
    384 static void* kNamespace;
    385 
    386 /**
    387  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
    388  * they are first found in SkResourceCache.
    389  */
    390 template <typename FACTORY>
    391     void draw_shadow(const FACTORY& factory,
    392                      std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
    393                      SkScalar tx, SkScalar ty)> drawProc, ShadowedPath& path, SkColor color) {
    394     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
    395 
    396     SkResourceCache::Key* key = nullptr;
    397     SkAutoSTArray<32 * 4, uint8_t> keyStorage;
    398     int keyDataBytes = path.keyBytes();
    399     if (keyDataBytes >= 0) {
    400         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
    401         key = new (keyStorage.begin()) SkResourceCache::Key();
    402         path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
    403         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
    404         SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
    405     }
    406 
    407     sk_sp<SkVertices> vertices;
    408     bool foundInCache = SkToBool(context.fVertices);
    409     if (foundInCache) {
    410         vertices = std::move(context.fVertices);
    411     } else {
    412         // TODO: handle transforming the path as part of the tessellator
    413         if (key) {
    414             // Update or initialize a tessellation set and add it to the cache.
    415             sk_sp<CachedTessellations> tessellations;
    416             if (context.fTessellationsOnFailure) {
    417                 tessellations = std::move(context.fTessellationsOnFailure);
    418             } else {
    419                 tessellations.reset(new CachedTessellations());
    420             }
    421             vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
    422                                           &context.fTranslate);
    423             if (!vertices) {
    424                 return;
    425             }
    426             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
    427             SkResourceCache::Add(rec);
    428         } else {
    429             vertices = factory.makeVertices(path.path(), path.viewMatrix(),
    430                                             &context.fTranslate);
    431             if (!vertices) {
    432                 return;
    433             }
    434         }
    435     }
    436 
    437     SkPaint paint;
    438     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
    439     // that against our 'color' param.
    440     paint.setColorFilter(SkColorFilter::MakeComposeFilter(
    441             SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate),
    442             SkGaussianColorFilter::Make()));
    443 
    444     drawProc(vertices.get(), SkBlendMode::kModulate, paint,
    445              context.fTranslate.fX, context.fTranslate.fY);
    446 }
    447 }
    448 
    449 static bool tilted(const SkPoint3& zPlaneParams) {
    450     return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
    451 }
    452 
    453 static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) {
    454     SkPoint3 result;
    455     m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX);
    456     result.fZ = pt.fZ;
    457     return result;
    458 }
    459 
    460 static SkColor compute_render_color(SkColor color, float alpha, bool useTonalColor) {
    461     if (useTonalColor) {
    462         SkScalar colorScale;
    463         SkScalar tonalAlpha;
    464         SkColor4f color4f = SkColor4f::FromColor(color);
    465         SkShadowUtils::ComputeTonalColorParams(color4f.fR,
    466                                                color4f.fG,
    467                                                color4f.fB,
    468                                                alpha,
    469                                                &colorScale, &tonalAlpha);
    470         // After pre-multiplying, we want the alpha to be scaled by tonalAlpha, and
    471         // the color scaled by colorScale. This scale factor gives that.
    472         SkScalar unPremulScale = colorScale / tonalAlpha;
    473 
    474         return SkColorSetARGB(tonalAlpha*255.999f, unPremulScale*SkColorGetR(color),
    475                               unPremulScale*SkColorGetG(color), unPremulScale*SkColorGetB(color));
    476     }
    477 
    478     return SkColorSetARGB(alpha*SkColorGetA(color), SkColorGetR(color),
    479                           SkColorGetG(color), SkColorGetB(color));
    480 }
    481 
    482 // Draw an offset spot shadow and outlining ambient shadow for the given path.
    483 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
    484                                const SkPoint3& devLightPos, SkScalar lightRadius,
    485                                SkScalar ambientAlpha, SkScalar spotAlpha, SkColor color,
    486                                uint32_t flags) {
    487     SkMatrix inverse;
    488     if (!canvas->getTotalMatrix().invert(&inverse)) {
    489         return;
    490     }
    491     SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY);
    492 
    493     SkDrawShadowRec rec;
    494     rec.fZPlaneParams   = zPlaneParams;
    495     rec.fLightPos       = { pt.fX, pt.fY, devLightPos.fZ };
    496     rec.fLightRadius    = lightRadius;
    497     rec.fAmbientAlpha   = SkScalarToFloat(ambientAlpha);
    498     rec.fSpotAlpha      = SkScalarToFloat(spotAlpha);
    499     rec.fColor          = color;
    500     rec.fFlags          = flags;
    501 
    502     canvas->private_draw_shadow_rec(path, rec);
    503 }
    504 
    505 void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
    506     auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
    507                                 SkScalar tx, SkScalar ty) {
    508         SkAutoDeviceCTMRestore adr(this, SkMatrix::Concat(this->ctm(),
    509                                                           SkMatrix::MakeTrans(tx, ty)));
    510         this->drawVertices(vertices, mode, paint);
    511     };
    512 
    513     SkMatrix viewMatrix = this->ctm();
    514     SkAutoDeviceCTMRestore adr(this, SkMatrix::I());
    515 
    516     ShadowedPath shadowedPath(&path, &viewMatrix);
    517 
    518     bool tiltZPlane = tilted(rec.fZPlaneParams);
    519     bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
    520     bool uncached = tiltZPlane || path.isVolatile();
    521     bool useTonalColor = SkToBool(rec.fFlags & kTonalColor_ShadowFlag);
    522 
    523     SkColor color = rec.fColor;
    524     SkPoint3 zPlaneParams = rec.fZPlaneParams;
    525     SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos);
    526     float lightRadius = rec.fLightRadius;
    527 
    528     float ambientAlpha = rec.fAmbientAlpha;
    529     if (ambientAlpha > 0) {
    530         ambientAlpha = SkTMin(ambientAlpha, 1.f);
    531         SkColor renderColor;
    532         if (useTonalColor) {
    533             renderColor = compute_render_color(SK_ColorBLACK, ambientAlpha, false);
    534         } else {
    535             renderColor = compute_render_color(color, ambientAlpha, false);
    536         }
    537         if (uncached) {
    538             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
    539                                                                           zPlaneParams,
    540                                                                           transparent);
    541             if (vertices) {
    542                 SkPaint paint;
    543                 // Run the vertex color through a GaussianColorFilter and then modulate the
    544                 // grayscale result of that against our 'color' param.
    545                 paint.setColorFilter(SkColorFilter::MakeComposeFilter(
    546                     SkColorFilter::MakeModeFilter(renderColor, SkBlendMode::kModulate),
    547                     SkGaussianColorFilter::Make()));
    548                 this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
    549             }
    550         } else {
    551             AmbientVerticesFactory factory;
    552             factory.fOccluderHeight = zPlaneParams.fZ;
    553             factory.fTransparent = transparent;
    554             if (viewMatrix.hasPerspective()) {
    555                 factory.fOffset.set(0, 0);
    556             } else {
    557                 factory.fOffset.fX = viewMatrix.getTranslateX();
    558                 factory.fOffset.fY = viewMatrix.getTranslateY();
    559             }
    560 
    561             draw_shadow(factory, drawVertsProc, shadowedPath, renderColor);
    562         }
    563     }
    564 
    565     float spotAlpha = rec.fSpotAlpha;
    566     if (spotAlpha > 0) {
    567         spotAlpha = SkTMin(spotAlpha, 1.f);
    568         SkColor renderColor = compute_render_color(color, spotAlpha, useTonalColor);
    569         if (uncached) {
    570             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
    571                                                                        zPlaneParams,
    572                                                                        devLightPos, lightRadius,
    573                                                                        transparent);
    574             if (vertices) {
    575                 SkPaint paint;
    576                 // Run the vertex color through a GaussianColorFilter and then modulate the
    577                 // grayscale result of that against our 'color' param.
    578                 paint.setColorFilter(SkColorFilter::MakeComposeFilter(
    579                     SkColorFilter::MakeModeFilter(renderColor, SkBlendMode::kModulate),
    580                     SkGaussianColorFilter::Make()));
    581                 this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
    582             }
    583         } else {
    584             SpotVerticesFactory factory;
    585             SkScalar occluderHeight = zPlaneParams.fZ;
    586             float zRatio = SkTPin(occluderHeight / (devLightPos.fZ - occluderHeight), 0.0f, 0.95f);
    587             SkScalar radius = lightRadius * zRatio;
    588 
    589             // Compute the scale and translation for the spot shadow.
    590             SkScalar scale = devLightPos.fZ / (devLightPos.fZ - occluderHeight);
    591             SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
    592             factory.fLocalCenter = center;
    593             viewMatrix.mapPoints(&center, 1);
    594             factory.fOffset = SkVector::Make(zRatio * (center.fX - devLightPos.fX),
    595                                              zRatio * (center.fY - devLightPos.fY));
    596             factory.fOccluderHeight = occluderHeight;
    597             factory.fDevLightPos = devLightPos;
    598             factory.fLightRadius = lightRadius;
    599             SkRect devBounds;
    600             viewMatrix.mapRect(&devBounds, path.getBounds());
    601             if (transparent ||
    602                 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
    603                 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
    604                 // if the translation of the shadow is big enough we're going to end up
    605                 // filling the entire umbra, so we can treat these as all the same
    606                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
    607             } else if (factory.fOffset.length()*scale + scale < radius) {
    608                 // if we don't translate more than the blur distance, can assume umbra is covered
    609                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra;
    610             } else {
    611                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra;
    612             }
    613             // need to add this after we classify the shadow
    614             factory.fOffset.fX += viewMatrix.getTranslateX();
    615             factory.fOffset.fY += viewMatrix.getTranslateY();
    616 #ifdef DEBUG_SHADOW_CHECKS
    617             switch (factory.fOccluderType) {
    618                 case SpotVerticesFactory::OccluderType::kTransparent:
    619                     color = 0xFFD2B48C;  // tan for transparent
    620                     break;
    621                 case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra:
    622                     color = 0xFFFFA500;   // orange for opaque
    623                     break;
    624                 case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra:
    625                     color = 0xFFE5E500;  // corn yellow for covered
    626                     break;
    627             }
    628 #endif
    629             draw_shadow(factory, drawVertsProc, shadowedPath, renderColor);
    630         }
    631     }
    632 }
    633