Home | History | Annotate | Download | only in CBackend
      1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This library converts LLVM code to C code, compilable by GCC and other C
     11 // compilers.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CTargetMachine.h"
     16 #include "llvm/CallingConv.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/Module.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/Pass.h"
     22 #include "llvm/PassManager.h"
     23 #include "llvm/Intrinsics.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/InlineAsm.h"
     26 #include "llvm/ADT/StringExtras.h"
     27 #include "llvm/ADT/SmallString.h"
     28 #include "llvm/ADT/STLExtras.h"
     29 #include "llvm/Analysis/ConstantsScanner.h"
     30 #include "llvm/Analysis/FindUsedTypes.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/Analysis/ValueTracking.h"
     33 #include "llvm/CodeGen/Passes.h"
     34 #include "llvm/CodeGen/IntrinsicLowering.h"
     35 #include "llvm/Target/Mangler.h"
     36 #include "llvm/Transforms/Scalar.h"
     37 #include "llvm/MC/MCAsmInfo.h"
     38 #include "llvm/MC/MCContext.h"
     39 #include "llvm/MC/MCInstrInfo.h"
     40 #include "llvm/MC/MCObjectFileInfo.h"
     41 #include "llvm/MC/MCRegisterInfo.h"
     42 #include "llvm/MC/MCSubtargetInfo.h"
     43 #include "llvm/MC/MCSymbol.h"
     44 #include "llvm/Target/TargetData.h"
     45 #include "llvm/Support/CallSite.h"
     46 #include "llvm/Support/CFG.h"
     47 #include "llvm/Support/ErrorHandling.h"
     48 #include "llvm/Support/FormattedStream.h"
     49 #include "llvm/Support/GetElementPtrTypeIterator.h"
     50 #include "llvm/Support/InstVisitor.h"
     51 #include "llvm/Support/MathExtras.h"
     52 #include "llvm/Support/TargetRegistry.h"
     53 #include "llvm/Support/Host.h"
     54 #include "llvm/Config/config.h"
     55 #include <algorithm>
     56 // Some ms header decided to define setjmp as _setjmp, undo this for this file.
     57 #ifdef _MSC_VER
     58 #undef setjmp
     59 #endif
     60 using namespace llvm;
     61 
     62 extern "C" void LLVMInitializeCBackendTarget() {
     63   // Register the target.
     64   RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
     65 }
     66 
     67 namespace {
     68   class CBEMCAsmInfo : public MCAsmInfo {
     69   public:
     70     CBEMCAsmInfo() {
     71       GlobalPrefix = "";
     72       PrivateGlobalPrefix = "";
     73     }
     74   };
     75 
     76   /// CWriter - This class is the main chunk of code that converts an LLVM
     77   /// module to a C translation unit.
     78   class CWriter : public FunctionPass, public InstVisitor<CWriter> {
     79     formatted_raw_ostream &Out;
     80     IntrinsicLowering *IL;
     81     Mangler *Mang;
     82     LoopInfo *LI;
     83     const Module *TheModule;
     84     const MCAsmInfo* TAsm;
     85     const MCRegisterInfo *MRI;
     86     const MCObjectFileInfo *MOFI;
     87     MCContext *TCtx;
     88     const TargetData* TD;
     89 
     90     std::map<const ConstantFP *, unsigned> FPConstantMap;
     91     std::set<Function*> intrinsicPrototypesAlreadyGenerated;
     92     std::set<const Argument*> ByValParams;
     93     unsigned FPCounter;
     94     unsigned OpaqueCounter;
     95     DenseMap<const Value*, unsigned> AnonValueNumbers;
     96     unsigned NextAnonValueNumber;
     97 
     98     /// UnnamedStructIDs - This contains a unique ID for each struct that is
     99     /// either anonymous or has no name.
    100     DenseMap<StructType*, unsigned> UnnamedStructIDs;
    101 
    102   public:
    103     static char ID;
    104     explicit CWriter(formatted_raw_ostream &o)
    105       : FunctionPass(ID), Out(o), IL(0), Mang(0), LI(0),
    106         TheModule(0), TAsm(0), MRI(0), MOFI(0), TCtx(0), TD(0),
    107         OpaqueCounter(0), NextAnonValueNumber(0) {
    108       initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    109       FPCounter = 0;
    110     }
    111 
    112     virtual const char *getPassName() const { return "C backend"; }
    113 
    114     void getAnalysisUsage(AnalysisUsage &AU) const {
    115       AU.addRequired<LoopInfo>();
    116       AU.setPreservesAll();
    117     }
    118 
    119     virtual bool doInitialization(Module &M);
    120 
    121     bool runOnFunction(Function &F) {
    122      // Do not codegen any 'available_externally' functions at all, they have
    123      // definitions outside the translation unit.
    124      if (F.hasAvailableExternallyLinkage())
    125        return false;
    126 
    127       LI = &getAnalysis<LoopInfo>();
    128 
    129       // Get rid of intrinsics we can't handle.
    130       lowerIntrinsics(F);
    131 
    132       // Output all floating point constants that cannot be printed accurately.
    133       printFloatingPointConstants(F);
    134 
    135       printFunction(F);
    136       return false;
    137     }
    138 
    139     virtual bool doFinalization(Module &M) {
    140       // Free memory...
    141       delete IL;
    142       delete TD;
    143       delete Mang;
    144       delete TCtx;
    145       delete TAsm;
    146       delete MRI;
    147       delete MOFI;
    148       FPConstantMap.clear();
    149       ByValParams.clear();
    150       intrinsicPrototypesAlreadyGenerated.clear();
    151       UnnamedStructIDs.clear();
    152       return false;
    153     }
    154 
    155     raw_ostream &printType(raw_ostream &Out, Type *Ty,
    156                            bool isSigned = false,
    157                            const std::string &VariableName = "",
    158                            bool IgnoreName = false,
    159                            const AttrListPtr &PAL = AttrListPtr());
    160     raw_ostream &printSimpleType(raw_ostream &Out, Type *Ty,
    161                                  bool isSigned,
    162                                  const std::string &NameSoFar = "");
    163 
    164     void printStructReturnPointerFunctionType(raw_ostream &Out,
    165                                               const AttrListPtr &PAL,
    166                                               PointerType *Ty);
    167 
    168     std::string getStructName(StructType *ST);
    169 
    170     /// writeOperandDeref - Print the result of dereferencing the specified
    171     /// operand with '*'.  This is equivalent to printing '*' then using
    172     /// writeOperand, but avoids excess syntax in some cases.
    173     void writeOperandDeref(Value *Operand) {
    174       if (isAddressExposed(Operand)) {
    175         // Already something with an address exposed.
    176         writeOperandInternal(Operand);
    177       } else {
    178         Out << "*(";
    179         writeOperand(Operand);
    180         Out << ")";
    181       }
    182     }
    183 
    184     void writeOperand(Value *Operand, bool Static = false);
    185     void writeInstComputationInline(Instruction &I);
    186     void writeOperandInternal(Value *Operand, bool Static = false);
    187     void writeOperandWithCast(Value* Operand, unsigned Opcode);
    188     void writeOperandWithCast(Value* Operand, const ICmpInst &I);
    189     bool writeInstructionCast(const Instruction &I);
    190 
    191     void writeMemoryAccess(Value *Operand, Type *OperandType,
    192                            bool IsVolatile, unsigned Alignment);
    193 
    194   private :
    195     std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
    196 
    197     void lowerIntrinsics(Function &F);
    198     /// Prints the definition of the intrinsic function F. Supports the
    199     /// intrinsics which need to be explicitly defined in the CBackend.
    200     void printIntrinsicDefinition(const Function &F, raw_ostream &Out);
    201 
    202     void printModuleTypes();
    203     void printContainedStructs(Type *Ty, SmallPtrSet<Type *, 16> &);
    204     void printFloatingPointConstants(Function &F);
    205     void printFloatingPointConstants(const Constant *C);
    206     void printFunctionSignature(const Function *F, bool Prototype);
    207 
    208     void printFunction(Function &);
    209     void printBasicBlock(BasicBlock *BB);
    210     void printLoop(Loop *L);
    211 
    212     void printCast(unsigned opcode, Type *SrcTy, Type *DstTy);
    213     void printConstant(Constant *CPV, bool Static);
    214     void printConstantWithCast(Constant *CPV, unsigned Opcode);
    215     bool printConstExprCast(const ConstantExpr *CE, bool Static);
    216     void printConstantArray(ConstantArray *CPA, bool Static);
    217     void printConstantVector(ConstantVector *CV, bool Static);
    218 
    219     /// isAddressExposed - Return true if the specified value's name needs to
    220     /// have its address taken in order to get a C value of the correct type.
    221     /// This happens for global variables, byval parameters, and direct allocas.
    222     bool isAddressExposed(const Value *V) const {
    223       if (const Argument *A = dyn_cast<Argument>(V))
    224         return ByValParams.count(A);
    225       return isa<GlobalVariable>(V) || isDirectAlloca(V);
    226     }
    227 
    228     // isInlinableInst - Attempt to inline instructions into their uses to build
    229     // trees as much as possible.  To do this, we have to consistently decide
    230     // what is acceptable to inline, so that variable declarations don't get
    231     // printed and an extra copy of the expr is not emitted.
    232     //
    233     static bool isInlinableInst(const Instruction &I) {
    234       // Always inline cmp instructions, even if they are shared by multiple
    235       // expressions.  GCC generates horrible code if we don't.
    236       if (isa<CmpInst>(I))
    237         return true;
    238 
    239       // Must be an expression, must be used exactly once.  If it is dead, we
    240       // emit it inline where it would go.
    241       if (I.getType() == Type::getVoidTy(I.getContext()) || !I.hasOneUse() ||
    242           isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
    243           isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
    244           isa<InsertValueInst>(I))
    245         // Don't inline a load across a store or other bad things!
    246         return false;
    247 
    248       // Must not be used in inline asm, extractelement, or shufflevector.
    249       if (I.hasOneUse()) {
    250         const Instruction &User = cast<Instruction>(*I.use_back());
    251         if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
    252             isa<ShuffleVectorInst>(User))
    253           return false;
    254       }
    255 
    256       // Only inline instruction it if it's use is in the same BB as the inst.
    257       return I.getParent() == cast<Instruction>(I.use_back())->getParent();
    258     }
    259 
    260     // isDirectAlloca - Define fixed sized allocas in the entry block as direct
    261     // variables which are accessed with the & operator.  This causes GCC to
    262     // generate significantly better code than to emit alloca calls directly.
    263     //
    264     static const AllocaInst *isDirectAlloca(const Value *V) {
    265       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
    266       if (!AI) return 0;
    267       if (AI->isArrayAllocation())
    268         return 0;   // FIXME: we can also inline fixed size array allocas!
    269       if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
    270         return 0;
    271       return AI;
    272     }
    273 
    274     // isInlineAsm - Check if the instruction is a call to an inline asm chunk.
    275     static bool isInlineAsm(const Instruction& I) {
    276       if (const CallInst *CI = dyn_cast<CallInst>(&I))
    277         return isa<InlineAsm>(CI->getCalledValue());
    278       return false;
    279     }
    280 
    281     // Instruction visitation functions
    282     friend class InstVisitor<CWriter>;
    283 
    284     void visitReturnInst(ReturnInst &I);
    285     void visitBranchInst(BranchInst &I);
    286     void visitSwitchInst(SwitchInst &I);
    287     void visitIndirectBrInst(IndirectBrInst &I);
    288     void visitInvokeInst(InvokeInst &I) {
    289       llvm_unreachable("Lowerinvoke pass didn't work!");
    290     }
    291     void visitUnwindInst(UnwindInst &I) {
    292       llvm_unreachable("Lowerinvoke pass didn't work!");
    293     }
    294     void visitResumeInst(ResumeInst &I) {
    295       llvm_unreachable("DwarfEHPrepare pass didn't work!");
    296     }
    297     void visitUnreachableInst(UnreachableInst &I);
    298 
    299     void visitPHINode(PHINode &I);
    300     void visitBinaryOperator(Instruction &I);
    301     void visitICmpInst(ICmpInst &I);
    302     void visitFCmpInst(FCmpInst &I);
    303 
    304     void visitCastInst (CastInst &I);
    305     void visitSelectInst(SelectInst &I);
    306     void visitCallInst (CallInst &I);
    307     void visitInlineAsm(CallInst &I);
    308     bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
    309 
    310     void visitAllocaInst(AllocaInst &I);
    311     void visitLoadInst  (LoadInst   &I);
    312     void visitStoreInst (StoreInst  &I);
    313     void visitGetElementPtrInst(GetElementPtrInst &I);
    314     void visitVAArgInst (VAArgInst &I);
    315 
    316     void visitInsertElementInst(InsertElementInst &I);
    317     void visitExtractElementInst(ExtractElementInst &I);
    318     void visitShuffleVectorInst(ShuffleVectorInst &SVI);
    319 
    320     void visitInsertValueInst(InsertValueInst &I);
    321     void visitExtractValueInst(ExtractValueInst &I);
    322 
    323     void visitInstruction(Instruction &I) {
    324 #ifndef NDEBUG
    325       errs() << "C Writer does not know about " << I;
    326 #endif
    327       llvm_unreachable(0);
    328     }
    329 
    330     void outputLValue(Instruction *I) {
    331       Out << "  " << GetValueName(I) << " = ";
    332     }
    333 
    334     bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
    335     void printPHICopiesForSuccessor(BasicBlock *CurBlock,
    336                                     BasicBlock *Successor, unsigned Indent);
    337     void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
    338                             unsigned Indent);
    339     void printGEPExpression(Value *Ptr, gep_type_iterator I,
    340                             gep_type_iterator E, bool Static);
    341 
    342     std::string GetValueName(const Value *Operand);
    343   };
    344 }
    345 
    346 char CWriter::ID = 0;
    347 
    348 
    349 
    350 static std::string CBEMangle(const std::string &S) {
    351   std::string Result;
    352 
    353   for (unsigned i = 0, e = S.size(); i != e; ++i)
    354     if (isalnum(S[i]) || S[i] == '_') {
    355       Result += S[i];
    356     } else {
    357       Result += '_';
    358       Result += 'A'+(S[i]&15);
    359       Result += 'A'+((S[i]>>4)&15);
    360       Result += '_';
    361     }
    362   return Result;
    363 }
    364 
    365 std::string CWriter::getStructName(StructType *ST) {
    366   if (!ST->isLiteral() && !ST->getName().empty())
    367     return CBEMangle("l_"+ST->getName().str());
    368 
    369   return "l_unnamed_" + utostr(UnnamedStructIDs[ST]);
    370 }
    371 
    372 
    373 /// printStructReturnPointerFunctionType - This is like printType for a struct
    374 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
    375 /// print it as "Struct (*)(...)", for struct return functions.
    376 void CWriter::printStructReturnPointerFunctionType(raw_ostream &Out,
    377                                                    const AttrListPtr &PAL,
    378                                                    PointerType *TheTy) {
    379   FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
    380   std::string tstr;
    381   raw_string_ostream FunctionInnards(tstr);
    382   FunctionInnards << " (*) (";
    383   bool PrintedType = false;
    384 
    385   FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
    386   Type *RetTy = cast<PointerType>(*I)->getElementType();
    387   unsigned Idx = 1;
    388   for (++I, ++Idx; I != E; ++I, ++Idx) {
    389     if (PrintedType)
    390       FunctionInnards << ", ";
    391     Type *ArgTy = *I;
    392     if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
    393       assert(ArgTy->isPointerTy());
    394       ArgTy = cast<PointerType>(ArgTy)->getElementType();
    395     }
    396     printType(FunctionInnards, ArgTy,
    397         /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
    398     PrintedType = true;
    399   }
    400   if (FTy->isVarArg()) {
    401     if (!PrintedType)
    402       FunctionInnards << " int"; //dummy argument for empty vararg functs
    403     FunctionInnards << ", ...";
    404   } else if (!PrintedType) {
    405     FunctionInnards << "void";
    406   }
    407   FunctionInnards << ')';
    408   printType(Out, RetTy,
    409       /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
    410 }
    411 
    412 raw_ostream &
    413 CWriter::printSimpleType(raw_ostream &Out, Type *Ty, bool isSigned,
    414                          const std::string &NameSoFar) {
    415   assert((Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) &&
    416          "Invalid type for printSimpleType");
    417   switch (Ty->getTypeID()) {
    418   case Type::VoidTyID:   return Out << "void " << NameSoFar;
    419   case Type::IntegerTyID: {
    420     unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
    421     if (NumBits == 1)
    422       return Out << "bool " << NameSoFar;
    423     else if (NumBits <= 8)
    424       return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
    425     else if (NumBits <= 16)
    426       return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
    427     else if (NumBits <= 32)
    428       return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
    429     else if (NumBits <= 64)
    430       return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
    431     else {
    432       assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
    433       return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
    434     }
    435   }
    436   case Type::FloatTyID:  return Out << "float "   << NameSoFar;
    437   case Type::DoubleTyID: return Out << "double "  << NameSoFar;
    438   // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
    439   // present matches host 'long double'.
    440   case Type::X86_FP80TyID:
    441   case Type::PPC_FP128TyID:
    442   case Type::FP128TyID:  return Out << "long double " << NameSoFar;
    443 
    444   case Type::X86_MMXTyID:
    445     return printSimpleType(Out, Type::getInt32Ty(Ty->getContext()), isSigned,
    446                      " __attribute__((vector_size(64))) " + NameSoFar);
    447 
    448   case Type::VectorTyID: {
    449     VectorType *VTy = cast<VectorType>(Ty);
    450     return printSimpleType(Out, VTy->getElementType(), isSigned,
    451                      " __attribute__((vector_size(" +
    452                      utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
    453   }
    454 
    455   default:
    456 #ifndef NDEBUG
    457     errs() << "Unknown primitive type: " << *Ty << "\n";
    458 #endif
    459     llvm_unreachable(0);
    460   }
    461 }
    462 
    463 // Pass the Type* and the variable name and this prints out the variable
    464 // declaration.
    465 //
    466 raw_ostream &CWriter::printType(raw_ostream &Out, Type *Ty,
    467                                 bool isSigned, const std::string &NameSoFar,
    468                                 bool IgnoreName, const AttrListPtr &PAL) {
    469   if (Ty->isPrimitiveType() || Ty->isIntegerTy() || Ty->isVectorTy()) {
    470     printSimpleType(Out, Ty, isSigned, NameSoFar);
    471     return Out;
    472   }
    473 
    474   switch (Ty->getTypeID()) {
    475   case Type::FunctionTyID: {
    476     FunctionType *FTy = cast<FunctionType>(Ty);
    477     std::string tstr;
    478     raw_string_ostream FunctionInnards(tstr);
    479     FunctionInnards << " (" << NameSoFar << ") (";
    480     unsigned Idx = 1;
    481     for (FunctionType::param_iterator I = FTy->param_begin(),
    482            E = FTy->param_end(); I != E; ++I) {
    483       Type *ArgTy = *I;
    484       if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
    485         assert(ArgTy->isPointerTy());
    486         ArgTy = cast<PointerType>(ArgTy)->getElementType();
    487       }
    488       if (I != FTy->param_begin())
    489         FunctionInnards << ", ";
    490       printType(FunctionInnards, ArgTy,
    491         /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
    492       ++Idx;
    493     }
    494     if (FTy->isVarArg()) {
    495       if (!FTy->getNumParams())
    496         FunctionInnards << " int"; //dummy argument for empty vaarg functs
    497       FunctionInnards << ", ...";
    498     } else if (!FTy->getNumParams()) {
    499       FunctionInnards << "void";
    500     }
    501     FunctionInnards << ')';
    502     printType(Out, FTy->getReturnType(),
    503       /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), FunctionInnards.str());
    504     return Out;
    505   }
    506   case Type::StructTyID: {
    507     StructType *STy = cast<StructType>(Ty);
    508 
    509     // Check to see if the type is named.
    510     if (!IgnoreName)
    511       return Out << getStructName(STy) << ' ' << NameSoFar;
    512 
    513     Out << NameSoFar + " {\n";
    514     unsigned Idx = 0;
    515     for (StructType::element_iterator I = STy->element_begin(),
    516            E = STy->element_end(); I != E; ++I) {
    517       Out << "  ";
    518       printType(Out, *I, false, "field" + utostr(Idx++));
    519       Out << ";\n";
    520     }
    521     Out << '}';
    522     if (STy->isPacked())
    523       Out << " __attribute__ ((packed))";
    524     return Out;
    525   }
    526 
    527   case Type::PointerTyID: {
    528     PointerType *PTy = cast<PointerType>(Ty);
    529     std::string ptrName = "*" + NameSoFar;
    530 
    531     if (PTy->getElementType()->isArrayTy() ||
    532         PTy->getElementType()->isVectorTy())
    533       ptrName = "(" + ptrName + ")";
    534 
    535     if (!PAL.isEmpty())
    536       // Must be a function ptr cast!
    537       return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
    538     return printType(Out, PTy->getElementType(), false, ptrName);
    539   }
    540 
    541   case Type::ArrayTyID: {
    542     ArrayType *ATy = cast<ArrayType>(Ty);
    543     unsigned NumElements = ATy->getNumElements();
    544     if (NumElements == 0) NumElements = 1;
    545     // Arrays are wrapped in structs to allow them to have normal
    546     // value semantics (avoiding the array "decay").
    547     Out << NameSoFar << " { ";
    548     printType(Out, ATy->getElementType(), false,
    549               "array[" + utostr(NumElements) + "]");
    550     return Out << "; }";
    551   }
    552 
    553   default:
    554     llvm_unreachable("Unhandled case in getTypeProps!");
    555   }
    556 
    557   return Out;
    558 }
    559 
    560 void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
    561 
    562   // As a special case, print the array as a string if it is an array of
    563   // ubytes or an array of sbytes with positive values.
    564   //
    565   Type *ETy = CPA->getType()->getElementType();
    566   bool isString = (ETy == Type::getInt8Ty(CPA->getContext()) ||
    567                    ETy == Type::getInt8Ty(CPA->getContext()));
    568 
    569   // Make sure the last character is a null char, as automatically added by C
    570   if (isString && (CPA->getNumOperands() == 0 ||
    571                    !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
    572     isString = false;
    573 
    574   if (isString) {
    575     Out << '\"';
    576     // Keep track of whether the last number was a hexadecimal escape.
    577     bool LastWasHex = false;
    578 
    579     // Do not include the last character, which we know is null
    580     for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
    581       unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
    582 
    583       // Print it out literally if it is a printable character.  The only thing
    584       // to be careful about is when the last letter output was a hex escape
    585       // code, in which case we have to be careful not to print out hex digits
    586       // explicitly (the C compiler thinks it is a continuation of the previous
    587       // character, sheesh...)
    588       //
    589       if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
    590         LastWasHex = false;
    591         if (C == '"' || C == '\\')
    592           Out << "\\" << (char)C;
    593         else
    594           Out << (char)C;
    595       } else {
    596         LastWasHex = false;
    597         switch (C) {
    598         case '\n': Out << "\\n"; break;
    599         case '\t': Out << "\\t"; break;
    600         case '\r': Out << "\\r"; break;
    601         case '\v': Out << "\\v"; break;
    602         case '\a': Out << "\\a"; break;
    603         case '\"': Out << "\\\""; break;
    604         case '\'': Out << "\\\'"; break;
    605         default:
    606           Out << "\\x";
    607           Out << (char)(( C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
    608           Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
    609           LastWasHex = true;
    610           break;
    611         }
    612       }
    613     }
    614     Out << '\"';
    615   } else {
    616     Out << '{';
    617     if (CPA->getNumOperands()) {
    618       Out << ' ';
    619       printConstant(cast<Constant>(CPA->getOperand(0)), Static);
    620       for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
    621         Out << ", ";
    622         printConstant(cast<Constant>(CPA->getOperand(i)), Static);
    623       }
    624     }
    625     Out << " }";
    626   }
    627 }
    628 
    629 void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
    630   Out << '{';
    631   if (CP->getNumOperands()) {
    632     Out << ' ';
    633     printConstant(cast<Constant>(CP->getOperand(0)), Static);
    634     for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
    635       Out << ", ";
    636       printConstant(cast<Constant>(CP->getOperand(i)), Static);
    637     }
    638   }
    639   Out << " }";
    640 }
    641 
    642 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
    643 // textually as a double (rather than as a reference to a stack-allocated
    644 // variable). We decide this by converting CFP to a string and back into a
    645 // double, and then checking whether the conversion results in a bit-equal
    646 // double to the original value of CFP. This depends on us and the target C
    647 // compiler agreeing on the conversion process (which is pretty likely since we
    648 // only deal in IEEE FP).
    649 //
    650 static bool isFPCSafeToPrint(const ConstantFP *CFP) {
    651   bool ignored;
    652   // Do long doubles in hex for now.
    653   if (CFP->getType() != Type::getFloatTy(CFP->getContext()) &&
    654       CFP->getType() != Type::getDoubleTy(CFP->getContext()))
    655     return false;
    656   APFloat APF = APFloat(CFP->getValueAPF());  // copy
    657   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
    658     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
    659 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
    660   char Buffer[100];
    661   sprintf(Buffer, "%a", APF.convertToDouble());
    662   if (!strncmp(Buffer, "0x", 2) ||
    663       !strncmp(Buffer, "-0x", 3) ||
    664       !strncmp(Buffer, "+0x", 3))
    665     return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
    666   return false;
    667 #else
    668   std::string StrVal = ftostr(APF);
    669 
    670   while (StrVal[0] == ' ')
    671     StrVal.erase(StrVal.begin());
    672 
    673   // Check to make sure that the stringized number is not some string like "Inf"
    674   // or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
    675   if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
    676       ((StrVal[0] == '-' || StrVal[0] == '+') &&
    677        (StrVal[1] >= '0' && StrVal[1] <= '9')))
    678     // Reparse stringized version!
    679     return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
    680   return false;
    681 #endif
    682 }
    683 
    684 /// Print out the casting for a cast operation. This does the double casting
    685 /// necessary for conversion to the destination type, if necessary.
    686 /// @brief Print a cast
    687 void CWriter::printCast(unsigned opc, Type *SrcTy, Type *DstTy) {
    688   // Print the destination type cast
    689   switch (opc) {
    690     case Instruction::UIToFP:
    691     case Instruction::SIToFP:
    692     case Instruction::IntToPtr:
    693     case Instruction::Trunc:
    694     case Instruction::BitCast:
    695     case Instruction::FPExt:
    696     case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
    697       Out << '(';
    698       printType(Out, DstTy);
    699       Out << ')';
    700       break;
    701     case Instruction::ZExt:
    702     case Instruction::PtrToInt:
    703     case Instruction::FPToUI: // For these, make sure we get an unsigned dest
    704       Out << '(';
    705       printSimpleType(Out, DstTy, false);
    706       Out << ')';
    707       break;
    708     case Instruction::SExt:
    709     case Instruction::FPToSI: // For these, make sure we get a signed dest
    710       Out << '(';
    711       printSimpleType(Out, DstTy, true);
    712       Out << ')';
    713       break;
    714     default:
    715       llvm_unreachable("Invalid cast opcode");
    716   }
    717 
    718   // Print the source type cast
    719   switch (opc) {
    720     case Instruction::UIToFP:
    721     case Instruction::ZExt:
    722       Out << '(';
    723       printSimpleType(Out, SrcTy, false);
    724       Out << ')';
    725       break;
    726     case Instruction::SIToFP:
    727     case Instruction::SExt:
    728       Out << '(';
    729       printSimpleType(Out, SrcTy, true);
    730       Out << ')';
    731       break;
    732     case Instruction::IntToPtr:
    733     case Instruction::PtrToInt:
    734       // Avoid "cast to pointer from integer of different size" warnings
    735       Out << "(unsigned long)";
    736       break;
    737     case Instruction::Trunc:
    738     case Instruction::BitCast:
    739     case Instruction::FPExt:
    740     case Instruction::FPTrunc:
    741     case Instruction::FPToSI:
    742     case Instruction::FPToUI:
    743       break; // These don't need a source cast.
    744     default:
    745       llvm_unreachable("Invalid cast opcode");
    746       break;
    747   }
    748 }
    749 
    750 // printConstant - The LLVM Constant to C Constant converter.
    751 void CWriter::printConstant(Constant *CPV, bool Static) {
    752   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
    753     switch (CE->getOpcode()) {
    754     case Instruction::Trunc:
    755     case Instruction::ZExt:
    756     case Instruction::SExt:
    757     case Instruction::FPTrunc:
    758     case Instruction::FPExt:
    759     case Instruction::UIToFP:
    760     case Instruction::SIToFP:
    761     case Instruction::FPToUI:
    762     case Instruction::FPToSI:
    763     case Instruction::PtrToInt:
    764     case Instruction::IntToPtr:
    765     case Instruction::BitCast:
    766       Out << "(";
    767       printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
    768       if (CE->getOpcode() == Instruction::SExt &&
    769           CE->getOperand(0)->getType() == Type::getInt1Ty(CPV->getContext())) {
    770         // Make sure we really sext from bool here by subtracting from 0
    771         Out << "0-";
    772       }
    773       printConstant(CE->getOperand(0), Static);
    774       if (CE->getType() == Type::getInt1Ty(CPV->getContext()) &&
    775           (CE->getOpcode() == Instruction::Trunc ||
    776            CE->getOpcode() == Instruction::FPToUI ||
    777            CE->getOpcode() == Instruction::FPToSI ||
    778            CE->getOpcode() == Instruction::PtrToInt)) {
    779         // Make sure we really truncate to bool here by anding with 1
    780         Out << "&1u";
    781       }
    782       Out << ')';
    783       return;
    784 
    785     case Instruction::GetElementPtr:
    786       Out << "(";
    787       printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
    788                          gep_type_end(CPV), Static);
    789       Out << ")";
    790       return;
    791     case Instruction::Select:
    792       Out << '(';
    793       printConstant(CE->getOperand(0), Static);
    794       Out << '?';
    795       printConstant(CE->getOperand(1), Static);
    796       Out << ':';
    797       printConstant(CE->getOperand(2), Static);
    798       Out << ')';
    799       return;
    800     case Instruction::Add:
    801     case Instruction::FAdd:
    802     case Instruction::Sub:
    803     case Instruction::FSub:
    804     case Instruction::Mul:
    805     case Instruction::FMul:
    806     case Instruction::SDiv:
    807     case Instruction::UDiv:
    808     case Instruction::FDiv:
    809     case Instruction::URem:
    810     case Instruction::SRem:
    811     case Instruction::FRem:
    812     case Instruction::And:
    813     case Instruction::Or:
    814     case Instruction::Xor:
    815     case Instruction::ICmp:
    816     case Instruction::Shl:
    817     case Instruction::LShr:
    818     case Instruction::AShr:
    819     {
    820       Out << '(';
    821       bool NeedsClosingParens = printConstExprCast(CE, Static);
    822       printConstantWithCast(CE->getOperand(0), CE->getOpcode());
    823       switch (CE->getOpcode()) {
    824       case Instruction::Add:
    825       case Instruction::FAdd: Out << " + "; break;
    826       case Instruction::Sub:
    827       case Instruction::FSub: Out << " - "; break;
    828       case Instruction::Mul:
    829       case Instruction::FMul: Out << " * "; break;
    830       case Instruction::URem:
    831       case Instruction::SRem:
    832       case Instruction::FRem: Out << " % "; break;
    833       case Instruction::UDiv:
    834       case Instruction::SDiv:
    835       case Instruction::FDiv: Out << " / "; break;
    836       case Instruction::And: Out << " & "; break;
    837       case Instruction::Or:  Out << " | "; break;
    838       case Instruction::Xor: Out << " ^ "; break;
    839       case Instruction::Shl: Out << " << "; break;
    840       case Instruction::LShr:
    841       case Instruction::AShr: Out << " >> "; break;
    842       case Instruction::ICmp:
    843         switch (CE->getPredicate()) {
    844           case ICmpInst::ICMP_EQ: Out << " == "; break;
    845           case ICmpInst::ICMP_NE: Out << " != "; break;
    846           case ICmpInst::ICMP_SLT:
    847           case ICmpInst::ICMP_ULT: Out << " < "; break;
    848           case ICmpInst::ICMP_SLE:
    849           case ICmpInst::ICMP_ULE: Out << " <= "; break;
    850           case ICmpInst::ICMP_SGT:
    851           case ICmpInst::ICMP_UGT: Out << " > "; break;
    852           case ICmpInst::ICMP_SGE:
    853           case ICmpInst::ICMP_UGE: Out << " >= "; break;
    854           default: llvm_unreachable("Illegal ICmp predicate");
    855         }
    856         break;
    857       default: llvm_unreachable("Illegal opcode here!");
    858       }
    859       printConstantWithCast(CE->getOperand(1), CE->getOpcode());
    860       if (NeedsClosingParens)
    861         Out << "))";
    862       Out << ')';
    863       return;
    864     }
    865     case Instruction::FCmp: {
    866       Out << '(';
    867       bool NeedsClosingParens = printConstExprCast(CE, Static);
    868       if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
    869         Out << "0";
    870       else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
    871         Out << "1";
    872       else {
    873         const char* op = 0;
    874         switch (CE->getPredicate()) {
    875         default: llvm_unreachable("Illegal FCmp predicate");
    876         case FCmpInst::FCMP_ORD: op = "ord"; break;
    877         case FCmpInst::FCMP_UNO: op = "uno"; break;
    878         case FCmpInst::FCMP_UEQ: op = "ueq"; break;
    879         case FCmpInst::FCMP_UNE: op = "une"; break;
    880         case FCmpInst::FCMP_ULT: op = "ult"; break;
    881         case FCmpInst::FCMP_ULE: op = "ule"; break;
    882         case FCmpInst::FCMP_UGT: op = "ugt"; break;
    883         case FCmpInst::FCMP_UGE: op = "uge"; break;
    884         case FCmpInst::FCMP_OEQ: op = "oeq"; break;
    885         case FCmpInst::FCMP_ONE: op = "one"; break;
    886         case FCmpInst::FCMP_OLT: op = "olt"; break;
    887         case FCmpInst::FCMP_OLE: op = "ole"; break;
    888         case FCmpInst::FCMP_OGT: op = "ogt"; break;
    889         case FCmpInst::FCMP_OGE: op = "oge"; break;
    890         }
    891         Out << "llvm_fcmp_" << op << "(";
    892         printConstantWithCast(CE->getOperand(0), CE->getOpcode());
    893         Out << ", ";
    894         printConstantWithCast(CE->getOperand(1), CE->getOpcode());
    895         Out << ")";
    896       }
    897       if (NeedsClosingParens)
    898         Out << "))";
    899       Out << ')';
    900       return;
    901     }
    902     default:
    903 #ifndef NDEBUG
    904       errs() << "CWriter Error: Unhandled constant expression: "
    905            << *CE << "\n";
    906 #endif
    907       llvm_unreachable(0);
    908     }
    909   } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
    910     Out << "((";
    911     printType(Out, CPV->getType()); // sign doesn't matter
    912     Out << ")/*UNDEF*/";
    913     if (!CPV->getType()->isVectorTy()) {
    914       Out << "0)";
    915     } else {
    916       Out << "{})";
    917     }
    918     return;
    919   }
    920 
    921   if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
    922     Type* Ty = CI->getType();
    923     if (Ty == Type::getInt1Ty(CPV->getContext()))
    924       Out << (CI->getZExtValue() ? '1' : '0');
    925     else if (Ty == Type::getInt32Ty(CPV->getContext()))
    926       Out << CI->getZExtValue() << 'u';
    927     else if (Ty->getPrimitiveSizeInBits() > 32)
    928       Out << CI->getZExtValue() << "ull";
    929     else {
    930       Out << "((";
    931       printSimpleType(Out, Ty, false) << ')';
    932       if (CI->isMinValue(true))
    933         Out << CI->getZExtValue() << 'u';
    934       else
    935         Out << CI->getSExtValue();
    936       Out << ')';
    937     }
    938     return;
    939   }
    940 
    941   switch (CPV->getType()->getTypeID()) {
    942   case Type::FloatTyID:
    943   case Type::DoubleTyID:
    944   case Type::X86_FP80TyID:
    945   case Type::PPC_FP128TyID:
    946   case Type::FP128TyID: {
    947     ConstantFP *FPC = cast<ConstantFP>(CPV);
    948     std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
    949     if (I != FPConstantMap.end()) {
    950       // Because of FP precision problems we must load from a stack allocated
    951       // value that holds the value in hex.
    952       Out << "(*(" << (FPC->getType() == Type::getFloatTy(CPV->getContext()) ?
    953                        "float" :
    954                        FPC->getType() == Type::getDoubleTy(CPV->getContext()) ?
    955                        "double" :
    956                        "long double")
    957           << "*)&FPConstant" << I->second << ')';
    958     } else {
    959       double V;
    960       if (FPC->getType() == Type::getFloatTy(CPV->getContext()))
    961         V = FPC->getValueAPF().convertToFloat();
    962       else if (FPC->getType() == Type::getDoubleTy(CPV->getContext()))
    963         V = FPC->getValueAPF().convertToDouble();
    964       else {
    965         // Long double.  Convert the number to double, discarding precision.
    966         // This is not awesome, but it at least makes the CBE output somewhat
    967         // useful.
    968         APFloat Tmp = FPC->getValueAPF();
    969         bool LosesInfo;
    970         Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
    971         V = Tmp.convertToDouble();
    972       }
    973 
    974       if (IsNAN(V)) {
    975         // The value is NaN
    976 
    977         // FIXME the actual NaN bits should be emitted.
    978         // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
    979         // it's 0x7ff4.
    980         const unsigned long QuietNaN = 0x7ff8UL;
    981         //const unsigned long SignalNaN = 0x7ff4UL;
    982 
    983         // We need to grab the first part of the FP #
    984         char Buffer[100];
    985 
    986         uint64_t ll = DoubleToBits(V);
    987         sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
    988 
    989         std::string Num(&Buffer[0], &Buffer[6]);
    990         unsigned long Val = strtoul(Num.c_str(), 0, 16);
    991 
    992         if (FPC->getType() == Type::getFloatTy(FPC->getContext()))
    993           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
    994               << Buffer << "\") /*nan*/ ";
    995         else
    996           Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
    997               << Buffer << "\") /*nan*/ ";
    998       } else if (IsInf(V)) {
    999         // The value is Inf
   1000         if (V < 0) Out << '-';
   1001         Out << "LLVM_INF" <<
   1002             (FPC->getType() == Type::getFloatTy(FPC->getContext()) ? "F" : "")
   1003             << " /*inf*/ ";
   1004       } else {
   1005         std::string Num;
   1006 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
   1007         // Print out the constant as a floating point number.
   1008         char Buffer[100];
   1009         sprintf(Buffer, "%a", V);
   1010         Num = Buffer;
   1011 #else
   1012         Num = ftostr(FPC->getValueAPF());
   1013 #endif
   1014        Out << Num;
   1015       }
   1016     }
   1017     break;
   1018   }
   1019 
   1020   case Type::ArrayTyID:
   1021     // Use C99 compound expression literal initializer syntax.
   1022     if (!Static) {
   1023       Out << "(";
   1024       printType(Out, CPV->getType());
   1025       Out << ")";
   1026     }
   1027     Out << "{ "; // Arrays are wrapped in struct types.
   1028     if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
   1029       printConstantArray(CA, Static);
   1030     } else {
   1031       assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
   1032       ArrayType *AT = cast<ArrayType>(CPV->getType());
   1033       Out << '{';
   1034       if (AT->getNumElements()) {
   1035         Out << ' ';
   1036         Constant *CZ = Constant::getNullValue(AT->getElementType());
   1037         printConstant(CZ, Static);
   1038         for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
   1039           Out << ", ";
   1040           printConstant(CZ, Static);
   1041         }
   1042       }
   1043       Out << " }";
   1044     }
   1045     Out << " }"; // Arrays are wrapped in struct types.
   1046     break;
   1047 
   1048   case Type::VectorTyID:
   1049     // Use C99 compound expression literal initializer syntax.
   1050     if (!Static) {
   1051       Out << "(";
   1052       printType(Out, CPV->getType());
   1053       Out << ")";
   1054     }
   1055     if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
   1056       printConstantVector(CV, Static);
   1057     } else {
   1058       assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
   1059       VectorType *VT = cast<VectorType>(CPV->getType());
   1060       Out << "{ ";
   1061       Constant *CZ = Constant::getNullValue(VT->getElementType());
   1062       printConstant(CZ, Static);
   1063       for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
   1064         Out << ", ";
   1065         printConstant(CZ, Static);
   1066       }
   1067       Out << " }";
   1068     }
   1069     break;
   1070 
   1071   case Type::StructTyID:
   1072     // Use C99 compound expression literal initializer syntax.
   1073     if (!Static) {
   1074       Out << "(";
   1075       printType(Out, CPV->getType());
   1076       Out << ")";
   1077     }
   1078     if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
   1079       StructType *ST = cast<StructType>(CPV->getType());
   1080       Out << '{';
   1081       if (ST->getNumElements()) {
   1082         Out << ' ';
   1083         printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
   1084         for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
   1085           Out << ", ";
   1086           printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
   1087         }
   1088       }
   1089       Out << " }";
   1090     } else {
   1091       Out << '{';
   1092       if (CPV->getNumOperands()) {
   1093         Out << ' ';
   1094         printConstant(cast<Constant>(CPV->getOperand(0)), Static);
   1095         for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
   1096           Out << ", ";
   1097           printConstant(cast<Constant>(CPV->getOperand(i)), Static);
   1098         }
   1099       }
   1100       Out << " }";
   1101     }
   1102     break;
   1103 
   1104   case Type::PointerTyID:
   1105     if (isa<ConstantPointerNull>(CPV)) {
   1106       Out << "((";
   1107       printType(Out, CPV->getType()); // sign doesn't matter
   1108       Out << ")/*NULL*/0)";
   1109       break;
   1110     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
   1111       writeOperand(GV, Static);
   1112       break;
   1113     }
   1114     // FALL THROUGH
   1115   default:
   1116 #ifndef NDEBUG
   1117     errs() << "Unknown constant type: " << *CPV << "\n";
   1118 #endif
   1119     llvm_unreachable(0);
   1120   }
   1121 }
   1122 
   1123 // Some constant expressions need to be casted back to the original types
   1124 // because their operands were casted to the expected type. This function takes
   1125 // care of detecting that case and printing the cast for the ConstantExpr.
   1126 bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
   1127   bool NeedsExplicitCast = false;
   1128   Type *Ty = CE->getOperand(0)->getType();
   1129   bool TypeIsSigned = false;
   1130   switch (CE->getOpcode()) {
   1131   case Instruction::Add:
   1132   case Instruction::Sub:
   1133   case Instruction::Mul:
   1134     // We need to cast integer arithmetic so that it is always performed
   1135     // as unsigned, to avoid undefined behavior on overflow.
   1136   case Instruction::LShr:
   1137   case Instruction::URem:
   1138   case Instruction::UDiv: NeedsExplicitCast = true; break;
   1139   case Instruction::AShr:
   1140   case Instruction::SRem:
   1141   case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
   1142   case Instruction::SExt:
   1143     Ty = CE->getType();
   1144     NeedsExplicitCast = true;
   1145     TypeIsSigned = true;
   1146     break;
   1147   case Instruction::ZExt:
   1148   case Instruction::Trunc:
   1149   case Instruction::FPTrunc:
   1150   case Instruction::FPExt:
   1151   case Instruction::UIToFP:
   1152   case Instruction::SIToFP:
   1153   case Instruction::FPToUI:
   1154   case Instruction::FPToSI:
   1155   case Instruction::PtrToInt:
   1156   case Instruction::IntToPtr:
   1157   case Instruction::BitCast:
   1158     Ty = CE->getType();
   1159     NeedsExplicitCast = true;
   1160     break;
   1161   default: break;
   1162   }
   1163   if (NeedsExplicitCast) {
   1164     Out << "((";
   1165     if (Ty->isIntegerTy() && Ty != Type::getInt1Ty(Ty->getContext()))
   1166       printSimpleType(Out, Ty, TypeIsSigned);
   1167     else
   1168       printType(Out, Ty); // not integer, sign doesn't matter
   1169     Out << ")(";
   1170   }
   1171   return NeedsExplicitCast;
   1172 }
   1173 
   1174 //  Print a constant assuming that it is the operand for a given Opcode. The
   1175 //  opcodes that care about sign need to cast their operands to the expected
   1176 //  type before the operation proceeds. This function does the casting.
   1177 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
   1178 
   1179   // Extract the operand's type, we'll need it.
   1180   Type* OpTy = CPV->getType();
   1181 
   1182   // Indicate whether to do the cast or not.
   1183   bool shouldCast = false;
   1184   bool typeIsSigned = false;
   1185 
   1186   // Based on the Opcode for which this Constant is being written, determine
   1187   // the new type to which the operand should be casted by setting the value
   1188   // of OpTy. If we change OpTy, also set shouldCast to true so it gets
   1189   // casted below.
   1190   switch (Opcode) {
   1191     default:
   1192       // for most instructions, it doesn't matter
   1193       break;
   1194     case Instruction::Add:
   1195     case Instruction::Sub:
   1196     case Instruction::Mul:
   1197       // We need to cast integer arithmetic so that it is always performed
   1198       // as unsigned, to avoid undefined behavior on overflow.
   1199     case Instruction::LShr:
   1200     case Instruction::UDiv:
   1201     case Instruction::URem:
   1202       shouldCast = true;
   1203       break;
   1204     case Instruction::AShr:
   1205     case Instruction::SDiv:
   1206     case Instruction::SRem:
   1207       shouldCast = true;
   1208       typeIsSigned = true;
   1209       break;
   1210   }
   1211 
   1212   // Write out the casted constant if we should, otherwise just write the
   1213   // operand.
   1214   if (shouldCast) {
   1215     Out << "((";
   1216     printSimpleType(Out, OpTy, typeIsSigned);
   1217     Out << ")";
   1218     printConstant(CPV, false);
   1219     Out << ")";
   1220   } else
   1221     printConstant(CPV, false);
   1222 }
   1223 
   1224 std::string CWriter::GetValueName(const Value *Operand) {
   1225 
   1226   // Resolve potential alias.
   1227   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Operand)) {
   1228     if (const Value *V = GA->resolveAliasedGlobal(false))
   1229       Operand = V;
   1230   }
   1231 
   1232   // Mangle globals with the standard mangler interface for LLC compatibility.
   1233   if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand)) {
   1234     SmallString<128> Str;
   1235     Mang->getNameWithPrefix(Str, GV, false);
   1236     return CBEMangle(Str.str().str());
   1237   }
   1238 
   1239   std::string Name = Operand->getName();
   1240 
   1241   if (Name.empty()) { // Assign unique names to local temporaries.
   1242     unsigned &No = AnonValueNumbers[Operand];
   1243     if (No == 0)
   1244       No = ++NextAnonValueNumber;
   1245     Name = "tmp__" + utostr(No);
   1246   }
   1247 
   1248   std::string VarName;
   1249   VarName.reserve(Name.capacity());
   1250 
   1251   for (std::string::iterator I = Name.begin(), E = Name.end();
   1252        I != E; ++I) {
   1253     char ch = *I;
   1254 
   1255     if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
   1256           (ch >= '0' && ch <= '9') || ch == '_')) {
   1257       char buffer[5];
   1258       sprintf(buffer, "_%x_", ch);
   1259       VarName += buffer;
   1260     } else
   1261       VarName += ch;
   1262   }
   1263 
   1264   return "llvm_cbe_" + VarName;
   1265 }
   1266 
   1267 /// writeInstComputationInline - Emit the computation for the specified
   1268 /// instruction inline, with no destination provided.
   1269 void CWriter::writeInstComputationInline(Instruction &I) {
   1270   // We can't currently support integer types other than 1, 8, 16, 32, 64.
   1271   // Validate this.
   1272   Type *Ty = I.getType();
   1273   if (Ty->isIntegerTy() && (Ty!=Type::getInt1Ty(I.getContext()) &&
   1274         Ty!=Type::getInt8Ty(I.getContext()) &&
   1275         Ty!=Type::getInt16Ty(I.getContext()) &&
   1276         Ty!=Type::getInt32Ty(I.getContext()) &&
   1277         Ty!=Type::getInt64Ty(I.getContext()))) {
   1278       report_fatal_error("The C backend does not currently support integer "
   1279                         "types of widths other than 1, 8, 16, 32, 64.\n"
   1280                         "This is being tracked as PR 4158.");
   1281   }
   1282 
   1283   // If this is a non-trivial bool computation, make sure to truncate down to
   1284   // a 1 bit value.  This is important because we want "add i1 x, y" to return
   1285   // "0" when x and y are true, not "2" for example.
   1286   bool NeedBoolTrunc = false;
   1287   if (I.getType() == Type::getInt1Ty(I.getContext()) &&
   1288       !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
   1289     NeedBoolTrunc = true;
   1290 
   1291   if (NeedBoolTrunc)
   1292     Out << "((";
   1293 
   1294   visit(I);
   1295 
   1296   if (NeedBoolTrunc)
   1297     Out << ")&1)";
   1298 }
   1299 
   1300 
   1301 void CWriter::writeOperandInternal(Value *Operand, bool Static) {
   1302   if (Instruction *I = dyn_cast<Instruction>(Operand))
   1303     // Should we inline this instruction to build a tree?
   1304     if (isInlinableInst(*I) && !isDirectAlloca(I)) {
   1305       Out << '(';
   1306       writeInstComputationInline(*I);
   1307       Out << ')';
   1308       return;
   1309     }
   1310 
   1311   Constant* CPV = dyn_cast<Constant>(Operand);
   1312 
   1313   if (CPV && !isa<GlobalValue>(CPV))
   1314     printConstant(CPV, Static);
   1315   else
   1316     Out << GetValueName(Operand);
   1317 }
   1318 
   1319 void CWriter::writeOperand(Value *Operand, bool Static) {
   1320   bool isAddressImplicit = isAddressExposed(Operand);
   1321   if (isAddressImplicit)
   1322     Out << "(&";  // Global variables are referenced as their addresses by llvm
   1323 
   1324   writeOperandInternal(Operand, Static);
   1325 
   1326   if (isAddressImplicit)
   1327     Out << ')';
   1328 }
   1329 
   1330 // Some instructions need to have their result value casted back to the
   1331 // original types because their operands were casted to the expected type.
   1332 // This function takes care of detecting that case and printing the cast
   1333 // for the Instruction.
   1334 bool CWriter::writeInstructionCast(const Instruction &I) {
   1335   Type *Ty = I.getOperand(0)->getType();
   1336   switch (I.getOpcode()) {
   1337   case Instruction::Add:
   1338   case Instruction::Sub:
   1339   case Instruction::Mul:
   1340     // We need to cast integer arithmetic so that it is always performed
   1341     // as unsigned, to avoid undefined behavior on overflow.
   1342   case Instruction::LShr:
   1343   case Instruction::URem:
   1344   case Instruction::UDiv:
   1345     Out << "((";
   1346     printSimpleType(Out, Ty, false);
   1347     Out << ")(";
   1348     return true;
   1349   case Instruction::AShr:
   1350   case Instruction::SRem:
   1351   case Instruction::SDiv:
   1352     Out << "((";
   1353     printSimpleType(Out, Ty, true);
   1354     Out << ")(";
   1355     return true;
   1356   default: break;
   1357   }
   1358   return false;
   1359 }
   1360 
   1361 // Write the operand with a cast to another type based on the Opcode being used.
   1362 // This will be used in cases where an instruction has specific type
   1363 // requirements (usually signedness) for its operands.
   1364 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
   1365 
   1366   // Extract the operand's type, we'll need it.
   1367   Type* OpTy = Operand->getType();
   1368 
   1369   // Indicate whether to do the cast or not.
   1370   bool shouldCast = false;
   1371 
   1372   // Indicate whether the cast should be to a signed type or not.
   1373   bool castIsSigned = false;
   1374 
   1375   // Based on the Opcode for which this Operand is being written, determine
   1376   // the new type to which the operand should be casted by setting the value
   1377   // of OpTy. If we change OpTy, also set shouldCast to true.
   1378   switch (Opcode) {
   1379     default:
   1380       // for most instructions, it doesn't matter
   1381       break;
   1382     case Instruction::Add:
   1383     case Instruction::Sub:
   1384     case Instruction::Mul:
   1385       // We need to cast integer arithmetic so that it is always performed
   1386       // as unsigned, to avoid undefined behavior on overflow.
   1387     case Instruction::LShr:
   1388     case Instruction::UDiv:
   1389     case Instruction::URem: // Cast to unsigned first
   1390       shouldCast = true;
   1391       castIsSigned = false;
   1392       break;
   1393     case Instruction::GetElementPtr:
   1394     case Instruction::AShr:
   1395     case Instruction::SDiv:
   1396     case Instruction::SRem: // Cast to signed first
   1397       shouldCast = true;
   1398       castIsSigned = true;
   1399       break;
   1400   }
   1401 
   1402   // Write out the casted operand if we should, otherwise just write the
   1403   // operand.
   1404   if (shouldCast) {
   1405     Out << "((";
   1406     printSimpleType(Out, OpTy, castIsSigned);
   1407     Out << ")";
   1408     writeOperand(Operand);
   1409     Out << ")";
   1410   } else
   1411     writeOperand(Operand);
   1412 }
   1413 
   1414 // Write the operand with a cast to another type based on the icmp predicate
   1415 // being used.
   1416 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
   1417   // This has to do a cast to ensure the operand has the right signedness.
   1418   // Also, if the operand is a pointer, we make sure to cast to an integer when
   1419   // doing the comparison both for signedness and so that the C compiler doesn't
   1420   // optimize things like "p < NULL" to false (p may contain an integer value
   1421   // f.e.).
   1422   bool shouldCast = Cmp.isRelational();
   1423 
   1424   // Write out the casted operand if we should, otherwise just write the
   1425   // operand.
   1426   if (!shouldCast) {
   1427     writeOperand(Operand);
   1428     return;
   1429   }
   1430 
   1431   // Should this be a signed comparison?  If so, convert to signed.
   1432   bool castIsSigned = Cmp.isSigned();
   1433 
   1434   // If the operand was a pointer, convert to a large integer type.
   1435   Type* OpTy = Operand->getType();
   1436   if (OpTy->isPointerTy())
   1437     OpTy = TD->getIntPtrType(Operand->getContext());
   1438 
   1439   Out << "((";
   1440   printSimpleType(Out, OpTy, castIsSigned);
   1441   Out << ")";
   1442   writeOperand(Operand);
   1443   Out << ")";
   1444 }
   1445 
   1446 // generateCompilerSpecificCode - This is where we add conditional compilation
   1447 // directives to cater to specific compilers as need be.
   1448 //
   1449 static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
   1450                                          const TargetData *TD) {
   1451   // Alloca is hard to get, and we don't want to include stdlib.h here.
   1452   Out << "/* get a declaration for alloca */\n"
   1453       << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
   1454       << "#define  alloca(x) __builtin_alloca((x))\n"
   1455       << "#define _alloca(x) __builtin_alloca((x))\n"
   1456       << "#elif defined(__APPLE__)\n"
   1457       << "extern void *__builtin_alloca(unsigned long);\n"
   1458       << "#define alloca(x) __builtin_alloca(x)\n"
   1459       << "#define longjmp _longjmp\n"
   1460       << "#define setjmp _setjmp\n"
   1461       << "#elif defined(__sun__)\n"
   1462       << "#if defined(__sparcv9)\n"
   1463       << "extern void *__builtin_alloca(unsigned long);\n"
   1464       << "#else\n"
   1465       << "extern void *__builtin_alloca(unsigned int);\n"
   1466       << "#endif\n"
   1467       << "#define alloca(x) __builtin_alloca(x)\n"
   1468       << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__arm__)\n"
   1469       << "#define alloca(x) __builtin_alloca(x)\n"
   1470       << "#elif defined(_MSC_VER)\n"
   1471       << "#define inline _inline\n"
   1472       << "#define alloca(x) _alloca(x)\n"
   1473       << "#else\n"
   1474       << "#include <alloca.h>\n"
   1475       << "#endif\n\n";
   1476 
   1477   // We output GCC specific attributes to preserve 'linkonce'ness on globals.
   1478   // If we aren't being compiled with GCC, just drop these attributes.
   1479   Out << "#ifndef __GNUC__  /* Can only support \"linkonce\" vars with GCC */\n"
   1480       << "#define __attribute__(X)\n"
   1481       << "#endif\n\n";
   1482 
   1483   // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
   1484   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
   1485       << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
   1486       << "#elif defined(__GNUC__)\n"
   1487       << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
   1488       << "#else\n"
   1489       << "#define __EXTERNAL_WEAK__\n"
   1490       << "#endif\n\n";
   1491 
   1492   // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
   1493   Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
   1494       << "#define __ATTRIBUTE_WEAK__\n"
   1495       << "#elif defined(__GNUC__)\n"
   1496       << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
   1497       << "#else\n"
   1498       << "#define __ATTRIBUTE_WEAK__\n"
   1499       << "#endif\n\n";
   1500 
   1501   // Add hidden visibility support. FIXME: APPLE_CC?
   1502   Out << "#if defined(__GNUC__)\n"
   1503       << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
   1504       << "#endif\n\n";
   1505 
   1506   // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
   1507   // From the GCC documentation:
   1508   //
   1509   //   double __builtin_nan (const char *str)
   1510   //
   1511   // This is an implementation of the ISO C99 function nan.
   1512   //
   1513   // Since ISO C99 defines this function in terms of strtod, which we do
   1514   // not implement, a description of the parsing is in order. The string is
   1515   // parsed as by strtol; that is, the base is recognized by leading 0 or
   1516   // 0x prefixes. The number parsed is placed in the significand such that
   1517   // the least significant bit of the number is at the least significant
   1518   // bit of the significand. The number is truncated to fit the significand
   1519   // field provided. The significand is forced to be a quiet NaN.
   1520   //
   1521   // This function, if given a string literal, is evaluated early enough
   1522   // that it is considered a compile-time constant.
   1523   //
   1524   //   float __builtin_nanf (const char *str)
   1525   //
   1526   // Similar to __builtin_nan, except the return type is float.
   1527   //
   1528   //   double __builtin_inf (void)
   1529   //
   1530   // Similar to __builtin_huge_val, except a warning is generated if the
   1531   // target floating-point format does not support infinities. This
   1532   // function is suitable for implementing the ISO C99 macro INFINITY.
   1533   //
   1534   //   float __builtin_inff (void)
   1535   //
   1536   // Similar to __builtin_inf, except the return type is float.
   1537   Out << "#ifdef __GNUC__\n"
   1538       << "#define LLVM_NAN(NanStr)   __builtin_nan(NanStr)   /* Double */\n"
   1539       << "#define LLVM_NANF(NanStr)  __builtin_nanf(NanStr)  /* Float */\n"
   1540       << "#define LLVM_NANS(NanStr)  __builtin_nans(NanStr)  /* Double */\n"
   1541       << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
   1542       << "#define LLVM_INF           __builtin_inf()         /* Double */\n"
   1543       << "#define LLVM_INFF          __builtin_inff()        /* Float */\n"
   1544       << "#define LLVM_PREFETCH(addr,rw,locality) "
   1545                               "__builtin_prefetch(addr,rw,locality)\n"
   1546       << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
   1547       << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
   1548       << "#define LLVM_ASM           __asm__\n"
   1549       << "#else\n"
   1550       << "#define LLVM_NAN(NanStr)   ((double)0.0)           /* Double */\n"
   1551       << "#define LLVM_NANF(NanStr)  0.0F                    /* Float */\n"
   1552       << "#define LLVM_NANS(NanStr)  ((double)0.0)           /* Double */\n"
   1553       << "#define LLVM_NANSF(NanStr) 0.0F                    /* Float */\n"
   1554       << "#define LLVM_INF           ((double)0.0)           /* Double */\n"
   1555       << "#define LLVM_INFF          0.0F                    /* Float */\n"
   1556       << "#define LLVM_PREFETCH(addr,rw,locality)            /* PREFETCH */\n"
   1557       << "#define __ATTRIBUTE_CTOR__\n"
   1558       << "#define __ATTRIBUTE_DTOR__\n"
   1559       << "#define LLVM_ASM(X)\n"
   1560       << "#endif\n\n";
   1561 
   1562   Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
   1563       << "#define __builtin_stack_save() 0   /* not implemented */\n"
   1564       << "#define __builtin_stack_restore(X) /* noop */\n"
   1565       << "#endif\n\n";
   1566 
   1567   // Output typedefs for 128-bit integers. If these are needed with a
   1568   // 32-bit target or with a C compiler that doesn't support mode(TI),
   1569   // more drastic measures will be needed.
   1570   Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
   1571       << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
   1572       << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
   1573       << "#endif\n\n";
   1574 
   1575   // Output target-specific code that should be inserted into main.
   1576   Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
   1577 }
   1578 
   1579 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
   1580 /// the StaticTors set.
   1581 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
   1582   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
   1583   if (!InitList) return;
   1584 
   1585   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
   1586     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
   1587       if (CS->getNumOperands() != 2) return;  // Not array of 2-element structs.
   1588 
   1589       if (CS->getOperand(1)->isNullValue())
   1590         return;  // Found a null terminator, exit printing.
   1591       Constant *FP = CS->getOperand(1);
   1592       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
   1593         if (CE->isCast())
   1594           FP = CE->getOperand(0);
   1595       if (Function *F = dyn_cast<Function>(FP))
   1596         StaticTors.insert(F);
   1597     }
   1598 }
   1599 
   1600 enum SpecialGlobalClass {
   1601   NotSpecial = 0,
   1602   GlobalCtors, GlobalDtors,
   1603   NotPrinted
   1604 };
   1605 
   1606 /// getGlobalVariableClass - If this is a global that is specially recognized
   1607 /// by LLVM, return a code that indicates how we should handle it.
   1608 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
   1609   // If this is a global ctors/dtors list, handle it now.
   1610   if (GV->hasAppendingLinkage() && GV->use_empty()) {
   1611     if (GV->getName() == "llvm.global_ctors")
   1612       return GlobalCtors;
   1613     else if (GV->getName() == "llvm.global_dtors")
   1614       return GlobalDtors;
   1615   }
   1616 
   1617   // Otherwise, if it is other metadata, don't print it.  This catches things
   1618   // like debug information.
   1619   if (GV->getSection() == "llvm.metadata")
   1620     return NotPrinted;
   1621 
   1622   return NotSpecial;
   1623 }
   1624 
   1625 // PrintEscapedString - Print each character of the specified string, escaping
   1626 // it if it is not printable or if it is an escape char.
   1627 static void PrintEscapedString(const char *Str, unsigned Length,
   1628                                raw_ostream &Out) {
   1629   for (unsigned i = 0; i != Length; ++i) {
   1630     unsigned char C = Str[i];
   1631     if (isprint(C) && C != '\\' && C != '"')
   1632       Out << C;
   1633     else if (C == '\\')
   1634       Out << "\\\\";
   1635     else if (C == '\"')
   1636       Out << "\\\"";
   1637     else if (C == '\t')
   1638       Out << "\\t";
   1639     else
   1640       Out << "\\x" << hexdigit(C >> 4) << hexdigit(C & 0x0F);
   1641   }
   1642 }
   1643 
   1644 // PrintEscapedString - Print each character of the specified string, escaping
   1645 // it if it is not printable or if it is an escape char.
   1646 static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
   1647   PrintEscapedString(Str.c_str(), Str.size(), Out);
   1648 }
   1649 
   1650 bool CWriter::doInitialization(Module &M) {
   1651   FunctionPass::doInitialization(M);
   1652 
   1653   // Initialize
   1654   TheModule = &M;
   1655 
   1656   TD = new TargetData(&M);
   1657   IL = new IntrinsicLowering(*TD);
   1658   IL->AddPrototypes(M);
   1659 
   1660 #if 0
   1661   std::string Triple = TheModule->getTargetTriple();
   1662   if (Triple.empty())
   1663     Triple = llvm::sys::getHostTriple();
   1664 
   1665   std::string E;
   1666   if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
   1667     TAsm = Match->createMCAsmInfo(Triple);
   1668 #endif
   1669   TAsm = new CBEMCAsmInfo();
   1670   MRI  = new MCRegisterInfo();
   1671   TCtx = new MCContext(*TAsm, *MRI, NULL);
   1672   Mang = new Mangler(*TCtx, *TD);
   1673 
   1674   // Keep track of which functions are static ctors/dtors so they can have
   1675   // an attribute added to their prototypes.
   1676   std::set<Function*> StaticCtors, StaticDtors;
   1677   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1678        I != E; ++I) {
   1679     switch (getGlobalVariableClass(I)) {
   1680     default: break;
   1681     case GlobalCtors:
   1682       FindStaticTors(I, StaticCtors);
   1683       break;
   1684     case GlobalDtors:
   1685       FindStaticTors(I, StaticDtors);
   1686       break;
   1687     }
   1688   }
   1689 
   1690   // get declaration for alloca
   1691   Out << "/* Provide Declarations */\n";
   1692   Out << "#include <stdarg.h>\n";      // Varargs support
   1693   Out << "#include <setjmp.h>\n";      // Unwind support
   1694   Out << "#include <limits.h>\n";      // With overflow intrinsics support.
   1695   generateCompilerSpecificCode(Out, TD);
   1696 
   1697   // Provide a definition for `bool' if not compiling with a C++ compiler.
   1698   Out << "\n"
   1699       << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
   1700 
   1701       << "\n\n/* Support for floating point constants */\n"
   1702       << "typedef unsigned long long ConstantDoubleTy;\n"
   1703       << "typedef unsigned int        ConstantFloatTy;\n"
   1704       << "typedef struct { unsigned long long f1; unsigned short f2; "
   1705          "unsigned short pad[3]; } ConstantFP80Ty;\n"
   1706       // This is used for both kinds of 128-bit long double; meaning differs.
   1707       << "typedef struct { unsigned long long f1; unsigned long long f2; }"
   1708          " ConstantFP128Ty;\n"
   1709       << "\n\n/* Global Declarations */\n";
   1710 
   1711   // First output all the declarations for the program, because C requires
   1712   // Functions & globals to be declared before they are used.
   1713   //
   1714   if (!M.getModuleInlineAsm().empty()) {
   1715     Out << "/* Module asm statements */\n"
   1716         << "asm(";
   1717 
   1718     // Split the string into lines, to make it easier to read the .ll file.
   1719     std::string Asm = M.getModuleInlineAsm();
   1720     size_t CurPos = 0;
   1721     size_t NewLine = Asm.find_first_of('\n', CurPos);
   1722     while (NewLine != std::string::npos) {
   1723       // We found a newline, print the portion of the asm string from the
   1724       // last newline up to this newline.
   1725       Out << "\"";
   1726       PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
   1727                          Out);
   1728       Out << "\\n\"\n";
   1729       CurPos = NewLine+1;
   1730       NewLine = Asm.find_first_of('\n', CurPos);
   1731     }
   1732     Out << "\"";
   1733     PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
   1734     Out << "\");\n"
   1735         << "/* End Module asm statements */\n";
   1736   }
   1737 
   1738   // Loop over the symbol table, emitting all named constants.
   1739   printModuleTypes();
   1740 
   1741   // Global variable declarations...
   1742   if (!M.global_empty()) {
   1743     Out << "\n/* External Global Variable Declarations */\n";
   1744     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1745          I != E; ++I) {
   1746 
   1747       if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
   1748           I->hasCommonLinkage())
   1749         Out << "extern ";
   1750       else if (I->hasDLLImportLinkage())
   1751         Out << "__declspec(dllimport) ";
   1752       else
   1753         continue; // Internal Global
   1754 
   1755       // Thread Local Storage
   1756       if (I->isThreadLocal())
   1757         Out << "__thread ";
   1758 
   1759       printType(Out, I->getType()->getElementType(), false, GetValueName(I));
   1760 
   1761       if (I->hasExternalWeakLinkage())
   1762          Out << " __EXTERNAL_WEAK__";
   1763       Out << ";\n";
   1764     }
   1765   }
   1766 
   1767   // Function declarations
   1768   Out << "\n/* Function Declarations */\n";
   1769   Out << "double fmod(double, double);\n";   // Support for FP rem
   1770   Out << "float fmodf(float, float);\n";
   1771   Out << "long double fmodl(long double, long double);\n";
   1772 
   1773   // Store the intrinsics which will be declared/defined below.
   1774   SmallVector<const Function*, 8> intrinsicsToDefine;
   1775 
   1776   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
   1777     // Don't print declarations for intrinsic functions.
   1778     // Store the used intrinsics, which need to be explicitly defined.
   1779     if (I->isIntrinsic()) {
   1780       switch (I->getIntrinsicID()) {
   1781         default:
   1782           break;
   1783         case Intrinsic::uadd_with_overflow:
   1784         case Intrinsic::sadd_with_overflow:
   1785           intrinsicsToDefine.push_back(I);
   1786           break;
   1787       }
   1788       continue;
   1789     }
   1790 
   1791     if (I->getName() == "setjmp" ||
   1792         I->getName() == "longjmp" || I->getName() == "_setjmp")
   1793       continue;
   1794 
   1795     if (I->hasExternalWeakLinkage())
   1796       Out << "extern ";
   1797     printFunctionSignature(I, true);
   1798     if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
   1799       Out << " __ATTRIBUTE_WEAK__";
   1800     if (I->hasExternalWeakLinkage())
   1801       Out << " __EXTERNAL_WEAK__";
   1802     if (StaticCtors.count(I))
   1803       Out << " __ATTRIBUTE_CTOR__";
   1804     if (StaticDtors.count(I))
   1805       Out << " __ATTRIBUTE_DTOR__";
   1806     if (I->hasHiddenVisibility())
   1807       Out << " __HIDDEN__";
   1808 
   1809     if (I->hasName() && I->getName()[0] == 1)
   1810       Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
   1811 
   1812     Out << ";\n";
   1813   }
   1814 
   1815   // Output the global variable declarations
   1816   if (!M.global_empty()) {
   1817     Out << "\n\n/* Global Variable Declarations */\n";
   1818     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1819          I != E; ++I)
   1820       if (!I->isDeclaration()) {
   1821         // Ignore special globals, such as debug info.
   1822         if (getGlobalVariableClass(I))
   1823           continue;
   1824 
   1825         if (I->hasLocalLinkage())
   1826           Out << "static ";
   1827         else
   1828           Out << "extern ";
   1829 
   1830         // Thread Local Storage
   1831         if (I->isThreadLocal())
   1832           Out << "__thread ";
   1833 
   1834         printType(Out, I->getType()->getElementType(), false,
   1835                   GetValueName(I));
   1836 
   1837         if (I->hasLinkOnceLinkage())
   1838           Out << " __attribute__((common))";
   1839         else if (I->hasCommonLinkage())     // FIXME is this right?
   1840           Out << " __ATTRIBUTE_WEAK__";
   1841         else if (I->hasWeakLinkage())
   1842           Out << " __ATTRIBUTE_WEAK__";
   1843         else if (I->hasExternalWeakLinkage())
   1844           Out << " __EXTERNAL_WEAK__";
   1845         if (I->hasHiddenVisibility())
   1846           Out << " __HIDDEN__";
   1847         Out << ";\n";
   1848       }
   1849   }
   1850 
   1851   // Output the global variable definitions and contents...
   1852   if (!M.global_empty()) {
   1853     Out << "\n\n/* Global Variable Definitions and Initialization */\n";
   1854     for (Module::global_iterator I = M.global_begin(), E = M.global_end();
   1855          I != E; ++I)
   1856       if (!I->isDeclaration()) {
   1857         // Ignore special globals, such as debug info.
   1858         if (getGlobalVariableClass(I))
   1859           continue;
   1860 
   1861         if (I->hasLocalLinkage())
   1862           Out << "static ";
   1863         else if (I->hasDLLImportLinkage())
   1864           Out << "__declspec(dllimport) ";
   1865         else if (I->hasDLLExportLinkage())
   1866           Out << "__declspec(dllexport) ";
   1867 
   1868         // Thread Local Storage
   1869         if (I->isThreadLocal())
   1870           Out << "__thread ";
   1871 
   1872         printType(Out, I->getType()->getElementType(), false,
   1873                   GetValueName(I));
   1874         if (I->hasLinkOnceLinkage())
   1875           Out << " __attribute__((common))";
   1876         else if (I->hasWeakLinkage())
   1877           Out << " __ATTRIBUTE_WEAK__";
   1878         else if (I->hasCommonLinkage())
   1879           Out << " __ATTRIBUTE_WEAK__";
   1880 
   1881         if (I->hasHiddenVisibility())
   1882           Out << " __HIDDEN__";
   1883 
   1884         // If the initializer is not null, emit the initializer.  If it is null,
   1885         // we try to avoid emitting large amounts of zeros.  The problem with
   1886         // this, however, occurs when the variable has weak linkage.  In this
   1887         // case, the assembler will complain about the variable being both weak
   1888         // and common, so we disable this optimization.
   1889         // FIXME common linkage should avoid this problem.
   1890         if (!I->getInitializer()->isNullValue()) {
   1891           Out << " = " ;
   1892           writeOperand(I->getInitializer(), true);
   1893         } else if (I->hasWeakLinkage()) {
   1894           // We have to specify an initializer, but it doesn't have to be
   1895           // complete.  If the value is an aggregate, print out { 0 }, and let
   1896           // the compiler figure out the rest of the zeros.
   1897           Out << " = " ;
   1898           if (I->getInitializer()->getType()->isStructTy() ||
   1899               I->getInitializer()->getType()->isVectorTy()) {
   1900             Out << "{ 0 }";
   1901           } else if (I->getInitializer()->getType()->isArrayTy()) {
   1902             // As with structs and vectors, but with an extra set of braces
   1903             // because arrays are wrapped in structs.
   1904             Out << "{ { 0 } }";
   1905           } else {
   1906             // Just print it out normally.
   1907             writeOperand(I->getInitializer(), true);
   1908           }
   1909         }
   1910         Out << ";\n";
   1911       }
   1912   }
   1913 
   1914   if (!M.empty())
   1915     Out << "\n\n/* Function Bodies */\n";
   1916 
   1917   // Emit some helper functions for dealing with FCMP instruction's
   1918   // predicates
   1919   Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
   1920   Out << "return X == X && Y == Y; }\n";
   1921   Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
   1922   Out << "return X != X || Y != Y; }\n";
   1923   Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
   1924   Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
   1925   Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
   1926   Out << "return X != Y; }\n";
   1927   Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
   1928   Out << "return X <  Y || llvm_fcmp_uno(X, Y); }\n";
   1929   Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
   1930   Out << "return X >  Y || llvm_fcmp_uno(X, Y); }\n";
   1931   Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
   1932   Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
   1933   Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
   1934   Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
   1935   Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
   1936   Out << "return X == Y ; }\n";
   1937   Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
   1938   Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
   1939   Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
   1940   Out << "return X <  Y ; }\n";
   1941   Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
   1942   Out << "return X >  Y ; }\n";
   1943   Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
   1944   Out << "return X <= Y ; }\n";
   1945   Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
   1946   Out << "return X >= Y ; }\n";
   1947 
   1948   // Emit definitions of the intrinsics.
   1949   for (SmallVector<const Function*, 8>::const_iterator
   1950        I = intrinsicsToDefine.begin(),
   1951        E = intrinsicsToDefine.end(); I != E; ++I) {
   1952     printIntrinsicDefinition(**I, Out);
   1953   }
   1954 
   1955   return false;
   1956 }
   1957 
   1958 
   1959 /// Output all floating point constants that cannot be printed accurately...
   1960 void CWriter::printFloatingPointConstants(Function &F) {
   1961   // Scan the module for floating point constants.  If any FP constant is used
   1962   // in the function, we want to redirect it here so that we do not depend on
   1963   // the precision of the printed form, unless the printed form preserves
   1964   // precision.
   1965   //
   1966   for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
   1967        I != E; ++I)
   1968     printFloatingPointConstants(*I);
   1969 
   1970   Out << '\n';
   1971 }
   1972 
   1973 void CWriter::printFloatingPointConstants(const Constant *C) {
   1974   // If this is a constant expression, recursively check for constant fp values.
   1975   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   1976     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
   1977       printFloatingPointConstants(CE->getOperand(i));
   1978     return;
   1979   }
   1980 
   1981   // Otherwise, check for a FP constant that we need to print.
   1982   const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
   1983   if (FPC == 0 ||
   1984       // Do not put in FPConstantMap if safe.
   1985       isFPCSafeToPrint(FPC) ||
   1986       // Already printed this constant?
   1987       FPConstantMap.count(FPC))
   1988     return;
   1989 
   1990   FPConstantMap[FPC] = FPCounter;  // Number the FP constants
   1991 
   1992   if (FPC->getType() == Type::getDoubleTy(FPC->getContext())) {
   1993     double Val = FPC->getValueAPF().convertToDouble();
   1994     uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
   1995     Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
   1996     << " = 0x" << utohexstr(i)
   1997     << "ULL;    /* " << Val << " */\n";
   1998   } else if (FPC->getType() == Type::getFloatTy(FPC->getContext())) {
   1999     float Val = FPC->getValueAPF().convertToFloat();
   2000     uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
   2001     getZExtValue();
   2002     Out << "static const ConstantFloatTy FPConstant" << FPCounter++
   2003     << " = 0x" << utohexstr(i)
   2004     << "U;    /* " << Val << " */\n";
   2005   } else if (FPC->getType() == Type::getX86_FP80Ty(FPC->getContext())) {
   2006     // api needed to prevent premature destruction
   2007     APInt api = FPC->getValueAPF().bitcastToAPInt();
   2008     const uint64_t *p = api.getRawData();
   2009     Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
   2010     << " = { 0x" << utohexstr(p[0])
   2011     << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
   2012     << "}; /* Long double constant */\n";
   2013   } else if (FPC->getType() == Type::getPPC_FP128Ty(FPC->getContext()) ||
   2014              FPC->getType() == Type::getFP128Ty(FPC->getContext())) {
   2015     APInt api = FPC->getValueAPF().bitcastToAPInt();
   2016     const uint64_t *p = api.getRawData();
   2017     Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
   2018     << " = { 0x"
   2019     << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
   2020     << "}; /* Long double constant */\n";
   2021 
   2022   } else {
   2023     llvm_unreachable("Unknown float type!");
   2024   }
   2025 }
   2026 
   2027 
   2028 /// printSymbolTable - Run through symbol table looking for type names.  If a
   2029 /// type name is found, emit its declaration...
   2030 ///
   2031 void CWriter::printModuleTypes() {
   2032   Out << "/* Helper union for bitcasts */\n";
   2033   Out << "typedef union {\n";
   2034   Out << "  unsigned int Int32;\n";
   2035   Out << "  unsigned long long Int64;\n";
   2036   Out << "  float Float;\n";
   2037   Out << "  double Double;\n";
   2038   Out << "} llvmBitCastUnion;\n";
   2039 
   2040   // Get all of the struct types used in the module.
   2041   std::vector<StructType*> StructTypes;
   2042   TheModule->findUsedStructTypes(StructTypes);
   2043 
   2044   if (StructTypes.empty()) return;
   2045 
   2046   Out << "/* Structure forward decls */\n";
   2047 
   2048   unsigned NextTypeID = 0;
   2049 
   2050   // If any of them are missing names, add a unique ID to UnnamedStructIDs.
   2051   // Print out forward declarations for structure types.
   2052   for (unsigned i = 0, e = StructTypes.size(); i != e; ++i) {
   2053     StructType *ST = StructTypes[i];
   2054 
   2055     if (ST->isLiteral() || ST->getName().empty())
   2056       UnnamedStructIDs[ST] = NextTypeID++;
   2057 
   2058     std::string Name = getStructName(ST);
   2059 
   2060     Out << "typedef struct " << Name << ' ' << Name << ";\n";
   2061   }
   2062 
   2063   Out << '\n';
   2064 
   2065   // Keep track of which structures have been printed so far.
   2066   SmallPtrSet<Type *, 16> StructPrinted;
   2067 
   2068   // Loop over all structures then push them into the stack so they are
   2069   // printed in the correct order.
   2070   //
   2071   Out << "/* Structure contents */\n";
   2072   for (unsigned i = 0, e = StructTypes.size(); i != e; ++i)
   2073     if (StructTypes[i]->isStructTy())
   2074       // Only print out used types!
   2075       printContainedStructs(StructTypes[i], StructPrinted);
   2076 }
   2077 
   2078 // Push the struct onto the stack and recursively push all structs
   2079 // this one depends on.
   2080 //
   2081 // TODO:  Make this work properly with vector types
   2082 //
   2083 void CWriter::printContainedStructs(Type *Ty,
   2084                                 SmallPtrSet<Type *, 16> &StructPrinted) {
   2085   // Don't walk through pointers.
   2086   if (Ty->isPointerTy() || Ty->isPrimitiveType() || Ty->isIntegerTy())
   2087     return;
   2088 
   2089   // Print all contained types first.
   2090   for (Type::subtype_iterator I = Ty->subtype_begin(),
   2091        E = Ty->subtype_end(); I != E; ++I)
   2092     printContainedStructs(*I, StructPrinted);
   2093 
   2094   if (StructType *ST = dyn_cast<StructType>(Ty)) {
   2095     // Check to see if we have already printed this struct.
   2096     if (!StructPrinted.insert(Ty)) return;
   2097 
   2098     // Print structure type out.
   2099     printType(Out, ST, false, getStructName(ST), true);
   2100     Out << ";\n\n";
   2101   }
   2102 }
   2103 
   2104 void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
   2105   /// isStructReturn - Should this function actually return a struct by-value?
   2106   bool isStructReturn = F->hasStructRetAttr();
   2107 
   2108   if (F->hasLocalLinkage()) Out << "static ";
   2109   if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
   2110   if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
   2111   switch (F->getCallingConv()) {
   2112    case CallingConv::X86_StdCall:
   2113     Out << "__attribute__((stdcall)) ";
   2114     break;
   2115    case CallingConv::X86_FastCall:
   2116     Out << "__attribute__((fastcall)) ";
   2117     break;
   2118    case CallingConv::X86_ThisCall:
   2119     Out << "__attribute__((thiscall)) ";
   2120     break;
   2121    default:
   2122     break;
   2123   }
   2124 
   2125   // Loop over the arguments, printing them...
   2126   FunctionType *FT = cast<FunctionType>(F->getFunctionType());
   2127   const AttrListPtr &PAL = F->getAttributes();
   2128 
   2129   std::string tstr;
   2130   raw_string_ostream FunctionInnards(tstr);
   2131 
   2132   // Print out the name...
   2133   FunctionInnards << GetValueName(F) << '(';
   2134 
   2135   bool PrintedArg = false;
   2136   if (!F->isDeclaration()) {
   2137     if (!F->arg_empty()) {
   2138       Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
   2139       unsigned Idx = 1;
   2140 
   2141       // If this is a struct-return function, don't print the hidden
   2142       // struct-return argument.
   2143       if (isStructReturn) {
   2144         assert(I != E && "Invalid struct return function!");
   2145         ++I;
   2146         ++Idx;
   2147       }
   2148 
   2149       std::string ArgName;
   2150       for (; I != E; ++I) {
   2151         if (PrintedArg) FunctionInnards << ", ";
   2152         if (I->hasName() || !Prototype)
   2153           ArgName = GetValueName(I);
   2154         else
   2155           ArgName = "";
   2156         Type *ArgTy = I->getType();
   2157         if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
   2158           ArgTy = cast<PointerType>(ArgTy)->getElementType();
   2159           ByValParams.insert(I);
   2160         }
   2161         printType(FunctionInnards, ArgTy,
   2162             /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
   2163             ArgName);
   2164         PrintedArg = true;
   2165         ++Idx;
   2166       }
   2167     }
   2168   } else {
   2169     // Loop over the arguments, printing them.
   2170     FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
   2171     unsigned Idx = 1;
   2172 
   2173     // If this is a struct-return function, don't print the hidden
   2174     // struct-return argument.
   2175     if (isStructReturn) {
   2176       assert(I != E && "Invalid struct return function!");
   2177       ++I;
   2178       ++Idx;
   2179     }
   2180 
   2181     for (; I != E; ++I) {
   2182       if (PrintedArg) FunctionInnards << ", ";
   2183       Type *ArgTy = *I;
   2184       if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
   2185         assert(ArgTy->isPointerTy());
   2186         ArgTy = cast<PointerType>(ArgTy)->getElementType();
   2187       }
   2188       printType(FunctionInnards, ArgTy,
   2189              /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
   2190       PrintedArg = true;
   2191       ++Idx;
   2192     }
   2193   }
   2194 
   2195   if (!PrintedArg && FT->isVarArg()) {
   2196     FunctionInnards << "int vararg_dummy_arg";
   2197     PrintedArg = true;
   2198   }
   2199 
   2200   // Finish printing arguments... if this is a vararg function, print the ...,
   2201   // unless there are no known types, in which case, we just emit ().
   2202   //
   2203   if (FT->isVarArg() && PrintedArg) {
   2204     FunctionInnards << ",...";  // Output varargs portion of signature!
   2205   } else if (!FT->isVarArg() && !PrintedArg) {
   2206     FunctionInnards << "void"; // ret() -> ret(void) in C.
   2207   }
   2208   FunctionInnards << ')';
   2209 
   2210   // Get the return tpe for the function.
   2211   Type *RetTy;
   2212   if (!isStructReturn)
   2213     RetTy = F->getReturnType();
   2214   else {
   2215     // If this is a struct-return function, print the struct-return type.
   2216     RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
   2217   }
   2218 
   2219   // Print out the return type and the signature built above.
   2220   printType(Out, RetTy,
   2221             /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
   2222             FunctionInnards.str());
   2223 }
   2224 
   2225 static inline bool isFPIntBitCast(const Instruction &I) {
   2226   if (!isa<BitCastInst>(I))
   2227     return false;
   2228   Type *SrcTy = I.getOperand(0)->getType();
   2229   Type *DstTy = I.getType();
   2230   return (SrcTy->isFloatingPointTy() && DstTy->isIntegerTy()) ||
   2231          (DstTy->isFloatingPointTy() && SrcTy->isIntegerTy());
   2232 }
   2233 
   2234 void CWriter::printFunction(Function &F) {
   2235   /// isStructReturn - Should this function actually return a struct by-value?
   2236   bool isStructReturn = F.hasStructRetAttr();
   2237 
   2238   printFunctionSignature(&F, false);
   2239   Out << " {\n";
   2240 
   2241   // If this is a struct return function, handle the result with magic.
   2242   if (isStructReturn) {
   2243     Type *StructTy =
   2244       cast<PointerType>(F.arg_begin()->getType())->getElementType();
   2245     Out << "  ";
   2246     printType(Out, StructTy, false, "StructReturn");
   2247     Out << ";  /* Struct return temporary */\n";
   2248 
   2249     Out << "  ";
   2250     printType(Out, F.arg_begin()->getType(), false,
   2251               GetValueName(F.arg_begin()));
   2252     Out << " = &StructReturn;\n";
   2253   }
   2254 
   2255   bool PrintedVar = false;
   2256 
   2257   // print local variable information for the function
   2258   for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
   2259     if (const AllocaInst *AI = isDirectAlloca(&*I)) {
   2260       Out << "  ";
   2261       printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
   2262       Out << ";    /* Address-exposed local */\n";
   2263       PrintedVar = true;
   2264     } else if (I->getType() != Type::getVoidTy(F.getContext()) &&
   2265                !isInlinableInst(*I)) {
   2266       Out << "  ";
   2267       printType(Out, I->getType(), false, GetValueName(&*I));
   2268       Out << ";\n";
   2269 
   2270       if (isa<PHINode>(*I)) {  // Print out PHI node temporaries as well...
   2271         Out << "  ";
   2272         printType(Out, I->getType(), false,
   2273                   GetValueName(&*I)+"__PHI_TEMPORARY");
   2274         Out << ";\n";
   2275       }
   2276       PrintedVar = true;
   2277     }
   2278     // We need a temporary for the BitCast to use so it can pluck a value out
   2279     // of a union to do the BitCast. This is separate from the need for a
   2280     // variable to hold the result of the BitCast.
   2281     if (isFPIntBitCast(*I)) {
   2282       Out << "  llvmBitCastUnion " << GetValueName(&*I)
   2283           << "__BITCAST_TEMPORARY;\n";
   2284       PrintedVar = true;
   2285     }
   2286   }
   2287 
   2288   if (PrintedVar)
   2289     Out << '\n';
   2290 
   2291   if (F.hasExternalLinkage() && F.getName() == "main")
   2292     Out << "  CODE_FOR_MAIN();\n";
   2293 
   2294   // print the basic blocks
   2295   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   2296     if (Loop *L = LI->getLoopFor(BB)) {
   2297       if (L->getHeader() == BB && L->getParentLoop() == 0)
   2298         printLoop(L);
   2299     } else {
   2300       printBasicBlock(BB);
   2301     }
   2302   }
   2303 
   2304   Out << "}\n\n";
   2305 }
   2306 
   2307 void CWriter::printLoop(Loop *L) {
   2308   Out << "  do {     /* Syntactic loop '" << L->getHeader()->getName()
   2309       << "' to make GCC happy */\n";
   2310   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
   2311     BasicBlock *BB = L->getBlocks()[i];
   2312     Loop *BBLoop = LI->getLoopFor(BB);
   2313     if (BBLoop == L)
   2314       printBasicBlock(BB);
   2315     else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
   2316       printLoop(BBLoop);
   2317   }
   2318   Out << "  } while (1); /* end of syntactic loop '"
   2319       << L->getHeader()->getName() << "' */\n";
   2320 }
   2321 
   2322 void CWriter::printBasicBlock(BasicBlock *BB) {
   2323 
   2324   // Don't print the label for the basic block if there are no uses, or if
   2325   // the only terminator use is the predecessor basic block's terminator.
   2326   // We have to scan the use list because PHI nodes use basic blocks too but
   2327   // do not require a label to be generated.
   2328   //
   2329   bool NeedsLabel = false;
   2330   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   2331     if (isGotoCodeNecessary(*PI, BB)) {
   2332       NeedsLabel = true;
   2333       break;
   2334     }
   2335 
   2336   if (NeedsLabel) Out << GetValueName(BB) << ":\n";
   2337 
   2338   // Output all of the instructions in the basic block...
   2339   for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
   2340        ++II) {
   2341     if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
   2342       if (II->getType() != Type::getVoidTy(BB->getContext()) &&
   2343           !isInlineAsm(*II))
   2344         outputLValue(II);
   2345       else
   2346         Out << "  ";
   2347       writeInstComputationInline(*II);
   2348       Out << ";\n";
   2349     }
   2350   }
   2351 
   2352   // Don't emit prefix or suffix for the terminator.
   2353   visit(*BB->getTerminator());
   2354 }
   2355 
   2356 
   2357 // Specific Instruction type classes... note that all of the casts are
   2358 // necessary because we use the instruction classes as opaque types...
   2359 //
   2360 void CWriter::visitReturnInst(ReturnInst &I) {
   2361   // If this is a struct return function, return the temporary struct.
   2362   bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
   2363 
   2364   if (isStructReturn) {
   2365     Out << "  return StructReturn;\n";
   2366     return;
   2367   }
   2368 
   2369   // Don't output a void return if this is the last basic block in the function
   2370   if (I.getNumOperands() == 0 &&
   2371       &*--I.getParent()->getParent()->end() == I.getParent() &&
   2372       !I.getParent()->size() == 1) {
   2373     return;
   2374   }
   2375 
   2376   Out << "  return";
   2377   if (I.getNumOperands()) {
   2378     Out << ' ';
   2379     writeOperand(I.getOperand(0));
   2380   }
   2381   Out << ";\n";
   2382 }
   2383 
   2384 void CWriter::visitSwitchInst(SwitchInst &SI) {
   2385 
   2386   Value* Cond = SI.getCondition();
   2387 
   2388   Out << "  switch (";
   2389   writeOperand(Cond);
   2390   Out << ") {\n  default:\n";
   2391   printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
   2392   printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
   2393   Out << ";\n";
   2394 
   2395   unsigned NumCases = SI.getNumCases();
   2396   // Skip the first item since that's the default case.
   2397   for (unsigned i = 1; i < NumCases; ++i) {
   2398     ConstantInt* CaseVal = SI.getCaseValue(i);
   2399     BasicBlock* Succ = SI.getSuccessor(i);
   2400     Out << "  case ";
   2401     writeOperand(CaseVal);
   2402     Out << ":\n";
   2403     printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
   2404     printBranchToBlock(SI.getParent(), Succ, 2);
   2405     if (Function::iterator(Succ) == llvm::next(Function::iterator(SI.getParent())))
   2406       Out << "    break;\n";
   2407   }
   2408 
   2409   Out << "  }\n";
   2410 }
   2411 
   2412 void CWriter::visitIndirectBrInst(IndirectBrInst &IBI) {
   2413   Out << "  goto *(void*)(";
   2414   writeOperand(IBI.getOperand(0));
   2415   Out << ");\n";
   2416 }
   2417 
   2418 void CWriter::visitUnreachableInst(UnreachableInst &I) {
   2419   Out << "  /*UNREACHABLE*/;\n";
   2420 }
   2421 
   2422 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
   2423   /// FIXME: This should be reenabled, but loop reordering safe!!
   2424   return true;
   2425 
   2426   if (llvm::next(Function::iterator(From)) != Function::iterator(To))
   2427     return true;  // Not the direct successor, we need a goto.
   2428 
   2429   //isa<SwitchInst>(From->getTerminator())
   2430 
   2431   if (LI->getLoopFor(From) != LI->getLoopFor(To))
   2432     return true;
   2433   return false;
   2434 }
   2435 
   2436 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
   2437                                           BasicBlock *Successor,
   2438                                           unsigned Indent) {
   2439   for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
   2440     PHINode *PN = cast<PHINode>(I);
   2441     // Now we have to do the printing.
   2442     Value *IV = PN->getIncomingValueForBlock(CurBlock);
   2443     if (!isa<UndefValue>(IV)) {
   2444       Out << std::string(Indent, ' ');
   2445       Out << "  " << GetValueName(I) << "__PHI_TEMPORARY = ";
   2446       writeOperand(IV);
   2447       Out << ";   /* for PHI node */\n";
   2448     }
   2449   }
   2450 }
   2451 
   2452 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
   2453                                  unsigned Indent) {
   2454   if (isGotoCodeNecessary(CurBB, Succ)) {
   2455     Out << std::string(Indent, ' ') << "  goto ";
   2456     writeOperand(Succ);
   2457     Out << ";\n";
   2458   }
   2459 }
   2460 
   2461 // Branch instruction printing - Avoid printing out a branch to a basic block
   2462 // that immediately succeeds the current one.
   2463 //
   2464 void CWriter::visitBranchInst(BranchInst &I) {
   2465 
   2466   if (I.isConditional()) {
   2467     if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
   2468       Out << "  if (";
   2469       writeOperand(I.getCondition());
   2470       Out << ") {\n";
   2471 
   2472       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
   2473       printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
   2474 
   2475       if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
   2476         Out << "  } else {\n";
   2477         printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
   2478         printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
   2479       }
   2480     } else {
   2481       // First goto not necessary, assume second one is...
   2482       Out << "  if (!";
   2483       writeOperand(I.getCondition());
   2484       Out << ") {\n";
   2485 
   2486       printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
   2487       printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
   2488     }
   2489 
   2490     Out << "  }\n";
   2491   } else {
   2492     printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
   2493     printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
   2494   }
   2495   Out << "\n";
   2496 }
   2497 
   2498 // PHI nodes get copied into temporary values at the end of predecessor basic
   2499 // blocks.  We now need to copy these temporary values into the REAL value for
   2500 // the PHI.
   2501 void CWriter::visitPHINode(PHINode &I) {
   2502   writeOperand(&I);
   2503   Out << "__PHI_TEMPORARY";
   2504 }
   2505 
   2506 
   2507 void CWriter::visitBinaryOperator(Instruction &I) {
   2508   // binary instructions, shift instructions, setCond instructions.
   2509   assert(!I.getType()->isPointerTy());
   2510 
   2511   // We must cast the results of binary operations which might be promoted.
   2512   bool needsCast = false;
   2513   if ((I.getType() == Type::getInt8Ty(I.getContext())) ||
   2514       (I.getType() == Type::getInt16Ty(I.getContext()))
   2515       || (I.getType() == Type::getFloatTy(I.getContext()))) {
   2516     needsCast = true;
   2517     Out << "((";
   2518     printType(Out, I.getType(), false);
   2519     Out << ")(";
   2520   }
   2521 
   2522   // If this is a negation operation, print it out as such.  For FP, we don't
   2523   // want to print "-0.0 - X".
   2524   if (BinaryOperator::isNeg(&I)) {
   2525     Out << "-(";
   2526     writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
   2527     Out << ")";
   2528   } else if (BinaryOperator::isFNeg(&I)) {
   2529     Out << "-(";
   2530     writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
   2531     Out << ")";
   2532   } else if (I.getOpcode() == Instruction::FRem) {
   2533     // Output a call to fmod/fmodf instead of emitting a%b
   2534     if (I.getType() == Type::getFloatTy(I.getContext()))
   2535       Out << "fmodf(";
   2536     else if (I.getType() == Type::getDoubleTy(I.getContext()))
   2537       Out << "fmod(";
   2538     else  // all 3 flavors of long double
   2539       Out << "fmodl(";
   2540     writeOperand(I.getOperand(0));
   2541     Out << ", ";
   2542     writeOperand(I.getOperand(1));
   2543     Out << ")";
   2544   } else {
   2545 
   2546     // Write out the cast of the instruction's value back to the proper type
   2547     // if necessary.
   2548     bool NeedsClosingParens = writeInstructionCast(I);
   2549 
   2550     // Certain instructions require the operand to be forced to a specific type
   2551     // so we use writeOperandWithCast here instead of writeOperand. Similarly
   2552     // below for operand 1
   2553     writeOperandWithCast(I.getOperand(0), I.getOpcode());
   2554 
   2555     switch (I.getOpcode()) {
   2556     case Instruction::Add:
   2557     case Instruction::FAdd: Out << " + "; break;
   2558     case Instruction::Sub:
   2559     case Instruction::FSub: Out << " - "; break;
   2560     case Instruction::Mul:
   2561     case Instruction::FMul: Out << " * "; break;
   2562     case Instruction::URem:
   2563     case Instruction::SRem:
   2564     case Instruction::FRem: Out << " % "; break;
   2565     case Instruction::UDiv:
   2566     case Instruction::SDiv:
   2567     case Instruction::FDiv: Out << " / "; break;
   2568     case Instruction::And:  Out << " & "; break;
   2569     case Instruction::Or:   Out << " | "; break;
   2570     case Instruction::Xor:  Out << " ^ "; break;
   2571     case Instruction::Shl : Out << " << "; break;
   2572     case Instruction::LShr:
   2573     case Instruction::AShr: Out << " >> "; break;
   2574     default:
   2575 #ifndef NDEBUG
   2576        errs() << "Invalid operator type!" << I;
   2577 #endif
   2578        llvm_unreachable(0);
   2579     }
   2580 
   2581     writeOperandWithCast(I.getOperand(1), I.getOpcode());
   2582     if (NeedsClosingParens)
   2583       Out << "))";
   2584   }
   2585 
   2586   if (needsCast) {
   2587     Out << "))";
   2588   }
   2589 }
   2590 
   2591 void CWriter::visitICmpInst(ICmpInst &I) {
   2592   // We must cast the results of icmp which might be promoted.
   2593   bool needsCast = false;
   2594 
   2595   // Write out the cast of the instruction's value back to the proper type
   2596   // if necessary.
   2597   bool NeedsClosingParens = writeInstructionCast(I);
   2598 
   2599   // Certain icmp predicate require the operand to be forced to a specific type
   2600   // so we use writeOperandWithCast here instead of writeOperand. Similarly
   2601   // below for operand 1
   2602   writeOperandWithCast(I.getOperand(0), I);
   2603 
   2604   switch (I.getPredicate()) {
   2605   case ICmpInst::ICMP_EQ:  Out << " == "; break;
   2606   case ICmpInst::ICMP_NE:  Out << " != "; break;
   2607   case ICmpInst::ICMP_ULE:
   2608   case ICmpInst::ICMP_SLE: Out << " <= "; break;
   2609   case ICmpInst::ICMP_UGE:
   2610   case ICmpInst::ICMP_SGE: Out << " >= "; break;
   2611   case ICmpInst::ICMP_ULT:
   2612   case ICmpInst::ICMP_SLT: Out << " < "; break;
   2613   case ICmpInst::ICMP_UGT:
   2614   case ICmpInst::ICMP_SGT: Out << " > "; break;
   2615   default:
   2616 #ifndef NDEBUG
   2617     errs() << "Invalid icmp predicate!" << I;
   2618 #endif
   2619     llvm_unreachable(0);
   2620   }
   2621 
   2622   writeOperandWithCast(I.getOperand(1), I);
   2623   if (NeedsClosingParens)
   2624     Out << "))";
   2625 
   2626   if (needsCast) {
   2627     Out << "))";
   2628   }
   2629 }
   2630 
   2631 void CWriter::visitFCmpInst(FCmpInst &I) {
   2632   if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
   2633     Out << "0";
   2634     return;
   2635   }
   2636   if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
   2637     Out << "1";
   2638     return;
   2639   }
   2640 
   2641   const char* op = 0;
   2642   switch (I.getPredicate()) {
   2643   default: llvm_unreachable("Illegal FCmp predicate");
   2644   case FCmpInst::FCMP_ORD: op = "ord"; break;
   2645   case FCmpInst::FCMP_UNO: op = "uno"; break;
   2646   case FCmpInst::FCMP_UEQ: op = "ueq"; break;
   2647   case FCmpInst::FCMP_UNE: op = "une"; break;
   2648   case FCmpInst::FCMP_ULT: op = "ult"; break;
   2649   case FCmpInst::FCMP_ULE: op = "ule"; break;
   2650   case FCmpInst::FCMP_UGT: op = "ugt"; break;
   2651   case FCmpInst::FCMP_UGE: op = "uge"; break;
   2652   case FCmpInst::FCMP_OEQ: op = "oeq"; break;
   2653   case FCmpInst::FCMP_ONE: op = "one"; break;
   2654   case FCmpInst::FCMP_OLT: op = "olt"; break;
   2655   case FCmpInst::FCMP_OLE: op = "ole"; break;
   2656   case FCmpInst::FCMP_OGT: op = "ogt"; break;
   2657   case FCmpInst::FCMP_OGE: op = "oge"; break;
   2658   }
   2659 
   2660   Out << "llvm_fcmp_" << op << "(";
   2661   // Write the first operand
   2662   writeOperand(I.getOperand(0));
   2663   Out << ", ";
   2664   // Write the second operand
   2665   writeOperand(I.getOperand(1));
   2666   Out << ")";
   2667 }
   2668 
   2669 static const char * getFloatBitCastField(Type *Ty) {
   2670   switch (Ty->getTypeID()) {
   2671     default: llvm_unreachable("Invalid Type");
   2672     case Type::FloatTyID:  return "Float";
   2673     case Type::DoubleTyID: return "Double";
   2674     case Type::IntegerTyID: {
   2675       unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
   2676       if (NumBits <= 32)
   2677         return "Int32";
   2678       else
   2679         return "Int64";
   2680     }
   2681   }
   2682 }
   2683 
   2684 void CWriter::visitCastInst(CastInst &I) {
   2685   Type *DstTy = I.getType();
   2686   Type *SrcTy = I.getOperand(0)->getType();
   2687   if (isFPIntBitCast(I)) {
   2688     Out << '(';
   2689     // These int<->float and long<->double casts need to be handled specially
   2690     Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
   2691         << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
   2692     writeOperand(I.getOperand(0));
   2693     Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
   2694         << getFloatBitCastField(I.getType());
   2695     Out << ')';
   2696     return;
   2697   }
   2698 
   2699   Out << '(';
   2700   printCast(I.getOpcode(), SrcTy, DstTy);
   2701 
   2702   // Make a sext from i1 work by subtracting the i1 from 0 (an int).
   2703   if (SrcTy == Type::getInt1Ty(I.getContext()) &&
   2704       I.getOpcode() == Instruction::SExt)
   2705     Out << "0-";
   2706 
   2707   writeOperand(I.getOperand(0));
   2708 
   2709   if (DstTy == Type::getInt1Ty(I.getContext()) &&
   2710       (I.getOpcode() == Instruction::Trunc ||
   2711        I.getOpcode() == Instruction::FPToUI ||
   2712        I.getOpcode() == Instruction::FPToSI ||
   2713        I.getOpcode() == Instruction::PtrToInt)) {
   2714     // Make sure we really get a trunc to bool by anding the operand with 1
   2715     Out << "&1u";
   2716   }
   2717   Out << ')';
   2718 }
   2719 
   2720 void CWriter::visitSelectInst(SelectInst &I) {
   2721   Out << "((";
   2722   writeOperand(I.getCondition());
   2723   Out << ") ? (";
   2724   writeOperand(I.getTrueValue());
   2725   Out << ") : (";
   2726   writeOperand(I.getFalseValue());
   2727   Out << "))";
   2728 }
   2729 
   2730 // Returns the macro name or value of the max or min of an integer type
   2731 // (as defined in limits.h).
   2732 static void printLimitValue(IntegerType &Ty, bool isSigned, bool isMax,
   2733                             raw_ostream &Out) {
   2734   const char* type;
   2735   const char* sprefix = "";
   2736 
   2737   unsigned NumBits = Ty.getBitWidth();
   2738   if (NumBits <= 8) {
   2739     type = "CHAR";
   2740     sprefix = "S";
   2741   } else if (NumBits <= 16) {
   2742     type = "SHRT";
   2743   } else if (NumBits <= 32) {
   2744     type = "INT";
   2745   } else if (NumBits <= 64) {
   2746     type = "LLONG";
   2747   } else {
   2748     llvm_unreachable("Bit widths > 64 not implemented yet");
   2749   }
   2750 
   2751   if (isSigned)
   2752     Out << sprefix << type << (isMax ? "_MAX" : "_MIN");
   2753   else
   2754     Out << "U" << type << (isMax ? "_MAX" : "0");
   2755 }
   2756 
   2757 #ifndef NDEBUG
   2758 static bool isSupportedIntegerSize(IntegerType &T) {
   2759   return T.getBitWidth() == 8 || T.getBitWidth() == 16 ||
   2760          T.getBitWidth() == 32 || T.getBitWidth() == 64;
   2761 }
   2762 #endif
   2763 
   2764 void CWriter::printIntrinsicDefinition(const Function &F, raw_ostream &Out) {
   2765   FunctionType *funT = F.getFunctionType();
   2766   Type *retT = F.getReturnType();
   2767   IntegerType *elemT = cast<IntegerType>(funT->getParamType(1));
   2768 
   2769   assert(isSupportedIntegerSize(*elemT) &&
   2770          "CBackend does not support arbitrary size integers.");
   2771   assert(cast<StructType>(retT)->getElementType(0) == elemT &&
   2772          elemT == funT->getParamType(0) && funT->getNumParams() == 2);
   2773 
   2774   switch (F.getIntrinsicID()) {
   2775   default:
   2776     llvm_unreachable("Unsupported Intrinsic.");
   2777   case Intrinsic::uadd_with_overflow:
   2778     // static inline Rty uadd_ixx(unsigned ixx a, unsigned ixx b) {
   2779     //   Rty r;
   2780     //   r.field0 = a + b;
   2781     //   r.field1 = (r.field0 < a);
   2782     //   return r;
   2783     // }
   2784     Out << "static inline ";
   2785     printType(Out, retT);
   2786     Out << GetValueName(&F);
   2787     Out << "(";
   2788     printSimpleType(Out, elemT, false);
   2789     Out << "a,";
   2790     printSimpleType(Out, elemT, false);
   2791     Out << "b) {\n  ";
   2792     printType(Out, retT);
   2793     Out << "r;\n";
   2794     Out << "  r.field0 = a + b;\n";
   2795     Out << "  r.field1 = (r.field0 < a);\n";
   2796     Out << "  return r;\n}\n";
   2797     break;
   2798 
   2799   case Intrinsic::sadd_with_overflow:
   2800     // static inline Rty sadd_ixx(ixx a, ixx b) {
   2801     //   Rty r;
   2802     //   r.field1 = (b > 0 && a > XX_MAX - b) ||
   2803     //              (b < 0 && a < XX_MIN - b);
   2804     //   r.field0 = r.field1 ? 0 : a + b;
   2805     //   return r;
   2806     // }
   2807     Out << "static ";
   2808     printType(Out, retT);
   2809     Out << GetValueName(&F);
   2810     Out << "(";
   2811     printSimpleType(Out, elemT, true);
   2812     Out << "a,";
   2813     printSimpleType(Out, elemT, true);
   2814     Out << "b) {\n  ";
   2815     printType(Out, retT);
   2816     Out << "r;\n";
   2817     Out << "  r.field1 = (b > 0 && a > ";
   2818     printLimitValue(*elemT, true, true, Out);
   2819     Out << " - b) || (b < 0 && a < ";
   2820     printLimitValue(*elemT, true, false, Out);
   2821     Out << " - b);\n";
   2822     Out << "  r.field0 = r.field1 ? 0 : a + b;\n";
   2823     Out << "  return r;\n}\n";
   2824     break;
   2825   }
   2826 }
   2827 
   2828 void CWriter::lowerIntrinsics(Function &F) {
   2829   // This is used to keep track of intrinsics that get generated to a lowered
   2830   // function. We must generate the prototypes before the function body which
   2831   // will only be expanded on first use (by the loop below).
   2832   std::vector<Function*> prototypesToGen;
   2833 
   2834   // Examine all the instructions in this function to find the intrinsics that
   2835   // need to be lowered.
   2836   for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
   2837     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
   2838       if (CallInst *CI = dyn_cast<CallInst>(I++))
   2839         if (Function *F = CI->getCalledFunction())
   2840           switch (F->getIntrinsicID()) {
   2841           case Intrinsic::not_intrinsic:
   2842           case Intrinsic::vastart:
   2843           case Intrinsic::vacopy:
   2844           case Intrinsic::vaend:
   2845           case Intrinsic::returnaddress:
   2846           case Intrinsic::frameaddress:
   2847           case Intrinsic::setjmp:
   2848           case Intrinsic::longjmp:
   2849           case Intrinsic::prefetch:
   2850           case Intrinsic::powi:
   2851           case Intrinsic::x86_sse_cmp_ss:
   2852           case Intrinsic::x86_sse_cmp_ps:
   2853           case Intrinsic::x86_sse2_cmp_sd:
   2854           case Intrinsic::x86_sse2_cmp_pd:
   2855           case Intrinsic::ppc_altivec_lvsl:
   2856           case Intrinsic::uadd_with_overflow:
   2857           case Intrinsic::sadd_with_overflow:
   2858               // We directly implement these intrinsics
   2859             break;
   2860           default:
   2861             // If this is an intrinsic that directly corresponds to a GCC
   2862             // builtin, we handle it.
   2863             const char *BuiltinName = "";
   2864 #define GET_GCC_BUILTIN_NAME
   2865 #include "llvm/Intrinsics.gen"
   2866 #undef GET_GCC_BUILTIN_NAME
   2867             // If we handle it, don't lower it.
   2868             if (BuiltinName[0]) break;
   2869 
   2870             // All other intrinsic calls we must lower.
   2871             Instruction *Before = 0;
   2872             if (CI != &BB->front())
   2873               Before = prior(BasicBlock::iterator(CI));
   2874 
   2875             IL->LowerIntrinsicCall(CI);
   2876             if (Before) {        // Move iterator to instruction after call
   2877               I = Before; ++I;
   2878             } else {
   2879               I = BB->begin();
   2880             }
   2881             // If the intrinsic got lowered to another call, and that call has
   2882             // a definition then we need to make sure its prototype is emitted
   2883             // before any calls to it.
   2884             if (CallInst *Call = dyn_cast<CallInst>(I))
   2885               if (Function *NewF = Call->getCalledFunction())
   2886                 if (!NewF->isDeclaration())
   2887                   prototypesToGen.push_back(NewF);
   2888 
   2889             break;
   2890           }
   2891 
   2892   // We may have collected some prototypes to emit in the loop above.
   2893   // Emit them now, before the function that uses them is emitted. But,
   2894   // be careful not to emit them twice.
   2895   std::vector<Function*>::iterator I = prototypesToGen.begin();
   2896   std::vector<Function*>::iterator E = prototypesToGen.end();
   2897   for ( ; I != E; ++I) {
   2898     if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
   2899       Out << '\n';
   2900       printFunctionSignature(*I, true);
   2901       Out << ";\n";
   2902     }
   2903   }
   2904 }
   2905 
   2906 void CWriter::visitCallInst(CallInst &I) {
   2907   if (isa<InlineAsm>(I.getCalledValue()))
   2908     return visitInlineAsm(I);
   2909 
   2910   bool WroteCallee = false;
   2911 
   2912   // Handle intrinsic function calls first...
   2913   if (Function *F = I.getCalledFunction())
   2914     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   2915       if (visitBuiltinCall(I, ID, WroteCallee))
   2916         return;
   2917 
   2918   Value *Callee = I.getCalledValue();
   2919 
   2920   PointerType  *PTy   = cast<PointerType>(Callee->getType());
   2921   FunctionType *FTy   = cast<FunctionType>(PTy->getElementType());
   2922 
   2923   // If this is a call to a struct-return function, assign to the first
   2924   // parameter instead of passing it to the call.
   2925   const AttrListPtr &PAL = I.getAttributes();
   2926   bool hasByVal = I.hasByValArgument();
   2927   bool isStructRet = I.hasStructRetAttr();
   2928   if (isStructRet) {
   2929     writeOperandDeref(I.getArgOperand(0));
   2930     Out << " = ";
   2931   }
   2932 
   2933   if (I.isTailCall()) Out << " /*tail*/ ";
   2934 
   2935   if (!WroteCallee) {
   2936     // If this is an indirect call to a struct return function, we need to cast
   2937     // the pointer. Ditto for indirect calls with byval arguments.
   2938     bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
   2939 
   2940     // GCC is a real PITA.  It does not permit codegening casts of functions to
   2941     // function pointers if they are in a call (it generates a trap instruction
   2942     // instead!).  We work around this by inserting a cast to void* in between
   2943     // the function and the function pointer cast.  Unfortunately, we can't just
   2944     // form the constant expression here, because the folder will immediately
   2945     // nuke it.
   2946     //
   2947     // Note finally, that this is completely unsafe.  ANSI C does not guarantee
   2948     // that void* and function pointers have the same size. :( To deal with this
   2949     // in the common case, we handle casts where the number of arguments passed
   2950     // match exactly.
   2951     //
   2952     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
   2953       if (CE->isCast())
   2954         if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
   2955           NeedsCast = true;
   2956           Callee = RF;
   2957         }
   2958 
   2959     if (NeedsCast) {
   2960       // Ok, just cast the pointer type.
   2961       Out << "((";
   2962       if (isStructRet)
   2963         printStructReturnPointerFunctionType(Out, PAL,
   2964                              cast<PointerType>(I.getCalledValue()->getType()));
   2965       else if (hasByVal)
   2966         printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
   2967       else
   2968         printType(Out, I.getCalledValue()->getType());
   2969       Out << ")(void*)";
   2970     }
   2971     writeOperand(Callee);
   2972     if (NeedsCast) Out << ')';
   2973   }
   2974 
   2975   Out << '(';
   2976 
   2977   bool PrintedArg = false;
   2978   if(FTy->isVarArg() && !FTy->getNumParams()) {
   2979     Out << "0 /*dummy arg*/";
   2980     PrintedArg = true;
   2981   }
   2982 
   2983   unsigned NumDeclaredParams = FTy->getNumParams();
   2984   CallSite CS(&I);
   2985   CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
   2986   unsigned ArgNo = 0;
   2987   if (isStructRet) {   // Skip struct return argument.
   2988     ++AI;
   2989     ++ArgNo;
   2990   }
   2991 
   2992 
   2993   for (; AI != AE; ++AI, ++ArgNo) {
   2994     if (PrintedArg) Out << ", ";
   2995     if (ArgNo < NumDeclaredParams &&
   2996         (*AI)->getType() != FTy->getParamType(ArgNo)) {
   2997       Out << '(';
   2998       printType(Out, FTy->getParamType(ArgNo),
   2999             /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
   3000       Out << ')';
   3001     }
   3002     // Check if the argument is expected to be passed by value.
   3003     if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
   3004       writeOperandDeref(*AI);
   3005     else
   3006       writeOperand(*AI);
   3007     PrintedArg = true;
   3008   }
   3009   Out << ')';
   3010 }
   3011 
   3012 /// visitBuiltinCall - Handle the call to the specified builtin.  Returns true
   3013 /// if the entire call is handled, return false if it wasn't handled, and
   3014 /// optionally set 'WroteCallee' if the callee has already been printed out.
   3015 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
   3016                                bool &WroteCallee) {
   3017   switch (ID) {
   3018   default: {
   3019     // If this is an intrinsic that directly corresponds to a GCC
   3020     // builtin, we emit it here.
   3021     const char *BuiltinName = "";
   3022     Function *F = I.getCalledFunction();
   3023 #define GET_GCC_BUILTIN_NAME
   3024 #include "llvm/Intrinsics.gen"
   3025 #undef GET_GCC_BUILTIN_NAME
   3026     assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
   3027 
   3028     Out << BuiltinName;
   3029     WroteCallee = true;
   3030     return false;
   3031   }
   3032   case Intrinsic::vastart:
   3033     Out << "0; ";
   3034 
   3035     Out << "va_start(*(va_list*)";
   3036     writeOperand(I.getArgOperand(0));
   3037     Out << ", ";
   3038     // Output the last argument to the enclosing function.
   3039     if (I.getParent()->getParent()->arg_empty())
   3040       Out << "vararg_dummy_arg";
   3041     else
   3042       writeOperand(--I.getParent()->getParent()->arg_end());
   3043     Out << ')';
   3044     return true;
   3045   case Intrinsic::vaend:
   3046     if (!isa<ConstantPointerNull>(I.getArgOperand(0))) {
   3047       Out << "0; va_end(*(va_list*)";
   3048       writeOperand(I.getArgOperand(0));
   3049       Out << ')';
   3050     } else {
   3051       Out << "va_end(*(va_list*)0)";
   3052     }
   3053     return true;
   3054   case Intrinsic::vacopy:
   3055     Out << "0; ";
   3056     Out << "va_copy(*(va_list*)";
   3057     writeOperand(I.getArgOperand(0));
   3058     Out << ", *(va_list*)";
   3059     writeOperand(I.getArgOperand(1));
   3060     Out << ')';
   3061     return true;
   3062   case Intrinsic::returnaddress:
   3063     Out << "__builtin_return_address(";
   3064     writeOperand(I.getArgOperand(0));
   3065     Out << ')';
   3066     return true;
   3067   case Intrinsic::frameaddress:
   3068     Out << "__builtin_frame_address(";
   3069     writeOperand(I.getArgOperand(0));
   3070     Out << ')';
   3071     return true;
   3072   case Intrinsic::powi:
   3073     Out << "__builtin_powi(";
   3074     writeOperand(I.getArgOperand(0));
   3075     Out << ", ";
   3076     writeOperand(I.getArgOperand(1));
   3077     Out << ')';
   3078     return true;
   3079   case Intrinsic::setjmp:
   3080     Out << "setjmp(*(jmp_buf*)";
   3081     writeOperand(I.getArgOperand(0));
   3082     Out << ')';
   3083     return true;
   3084   case Intrinsic::longjmp:
   3085     Out << "longjmp(*(jmp_buf*)";
   3086     writeOperand(I.getArgOperand(0));
   3087     Out << ", ";
   3088     writeOperand(I.getArgOperand(1));
   3089     Out << ')';
   3090     return true;
   3091   case Intrinsic::prefetch:
   3092     Out << "LLVM_PREFETCH((const void *)";
   3093     writeOperand(I.getArgOperand(0));
   3094     Out << ", ";
   3095     writeOperand(I.getArgOperand(1));
   3096     Out << ", ";
   3097     writeOperand(I.getArgOperand(2));
   3098     Out << ")";
   3099     return true;
   3100   case Intrinsic::stacksave:
   3101     // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
   3102     // to work around GCC bugs (see PR1809).
   3103     Out << "0; *((void**)&" << GetValueName(&I)
   3104         << ") = __builtin_stack_save()";
   3105     return true;
   3106   case Intrinsic::x86_sse_cmp_ss:
   3107   case Intrinsic::x86_sse_cmp_ps:
   3108   case Intrinsic::x86_sse2_cmp_sd:
   3109   case Intrinsic::x86_sse2_cmp_pd:
   3110     Out << '(';
   3111     printType(Out, I.getType());
   3112     Out << ')';
   3113     // Multiple GCC builtins multiplex onto this intrinsic.
   3114     switch (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()) {
   3115     default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
   3116     case 0: Out << "__builtin_ia32_cmpeq"; break;
   3117     case 1: Out << "__builtin_ia32_cmplt"; break;
   3118     case 2: Out << "__builtin_ia32_cmple"; break;
   3119     case 3: Out << "__builtin_ia32_cmpunord"; break;
   3120     case 4: Out << "__builtin_ia32_cmpneq"; break;
   3121     case 5: Out << "__builtin_ia32_cmpnlt"; break;
   3122     case 6: Out << "__builtin_ia32_cmpnle"; break;
   3123     case 7: Out << "__builtin_ia32_cmpord"; break;
   3124     }
   3125     if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
   3126       Out << 'p';
   3127     else
   3128       Out << 's';
   3129     if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
   3130       Out << 's';
   3131     else
   3132       Out << 'd';
   3133 
   3134     Out << "(";
   3135     writeOperand(I.getArgOperand(0));
   3136     Out << ", ";
   3137     writeOperand(I.getArgOperand(1));
   3138     Out << ")";
   3139     return true;
   3140   case Intrinsic::ppc_altivec_lvsl:
   3141     Out << '(';
   3142     printType(Out, I.getType());
   3143     Out << ')';
   3144     Out << "__builtin_altivec_lvsl(0, (void*)";
   3145     writeOperand(I.getArgOperand(0));
   3146     Out << ")";
   3147     return true;
   3148   case Intrinsic::uadd_with_overflow:
   3149   case Intrinsic::sadd_with_overflow:
   3150     Out << GetValueName(I.getCalledFunction()) << "(";
   3151     writeOperand(I.getArgOperand(0));
   3152     Out << ", ";
   3153     writeOperand(I.getArgOperand(1));
   3154     Out << ")";
   3155     return true;
   3156   }
   3157 }
   3158 
   3159 //This converts the llvm constraint string to something gcc is expecting.
   3160 //TODO: work out platform independent constraints and factor those out
   3161 //      of the per target tables
   3162 //      handle multiple constraint codes
   3163 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
   3164   assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
   3165 
   3166   // Grab the translation table from MCAsmInfo if it exists.
   3167   const MCAsmInfo *TargetAsm;
   3168   std::string Triple = TheModule->getTargetTriple();
   3169   if (Triple.empty())
   3170     Triple = llvm::sys::getHostTriple();
   3171 
   3172   std::string E;
   3173   if (const Target *Match = TargetRegistry::lookupTarget(Triple, E))
   3174     TargetAsm = Match->createMCAsmInfo(Triple);
   3175   else
   3176     return c.Codes[0];
   3177 
   3178   const char *const *table = TargetAsm->getAsmCBE();
   3179 
   3180   // Search the translation table if it exists.
   3181   for (int i = 0; table && table[i]; i += 2)
   3182     if (c.Codes[0] == table[i]) {
   3183       delete TargetAsm;
   3184       return table[i+1];
   3185     }
   3186 
   3187   // Default is identity.
   3188   delete TargetAsm;
   3189   return c.Codes[0];
   3190 }
   3191 
   3192 //TODO: import logic from AsmPrinter.cpp
   3193 static std::string gccifyAsm(std::string asmstr) {
   3194   for (std::string::size_type i = 0; i != asmstr.size(); ++i)
   3195     if (asmstr[i] == '\n')
   3196       asmstr.replace(i, 1, "\\n");
   3197     else if (asmstr[i] == '\t')
   3198       asmstr.replace(i, 1, "\\t");
   3199     else if (asmstr[i] == '$') {
   3200       if (asmstr[i + 1] == '{') {
   3201         std::string::size_type a = asmstr.find_first_of(':', i + 1);
   3202         std::string::size_type b = asmstr.find_first_of('}', i + 1);
   3203         std::string n = "%" +
   3204           asmstr.substr(a + 1, b - a - 1) +
   3205           asmstr.substr(i + 2, a - i - 2);
   3206         asmstr.replace(i, b - i + 1, n);
   3207         i += n.size() - 1;
   3208       } else
   3209         asmstr.replace(i, 1, "%");
   3210     }
   3211     else if (asmstr[i] == '%')//grr
   3212       { asmstr.replace(i, 1, "%%"); ++i;}
   3213 
   3214   return asmstr;
   3215 }
   3216 
   3217 //TODO: assumptions about what consume arguments from the call are likely wrong
   3218 //      handle communitivity
   3219 void CWriter::visitInlineAsm(CallInst &CI) {
   3220   InlineAsm* as = cast<InlineAsm>(CI.getCalledValue());
   3221   InlineAsm::ConstraintInfoVector Constraints = as->ParseConstraints();
   3222 
   3223   std::vector<std::pair<Value*, int> > ResultVals;
   3224   if (CI.getType() == Type::getVoidTy(CI.getContext()))
   3225     ;
   3226   else if (StructType *ST = dyn_cast<StructType>(CI.getType())) {
   3227     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
   3228       ResultVals.push_back(std::make_pair(&CI, (int)i));
   3229   } else {
   3230     ResultVals.push_back(std::make_pair(&CI, -1));
   3231   }
   3232 
   3233   // Fix up the asm string for gcc and emit it.
   3234   Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
   3235   Out << "        :";
   3236 
   3237   unsigned ValueCount = 0;
   3238   bool IsFirst = true;
   3239 
   3240   // Convert over all the output constraints.
   3241   for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
   3242        E = Constraints.end(); I != E; ++I) {
   3243 
   3244     if (I->Type != InlineAsm::isOutput) {
   3245       ++ValueCount;
   3246       continue;  // Ignore non-output constraints.
   3247     }
   3248 
   3249     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
   3250     std::string C = InterpretASMConstraint(*I);
   3251     if (C.empty()) continue;
   3252 
   3253     if (!IsFirst) {
   3254       Out << ", ";
   3255       IsFirst = false;
   3256     }
   3257 
   3258     // Unpack the dest.
   3259     Value *DestVal;
   3260     int DestValNo = -1;
   3261 
   3262     if (ValueCount < ResultVals.size()) {
   3263       DestVal = ResultVals[ValueCount].first;
   3264       DestValNo = ResultVals[ValueCount].second;
   3265     } else
   3266       DestVal = CI.getArgOperand(ValueCount-ResultVals.size());
   3267 
   3268     if (I->isEarlyClobber)
   3269       C = "&"+C;
   3270 
   3271     Out << "\"=" << C << "\"(" << GetValueName(DestVal);
   3272     if (DestValNo != -1)
   3273       Out << ".field" << DestValNo; // Multiple retvals.
   3274     Out << ")";
   3275     ++ValueCount;
   3276   }
   3277 
   3278 
   3279   // Convert over all the input constraints.
   3280   Out << "\n        :";
   3281   IsFirst = true;
   3282   ValueCount = 0;
   3283   for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
   3284        E = Constraints.end(); I != E; ++I) {
   3285     if (I->Type != InlineAsm::isInput) {
   3286       ++ValueCount;
   3287       continue;  // Ignore non-input constraints.
   3288     }
   3289 
   3290     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
   3291     std::string C = InterpretASMConstraint(*I);
   3292     if (C.empty()) continue;
   3293 
   3294     if (!IsFirst) {
   3295       Out << ", ";
   3296       IsFirst = false;
   3297     }
   3298 
   3299     assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
   3300     Value *SrcVal = CI.getArgOperand(ValueCount-ResultVals.size());
   3301 
   3302     Out << "\"" << C << "\"(";
   3303     if (!I->isIndirect)
   3304       writeOperand(SrcVal);
   3305     else
   3306       writeOperandDeref(SrcVal);
   3307     Out << ")";
   3308   }
   3309 
   3310   // Convert over the clobber constraints.
   3311   IsFirst = true;
   3312   for (InlineAsm::ConstraintInfoVector::iterator I = Constraints.begin(),
   3313        E = Constraints.end(); I != E; ++I) {
   3314     if (I->Type != InlineAsm::isClobber)
   3315       continue;  // Ignore non-input constraints.
   3316 
   3317     assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
   3318     std::string C = InterpretASMConstraint(*I);
   3319     if (C.empty()) continue;
   3320 
   3321     if (!IsFirst) {
   3322       Out << ", ";
   3323       IsFirst = false;
   3324     }
   3325 
   3326     Out << '\"' << C << '"';
   3327   }
   3328 
   3329   Out << ")";
   3330 }
   3331 
   3332 void CWriter::visitAllocaInst(AllocaInst &I) {
   3333   Out << '(';
   3334   printType(Out, I.getType());
   3335   Out << ") alloca(sizeof(";
   3336   printType(Out, I.getType()->getElementType());
   3337   Out << ')';
   3338   if (I.isArrayAllocation()) {
   3339     Out << " * " ;
   3340     writeOperand(I.getOperand(0));
   3341   }
   3342   Out << ')';
   3343 }
   3344 
   3345 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
   3346                                  gep_type_iterator E, bool Static) {
   3347 
   3348   // If there are no indices, just print out the pointer.
   3349   if (I == E) {
   3350     writeOperand(Ptr);
   3351     return;
   3352   }
   3353 
   3354   // Find out if the last index is into a vector.  If so, we have to print this
   3355   // specially.  Since vectors can't have elements of indexable type, only the
   3356   // last index could possibly be of a vector element.
   3357   VectorType *LastIndexIsVector = 0;
   3358   {
   3359     for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
   3360       LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
   3361   }
   3362 
   3363   Out << "(";
   3364 
   3365   // If the last index is into a vector, we can't print it as &a[i][j] because
   3366   // we can't index into a vector with j in GCC.  Instead, emit this as
   3367   // (((float*)&a[i])+j)
   3368   if (LastIndexIsVector) {
   3369     Out << "((";
   3370     printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
   3371     Out << ")(";
   3372   }
   3373 
   3374   Out << '&';
   3375 
   3376   // If the first index is 0 (very typical) we can do a number of
   3377   // simplifications to clean up the code.
   3378   Value *FirstOp = I.getOperand();
   3379   if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
   3380     // First index isn't simple, print it the hard way.
   3381     writeOperand(Ptr);
   3382   } else {
   3383     ++I;  // Skip the zero index.
   3384 
   3385     // Okay, emit the first operand. If Ptr is something that is already address
   3386     // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
   3387     if (isAddressExposed(Ptr)) {
   3388       writeOperandInternal(Ptr, Static);
   3389     } else if (I != E && (*I)->isStructTy()) {
   3390       // If we didn't already emit the first operand, see if we can print it as
   3391       // P->f instead of "P[0].f"
   3392       writeOperand(Ptr);
   3393       Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
   3394       ++I;  // eat the struct index as well.
   3395     } else {
   3396       // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
   3397       Out << "(*";
   3398       writeOperand(Ptr);
   3399       Out << ")";
   3400     }
   3401   }
   3402 
   3403   for (; I != E; ++I) {
   3404     if ((*I)->isStructTy()) {
   3405       Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
   3406     } else if ((*I)->isArrayTy()) {
   3407       Out << ".array[";
   3408       writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
   3409       Out << ']';
   3410     } else if (!(*I)->isVectorTy()) {
   3411       Out << '[';
   3412       writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
   3413       Out << ']';
   3414     } else {
   3415       // If the last index is into a vector, then print it out as "+j)".  This
   3416       // works with the 'LastIndexIsVector' code above.
   3417       if (isa<Constant>(I.getOperand()) &&
   3418           cast<Constant>(I.getOperand())->isNullValue()) {
   3419         Out << "))";  // avoid "+0".
   3420       } else {
   3421         Out << ")+(";
   3422         writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
   3423         Out << "))";
   3424       }
   3425     }
   3426   }
   3427   Out << ")";
   3428 }
   3429 
   3430 void CWriter::writeMemoryAccess(Value *Operand, Type *OperandType,
   3431                                 bool IsVolatile, unsigned Alignment) {
   3432 
   3433   bool IsUnaligned = Alignment &&
   3434     Alignment < TD->getABITypeAlignment(OperandType);
   3435 
   3436   if (!IsUnaligned)
   3437     Out << '*';
   3438   if (IsVolatile || IsUnaligned) {
   3439     Out << "((";
   3440     if (IsUnaligned)
   3441       Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
   3442     printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
   3443     if (IsUnaligned) {
   3444       Out << "; } ";
   3445       if (IsVolatile) Out << "volatile ";
   3446       Out << "*";
   3447     }
   3448     Out << ")";
   3449   }
   3450 
   3451   writeOperand(Operand);
   3452 
   3453   if (IsVolatile || IsUnaligned) {
   3454     Out << ')';
   3455     if (IsUnaligned)
   3456       Out << "->data";
   3457   }
   3458 }
   3459 
   3460 void CWriter::visitLoadInst(LoadInst &I) {
   3461   writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
   3462                     I.getAlignment());
   3463 
   3464 }
   3465 
   3466 void CWriter::visitStoreInst(StoreInst &I) {
   3467   writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
   3468                     I.isVolatile(), I.getAlignment());
   3469   Out << " = ";
   3470   Value *Operand = I.getOperand(0);
   3471   Constant *BitMask = 0;
   3472   if (IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
   3473     if (!ITy->isPowerOf2ByteWidth())
   3474       // We have a bit width that doesn't match an even power-of-2 byte
   3475       // size. Consequently we must & the value with the type's bit mask
   3476       BitMask = ConstantInt::get(ITy, ITy->getBitMask());
   3477   if (BitMask)
   3478     Out << "((";
   3479   writeOperand(Operand);
   3480   if (BitMask) {
   3481     Out << ") & ";
   3482     printConstant(BitMask, false);
   3483     Out << ")";
   3484   }
   3485 }
   3486 
   3487 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
   3488   printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
   3489                      gep_type_end(I), false);
   3490 }
   3491 
   3492 void CWriter::visitVAArgInst(VAArgInst &I) {
   3493   Out << "va_arg(*(va_list*)";
   3494   writeOperand(I.getOperand(0));
   3495   Out << ", ";
   3496   printType(Out, I.getType());
   3497   Out << ");\n ";
   3498 }
   3499 
   3500 void CWriter::visitInsertElementInst(InsertElementInst &I) {
   3501   Type *EltTy = I.getType()->getElementType();
   3502   writeOperand(I.getOperand(0));
   3503   Out << ";\n  ";
   3504   Out << "((";
   3505   printType(Out, PointerType::getUnqual(EltTy));
   3506   Out << ")(&" << GetValueName(&I) << "))[";
   3507   writeOperand(I.getOperand(2));
   3508   Out << "] = (";
   3509   writeOperand(I.getOperand(1));
   3510   Out << ")";
   3511 }
   3512 
   3513 void CWriter::visitExtractElementInst(ExtractElementInst &I) {
   3514   // We know that our operand is not inlined.
   3515   Out << "((";
   3516   Type *EltTy =
   3517     cast<VectorType>(I.getOperand(0)->getType())->getElementType();
   3518   printType(Out, PointerType::getUnqual(EltTy));
   3519   Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
   3520   writeOperand(I.getOperand(1));
   3521   Out << "]";
   3522 }
   3523 
   3524 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
   3525   Out << "(";
   3526   printType(Out, SVI.getType());
   3527   Out << "){ ";
   3528   VectorType *VT = SVI.getType();
   3529   unsigned NumElts = VT->getNumElements();
   3530   Type *EltTy = VT->getElementType();
   3531 
   3532   for (unsigned i = 0; i != NumElts; ++i) {
   3533     if (i) Out << ", ";
   3534     int SrcVal = SVI.getMaskValue(i);
   3535     if ((unsigned)SrcVal >= NumElts*2) {
   3536       Out << " 0/*undef*/ ";
   3537     } else {
   3538       Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
   3539       if (isa<Instruction>(Op)) {
   3540         // Do an extractelement of this value from the appropriate input.
   3541         Out << "((";
   3542         printType(Out, PointerType::getUnqual(EltTy));
   3543         Out << ")(&" << GetValueName(Op)
   3544             << "))[" << (SrcVal & (NumElts-1)) << "]";
   3545       } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
   3546         Out << "0";
   3547       } else {
   3548         printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
   3549                                                            (NumElts-1)),
   3550                       false);
   3551       }
   3552     }
   3553   }
   3554   Out << "}";
   3555 }
   3556 
   3557 void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
   3558   // Start by copying the entire aggregate value into the result variable.
   3559   writeOperand(IVI.getOperand(0));
   3560   Out << ";\n  ";
   3561 
   3562   // Then do the insert to update the field.
   3563   Out << GetValueName(&IVI);
   3564   for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
   3565        i != e; ++i) {
   3566     Type *IndexedTy =
   3567       ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(),
   3568                                        makeArrayRef(b, i+1));
   3569     if (IndexedTy->isArrayTy())
   3570       Out << ".array[" << *i << "]";
   3571     else
   3572       Out << ".field" << *i;
   3573   }
   3574   Out << " = ";
   3575   writeOperand(IVI.getOperand(1));
   3576 }
   3577 
   3578 void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
   3579   Out << "(";
   3580   if (isa<UndefValue>(EVI.getOperand(0))) {
   3581     Out << "(";
   3582     printType(Out, EVI.getType());
   3583     Out << ") 0/*UNDEF*/";
   3584   } else {
   3585     Out << GetValueName(EVI.getOperand(0));
   3586     for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
   3587          i != e; ++i) {
   3588       Type *IndexedTy =
   3589         ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(),
   3590                                          makeArrayRef(b, i+1));
   3591       if (IndexedTy->isArrayTy())
   3592         Out << ".array[" << *i << "]";
   3593       else
   3594         Out << ".field" << *i;
   3595     }
   3596   }
   3597   Out << ")";
   3598 }
   3599 
   3600 //===----------------------------------------------------------------------===//
   3601 //                       External Interface declaration
   3602 //===----------------------------------------------------------------------===//
   3603 
   3604 bool CTargetMachine::addPassesToEmitFile(PassManagerBase &PM,
   3605                                          formatted_raw_ostream &o,
   3606                                          CodeGenFileType FileType,
   3607                                          CodeGenOpt::Level OptLevel,
   3608                                          bool DisableVerify) {
   3609   if (FileType != TargetMachine::CGFT_AssemblyFile) return true;
   3610 
   3611   PM.add(createGCLoweringPass());
   3612   PM.add(createLowerInvokePass());
   3613   PM.add(createCFGSimplificationPass());   // clean up after lower invoke.
   3614   PM.add(new CWriter(o));
   3615   PM.add(createGCInfoDeleter());
   3616   return false;
   3617 }
   3618