Home | History | Annotate | Download | only in mips
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 
     36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
     37 #define V8_MIPS_ASSEMBLER_MIPS_H_
     38 
     39 #include <stdio.h>
     40 
     41 #include <set>
     42 
     43 #include "src/assembler.h"
     44 #include "src/mips/constants-mips.h"
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 // clang-format off
     50 #define GENERAL_REGISTERS(V)                              \
     51   V(zero_reg)  V(at)  V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3)  \
     52   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6)  V(t7)  \
     53   V(s0)  V(s1)  V(s2)  V(s3)  V(s4)  V(s5)  V(s6)  V(s7)  V(t8)  V(t9) \
     54   V(k0)  V(k1)  V(gp)  V(sp)  V(fp)  V(ra)
     55 
     56 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
     57   V(v0)  V(v1)  V(a0)  V(a1)  V(a2)  V(a3) \
     58   V(t0)  V(t1)  V(t2)  V(t3)  V(t4)  V(t5)  V(t6) V(s7)
     59 
     60 #define DOUBLE_REGISTERS(V)                               \
     61   V(f0)  V(f1)  V(f2)  V(f3)  V(f4)  V(f5)  V(f6)  V(f7)  \
     62   V(f8)  V(f9)  V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \
     63   V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \
     64   V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31)
     65 
     66 #define FLOAT_REGISTERS DOUBLE_REGISTERS
     67 #define SIMD128_REGISTERS DOUBLE_REGISTERS
     68 
     69 #define ALLOCATABLE_DOUBLE_REGISTERS(V)                   \
     70   V(f0)  V(f2)  V(f4)  V(f6)  V(f8)  V(f10) V(f12) V(f14) \
     71   V(f16) V(f18) V(f20) V(f22) V(f24)
     72 // clang-format on
     73 
     74 // CPU Registers.
     75 //
     76 // 1) We would prefer to use an enum, but enum values are assignment-
     77 // compatible with int, which has caused code-generation bugs.
     78 //
     79 // 2) We would prefer to use a class instead of a struct but we don't like
     80 // the register initialization to depend on the particular initialization
     81 // order (which appears to be different on OS X, Linux, and Windows for the
     82 // installed versions of C++ we tried). Using a struct permits C-style
     83 // "initialization". Also, the Register objects cannot be const as this
     84 // forces initialization stubs in MSVC, making us dependent on initialization
     85 // order.
     86 //
     87 // 3) By not using an enum, we are possibly preventing the compiler from
     88 // doing certain constant folds, which may significantly reduce the
     89 // code generated for some assembly instructions (because they boil down
     90 // to a few constants). If this is a problem, we could change the code
     91 // such that we use an enum in optimized mode, and the struct in debug
     92 // mode. This way we get the compile-time error checking in debug mode
     93 // and best performance in optimized code.
     94 
     95 
     96 // -----------------------------------------------------------------------------
     97 // Implementation of Register and FPURegister.
     98 
     99 struct Register {
    100   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
    101 
    102   enum Code {
    103 #define REGISTER_CODE(R) kCode_##R,
    104     GENERAL_REGISTERS(REGISTER_CODE)
    105 #undef REGISTER_CODE
    106         kAfterLast,
    107     kCode_no_reg = -1
    108   };
    109 
    110   static const int kNumRegisters = Code::kAfterLast;
    111 
    112 #if defined(V8_TARGET_LITTLE_ENDIAN)
    113   static const int kMantissaOffset = 0;
    114   static const int kExponentOffset = 4;
    115 #elif defined(V8_TARGET_BIG_ENDIAN)
    116   static const int kMantissaOffset = 4;
    117   static const int kExponentOffset = 0;
    118 #else
    119 #error Unknown endianness
    120 #endif
    121 
    122 
    123   static Register from_code(int code) {
    124     DCHECK(code >= 0);
    125     DCHECK(code < kNumRegisters);
    126     Register r = {code};
    127     return r;
    128   }
    129   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
    130   bool is(Register reg) const { return reg_code == reg.reg_code; }
    131   int code() const {
    132     DCHECK(is_valid());
    133     return reg_code;
    134   }
    135   int bit() const {
    136     DCHECK(is_valid());
    137     return 1 << reg_code;
    138   }
    139 
    140   // Unfortunately we can't make this private in a struct.
    141   int reg_code;
    142 };
    143 
    144 // s7: context register
    145 // s3: lithium scratch
    146 // s4: lithium scratch2
    147 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
    148 GENERAL_REGISTERS(DECLARE_REGISTER)
    149 #undef DECLARE_REGISTER
    150 const Register no_reg = {Register::kCode_no_reg};
    151 
    152 
    153 int ToNumber(Register reg);
    154 
    155 Register ToRegister(int num);
    156 
    157 static const bool kSimpleFPAliasing = true;
    158 static const bool kSimdMaskRegisters = false;
    159 
    160 // Coprocessor register.
    161 struct FPURegister {
    162   enum Code {
    163 #define REGISTER_CODE(R) kCode_##R,
    164     DOUBLE_REGISTERS(REGISTER_CODE)
    165 #undef REGISTER_CODE
    166         kAfterLast,
    167     kCode_no_reg = -1
    168   };
    169 
    170   static const int kMaxNumRegisters = Code::kAfterLast;
    171 
    172   inline static int NumRegisters();
    173 
    174   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
    175   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
    176   // number of Double regs (64-bit regs, or FPU-reg-pairs).
    177 
    178   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
    179   bool is(FPURegister reg) const { return reg_code == reg.reg_code; }
    180   FPURegister low() const {
    181     // Find low reg of a Double-reg pair, which is the reg itself.
    182     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
    183     FPURegister reg;
    184     reg.reg_code = reg_code;
    185     DCHECK(reg.is_valid());
    186     return reg;
    187   }
    188   FPURegister high() const {
    189     // Find high reg of a Doubel-reg pair, which is reg + 1.
    190     DCHECK(reg_code % 2 == 0);  // Specified Double reg must be even.
    191     FPURegister reg;
    192     reg.reg_code = reg_code + 1;
    193     DCHECK(reg.is_valid());
    194     return reg;
    195   }
    196 
    197   int code() const {
    198     DCHECK(is_valid());
    199     return reg_code;
    200   }
    201   int bit() const {
    202     DCHECK(is_valid());
    203     return 1 << reg_code;
    204   }
    205 
    206   static FPURegister from_code(int code) {
    207     FPURegister r = {code};
    208     return r;
    209   }
    210   void setcode(int f) {
    211     reg_code = f;
    212     DCHECK(is_valid());
    213   }
    214   // Unfortunately we can't make this private in a struct.
    215   int reg_code;
    216 };
    217 
    218 // A few double registers are reserved: one as a scratch register and one to
    219 // hold 0.0.
    220 //  f28: 0.0
    221 //  f30: scratch register.
    222 
    223 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
    224 // 32-bit registers, f0 through f31. When used as 'double' they are used
    225 // in pairs, starting with the even numbered register. So a double operation
    226 // on f0 really uses f0 and f1.
    227 // (Modern mips hardware also supports 32 64-bit registers, via setting
    228 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
    229 // but it is not in common use. Someday we will want to support this in v8.)
    230 
    231 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
    232 typedef FPURegister FloatRegister;
    233 
    234 typedef FPURegister DoubleRegister;
    235 
    236 // TODO(mips) Define SIMD registers.
    237 typedef FPURegister Simd128Register;
    238 
    239 const DoubleRegister no_freg = {-1};
    240 
    241 const DoubleRegister f0 = {0};  // Return value in hard float mode.
    242 const DoubleRegister f1 = {1};
    243 const DoubleRegister f2 = {2};
    244 const DoubleRegister f3 = {3};
    245 const DoubleRegister f4 = {4};
    246 const DoubleRegister f5 = {5};
    247 const DoubleRegister f6 = {6};
    248 const DoubleRegister f7 = {7};
    249 const DoubleRegister f8 = {8};
    250 const DoubleRegister f9 = {9};
    251 const DoubleRegister f10 = {10};
    252 const DoubleRegister f11 = {11};
    253 const DoubleRegister f12 = {12};  // Arg 0 in hard float mode.
    254 const DoubleRegister f13 = {13};
    255 const DoubleRegister f14 = {14};  // Arg 1 in hard float mode.
    256 const DoubleRegister f15 = {15};
    257 const DoubleRegister f16 = {16};
    258 const DoubleRegister f17 = {17};
    259 const DoubleRegister f18 = {18};
    260 const DoubleRegister f19 = {19};
    261 const DoubleRegister f20 = {20};
    262 const DoubleRegister f21 = {21};
    263 const DoubleRegister f22 = {22};
    264 const DoubleRegister f23 = {23};
    265 const DoubleRegister f24 = {24};
    266 const DoubleRegister f25 = {25};
    267 const DoubleRegister f26 = {26};
    268 const DoubleRegister f27 = {27};
    269 const DoubleRegister f28 = {28};
    270 const DoubleRegister f29 = {29};
    271 const DoubleRegister f30 = {30};
    272 const DoubleRegister f31 = {31};
    273 
    274 // Register aliases.
    275 // cp is assumed to be a callee saved register.
    276 // Defined using #define instead of "static const Register&" because Clang
    277 // complains otherwise when a compilation unit that includes this header
    278 // doesn't use the variables.
    279 #define kRootRegister s6
    280 #define cp s7
    281 #define kLithiumScratchReg s3
    282 #define kLithiumScratchReg2 s4
    283 #define kLithiumScratchDouble f30
    284 #define kDoubleRegZero f28
    285 // Used on mips32r6 for compare operations.
    286 #define kDoubleCompareReg f26
    287 
    288 // FPU (coprocessor 1) control registers.
    289 // Currently only FCSR (#31) is implemented.
    290 struct FPUControlRegister {
    291   bool is_valid() const { return reg_code == kFCSRRegister; }
    292   bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; }
    293   int code() const {
    294     DCHECK(is_valid());
    295     return reg_code;
    296   }
    297   int bit() const {
    298     DCHECK(is_valid());
    299     return 1 << reg_code;
    300   }
    301   void setcode(int f) {
    302     reg_code = f;
    303     DCHECK(is_valid());
    304   }
    305   // Unfortunately we can't make this private in a struct.
    306   int reg_code;
    307 };
    308 
    309 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
    310 const FPUControlRegister FCSR = { kFCSRRegister };
    311 
    312 // -----------------------------------------------------------------------------
    313 // Machine instruction Operands.
    314 
    315 // Class Operand represents a shifter operand in data processing instructions.
    316 class Operand BASE_EMBEDDED {
    317  public:
    318   // Immediate.
    319   INLINE(explicit Operand(int32_t immediate,
    320          RelocInfo::Mode rmode = RelocInfo::NONE32));
    321   INLINE(explicit Operand(const ExternalReference& f));
    322   INLINE(explicit Operand(const char* s));
    323   INLINE(explicit Operand(Object** opp));
    324   INLINE(explicit Operand(Context** cpp));
    325   explicit Operand(Handle<Object> handle);
    326   INLINE(explicit Operand(Smi* value));
    327 
    328   // Register.
    329   INLINE(explicit Operand(Register rm));
    330 
    331   // Return true if this is a register operand.
    332   INLINE(bool is_reg() const);
    333 
    334   inline int32_t immediate() const {
    335     DCHECK(!is_reg());
    336     return imm32_;
    337   }
    338 
    339   Register rm() const { return rm_; }
    340 
    341  private:
    342   Register rm_;
    343   int32_t imm32_;  // Valid if rm_ == no_reg.
    344   RelocInfo::Mode rmode_;
    345 
    346   friend class Assembler;
    347   friend class MacroAssembler;
    348 };
    349 
    350 
    351 // On MIPS we have only one adressing mode with base_reg + offset.
    352 // Class MemOperand represents a memory operand in load and store instructions.
    353 class MemOperand : public Operand {
    354  public:
    355   // Immediate value attached to offset.
    356   enum OffsetAddend {
    357     offset_minus_one = -1,
    358     offset_zero = 0
    359   };
    360 
    361   explicit MemOperand(Register rn, int32_t offset = 0);
    362   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
    363                       OffsetAddend offset_addend = offset_zero);
    364   int32_t offset() const { return offset_; }
    365 
    366   bool OffsetIsInt16Encodable() const {
    367     return is_int16(offset_);
    368   }
    369 
    370  private:
    371   int32_t offset_;
    372 
    373   friend class Assembler;
    374 };
    375 
    376 
    377 class Assembler : public AssemblerBase {
    378  public:
    379   // Create an assembler. Instructions and relocation information are emitted
    380   // into a buffer, with the instructions starting from the beginning and the
    381   // relocation information starting from the end of the buffer. See CodeDesc
    382   // for a detailed comment on the layout (globals.h).
    383   //
    384   // If the provided buffer is NULL, the assembler allocates and grows its own
    385   // buffer, and buffer_size determines the initial buffer size. The buffer is
    386   // owned by the assembler and deallocated upon destruction of the assembler.
    387   //
    388   // If the provided buffer is not NULL, the assembler uses the provided buffer
    389   // for code generation and assumes its size to be buffer_size. If the buffer
    390   // is too small, a fatal error occurs. No deallocation of the buffer is done
    391   // upon destruction of the assembler.
    392   Assembler(Isolate* isolate, void* buffer, int buffer_size);
    393   virtual ~Assembler() { }
    394 
    395   // GetCode emits any pending (non-emitted) code and fills the descriptor
    396   // desc. GetCode() is idempotent; it returns the same result if no other
    397   // Assembler functions are invoked in between GetCode() calls.
    398   void GetCode(CodeDesc* desc);
    399 
    400   // Label operations & relative jumps (PPUM Appendix D).
    401   //
    402   // Takes a branch opcode (cc) and a label (L) and generates
    403   // either a backward branch or a forward branch and links it
    404   // to the label fixup chain. Usage:
    405   //
    406   // Label L;    // unbound label
    407   // j(cc, &L);  // forward branch to unbound label
    408   // bind(&L);   // bind label to the current pc
    409   // j(cc, &L);  // backward branch to bound label
    410   // bind(&L);   // illegal: a label may be bound only once
    411   //
    412   // Note: The same Label can be used for forward and backward branches
    413   // but it may be bound only once.
    414   void bind(Label* L);  // Binds an unbound label L to current code position.
    415 
    416   enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 };
    417 
    418   // Determines if Label is bound and near enough so that branch instruction
    419   // can be used to reach it, instead of jump instruction.
    420   bool is_near(Label* L);
    421   bool is_near(Label* L, OffsetSize bits);
    422   bool is_near_branch(Label* L);
    423   inline bool is_near_pre_r6(Label* L) {
    424     DCHECK(!IsMipsArchVariant(kMips32r6));
    425     return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
    426   }
    427   inline bool is_near_r6(Label* L) {
    428     DCHECK(IsMipsArchVariant(kMips32r6));
    429     return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize;
    430   }
    431 
    432   int BranchOffset(Instr instr);
    433 
    434   // Returns the branch offset to the given label from the current code
    435   // position. Links the label to the current position if it is still unbound.
    436   // Manages the jump elimination optimization if the second parameter is true.
    437   int32_t branch_offset_helper(Label* L, OffsetSize bits);
    438   inline int32_t branch_offset(Label* L) {
    439     return branch_offset_helper(L, OffsetSize::kOffset16);
    440   }
    441   inline int32_t branch_offset21(Label* L) {
    442     return branch_offset_helper(L, OffsetSize::kOffset21);
    443   }
    444   inline int32_t branch_offset26(Label* L) {
    445     return branch_offset_helper(L, OffsetSize::kOffset26);
    446   }
    447   inline int32_t shifted_branch_offset(Label* L) {
    448     return branch_offset(L) >> 2;
    449   }
    450   inline int32_t shifted_branch_offset21(Label* L) {
    451     return branch_offset21(L) >> 2;
    452   }
    453   inline int32_t shifted_branch_offset26(Label* L) {
    454     return branch_offset26(L) >> 2;
    455   }
    456   uint32_t jump_address(Label* L);
    457 
    458   // Puts a labels target address at the given position.
    459   // The high 8 bits are set to zero.
    460   void label_at_put(Label* L, int at_offset);
    461 
    462   // Read/Modify the code target address in the branch/call instruction at pc.
    463   static Address target_address_at(Address pc);
    464   static void set_target_address_at(
    465       Isolate* isolate, Address pc, Address target,
    466       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
    467   // On MIPS there is no Constant Pool so we skip that parameter.
    468   INLINE(static Address target_address_at(Address pc, Address constant_pool)) {
    469     return target_address_at(pc);
    470   }
    471   INLINE(static void set_target_address_at(
    472       Isolate* isolate, Address pc, Address constant_pool, Address target,
    473       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
    474     set_target_address_at(isolate, pc, target, icache_flush_mode);
    475   }
    476   INLINE(static Address target_address_at(Address pc, Code* code));
    477   INLINE(static void set_target_address_at(
    478       Isolate* isolate, Address pc, Code* code, Address target,
    479       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
    480 
    481   // Return the code target address at a call site from the return address
    482   // of that call in the instruction stream.
    483   inline static Address target_address_from_return_address(Address pc);
    484 
    485   static void QuietNaN(HeapObject* nan);
    486 
    487   // This sets the branch destination (which gets loaded at the call address).
    488   // This is for calls and branches within generated code.  The serializer
    489   // has already deserialized the lui/ori instructions etc.
    490   inline static void deserialization_set_special_target_at(
    491       Isolate* isolate, Address instruction_payload, Code* code,
    492       Address target) {
    493     set_target_address_at(
    494         isolate,
    495         instruction_payload - kInstructionsFor32BitConstant * kInstrSize, code,
    496         target);
    497   }
    498 
    499   // This sets the internal reference at the pc.
    500   inline static void deserialization_set_target_internal_reference_at(
    501       Isolate* isolate, Address pc, Address target,
    502       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
    503 
    504   // Size of an instruction.
    505   static const int kInstrSize = sizeof(Instr);
    506 
    507   // Difference between address of current opcode and target address offset.
    508   static const int kBranchPCOffset = 4;
    509 
    510   // Here we are patching the address in the LUI/ORI instruction pair.
    511   // These values are used in the serialization process and must be zero for
    512   // MIPS platform, as Code, Embedded Object or External-reference pointers
    513   // are split across two consecutive instructions and don't exist separately
    514   // in the code, so the serializer should not step forwards in memory after
    515   // a target is resolved and written.
    516   static const int kSpecialTargetSize = 0;
    517 
    518   // Number of consecutive instructions used to store 32bit constant. This
    519   // constant is used in RelocInfo::target_address_address() function to tell
    520   // serializer address of the instruction that follows LUI/ORI instruction
    521   // pair.
    522   static const int kInstructionsFor32BitConstant = 2;
    523 
    524   // Distance between the instruction referring to the address of the call
    525   // target and the return address.
    526 #ifdef _MIPS_ARCH_MIPS32R6
    527   static const int kCallTargetAddressOffset = 3 * kInstrSize;
    528 #else
    529   static const int kCallTargetAddressOffset = 4 * kInstrSize;
    530 #endif
    531 
    532   // Distance between start of patched debug break slot and the emitted address
    533   // to jump to.
    534   static const int kPatchDebugBreakSlotAddressOffset = 4 * kInstrSize;
    535 
    536   // Difference between address of current opcode and value read from pc
    537   // register.
    538   static const int kPcLoadDelta = 4;
    539 
    540 #ifdef _MIPS_ARCH_MIPS32R6
    541   static const int kDebugBreakSlotInstructions = 3;
    542 #else
    543   static const int kDebugBreakSlotInstructions = 4;
    544 #endif
    545   static const int kDebugBreakSlotLength =
    546       kDebugBreakSlotInstructions * kInstrSize;
    547 
    548   // Max offset for instructions with 16-bit offset field
    549   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
    550 
    551   // Max offset for compact branch instructions with 26-bit offset field
    552   static const int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1;
    553 
    554 #ifdef _MIPS_ARCH_MIPS32R6
    555   static const int kTrampolineSlotsSize = 2 * kInstrSize;
    556 #else
    557   static const int kTrampolineSlotsSize = 4 * kInstrSize;
    558 #endif
    559 
    560   // ---------------------------------------------------------------------------
    561   // Code generation.
    562 
    563   // Insert the smallest number of nop instructions
    564   // possible to align the pc offset to a multiple
    565   // of m. m must be a power of 2 (>= 4).
    566   void Align(int m);
    567   // Insert the smallest number of zero bytes possible to align the pc offset
    568   // to a mulitple of m. m must be a power of 2 (>= 2).
    569   void DataAlign(int m);
    570   // Aligns code to something that's optimal for a jump target for the platform.
    571   void CodeTargetAlign();
    572 
    573   // Different nop operations are used by the code generator to detect certain
    574   // states of the generated code.
    575   enum NopMarkerTypes {
    576     NON_MARKING_NOP = 0,
    577     DEBUG_BREAK_NOP,
    578     // IC markers.
    579     PROPERTY_ACCESS_INLINED,
    580     PROPERTY_ACCESS_INLINED_CONTEXT,
    581     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    582     // Helper values.
    583     LAST_CODE_MARKER,
    584     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
    585     // Code aging
    586     CODE_AGE_MARKER_NOP = 6,
    587     CODE_AGE_SEQUENCE_NOP
    588   };
    589 
    590   // Type == 0 is the default non-marking nop. For mips this is a
    591   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
    592   // marking, to avoid conflict with ssnop and ehb instructions.
    593   void nop(unsigned int type = 0) {
    594     DCHECK(type < 32);
    595     Register nop_rt_reg = (type == 0) ? zero_reg : at;
    596     sll(zero_reg, nop_rt_reg, type, true);
    597   }
    598 
    599 
    600   // --------Branch-and-jump-instructions----------
    601   // We don't use likely variant of instructions.
    602   void b(int16_t offset);
    603   inline void b(Label* L) { b(shifted_branch_offset(L)); }
    604   void bal(int16_t offset);
    605   inline void bal(Label* L) { bal(shifted_branch_offset(L)); }
    606   void bc(int32_t offset);
    607   inline void bc(Label* L) { bc(shifted_branch_offset26(L)); }
    608   void balc(int32_t offset);
    609   inline void balc(Label* L) { balc(shifted_branch_offset26(L)); }
    610 
    611   void beq(Register rs, Register rt, int16_t offset);
    612   inline void beq(Register rs, Register rt, Label* L) {
    613     beq(rs, rt, shifted_branch_offset(L));
    614   }
    615   void bgez(Register rs, int16_t offset);
    616   void bgezc(Register rt, int16_t offset);
    617   inline void bgezc(Register rt, Label* L) {
    618     bgezc(rt, shifted_branch_offset(L));
    619   }
    620   void bgeuc(Register rs, Register rt, int16_t offset);
    621   inline void bgeuc(Register rs, Register rt, Label* L) {
    622     bgeuc(rs, rt, shifted_branch_offset(L));
    623   }
    624   void bgec(Register rs, Register rt, int16_t offset);
    625   inline void bgec(Register rs, Register rt, Label* L) {
    626     bgec(rs, rt, shifted_branch_offset(L));
    627   }
    628   void bgezal(Register rs, int16_t offset);
    629   void bgezalc(Register rt, int16_t offset);
    630   inline void bgezalc(Register rt, Label* L) {
    631     bgezalc(rt, shifted_branch_offset(L));
    632   }
    633   void bgezall(Register rs, int16_t offset);
    634   inline void bgezall(Register rs, Label* L) {
    635     bgezall(rs, branch_offset(L) >> 2);
    636   }
    637   void bgtz(Register rs, int16_t offset);
    638   void bgtzc(Register rt, int16_t offset);
    639   inline void bgtzc(Register rt, Label* L) {
    640     bgtzc(rt, shifted_branch_offset(L));
    641   }
    642   void blez(Register rs, int16_t offset);
    643   void blezc(Register rt, int16_t offset);
    644   inline void blezc(Register rt, Label* L) {
    645     blezc(rt, shifted_branch_offset(L));
    646   }
    647   void bltz(Register rs, int16_t offset);
    648   void bltzc(Register rt, int16_t offset);
    649   inline void bltzc(Register rt, Label* L) {
    650     bltzc(rt, shifted_branch_offset(L));
    651   }
    652   void bltuc(Register rs, Register rt, int16_t offset);
    653   inline void bltuc(Register rs, Register rt, Label* L) {
    654     bltuc(rs, rt, shifted_branch_offset(L));
    655   }
    656   void bltc(Register rs, Register rt, int16_t offset);
    657   inline void bltc(Register rs, Register rt, Label* L) {
    658     bltc(rs, rt, shifted_branch_offset(L));
    659   }
    660   void bltzal(Register rs, int16_t offset);
    661   void blezalc(Register rt, int16_t offset);
    662   inline void blezalc(Register rt, Label* L) {
    663     blezalc(rt, shifted_branch_offset(L));
    664   }
    665   void bltzalc(Register rt, int16_t offset);
    666   inline void bltzalc(Register rt, Label* L) {
    667     bltzalc(rt, shifted_branch_offset(L));
    668   }
    669   void bgtzalc(Register rt, int16_t offset);
    670   inline void bgtzalc(Register rt, Label* L) {
    671     bgtzalc(rt, shifted_branch_offset(L));
    672   }
    673   void beqzalc(Register rt, int16_t offset);
    674   inline void beqzalc(Register rt, Label* L) {
    675     beqzalc(rt, shifted_branch_offset(L));
    676   }
    677   void beqc(Register rs, Register rt, int16_t offset);
    678   inline void beqc(Register rs, Register rt, Label* L) {
    679     beqc(rs, rt, shifted_branch_offset(L));
    680   }
    681   void beqzc(Register rs, int32_t offset);
    682   inline void beqzc(Register rs, Label* L) {
    683     beqzc(rs, shifted_branch_offset21(L));
    684   }
    685   void bnezalc(Register rt, int16_t offset);
    686   inline void bnezalc(Register rt, Label* L) {
    687     bnezalc(rt, shifted_branch_offset(L));
    688   }
    689   void bnec(Register rs, Register rt, int16_t offset);
    690   inline void bnec(Register rs, Register rt, Label* L) {
    691     bnec(rs, rt, shifted_branch_offset(L));
    692   }
    693   void bnezc(Register rt, int32_t offset);
    694   inline void bnezc(Register rt, Label* L) {
    695     bnezc(rt, shifted_branch_offset21(L));
    696   }
    697   void bne(Register rs, Register rt, int16_t offset);
    698   inline void bne(Register rs, Register rt, Label* L) {
    699     bne(rs, rt, shifted_branch_offset(L));
    700   }
    701   void bovc(Register rs, Register rt, int16_t offset);
    702   inline void bovc(Register rs, Register rt, Label* L) {
    703     bovc(rs, rt, shifted_branch_offset(L));
    704   }
    705   void bnvc(Register rs, Register rt, int16_t offset);
    706   inline void bnvc(Register rs, Register rt, Label* L) {
    707     bnvc(rs, rt, shifted_branch_offset(L));
    708   }
    709 
    710   // Never use the int16_t b(l)cond version with a branch offset
    711   // instead of using the Label* version.
    712 
    713   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
    714   void j(int32_t target);
    715   void jal(int32_t target);
    716   void jalr(Register rs, Register rd = ra);
    717   void jr(Register target);
    718   void jic(Register rt, int16_t offset);
    719   void jialc(Register rt, int16_t offset);
    720 
    721 
    722   // -------Data-processing-instructions---------
    723 
    724   // Arithmetic.
    725   void addu(Register rd, Register rs, Register rt);
    726   void subu(Register rd, Register rs, Register rt);
    727   void mult(Register rs, Register rt);
    728   void multu(Register rs, Register rt);
    729   void div(Register rs, Register rt);
    730   void divu(Register rs, Register rt);
    731   void div(Register rd, Register rs, Register rt);
    732   void divu(Register rd, Register rs, Register rt);
    733   void mod(Register rd, Register rs, Register rt);
    734   void modu(Register rd, Register rs, Register rt);
    735   void mul(Register rd, Register rs, Register rt);
    736   void muh(Register rd, Register rs, Register rt);
    737   void mulu(Register rd, Register rs, Register rt);
    738   void muhu(Register rd, Register rs, Register rt);
    739 
    740   void addiu(Register rd, Register rs, int32_t j);
    741 
    742   // Logical.
    743   void and_(Register rd, Register rs, Register rt);
    744   void or_(Register rd, Register rs, Register rt);
    745   void xor_(Register rd, Register rs, Register rt);
    746   void nor(Register rd, Register rs, Register rt);
    747 
    748   void andi(Register rd, Register rs, int32_t j);
    749   void ori(Register rd, Register rs, int32_t j);
    750   void xori(Register rd, Register rs, int32_t j);
    751   void lui(Register rd, int32_t j);
    752   void aui(Register rs, Register rt, int32_t j);
    753 
    754   // Shifts.
    755   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
    756   // and may cause problems in normal code. coming_from_nop makes sure this
    757   // doesn't happen.
    758   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
    759   void sllv(Register rd, Register rt, Register rs);
    760   void srl(Register rd, Register rt, uint16_t sa);
    761   void srlv(Register rd, Register rt, Register rs);
    762   void sra(Register rt, Register rd, uint16_t sa);
    763   void srav(Register rt, Register rd, Register rs);
    764   void rotr(Register rd, Register rt, uint16_t sa);
    765   void rotrv(Register rd, Register rt, Register rs);
    766 
    767   // ------------Memory-instructions-------------
    768 
    769   void lb(Register rd, const MemOperand& rs);
    770   void lbu(Register rd, const MemOperand& rs);
    771   void lh(Register rd, const MemOperand& rs);
    772   void lhu(Register rd, const MemOperand& rs);
    773   void lw(Register rd, const MemOperand& rs);
    774   void lwl(Register rd, const MemOperand& rs);
    775   void lwr(Register rd, const MemOperand& rs);
    776   void sb(Register rd, const MemOperand& rs);
    777   void sh(Register rd, const MemOperand& rs);
    778   void sw(Register rd, const MemOperand& rs);
    779   void swl(Register rd, const MemOperand& rs);
    780   void swr(Register rd, const MemOperand& rs);
    781 
    782 
    783   // ---------PC-Relative-instructions-----------
    784 
    785   void addiupc(Register rs, int32_t imm19);
    786   void lwpc(Register rs, int32_t offset19);
    787   void auipc(Register rs, int16_t imm16);
    788   void aluipc(Register rs, int16_t imm16);
    789 
    790 
    791   // ----------------Prefetch--------------------
    792 
    793   void pref(int32_t hint, const MemOperand& rs);
    794 
    795 
    796   // -------------Misc-instructions--------------
    797 
    798   // Break / Trap instructions.
    799   void break_(uint32_t code, bool break_as_stop = false);
    800   void stop(const char* msg, uint32_t code = kMaxStopCode);
    801   void tge(Register rs, Register rt, uint16_t code);
    802   void tgeu(Register rs, Register rt, uint16_t code);
    803   void tlt(Register rs, Register rt, uint16_t code);
    804   void tltu(Register rs, Register rt, uint16_t code);
    805   void teq(Register rs, Register rt, uint16_t code);
    806   void tne(Register rs, Register rt, uint16_t code);
    807 
    808   // Memory barrier instruction.
    809   void sync();
    810 
    811   // Move from HI/LO register.
    812   void mfhi(Register rd);
    813   void mflo(Register rd);
    814 
    815   // Set on less than.
    816   void slt(Register rd, Register rs, Register rt);
    817   void sltu(Register rd, Register rs, Register rt);
    818   void slti(Register rd, Register rs, int32_t j);
    819   void sltiu(Register rd, Register rs, int32_t j);
    820 
    821   // Conditional move.
    822   void movz(Register rd, Register rs, Register rt);
    823   void movn(Register rd, Register rs, Register rt);
    824   void movt(Register rd, Register rs, uint16_t cc = 0);
    825   void movf(Register rd, Register rs, uint16_t cc = 0);
    826 
    827   void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
    828   void sel_s(FPURegister fd, FPURegister fs, FPURegister ft);
    829   void sel_d(FPURegister fd, FPURegister fs, FPURegister ft);
    830   void seleqz(Register rd, Register rs, Register rt);
    831   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
    832               FPURegister ft);
    833   void selnez(Register rd, Register rs, Register rt);
    834   void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
    835               FPURegister ft);
    836   void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft);
    837   void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft);
    838   void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft);
    839   void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft);
    840 
    841   void movz_s(FPURegister fd, FPURegister fs, Register rt);
    842   void movz_d(FPURegister fd, FPURegister fs, Register rt);
    843   void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
    844   void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
    845   void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0);
    846   void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0);
    847   void movn_s(FPURegister fd, FPURegister fs, Register rt);
    848   void movn_d(FPURegister fd, FPURegister fs, Register rt);
    849   // Bit twiddling.
    850   void clz(Register rd, Register rs);
    851   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
    852   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
    853   void bitswap(Register rd, Register rt);
    854   void align(Register rd, Register rs, Register rt, uint8_t bp);
    855 
    856   void wsbh(Register rd, Register rt);
    857   void seh(Register rd, Register rt);
    858   void seb(Register rd, Register rt);
    859 
    860   // --------Coprocessor-instructions----------------
    861 
    862   // Load, store, and move.
    863   void lwc1(FPURegister fd, const MemOperand& src);
    864   void ldc1(FPURegister fd, const MemOperand& src);
    865 
    866   void swc1(FPURegister fs, const MemOperand& dst);
    867   void sdc1(FPURegister fs, const MemOperand& dst);
    868 
    869   void mtc1(Register rt, FPURegister fs);
    870   void mthc1(Register rt, FPURegister fs);
    871 
    872   void mfc1(Register rt, FPURegister fs);
    873   void mfhc1(Register rt, FPURegister fs);
    874 
    875   void ctc1(Register rt, FPUControlRegister fs);
    876   void cfc1(Register rt, FPUControlRegister fs);
    877 
    878   // Arithmetic.
    879   void add_s(FPURegister fd, FPURegister fs, FPURegister ft);
    880   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
    881   void sub_s(FPURegister fd, FPURegister fs, FPURegister ft);
    882   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
    883   void mul_s(FPURegister fd, FPURegister fs, FPURegister ft);
    884   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
    885   void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
    886   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
    887   void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
    888   void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
    889   void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft);
    890   void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft);
    891   void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft);
    892   void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft);
    893   void div_s(FPURegister fd, FPURegister fs, FPURegister ft);
    894   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
    895   void abs_s(FPURegister fd, FPURegister fs);
    896   void abs_d(FPURegister fd, FPURegister fs);
    897   void mov_d(FPURegister fd, FPURegister fs);
    898   void mov_s(FPURegister fd, FPURegister fs);
    899   void neg_s(FPURegister fd, FPURegister fs);
    900   void neg_d(FPURegister fd, FPURegister fs);
    901   void sqrt_s(FPURegister fd, FPURegister fs);
    902   void sqrt_d(FPURegister fd, FPURegister fs);
    903   void rsqrt_s(FPURegister fd, FPURegister fs);
    904   void rsqrt_d(FPURegister fd, FPURegister fs);
    905   void recip_d(FPURegister fd, FPURegister fs);
    906   void recip_s(FPURegister fd, FPURegister fs);
    907 
    908   // Conversion.
    909   void cvt_w_s(FPURegister fd, FPURegister fs);
    910   void cvt_w_d(FPURegister fd, FPURegister fs);
    911   void trunc_w_s(FPURegister fd, FPURegister fs);
    912   void trunc_w_d(FPURegister fd, FPURegister fs);
    913   void round_w_s(FPURegister fd, FPURegister fs);
    914   void round_w_d(FPURegister fd, FPURegister fs);
    915   void floor_w_s(FPURegister fd, FPURegister fs);
    916   void floor_w_d(FPURegister fd, FPURegister fs);
    917   void ceil_w_s(FPURegister fd, FPURegister fs);
    918   void ceil_w_d(FPURegister fd, FPURegister fs);
    919   void rint_s(FPURegister fd, FPURegister fs);
    920   void rint_d(FPURegister fd, FPURegister fs);
    921   void rint(SecondaryField fmt, FPURegister fd, FPURegister fs);
    922 
    923   void cvt_l_s(FPURegister fd, FPURegister fs);
    924   void cvt_l_d(FPURegister fd, FPURegister fs);
    925   void trunc_l_s(FPURegister fd, FPURegister fs);
    926   void trunc_l_d(FPURegister fd, FPURegister fs);
    927   void round_l_s(FPURegister fd, FPURegister fs);
    928   void round_l_d(FPURegister fd, FPURegister fs);
    929   void floor_l_s(FPURegister fd, FPURegister fs);
    930   void floor_l_d(FPURegister fd, FPURegister fs);
    931   void ceil_l_s(FPURegister fd, FPURegister fs);
    932   void ceil_l_d(FPURegister fd, FPURegister fs);
    933 
    934   void class_s(FPURegister fd, FPURegister fs);
    935   void class_d(FPURegister fd, FPURegister fs);
    936 
    937   void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
    938   void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
    939   void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
    940   void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft);
    941   void min_s(FPURegister fd, FPURegister fs, FPURegister ft);
    942   void min_d(FPURegister fd, FPURegister fs, FPURegister ft);
    943   void max_s(FPURegister fd, FPURegister fs, FPURegister ft);
    944   void max_d(FPURegister fd, FPURegister fs, FPURegister ft);
    945   void mina_s(FPURegister fd, FPURegister fs, FPURegister ft);
    946   void mina_d(FPURegister fd, FPURegister fs, FPURegister ft);
    947   void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft);
    948   void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft);
    949 
    950   void cvt_s_w(FPURegister fd, FPURegister fs);
    951   void cvt_s_l(FPURegister fd, FPURegister fs);
    952   void cvt_s_d(FPURegister fd, FPURegister fs);
    953 
    954   void cvt_d_w(FPURegister fd, FPURegister fs);
    955   void cvt_d_l(FPURegister fd, FPURegister fs);
    956   void cvt_d_s(FPURegister fd, FPURegister fs);
    957 
    958   // Conditions and branches for MIPSr6.
    959   void cmp(FPUCondition cond, SecondaryField fmt,
    960          FPURegister fd, FPURegister ft, FPURegister fs);
    961   void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
    962   void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft);
    963 
    964   void bc1eqz(int16_t offset, FPURegister ft);
    965   inline void bc1eqz(Label* L, FPURegister ft) {
    966     bc1eqz(shifted_branch_offset(L), ft);
    967   }
    968   void bc1nez(int16_t offset, FPURegister ft);
    969   inline void bc1nez(Label* L, FPURegister ft) {
    970     bc1nez(shifted_branch_offset(L), ft);
    971   }
    972 
    973   // Conditions and branches for non MIPSr6.
    974   void c(FPUCondition cond, SecondaryField fmt,
    975          FPURegister ft, FPURegister fs, uint16_t cc = 0);
    976   void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
    977   void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0);
    978 
    979   void bc1f(int16_t offset, uint16_t cc = 0);
    980   inline void bc1f(Label* L, uint16_t cc = 0) {
    981     bc1f(shifted_branch_offset(L), cc);
    982   }
    983   void bc1t(int16_t offset, uint16_t cc = 0);
    984   inline void bc1t(Label* L, uint16_t cc = 0) {
    985     bc1t(shifted_branch_offset(L), cc);
    986   }
    987   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
    988 
    989   // Check the code size generated from label to here.
    990   int SizeOfCodeGeneratedSince(Label* label) {
    991     return pc_offset() - label->pos();
    992   }
    993 
    994   // Check the number of instructions generated from label to here.
    995   int InstructionsGeneratedSince(Label* label) {
    996     return SizeOfCodeGeneratedSince(label) / kInstrSize;
    997   }
    998 
    999   // Class for scoping postponing the trampoline pool generation.
   1000   class BlockTrampolinePoolScope {
   1001    public:
   1002     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
   1003       assem_->StartBlockTrampolinePool();
   1004     }
   1005     ~BlockTrampolinePoolScope() {
   1006       assem_->EndBlockTrampolinePool();
   1007     }
   1008 
   1009    private:
   1010     Assembler* assem_;
   1011 
   1012     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
   1013   };
   1014 
   1015   // Class for postponing the assembly buffer growth. Typically used for
   1016   // sequences of instructions that must be emitted as a unit, before
   1017   // buffer growth (and relocation) can occur.
   1018   // This blocking scope is not nestable.
   1019   class BlockGrowBufferScope {
   1020    public:
   1021     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
   1022       assem_->StartBlockGrowBuffer();
   1023     }
   1024     ~BlockGrowBufferScope() {
   1025       assem_->EndBlockGrowBuffer();
   1026     }
   1027 
   1028    private:
   1029     Assembler* assem_;
   1030 
   1031     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
   1032   };
   1033 
   1034   // Debugging.
   1035 
   1036   // Mark address of a debug break slot.
   1037   void RecordDebugBreakSlot(RelocInfo::Mode mode);
   1038 
   1039   // Record the AST id of the CallIC being compiled, so that it can be placed
   1040   // in the relocation information.
   1041   void SetRecordedAstId(TypeFeedbackId ast_id) {
   1042     DCHECK(recorded_ast_id_.IsNone());
   1043     recorded_ast_id_ = ast_id;
   1044   }
   1045 
   1046   TypeFeedbackId RecordedAstId() {
   1047     DCHECK(!recorded_ast_id_.IsNone());
   1048     return recorded_ast_id_;
   1049   }
   1050 
   1051   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
   1052 
   1053   // Record a comment relocation entry that can be used by a disassembler.
   1054   // Use --code-comments to enable.
   1055   void RecordComment(const char* msg);
   1056 
   1057   // Record a deoptimization reason that can be used by a log or cpu profiler.
   1058   // Use --trace-deopt to enable.
   1059   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
   1060                          int id);
   1061 
   1062   static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc,
   1063                                        intptr_t pc_delta);
   1064 
   1065   // Writes a single byte or word of data in the code stream.  Used for
   1066   // inline tables, e.g., jump-tables.
   1067   void db(uint8_t data);
   1068   void dd(uint32_t data);
   1069   void dq(uint64_t data);
   1070   void dp(uintptr_t data) { dd(data); }
   1071   void dd(Label* label);
   1072 
   1073   // Postpone the generation of the trampoline pool for the specified number of
   1074   // instructions.
   1075   void BlockTrampolinePoolFor(int instructions);
   1076 
   1077   // Check if there is less than kGap bytes available in the buffer.
   1078   // If this is the case, we need to grow the buffer before emitting
   1079   // an instruction or relocation information.
   1080   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
   1081 
   1082   // Get the number of bytes available in the buffer.
   1083   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
   1084 
   1085   // Read/patch instructions.
   1086   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
   1087   static void instr_at_put(byte* pc, Instr instr) {
   1088     *reinterpret_cast<Instr*>(pc) = instr;
   1089   }
   1090   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
   1091   void instr_at_put(int pos, Instr instr) {
   1092     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
   1093   }
   1094 
   1095   // Check if an instruction is a branch of some kind.
   1096   static bool IsBranch(Instr instr);
   1097   static bool IsBc(Instr instr);
   1098   static bool IsBzc(Instr instr);
   1099   static bool IsBeq(Instr instr);
   1100   static bool IsBne(Instr instr);
   1101   static bool IsBeqzc(Instr instr);
   1102   static bool IsBnezc(Instr instr);
   1103   static bool IsBeqc(Instr instr);
   1104   static bool IsBnec(Instr instr);
   1105   static bool IsJicOrJialc(Instr instr);
   1106 
   1107   static bool IsJump(Instr instr);
   1108   static bool IsJ(Instr instr);
   1109   static bool IsLui(Instr instr);
   1110   static bool IsOri(Instr instr);
   1111 
   1112   static bool IsJal(Instr instr);
   1113   static bool IsJr(Instr instr);
   1114   static bool IsJalr(Instr instr);
   1115 
   1116   static bool IsNop(Instr instr, unsigned int type);
   1117   static bool IsPop(Instr instr);
   1118   static bool IsPush(Instr instr);
   1119   static bool IsLwRegFpOffset(Instr instr);
   1120   static bool IsSwRegFpOffset(Instr instr);
   1121   static bool IsLwRegFpNegOffset(Instr instr);
   1122   static bool IsSwRegFpNegOffset(Instr instr);
   1123 
   1124   static Register GetRtReg(Instr instr);
   1125   static Register GetRsReg(Instr instr);
   1126   static Register GetRdReg(Instr instr);
   1127 
   1128   static uint32_t GetRt(Instr instr);
   1129   static uint32_t GetRtField(Instr instr);
   1130   static uint32_t GetRs(Instr instr);
   1131   static uint32_t GetRsField(Instr instr);
   1132   static uint32_t GetRd(Instr instr);
   1133   static uint32_t GetRdField(Instr instr);
   1134   static uint32_t GetSa(Instr instr);
   1135   static uint32_t GetSaField(Instr instr);
   1136   static uint32_t GetOpcodeField(Instr instr);
   1137   static uint32_t GetFunction(Instr instr);
   1138   static uint32_t GetFunctionField(Instr instr);
   1139   static uint32_t GetImmediate16(Instr instr);
   1140   static uint32_t GetLabelConst(Instr instr);
   1141 
   1142   static int32_t GetBranchOffset(Instr instr);
   1143   static bool IsLw(Instr instr);
   1144   static int16_t GetLwOffset(Instr instr);
   1145   static int16_t GetJicOrJialcOffset(Instr instr);
   1146   static int16_t GetLuiOffset(Instr instr);
   1147   static Instr SetLwOffset(Instr instr, int16_t offset);
   1148 
   1149   static bool IsSw(Instr instr);
   1150   static Instr SetSwOffset(Instr instr, int16_t offset);
   1151   static bool IsAddImmediate(Instr instr);
   1152   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
   1153   static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic);
   1154   static void UnpackTargetAddress(uint32_t address, int16_t& lui_offset,
   1155                                   int16_t& jic_offset);
   1156   static void UnpackTargetAddressUnsigned(uint32_t address,
   1157                                           uint32_t& lui_offset,
   1158                                           uint32_t& jic_offset);
   1159 
   1160   static bool IsAndImmediate(Instr instr);
   1161   static bool IsEmittedConstant(Instr instr);
   1162 
   1163   void CheckTrampolinePool();
   1164 
   1165   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
   1166                                           ConstantPoolEntry::Access access,
   1167                                           ConstantPoolEntry::Type type) {
   1168     // No embedded constant pool support.
   1169     UNREACHABLE();
   1170   }
   1171 
   1172   bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; }
   1173   static bool IsCompactBranchSupported() {
   1174     return IsMipsArchVariant(kMips32r6);
   1175   }
   1176 
   1177   inline int UnboundLabelsCount() { return unbound_labels_count_; }
   1178 
   1179  protected:
   1180   // Load Scaled Address instruction.
   1181   void lsa(Register rd, Register rt, Register rs, uint8_t sa);
   1182 
   1183   // Helpers.
   1184   void LoadRegPlusOffsetToAt(const MemOperand& src);
   1185   int32_t LoadRegPlusUpperOffsetPartToAt(const MemOperand& src);
   1186   int32_t LoadUpperOffsetForTwoMemoryAccesses(const MemOperand& src);
   1187 
   1188   // Relocation for a type-recording IC has the AST id added to it.  This
   1189   // member variable is a way to pass the information from the call site to
   1190   // the relocation info.
   1191   TypeFeedbackId recorded_ast_id_;
   1192 
   1193   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
   1194 
   1195   // Decode branch instruction at pos and return branch target pos.
   1196   int target_at(int pos, bool is_internal);
   1197 
   1198   // Patch branch instruction at pos to branch to given branch target pos.
   1199   void target_at_put(int pos, int target_pos, bool is_internal);
   1200 
   1201   // Say if we need to relocate with this mode.
   1202   bool MustUseReg(RelocInfo::Mode rmode);
   1203 
   1204   // Record reloc info for current pc_.
   1205   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
   1206 
   1207   // Block the emission of the trampoline pool before pc_offset.
   1208   void BlockTrampolinePoolBefore(int pc_offset) {
   1209     if (no_trampoline_pool_before_ < pc_offset)
   1210       no_trampoline_pool_before_ = pc_offset;
   1211   }
   1212 
   1213   void StartBlockTrampolinePool() {
   1214     trampoline_pool_blocked_nesting_++;
   1215   }
   1216 
   1217   void EndBlockTrampolinePool() {
   1218     trampoline_pool_blocked_nesting_--;
   1219   }
   1220 
   1221   bool is_trampoline_pool_blocked() const {
   1222     return trampoline_pool_blocked_nesting_ > 0;
   1223   }
   1224 
   1225   bool has_exception() const {
   1226     return internal_trampoline_exception_;
   1227   }
   1228 
   1229   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
   1230 
   1231   bool is_trampoline_emitted() const {
   1232     return trampoline_emitted_;
   1233   }
   1234 
   1235   // Temporarily block automatic assembly buffer growth.
   1236   void StartBlockGrowBuffer() {
   1237     DCHECK(!block_buffer_growth_);
   1238     block_buffer_growth_ = true;
   1239   }
   1240 
   1241   void EndBlockGrowBuffer() {
   1242     DCHECK(block_buffer_growth_);
   1243     block_buffer_growth_ = false;
   1244   }
   1245 
   1246   bool is_buffer_growth_blocked() const {
   1247     return block_buffer_growth_;
   1248   }
   1249 
   1250   void EmitForbiddenSlotInstruction() {
   1251     if (IsPrevInstrCompactBranch()) {
   1252       nop();
   1253     }
   1254   }
   1255 
   1256   inline void CheckTrampolinePoolQuick(int extra_instructions = 0);
   1257 
   1258   inline void CheckBuffer();
   1259 
   1260  private:
   1261   inline static void set_target_internal_reference_encoded_at(Address pc,
   1262                                                               Address target);
   1263 
   1264   // Buffer size and constant pool distance are checked together at regular
   1265   // intervals of kBufferCheckInterval emitted bytes.
   1266   static const int kBufferCheckInterval = 1*KB/2;
   1267 
   1268   // Code generation.
   1269   // The relocation writer's position is at least kGap bytes below the end of
   1270   // the generated instructions. This is so that multi-instruction sequences do
   1271   // not have to check for overflow. The same is true for writes of large
   1272   // relocation info entries.
   1273   static const int kGap = 32;
   1274 
   1275 
   1276   // Repeated checking whether the trampoline pool should be emitted is rather
   1277   // expensive. By default we only check again once a number of instructions
   1278   // has been generated.
   1279   static const int kCheckConstIntervalInst = 32;
   1280   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
   1281 
   1282   int next_buffer_check_;  // pc offset of next buffer check.
   1283 
   1284   // Emission of the trampoline pool may be blocked in some code sequences.
   1285   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
   1286   int no_trampoline_pool_before_;  // Block emission before this pc offset.
   1287 
   1288   // Keep track of the last emitted pool to guarantee a maximal distance.
   1289   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
   1290 
   1291   // Automatic growth of the assembly buffer may be blocked for some sequences.
   1292   bool block_buffer_growth_;  // Block growth when true.
   1293 
   1294   // Relocation information generation.
   1295   // Each relocation is encoded as a variable size value.
   1296   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
   1297   RelocInfoWriter reloc_info_writer;
   1298 
   1299   // The bound position, before this we cannot do instruction elimination.
   1300   int last_bound_pos_;
   1301 
   1302   // Readable constants for compact branch handling in emit()
   1303   enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true };
   1304 
   1305   // Code emission.
   1306   void GrowBuffer();
   1307   inline void emit(Instr x,
   1308                    CompactBranchType is_compact_branch = CompactBranchType::NO);
   1309   inline void emit(uint64_t x);
   1310   inline void CheckForEmitInForbiddenSlot();
   1311   template <typename T>
   1312   inline void EmitHelper(T x);
   1313   inline void EmitHelper(Instr x, CompactBranchType is_compact_branch);
   1314 
   1315   // Instruction generation.
   1316   // We have 3 different kind of encoding layout on MIPS.
   1317   // However due to many different types of objects encoded in the same fields
   1318   // we have quite a few aliases for each mode.
   1319   // Using the same structure to refer to Register and FPURegister would spare a
   1320   // few aliases, but mixing both does not look clean to me.
   1321   // Anyway we could surely implement this differently.
   1322 
   1323   void GenInstrRegister(Opcode opcode,
   1324                         Register rs,
   1325                         Register rt,
   1326                         Register rd,
   1327                         uint16_t sa = 0,
   1328                         SecondaryField func = NULLSF);
   1329 
   1330   void GenInstrRegister(Opcode opcode,
   1331                         Register rs,
   1332                         Register rt,
   1333                         uint16_t msb,
   1334                         uint16_t lsb,
   1335                         SecondaryField func);
   1336 
   1337   void GenInstrRegister(Opcode opcode,
   1338                         SecondaryField fmt,
   1339                         FPURegister ft,
   1340                         FPURegister fs,
   1341                         FPURegister fd,
   1342                         SecondaryField func = NULLSF);
   1343 
   1344   void GenInstrRegister(Opcode opcode,
   1345                         FPURegister fr,
   1346                         FPURegister ft,
   1347                         FPURegister fs,
   1348                         FPURegister fd,
   1349                         SecondaryField func = NULLSF);
   1350 
   1351   void GenInstrRegister(Opcode opcode,
   1352                         SecondaryField fmt,
   1353                         Register rt,
   1354                         FPURegister fs,
   1355                         FPURegister fd,
   1356                         SecondaryField func = NULLSF);
   1357 
   1358   void GenInstrRegister(Opcode opcode,
   1359                         SecondaryField fmt,
   1360                         Register rt,
   1361                         FPUControlRegister fs,
   1362                         SecondaryField func = NULLSF);
   1363 
   1364   void GenInstrImmediate(
   1365       Opcode opcode, Register rs, Register rt, int32_t j,
   1366       CompactBranchType is_compact_branch = CompactBranchType::NO);
   1367   void GenInstrImmediate(
   1368       Opcode opcode, Register rs, SecondaryField SF, int32_t j,
   1369       CompactBranchType is_compact_branch = CompactBranchType::NO);
   1370   void GenInstrImmediate(
   1371       Opcode opcode, Register r1, FPURegister r2, int32_t j,
   1372       CompactBranchType is_compact_branch = CompactBranchType::NO);
   1373   void GenInstrImmediate(
   1374       Opcode opcode, Register rs, int32_t offset21,
   1375       CompactBranchType is_compact_branch = CompactBranchType::NO);
   1376   void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21);
   1377   void GenInstrImmediate(
   1378       Opcode opcode, int32_t offset26,
   1379       CompactBranchType is_compact_branch = CompactBranchType::NO);
   1380 
   1381 
   1382   void GenInstrJump(Opcode opcode,
   1383                      uint32_t address);
   1384 
   1385 
   1386   // Labels.
   1387   void print(Label* L);
   1388   void bind_to(Label* L, int pos);
   1389   void next(Label* L, bool is_internal);
   1390 
   1391   // One trampoline consists of:
   1392   // - space for trampoline slots,
   1393   // - space for labels.
   1394   //
   1395   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
   1396   // Space for trampoline slots preceeds space for labels. Each label is of one
   1397   // instruction size, so total amount for labels is equal to
   1398   // label_count *  kInstrSize.
   1399   class Trampoline {
   1400    public:
   1401     Trampoline() {
   1402       start_ = 0;
   1403       next_slot_ = 0;
   1404       free_slot_count_ = 0;
   1405       end_ = 0;
   1406     }
   1407     Trampoline(int start, int slot_count) {
   1408       start_ = start;
   1409       next_slot_ = start;
   1410       free_slot_count_ = slot_count;
   1411       end_ = start + slot_count * kTrampolineSlotsSize;
   1412     }
   1413     int start() {
   1414       return start_;
   1415     }
   1416     int end() {
   1417       return end_;
   1418     }
   1419     int take_slot() {
   1420       int trampoline_slot = kInvalidSlotPos;
   1421       if (free_slot_count_ <= 0) {
   1422         // We have run out of space on trampolines.
   1423         // Make sure we fail in debug mode, so we become aware of each case
   1424         // when this happens.
   1425         DCHECK(0);
   1426         // Internal exception will be caught.
   1427       } else {
   1428         trampoline_slot = next_slot_;
   1429         free_slot_count_--;
   1430         next_slot_ += kTrampolineSlotsSize;
   1431       }
   1432       return trampoline_slot;
   1433     }
   1434 
   1435    private:
   1436     int start_;
   1437     int end_;
   1438     int next_slot_;
   1439     int free_slot_count_;
   1440   };
   1441 
   1442   int32_t get_trampoline_entry(int32_t pos);
   1443   int unbound_labels_count_;
   1444   // If trampoline is emitted, generated code is becoming large. As this is
   1445   // already a slow case which can possibly break our code generation for the
   1446   // extreme case, we use this information to trigger different mode of
   1447   // branch instruction generation, where we use jump instructions rather
   1448   // than regular branch instructions.
   1449   bool trampoline_emitted_;
   1450   static const int kInvalidSlotPos = -1;
   1451 
   1452   // Internal reference positions, required for unbounded internal reference
   1453   // labels.
   1454   std::set<int> internal_reference_positions_;
   1455   bool is_internal_reference(Label* L) {
   1456     return internal_reference_positions_.find(L->pos()) !=
   1457            internal_reference_positions_.end();
   1458   }
   1459 
   1460   void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; }
   1461   void ClearCompactBranchState() { prev_instr_compact_branch_ = false; }
   1462   bool prev_instr_compact_branch_ = false;
   1463 
   1464   Trampoline trampoline_;
   1465   bool internal_trampoline_exception_;
   1466 
   1467   friend class RegExpMacroAssemblerMIPS;
   1468   friend class RelocInfo;
   1469   friend class CodePatcher;
   1470   friend class BlockTrampolinePoolScope;
   1471   friend class EnsureSpace;
   1472 };
   1473 
   1474 
   1475 class EnsureSpace BASE_EMBEDDED {
   1476  public:
   1477   explicit EnsureSpace(Assembler* assembler) {
   1478     assembler->CheckBuffer();
   1479   }
   1480 };
   1481 
   1482 }  // namespace internal
   1483 }  // namespace v8
   1484 
   1485 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
   1486