Home | History | Annotate | Download | only in ppc
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stdarg.h>
      6 #include <stdlib.h>
      7 #include <cmath>
      8 
      9 #if V8_TARGET_ARCH_PPC
     10 
     11 #include "src/assembler.h"
     12 #include "src/base/bits.h"
     13 #include "src/codegen.h"
     14 #include "src/disasm.h"
     15 #include "src/ppc/constants-ppc.h"
     16 #include "src/ppc/frames-ppc.h"
     17 #include "src/ppc/simulator-ppc.h"
     18 #include "src/runtime/runtime-utils.h"
     19 
     20 #if defined(USE_SIMULATOR)
     21 
     22 // Only build the simulator if not compiling for real PPC hardware.
     23 namespace v8 {
     24 namespace internal {
     25 
     26 const auto GetRegConfig = RegisterConfiguration::Crankshaft;
     27 
     28 // This macro provides a platform independent use of sscanf. The reason for
     29 // SScanF not being implemented in a platform independent way through
     30 // ::v8::internal::OS in the same way as SNPrintF is that the
     31 // Windows C Run-Time Library does not provide vsscanf.
     32 #define SScanF sscanf  // NOLINT
     33 
     34 // The PPCDebugger class is used by the simulator while debugging simulated
     35 // PowerPC code.
     36 class PPCDebugger {
     37  public:
     38   explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
     39 
     40   void Stop(Instruction* instr);
     41   void Debug();
     42 
     43  private:
     44   static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
     45   static const Instr kNopInstr = (ORI);  // ori, 0,0,0
     46 
     47   Simulator* sim_;
     48 
     49   intptr_t GetRegisterValue(int regnum);
     50   double GetRegisterPairDoubleValue(int regnum);
     51   double GetFPDoubleRegisterValue(int regnum);
     52   bool GetValue(const char* desc, intptr_t* value);
     53   bool GetFPDoubleValue(const char* desc, double* value);
     54 
     55   // Set or delete a breakpoint. Returns true if successful.
     56   bool SetBreakpoint(Instruction* break_pc);
     57   bool DeleteBreakpoint(Instruction* break_pc);
     58 
     59   // Undo and redo all breakpoints. This is needed to bracket disassembly and
     60   // execution to skip past breakpoints when run from the debugger.
     61   void UndoBreakpoints();
     62   void RedoBreakpoints();
     63 };
     64 
     65 void PPCDebugger::Stop(Instruction* instr) {
     66   // Get the stop code.
     67   // use of kStopCodeMask not right on PowerPC
     68   uint32_t code = instr->SvcValue() & kStopCodeMask;
     69   // Retrieve the encoded address, which comes just after this stop.
     70   char* msg =
     71       *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
     72   // Update this stop description.
     73   if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
     74     sim_->watched_stops_[code].desc = msg;
     75   }
     76   // Print the stop message and code if it is not the default code.
     77   if (code != kMaxStopCode) {
     78     PrintF("Simulator hit stop %u: %s\n", code, msg);
     79   } else {
     80     PrintF("Simulator hit %s\n", msg);
     81   }
     82   sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
     83   Debug();
     84 }
     85 
     86 intptr_t PPCDebugger::GetRegisterValue(int regnum) {
     87   return sim_->get_register(regnum);
     88 }
     89 
     90 
     91 double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
     92   return sim_->get_double_from_register_pair(regnum);
     93 }
     94 
     95 
     96 double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
     97   return sim_->get_double_from_d_register(regnum);
     98 }
     99 
    100 
    101 bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
    102   int regnum = Registers::Number(desc);
    103   if (regnum != kNoRegister) {
    104     *value = GetRegisterValue(regnum);
    105     return true;
    106   } else {
    107     if (strncmp(desc, "0x", 2) == 0) {
    108       return SScanF(desc + 2, "%" V8PRIxPTR,
    109                     reinterpret_cast<uintptr_t*>(value)) == 1;
    110     } else {
    111       return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
    112              1;
    113     }
    114   }
    115   return false;
    116 }
    117 
    118 
    119 bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
    120   int regnum = DoubleRegisters::Number(desc);
    121   if (regnum != kNoRegister) {
    122     *value = sim_->get_double_from_d_register(regnum);
    123     return true;
    124   }
    125   return false;
    126 }
    127 
    128 
    129 bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
    130   // Check if a breakpoint can be set. If not return without any side-effects.
    131   if (sim_->break_pc_ != NULL) {
    132     return false;
    133   }
    134 
    135   // Set the breakpoint.
    136   sim_->break_pc_ = break_pc;
    137   sim_->break_instr_ = break_pc->InstructionBits();
    138   // Not setting the breakpoint instruction in the code itself. It will be set
    139   // when the debugger shell continues.
    140   return true;
    141 }
    142 
    143 
    144 bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
    145   if (sim_->break_pc_ != NULL) {
    146     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
    147   }
    148 
    149   sim_->break_pc_ = NULL;
    150   sim_->break_instr_ = 0;
    151   return true;
    152 }
    153 
    154 
    155 void PPCDebugger::UndoBreakpoints() {
    156   if (sim_->break_pc_ != NULL) {
    157     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
    158   }
    159 }
    160 
    161 
    162 void PPCDebugger::RedoBreakpoints() {
    163   if (sim_->break_pc_ != NULL) {
    164     sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
    165   }
    166 }
    167 
    168 
    169 void PPCDebugger::Debug() {
    170   intptr_t last_pc = -1;
    171   bool done = false;
    172 
    173 #define COMMAND_SIZE 63
    174 #define ARG_SIZE 255
    175 
    176 #define STR(a) #a
    177 #define XSTR(a) STR(a)
    178 
    179   char cmd[COMMAND_SIZE + 1];
    180   char arg1[ARG_SIZE + 1];
    181   char arg2[ARG_SIZE + 1];
    182   char* argv[3] = {cmd, arg1, arg2};
    183 
    184   // make sure to have a proper terminating character if reaching the limit
    185   cmd[COMMAND_SIZE] = 0;
    186   arg1[ARG_SIZE] = 0;
    187   arg2[ARG_SIZE] = 0;
    188 
    189   // Undo all set breakpoints while running in the debugger shell. This will
    190   // make them invisible to all commands.
    191   UndoBreakpoints();
    192   // Disable tracing while simulating
    193   bool trace = ::v8::internal::FLAG_trace_sim;
    194   ::v8::internal::FLAG_trace_sim = false;
    195 
    196   while (!done && !sim_->has_bad_pc()) {
    197     if (last_pc != sim_->get_pc()) {
    198       disasm::NameConverter converter;
    199       disasm::Disassembler dasm(converter);
    200       // use a reasonably large buffer
    201       v8::internal::EmbeddedVector<char, 256> buffer;
    202       dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
    203       PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(), buffer.start());
    204       last_pc = sim_->get_pc();
    205     }
    206     char* line = ReadLine("sim> ");
    207     if (line == NULL) {
    208       break;
    209     } else {
    210       char* last_input = sim_->last_debugger_input();
    211       if (strcmp(line, "\n") == 0 && last_input != NULL) {
    212         line = last_input;
    213       } else {
    214         // Ownership is transferred to sim_;
    215         sim_->set_last_debugger_input(line);
    216       }
    217       // Use sscanf to parse the individual parts of the command line. At the
    218       // moment no command expects more than two parameters.
    219       int argc = SScanF(line,
    220                         "%" XSTR(COMMAND_SIZE) "s "
    221                         "%" XSTR(ARG_SIZE) "s "
    222                         "%" XSTR(ARG_SIZE) "s",
    223                         cmd, arg1, arg2);
    224       if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
    225         intptr_t value;
    226 
    227         // If at a breakpoint, proceed past it.
    228         if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
    229                 ->InstructionBits() == 0x7d821008) {
    230           sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
    231         } else {
    232           sim_->ExecuteInstruction(
    233               reinterpret_cast<Instruction*>(sim_->get_pc()));
    234         }
    235 
    236         if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
    237           for (int i = 1; i < value; i++) {
    238             disasm::NameConverter converter;
    239             disasm::Disassembler dasm(converter);
    240             // use a reasonably large buffer
    241             v8::internal::EmbeddedVector<char, 256> buffer;
    242             dasm.InstructionDecode(buffer,
    243                                    reinterpret_cast<byte*>(sim_->get_pc()));
    244             PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(),
    245                    buffer.start());
    246             sim_->ExecuteInstruction(
    247                 reinterpret_cast<Instruction*>(sim_->get_pc()));
    248           }
    249         }
    250       } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
    251         // If at a breakpoint, proceed past it.
    252         if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
    253                 ->InstructionBits() == 0x7d821008) {
    254           sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
    255         } else {
    256           // Execute the one instruction we broke at with breakpoints disabled.
    257           sim_->ExecuteInstruction(
    258               reinterpret_cast<Instruction*>(sim_->get_pc()));
    259         }
    260         // Leave the debugger shell.
    261         done = true;
    262       } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
    263         if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
    264           intptr_t value;
    265           double dvalue;
    266           if (strcmp(arg1, "all") == 0) {
    267             for (int i = 0; i < kNumRegisters; i++) {
    268               value = GetRegisterValue(i);
    269               PrintF("    %3s: %08" V8PRIxPTR,
    270                      GetRegConfig()->GetGeneralRegisterName(i), value);
    271               if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
    272                   (i % 2) == 0) {
    273                 dvalue = GetRegisterPairDoubleValue(i);
    274                 PrintF(" (%f)\n", dvalue);
    275               } else if (i != 0 && !((i + 1) & 3)) {
    276                 PrintF("\n");
    277               }
    278             }
    279             PrintF("  pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
    280                    "  "
    281                    "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
    282                    sim_->special_reg_pc_, sim_->special_reg_lr_,
    283                    sim_->special_reg_ctr_, sim_->special_reg_xer_,
    284                    sim_->condition_reg_);
    285           } else if (strcmp(arg1, "alld") == 0) {
    286             for (int i = 0; i < kNumRegisters; i++) {
    287               value = GetRegisterValue(i);
    288               PrintF("     %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
    289                      GetRegConfig()->GetGeneralRegisterName(i), value, value);
    290               if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
    291                   (i % 2) == 0) {
    292                 dvalue = GetRegisterPairDoubleValue(i);
    293                 PrintF(" (%f)\n", dvalue);
    294               } else if (!((i + 1) % 2)) {
    295                 PrintF("\n");
    296               }
    297             }
    298             PrintF("   pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
    299                    "  "
    300                    "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
    301                    sim_->special_reg_pc_, sim_->special_reg_lr_,
    302                    sim_->special_reg_ctr_, sim_->special_reg_xer_,
    303                    sim_->condition_reg_);
    304           } else if (strcmp(arg1, "allf") == 0) {
    305             for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
    306               dvalue = GetFPDoubleRegisterValue(i);
    307               uint64_t as_words = bit_cast<uint64_t>(dvalue);
    308               PrintF("%3s: %f 0x%08x %08x\n",
    309                      GetRegConfig()->GetDoubleRegisterName(i), dvalue,
    310                      static_cast<uint32_t>(as_words >> 32),
    311                      static_cast<uint32_t>(as_words & 0xffffffff));
    312             }
    313           } else if (arg1[0] == 'r' &&
    314                      (arg1[1] >= '0' && arg1[1] <= '9' &&
    315                       (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
    316                                            arg1[3] == '\0')))) {
    317             int regnum = strtoul(&arg1[1], 0, 10);
    318             if (regnum != kNoRegister) {
    319               value = GetRegisterValue(regnum);
    320               PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
    321                      value);
    322             } else {
    323               PrintF("%s unrecognized\n", arg1);
    324             }
    325           } else {
    326             if (GetValue(arg1, &value)) {
    327               PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
    328                      value);
    329             } else if (GetFPDoubleValue(arg1, &dvalue)) {
    330               uint64_t as_words = bit_cast<uint64_t>(dvalue);
    331               PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
    332                      static_cast<uint32_t>(as_words >> 32),
    333                      static_cast<uint32_t>(as_words & 0xffffffff));
    334             } else {
    335               PrintF("%s unrecognized\n", arg1);
    336             }
    337           }
    338         } else {
    339           PrintF("print <register>\n");
    340         }
    341       } else if ((strcmp(cmd, "po") == 0) ||
    342                  (strcmp(cmd, "printobject") == 0)) {
    343         if (argc == 2) {
    344           intptr_t value;
    345           OFStream os(stdout);
    346           if (GetValue(arg1, &value)) {
    347             Object* obj = reinterpret_cast<Object*>(value);
    348             os << arg1 << ": \n";
    349 #ifdef DEBUG
    350             obj->Print(os);
    351             os << "\n";
    352 #else
    353             os << Brief(obj) << "\n";
    354 #endif
    355           } else {
    356             os << arg1 << " unrecognized\n";
    357           }
    358         } else {
    359           PrintF("printobject <value>\n");
    360         }
    361       } else if (strcmp(cmd, "setpc") == 0) {
    362         intptr_t value;
    363 
    364         if (!GetValue(arg1, &value)) {
    365           PrintF("%s unrecognized\n", arg1);
    366           continue;
    367         }
    368         sim_->set_pc(value);
    369       } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
    370         intptr_t* cur = NULL;
    371         intptr_t* end = NULL;
    372         int next_arg = 1;
    373 
    374         if (strcmp(cmd, "stack") == 0) {
    375           cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
    376         } else {  // "mem"
    377           intptr_t value;
    378           if (!GetValue(arg1, &value)) {
    379             PrintF("%s unrecognized\n", arg1);
    380             continue;
    381           }
    382           cur = reinterpret_cast<intptr_t*>(value);
    383           next_arg++;
    384         }
    385 
    386         intptr_t words;  // likely inaccurate variable name for 64bit
    387         if (argc == next_arg) {
    388           words = 10;
    389         } else {
    390           if (!GetValue(argv[next_arg], &words)) {
    391             words = 10;
    392           }
    393         }
    394         end = cur + words;
    395 
    396         while (cur < end) {
    397           PrintF("  0x%08" V8PRIxPTR ":  0x%08" V8PRIxPTR " %10" V8PRIdPTR,
    398                  reinterpret_cast<intptr_t>(cur), *cur, *cur);
    399           HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
    400           intptr_t value = *cur;
    401           Heap* current_heap = sim_->isolate_->heap();
    402           if (((value & 1) == 0) ||
    403               current_heap->ContainsSlow(obj->address())) {
    404             PrintF(" (");
    405             if ((value & 1) == 0) {
    406               PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
    407             } else {
    408               obj->ShortPrint();
    409             }
    410             PrintF(")");
    411           }
    412           PrintF("\n");
    413           cur++;
    414         }
    415       } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
    416         disasm::NameConverter converter;
    417         disasm::Disassembler dasm(converter);
    418         // use a reasonably large buffer
    419         v8::internal::EmbeddedVector<char, 256> buffer;
    420 
    421         byte* prev = NULL;
    422         byte* cur = NULL;
    423         byte* end = NULL;
    424 
    425         if (argc == 1) {
    426           cur = reinterpret_cast<byte*>(sim_->get_pc());
    427           end = cur + (10 * Instruction::kInstrSize);
    428         } else if (argc == 2) {
    429           int regnum = Registers::Number(arg1);
    430           if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
    431             // The argument is an address or a register name.
    432             intptr_t value;
    433             if (GetValue(arg1, &value)) {
    434               cur = reinterpret_cast<byte*>(value);
    435               // Disassemble 10 instructions at <arg1>.
    436               end = cur + (10 * Instruction::kInstrSize);
    437             }
    438           } else {
    439             // The argument is the number of instructions.
    440             intptr_t value;
    441             if (GetValue(arg1, &value)) {
    442               cur = reinterpret_cast<byte*>(sim_->get_pc());
    443               // Disassemble <arg1> instructions.
    444               end = cur + (value * Instruction::kInstrSize);
    445             }
    446           }
    447         } else {
    448           intptr_t value1;
    449           intptr_t value2;
    450           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
    451             cur = reinterpret_cast<byte*>(value1);
    452             end = cur + (value2 * Instruction::kInstrSize);
    453           }
    454         }
    455 
    456         while (cur < end) {
    457           prev = cur;
    458           cur += dasm.InstructionDecode(buffer, cur);
    459           PrintF("  0x%08" V8PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(prev),
    460                  buffer.start());
    461         }
    462       } else if (strcmp(cmd, "gdb") == 0) {
    463         PrintF("relinquishing control to gdb\n");
    464         v8::base::OS::DebugBreak();
    465         PrintF("regaining control from gdb\n");
    466       } else if (strcmp(cmd, "break") == 0) {
    467         if (argc == 2) {
    468           intptr_t value;
    469           if (GetValue(arg1, &value)) {
    470             if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
    471               PrintF("setting breakpoint failed\n");
    472             }
    473           } else {
    474             PrintF("%s unrecognized\n", arg1);
    475           }
    476         } else {
    477           PrintF("break <address>\n");
    478         }
    479       } else if (strcmp(cmd, "del") == 0) {
    480         if (!DeleteBreakpoint(NULL)) {
    481           PrintF("deleting breakpoint failed\n");
    482         }
    483       } else if (strcmp(cmd, "cr") == 0) {
    484         PrintF("Condition reg: %08x\n", sim_->condition_reg_);
    485       } else if (strcmp(cmd, "lr") == 0) {
    486         PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
    487       } else if (strcmp(cmd, "ctr") == 0) {
    488         PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
    489       } else if (strcmp(cmd, "xer") == 0) {
    490         PrintF("XER: %08x\n", sim_->special_reg_xer_);
    491       } else if (strcmp(cmd, "fpscr") == 0) {
    492         PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
    493       } else if (strcmp(cmd, "stop") == 0) {
    494         intptr_t value;
    495         intptr_t stop_pc =
    496             sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
    497         Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
    498         Instruction* msg_address =
    499             reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
    500         if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
    501           // Remove the current stop.
    502           if (sim_->isStopInstruction(stop_instr)) {
    503             stop_instr->SetInstructionBits(kNopInstr);
    504             msg_address->SetInstructionBits(kNopInstr);
    505           } else {
    506             PrintF("Not at debugger stop.\n");
    507           }
    508         } else if (argc == 3) {
    509           // Print information about all/the specified breakpoint(s).
    510           if (strcmp(arg1, "info") == 0) {
    511             if (strcmp(arg2, "all") == 0) {
    512               PrintF("Stop information:\n");
    513               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
    514                 sim_->PrintStopInfo(i);
    515               }
    516             } else if (GetValue(arg2, &value)) {
    517               sim_->PrintStopInfo(value);
    518             } else {
    519               PrintF("Unrecognized argument.\n");
    520             }
    521           } else if (strcmp(arg1, "enable") == 0) {
    522             // Enable all/the specified breakpoint(s).
    523             if (strcmp(arg2, "all") == 0) {
    524               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
    525                 sim_->EnableStop(i);
    526               }
    527             } else if (GetValue(arg2, &value)) {
    528               sim_->EnableStop(value);
    529             } else {
    530               PrintF("Unrecognized argument.\n");
    531             }
    532           } else if (strcmp(arg1, "disable") == 0) {
    533             // Disable all/the specified breakpoint(s).
    534             if (strcmp(arg2, "all") == 0) {
    535               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
    536                 sim_->DisableStop(i);
    537               }
    538             } else if (GetValue(arg2, &value)) {
    539               sim_->DisableStop(value);
    540             } else {
    541               PrintF("Unrecognized argument.\n");
    542             }
    543           }
    544         } else {
    545           PrintF("Wrong usage. Use help command for more information.\n");
    546         }
    547       } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
    548         ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
    549         PrintF("Trace of executed instructions is %s\n",
    550                ::v8::internal::FLAG_trace_sim ? "on" : "off");
    551       } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
    552         PrintF("cont\n");
    553         PrintF("  continue execution (alias 'c')\n");
    554         PrintF("stepi [num instructions]\n");
    555         PrintF("  step one/num instruction(s) (alias 'si')\n");
    556         PrintF("print <register>\n");
    557         PrintF("  print register content (alias 'p')\n");
    558         PrintF("  use register name 'all' to display all integer registers\n");
    559         PrintF(
    560             "  use register name 'alld' to display integer registers "
    561             "with decimal values\n");
    562         PrintF("  use register name 'rN' to display register number 'N'\n");
    563         PrintF("  add argument 'fp' to print register pair double values\n");
    564         PrintF(
    565             "  use register name 'allf' to display floating-point "
    566             "registers\n");
    567         PrintF("printobject <register>\n");
    568         PrintF("  print an object from a register (alias 'po')\n");
    569         PrintF("cr\n");
    570         PrintF("  print condition register\n");
    571         PrintF("lr\n");
    572         PrintF("  print link register\n");
    573         PrintF("ctr\n");
    574         PrintF("  print ctr register\n");
    575         PrintF("xer\n");
    576         PrintF("  print XER\n");
    577         PrintF("fpscr\n");
    578         PrintF("  print FPSCR\n");
    579         PrintF("stack [<num words>]\n");
    580         PrintF("  dump stack content, default dump 10 words)\n");
    581         PrintF("mem <address> [<num words>]\n");
    582         PrintF("  dump memory content, default dump 10 words)\n");
    583         PrintF("disasm [<instructions>]\n");
    584         PrintF("disasm [<address/register>]\n");
    585         PrintF("disasm [[<address/register>] <instructions>]\n");
    586         PrintF("  disassemble code, default is 10 instructions\n");
    587         PrintF("  from pc (alias 'di')\n");
    588         PrintF("gdb\n");
    589         PrintF("  enter gdb\n");
    590         PrintF("break <address>\n");
    591         PrintF("  set a break point on the address\n");
    592         PrintF("del\n");
    593         PrintF("  delete the breakpoint\n");
    594         PrintF("trace (alias 't')\n");
    595         PrintF("  toogle the tracing of all executed statements\n");
    596         PrintF("stop feature:\n");
    597         PrintF("  Description:\n");
    598         PrintF("    Stops are debug instructions inserted by\n");
    599         PrintF("    the Assembler::stop() function.\n");
    600         PrintF("    When hitting a stop, the Simulator will\n");
    601         PrintF("    stop and and give control to the PPCDebugger.\n");
    602         PrintF("    The first %d stop codes are watched:\n",
    603                Simulator::kNumOfWatchedStops);
    604         PrintF("    - They can be enabled / disabled: the Simulator\n");
    605         PrintF("      will / won't stop when hitting them.\n");
    606         PrintF("    - The Simulator keeps track of how many times they \n");
    607         PrintF("      are met. (See the info command.) Going over a\n");
    608         PrintF("      disabled stop still increases its counter. \n");
    609         PrintF("  Commands:\n");
    610         PrintF("    stop info all/<code> : print infos about number <code>\n");
    611         PrintF("      or all stop(s).\n");
    612         PrintF("    stop enable/disable all/<code> : enables / disables\n");
    613         PrintF("      all or number <code> stop(s)\n");
    614         PrintF("    stop unstop\n");
    615         PrintF("      ignore the stop instruction at the current location\n");
    616         PrintF("      from now on\n");
    617       } else {
    618         PrintF("Unknown command: %s\n", cmd);
    619       }
    620     }
    621   }
    622 
    623   // Add all the breakpoints back to stop execution and enter the debugger
    624   // shell when hit.
    625   RedoBreakpoints();
    626   // Restore tracing
    627   ::v8::internal::FLAG_trace_sim = trace;
    628 
    629 #undef COMMAND_SIZE
    630 #undef ARG_SIZE
    631 
    632 #undef STR
    633 #undef XSTR
    634 }
    635 
    636 
    637 static bool ICacheMatch(void* one, void* two) {
    638   DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
    639   DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
    640   return one == two;
    641 }
    642 
    643 
    644 static uint32_t ICacheHash(void* key) {
    645   return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
    646 }
    647 
    648 
    649 static bool AllOnOnePage(uintptr_t start, int size) {
    650   intptr_t start_page = (start & ~CachePage::kPageMask);
    651   intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
    652   return start_page == end_page;
    653 }
    654 
    655 
    656 void Simulator::set_last_debugger_input(char* input) {
    657   DeleteArray(last_debugger_input_);
    658   last_debugger_input_ = input;
    659 }
    660 
    661 void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
    662                             void* start_addr, size_t size) {
    663   intptr_t start = reinterpret_cast<intptr_t>(start_addr);
    664   int intra_line = (start & CachePage::kLineMask);
    665   start -= intra_line;
    666   size += intra_line;
    667   size = ((size - 1) | CachePage::kLineMask) + 1;
    668   int offset = (start & CachePage::kPageMask);
    669   while (!AllOnOnePage(start, size - 1)) {
    670     int bytes_to_flush = CachePage::kPageSize - offset;
    671     FlushOnePage(i_cache, start, bytes_to_flush);
    672     start += bytes_to_flush;
    673     size -= bytes_to_flush;
    674     DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
    675     offset = 0;
    676   }
    677   if (size != 0) {
    678     FlushOnePage(i_cache, start, size);
    679   }
    680 }
    681 
    682 CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
    683                                    void* page) {
    684   base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
    685   if (entry->value == NULL) {
    686     CachePage* new_page = new CachePage();
    687     entry->value = new_page;
    688   }
    689   return reinterpret_cast<CachePage*>(entry->value);
    690 }
    691 
    692 
    693 // Flush from start up to and not including start + size.
    694 void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
    695                              intptr_t start, int size) {
    696   DCHECK(size <= CachePage::kPageSize);
    697   DCHECK(AllOnOnePage(start, size - 1));
    698   DCHECK((start & CachePage::kLineMask) == 0);
    699   DCHECK((size & CachePage::kLineMask) == 0);
    700   void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
    701   int offset = (start & CachePage::kPageMask);
    702   CachePage* cache_page = GetCachePage(i_cache, page);
    703   char* valid_bytemap = cache_page->ValidityByte(offset);
    704   memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
    705 }
    706 
    707 void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
    708                             Instruction* instr) {
    709   intptr_t address = reinterpret_cast<intptr_t>(instr);
    710   void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
    711   void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
    712   int offset = (address & CachePage::kPageMask);
    713   CachePage* cache_page = GetCachePage(i_cache, page);
    714   char* cache_valid_byte = cache_page->ValidityByte(offset);
    715   bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
    716   char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
    717   if (cache_hit) {
    718     // Check that the data in memory matches the contents of the I-cache.
    719     CHECK_EQ(0,
    720              memcmp(reinterpret_cast<void*>(instr),
    721                     cache_page->CachedData(offset), Instruction::kInstrSize));
    722   } else {
    723     // Cache miss.  Load memory into the cache.
    724     memcpy(cached_line, line, CachePage::kLineLength);
    725     *cache_valid_byte = CachePage::LINE_VALID;
    726   }
    727 }
    728 
    729 
    730 void Simulator::Initialize(Isolate* isolate) {
    731   if (isolate->simulator_initialized()) return;
    732   isolate->set_simulator_initialized(true);
    733   ::v8::internal::ExternalReference::set_redirector(isolate,
    734                                                     &RedirectExternalReference);
    735 }
    736 
    737 
    738 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
    739   i_cache_ = isolate_->simulator_i_cache();
    740   if (i_cache_ == NULL) {
    741     i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
    742     isolate_->set_simulator_i_cache(i_cache_);
    743   }
    744   Initialize(isolate);
    745 // Set up simulator support first. Some of this information is needed to
    746 // setup the architecture state.
    747 #if V8_TARGET_ARCH_PPC64
    748   size_t stack_size = FLAG_sim_stack_size * KB;
    749 #else
    750   size_t stack_size = MB;  // allocate 1MB for stack
    751 #endif
    752   stack_size += 2 * stack_protection_size_;
    753   stack_ = reinterpret_cast<char*>(malloc(stack_size));
    754   pc_modified_ = false;
    755   icount_ = 0;
    756   break_pc_ = NULL;
    757   break_instr_ = 0;
    758 
    759   // Set up architecture state.
    760   // All registers are initialized to zero to start with.
    761   for (int i = 0; i < kNumGPRs; i++) {
    762     registers_[i] = 0;
    763   }
    764   condition_reg_ = 0;
    765   fp_condition_reg_ = 0;
    766   special_reg_pc_ = 0;
    767   special_reg_lr_ = 0;
    768   special_reg_ctr_ = 0;
    769 
    770   // Initializing FP registers.
    771   for (int i = 0; i < kNumFPRs; i++) {
    772     fp_registers_[i] = 0.0;
    773   }
    774 
    775   // The sp is initialized to point to the bottom (high address) of the
    776   // allocated stack area. To be safe in potential stack underflows we leave
    777   // some buffer below.
    778   registers_[sp] =
    779       reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
    780 
    781   last_debugger_input_ = NULL;
    782 }
    783 
    784 
    785 Simulator::~Simulator() { free(stack_); }
    786 
    787 
    788 // When the generated code calls an external reference we need to catch that in
    789 // the simulator.  The external reference will be a function compiled for the
    790 // host architecture.  We need to call that function instead of trying to
    791 // execute it with the simulator.  We do that by redirecting the external
    792 // reference to a svc (Supervisor Call) instruction that is handled by
    793 // the simulator.  We write the original destination of the jump just at a known
    794 // offset from the svc instruction so the simulator knows what to call.
    795 class Redirection {
    796  public:
    797   Redirection(Isolate* isolate, void* external_function,
    798               ExternalReference::Type type)
    799       : external_function_(external_function),
    800         swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
    801         type_(type),
    802         next_(NULL) {
    803     next_ = isolate->simulator_redirection();
    804     Simulator::current(isolate)->FlushICache(
    805         isolate->simulator_i_cache(),
    806         reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
    807     isolate->set_simulator_redirection(this);
    808     if (ABI_USES_FUNCTION_DESCRIPTORS) {
    809       function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
    810       function_descriptor_[1] = 0;
    811       function_descriptor_[2] = 0;
    812     }
    813   }
    814 
    815   void* address() {
    816     if (ABI_USES_FUNCTION_DESCRIPTORS) {
    817       return reinterpret_cast<void*>(function_descriptor_);
    818     } else {
    819       return reinterpret_cast<void*>(&swi_instruction_);
    820     }
    821   }
    822 
    823   void* external_function() { return external_function_; }
    824   ExternalReference::Type type() { return type_; }
    825 
    826   static Redirection* Get(Isolate* isolate, void* external_function,
    827                           ExternalReference::Type type) {
    828     Redirection* current = isolate->simulator_redirection();
    829     for (; current != NULL; current = current->next_) {
    830       if (current->external_function_ == external_function) {
    831         DCHECK_EQ(current->type(), type);
    832         return current;
    833       }
    834     }
    835     return new Redirection(isolate, external_function, type);
    836   }
    837 
    838   static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
    839     char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
    840     char* addr_of_redirection =
    841         addr_of_swi - offsetof(Redirection, swi_instruction_);
    842     return reinterpret_cast<Redirection*>(addr_of_redirection);
    843   }
    844 
    845   static Redirection* FromAddress(void* address) {
    846     int delta = ABI_USES_FUNCTION_DESCRIPTORS
    847                     ? offsetof(Redirection, function_descriptor_)
    848                     : offsetof(Redirection, swi_instruction_);
    849     char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
    850     return reinterpret_cast<Redirection*>(addr_of_redirection);
    851   }
    852 
    853   static void* ReverseRedirection(intptr_t reg) {
    854     Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
    855     return redirection->external_function();
    856   }
    857 
    858   static void DeleteChain(Redirection* redirection) {
    859     while (redirection != nullptr) {
    860       Redirection* next = redirection->next_;
    861       delete redirection;
    862       redirection = next;
    863     }
    864   }
    865 
    866  private:
    867   void* external_function_;
    868   uint32_t swi_instruction_;
    869   ExternalReference::Type type_;
    870   Redirection* next_;
    871   intptr_t function_descriptor_[3];
    872 };
    873 
    874 
    875 // static
    876 void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
    877                          Redirection* first) {
    878   Redirection::DeleteChain(first);
    879   if (i_cache != nullptr) {
    880     for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
    881          entry = i_cache->Next(entry)) {
    882       delete static_cast<CachePage*>(entry->value);
    883     }
    884     delete i_cache;
    885   }
    886 }
    887 
    888 
    889 void* Simulator::RedirectExternalReference(Isolate* isolate,
    890                                            void* external_function,
    891                                            ExternalReference::Type type) {
    892   Redirection* redirection = Redirection::Get(isolate, external_function, type);
    893   return redirection->address();
    894 }
    895 
    896 
    897 // Get the active Simulator for the current thread.
    898 Simulator* Simulator::current(Isolate* isolate) {
    899   v8::internal::Isolate::PerIsolateThreadData* isolate_data =
    900       isolate->FindOrAllocatePerThreadDataForThisThread();
    901   DCHECK(isolate_data != NULL);
    902 
    903   Simulator* sim = isolate_data->simulator();
    904   if (sim == NULL) {
    905     // TODO(146): delete the simulator object when a thread/isolate goes away.
    906     sim = new Simulator(isolate);
    907     isolate_data->set_simulator(sim);
    908   }
    909   return sim;
    910 }
    911 
    912 
    913 // Sets the register in the architecture state.
    914 void Simulator::set_register(int reg, intptr_t value) {
    915   DCHECK((reg >= 0) && (reg < kNumGPRs));
    916   registers_[reg] = value;
    917 }
    918 
    919 
    920 // Get the register from the architecture state.
    921 intptr_t Simulator::get_register(int reg) const {
    922   DCHECK((reg >= 0) && (reg < kNumGPRs));
    923   // Stupid code added to avoid bug in GCC.
    924   // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
    925   if (reg >= kNumGPRs) return 0;
    926   // End stupid code.
    927   return registers_[reg];
    928 }
    929 
    930 
    931 double Simulator::get_double_from_register_pair(int reg) {
    932   DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
    933 
    934   double dm_val = 0.0;
    935 #if !V8_TARGET_ARCH_PPC64  // doesn't make sense in 64bit mode
    936   // Read the bits from the unsigned integer register_[] array
    937   // into the double precision floating point value and return it.
    938   char buffer[sizeof(fp_registers_[0])];
    939   memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
    940   memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
    941 #endif
    942   return (dm_val);
    943 }
    944 
    945 
    946 // Raw access to the PC register.
    947 void Simulator::set_pc(intptr_t value) {
    948   pc_modified_ = true;
    949   special_reg_pc_ = value;
    950 }
    951 
    952 
    953 bool Simulator::has_bad_pc() const {
    954   return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
    955 }
    956 
    957 
    958 // Raw access to the PC register without the special adjustment when reading.
    959 intptr_t Simulator::get_pc() const { return special_reg_pc_; }
    960 
    961 
    962 // Runtime FP routines take:
    963 // - two double arguments
    964 // - one double argument and zero or one integer arguments.
    965 // All are consructed here from d1, d2 and r3.
    966 void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
    967   *x = get_double_from_d_register(1);
    968   *y = get_double_from_d_register(2);
    969   *z = get_register(3);
    970 }
    971 
    972 
    973 // The return value is in d1.
    974 void Simulator::SetFpResult(const double& result) {
    975   set_d_register_from_double(1, result);
    976 }
    977 
    978 
    979 void Simulator::TrashCallerSaveRegisters() {
    980 // We don't trash the registers with the return value.
    981 #if 0  // A good idea to trash volatile registers, needs to be done
    982   registers_[2] = 0x50Bad4U;
    983   registers_[3] = 0x50Bad4U;
    984   registers_[12] = 0x50Bad4U;
    985 #endif
    986 }
    987 
    988 
    989 uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
    990   uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
    991   return *ptr;
    992 }
    993 
    994 
    995 int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
    996   int32_t* ptr = reinterpret_cast<int32_t*>(addr);
    997   return *ptr;
    998 }
    999 
   1000 
   1001 void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
   1002   uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
   1003   *ptr = value;
   1004   return;
   1005 }
   1006 
   1007 
   1008 void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
   1009   int32_t* ptr = reinterpret_cast<int32_t*>(addr);
   1010   *ptr = value;
   1011   return;
   1012 }
   1013 
   1014 
   1015 uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
   1016   uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
   1017   return *ptr;
   1018 }
   1019 
   1020 
   1021 int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
   1022   int16_t* ptr = reinterpret_cast<int16_t*>(addr);
   1023   return *ptr;
   1024 }
   1025 
   1026 
   1027 void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
   1028   uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
   1029   *ptr = value;
   1030   return;
   1031 }
   1032 
   1033 
   1034 void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
   1035   int16_t* ptr = reinterpret_cast<int16_t*>(addr);
   1036   *ptr = value;
   1037   return;
   1038 }
   1039 
   1040 
   1041 uint8_t Simulator::ReadBU(intptr_t addr) {
   1042   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
   1043   return *ptr;
   1044 }
   1045 
   1046 
   1047 int8_t Simulator::ReadB(intptr_t addr) {
   1048   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
   1049   return *ptr;
   1050 }
   1051 
   1052 
   1053 void Simulator::WriteB(intptr_t addr, uint8_t value) {
   1054   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
   1055   *ptr = value;
   1056 }
   1057 
   1058 
   1059 void Simulator::WriteB(intptr_t addr, int8_t value) {
   1060   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
   1061   *ptr = value;
   1062 }
   1063 
   1064 
   1065 intptr_t* Simulator::ReadDW(intptr_t addr) {
   1066   intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
   1067   return ptr;
   1068 }
   1069 
   1070 
   1071 void Simulator::WriteDW(intptr_t addr, int64_t value) {
   1072   int64_t* ptr = reinterpret_cast<int64_t*>(addr);
   1073   *ptr = value;
   1074   return;
   1075 }
   1076 
   1077 
   1078 // Returns the limit of the stack area to enable checking for stack overflows.
   1079 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
   1080   // The simulator uses a separate JS stack. If we have exhausted the C stack,
   1081   // we also drop down the JS limit to reflect the exhaustion on the JS stack.
   1082   if (GetCurrentStackPosition() < c_limit) {
   1083     return reinterpret_cast<uintptr_t>(get_sp());
   1084   }
   1085 
   1086   // Otherwise the limit is the JS stack. Leave a safety margin to prevent
   1087   // overrunning the stack when pushing values.
   1088   return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
   1089 }
   1090 
   1091 
   1092 // Unsupported instructions use Format to print an error and stop execution.
   1093 void Simulator::Format(Instruction* instr, const char* format) {
   1094   PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
   1095          reinterpret_cast<intptr_t>(instr), format);
   1096   UNIMPLEMENTED();
   1097 }
   1098 
   1099 
   1100 // Calculate C flag value for additions.
   1101 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
   1102   uint32_t uleft = static_cast<uint32_t>(left);
   1103   uint32_t uright = static_cast<uint32_t>(right);
   1104   uint32_t urest = 0xffffffffU - uleft;
   1105 
   1106   return (uright > urest) ||
   1107          (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
   1108 }
   1109 
   1110 
   1111 // Calculate C flag value for subtractions.
   1112 bool Simulator::BorrowFrom(int32_t left, int32_t right) {
   1113   uint32_t uleft = static_cast<uint32_t>(left);
   1114   uint32_t uright = static_cast<uint32_t>(right);
   1115 
   1116   return (uright > uleft);
   1117 }
   1118 
   1119 
   1120 // Calculate V flag value for additions and subtractions.
   1121 bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
   1122                              bool addition) {
   1123   bool overflow;
   1124   if (addition) {
   1125     // operands have the same sign
   1126     overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
   1127                // and operands and result have different sign
   1128                &&
   1129                ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
   1130   } else {
   1131     // operands have different signs
   1132     overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
   1133                // and first operand and result have different signs
   1134                &&
   1135                ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
   1136   }
   1137   return overflow;
   1138 }
   1139 
   1140 
   1141 #if V8_TARGET_ARCH_PPC64
   1142 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
   1143   *x = reinterpret_cast<intptr_t>(pair->x);
   1144   *y = reinterpret_cast<intptr_t>(pair->y);
   1145 }
   1146 #else
   1147 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
   1148 #if V8_TARGET_BIG_ENDIAN
   1149   *x = static_cast<int32_t>(*pair >> 32);
   1150   *y = static_cast<int32_t>(*pair);
   1151 #else
   1152   *x = static_cast<int32_t>(*pair);
   1153   *y = static_cast<int32_t>(*pair >> 32);
   1154 #endif
   1155 }
   1156 #endif
   1157 
   1158 // Calls into the V8 runtime.
   1159 typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
   1160                                          intptr_t arg2, intptr_t arg3,
   1161                                          intptr_t arg4, intptr_t arg5);
   1162 typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
   1163                                                intptr_t arg2, intptr_t arg3,
   1164                                                intptr_t arg4, intptr_t arg5);
   1165 typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
   1166                                                    intptr_t arg2, intptr_t arg3,
   1167                                                    intptr_t arg4,
   1168                                                    intptr_t arg5);
   1169 
   1170 // These prototypes handle the four types of FP calls.
   1171 typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
   1172 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
   1173 typedef double (*SimulatorRuntimeFPCall)(double darg0);
   1174 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
   1175 
   1176 // This signature supports direct call in to API function native callback
   1177 // (refer to InvocationCallback in v8.h).
   1178 typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
   1179 typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
   1180 
   1181 // This signature supports direct call to accessor getter callback.
   1182 typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
   1183 typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
   1184                                                     intptr_t arg1, void* arg2);
   1185 
   1186 // Software interrupt instructions are used by the simulator to call into the
   1187 // C-based V8 runtime.
   1188 void Simulator::SoftwareInterrupt(Instruction* instr) {
   1189   int svc = instr->SvcValue();
   1190   switch (svc) {
   1191     case kCallRtRedirected: {
   1192       // Check if stack is aligned. Error if not aligned is reported below to
   1193       // include information on the function called.
   1194       bool stack_aligned =
   1195           (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
   1196           0;
   1197       Redirection* redirection = Redirection::FromSwiInstruction(instr);
   1198       const int kArgCount = 6;
   1199       int arg0_regnum = 3;
   1200       intptr_t result_buffer = 0;
   1201       bool uses_result_buffer =
   1202           redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
   1203           (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
   1204            !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
   1205       if (uses_result_buffer) {
   1206         result_buffer = get_register(r3);
   1207         arg0_regnum++;
   1208       }
   1209       intptr_t arg[kArgCount];
   1210       for (int i = 0; i < kArgCount; i++) {
   1211         arg[i] = get_register(arg0_regnum + i);
   1212       }
   1213       bool fp_call =
   1214           (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
   1215           (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
   1216           (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
   1217           (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
   1218       // This is dodgy but it works because the C entry stubs are never moved.
   1219       // See comment in codegen-arm.cc and bug 1242173.
   1220       intptr_t saved_lr = special_reg_lr_;
   1221       intptr_t external =
   1222           reinterpret_cast<intptr_t>(redirection->external_function());
   1223       if (fp_call) {
   1224         double dval0, dval1;  // one or two double parameters
   1225         intptr_t ival;        // zero or one integer parameters
   1226         int iresult = 0;      // integer return value
   1227         double dresult = 0;   // double return value
   1228         GetFpArgs(&dval0, &dval1, &ival);
   1229         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
   1230           SimulatorRuntimeCall generic_target =
   1231               reinterpret_cast<SimulatorRuntimeCall>(external);
   1232           switch (redirection->type()) {
   1233             case ExternalReference::BUILTIN_FP_FP_CALL:
   1234             case ExternalReference::BUILTIN_COMPARE_CALL:
   1235               PrintF("Call to host function at %p with args %f, %f",
   1236                      static_cast<void*>(FUNCTION_ADDR(generic_target)),
   1237                      dval0, dval1);
   1238               break;
   1239             case ExternalReference::BUILTIN_FP_CALL:
   1240               PrintF("Call to host function at %p with arg %f",
   1241                      static_cast<void*>(FUNCTION_ADDR(generic_target)),
   1242                      dval0);
   1243               break;
   1244             case ExternalReference::BUILTIN_FP_INT_CALL:
   1245               PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
   1246                      static_cast<void*>(FUNCTION_ADDR(generic_target)),
   1247                      dval0, ival);
   1248               break;
   1249             default:
   1250               UNREACHABLE();
   1251               break;
   1252           }
   1253           if (!stack_aligned) {
   1254             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
   1255                    get_register(sp));
   1256           }
   1257           PrintF("\n");
   1258         }
   1259         CHECK(stack_aligned);
   1260         switch (redirection->type()) {
   1261           case ExternalReference::BUILTIN_COMPARE_CALL: {
   1262             SimulatorRuntimeCompareCall target =
   1263                 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
   1264             iresult = target(dval0, dval1);
   1265             set_register(r3, iresult);
   1266             break;
   1267           }
   1268           case ExternalReference::BUILTIN_FP_FP_CALL: {
   1269             SimulatorRuntimeFPFPCall target =
   1270                 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
   1271             dresult = target(dval0, dval1);
   1272             SetFpResult(dresult);
   1273             break;
   1274           }
   1275           case ExternalReference::BUILTIN_FP_CALL: {
   1276             SimulatorRuntimeFPCall target =
   1277                 reinterpret_cast<SimulatorRuntimeFPCall>(external);
   1278             dresult = target(dval0);
   1279             SetFpResult(dresult);
   1280             break;
   1281           }
   1282           case ExternalReference::BUILTIN_FP_INT_CALL: {
   1283             SimulatorRuntimeFPIntCall target =
   1284                 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
   1285             dresult = target(dval0, ival);
   1286             SetFpResult(dresult);
   1287             break;
   1288           }
   1289           default:
   1290             UNREACHABLE();
   1291             break;
   1292         }
   1293         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
   1294           switch (redirection->type()) {
   1295             case ExternalReference::BUILTIN_COMPARE_CALL:
   1296               PrintF("Returned %08x\n", iresult);
   1297               break;
   1298             case ExternalReference::BUILTIN_FP_FP_CALL:
   1299             case ExternalReference::BUILTIN_FP_CALL:
   1300             case ExternalReference::BUILTIN_FP_INT_CALL:
   1301               PrintF("Returned %f\n", dresult);
   1302               break;
   1303             default:
   1304               UNREACHABLE();
   1305               break;
   1306           }
   1307         }
   1308       } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
   1309         // See callers of MacroAssembler::CallApiFunctionAndReturn for
   1310         // explanation of register usage.
   1311         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
   1312           PrintF("Call to host function at %p args %08" V8PRIxPTR,
   1313                  reinterpret_cast<void*>(external), arg[0]);
   1314           if (!stack_aligned) {
   1315             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
   1316                    get_register(sp));
   1317           }
   1318           PrintF("\n");
   1319         }
   1320         CHECK(stack_aligned);
   1321         SimulatorRuntimeDirectApiCall target =
   1322             reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
   1323         target(arg[0]);
   1324       } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
   1325         // See callers of MacroAssembler::CallApiFunctionAndReturn for
   1326         // explanation of register usage.
   1327         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
   1328           PrintF("Call to host function at %p args %08" V8PRIxPTR
   1329                  " %08" V8PRIxPTR,
   1330                  reinterpret_cast<void*>(external), arg[0], arg[1]);
   1331           if (!stack_aligned) {
   1332             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
   1333                    get_register(sp));
   1334           }
   1335           PrintF("\n");
   1336         }
   1337         CHECK(stack_aligned);
   1338         SimulatorRuntimeProfilingApiCall target =
   1339             reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
   1340         target(arg[0], Redirection::ReverseRedirection(arg[1]));
   1341       } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
   1342         // See callers of MacroAssembler::CallApiFunctionAndReturn for
   1343         // explanation of register usage.
   1344         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
   1345           PrintF("Call to host function at %p args %08" V8PRIxPTR
   1346                  " %08" V8PRIxPTR,
   1347                  reinterpret_cast<void*>(external), arg[0], arg[1]);
   1348           if (!stack_aligned) {
   1349             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
   1350                    get_register(sp));
   1351           }
   1352           PrintF("\n");
   1353         }
   1354         CHECK(stack_aligned);
   1355         SimulatorRuntimeDirectGetterCall target =
   1356             reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
   1357         if (!ABI_PASSES_HANDLES_IN_REGS) {
   1358           arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
   1359         }
   1360         target(arg[0], arg[1]);
   1361       } else if (redirection->type() ==
   1362                  ExternalReference::PROFILING_GETTER_CALL) {
   1363         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
   1364           PrintF("Call to host function at %p args %08" V8PRIxPTR
   1365                  " %08" V8PRIxPTR " %08" V8PRIxPTR,
   1366                  reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
   1367           if (!stack_aligned) {
   1368             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
   1369                    get_register(sp));
   1370           }
   1371           PrintF("\n");
   1372         }
   1373         CHECK(stack_aligned);
   1374         SimulatorRuntimeProfilingGetterCall target =
   1375             reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
   1376         if (!ABI_PASSES_HANDLES_IN_REGS) {
   1377           arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
   1378         }
   1379         target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
   1380       } else {
   1381         // builtin call.
   1382         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
   1383           SimulatorRuntimeCall target =
   1384               reinterpret_cast<SimulatorRuntimeCall>(external);
   1385           PrintF(
   1386               "Call to host function at %p,\n"
   1387               "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
   1388               ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
   1389               static_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1],
   1390               arg[2], arg[3], arg[4], arg[5]);
   1391           if (!stack_aligned) {
   1392             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
   1393                    get_register(sp));
   1394           }
   1395           PrintF("\n");
   1396         }
   1397         CHECK(stack_aligned);
   1398         if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
   1399           SimulatorRuntimeTripleCall target =
   1400               reinterpret_cast<SimulatorRuntimeTripleCall>(external);
   1401           ObjectTriple result =
   1402               target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
   1403           if (::v8::internal::FLAG_trace_sim) {
   1404             PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
   1405                    "}\n",
   1406                    reinterpret_cast<intptr_t>(result.x),
   1407                    reinterpret_cast<intptr_t>(result.y),
   1408                    reinterpret_cast<intptr_t>(result.z));
   1409           }
   1410           memcpy(reinterpret_cast<void*>(result_buffer), &result,
   1411                  sizeof(ObjectTriple));
   1412           set_register(r3, result_buffer);
   1413         } else {
   1414           if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
   1415             SimulatorRuntimePairCall target =
   1416                 reinterpret_cast<SimulatorRuntimePairCall>(external);
   1417             ObjectPair result =
   1418                 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
   1419             intptr_t x;
   1420             intptr_t y;
   1421             decodeObjectPair(&result, &x, &y);
   1422             if (::v8::internal::FLAG_trace_sim) {
   1423               PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
   1424             }
   1425             if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) {
   1426               set_register(r3, x);
   1427               set_register(r4, y);
   1428             } else {
   1429               memcpy(reinterpret_cast<void*>(result_buffer), &result,
   1430                      sizeof(ObjectPair));
   1431               set_register(r3, result_buffer);
   1432             }
   1433           } else {
   1434             DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
   1435             SimulatorRuntimeCall target =
   1436                 reinterpret_cast<SimulatorRuntimeCall>(external);
   1437             intptr_t result =
   1438                 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
   1439             if (::v8::internal::FLAG_trace_sim) {
   1440               PrintF("Returned %08" V8PRIxPTR "\n", result);
   1441             }
   1442             set_register(r3, result);
   1443           }
   1444         }
   1445       }
   1446       set_pc(saved_lr);
   1447       break;
   1448     }
   1449     case kBreakpoint: {
   1450       PPCDebugger dbg(this);
   1451       dbg.Debug();
   1452       break;
   1453     }
   1454     // stop uses all codes greater than 1 << 23.
   1455     default: {
   1456       if (svc >= (1 << 23)) {
   1457         uint32_t code = svc & kStopCodeMask;
   1458         if (isWatchedStop(code)) {
   1459           IncreaseStopCounter(code);
   1460         }
   1461         // Stop if it is enabled, otherwise go on jumping over the stop
   1462         // and the message address.
   1463         if (isEnabledStop(code)) {
   1464           PPCDebugger dbg(this);
   1465           dbg.Stop(instr);
   1466         } else {
   1467           set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
   1468         }
   1469       } else {
   1470         // This is not a valid svc code.
   1471         UNREACHABLE();
   1472         break;
   1473       }
   1474     }
   1475   }
   1476 }
   1477 
   1478 
   1479 // Stop helper functions.
   1480 bool Simulator::isStopInstruction(Instruction* instr) {
   1481   return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
   1482 }
   1483 
   1484 
   1485 bool Simulator::isWatchedStop(uint32_t code) {
   1486   DCHECK(code <= kMaxStopCode);
   1487   return code < kNumOfWatchedStops;
   1488 }
   1489 
   1490 
   1491 bool Simulator::isEnabledStop(uint32_t code) {
   1492   DCHECK(code <= kMaxStopCode);
   1493   // Unwatched stops are always enabled.
   1494   return !isWatchedStop(code) ||
   1495          !(watched_stops_[code].count & kStopDisabledBit);
   1496 }
   1497 
   1498 
   1499 void Simulator::EnableStop(uint32_t code) {
   1500   DCHECK(isWatchedStop(code));
   1501   if (!isEnabledStop(code)) {
   1502     watched_stops_[code].count &= ~kStopDisabledBit;
   1503   }
   1504 }
   1505 
   1506 
   1507 void Simulator::DisableStop(uint32_t code) {
   1508   DCHECK(isWatchedStop(code));
   1509   if (isEnabledStop(code)) {
   1510     watched_stops_[code].count |= kStopDisabledBit;
   1511   }
   1512 }
   1513 
   1514 
   1515 void Simulator::IncreaseStopCounter(uint32_t code) {
   1516   DCHECK(code <= kMaxStopCode);
   1517   DCHECK(isWatchedStop(code));
   1518   if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
   1519     PrintF(
   1520         "Stop counter for code %i has overflowed.\n"
   1521         "Enabling this code and reseting the counter to 0.\n",
   1522         code);
   1523     watched_stops_[code].count = 0;
   1524     EnableStop(code);
   1525   } else {
   1526     watched_stops_[code].count++;
   1527   }
   1528 }
   1529 
   1530 
   1531 // Print a stop status.
   1532 void Simulator::PrintStopInfo(uint32_t code) {
   1533   DCHECK(code <= kMaxStopCode);
   1534   if (!isWatchedStop(code)) {
   1535     PrintF("Stop not watched.");
   1536   } else {
   1537     const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
   1538     int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
   1539     // Don't print the state of unused breakpoints.
   1540     if (count != 0) {
   1541       if (watched_stops_[code].desc) {
   1542         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
   1543                state, count, watched_stops_[code].desc);
   1544       } else {
   1545         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
   1546                count);
   1547       }
   1548     }
   1549   }
   1550 }
   1551 
   1552 
   1553 void Simulator::SetCR0(intptr_t result, bool setSO) {
   1554   int bf = 0;
   1555   if (result < 0) {
   1556     bf |= 0x80000000;
   1557   }
   1558   if (result > 0) {
   1559     bf |= 0x40000000;
   1560   }
   1561   if (result == 0) {
   1562     bf |= 0x20000000;
   1563   }
   1564   if (setSO) {
   1565     bf |= 0x10000000;
   1566   }
   1567   condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
   1568 }
   1569 
   1570 
   1571 void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
   1572   int bo = instr->Bits(25, 21) << 21;
   1573   int condition_bit = instr->Bits(20, 16);
   1574   int condition_mask = 0x80000000 >> condition_bit;
   1575   switch (bo) {
   1576     case DCBNZF:  // Decrement CTR; branch if CTR != 0 and condition false
   1577     case DCBEZF:  // Decrement CTR; branch if CTR == 0 and condition false
   1578       UNIMPLEMENTED();
   1579     case BF: {  // Branch if condition false
   1580       if (condition_reg_ & condition_mask) return;
   1581       break;
   1582     }
   1583     case DCBNZT:  // Decrement CTR; branch if CTR != 0 and condition true
   1584     case DCBEZT:  // Decrement CTR; branch if CTR == 0 and condition true
   1585       UNIMPLEMENTED();
   1586     case BT: {  // Branch if condition true
   1587       if (!(condition_reg_ & condition_mask)) return;
   1588       break;
   1589     }
   1590     case DCBNZ:  // Decrement CTR; branch if CTR != 0
   1591     case DCBEZ:  // Decrement CTR; branch if CTR == 0
   1592       special_reg_ctr_ -= 1;
   1593       if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
   1594       break;
   1595     case BA: {                   // Branch always
   1596       break;
   1597     }
   1598     default:
   1599       UNIMPLEMENTED();  // Invalid encoding
   1600   }
   1601 
   1602   intptr_t old_pc = get_pc();
   1603 
   1604   switch (type) {
   1605     case BC_OFFSET: {
   1606       int offset = (instr->Bits(15, 2) << 18) >> 16;
   1607       set_pc(old_pc + offset);
   1608       break;
   1609     }
   1610     case BC_LINK_REG:
   1611       set_pc(special_reg_lr_);
   1612       break;
   1613     case BC_CTR_REG:
   1614       set_pc(special_reg_ctr_);
   1615       break;
   1616   }
   1617 
   1618   if (instr->Bit(0) == 1) {  // LK flag set
   1619     special_reg_lr_ = old_pc + 4;
   1620   }
   1621 }
   1622 
   1623 
   1624 // Handle execution based on instruction types.
   1625 void Simulator::ExecuteExt1(Instruction* instr) {
   1626   uint32_t opcode = EXT1 | instr->BitField(10, 1);
   1627   switch (opcode) {
   1628     case MCRF:
   1629       UNIMPLEMENTED();  // Not used by V8.
   1630     case BCLRX:
   1631       ExecuteBranchConditional(instr, BC_LINK_REG);
   1632       break;
   1633     case BCCTRX:
   1634       ExecuteBranchConditional(instr, BC_CTR_REG);
   1635       break;
   1636     case CRNOR:
   1637     case RFI:
   1638     case CRANDC:
   1639       UNIMPLEMENTED();
   1640     case ISYNC: {
   1641       // todo - simulate isync
   1642       break;
   1643     }
   1644     case CRXOR: {
   1645       int bt = instr->Bits(25, 21);
   1646       int ba = instr->Bits(20, 16);
   1647       int bb = instr->Bits(15, 11);
   1648       int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
   1649       int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
   1650       int bt_val = ba_val ^ bb_val;
   1651       bt_val = bt_val << (31 - bt);  // shift bit to correct destination
   1652       condition_reg_ &= ~(0x80000000 >> bt);
   1653       condition_reg_ |= bt_val;
   1654       break;
   1655     }
   1656     case CREQV: {
   1657       int bt = instr->Bits(25, 21);
   1658       int ba = instr->Bits(20, 16);
   1659       int bb = instr->Bits(15, 11);
   1660       int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
   1661       int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
   1662       int bt_val = 1 - (ba_val ^ bb_val);
   1663       bt_val = bt_val << (31 - bt);  // shift bit to correct destination
   1664       condition_reg_ &= ~(0x80000000 >> bt);
   1665       condition_reg_ |= bt_val;
   1666       break;
   1667     }
   1668     case CRNAND:
   1669     case CRAND:
   1670     case CRORC:
   1671     case CROR:
   1672     default: {
   1673       UNIMPLEMENTED();  // Not used by V8.
   1674     }
   1675   }
   1676 }
   1677 
   1678 
   1679 bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
   1680   bool found = true;
   1681 
   1682   uint32_t opcode = EXT2 | instr->BitField(10, 1);
   1683   switch (opcode) {
   1684     case SRWX: {
   1685       int rs = instr->RSValue();
   1686       int ra = instr->RAValue();
   1687       int rb = instr->RBValue();
   1688       uint32_t rs_val = get_register(rs);
   1689       uintptr_t rb_val = get_register(rb) & 0x3f;
   1690       intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val;
   1691       set_register(ra, result);
   1692       if (instr->Bit(0)) {  // RC bit set
   1693         SetCR0(result);
   1694       }
   1695       break;
   1696     }
   1697 #if V8_TARGET_ARCH_PPC64
   1698     case SRDX: {
   1699       int rs = instr->RSValue();
   1700       int ra = instr->RAValue();
   1701       int rb = instr->RBValue();
   1702       uintptr_t rs_val = get_register(rs);
   1703       uintptr_t rb_val = get_register(rb) & 0x7f;
   1704       intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val;
   1705       set_register(ra, result);
   1706       if (instr->Bit(0)) {  // RC bit set
   1707         SetCR0(result);
   1708       }
   1709       break;
   1710     }
   1711 #endif
   1712     case MODUW: {
   1713       int rt = instr->RTValue();
   1714       int ra = instr->RAValue();
   1715       int rb = instr->RBValue();
   1716       uint32_t ra_val = get_register(ra);
   1717       uint32_t rb_val = get_register(rb);
   1718       uint32_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
   1719       set_register(rt, alu_out);
   1720       break;
   1721     }
   1722 #if V8_TARGET_ARCH_PPC64
   1723     case MODUD: {
   1724       int rt = instr->RTValue();
   1725       int ra = instr->RAValue();
   1726       int rb = instr->RBValue();
   1727       uint64_t ra_val = get_register(ra);
   1728       uint64_t rb_val = get_register(rb);
   1729       uint64_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val;
   1730       set_register(rt, alu_out);
   1731       break;
   1732     }
   1733 #endif
   1734     case MODSW: {
   1735       int rt = instr->RTValue();
   1736       int ra = instr->RAValue();
   1737       int rb = instr->RBValue();
   1738       int32_t ra_val = get_register(ra);
   1739       int32_t rb_val = get_register(rb);
   1740       bool overflow = (ra_val == kMinInt && rb_val == -1);
   1741       // result is undefined if divisor is zero or if operation
   1742       // is 0x80000000 / -1.
   1743       int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val % rb_val;
   1744       set_register(rt, alu_out);
   1745       break;
   1746     }
   1747 #if V8_TARGET_ARCH_PPC64
   1748     case MODSD: {
   1749       int rt = instr->RTValue();
   1750       int ra = instr->RAValue();
   1751       int rb = instr->RBValue();
   1752       int64_t ra_val = get_register(ra);
   1753       int64_t rb_val = get_register(rb);
   1754       int64_t one = 1;  // work-around gcc
   1755       int64_t kMinLongLong = (one << 63);
   1756       // result is undefined if divisor is zero or if operation
   1757       // is 0x80000000_00000000 / -1.
   1758       int64_t alu_out =
   1759           (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
   1760               ? -1
   1761               : ra_val % rb_val;
   1762       set_register(rt, alu_out);
   1763       break;
   1764     }
   1765 #endif
   1766     case SRAW: {
   1767       int rs = instr->RSValue();
   1768       int ra = instr->RAValue();
   1769       int rb = instr->RBValue();
   1770       int32_t rs_val = get_register(rs);
   1771       intptr_t rb_val = get_register(rb) & 0x3f;
   1772       intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val;
   1773       set_register(ra, result);
   1774       if (instr->Bit(0)) {  // RC bit set
   1775         SetCR0(result);
   1776       }
   1777       break;
   1778     }
   1779 #if V8_TARGET_ARCH_PPC64
   1780     case SRAD: {
   1781       int rs = instr->RSValue();
   1782       int ra = instr->RAValue();
   1783       int rb = instr->RBValue();
   1784       intptr_t rs_val = get_register(rs);
   1785       intptr_t rb_val = get_register(rb) & 0x7f;
   1786       intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val;
   1787       set_register(ra, result);
   1788       if (instr->Bit(0)) {  // RC bit set
   1789         SetCR0(result);
   1790       }
   1791       break;
   1792     }
   1793 #endif
   1794     case SRAWIX: {
   1795       int ra = instr->RAValue();
   1796       int rs = instr->RSValue();
   1797       int sh = instr->Bits(15, 11);
   1798       int32_t rs_val = get_register(rs);
   1799       intptr_t result = rs_val >> sh;
   1800       set_register(ra, result);
   1801       if (instr->Bit(0)) {  // RC bit set
   1802         SetCR0(result);
   1803       }
   1804       break;
   1805     }
   1806 #if V8_TARGET_ARCH_PPC64
   1807     case EXTSW: {
   1808       const int shift = kBitsPerPointer - 32;
   1809       int ra = instr->RAValue();
   1810       int rs = instr->RSValue();
   1811       intptr_t rs_val = get_register(rs);
   1812       intptr_t ra_val = (rs_val << shift) >> shift;
   1813       set_register(ra, ra_val);
   1814       if (instr->Bit(0)) {  // RC bit set
   1815         SetCR0(ra_val);
   1816       }
   1817       break;
   1818     }
   1819 #endif
   1820     case EXTSH: {
   1821       const int shift = kBitsPerPointer - 16;
   1822       int ra = instr->RAValue();
   1823       int rs = instr->RSValue();
   1824       intptr_t rs_val = get_register(rs);
   1825       intptr_t ra_val = (rs_val << shift) >> shift;
   1826       set_register(ra, ra_val);
   1827       if (instr->Bit(0)) {  // RC bit set
   1828         SetCR0(ra_val);
   1829       }
   1830       break;
   1831     }
   1832     case EXTSB: {
   1833       const int shift = kBitsPerPointer - 8;
   1834       int ra = instr->RAValue();
   1835       int rs = instr->RSValue();
   1836       intptr_t rs_val = get_register(rs);
   1837       intptr_t ra_val = (rs_val << shift) >> shift;
   1838       set_register(ra, ra_val);
   1839       if (instr->Bit(0)) {  // RC bit set
   1840         SetCR0(ra_val);
   1841       }
   1842       break;
   1843     }
   1844     case LFSUX:
   1845     case LFSX: {
   1846       int frt = instr->RTValue();
   1847       int ra = instr->RAValue();
   1848       int rb = instr->RBValue();
   1849       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   1850       intptr_t rb_val = get_register(rb);
   1851       int32_t val = ReadW(ra_val + rb_val, instr);
   1852       float* fptr = reinterpret_cast<float*>(&val);
   1853       set_d_register_from_double(frt, static_cast<double>(*fptr));
   1854       if (opcode == LFSUX) {
   1855         DCHECK(ra != 0);
   1856         set_register(ra, ra_val + rb_val);
   1857       }
   1858       break;
   1859     }
   1860     case LFDUX:
   1861     case LFDX: {
   1862       int frt = instr->RTValue();
   1863       int ra = instr->RAValue();
   1864       int rb = instr->RBValue();
   1865       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   1866       intptr_t rb_val = get_register(rb);
   1867       int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val));
   1868       set_d_register(frt, *dptr);
   1869       if (opcode == LFDUX) {
   1870         DCHECK(ra != 0);
   1871         set_register(ra, ra_val + rb_val);
   1872       }
   1873       break;
   1874     }
   1875     case STFSUX: {
   1876       case STFSX:
   1877         int frs = instr->RSValue();
   1878         int ra = instr->RAValue();
   1879         int rb = instr->RBValue();
   1880         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   1881         intptr_t rb_val = get_register(rb);
   1882         float frs_val = static_cast<float>(get_double_from_d_register(frs));
   1883         int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
   1884         WriteW(ra_val + rb_val, *p, instr);
   1885         if (opcode == STFSUX) {
   1886           DCHECK(ra != 0);
   1887           set_register(ra, ra_val + rb_val);
   1888         }
   1889         break;
   1890     }
   1891     case STFDUX: {
   1892       case STFDX:
   1893         int frs = instr->RSValue();
   1894         int ra = instr->RAValue();
   1895         int rb = instr->RBValue();
   1896         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   1897         intptr_t rb_val = get_register(rb);
   1898         int64_t frs_val = get_d_register(frs);
   1899         WriteDW(ra_val + rb_val, frs_val);
   1900         if (opcode == STFDUX) {
   1901           DCHECK(ra != 0);
   1902           set_register(ra, ra_val + rb_val);
   1903         }
   1904         break;
   1905     }
   1906     case POPCNTW: {
   1907       int rs = instr->RSValue();
   1908       int ra = instr->RAValue();
   1909       uintptr_t rs_val = get_register(rs);
   1910       uintptr_t count = 0;
   1911       int n = 0;
   1912       uintptr_t bit = 0x80000000;
   1913       for (; n < 32; n++) {
   1914         if (bit & rs_val) count++;
   1915         bit >>= 1;
   1916       }
   1917       set_register(ra, count);
   1918       break;
   1919     }
   1920 #if V8_TARGET_ARCH_PPC64
   1921     case POPCNTD: {
   1922       int rs = instr->RSValue();
   1923       int ra = instr->RAValue();
   1924       uintptr_t rs_val = get_register(rs);
   1925       uintptr_t count = 0;
   1926       int n = 0;
   1927       uintptr_t bit = 0x8000000000000000UL;
   1928       for (; n < 64; n++) {
   1929         if (bit & rs_val) count++;
   1930         bit >>= 1;
   1931       }
   1932       set_register(ra, count);
   1933       break;
   1934     }
   1935 #endif
   1936     case SYNC: {
   1937       // todo - simulate sync
   1938       break;
   1939     }
   1940     case ICBI: {
   1941       // todo - simulate icbi
   1942       break;
   1943     }
   1944     default: {
   1945       found = false;
   1946       break;
   1947     }
   1948   }
   1949 
   1950   if (found) return found;
   1951 
   1952   found = true;
   1953   opcode = EXT2 | instr->BitField(10, 2);
   1954   switch (opcode) {
   1955     case SRADIX: {
   1956       int ra = instr->RAValue();
   1957       int rs = instr->RSValue();
   1958       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
   1959       intptr_t rs_val = get_register(rs);
   1960       intptr_t result = rs_val >> sh;
   1961       set_register(ra, result);
   1962       if (instr->Bit(0)) {  // RC bit set
   1963         SetCR0(result);
   1964       }
   1965       break;
   1966     }
   1967     default: {
   1968       found = false;
   1969       break;
   1970     }
   1971   }
   1972 
   1973   return found;
   1974 }
   1975 
   1976 
   1977 bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
   1978   bool found = true;
   1979 
   1980   uint32_t opcode = EXT2 | instr->BitField(9, 1);
   1981   switch (opcode) {
   1982     case TW: {
   1983       // used for call redirection in simulation mode
   1984       SoftwareInterrupt(instr);
   1985       break;
   1986     }
   1987     case CMP: {
   1988       int ra = instr->RAValue();
   1989       int rb = instr->RBValue();
   1990       int cr = instr->Bits(25, 23);
   1991       uint32_t bf = 0;
   1992 #if V8_TARGET_ARCH_PPC64
   1993       int L = instr->Bit(21);
   1994       if (L) {
   1995 #endif
   1996         intptr_t ra_val = get_register(ra);
   1997         intptr_t rb_val = get_register(rb);
   1998         if (ra_val < rb_val) {
   1999           bf |= 0x80000000;
   2000         }
   2001         if (ra_val > rb_val) {
   2002           bf |= 0x40000000;
   2003         }
   2004         if (ra_val == rb_val) {
   2005           bf |= 0x20000000;
   2006         }
   2007 #if V8_TARGET_ARCH_PPC64
   2008       } else {
   2009         int32_t ra_val = get_register(ra);
   2010         int32_t rb_val = get_register(rb);
   2011         if (ra_val < rb_val) {
   2012           bf |= 0x80000000;
   2013         }
   2014         if (ra_val > rb_val) {
   2015           bf |= 0x40000000;
   2016         }
   2017         if (ra_val == rb_val) {
   2018           bf |= 0x20000000;
   2019         }
   2020       }
   2021 #endif
   2022       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
   2023       uint32_t condition = bf >> (cr * 4);
   2024       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
   2025       break;
   2026     }
   2027     case SUBFCX: {
   2028       int rt = instr->RTValue();
   2029       int ra = instr->RAValue();
   2030       int rb = instr->RBValue();
   2031       // int oe = instr->Bit(10);
   2032       uintptr_t ra_val = get_register(ra);
   2033       uintptr_t rb_val = get_register(rb);
   2034       uintptr_t alu_out = ~ra_val + rb_val + 1;
   2035       // Set carry
   2036       if (ra_val <= rb_val) {
   2037         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
   2038       } else {
   2039         special_reg_xer_ &= ~0xF0000000;
   2040       }
   2041       set_register(rt, alu_out);
   2042       if (instr->Bit(0)) {  // RC bit set
   2043         SetCR0(alu_out);
   2044       }
   2045       // todo - handle OE bit
   2046       break;
   2047     }
   2048     case SUBFEX: {
   2049       int rt = instr->RTValue();
   2050       int ra = instr->RAValue();
   2051       int rb = instr->RBValue();
   2052       // int oe = instr->Bit(10);
   2053       uintptr_t ra_val = get_register(ra);
   2054       uintptr_t rb_val = get_register(rb);
   2055       uintptr_t alu_out = ~ra_val + rb_val;
   2056       if (special_reg_xer_ & 0x20000000) {
   2057         alu_out += 1;
   2058       }
   2059       set_register(rt, alu_out);
   2060       if (instr->Bit(0)) {  // RC bit set
   2061         SetCR0(static_cast<intptr_t>(alu_out));
   2062       }
   2063       // todo - handle OE bit
   2064       break;
   2065     }
   2066     case ADDCX: {
   2067       int rt = instr->RTValue();
   2068       int ra = instr->RAValue();
   2069       int rb = instr->RBValue();
   2070       // int oe = instr->Bit(10);
   2071       uintptr_t ra_val = get_register(ra);
   2072       uintptr_t rb_val = get_register(rb);
   2073       uintptr_t alu_out = ra_val + rb_val;
   2074       // Set carry
   2075       if (~ra_val < rb_val) {
   2076         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
   2077       } else {
   2078         special_reg_xer_ &= ~0xF0000000;
   2079       }
   2080       set_register(rt, alu_out);
   2081       if (instr->Bit(0)) {  // RC bit set
   2082         SetCR0(static_cast<intptr_t>(alu_out));
   2083       }
   2084       // todo - handle OE bit
   2085       break;
   2086     }
   2087     case ADDEX: {
   2088       int rt = instr->RTValue();
   2089       int ra = instr->RAValue();
   2090       int rb = instr->RBValue();
   2091       // int oe = instr->Bit(10);
   2092       uintptr_t ra_val = get_register(ra);
   2093       uintptr_t rb_val = get_register(rb);
   2094       uintptr_t alu_out = ra_val + rb_val;
   2095       if (special_reg_xer_ & 0x20000000) {
   2096         alu_out += 1;
   2097       }
   2098       set_register(rt, alu_out);
   2099       if (instr->Bit(0)) {  // RC bit set
   2100         SetCR0(static_cast<intptr_t>(alu_out));
   2101       }
   2102       // todo - handle OE bit
   2103       break;
   2104     }
   2105     case MULHWX: {
   2106       int rt = instr->RTValue();
   2107       int ra = instr->RAValue();
   2108       int rb = instr->RBValue();
   2109       int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
   2110       int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
   2111       int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
   2112       alu_out >>= 32;
   2113       set_register(rt, alu_out);
   2114       if (instr->Bit(0)) {  // RC bit set
   2115         SetCR0(static_cast<intptr_t>(alu_out));
   2116       }
   2117       break;
   2118     }
   2119     case MULHWUX: {
   2120       int rt = instr->RTValue();
   2121       int ra = instr->RAValue();
   2122       int rb = instr->RBValue();
   2123       uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
   2124       uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
   2125       uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
   2126       alu_out >>= 32;
   2127       set_register(rt, alu_out);
   2128       if (instr->Bit(0)) {  // RC bit set
   2129         SetCR0(static_cast<intptr_t>(alu_out));
   2130       }
   2131       break;
   2132     }
   2133     case NEGX: {
   2134       int rt = instr->RTValue();
   2135       int ra = instr->RAValue();
   2136       intptr_t ra_val = get_register(ra);
   2137       intptr_t alu_out = 1 + ~ra_val;
   2138 #if V8_TARGET_ARCH_PPC64
   2139       intptr_t one = 1;  // work-around gcc
   2140       intptr_t kOverflowVal = (one << 63);
   2141 #else
   2142       intptr_t kOverflowVal = kMinInt;
   2143 #endif
   2144       set_register(rt, alu_out);
   2145       if (instr->Bit(10)) {  // OE bit set
   2146         if (ra_val == kOverflowVal) {
   2147           special_reg_xer_ |= 0xC0000000;  // set SO,OV
   2148         } else {
   2149           special_reg_xer_ &= ~0x40000000;  // clear OV
   2150         }
   2151       }
   2152       if (instr->Bit(0)) {  // RC bit set
   2153         bool setSO = (special_reg_xer_ & 0x80000000);
   2154         SetCR0(alu_out, setSO);
   2155       }
   2156       break;
   2157     }
   2158     case SLWX: {
   2159       int rs = instr->RSValue();
   2160       int ra = instr->RAValue();
   2161       int rb = instr->RBValue();
   2162       uint32_t rs_val = get_register(rs);
   2163       uintptr_t rb_val = get_register(rb) & 0x3f;
   2164       uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val;
   2165       set_register(ra, result);
   2166       if (instr->Bit(0)) {  // RC bit set
   2167         SetCR0(result);
   2168       }
   2169       break;
   2170     }
   2171 #if V8_TARGET_ARCH_PPC64
   2172     case SLDX: {
   2173       int rs = instr->RSValue();
   2174       int ra = instr->RAValue();
   2175       int rb = instr->RBValue();
   2176       uintptr_t rs_val = get_register(rs);
   2177       uintptr_t rb_val = get_register(rb) & 0x7f;
   2178       uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val;
   2179       set_register(ra, result);
   2180       if (instr->Bit(0)) {  // RC bit set
   2181         SetCR0(result);
   2182       }
   2183       break;
   2184     }
   2185     case MFVSRD: {
   2186       DCHECK(!instr->Bit(0));
   2187       int frt = instr->RTValue();
   2188       int ra = instr->RAValue();
   2189       int64_t frt_val = get_d_register(frt);
   2190       set_register(ra, frt_val);
   2191       break;
   2192     }
   2193     case MFVSRWZ: {
   2194       DCHECK(!instr->Bit(0));
   2195       int frt = instr->RTValue();
   2196       int ra = instr->RAValue();
   2197       int64_t frt_val = get_d_register(frt);
   2198       set_register(ra, static_cast<uint32_t>(frt_val));
   2199       break;
   2200     }
   2201     case MTVSRD: {
   2202       DCHECK(!instr->Bit(0));
   2203       int frt = instr->RTValue();
   2204       int ra = instr->RAValue();
   2205       int64_t ra_val = get_register(ra);
   2206       set_d_register(frt, ra_val);
   2207       break;
   2208     }
   2209     case MTVSRWA: {
   2210       DCHECK(!instr->Bit(0));
   2211       int frt = instr->RTValue();
   2212       int ra = instr->RAValue();
   2213       int64_t ra_val = static_cast<int32_t>(get_register(ra));
   2214       set_d_register(frt, ra_val);
   2215       break;
   2216     }
   2217     case MTVSRWZ: {
   2218       DCHECK(!instr->Bit(0));
   2219       int frt = instr->RTValue();
   2220       int ra = instr->RAValue();
   2221       uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
   2222       set_d_register(frt, ra_val);
   2223       break;
   2224     }
   2225 #endif
   2226     default: {
   2227       found = false;
   2228       break;
   2229     }
   2230   }
   2231 
   2232   return found;
   2233 }
   2234 
   2235 
   2236 bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
   2237   bool found = true;
   2238   uint32_t opcode = EXT2 | instr->BitField(9, 1);
   2239   switch (opcode) {
   2240     case CNTLZWX: {
   2241       int rs = instr->RSValue();
   2242       int ra = instr->RAValue();
   2243       uintptr_t rs_val = get_register(rs);
   2244       uintptr_t count = 0;
   2245       int n = 0;
   2246       uintptr_t bit = 0x80000000;
   2247       for (; n < 32; n++) {
   2248         if (bit & rs_val) break;
   2249         count++;
   2250         bit >>= 1;
   2251       }
   2252       set_register(ra, count);
   2253       if (instr->Bit(0)) {  // RC Bit set
   2254         int bf = 0;
   2255         if (count > 0) {
   2256           bf |= 0x40000000;
   2257         }
   2258         if (count == 0) {
   2259           bf |= 0x20000000;
   2260         }
   2261         condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
   2262       }
   2263       break;
   2264     }
   2265 #if V8_TARGET_ARCH_PPC64
   2266     case CNTLZDX: {
   2267       int rs = instr->RSValue();
   2268       int ra = instr->RAValue();
   2269       uintptr_t rs_val = get_register(rs);
   2270       uintptr_t count = 0;
   2271       int n = 0;
   2272       uintptr_t bit = 0x8000000000000000UL;
   2273       for (; n < 64; n++) {
   2274         if (bit & rs_val) break;
   2275         count++;
   2276         bit >>= 1;
   2277       }
   2278       set_register(ra, count);
   2279       if (instr->Bit(0)) {  // RC Bit set
   2280         int bf = 0;
   2281         if (count > 0) {
   2282           bf |= 0x40000000;
   2283         }
   2284         if (count == 0) {
   2285           bf |= 0x20000000;
   2286         }
   2287         condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
   2288       }
   2289       break;
   2290     }
   2291 #endif
   2292     case ANDX: {
   2293       int rs = instr->RSValue();
   2294       int ra = instr->RAValue();
   2295       int rb = instr->RBValue();
   2296       intptr_t rs_val = get_register(rs);
   2297       intptr_t rb_val = get_register(rb);
   2298       intptr_t alu_out = rs_val & rb_val;
   2299       set_register(ra, alu_out);
   2300       if (instr->Bit(0)) {  // RC Bit set
   2301         SetCR0(alu_out);
   2302       }
   2303       break;
   2304     }
   2305     case ANDCX: {
   2306       int rs = instr->RSValue();
   2307       int ra = instr->RAValue();
   2308       int rb = instr->RBValue();
   2309       intptr_t rs_val = get_register(rs);
   2310       intptr_t rb_val = get_register(rb);
   2311       intptr_t alu_out = rs_val & ~rb_val;
   2312       set_register(ra, alu_out);
   2313       if (instr->Bit(0)) {  // RC Bit set
   2314         SetCR0(alu_out);
   2315       }
   2316       break;
   2317     }
   2318     case CMPL: {
   2319       int ra = instr->RAValue();
   2320       int rb = instr->RBValue();
   2321       int cr = instr->Bits(25, 23);
   2322       uint32_t bf = 0;
   2323 #if V8_TARGET_ARCH_PPC64
   2324       int L = instr->Bit(21);
   2325       if (L) {
   2326 #endif
   2327         uintptr_t ra_val = get_register(ra);
   2328         uintptr_t rb_val = get_register(rb);
   2329         if (ra_val < rb_val) {
   2330           bf |= 0x80000000;
   2331         }
   2332         if (ra_val > rb_val) {
   2333           bf |= 0x40000000;
   2334         }
   2335         if (ra_val == rb_val) {
   2336           bf |= 0x20000000;
   2337         }
   2338 #if V8_TARGET_ARCH_PPC64
   2339       } else {
   2340         uint32_t ra_val = get_register(ra);
   2341         uint32_t rb_val = get_register(rb);
   2342         if (ra_val < rb_val) {
   2343           bf |= 0x80000000;
   2344         }
   2345         if (ra_val > rb_val) {
   2346           bf |= 0x40000000;
   2347         }
   2348         if (ra_val == rb_val) {
   2349           bf |= 0x20000000;
   2350         }
   2351       }
   2352 #endif
   2353       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
   2354       uint32_t condition = bf >> (cr * 4);
   2355       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
   2356       break;
   2357     }
   2358     case SUBFX: {
   2359       int rt = instr->RTValue();
   2360       int ra = instr->RAValue();
   2361       int rb = instr->RBValue();
   2362       // int oe = instr->Bit(10);
   2363       intptr_t ra_val = get_register(ra);
   2364       intptr_t rb_val = get_register(rb);
   2365       intptr_t alu_out = rb_val - ra_val;
   2366       // todo - figure out underflow
   2367       set_register(rt, alu_out);
   2368       if (instr->Bit(0)) {  // RC Bit set
   2369         SetCR0(alu_out);
   2370       }
   2371       // todo - handle OE bit
   2372       break;
   2373     }
   2374     case ADDZEX: {
   2375       int rt = instr->RTValue();
   2376       int ra = instr->RAValue();
   2377       intptr_t ra_val = get_register(ra);
   2378       if (special_reg_xer_ & 0x20000000) {
   2379         ra_val += 1;
   2380       }
   2381       set_register(rt, ra_val);
   2382       if (instr->Bit(0)) {  // RC bit set
   2383         SetCR0(ra_val);
   2384       }
   2385       // todo - handle OE bit
   2386       break;
   2387     }
   2388     case NORX: {
   2389       int rs = instr->RSValue();
   2390       int ra = instr->RAValue();
   2391       int rb = instr->RBValue();
   2392       intptr_t rs_val = get_register(rs);
   2393       intptr_t rb_val = get_register(rb);
   2394       intptr_t alu_out = ~(rs_val | rb_val);
   2395       set_register(ra, alu_out);
   2396       if (instr->Bit(0)) {  // RC bit set
   2397         SetCR0(alu_out);
   2398       }
   2399       break;
   2400     }
   2401     case MULLW: {
   2402       int rt = instr->RTValue();
   2403       int ra = instr->RAValue();
   2404       int rb = instr->RBValue();
   2405       int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
   2406       int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
   2407       int32_t alu_out = ra_val * rb_val;
   2408       set_register(rt, alu_out);
   2409       if (instr->Bit(0)) {  // RC bit set
   2410         SetCR0(alu_out);
   2411       }
   2412       // todo - handle OE bit
   2413       break;
   2414     }
   2415 #if V8_TARGET_ARCH_PPC64
   2416     case MULLD: {
   2417       int rt = instr->RTValue();
   2418       int ra = instr->RAValue();
   2419       int rb = instr->RBValue();
   2420       int64_t ra_val = get_register(ra);
   2421       int64_t rb_val = get_register(rb);
   2422       int64_t alu_out = ra_val * rb_val;
   2423       set_register(rt, alu_out);
   2424       if (instr->Bit(0)) {  // RC bit set
   2425         SetCR0(alu_out);
   2426       }
   2427       // todo - handle OE bit
   2428       break;
   2429     }
   2430 #endif
   2431     case DIVW: {
   2432       int rt = instr->RTValue();
   2433       int ra = instr->RAValue();
   2434       int rb = instr->RBValue();
   2435       int32_t ra_val = get_register(ra);
   2436       int32_t rb_val = get_register(rb);
   2437       bool overflow = (ra_val == kMinInt && rb_val == -1);
   2438       // result is undefined if divisor is zero or if operation
   2439       // is 0x80000000 / -1.
   2440       int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
   2441       set_register(rt, alu_out);
   2442       if (instr->Bit(10)) {  // OE bit set
   2443         if (overflow) {
   2444           special_reg_xer_ |= 0xC0000000;  // set SO,OV
   2445         } else {
   2446           special_reg_xer_ &= ~0x40000000;  // clear OV
   2447         }
   2448       }
   2449       if (instr->Bit(0)) {  // RC bit set
   2450         bool setSO = (special_reg_xer_ & 0x80000000);
   2451         SetCR0(alu_out, setSO);
   2452       }
   2453       break;
   2454     }
   2455     case DIVWU: {
   2456       int rt = instr->RTValue();
   2457       int ra = instr->RAValue();
   2458       int rb = instr->RBValue();
   2459       uint32_t ra_val = get_register(ra);
   2460       uint32_t rb_val = get_register(rb);
   2461       bool overflow = (rb_val == 0);
   2462       // result is undefined if divisor is zero
   2463       uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
   2464       set_register(rt, alu_out);
   2465       if (instr->Bit(10)) {  // OE bit set
   2466         if (overflow) {
   2467           special_reg_xer_ |= 0xC0000000;  // set SO,OV
   2468         } else {
   2469           special_reg_xer_ &= ~0x40000000;  // clear OV
   2470         }
   2471       }
   2472       if (instr->Bit(0)) {  // RC bit set
   2473         bool setSO = (special_reg_xer_ & 0x80000000);
   2474         SetCR0(alu_out, setSO);
   2475       }
   2476       break;
   2477     }
   2478 #if V8_TARGET_ARCH_PPC64
   2479     case DIVD: {
   2480       int rt = instr->RTValue();
   2481       int ra = instr->RAValue();
   2482       int rb = instr->RBValue();
   2483       int64_t ra_val = get_register(ra);
   2484       int64_t rb_val = get_register(rb);
   2485       int64_t one = 1;  // work-around gcc
   2486       int64_t kMinLongLong = (one << 63);
   2487       // result is undefined if divisor is zero or if operation
   2488       // is 0x80000000_00000000 / -1.
   2489       int64_t alu_out =
   2490           (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
   2491               ? -1
   2492               : ra_val / rb_val;
   2493       set_register(rt, alu_out);
   2494       if (instr->Bit(0)) {  // RC bit set
   2495         SetCR0(alu_out);
   2496       }
   2497       // todo - handle OE bit
   2498       break;
   2499     }
   2500     case DIVDU: {
   2501       int rt = instr->RTValue();
   2502       int ra = instr->RAValue();
   2503       int rb = instr->RBValue();
   2504       uint64_t ra_val = get_register(ra);
   2505       uint64_t rb_val = get_register(rb);
   2506       // result is undefined if divisor is zero
   2507       uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
   2508       set_register(rt, alu_out);
   2509       if (instr->Bit(0)) {  // RC bit set
   2510         SetCR0(alu_out);
   2511       }
   2512       // todo - handle OE bit
   2513       break;
   2514     }
   2515 #endif
   2516     case ADDX: {
   2517       int rt = instr->RTValue();
   2518       int ra = instr->RAValue();
   2519       int rb = instr->RBValue();
   2520       // int oe = instr->Bit(10);
   2521       intptr_t ra_val = get_register(ra);
   2522       intptr_t rb_val = get_register(rb);
   2523       intptr_t alu_out = ra_val + rb_val;
   2524       set_register(rt, alu_out);
   2525       if (instr->Bit(0)) {  // RC bit set
   2526         SetCR0(alu_out);
   2527       }
   2528       // todo - handle OE bit
   2529       break;
   2530     }
   2531     case XORX: {
   2532       int rs = instr->RSValue();
   2533       int ra = instr->RAValue();
   2534       int rb = instr->RBValue();
   2535       intptr_t rs_val = get_register(rs);
   2536       intptr_t rb_val = get_register(rb);
   2537       intptr_t alu_out = rs_val ^ rb_val;
   2538       set_register(ra, alu_out);
   2539       if (instr->Bit(0)) {  // RC bit set
   2540         SetCR0(alu_out);
   2541       }
   2542       break;
   2543     }
   2544     case ORX: {
   2545       int rs = instr->RSValue();
   2546       int ra = instr->RAValue();
   2547       int rb = instr->RBValue();
   2548       intptr_t rs_val = get_register(rs);
   2549       intptr_t rb_val = get_register(rb);
   2550       intptr_t alu_out = rs_val | rb_val;
   2551       set_register(ra, alu_out);
   2552       if (instr->Bit(0)) {  // RC bit set
   2553         SetCR0(alu_out);
   2554       }
   2555       break;
   2556     }
   2557     case ORC: {
   2558       int rs = instr->RSValue();
   2559       int ra = instr->RAValue();
   2560       int rb = instr->RBValue();
   2561       intptr_t rs_val = get_register(rs);
   2562       intptr_t rb_val = get_register(rb);
   2563       intptr_t alu_out = rs_val | ~rb_val;
   2564       set_register(ra, alu_out);
   2565       if (instr->Bit(0)) {  // RC bit set
   2566         SetCR0(alu_out);
   2567       }
   2568       break;
   2569     }
   2570     case MFSPR: {
   2571       int rt = instr->RTValue();
   2572       int spr = instr->Bits(20, 11);
   2573       if (spr != 256) {
   2574         UNIMPLEMENTED();  // Only LRLR supported
   2575       }
   2576       set_register(rt, special_reg_lr_);
   2577       break;
   2578     }
   2579     case MTSPR: {
   2580       int rt = instr->RTValue();
   2581       intptr_t rt_val = get_register(rt);
   2582       int spr = instr->Bits(20, 11);
   2583       if (spr == 256) {
   2584         special_reg_lr_ = rt_val;
   2585       } else if (spr == 288) {
   2586         special_reg_ctr_ = rt_val;
   2587       } else if (spr == 32) {
   2588         special_reg_xer_ = rt_val;
   2589       } else {
   2590         UNIMPLEMENTED();  // Only LR supported
   2591       }
   2592       break;
   2593     }
   2594     case MFCR: {
   2595       int rt = instr->RTValue();
   2596       set_register(rt, condition_reg_);
   2597       break;
   2598     }
   2599     case STWUX:
   2600     case STWX: {
   2601       int rs = instr->RSValue();
   2602       int ra = instr->RAValue();
   2603       int rb = instr->RBValue();
   2604       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2605       int32_t rs_val = get_register(rs);
   2606       intptr_t rb_val = get_register(rb);
   2607       WriteW(ra_val + rb_val, rs_val, instr);
   2608       if (opcode == STWUX) {
   2609         DCHECK(ra != 0);
   2610         set_register(ra, ra_val + rb_val);
   2611       }
   2612       break;
   2613     }
   2614     case STBUX:
   2615     case STBX: {
   2616       int rs = instr->RSValue();
   2617       int ra = instr->RAValue();
   2618       int rb = instr->RBValue();
   2619       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2620       int8_t rs_val = get_register(rs);
   2621       intptr_t rb_val = get_register(rb);
   2622       WriteB(ra_val + rb_val, rs_val);
   2623       if (opcode == STBUX) {
   2624         DCHECK(ra != 0);
   2625         set_register(ra, ra_val + rb_val);
   2626       }
   2627       break;
   2628     }
   2629     case STHUX:
   2630     case STHX: {
   2631       int rs = instr->RSValue();
   2632       int ra = instr->RAValue();
   2633       int rb = instr->RBValue();
   2634       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2635       int16_t rs_val = get_register(rs);
   2636       intptr_t rb_val = get_register(rb);
   2637       WriteH(ra_val + rb_val, rs_val, instr);
   2638       if (opcode == STHUX) {
   2639         DCHECK(ra != 0);
   2640         set_register(ra, ra_val + rb_val);
   2641       }
   2642       break;
   2643     }
   2644     case LWZX:
   2645     case LWZUX: {
   2646       int rt = instr->RTValue();
   2647       int ra = instr->RAValue();
   2648       int rb = instr->RBValue();
   2649       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2650       intptr_t rb_val = get_register(rb);
   2651       set_register(rt, ReadWU(ra_val + rb_val, instr));
   2652       if (opcode == LWZUX) {
   2653         DCHECK(ra != 0 && ra != rt);
   2654         set_register(ra, ra_val + rb_val);
   2655       }
   2656       break;
   2657     }
   2658 #if V8_TARGET_ARCH_PPC64
   2659     case LWAX: {
   2660       int rt = instr->RTValue();
   2661       int ra = instr->RAValue();
   2662       int rb = instr->RBValue();
   2663       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2664       intptr_t rb_val = get_register(rb);
   2665       set_register(rt, ReadW(ra_val + rb_val, instr));
   2666       break;
   2667     }
   2668     case LDX:
   2669     case LDUX: {
   2670       int rt = instr->RTValue();
   2671       int ra = instr->RAValue();
   2672       int rb = instr->RBValue();
   2673       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2674       intptr_t rb_val = get_register(rb);
   2675       intptr_t* result = ReadDW(ra_val + rb_val);
   2676       set_register(rt, *result);
   2677       if (opcode == LDUX) {
   2678         DCHECK(ra != 0 && ra != rt);
   2679         set_register(ra, ra_val + rb_val);
   2680       }
   2681       break;
   2682     }
   2683     case STDX:
   2684     case STDUX: {
   2685       int rs = instr->RSValue();
   2686       int ra = instr->RAValue();
   2687       int rb = instr->RBValue();
   2688       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2689       intptr_t rs_val = get_register(rs);
   2690       intptr_t rb_val = get_register(rb);
   2691       WriteDW(ra_val + rb_val, rs_val);
   2692       if (opcode == STDUX) {
   2693         DCHECK(ra != 0);
   2694         set_register(ra, ra_val + rb_val);
   2695       }
   2696       break;
   2697     }
   2698 #endif
   2699     case LBZX:
   2700     case LBZUX: {
   2701       int rt = instr->RTValue();
   2702       int ra = instr->RAValue();
   2703       int rb = instr->RBValue();
   2704       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2705       intptr_t rb_val = get_register(rb);
   2706       set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
   2707       if (opcode == LBZUX) {
   2708         DCHECK(ra != 0 && ra != rt);
   2709         set_register(ra, ra_val + rb_val);
   2710       }
   2711       break;
   2712     }
   2713     case LHZX:
   2714     case LHZUX: {
   2715       int rt = instr->RTValue();
   2716       int ra = instr->RAValue();
   2717       int rb = instr->RBValue();
   2718       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2719       intptr_t rb_val = get_register(rb);
   2720       set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
   2721       if (opcode == LHZUX) {
   2722         DCHECK(ra != 0 && ra != rt);
   2723         set_register(ra, ra_val + rb_val);
   2724       }
   2725       break;
   2726     }
   2727     case LHAX:
   2728     case LHAUX: {
   2729       int rt = instr->RTValue();
   2730       int ra = instr->RAValue();
   2731       int rb = instr->RBValue();
   2732       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   2733       intptr_t rb_val = get_register(rb);
   2734       set_register(rt, ReadH(ra_val + rb_val, instr));
   2735       if (opcode == LHAUX) {
   2736         DCHECK(ra != 0 && ra != rt);
   2737         set_register(ra, ra_val + rb_val);
   2738       }
   2739       break;
   2740     }
   2741     case DCBF: {
   2742       // todo - simulate dcbf
   2743       break;
   2744     }
   2745     default: {
   2746       found = false;
   2747       break;
   2748     }
   2749   }
   2750 
   2751   return found;
   2752 }
   2753 
   2754 
   2755 void Simulator::ExecuteExt2_5bit(Instruction* instr) {
   2756   uint32_t opcode = EXT2 | instr->BitField(5, 1);
   2757   switch (opcode) {
   2758     case ISEL: {
   2759       int rt = instr->RTValue();
   2760       int ra = instr->RAValue();
   2761       int rb = instr->RBValue();
   2762       int condition_bit = instr->RCValue();
   2763       int condition_mask = 0x80000000 >> condition_bit;
   2764       intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
   2765       intptr_t rb_val = get_register(rb);
   2766       intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
   2767       set_register(rt, value);
   2768       break;
   2769     }
   2770     default: {
   2771       PrintF("Unimplemented: %08x\n", instr->InstructionBits());
   2772       UNIMPLEMENTED();  // Not used by V8.
   2773     }
   2774   }
   2775 }
   2776 
   2777 
   2778 void Simulator::ExecuteExt2(Instruction* instr) {
   2779   // Check first the 10-1 bit versions
   2780   if (ExecuteExt2_10bit(instr)) return;
   2781   // Now look at the lesser encodings
   2782   if (ExecuteExt2_9bit_part1(instr)) return;
   2783   if (ExecuteExt2_9bit_part2(instr)) return;
   2784   ExecuteExt2_5bit(instr);
   2785 }
   2786 
   2787 
   2788 void Simulator::ExecuteExt3(Instruction* instr) {
   2789   uint32_t opcode = EXT3 | instr->BitField(10, 1);
   2790   switch (opcode) {
   2791     case FCFIDS: {
   2792       // fcfids
   2793       int frt = instr->RTValue();
   2794       int frb = instr->RBValue();
   2795       int64_t frb_val = get_d_register(frb);
   2796       double frt_val = static_cast<float>(frb_val);
   2797       set_d_register_from_double(frt, frt_val);
   2798       return;
   2799     }
   2800     case FCFIDUS: {
   2801       // fcfidus
   2802       int frt = instr->RTValue();
   2803       int frb = instr->RBValue();
   2804       uint64_t frb_val = get_d_register(frb);
   2805       double frt_val = static_cast<float>(frb_val);
   2806       set_d_register_from_double(frt, frt_val);
   2807       return;
   2808     }
   2809   }
   2810   UNIMPLEMENTED();  // Not used by V8.
   2811 }
   2812 
   2813 
   2814 void Simulator::ExecuteExt4(Instruction* instr) {
   2815   uint32_t opcode = EXT4 | instr->BitField(5, 1);
   2816   switch (opcode) {
   2817     case FDIV: {
   2818       int frt = instr->RTValue();
   2819       int fra = instr->RAValue();
   2820       int frb = instr->RBValue();
   2821       double fra_val = get_double_from_d_register(fra);
   2822       double frb_val = get_double_from_d_register(frb);
   2823       double frt_val = fra_val / frb_val;
   2824       set_d_register_from_double(frt, frt_val);
   2825       return;
   2826     }
   2827     case FSUB: {
   2828       int frt = instr->RTValue();
   2829       int fra = instr->RAValue();
   2830       int frb = instr->RBValue();
   2831       double fra_val = get_double_from_d_register(fra);
   2832       double frb_val = get_double_from_d_register(frb);
   2833       double frt_val = fra_val - frb_val;
   2834       set_d_register_from_double(frt, frt_val);
   2835       return;
   2836     }
   2837     case FADD: {
   2838       int frt = instr->RTValue();
   2839       int fra = instr->RAValue();
   2840       int frb = instr->RBValue();
   2841       double fra_val = get_double_from_d_register(fra);
   2842       double frb_val = get_double_from_d_register(frb);
   2843       double frt_val = fra_val + frb_val;
   2844       set_d_register_from_double(frt, frt_val);
   2845       return;
   2846     }
   2847     case FSQRT: {
   2848       lazily_initialize_fast_sqrt(isolate_);
   2849       int frt = instr->RTValue();
   2850       int frb = instr->RBValue();
   2851       double frb_val = get_double_from_d_register(frb);
   2852       double frt_val = fast_sqrt(frb_val, isolate_);
   2853       set_d_register_from_double(frt, frt_val);
   2854       return;
   2855     }
   2856     case FSEL: {
   2857       int frt = instr->RTValue();
   2858       int fra = instr->RAValue();
   2859       int frb = instr->RBValue();
   2860       int frc = instr->RCValue();
   2861       double fra_val = get_double_from_d_register(fra);
   2862       double frb_val = get_double_from_d_register(frb);
   2863       double frc_val = get_double_from_d_register(frc);
   2864       double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
   2865       set_d_register_from_double(frt, frt_val);
   2866       return;
   2867     }
   2868     case FMUL: {
   2869       int frt = instr->RTValue();
   2870       int fra = instr->RAValue();
   2871       int frc = instr->RCValue();
   2872       double fra_val = get_double_from_d_register(fra);
   2873       double frc_val = get_double_from_d_register(frc);
   2874       double frt_val = fra_val * frc_val;
   2875       set_d_register_from_double(frt, frt_val);
   2876       return;
   2877     }
   2878     case FMSUB: {
   2879       int frt = instr->RTValue();
   2880       int fra = instr->RAValue();
   2881       int frb = instr->RBValue();
   2882       int frc = instr->RCValue();
   2883       double fra_val = get_double_from_d_register(fra);
   2884       double frb_val = get_double_from_d_register(frb);
   2885       double frc_val = get_double_from_d_register(frc);
   2886       double frt_val = (fra_val * frc_val) - frb_val;
   2887       set_d_register_from_double(frt, frt_val);
   2888       return;
   2889     }
   2890     case FMADD: {
   2891       int frt = instr->RTValue();
   2892       int fra = instr->RAValue();
   2893       int frb = instr->RBValue();
   2894       int frc = instr->RCValue();
   2895       double fra_val = get_double_from_d_register(fra);
   2896       double frb_val = get_double_from_d_register(frb);
   2897       double frc_val = get_double_from_d_register(frc);
   2898       double frt_val = (fra_val * frc_val) + frb_val;
   2899       set_d_register_from_double(frt, frt_val);
   2900       return;
   2901     }
   2902   }
   2903   opcode = EXT4 | instr->BitField(10, 1);
   2904   switch (opcode) {
   2905     case FCMPU: {
   2906       int fra = instr->RAValue();
   2907       int frb = instr->RBValue();
   2908       double fra_val = get_double_from_d_register(fra);
   2909       double frb_val = get_double_from_d_register(frb);
   2910       int cr = instr->Bits(25, 23);
   2911       int bf = 0;
   2912       if (fra_val < frb_val) {
   2913         bf |= 0x80000000;
   2914       }
   2915       if (fra_val > frb_val) {
   2916         bf |= 0x40000000;
   2917       }
   2918       if (fra_val == frb_val) {
   2919         bf |= 0x20000000;
   2920       }
   2921       if (std::isunordered(fra_val, frb_val)) {
   2922         bf |= 0x10000000;
   2923       }
   2924       int condition_mask = 0xF0000000 >> (cr * 4);
   2925       int condition = bf >> (cr * 4);
   2926       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
   2927       return;
   2928     }
   2929     case FRIN: {
   2930       int frt = instr->RTValue();
   2931       int frb = instr->RBValue();
   2932       double frb_val = get_double_from_d_register(frb);
   2933       double frt_val = std::round(frb_val);
   2934       set_d_register_from_double(frt, frt_val);
   2935       if (instr->Bit(0)) {  // RC bit set
   2936                             //  UNIMPLEMENTED();
   2937       }
   2938       return;
   2939     }
   2940     case FRIZ: {
   2941       int frt = instr->RTValue();
   2942       int frb = instr->RBValue();
   2943       double frb_val = get_double_from_d_register(frb);
   2944       double frt_val = std::trunc(frb_val);
   2945       set_d_register_from_double(frt, frt_val);
   2946       if (instr->Bit(0)) {  // RC bit set
   2947                             //  UNIMPLEMENTED();
   2948       }
   2949       return;
   2950     }
   2951     case FRIP: {
   2952       int frt = instr->RTValue();
   2953       int frb = instr->RBValue();
   2954       double frb_val = get_double_from_d_register(frb);
   2955       double frt_val = std::ceil(frb_val);
   2956       set_d_register_from_double(frt, frt_val);
   2957       if (instr->Bit(0)) {  // RC bit set
   2958                             //  UNIMPLEMENTED();
   2959       }
   2960       return;
   2961     }
   2962     case FRIM: {
   2963       int frt = instr->RTValue();
   2964       int frb = instr->RBValue();
   2965       double frb_val = get_double_from_d_register(frb);
   2966       double frt_val = std::floor(frb_val);
   2967       set_d_register_from_double(frt, frt_val);
   2968       if (instr->Bit(0)) {  // RC bit set
   2969                             //  UNIMPLEMENTED();
   2970       }
   2971       return;
   2972     }
   2973     case FRSP: {
   2974       int frt = instr->RTValue();
   2975       int frb = instr->RBValue();
   2976       // frsp round 8-byte double-precision value to
   2977       // single-precision value
   2978       double frb_val = get_double_from_d_register(frb);
   2979       double frt_val = static_cast<float>(frb_val);
   2980       set_d_register_from_double(frt, frt_val);
   2981       if (instr->Bit(0)) {  // RC bit set
   2982                             //  UNIMPLEMENTED();
   2983       }
   2984       return;
   2985     }
   2986     case FCFID: {
   2987       int frt = instr->RTValue();
   2988       int frb = instr->RBValue();
   2989       int64_t frb_val = get_d_register(frb);
   2990       double frt_val = static_cast<double>(frb_val);
   2991       set_d_register_from_double(frt, frt_val);
   2992       return;
   2993     }
   2994     case FCFIDU: {
   2995       int frt = instr->RTValue();
   2996       int frb = instr->RBValue();
   2997       uint64_t frb_val = get_d_register(frb);
   2998       double frt_val = static_cast<double>(frb_val);
   2999       set_d_register_from_double(frt, frt_val);
   3000       return;
   3001     }
   3002     case FCTID:
   3003     case FCTIDZ: {
   3004       int frt = instr->RTValue();
   3005       int frb = instr->RBValue();
   3006       double frb_val = get_double_from_d_register(frb);
   3007       int mode = (opcode == FCTIDZ) ? kRoundToZero
   3008                                     : (fp_condition_reg_ & kFPRoundingModeMask);
   3009       int64_t frt_val;
   3010       int64_t one = 1;  // work-around gcc
   3011       int64_t kMinVal = (one << 63);
   3012       int64_t kMaxVal = kMinVal - 1;
   3013       bool invalid_convert = false;
   3014 
   3015       if (std::isnan(frb_val)) {
   3016         frt_val = kMinVal;
   3017         invalid_convert = true;
   3018       } else {
   3019         switch (mode) {
   3020           case kRoundToZero:
   3021             frb_val = std::trunc(frb_val);
   3022             break;
   3023           case kRoundToPlusInf:
   3024             frb_val = std::ceil(frb_val);
   3025             break;
   3026           case kRoundToMinusInf:
   3027             frb_val = std::floor(frb_val);
   3028             break;
   3029           default:
   3030             UNIMPLEMENTED();  // Not used by V8.
   3031             break;
   3032         }
   3033         if (frb_val < static_cast<double>(kMinVal)) {
   3034           frt_val = kMinVal;
   3035           invalid_convert = true;
   3036         } else if (frb_val >= static_cast<double>(kMaxVal)) {
   3037           frt_val = kMaxVal;
   3038           invalid_convert = true;
   3039         } else {
   3040           frt_val = (int64_t)frb_val;
   3041         }
   3042       }
   3043       set_d_register(frt, frt_val);
   3044       if (invalid_convert) SetFPSCR(VXCVI);
   3045       return;
   3046     }
   3047     case FCTIDU:
   3048     case FCTIDUZ: {
   3049       int frt = instr->RTValue();
   3050       int frb = instr->RBValue();
   3051       double frb_val = get_double_from_d_register(frb);
   3052       int mode = (opcode == FCTIDUZ)
   3053                      ? kRoundToZero
   3054                      : (fp_condition_reg_ & kFPRoundingModeMask);
   3055       uint64_t frt_val;
   3056       uint64_t kMinVal = 0;
   3057       uint64_t kMaxVal = kMinVal - 1;
   3058       bool invalid_convert = false;
   3059 
   3060       if (std::isnan(frb_val)) {
   3061         frt_val = kMinVal;
   3062         invalid_convert = true;
   3063       } else {
   3064         switch (mode) {
   3065           case kRoundToZero:
   3066             frb_val = std::trunc(frb_val);
   3067             break;
   3068           case kRoundToPlusInf:
   3069             frb_val = std::ceil(frb_val);
   3070             break;
   3071           case kRoundToMinusInf:
   3072             frb_val = std::floor(frb_val);
   3073             break;
   3074           default:
   3075             UNIMPLEMENTED();  // Not used by V8.
   3076             break;
   3077         }
   3078         if (frb_val < static_cast<double>(kMinVal)) {
   3079           frt_val = kMinVal;
   3080           invalid_convert = true;
   3081         } else if (frb_val >= static_cast<double>(kMaxVal)) {
   3082           frt_val = kMaxVal;
   3083           invalid_convert = true;
   3084         } else {
   3085           frt_val = (uint64_t)frb_val;
   3086         }
   3087       }
   3088       set_d_register(frt, frt_val);
   3089       if (invalid_convert) SetFPSCR(VXCVI);
   3090       return;
   3091     }
   3092     case FCTIW:
   3093     case FCTIWZ: {
   3094       int frt = instr->RTValue();
   3095       int frb = instr->RBValue();
   3096       double frb_val = get_double_from_d_register(frb);
   3097       int mode = (opcode == FCTIWZ) ? kRoundToZero
   3098                                     : (fp_condition_reg_ & kFPRoundingModeMask);
   3099       int64_t frt_val;
   3100       int64_t kMinVal = kMinInt;
   3101       int64_t kMaxVal = kMaxInt;
   3102 
   3103       if (std::isnan(frb_val)) {
   3104         frt_val = kMinVal;
   3105       } else {
   3106         switch (mode) {
   3107           case kRoundToZero:
   3108             frb_val = std::trunc(frb_val);
   3109             break;
   3110           case kRoundToPlusInf:
   3111             frb_val = std::ceil(frb_val);
   3112             break;
   3113           case kRoundToMinusInf:
   3114             frb_val = std::floor(frb_val);
   3115             break;
   3116           case kRoundToNearest: {
   3117             double orig = frb_val;
   3118             frb_val = lround(frb_val);
   3119             // Round to even if exactly halfway.  (lround rounds up)
   3120             if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
   3121               frb_val += ((frb_val > 0) ? -1.0 : 1.0);
   3122             }
   3123             break;
   3124           }
   3125           default:
   3126             UNIMPLEMENTED();  // Not used by V8.
   3127             break;
   3128         }
   3129         if (frb_val < kMinVal) {
   3130           frt_val = kMinVal;
   3131         } else if (frb_val > kMaxVal) {
   3132           frt_val = kMaxVal;
   3133         } else {
   3134           frt_val = (int64_t)frb_val;
   3135         }
   3136       }
   3137       set_d_register(frt, frt_val);
   3138       return;
   3139     }
   3140     case FNEG: {
   3141       int frt = instr->RTValue();
   3142       int frb = instr->RBValue();
   3143       double frb_val = get_double_from_d_register(frb);
   3144       double frt_val = -frb_val;
   3145       set_d_register_from_double(frt, frt_val);
   3146       return;
   3147     }
   3148     case FMR: {
   3149       int frt = instr->RTValue();
   3150       int frb = instr->RBValue();
   3151       int64_t frb_val = get_d_register(frb);
   3152       set_d_register(frt, frb_val);
   3153       return;
   3154     }
   3155     case MTFSFI: {
   3156       int bf = instr->Bits(25, 23);
   3157       int imm = instr->Bits(15, 12);
   3158       int fp_condition_mask = 0xF0000000 >> (bf * 4);
   3159       fp_condition_reg_ &= ~fp_condition_mask;
   3160       fp_condition_reg_ |= (imm << (28 - (bf * 4)));
   3161       if (instr->Bit(0)) {  // RC bit set
   3162         condition_reg_ &= 0xF0FFFFFF;
   3163         condition_reg_ |= (imm << 23);
   3164       }
   3165       return;
   3166     }
   3167     case MTFSF: {
   3168       int frb = instr->RBValue();
   3169       int64_t frb_dval = get_d_register(frb);
   3170       int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff);
   3171       int l = instr->Bits(25, 25);
   3172       if (l == 1) {
   3173         fp_condition_reg_ = frb_ival;
   3174       } else {
   3175         UNIMPLEMENTED();
   3176       }
   3177       if (instr->Bit(0)) {  // RC bit set
   3178         UNIMPLEMENTED();
   3179         // int w = instr->Bits(16, 16);
   3180         // int flm = instr->Bits(24, 17);
   3181       }
   3182       return;
   3183     }
   3184     case MFFS: {
   3185       int frt = instr->RTValue();
   3186       int64_t lval = static_cast<int64_t>(fp_condition_reg_);
   3187       set_d_register(frt, lval);
   3188       return;
   3189     }
   3190     case MCRFS: {
   3191       int bf = instr->Bits(25, 23);
   3192       int bfa = instr->Bits(20, 18);
   3193       int cr_shift = (7 - bf) * CRWIDTH;
   3194       int fp_shift = (7 - bfa) * CRWIDTH;
   3195       int field_val = (fp_condition_reg_ >> fp_shift) & 0xf;
   3196       condition_reg_ &= ~(0x0f << cr_shift);
   3197       condition_reg_ |= (field_val << cr_shift);
   3198       // Clear copied exception bits
   3199       switch (bfa) {
   3200         case 5:
   3201           ClearFPSCR(VXSOFT);
   3202           ClearFPSCR(VXSQRT);
   3203           ClearFPSCR(VXCVI);
   3204           break;
   3205         default:
   3206           UNIMPLEMENTED();
   3207           break;
   3208       }
   3209       return;
   3210     }
   3211     case MTFSB0: {
   3212       int bt = instr->Bits(25, 21);
   3213       ClearFPSCR(bt);
   3214       if (instr->Bit(0)) {  // RC bit set
   3215         UNIMPLEMENTED();
   3216       }
   3217       return;
   3218     }
   3219     case MTFSB1: {
   3220       int bt = instr->Bits(25, 21);
   3221       SetFPSCR(bt);
   3222       if (instr->Bit(0)) {  // RC bit set
   3223         UNIMPLEMENTED();
   3224       }
   3225       return;
   3226     }
   3227     case FABS: {
   3228       int frt = instr->RTValue();
   3229       int frb = instr->RBValue();
   3230       double frb_val = get_double_from_d_register(frb);
   3231       double frt_val = std::fabs(frb_val);
   3232       set_d_register_from_double(frt, frt_val);
   3233       return;
   3234     }
   3235   }
   3236   UNIMPLEMENTED();  // Not used by V8.
   3237 }
   3238 
   3239 #if V8_TARGET_ARCH_PPC64
   3240 void Simulator::ExecuteExt5(Instruction* instr) {
   3241   uint32_t opcode = EXT5 | instr->BitField(4, 2);
   3242   switch (opcode) {
   3243     case RLDICL: {
   3244       int ra = instr->RAValue();
   3245       int rs = instr->RSValue();
   3246       uintptr_t rs_val = get_register(rs);
   3247       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
   3248       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
   3249       DCHECK(sh >= 0 && sh <= 63);
   3250       DCHECK(mb >= 0 && mb <= 63);
   3251       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
   3252       uintptr_t mask = 0xffffffffffffffff >> mb;
   3253       result &= mask;
   3254       set_register(ra, result);
   3255       if (instr->Bit(0)) {  // RC bit set
   3256         SetCR0(result);
   3257       }
   3258       return;
   3259     }
   3260     case RLDICR: {
   3261       int ra = instr->RAValue();
   3262       int rs = instr->RSValue();
   3263       uintptr_t rs_val = get_register(rs);
   3264       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
   3265       int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
   3266       DCHECK(sh >= 0 && sh <= 63);
   3267       DCHECK(me >= 0 && me <= 63);
   3268       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
   3269       uintptr_t mask = 0xffffffffffffffff << (63 - me);
   3270       result &= mask;
   3271       set_register(ra, result);
   3272       if (instr->Bit(0)) {  // RC bit set
   3273         SetCR0(result);
   3274       }
   3275       return;
   3276     }
   3277     case RLDIC: {
   3278       int ra = instr->RAValue();
   3279       int rs = instr->RSValue();
   3280       uintptr_t rs_val = get_register(rs);
   3281       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
   3282       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
   3283       DCHECK(sh >= 0 && sh <= 63);
   3284       DCHECK(mb >= 0 && mb <= 63);
   3285       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
   3286       uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
   3287       result &= mask;
   3288       set_register(ra, result);
   3289       if (instr->Bit(0)) {  // RC bit set
   3290         SetCR0(result);
   3291       }
   3292       return;
   3293     }
   3294     case RLDIMI: {
   3295       int ra = instr->RAValue();
   3296       int rs = instr->RSValue();
   3297       uintptr_t rs_val = get_register(rs);
   3298       intptr_t ra_val = get_register(ra);
   3299       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
   3300       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
   3301       int me = 63 - sh;
   3302       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
   3303       uintptr_t mask = 0;
   3304       if (mb < me + 1) {
   3305         uintptr_t bit = 0x8000000000000000 >> mb;
   3306         for (; mb <= me; mb++) {
   3307           mask |= bit;
   3308           bit >>= 1;
   3309         }
   3310       } else if (mb == me + 1) {
   3311         mask = 0xffffffffffffffff;
   3312       } else {                                           // mb > me+1
   3313         uintptr_t bit = 0x8000000000000000 >> (me + 1);  // needs to be tested
   3314         mask = 0xffffffffffffffff;
   3315         for (; me < mb; me++) {
   3316           mask ^= bit;
   3317           bit >>= 1;
   3318         }
   3319       }
   3320       result &= mask;
   3321       ra_val &= ~mask;
   3322       result |= ra_val;
   3323       set_register(ra, result);
   3324       if (instr->Bit(0)) {  // RC bit set
   3325         SetCR0(result);
   3326       }
   3327       return;
   3328     }
   3329   }
   3330   opcode = EXT5 | instr->BitField(4, 1);
   3331   switch (opcode) {
   3332     case RLDCL: {
   3333       int ra = instr->RAValue();
   3334       int rs = instr->RSValue();
   3335       int rb = instr->RBValue();
   3336       uintptr_t rs_val = get_register(rs);
   3337       uintptr_t rb_val = get_register(rb);
   3338       int sh = (rb_val & 0x3f);
   3339       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
   3340       DCHECK(sh >= 0 && sh <= 63);
   3341       DCHECK(mb >= 0 && mb <= 63);
   3342       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
   3343       uintptr_t mask = 0xffffffffffffffff >> mb;
   3344       result &= mask;
   3345       set_register(ra, result);
   3346       if (instr->Bit(0)) {  // RC bit set
   3347         SetCR0(result);
   3348       }
   3349       return;
   3350     }
   3351   }
   3352   UNIMPLEMENTED();  // Not used by V8.
   3353 }
   3354 #endif
   3355 
   3356 void Simulator::ExecuteExt6(Instruction* instr) {
   3357   uint32_t opcode = EXT6 | instr->BitField(10, 3);
   3358   switch (opcode) {
   3359     case XSADDDP: {
   3360       int frt = instr->RTValue();
   3361       int fra = instr->RAValue();
   3362       int frb = instr->RBValue();
   3363       double fra_val = get_double_from_d_register(fra);
   3364       double frb_val = get_double_from_d_register(frb);
   3365       double frt_val = fra_val + frb_val;
   3366       set_d_register_from_double(frt, frt_val);
   3367       return;
   3368     }
   3369     case XSSUBDP: {
   3370       int frt = instr->RTValue();
   3371       int fra = instr->RAValue();
   3372       int frb = instr->RBValue();
   3373       double fra_val = get_double_from_d_register(fra);
   3374       double frb_val = get_double_from_d_register(frb);
   3375       double frt_val = fra_val - frb_val;
   3376       set_d_register_from_double(frt, frt_val);
   3377       return;
   3378     }
   3379     case XSMULDP: {
   3380       int frt = instr->RTValue();
   3381       int fra = instr->RAValue();
   3382       int frb = instr->RBValue();
   3383       double fra_val = get_double_from_d_register(fra);
   3384       double frb_val = get_double_from_d_register(frb);
   3385       double frt_val = fra_val * frb_val;
   3386       set_d_register_from_double(frt, frt_val);
   3387       return;
   3388     }
   3389     case XSDIVDP: {
   3390       int frt = instr->RTValue();
   3391       int fra = instr->RAValue();
   3392       int frb = instr->RBValue();
   3393       double fra_val = get_double_from_d_register(fra);
   3394       double frb_val = get_double_from_d_register(frb);
   3395       double frt_val = fra_val / frb_val;
   3396       set_d_register_from_double(frt, frt_val);
   3397       return;
   3398     }
   3399   }
   3400   UNIMPLEMENTED();  // Not used by V8.
   3401 }
   3402 
   3403 void Simulator::ExecuteGeneric(Instruction* instr) {
   3404   uint32_t opcode = instr->OpcodeField();
   3405   switch (opcode) {
   3406     case SUBFIC: {
   3407       int rt = instr->RTValue();
   3408       int ra = instr->RAValue();
   3409       intptr_t ra_val = get_register(ra);
   3410       int32_t im_val = instr->Bits(15, 0);
   3411       im_val = SIGN_EXT_IMM16(im_val);
   3412       intptr_t alu_out = im_val - ra_val;
   3413       set_register(rt, alu_out);
   3414       // todo - handle RC bit
   3415       break;
   3416     }
   3417     case CMPLI: {
   3418       int ra = instr->RAValue();
   3419       uint32_t im_val = instr->Bits(15, 0);
   3420       int cr = instr->Bits(25, 23);
   3421       uint32_t bf = 0;
   3422 #if V8_TARGET_ARCH_PPC64
   3423       int L = instr->Bit(21);
   3424       if (L) {
   3425 #endif
   3426         uintptr_t ra_val = get_register(ra);
   3427         if (ra_val < im_val) {
   3428           bf |= 0x80000000;
   3429         }
   3430         if (ra_val > im_val) {
   3431           bf |= 0x40000000;
   3432         }
   3433         if (ra_val == im_val) {
   3434           bf |= 0x20000000;
   3435         }
   3436 #if V8_TARGET_ARCH_PPC64
   3437       } else {
   3438         uint32_t ra_val = get_register(ra);
   3439         if (ra_val < im_val) {
   3440           bf |= 0x80000000;
   3441         }
   3442         if (ra_val > im_val) {
   3443           bf |= 0x40000000;
   3444         }
   3445         if (ra_val == im_val) {
   3446           bf |= 0x20000000;
   3447         }
   3448       }
   3449 #endif
   3450       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
   3451       uint32_t condition = bf >> (cr * 4);
   3452       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
   3453       break;
   3454     }
   3455     case CMPI: {
   3456       int ra = instr->RAValue();
   3457       int32_t im_val = instr->Bits(15, 0);
   3458       im_val = SIGN_EXT_IMM16(im_val);
   3459       int cr = instr->Bits(25, 23);
   3460       uint32_t bf = 0;
   3461 #if V8_TARGET_ARCH_PPC64
   3462       int L = instr->Bit(21);
   3463       if (L) {
   3464 #endif
   3465         intptr_t ra_val = get_register(ra);
   3466         if (ra_val < im_val) {
   3467           bf |= 0x80000000;
   3468         }
   3469         if (ra_val > im_val) {
   3470           bf |= 0x40000000;
   3471         }
   3472         if (ra_val == im_val) {
   3473           bf |= 0x20000000;
   3474         }
   3475 #if V8_TARGET_ARCH_PPC64
   3476       } else {
   3477         int32_t ra_val = get_register(ra);
   3478         if (ra_val < im_val) {
   3479           bf |= 0x80000000;
   3480         }
   3481         if (ra_val > im_val) {
   3482           bf |= 0x40000000;
   3483         }
   3484         if (ra_val == im_val) {
   3485           bf |= 0x20000000;
   3486         }
   3487       }
   3488 #endif
   3489       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
   3490       uint32_t condition = bf >> (cr * 4);
   3491       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
   3492       break;
   3493     }
   3494     case ADDIC: {
   3495       int rt = instr->RTValue();
   3496       int ra = instr->RAValue();
   3497       uintptr_t ra_val = get_register(ra);
   3498       uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3499       uintptr_t alu_out = ra_val + im_val;
   3500       // Check overflow
   3501       if (~ra_val < im_val) {
   3502         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
   3503       } else {
   3504         special_reg_xer_ &= ~0xF0000000;
   3505       }
   3506       set_register(rt, alu_out);
   3507       break;
   3508     }
   3509     case ADDI: {
   3510       int rt = instr->RTValue();
   3511       int ra = instr->RAValue();
   3512       int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3513       intptr_t alu_out;
   3514       if (ra == 0) {
   3515         alu_out = im_val;
   3516       } else {
   3517         intptr_t ra_val = get_register(ra);
   3518         alu_out = ra_val + im_val;
   3519       }
   3520       set_register(rt, alu_out);
   3521       // todo - handle RC bit
   3522       break;
   3523     }
   3524     case ADDIS: {
   3525       int rt = instr->RTValue();
   3526       int ra = instr->RAValue();
   3527       int32_t im_val = (instr->Bits(15, 0) << 16);
   3528       intptr_t alu_out;
   3529       if (ra == 0) {  // treat r0 as zero
   3530         alu_out = im_val;
   3531       } else {
   3532         intptr_t ra_val = get_register(ra);
   3533         alu_out = ra_val + im_val;
   3534       }
   3535       set_register(rt, alu_out);
   3536       break;
   3537     }
   3538     case BCX: {
   3539       ExecuteBranchConditional(instr, BC_OFFSET);
   3540       break;
   3541     }
   3542     case BX: {
   3543       int offset = (instr->Bits(25, 2) << 8) >> 6;
   3544       if (instr->Bit(0) == 1) {  // LK flag set
   3545         special_reg_lr_ = get_pc() + 4;
   3546       }
   3547       set_pc(get_pc() + offset);
   3548       // todo - AA flag
   3549       break;
   3550     }
   3551     case EXT1: {
   3552       ExecuteExt1(instr);
   3553       break;
   3554     }
   3555     case RLWIMIX: {
   3556       int ra = instr->RAValue();
   3557       int rs = instr->RSValue();
   3558       uint32_t rs_val = get_register(rs);
   3559       int32_t ra_val = get_register(ra);
   3560       int sh = instr->Bits(15, 11);
   3561       int mb = instr->Bits(10, 6);
   3562       int me = instr->Bits(5, 1);
   3563       uint32_t result = base::bits::RotateLeft32(rs_val, sh);
   3564       int mask = 0;
   3565       if (mb < me + 1) {
   3566         int bit = 0x80000000 >> mb;
   3567         for (; mb <= me; mb++) {
   3568           mask |= bit;
   3569           bit >>= 1;
   3570         }
   3571       } else if (mb == me + 1) {
   3572         mask = 0xffffffff;
   3573       } else {                             // mb > me+1
   3574         int bit = 0x80000000 >> (me + 1);  // needs to be tested
   3575         mask = 0xffffffff;
   3576         for (; me < mb; me++) {
   3577           mask ^= bit;
   3578           bit >>= 1;
   3579         }
   3580       }
   3581       result &= mask;
   3582       ra_val &= ~mask;
   3583       result |= ra_val;
   3584       set_register(ra, result);
   3585       if (instr->Bit(0)) {  // RC bit set
   3586         SetCR0(result);
   3587       }
   3588       break;
   3589     }
   3590     case RLWINMX:
   3591     case RLWNMX: {
   3592       int ra = instr->RAValue();
   3593       int rs = instr->RSValue();
   3594       uint32_t rs_val = get_register(rs);
   3595       int sh = 0;
   3596       if (opcode == RLWINMX) {
   3597         sh = instr->Bits(15, 11);
   3598       } else {
   3599         int rb = instr->RBValue();
   3600         uint32_t rb_val = get_register(rb);
   3601         sh = (rb_val & 0x1f);
   3602       }
   3603       int mb = instr->Bits(10, 6);
   3604       int me = instr->Bits(5, 1);
   3605       uint32_t result = base::bits::RotateLeft32(rs_val, sh);
   3606       int mask = 0;
   3607       if (mb < me + 1) {
   3608         int bit = 0x80000000 >> mb;
   3609         for (; mb <= me; mb++) {
   3610           mask |= bit;
   3611           bit >>= 1;
   3612         }
   3613       } else if (mb == me + 1) {
   3614         mask = 0xffffffff;
   3615       } else {                             // mb > me+1
   3616         int bit = 0x80000000 >> (me + 1);  // needs to be tested
   3617         mask = 0xffffffff;
   3618         for (; me < mb; me++) {
   3619           mask ^= bit;
   3620           bit >>= 1;
   3621         }
   3622       }
   3623       result &= mask;
   3624       set_register(ra, result);
   3625       if (instr->Bit(0)) {  // RC bit set
   3626         SetCR0(result);
   3627       }
   3628       break;
   3629     }
   3630     case ORI: {
   3631       int rs = instr->RSValue();
   3632       int ra = instr->RAValue();
   3633       intptr_t rs_val = get_register(rs);
   3634       uint32_t im_val = instr->Bits(15, 0);
   3635       intptr_t alu_out = rs_val | im_val;
   3636       set_register(ra, alu_out);
   3637       break;
   3638     }
   3639     case ORIS: {
   3640       int rs = instr->RSValue();
   3641       int ra = instr->RAValue();
   3642       intptr_t rs_val = get_register(rs);
   3643       uint32_t im_val = instr->Bits(15, 0);
   3644       intptr_t alu_out = rs_val | (im_val << 16);
   3645       set_register(ra, alu_out);
   3646       break;
   3647     }
   3648     case XORI: {
   3649       int rs = instr->RSValue();
   3650       int ra = instr->RAValue();
   3651       intptr_t rs_val = get_register(rs);
   3652       uint32_t im_val = instr->Bits(15, 0);
   3653       intptr_t alu_out = rs_val ^ im_val;
   3654       set_register(ra, alu_out);
   3655       // todo - set condition based SO bit
   3656       break;
   3657     }
   3658     case XORIS: {
   3659       int rs = instr->RSValue();
   3660       int ra = instr->RAValue();
   3661       intptr_t rs_val = get_register(rs);
   3662       uint32_t im_val = instr->Bits(15, 0);
   3663       intptr_t alu_out = rs_val ^ (im_val << 16);
   3664       set_register(ra, alu_out);
   3665       break;
   3666     }
   3667     case ANDIx: {
   3668       int rs = instr->RSValue();
   3669       int ra = instr->RAValue();
   3670       intptr_t rs_val = get_register(rs);
   3671       uint32_t im_val = instr->Bits(15, 0);
   3672       intptr_t alu_out = rs_val & im_val;
   3673       set_register(ra, alu_out);
   3674       SetCR0(alu_out);
   3675       break;
   3676     }
   3677     case ANDISx: {
   3678       int rs = instr->RSValue();
   3679       int ra = instr->RAValue();
   3680       intptr_t rs_val = get_register(rs);
   3681       uint32_t im_val = instr->Bits(15, 0);
   3682       intptr_t alu_out = rs_val & (im_val << 16);
   3683       set_register(ra, alu_out);
   3684       SetCR0(alu_out);
   3685       break;
   3686     }
   3687     case EXT2: {
   3688       ExecuteExt2(instr);
   3689       break;
   3690     }
   3691 
   3692     case LWZU:
   3693     case LWZ: {
   3694       int ra = instr->RAValue();
   3695       int rt = instr->RTValue();
   3696       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3697       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3698       set_register(rt, ReadWU(ra_val + offset, instr));
   3699       if (opcode == LWZU) {
   3700         DCHECK(ra != 0);
   3701         set_register(ra, ra_val + offset);
   3702       }
   3703       break;
   3704     }
   3705 
   3706     case LBZU:
   3707     case LBZ: {
   3708       int ra = instr->RAValue();
   3709       int rt = instr->RTValue();
   3710       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3711       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3712       set_register(rt, ReadB(ra_val + offset) & 0xFF);
   3713       if (opcode == LBZU) {
   3714         DCHECK(ra != 0);
   3715         set_register(ra, ra_val + offset);
   3716       }
   3717       break;
   3718     }
   3719 
   3720     case STWU:
   3721     case STW: {
   3722       int ra = instr->RAValue();
   3723       int rs = instr->RSValue();
   3724       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3725       int32_t rs_val = get_register(rs);
   3726       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3727       WriteW(ra_val + offset, rs_val, instr);
   3728       if (opcode == STWU) {
   3729         DCHECK(ra != 0);
   3730         set_register(ra, ra_val + offset);
   3731       }
   3732       // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
   3733       break;
   3734     }
   3735 
   3736     case STBU:
   3737     case STB: {
   3738       int ra = instr->RAValue();
   3739       int rs = instr->RSValue();
   3740       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3741       int8_t rs_val = get_register(rs);
   3742       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3743       WriteB(ra_val + offset, rs_val);
   3744       if (opcode == STBU) {
   3745         DCHECK(ra != 0);
   3746         set_register(ra, ra_val + offset);
   3747       }
   3748       break;
   3749     }
   3750 
   3751     case LHZU:
   3752     case LHZ: {
   3753       int ra = instr->RAValue();
   3754       int rt = instr->RTValue();
   3755       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3756       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3757       uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
   3758       set_register(rt, result);
   3759       if (opcode == LHZU) {
   3760         set_register(ra, ra_val + offset);
   3761       }
   3762       break;
   3763     }
   3764 
   3765     case LHA:
   3766     case LHAU: {
   3767       int ra = instr->RAValue();
   3768       int rt = instr->RTValue();
   3769       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3770       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3771       intptr_t result = ReadH(ra_val + offset, instr);
   3772       set_register(rt, result);
   3773       if (opcode == LHAU) {
   3774         set_register(ra, ra_val + offset);
   3775       }
   3776       break;
   3777     }
   3778 
   3779     case STHU:
   3780     case STH: {
   3781       int ra = instr->RAValue();
   3782       int rs = instr->RSValue();
   3783       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3784       int16_t rs_val = get_register(rs);
   3785       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3786       WriteH(ra_val + offset, rs_val, instr);
   3787       if (opcode == STHU) {
   3788         DCHECK(ra != 0);
   3789         set_register(ra, ra_val + offset);
   3790       }
   3791       break;
   3792     }
   3793 
   3794     case LMW:
   3795     case STMW: {
   3796       UNIMPLEMENTED();
   3797       break;
   3798     }
   3799 
   3800     case LFSU:
   3801     case LFS: {
   3802       int frt = instr->RTValue();
   3803       int ra = instr->RAValue();
   3804       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3805       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3806       int32_t val = ReadW(ra_val + offset, instr);
   3807       float* fptr = reinterpret_cast<float*>(&val);
   3808 // Conversion using double changes sNan to qNan on ia32/x64
   3809 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
   3810       if (val == 0x7fa00000) {
   3811         set_d_register(frt, 0x7ff4000000000000);
   3812       } else {
   3813 #endif
   3814         set_d_register_from_double(frt, static_cast<double>(*fptr));
   3815 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
   3816       }
   3817 #endif
   3818       if (opcode == LFSU) {
   3819         DCHECK(ra != 0);
   3820         set_register(ra, ra_val + offset);
   3821       }
   3822       break;
   3823     }
   3824 
   3825     case LFDU:
   3826     case LFD: {
   3827       int frt = instr->RTValue();
   3828       int ra = instr->RAValue();
   3829       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3830       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3831       int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset));
   3832       set_d_register(frt, *dptr);
   3833       if (opcode == LFDU) {
   3834         DCHECK(ra != 0);
   3835         set_register(ra, ra_val + offset);
   3836       }
   3837       break;
   3838     }
   3839 
   3840     case STFSU: {
   3841       case STFS:
   3842         int frs = instr->RSValue();
   3843         int ra = instr->RAValue();
   3844         int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3845         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3846         float frs_val = static_cast<float>(get_double_from_d_register(frs));
   3847         int32_t* p;
   3848 // Conversion using double changes sNan to qNan on ia32/x64
   3849 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
   3850         int64_t frs_isnan = get_d_register(frs);
   3851         int32_t frs_nan_single = 0x7fa00000;
   3852         if (frs_isnan == 0x7ff4000000000000) {
   3853           p = &frs_nan_single;
   3854         } else {
   3855 #endif
   3856           p = reinterpret_cast<int32_t*>(&frs_val);
   3857 #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
   3858         }
   3859 #endif
   3860         WriteW(ra_val + offset, *p, instr);
   3861         if (opcode == STFSU) {
   3862           DCHECK(ra != 0);
   3863           set_register(ra, ra_val + offset);
   3864         }
   3865         break;
   3866     }
   3867 
   3868     case STFDU:
   3869     case STFD: {
   3870       int frs = instr->RSValue();
   3871       int ra = instr->RAValue();
   3872       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
   3873       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
   3874       int64_t frs_val = get_d_register(frs);
   3875       WriteDW(ra_val + offset, frs_val);
   3876       if (opcode == STFDU) {
   3877         DCHECK(ra != 0);
   3878         set_register(ra, ra_val + offset);
   3879       }
   3880       break;
   3881     }
   3882 
   3883     case EXT3: {
   3884       ExecuteExt3(instr);
   3885       break;
   3886     }
   3887     case EXT4: {
   3888       ExecuteExt4(instr);
   3889       break;
   3890     }
   3891 
   3892 #if V8_TARGET_ARCH_PPC64
   3893     case EXT5: {
   3894       ExecuteExt5(instr);
   3895       break;
   3896     }
   3897     case LD: {
   3898       int ra = instr->RAValue();
   3899       int rt = instr->RTValue();
   3900       int64_t ra_val = ra == 0 ? 0 : get_register(ra);
   3901       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
   3902       switch (instr->Bits(1, 0)) {
   3903         case 0: {  // ld
   3904           intptr_t* result = ReadDW(ra_val + offset);
   3905           set_register(rt, *result);
   3906           break;
   3907         }
   3908         case 1: {  // ldu
   3909           intptr_t* result = ReadDW(ra_val + offset);
   3910           set_register(rt, *result);
   3911           DCHECK(ra != 0);
   3912           set_register(ra, ra_val + offset);
   3913           break;
   3914         }
   3915         case 2: {  // lwa
   3916           intptr_t result = ReadW(ra_val + offset, instr);
   3917           set_register(rt, result);
   3918           break;
   3919         }
   3920       }
   3921       break;
   3922     }
   3923 
   3924     case STD: {
   3925       int ra = instr->RAValue();
   3926       int rs = instr->RSValue();
   3927       int64_t ra_val = ra == 0 ? 0 : get_register(ra);
   3928       int64_t rs_val = get_register(rs);
   3929       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
   3930       WriteDW(ra_val + offset, rs_val);
   3931       if (instr->Bit(0) == 1) {  // This is the STDU form
   3932         DCHECK(ra != 0);
   3933         set_register(ra, ra_val + offset);
   3934       }
   3935       break;
   3936     }
   3937 #endif
   3938     case EXT6: {
   3939       ExecuteExt6(instr);
   3940       break;
   3941     }
   3942 
   3943     default: {
   3944       UNIMPLEMENTED();
   3945       break;
   3946     }
   3947   }
   3948 }  // NOLINT
   3949 
   3950 
   3951 void Simulator::Trace(Instruction* instr) {
   3952   disasm::NameConverter converter;
   3953   disasm::Disassembler dasm(converter);
   3954   // use a reasonably large buffer
   3955   v8::internal::EmbeddedVector<char, 256> buffer;
   3956   dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
   3957   PrintF("%05d  %08" V8PRIxPTR "  %s\n", icount_,
   3958          reinterpret_cast<intptr_t>(instr), buffer.start());
   3959 }
   3960 
   3961 
   3962 // Executes the current instruction.
   3963 void Simulator::ExecuteInstruction(Instruction* instr) {
   3964   if (v8::internal::FLAG_check_icache) {
   3965     CheckICache(isolate_->simulator_i_cache(), instr);
   3966   }
   3967   pc_modified_ = false;
   3968   if (::v8::internal::FLAG_trace_sim) {
   3969     Trace(instr);
   3970   }
   3971   uint32_t opcode = instr->OpcodeField();
   3972   if (opcode == TWI) {
   3973     SoftwareInterrupt(instr);
   3974   } else {
   3975     ExecuteGeneric(instr);
   3976   }
   3977   if (!pc_modified_) {
   3978     set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
   3979   }
   3980 }
   3981 
   3982 
   3983 void Simulator::Execute() {
   3984   // Get the PC to simulate. Cannot use the accessor here as we need the
   3985   // raw PC value and not the one used as input to arithmetic instructions.
   3986   intptr_t program_counter = get_pc();
   3987 
   3988   if (::v8::internal::FLAG_stop_sim_at == 0) {
   3989     // Fast version of the dispatch loop without checking whether the simulator
   3990     // should be stopping at a particular executed instruction.
   3991     while (program_counter != end_sim_pc) {
   3992       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
   3993       icount_++;
   3994       ExecuteInstruction(instr);
   3995       program_counter = get_pc();
   3996     }
   3997   } else {
   3998     // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
   3999     // we reach the particular instuction count.
   4000     while (program_counter != end_sim_pc) {
   4001       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
   4002       icount_++;
   4003       if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
   4004         PPCDebugger dbg(this);
   4005         dbg.Debug();
   4006       } else {
   4007         ExecuteInstruction(instr);
   4008       }
   4009       program_counter = get_pc();
   4010     }
   4011   }
   4012 }
   4013 
   4014 
   4015 void Simulator::CallInternal(byte* entry) {
   4016   // Adjust JS-based stack limit to C-based stack limit.
   4017   isolate_->stack_guard()->AdjustStackLimitForSimulator();
   4018 
   4019   // Prepare to execute the code at entry
   4020   if (ABI_USES_FUNCTION_DESCRIPTORS) {
   4021     // entry is the function descriptor
   4022     set_pc(*(reinterpret_cast<intptr_t*>(entry)));
   4023   } else {
   4024     // entry is the instruction address
   4025     set_pc(reinterpret_cast<intptr_t>(entry));
   4026   }
   4027 
   4028   if (ABI_CALL_VIA_IP) {
   4029     // Put target address in ip (for JS prologue).
   4030     set_register(r12, get_pc());
   4031   }
   4032 
   4033   // Put down marker for end of simulation. The simulator will stop simulation
   4034   // when the PC reaches this value. By saving the "end simulation" value into
   4035   // the LR the simulation stops when returning to this call point.
   4036   special_reg_lr_ = end_sim_pc;
   4037 
   4038   // Remember the values of non-volatile registers.
   4039   intptr_t r2_val = get_register(r2);
   4040   intptr_t r13_val = get_register(r13);
   4041   intptr_t r14_val = get_register(r14);
   4042   intptr_t r15_val = get_register(r15);
   4043   intptr_t r16_val = get_register(r16);
   4044   intptr_t r17_val = get_register(r17);
   4045   intptr_t r18_val = get_register(r18);
   4046   intptr_t r19_val = get_register(r19);
   4047   intptr_t r20_val = get_register(r20);
   4048   intptr_t r21_val = get_register(r21);
   4049   intptr_t r22_val = get_register(r22);
   4050   intptr_t r23_val = get_register(r23);
   4051   intptr_t r24_val = get_register(r24);
   4052   intptr_t r25_val = get_register(r25);
   4053   intptr_t r26_val = get_register(r26);
   4054   intptr_t r27_val = get_register(r27);
   4055   intptr_t r28_val = get_register(r28);
   4056   intptr_t r29_val = get_register(r29);
   4057   intptr_t r30_val = get_register(r30);
   4058   intptr_t r31_val = get_register(fp);
   4059 
   4060   // Set up the non-volatile registers with a known value. To be able to check
   4061   // that they are preserved properly across JS execution.
   4062   intptr_t callee_saved_value = icount_;
   4063   set_register(r2, callee_saved_value);
   4064   set_register(r13, callee_saved_value);
   4065   set_register(r14, callee_saved_value);
   4066   set_register(r15, callee_saved_value);
   4067   set_register(r16, callee_saved_value);
   4068   set_register(r17, callee_saved_value);
   4069   set_register(r18, callee_saved_value);
   4070   set_register(r19, callee_saved_value);
   4071   set_register(r20, callee_saved_value);
   4072   set_register(r21, callee_saved_value);
   4073   set_register(r22, callee_saved_value);
   4074   set_register(r23, callee_saved_value);
   4075   set_register(r24, callee_saved_value);
   4076   set_register(r25, callee_saved_value);
   4077   set_register(r26, callee_saved_value);
   4078   set_register(r27, callee_saved_value);
   4079   set_register(r28, callee_saved_value);
   4080   set_register(r29, callee_saved_value);
   4081   set_register(r30, callee_saved_value);
   4082   set_register(fp, callee_saved_value);
   4083 
   4084   // Start the simulation
   4085   Execute();
   4086 
   4087   // Check that the non-volatile registers have been preserved.
   4088   if (ABI_TOC_REGISTER != 2) {
   4089     CHECK_EQ(callee_saved_value, get_register(r2));
   4090   }
   4091   if (ABI_TOC_REGISTER != 13) {
   4092     CHECK_EQ(callee_saved_value, get_register(r13));
   4093   }
   4094   CHECK_EQ(callee_saved_value, get_register(r14));
   4095   CHECK_EQ(callee_saved_value, get_register(r15));
   4096   CHECK_EQ(callee_saved_value, get_register(r16));
   4097   CHECK_EQ(callee_saved_value, get_register(r17));
   4098   CHECK_EQ(callee_saved_value, get_register(r18));
   4099   CHECK_EQ(callee_saved_value, get_register(r19));
   4100   CHECK_EQ(callee_saved_value, get_register(r20));
   4101   CHECK_EQ(callee_saved_value, get_register(r21));
   4102   CHECK_EQ(callee_saved_value, get_register(r22));
   4103   CHECK_EQ(callee_saved_value, get_register(r23));
   4104   CHECK_EQ(callee_saved_value, get_register(r24));
   4105   CHECK_EQ(callee_saved_value, get_register(r25));
   4106   CHECK_EQ(callee_saved_value, get_register(r26));
   4107   CHECK_EQ(callee_saved_value, get_register(r27));
   4108   CHECK_EQ(callee_saved_value, get_register(r28));
   4109   CHECK_EQ(callee_saved_value, get_register(r29));
   4110   CHECK_EQ(callee_saved_value, get_register(r30));
   4111   CHECK_EQ(callee_saved_value, get_register(fp));
   4112 
   4113   // Restore non-volatile registers with the original value.
   4114   set_register(r2, r2_val);
   4115   set_register(r13, r13_val);
   4116   set_register(r14, r14_val);
   4117   set_register(r15, r15_val);
   4118   set_register(r16, r16_val);
   4119   set_register(r17, r17_val);
   4120   set_register(r18, r18_val);
   4121   set_register(r19, r19_val);
   4122   set_register(r20, r20_val);
   4123   set_register(r21, r21_val);
   4124   set_register(r22, r22_val);
   4125   set_register(r23, r23_val);
   4126   set_register(r24, r24_val);
   4127   set_register(r25, r25_val);
   4128   set_register(r26, r26_val);
   4129   set_register(r27, r27_val);
   4130   set_register(r28, r28_val);
   4131   set_register(r29, r29_val);
   4132   set_register(r30, r30_val);
   4133   set_register(fp, r31_val);
   4134 }
   4135 
   4136 
   4137 intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
   4138   va_list parameters;
   4139   va_start(parameters, argument_count);
   4140   // Set up arguments
   4141 
   4142   // First eight arguments passed in registers r3-r10.
   4143   int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
   4144   int stack_arg_count = argument_count - reg_arg_count;
   4145   for (int i = 0; i < reg_arg_count; i++) {
   4146     set_register(i + 3, va_arg(parameters, intptr_t));
   4147   }
   4148 
   4149   // Remaining arguments passed on stack.
   4150   intptr_t original_stack = get_register(sp);
   4151   // Compute position of stack on entry to generated code.
   4152   intptr_t entry_stack =
   4153       (original_stack -
   4154        (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
   4155   if (base::OS::ActivationFrameAlignment() != 0) {
   4156     entry_stack &= -base::OS::ActivationFrameAlignment();
   4157   }
   4158   // Store remaining arguments on stack, from low to high memory.
   4159   // +2 is a hack for the LR slot + old SP on PPC
   4160   intptr_t* stack_argument =
   4161       reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
   4162   for (int i = 0; i < stack_arg_count; i++) {
   4163     stack_argument[i] = va_arg(parameters, intptr_t);
   4164   }
   4165   va_end(parameters);
   4166   set_register(sp, entry_stack);
   4167 
   4168   CallInternal(entry);
   4169 
   4170   // Pop stack passed arguments.
   4171   CHECK_EQ(entry_stack, get_register(sp));
   4172   set_register(sp, original_stack);
   4173 
   4174   intptr_t result = get_register(r3);
   4175   return result;
   4176 }
   4177 
   4178 
   4179 void Simulator::CallFP(byte* entry, double d0, double d1) {
   4180   set_d_register_from_double(1, d0);
   4181   set_d_register_from_double(2, d1);
   4182   CallInternal(entry);
   4183 }
   4184 
   4185 
   4186 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
   4187   CallFP(entry, d0, d1);
   4188   int32_t result = get_register(r3);
   4189   return result;
   4190 }
   4191 
   4192 
   4193 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
   4194   CallFP(entry, d0, d1);
   4195   return get_double_from_d_register(1);
   4196 }
   4197 
   4198 
   4199 uintptr_t Simulator::PushAddress(uintptr_t address) {
   4200   uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
   4201   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
   4202   *stack_slot = address;
   4203   set_register(sp, new_sp);
   4204   return new_sp;
   4205 }
   4206 
   4207 
   4208 uintptr_t Simulator::PopAddress() {
   4209   uintptr_t current_sp = get_register(sp);
   4210   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
   4211   uintptr_t address = *stack_slot;
   4212   set_register(sp, current_sp + sizeof(uintptr_t));
   4213   return address;
   4214 }
   4215 }  // namespace internal
   4216 }  // namespace v8
   4217 
   4218 #endif  // USE_SIMULATOR
   4219 #endif  // V8_TARGET_ARCH_PPC
   4220