Home | History | Annotate | Download | only in x64
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 // A lightweight X64 Assembler.
     36 
     37 #ifndef V8_X64_ASSEMBLER_X64_H_
     38 #define V8_X64_ASSEMBLER_X64_H_
     39 
     40 #include <deque>
     41 
     42 #include "src/assembler.h"
     43 #include "src/x64/sse-instr.h"
     44 
     45 namespace v8 {
     46 namespace internal {
     47 
     48 // Utility functions
     49 
     50 #define GENERAL_REGISTERS(V) \
     51   V(rax)                     \
     52   V(rcx)                     \
     53   V(rdx)                     \
     54   V(rbx)                     \
     55   V(rsp)                     \
     56   V(rbp)                     \
     57   V(rsi)                     \
     58   V(rdi)                     \
     59   V(r8)                      \
     60   V(r9)                      \
     61   V(r10)                     \
     62   V(r11)                     \
     63   V(r12)                     \
     64   V(r13)                     \
     65   V(r14)                     \
     66   V(r15)
     67 
     68 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
     69   V(rax)                                 \
     70   V(rbx)                                 \
     71   V(rdx)                                 \
     72   V(rcx)                                 \
     73   V(rsi)                                 \
     74   V(rdi)                                 \
     75   V(r8)                                  \
     76   V(r9)                                  \
     77   V(r11)                                 \
     78   V(r12)                                 \
     79   V(r14)                                 \
     80   V(r15)
     81 
     82 // The length of pushq(rbp), movp(rbp, rsp), Push(rsi) and Push(rdi).
     83 static const int kNoCodeAgeSequenceLength = kPointerSize == kInt64Size ? 6 : 17;
     84 
     85 // CPU Registers.
     86 //
     87 // 1) We would prefer to use an enum, but enum values are assignment-
     88 // compatible with int, which has caused code-generation bugs.
     89 //
     90 // 2) We would prefer to use a class instead of a struct but we don't like
     91 // the register initialization to depend on the particular initialization
     92 // order (which appears to be different on OS X, Linux, and Windows for the
     93 // installed versions of C++ we tried). Using a struct permits C-style
     94 // "initialization". Also, the Register objects cannot be const as this
     95 // forces initialization stubs in MSVC, making us dependent on initialization
     96 // order.
     97 //
     98 // 3) By not using an enum, we are possibly preventing the compiler from
     99 // doing certain constant folds, which may significantly reduce the
    100 // code generated for some assembly instructions (because they boil down
    101 // to a few constants). If this is a problem, we could change the code
    102 // such that we use an enum in optimized mode, and the struct in debug
    103 // mode. This way we get the compile-time error checking in debug mode
    104 // and best performance in optimized code.
    105 //
    106 struct Register {
    107   enum Code {
    108 #define REGISTER_CODE(R) kCode_##R,
    109     GENERAL_REGISTERS(REGISTER_CODE)
    110 #undef REGISTER_CODE
    111         kAfterLast,
    112     kCode_no_reg = -1
    113   };
    114 
    115   static const int kNumRegisters = Code::kAfterLast;
    116 
    117   static Register from_code(int code) {
    118     DCHECK(code >= 0);
    119     DCHECK(code < kNumRegisters);
    120     Register r = {code};
    121     return r;
    122   }
    123   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
    124   bool is(Register reg) const { return reg_code == reg.reg_code; }
    125   int code() const {
    126     DCHECK(is_valid());
    127     return reg_code;
    128   }
    129   int bit() const {
    130     DCHECK(is_valid());
    131     return 1 << reg_code;
    132   }
    133 
    134   bool is_byte_register() const { return reg_code <= 3; }
    135   // Return the high bit of the register code as a 0 or 1.  Used often
    136   // when constructing the REX prefix byte.
    137   int high_bit() const { return reg_code >> 3; }
    138   // Return the 3 low bits of the register code.  Used when encoding registers
    139   // in modR/M, SIB, and opcode bytes.
    140   int low_bits() const { return reg_code & 0x7; }
    141 
    142   // Unfortunately we can't make this private in a struct when initializing
    143   // by assignment.
    144   int reg_code;
    145 };
    146 
    147 
    148 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
    149 GENERAL_REGISTERS(DECLARE_REGISTER)
    150 #undef DECLARE_REGISTER
    151 const Register no_reg = {Register::kCode_no_reg};
    152 
    153 
    154 #ifdef _WIN64
    155   // Windows calling convention
    156 const Register arg_reg_1 = {Register::kCode_rcx};
    157 const Register arg_reg_2 = {Register::kCode_rdx};
    158 const Register arg_reg_3 = {Register::kCode_r8};
    159 const Register arg_reg_4 = {Register::kCode_r9};
    160 #else
    161   // AMD64 calling convention
    162 const Register arg_reg_1 = {Register::kCode_rdi};
    163 const Register arg_reg_2 = {Register::kCode_rsi};
    164 const Register arg_reg_3 = {Register::kCode_rdx};
    165 const Register arg_reg_4 = {Register::kCode_rcx};
    166 #endif  // _WIN64
    167 
    168 
    169 #define DOUBLE_REGISTERS(V) \
    170   V(xmm0)                   \
    171   V(xmm1)                   \
    172   V(xmm2)                   \
    173   V(xmm3)                   \
    174   V(xmm4)                   \
    175   V(xmm5)                   \
    176   V(xmm6)                   \
    177   V(xmm7)                   \
    178   V(xmm8)                   \
    179   V(xmm9)                   \
    180   V(xmm10)                  \
    181   V(xmm11)                  \
    182   V(xmm12)                  \
    183   V(xmm13)                  \
    184   V(xmm14)                  \
    185   V(xmm15)
    186 
    187 #define FLOAT_REGISTERS DOUBLE_REGISTERS
    188 #define SIMD128_REGISTERS DOUBLE_REGISTERS
    189 
    190 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
    191   V(xmm0)                               \
    192   V(xmm1)                               \
    193   V(xmm2)                               \
    194   V(xmm3)                               \
    195   V(xmm4)                               \
    196   V(xmm5)                               \
    197   V(xmm6)                               \
    198   V(xmm7)                               \
    199   V(xmm8)                               \
    200   V(xmm9)                               \
    201   V(xmm10)                              \
    202   V(xmm11)                              \
    203   V(xmm12)                              \
    204   V(xmm13)                              \
    205   V(xmm14)
    206 
    207 static const bool kSimpleFPAliasing = true;
    208 static const bool kSimdMaskRegisters = false;
    209 
    210 struct XMMRegister {
    211   enum Code {
    212 #define REGISTER_CODE(R) kCode_##R,
    213     DOUBLE_REGISTERS(REGISTER_CODE)
    214 #undef REGISTER_CODE
    215         kAfterLast,
    216     kCode_no_reg = -1
    217   };
    218 
    219   static const int kMaxNumRegisters = Code::kAfterLast;
    220 
    221   static XMMRegister from_code(int code) {
    222     XMMRegister result = {code};
    223     return result;
    224   }
    225 
    226   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
    227   bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
    228   int code() const {
    229     DCHECK(is_valid());
    230     return reg_code;
    231   }
    232 
    233   // Return the high bit of the register code as a 0 or 1.  Used often
    234   // when constructing the REX prefix byte.
    235   int high_bit() const { return reg_code >> 3; }
    236   // Return the 3 low bits of the register code.  Used when encoding registers
    237   // in modR/M, SIB, and opcode bytes.
    238   int low_bits() const { return reg_code & 0x7; }
    239 
    240   // Unfortunately we can't make this private in a struct when initializing
    241   // by assignment.
    242   int reg_code;
    243 };
    244 
    245 typedef XMMRegister FloatRegister;
    246 
    247 typedef XMMRegister DoubleRegister;
    248 
    249 typedef XMMRegister Simd128Register;
    250 
    251 #define DECLARE_REGISTER(R) \
    252   const DoubleRegister R = {DoubleRegister::kCode_##R};
    253 DOUBLE_REGISTERS(DECLARE_REGISTER)
    254 #undef DECLARE_REGISTER
    255 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
    256 
    257 enum Condition {
    258   // any value < 0 is considered no_condition
    259   no_condition  = -1,
    260 
    261   overflow      =  0,
    262   no_overflow   =  1,
    263   below         =  2,
    264   above_equal   =  3,
    265   equal         =  4,
    266   not_equal     =  5,
    267   below_equal   =  6,
    268   above         =  7,
    269   negative      =  8,
    270   positive      =  9,
    271   parity_even   = 10,
    272   parity_odd    = 11,
    273   less          = 12,
    274   greater_equal = 13,
    275   less_equal    = 14,
    276   greater       = 15,
    277 
    278   // Fake conditions that are handled by the
    279   // opcodes using them.
    280   always        = 16,
    281   never         = 17,
    282   // aliases
    283   carry         = below,
    284   not_carry     = above_equal,
    285   zero          = equal,
    286   not_zero      = not_equal,
    287   sign          = negative,
    288   not_sign      = positive,
    289   last_condition = greater
    290 };
    291 
    292 
    293 // Returns the equivalent of !cc.
    294 // Negation of the default no_condition (-1) results in a non-default
    295 // no_condition value (-2). As long as tests for no_condition check
    296 // for condition < 0, this will work as expected.
    297 inline Condition NegateCondition(Condition cc) {
    298   return static_cast<Condition>(cc ^ 1);
    299 }
    300 
    301 
    302 // Commute a condition such that {a cond b == b cond' a}.
    303 inline Condition CommuteCondition(Condition cc) {
    304   switch (cc) {
    305     case below:
    306       return above;
    307     case above:
    308       return below;
    309     case above_equal:
    310       return below_equal;
    311     case below_equal:
    312       return above_equal;
    313     case less:
    314       return greater;
    315     case greater:
    316       return less;
    317     case greater_equal:
    318       return less_equal;
    319     case less_equal:
    320       return greater_equal;
    321     default:
    322       return cc;
    323   }
    324 }
    325 
    326 
    327 enum RoundingMode {
    328   kRoundToNearest = 0x0,
    329   kRoundDown = 0x1,
    330   kRoundUp = 0x2,
    331   kRoundToZero = 0x3
    332 };
    333 
    334 
    335 // -----------------------------------------------------------------------------
    336 // Machine instruction Immediates
    337 
    338 class Immediate BASE_EMBEDDED {
    339  public:
    340   explicit Immediate(int32_t value) : value_(value) {}
    341   explicit Immediate(int32_t value, RelocInfo::Mode rmode)
    342       : value_(value), rmode_(rmode) {}
    343   explicit Immediate(Smi* value) {
    344     DCHECK(SmiValuesAre31Bits());  // Only available for 31-bit SMI.
    345     value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
    346   }
    347 
    348  private:
    349   int32_t value_;
    350   RelocInfo::Mode rmode_ = RelocInfo::NONE32;
    351 
    352   friend class Assembler;
    353 };
    354 
    355 
    356 // -----------------------------------------------------------------------------
    357 // Machine instruction Operands
    358 
    359 enum ScaleFactor {
    360   times_1 = 0,
    361   times_2 = 1,
    362   times_4 = 2,
    363   times_8 = 3,
    364   times_int_size = times_4,
    365   times_pointer_size = (kPointerSize == 8) ? times_8 : times_4
    366 };
    367 
    368 
    369 class Operand BASE_EMBEDDED {
    370  public:
    371   // [base + disp/r]
    372   Operand(Register base, int32_t disp);
    373 
    374   // [base + index*scale + disp/r]
    375   Operand(Register base,
    376           Register index,
    377           ScaleFactor scale,
    378           int32_t disp);
    379 
    380   // [index*scale + disp/r]
    381   Operand(Register index,
    382           ScaleFactor scale,
    383           int32_t disp);
    384 
    385   // Offset from existing memory operand.
    386   // Offset is added to existing displacement as 32-bit signed values and
    387   // this must not overflow.
    388   Operand(const Operand& base, int32_t offset);
    389 
    390   // [rip + disp/r]
    391   explicit Operand(Label* label);
    392 
    393   // Checks whether either base or index register is the given register.
    394   // Does not check the "reg" part of the Operand.
    395   bool AddressUsesRegister(Register reg) const;
    396 
    397   // Queries related to the size of the generated instruction.
    398   // Whether the generated instruction will have a REX prefix.
    399   bool requires_rex() const { return rex_ != 0; }
    400   // Size of the ModR/M, SIB and displacement parts of the generated
    401   // instruction.
    402   int operand_size() const { return len_; }
    403 
    404  private:
    405   byte rex_;
    406   byte buf_[9];
    407   // The number of bytes of buf_ in use.
    408   byte len_;
    409 
    410   // Set the ModR/M byte without an encoded 'reg' register. The
    411   // register is encoded later as part of the emit_operand operation.
    412   // set_modrm can be called before or after set_sib and set_disp*.
    413   inline void set_modrm(int mod, Register rm);
    414 
    415   // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
    416   inline void set_sib(ScaleFactor scale, Register index, Register base);
    417 
    418   // Adds operand displacement fields (offsets added to the memory address).
    419   // Needs to be called after set_sib, not before it.
    420   inline void set_disp8(int disp);
    421   inline void set_disp32(int disp);
    422   inline void set_disp64(int64_t disp);  // for labels.
    423 
    424   friend class Assembler;
    425 };
    426 
    427 #define ASSEMBLER_INSTRUCTION_LIST(V) \
    428   V(add)                              \
    429   V(and)                              \
    430   V(cmp)                              \
    431   V(cmpxchg)                          \
    432   V(dec)                              \
    433   V(idiv)                             \
    434   V(div)                              \
    435   V(imul)                             \
    436   V(inc)                              \
    437   V(lea)                              \
    438   V(mov)                              \
    439   V(movzxb)                           \
    440   V(movzxw)                           \
    441   V(neg)                              \
    442   V(not)                              \
    443   V(or)                               \
    444   V(repmovs)                          \
    445   V(sbb)                              \
    446   V(sub)                              \
    447   V(test)                             \
    448   V(xchg)                             \
    449   V(xor)
    450 
    451 // Shift instructions on operands/registers with kPointerSize, kInt32Size and
    452 // kInt64Size.
    453 #define SHIFT_INSTRUCTION_LIST(V)       \
    454   V(rol, 0x0)                           \
    455   V(ror, 0x1)                           \
    456   V(rcl, 0x2)                           \
    457   V(rcr, 0x3)                           \
    458   V(shl, 0x4)                           \
    459   V(shr, 0x5)                           \
    460   V(sar, 0x7)                           \
    461 
    462 
    463 class Assembler : public AssemblerBase {
    464  private:
    465   // We check before assembling an instruction that there is sufficient
    466   // space to write an instruction and its relocation information.
    467   // The relocation writer's position must be kGap bytes above the end of
    468   // the generated instructions. This leaves enough space for the
    469   // longest possible x64 instruction, 15 bytes, and the longest possible
    470   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
    471   // (There is a 15 byte limit on x64 instruction length that rules out some
    472   // otherwise valid instructions.)
    473   // This allows for a single, fast space check per instruction.
    474   static const int kGap = 32;
    475 
    476  public:
    477   // Create an assembler. Instructions and relocation information are emitted
    478   // into a buffer, with the instructions starting from the beginning and the
    479   // relocation information starting from the end of the buffer. See CodeDesc
    480   // for a detailed comment on the layout (globals.h).
    481   //
    482   // If the provided buffer is NULL, the assembler allocates and grows its own
    483   // buffer, and buffer_size determines the initial buffer size. The buffer is
    484   // owned by the assembler and deallocated upon destruction of the assembler.
    485   //
    486   // If the provided buffer is not NULL, the assembler uses the provided buffer
    487   // for code generation and assumes its size to be buffer_size. If the buffer
    488   // is too small, a fatal error occurs. No deallocation of the buffer is done
    489   // upon destruction of the assembler.
    490   Assembler(Isolate* isolate, void* buffer, int buffer_size);
    491   virtual ~Assembler() { }
    492 
    493   // GetCode emits any pending (non-emitted) code and fills the descriptor
    494   // desc. GetCode() is idempotent; it returns the same result if no other
    495   // Assembler functions are invoked in between GetCode() calls.
    496   void GetCode(CodeDesc* desc);
    497 
    498   // Read/Modify the code target in the relative branch/call instruction at pc.
    499   // On the x64 architecture, we use relative jumps with a 32-bit displacement
    500   // to jump to other Code objects in the Code space in the heap.
    501   // Jumps to C functions are done indirectly through a 64-bit register holding
    502   // the absolute address of the target.
    503   // These functions convert between absolute Addresses of Code objects and
    504   // the relative displacements stored in the code.
    505   static inline Address target_address_at(Address pc, Address constant_pool);
    506   static inline void set_target_address_at(
    507       Isolate* isolate, Address pc, Address constant_pool, Address target,
    508       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
    509   static inline Address target_address_at(Address pc, Code* code);
    510   static inline void set_target_address_at(
    511       Isolate* isolate, Address pc, Code* code, Address target,
    512       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
    513 
    514   // Return the code target address at a call site from the return address
    515   // of that call in the instruction stream.
    516   static inline Address target_address_from_return_address(Address pc);
    517 
    518   // This sets the branch destination (which is in the instruction on x64).
    519   // This is for calls and branches within generated code.
    520   inline static void deserialization_set_special_target_at(
    521       Isolate* isolate, Address instruction_payload, Code* code,
    522       Address target);
    523 
    524   // This sets the internal reference at the pc.
    525   inline static void deserialization_set_target_internal_reference_at(
    526       Isolate* isolate, Address pc, Address target,
    527       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
    528 
    529   static inline RelocInfo::Mode RelocInfoNone() {
    530     if (kPointerSize == kInt64Size) {
    531       return RelocInfo::NONE64;
    532     } else {
    533       DCHECK(kPointerSize == kInt32Size);
    534       return RelocInfo::NONE32;
    535     }
    536   }
    537 
    538   inline Handle<Object> code_target_object_handle_at(Address pc);
    539   inline Address runtime_entry_at(Address pc);
    540   // Number of bytes taken up by the branch target in the code.
    541   static const int kSpecialTargetSize = 4;  // Use 32-bit displacement.
    542   // Distance between the address of the code target in the call instruction
    543   // and the return address pushed on the stack.
    544   static const int kCallTargetAddressOffset = 4;  // Use 32-bit displacement.
    545   // The length of call(kScratchRegister).
    546   static const int kCallScratchRegisterInstructionLength = 3;
    547   // The length of call(Immediate32).
    548   static const int kShortCallInstructionLength = 5;
    549   // The length of movq(kScratchRegister, address).
    550   static const int kMoveAddressIntoScratchRegisterInstructionLength =
    551       2 + kPointerSize;
    552   // The length of movq(kScratchRegister, address) and call(kScratchRegister).
    553   static const int kCallSequenceLength =
    554       kMoveAddressIntoScratchRegisterInstructionLength +
    555       kCallScratchRegisterInstructionLength;
    556 
    557   // The debug break slot must be able to contain an indirect call sequence.
    558   static const int kDebugBreakSlotLength = kCallSequenceLength;
    559   // Distance between start of patched debug break slot and the emitted address
    560   // to jump to.
    561   static const int kPatchDebugBreakSlotAddressOffset =
    562       kMoveAddressIntoScratchRegisterInstructionLength - kPointerSize;
    563 
    564   // One byte opcode for test eax,0xXXXXXXXX.
    565   static const byte kTestEaxByte = 0xA9;
    566   // One byte opcode for test al, 0xXX.
    567   static const byte kTestAlByte = 0xA8;
    568   // One byte opcode for nop.
    569   static const byte kNopByte = 0x90;
    570 
    571   // One byte prefix for a short conditional jump.
    572   static const byte kJccShortPrefix = 0x70;
    573   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
    574   static const byte kJcShortOpcode = kJccShortPrefix | carry;
    575   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
    576   static const byte kJzShortOpcode = kJccShortPrefix | zero;
    577 
    578   // VEX prefix encodings.
    579   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
    580   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
    581   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
    582   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
    583 
    584   // ---------------------------------------------------------------------------
    585   // Code generation
    586   //
    587   // Function names correspond one-to-one to x64 instruction mnemonics.
    588   // Unless specified otherwise, instructions operate on 64-bit operands.
    589   //
    590   // If we need versions of an assembly instruction that operate on different
    591   // width arguments, we add a single-letter suffix specifying the width.
    592   // This is done for the following instructions: mov, cmp, inc, dec,
    593   // add, sub, and test.
    594   // There are no versions of these instructions without the suffix.
    595   // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
    596   // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
    597   // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
    598   // - Instructions on 64-bit (quadword) operands/registers use 'q'.
    599   // - Instructions on operands/registers with pointer size use 'p'.
    600 
    601   STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
    602 
    603 #define DECLARE_INSTRUCTION(instruction)                \
    604   template<class P1>                                    \
    605   void instruction##p(P1 p1) {                          \
    606     emit_##instruction(p1, kPointerSize);               \
    607   }                                                     \
    608                                                         \
    609   template<class P1>                                    \
    610   void instruction##l(P1 p1) {                          \
    611     emit_##instruction(p1, kInt32Size);                 \
    612   }                                                     \
    613                                                         \
    614   template<class P1>                                    \
    615   void instruction##q(P1 p1) {                          \
    616     emit_##instruction(p1, kInt64Size);                 \
    617   }                                                     \
    618                                                         \
    619   template<class P1, class P2>                          \
    620   void instruction##p(P1 p1, P2 p2) {                   \
    621     emit_##instruction(p1, p2, kPointerSize);           \
    622   }                                                     \
    623                                                         \
    624   template<class P1, class P2>                          \
    625   void instruction##l(P1 p1, P2 p2) {                   \
    626     emit_##instruction(p1, p2, kInt32Size);             \
    627   }                                                     \
    628                                                         \
    629   template<class P1, class P2>                          \
    630   void instruction##q(P1 p1, P2 p2) {                   \
    631     emit_##instruction(p1, p2, kInt64Size);             \
    632   }                                                     \
    633                                                         \
    634   template<class P1, class P2, class P3>                \
    635   void instruction##p(P1 p1, P2 p2, P3 p3) {            \
    636     emit_##instruction(p1, p2, p3, kPointerSize);       \
    637   }                                                     \
    638                                                         \
    639   template<class P1, class P2, class P3>                \
    640   void instruction##l(P1 p1, P2 p2, P3 p3) {            \
    641     emit_##instruction(p1, p2, p3, kInt32Size);         \
    642   }                                                     \
    643                                                         \
    644   template<class P1, class P2, class P3>                \
    645   void instruction##q(P1 p1, P2 p2, P3 p3) {            \
    646     emit_##instruction(p1, p2, p3, kInt64Size);         \
    647   }
    648   ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
    649 #undef DECLARE_INSTRUCTION
    650 
    651   // Insert the smallest number of nop instructions
    652   // possible to align the pc offset to a multiple
    653   // of m, where m must be a power of 2.
    654   void Align(int m);
    655   // Insert the smallest number of zero bytes possible to align the pc offset
    656   // to a mulitple of m. m must be a power of 2 (>= 2).
    657   void DataAlign(int m);
    658   void Nop(int bytes = 1);
    659   // Aligns code to something that's optimal for a jump target for the platform.
    660   void CodeTargetAlign();
    661 
    662   // Stack
    663   void pushfq();
    664   void popfq();
    665 
    666   void pushq(Immediate value);
    667   // Push a 32 bit integer, and guarantee that it is actually pushed as a
    668   // 32 bit value, the normal push will optimize the 8 bit case.
    669   void pushq_imm32(int32_t imm32);
    670   void pushq(Register src);
    671   void pushq(const Operand& src);
    672 
    673   void popq(Register dst);
    674   void popq(const Operand& dst);
    675 
    676   void enter(Immediate size);
    677   void leave();
    678 
    679   // Moves
    680   void movb(Register dst, const Operand& src);
    681   void movb(Register dst, Immediate imm);
    682   void movb(const Operand& dst, Register src);
    683   void movb(const Operand& dst, Immediate imm);
    684 
    685   // Move the low 16 bits of a 64-bit register value to a 16-bit
    686   // memory location.
    687   void movw(Register dst, const Operand& src);
    688   void movw(const Operand& dst, Register src);
    689   void movw(const Operand& dst, Immediate imm);
    690 
    691   // Move the offset of the label location relative to the current
    692   // position (after the move) to the destination.
    693   void movl(const Operand& dst, Label* src);
    694 
    695   // Loads a pointer into a register with a relocation mode.
    696   void movp(Register dst, void* ptr, RelocInfo::Mode rmode);
    697 
    698   // Loads a 64-bit immediate into a register.
    699   void movq(Register dst, int64_t value,
    700             RelocInfo::Mode rmode = RelocInfo::NONE64);
    701   void movq(Register dst, uint64_t value,
    702             RelocInfo::Mode rmode = RelocInfo::NONE64);
    703 
    704   void movsxbl(Register dst, Register src);
    705   void movsxbl(Register dst, const Operand& src);
    706   void movsxbq(Register dst, Register src);
    707   void movsxbq(Register dst, const Operand& src);
    708   void movsxwl(Register dst, Register src);
    709   void movsxwl(Register dst, const Operand& src);
    710   void movsxwq(Register dst, Register src);
    711   void movsxwq(Register dst, const Operand& src);
    712   void movsxlq(Register dst, Register src);
    713   void movsxlq(Register dst, const Operand& src);
    714 
    715   // Repeated moves.
    716 
    717   void repmovsb();
    718   void repmovsw();
    719   void repmovsp() { emit_repmovs(kPointerSize); }
    720   void repmovsl() { emit_repmovs(kInt32Size); }
    721   void repmovsq() { emit_repmovs(kInt64Size); }
    722 
    723   // Instruction to load from an immediate 64-bit pointer into RAX.
    724   void load_rax(void* ptr, RelocInfo::Mode rmode);
    725   void load_rax(ExternalReference ext);
    726 
    727   // Conditional moves.
    728   void cmovq(Condition cc, Register dst, Register src);
    729   void cmovq(Condition cc, Register dst, const Operand& src);
    730   void cmovl(Condition cc, Register dst, Register src);
    731   void cmovl(Condition cc, Register dst, const Operand& src);
    732 
    733   void cmpb(Register dst, Immediate src) {
    734     immediate_arithmetic_op_8(0x7, dst, src);
    735   }
    736 
    737   void cmpb_al(Immediate src);
    738 
    739   void cmpb(Register dst, Register src) {
    740     arithmetic_op_8(0x3A, dst, src);
    741   }
    742 
    743   void cmpb(Register dst, const Operand& src) {
    744     arithmetic_op_8(0x3A, dst, src);
    745   }
    746 
    747   void cmpb(const Operand& dst, Register src) {
    748     arithmetic_op_8(0x38, src, dst);
    749   }
    750 
    751   void cmpb(const Operand& dst, Immediate src) {
    752     immediate_arithmetic_op_8(0x7, dst, src);
    753   }
    754 
    755   void cmpw(const Operand& dst, Immediate src) {
    756     immediate_arithmetic_op_16(0x7, dst, src);
    757   }
    758 
    759   void cmpw(Register dst, Immediate src) {
    760     immediate_arithmetic_op_16(0x7, dst, src);
    761   }
    762 
    763   void cmpw(Register dst, const Operand& src) {
    764     arithmetic_op_16(0x3B, dst, src);
    765   }
    766 
    767   void cmpw(Register dst, Register src) {
    768     arithmetic_op_16(0x3B, dst, src);
    769   }
    770 
    771   void cmpw(const Operand& dst, Register src) {
    772     arithmetic_op_16(0x39, src, dst);
    773   }
    774 
    775   void testb(Register reg, const Operand& op) { testb(op, reg); }
    776 
    777   void testw(Register reg, const Operand& op) { testw(op, reg); }
    778 
    779   void andb(Register dst, Immediate src) {
    780     immediate_arithmetic_op_8(0x4, dst, src);
    781   }
    782 
    783   void decb(Register dst);
    784   void decb(const Operand& dst);
    785 
    786   // Lock prefix.
    787   void lock();
    788 
    789   void xchgb(Register reg, const Operand& op);
    790   void xchgw(Register reg, const Operand& op);
    791 
    792   void cmpxchgb(const Operand& dst, Register src);
    793   void cmpxchgw(const Operand& dst, Register src);
    794 
    795   // Sign-extends rax into rdx:rax.
    796   void cqo();
    797   // Sign-extends eax into edx:eax.
    798   void cdq();
    799 
    800   // Multiply eax by src, put the result in edx:eax.
    801   void mull(Register src);
    802   void mull(const Operand& src);
    803   // Multiply rax by src, put the result in rdx:rax.
    804   void mulq(Register src);
    805 
    806 #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode)                       \
    807   void instruction##p(Register dst, Immediate imm8) {                         \
    808     shift(dst, imm8, subcode, kPointerSize);                                  \
    809   }                                                                           \
    810                                                                               \
    811   void instruction##l(Register dst, Immediate imm8) {                         \
    812     shift(dst, imm8, subcode, kInt32Size);                                    \
    813   }                                                                           \
    814                                                                               \
    815   void instruction##q(Register dst, Immediate imm8) {                         \
    816     shift(dst, imm8, subcode, kInt64Size);                                    \
    817   }                                                                           \
    818                                                                               \
    819   void instruction##p(Operand dst, Immediate imm8) {                          \
    820     shift(dst, imm8, subcode, kPointerSize);                                  \
    821   }                                                                           \
    822                                                                               \
    823   void instruction##l(Operand dst, Immediate imm8) {                          \
    824     shift(dst, imm8, subcode, kInt32Size);                                    \
    825   }                                                                           \
    826                                                                               \
    827   void instruction##q(Operand dst, Immediate imm8) {                          \
    828     shift(dst, imm8, subcode, kInt64Size);                                    \
    829   }                                                                           \
    830                                                                               \
    831   void instruction##p_cl(Register dst) { shift(dst, subcode, kPointerSize); } \
    832                                                                               \
    833   void instruction##l_cl(Register dst) { shift(dst, subcode, kInt32Size); }   \
    834                                                                               \
    835   void instruction##q_cl(Register dst) { shift(dst, subcode, kInt64Size); }   \
    836                                                                               \
    837   void instruction##p_cl(Operand dst) { shift(dst, subcode, kPointerSize); }  \
    838                                                                               \
    839   void instruction##l_cl(Operand dst) { shift(dst, subcode, kInt32Size); }    \
    840                                                                               \
    841   void instruction##q_cl(Operand dst) { shift(dst, subcode, kInt64Size); }
    842   SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
    843 #undef DECLARE_SHIFT_INSTRUCTION
    844 
    845   // Shifts dst:src left by cl bits, affecting only dst.
    846   void shld(Register dst, Register src);
    847 
    848   // Shifts src:dst right by cl bits, affecting only dst.
    849   void shrd(Register dst, Register src);
    850 
    851   void store_rax(void* dst, RelocInfo::Mode mode);
    852   void store_rax(ExternalReference ref);
    853 
    854   void subb(Register dst, Immediate src) {
    855     immediate_arithmetic_op_8(0x5, dst, src);
    856   }
    857 
    858   void testb(Register dst, Register src);
    859   void testb(Register reg, Immediate mask);
    860   void testb(const Operand& op, Immediate mask);
    861   void testb(const Operand& op, Register reg);
    862 
    863   void testw(Register dst, Register src);
    864   void testw(Register reg, Immediate mask);
    865   void testw(const Operand& op, Immediate mask);
    866   void testw(const Operand& op, Register reg);
    867 
    868   // Bit operations.
    869   void bt(const Operand& dst, Register src);
    870   void bts(const Operand& dst, Register src);
    871   void bsrq(Register dst, Register src);
    872   void bsrq(Register dst, const Operand& src);
    873   void bsrl(Register dst, Register src);
    874   void bsrl(Register dst, const Operand& src);
    875   void bsfq(Register dst, Register src);
    876   void bsfq(Register dst, const Operand& src);
    877   void bsfl(Register dst, Register src);
    878   void bsfl(Register dst, const Operand& src);
    879 
    880   // Miscellaneous
    881   void clc();
    882   void cld();
    883   void cpuid();
    884   void hlt();
    885   void int3();
    886   void nop();
    887   void ret(int imm16);
    888   void ud2();
    889   void setcc(Condition cc, Register reg);
    890 
    891   // Label operations & relative jumps (PPUM Appendix D)
    892   //
    893   // Takes a branch opcode (cc) and a label (L) and generates
    894   // either a backward branch or a forward branch and links it
    895   // to the label fixup chain. Usage:
    896   //
    897   // Label L;    // unbound label
    898   // j(cc, &L);  // forward branch to unbound label
    899   // bind(&L);   // bind label to the current pc
    900   // j(cc, &L);  // backward branch to bound label
    901   // bind(&L);   // illegal: a label may be bound only once
    902   //
    903   // Note: The same Label can be used for forward and backward branches
    904   // but it may be bound only once.
    905 
    906   void bind(Label* L);  // binds an unbound label L to the current code position
    907 
    908   // Calls
    909   // Call near relative 32-bit displacement, relative to next instruction.
    910   void call(Label* L);
    911   void call(Address entry, RelocInfo::Mode rmode);
    912   void call(Handle<Code> target,
    913             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
    914             TypeFeedbackId ast_id = TypeFeedbackId::None());
    915 
    916   // Calls directly to the given address using a relative offset.
    917   // Should only ever be used in Code objects for calls within the
    918   // same Code object. Should not be used when generating new code (use labels),
    919   // but only when patching existing code.
    920   void call(Address target);
    921 
    922   // Call near absolute indirect, address in register
    923   void call(Register adr);
    924 
    925   // Jumps
    926   // Jump short or near relative.
    927   // Use a 32-bit signed displacement.
    928   // Unconditional jump to L
    929   void jmp(Label* L, Label::Distance distance = Label::kFar);
    930   void jmp(Address entry, RelocInfo::Mode rmode);
    931   void jmp(Handle<Code> target, RelocInfo::Mode rmode);
    932 
    933   // Jump near absolute indirect (r64)
    934   void jmp(Register adr);
    935   void jmp(const Operand& src);
    936 
    937   // Conditional jumps
    938   void j(Condition cc,
    939          Label* L,
    940          Label::Distance distance = Label::kFar);
    941   void j(Condition cc, Address entry, RelocInfo::Mode rmode);
    942   void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
    943 
    944   // Floating-point operations
    945   void fld(int i);
    946 
    947   void fld1();
    948   void fldz();
    949   void fldpi();
    950   void fldln2();
    951 
    952   void fld_s(const Operand& adr);
    953   void fld_d(const Operand& adr);
    954 
    955   void fstp_s(const Operand& adr);
    956   void fstp_d(const Operand& adr);
    957   void fstp(int index);
    958 
    959   void fild_s(const Operand& adr);
    960   void fild_d(const Operand& adr);
    961 
    962   void fist_s(const Operand& adr);
    963 
    964   void fistp_s(const Operand& adr);
    965   void fistp_d(const Operand& adr);
    966 
    967   void fisttp_s(const Operand& adr);
    968   void fisttp_d(const Operand& adr);
    969 
    970   void fabs();
    971   void fchs();
    972 
    973   void fadd(int i);
    974   void fsub(int i);
    975   void fmul(int i);
    976   void fdiv(int i);
    977 
    978   void fisub_s(const Operand& adr);
    979 
    980   void faddp(int i = 1);
    981   void fsubp(int i = 1);
    982   void fsubrp(int i = 1);
    983   void fmulp(int i = 1);
    984   void fdivp(int i = 1);
    985   void fprem();
    986   void fprem1();
    987 
    988   void fxch(int i = 1);
    989   void fincstp();
    990   void ffree(int i = 0);
    991 
    992   void ftst();
    993   void fucomp(int i);
    994   void fucompp();
    995   void fucomi(int i);
    996   void fucomip();
    997 
    998   void fcompp();
    999   void fnstsw_ax();
   1000   void fwait();
   1001   void fnclex();
   1002 
   1003   void fsin();
   1004   void fcos();
   1005   void fptan();
   1006   void fyl2x();
   1007   void f2xm1();
   1008   void fscale();
   1009   void fninit();
   1010 
   1011   void frndint();
   1012 
   1013   void sahf();
   1014 
   1015   // SSE instructions
   1016   void addss(XMMRegister dst, XMMRegister src);
   1017   void addss(XMMRegister dst, const Operand& src);
   1018   void subss(XMMRegister dst, XMMRegister src);
   1019   void subss(XMMRegister dst, const Operand& src);
   1020   void mulss(XMMRegister dst, XMMRegister src);
   1021   void mulss(XMMRegister dst, const Operand& src);
   1022   void divss(XMMRegister dst, XMMRegister src);
   1023   void divss(XMMRegister dst, const Operand& src);
   1024 
   1025   void maxss(XMMRegister dst, XMMRegister src);
   1026   void maxss(XMMRegister dst, const Operand& src);
   1027   void minss(XMMRegister dst, XMMRegister src);
   1028   void minss(XMMRegister dst, const Operand& src);
   1029 
   1030   void sqrtss(XMMRegister dst, XMMRegister src);
   1031   void sqrtss(XMMRegister dst, const Operand& src);
   1032 
   1033   void ucomiss(XMMRegister dst, XMMRegister src);
   1034   void ucomiss(XMMRegister dst, const Operand& src);
   1035   void movaps(XMMRegister dst, XMMRegister src);
   1036 
   1037   // Don't use this unless it's important to keep the
   1038   // top half of the destination register unchanged.
   1039   // Use movaps when moving float values and movd for integer
   1040   // values in xmm registers.
   1041   void movss(XMMRegister dst, XMMRegister src);
   1042 
   1043   void movss(XMMRegister dst, const Operand& src);
   1044   void movss(const Operand& dst, XMMRegister src);
   1045   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
   1046 
   1047   void cvttss2si(Register dst, const Operand& src);
   1048   void cvttss2si(Register dst, XMMRegister src);
   1049   void cvtlsi2ss(XMMRegister dst, const Operand& src);
   1050   void cvtlsi2ss(XMMRegister dst, Register src);
   1051 
   1052   void andps(XMMRegister dst, XMMRegister src);
   1053   void andps(XMMRegister dst, const Operand& src);
   1054   void orps(XMMRegister dst, XMMRegister src);
   1055   void orps(XMMRegister dst, const Operand& src);
   1056   void xorps(XMMRegister dst, XMMRegister src);
   1057   void xorps(XMMRegister dst, const Operand& src);
   1058 
   1059   void addps(XMMRegister dst, XMMRegister src);
   1060   void addps(XMMRegister dst, const Operand& src);
   1061   void subps(XMMRegister dst, XMMRegister src);
   1062   void subps(XMMRegister dst, const Operand& src);
   1063   void mulps(XMMRegister dst, XMMRegister src);
   1064   void mulps(XMMRegister dst, const Operand& src);
   1065   void divps(XMMRegister dst, XMMRegister src);
   1066   void divps(XMMRegister dst, const Operand& src);
   1067 
   1068   void movmskps(Register dst, XMMRegister src);
   1069 
   1070   void vinstr(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2,
   1071               SIMDPrefix pp, LeadingOpcode m, VexW w);
   1072   void vinstr(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2,
   1073               SIMDPrefix pp, LeadingOpcode m, VexW w);
   1074 
   1075   // SSE2 instructions
   1076   void sse2_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape,
   1077                   byte opcode);
   1078   void sse2_instr(XMMRegister dst, const Operand& src, byte prefix, byte escape,
   1079                   byte opcode);
   1080 #define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
   1081   void instruction(XMMRegister dst, XMMRegister src) {                \
   1082     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
   1083   }                                                                   \
   1084   void instruction(XMMRegister dst, const Operand& src) {             \
   1085     sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
   1086   }
   1087 
   1088   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
   1089 #undef DECLARE_SSE2_INSTRUCTION
   1090 
   1091 #define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode)    \
   1092   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
   1093     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
   1094   }                                                                          \
   1095   void v##instruction(XMMRegister dst, XMMRegister src1,                     \
   1096                       const Operand& src2) {                                 \
   1097     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
   1098   }
   1099 
   1100   SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
   1101 #undef DECLARE_SSE2_AVX_INSTRUCTION
   1102 
   1103   // SSE3
   1104   void lddqu(XMMRegister dst, const Operand& src);
   1105 
   1106   // SSSE3
   1107   void ssse3_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
   1108                    byte escape2, byte opcode);
   1109   void ssse3_instr(XMMRegister dst, const Operand& src, byte prefix,
   1110                    byte escape1, byte escape2, byte opcode);
   1111 
   1112 #define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2,     \
   1113                                   opcode)                                    \
   1114   void instruction(XMMRegister dst, XMMRegister src) {                       \
   1115     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
   1116   }                                                                          \
   1117   void instruction(XMMRegister dst, const Operand& src) {                    \
   1118     ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
   1119   }
   1120 
   1121   SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
   1122 #undef DECLARE_SSSE3_INSTRUCTION
   1123 
   1124   // SSE4
   1125   void sse4_instr(XMMRegister dst, XMMRegister src, byte prefix, byte escape1,
   1126                   byte escape2, byte opcode);
   1127   void sse4_instr(XMMRegister dst, const Operand& src, byte prefix,
   1128                   byte escape1, byte escape2, byte opcode);
   1129 #define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2,     \
   1130                                  opcode)                                    \
   1131   void instruction(XMMRegister dst, XMMRegister src) {                      \
   1132     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
   1133   }                                                                         \
   1134   void instruction(XMMRegister dst, const Operand& src) {                   \
   1135     sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
   1136   }
   1137 
   1138   SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
   1139 #undef DECLARE_SSE4_INSTRUCTION
   1140 
   1141 #define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2,  \
   1142                                       opcode)                                 \
   1143   void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) {  \
   1144     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
   1145   }                                                                           \
   1146   void v##instruction(XMMRegister dst, XMMRegister src1,                      \
   1147                       const Operand& src2) {                                  \
   1148     vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
   1149   }
   1150 
   1151   SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
   1152   SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
   1153 #undef DECLARE_SSE34_AVX_INSTRUCTION
   1154 
   1155   void movd(XMMRegister dst, Register src);
   1156   void movd(XMMRegister dst, const Operand& src);
   1157   void movd(Register dst, XMMRegister src);
   1158   void movq(XMMRegister dst, Register src);
   1159   void movq(Register dst, XMMRegister src);
   1160   void movq(XMMRegister dst, XMMRegister src);
   1161 
   1162   // Don't use this unless it's important to keep the
   1163   // top half of the destination register unchanged.
   1164   // Use movapd when moving double values and movq for integer
   1165   // values in xmm registers.
   1166   void movsd(XMMRegister dst, XMMRegister src);
   1167 
   1168   void movsd(const Operand& dst, XMMRegister src);
   1169   void movsd(XMMRegister dst, const Operand& src);
   1170 
   1171   void movdqa(const Operand& dst, XMMRegister src);
   1172   void movdqa(XMMRegister dst, const Operand& src);
   1173 
   1174   void movdqu(const Operand& dst, XMMRegister src);
   1175   void movdqu(XMMRegister dst, const Operand& src);
   1176 
   1177   void movapd(XMMRegister dst, XMMRegister src);
   1178   void movupd(XMMRegister dst, const Operand& src);
   1179   void movupd(const Operand& dst, XMMRegister src);
   1180 
   1181   void psllq(XMMRegister reg, byte imm8);
   1182   void psrlq(XMMRegister reg, byte imm8);
   1183   void psllw(XMMRegister reg, byte imm8);
   1184   void pslld(XMMRegister reg, byte imm8);
   1185   void psrlw(XMMRegister reg, byte imm8);
   1186   void psrld(XMMRegister reg, byte imm8);
   1187   void psraw(XMMRegister reg, byte imm8);
   1188   void psrad(XMMRegister reg, byte imm8);
   1189 
   1190   void cvttsd2si(Register dst, const Operand& src);
   1191   void cvttsd2si(Register dst, XMMRegister src);
   1192   void cvttss2siq(Register dst, XMMRegister src);
   1193   void cvttss2siq(Register dst, const Operand& src);
   1194   void cvttsd2siq(Register dst, XMMRegister src);
   1195   void cvttsd2siq(Register dst, const Operand& src);
   1196 
   1197   void cvtlsi2sd(XMMRegister dst, const Operand& src);
   1198   void cvtlsi2sd(XMMRegister dst, Register src);
   1199 
   1200   void cvtqsi2ss(XMMRegister dst, const Operand& src);
   1201   void cvtqsi2ss(XMMRegister dst, Register src);
   1202 
   1203   void cvtqsi2sd(XMMRegister dst, const Operand& src);
   1204   void cvtqsi2sd(XMMRegister dst, Register src);
   1205 
   1206 
   1207   void cvtss2sd(XMMRegister dst, XMMRegister src);
   1208   void cvtss2sd(XMMRegister dst, const Operand& src);
   1209   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   1210   void cvtsd2ss(XMMRegister dst, const Operand& src);
   1211 
   1212   void cvtsd2si(Register dst, XMMRegister src);
   1213   void cvtsd2siq(Register dst, XMMRegister src);
   1214 
   1215   void addsd(XMMRegister dst, XMMRegister src);
   1216   void addsd(XMMRegister dst, const Operand& src);
   1217   void subsd(XMMRegister dst, XMMRegister src);
   1218   void subsd(XMMRegister dst, const Operand& src);
   1219   void mulsd(XMMRegister dst, XMMRegister src);
   1220   void mulsd(XMMRegister dst, const Operand& src);
   1221   void divsd(XMMRegister dst, XMMRegister src);
   1222   void divsd(XMMRegister dst, const Operand& src);
   1223 
   1224   void maxsd(XMMRegister dst, XMMRegister src);
   1225   void maxsd(XMMRegister dst, const Operand& src);
   1226   void minsd(XMMRegister dst, XMMRegister src);
   1227   void minsd(XMMRegister dst, const Operand& src);
   1228 
   1229   void andpd(XMMRegister dst, XMMRegister src);
   1230   void andpd(XMMRegister dst, const Operand& src);
   1231   void orpd(XMMRegister dst, XMMRegister src);
   1232   void orpd(XMMRegister dst, const Operand& src);
   1233   void xorpd(XMMRegister dst, XMMRegister src);
   1234   void xorpd(XMMRegister dst, const Operand& src);
   1235   void sqrtsd(XMMRegister dst, XMMRegister src);
   1236   void sqrtsd(XMMRegister dst, const Operand& src);
   1237 
   1238   void ucomisd(XMMRegister dst, XMMRegister src);
   1239   void ucomisd(XMMRegister dst, const Operand& src);
   1240   void cmpltsd(XMMRegister dst, XMMRegister src);
   1241 
   1242   void movmskpd(Register dst, XMMRegister src);
   1243 
   1244   void punpckldq(XMMRegister dst, XMMRegister src);
   1245   void punpckldq(XMMRegister dst, const Operand& src);
   1246   void punpckhdq(XMMRegister dst, XMMRegister src);
   1247 
   1248   // SSE 4.1 instruction
   1249   void insertps(XMMRegister dst, XMMRegister src, byte imm8);
   1250   void extractps(Register dst, XMMRegister src, byte imm8);
   1251   void pextrb(Register dst, XMMRegister src, int8_t imm8);
   1252   void pextrb(const Operand& dst, XMMRegister src, int8_t imm8);
   1253   void pextrw(Register dst, XMMRegister src, int8_t imm8);
   1254   void pextrw(const Operand& dst, XMMRegister src, int8_t imm8);
   1255   void pextrd(Register dst, XMMRegister src, int8_t imm8);
   1256   void pextrd(const Operand& dst, XMMRegister src, int8_t imm8);
   1257   void pinsrb(XMMRegister dst, Register src, int8_t imm8);
   1258   void pinsrb(XMMRegister dst, const Operand& src, int8_t imm8);
   1259   void pinsrw(XMMRegister dst, Register src, int8_t imm8);
   1260   void pinsrw(XMMRegister dst, const Operand& src, int8_t imm8);
   1261   void pinsrd(XMMRegister dst, Register src, int8_t imm8);
   1262   void pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
   1263 
   1264   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
   1265   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
   1266 
   1267   void cmpps(XMMRegister dst, XMMRegister src, int8_t cmp);
   1268   void cmpps(XMMRegister dst, const Operand& src, int8_t cmp);
   1269   void cmppd(XMMRegister dst, XMMRegister src, int8_t cmp);
   1270   void cmppd(XMMRegister dst, const Operand& src, int8_t cmp);
   1271 
   1272 #define SSE_CMP_P(instr, imm8)                                                \
   1273   void instr##ps(XMMRegister dst, XMMRegister src) { cmpps(dst, src, imm8); } \
   1274   void instr##ps(XMMRegister dst, const Operand& src) {                       \
   1275     cmpps(dst, src, imm8);                                                    \
   1276   }                                                                           \
   1277   void instr##pd(XMMRegister dst, XMMRegister src) { cmppd(dst, src, imm8); } \
   1278   void instr##pd(XMMRegister dst, const Operand& src) { cmppd(dst, src, imm8); }
   1279 
   1280   SSE_CMP_P(cmpeq, 0x0);
   1281   SSE_CMP_P(cmplt, 0x1);
   1282   SSE_CMP_P(cmple, 0x2);
   1283   SSE_CMP_P(cmpneq, 0x4);
   1284   SSE_CMP_P(cmpnlt, 0x5);
   1285   SSE_CMP_P(cmpnle, 0x6);
   1286 
   1287 #undef SSE_CMP_P
   1288 
   1289   void minps(XMMRegister dst, XMMRegister src);
   1290   void minps(XMMRegister dst, const Operand& src);
   1291   void maxps(XMMRegister dst, XMMRegister src);
   1292   void maxps(XMMRegister dst, const Operand& src);
   1293   void rcpps(XMMRegister dst, XMMRegister src);
   1294   void rcpps(XMMRegister dst, const Operand& src);
   1295   void rsqrtps(XMMRegister dst, XMMRegister src);
   1296   void rsqrtps(XMMRegister dst, const Operand& src);
   1297   void sqrtps(XMMRegister dst, XMMRegister src);
   1298   void sqrtps(XMMRegister dst, const Operand& src);
   1299   void movups(XMMRegister dst, XMMRegister src);
   1300   void movups(XMMRegister dst, const Operand& src);
   1301   void movups(const Operand& dst, XMMRegister src);
   1302   void psrldq(XMMRegister dst, uint8_t shift);
   1303   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
   1304   void pshufd(XMMRegister dst, const Operand& src, uint8_t shuffle);
   1305   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   1306   void cvtdq2ps(XMMRegister dst, const Operand& src);
   1307 
   1308   // AVX instruction
   1309   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1310     vfmasd(0x99, dst, src1, src2);
   1311   }
   1312   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1313     vfmasd(0xa9, dst, src1, src2);
   1314   }
   1315   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1316     vfmasd(0xb9, dst, src1, src2);
   1317   }
   1318   void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1319     vfmasd(0x99, dst, src1, src2);
   1320   }
   1321   void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1322     vfmasd(0xa9, dst, src1, src2);
   1323   }
   1324   void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1325     vfmasd(0xb9, dst, src1, src2);
   1326   }
   1327   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1328     vfmasd(0x9b, dst, src1, src2);
   1329   }
   1330   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1331     vfmasd(0xab, dst, src1, src2);
   1332   }
   1333   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1334     vfmasd(0xbb, dst, src1, src2);
   1335   }
   1336   void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1337     vfmasd(0x9b, dst, src1, src2);
   1338   }
   1339   void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1340     vfmasd(0xab, dst, src1, src2);
   1341   }
   1342   void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1343     vfmasd(0xbb, dst, src1, src2);
   1344   }
   1345   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1346     vfmasd(0x9d, dst, src1, src2);
   1347   }
   1348   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1349     vfmasd(0xad, dst, src1, src2);
   1350   }
   1351   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1352     vfmasd(0xbd, dst, src1, src2);
   1353   }
   1354   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1355     vfmasd(0x9d, dst, src1, src2);
   1356   }
   1357   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1358     vfmasd(0xad, dst, src1, src2);
   1359   }
   1360   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1361     vfmasd(0xbd, dst, src1, src2);
   1362   }
   1363   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1364     vfmasd(0x9f, dst, src1, src2);
   1365   }
   1366   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1367     vfmasd(0xaf, dst, src1, src2);
   1368   }
   1369   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1370     vfmasd(0xbf, dst, src1, src2);
   1371   }
   1372   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1373     vfmasd(0x9f, dst, src1, src2);
   1374   }
   1375   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1376     vfmasd(0xaf, dst, src1, src2);
   1377   }
   1378   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1379     vfmasd(0xbf, dst, src1, src2);
   1380   }
   1381   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
   1382   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
   1383 
   1384   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1385     vfmass(0x99, dst, src1, src2);
   1386   }
   1387   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1388     vfmass(0xa9, dst, src1, src2);
   1389   }
   1390   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1391     vfmass(0xb9, dst, src1, src2);
   1392   }
   1393   void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1394     vfmass(0x99, dst, src1, src2);
   1395   }
   1396   void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1397     vfmass(0xa9, dst, src1, src2);
   1398   }
   1399   void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1400     vfmass(0xb9, dst, src1, src2);
   1401   }
   1402   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1403     vfmass(0x9b, dst, src1, src2);
   1404   }
   1405   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1406     vfmass(0xab, dst, src1, src2);
   1407   }
   1408   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1409     vfmass(0xbb, dst, src1, src2);
   1410   }
   1411   void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1412     vfmass(0x9b, dst, src1, src2);
   1413   }
   1414   void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1415     vfmass(0xab, dst, src1, src2);
   1416   }
   1417   void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1418     vfmass(0xbb, dst, src1, src2);
   1419   }
   1420   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1421     vfmass(0x9d, dst, src1, src2);
   1422   }
   1423   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1424     vfmass(0xad, dst, src1, src2);
   1425   }
   1426   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1427     vfmass(0xbd, dst, src1, src2);
   1428   }
   1429   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1430     vfmass(0x9d, dst, src1, src2);
   1431   }
   1432   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1433     vfmass(0xad, dst, src1, src2);
   1434   }
   1435   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1436     vfmass(0xbd, dst, src1, src2);
   1437   }
   1438   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1439     vfmass(0x9f, dst, src1, src2);
   1440   }
   1441   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1442     vfmass(0xaf, dst, src1, src2);
   1443   }
   1444   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1445     vfmass(0xbf, dst, src1, src2);
   1446   }
   1447   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1448     vfmass(0x9f, dst, src1, src2);
   1449   }
   1450   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1451     vfmass(0xaf, dst, src1, src2);
   1452   }
   1453   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1454     vfmass(0xbf, dst, src1, src2);
   1455   }
   1456   void vfmass(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
   1457   void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
   1458 
   1459   void vmovd(XMMRegister dst, Register src);
   1460   void vmovd(XMMRegister dst, const Operand& src);
   1461   void vmovd(Register dst, XMMRegister src);
   1462   void vmovq(XMMRegister dst, Register src);
   1463   void vmovq(XMMRegister dst, const Operand& src);
   1464   void vmovq(Register dst, XMMRegister src);
   1465 
   1466   void vmovsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1467     vsd(0x10, dst, src1, src2);
   1468   }
   1469   void vmovsd(XMMRegister dst, const Operand& src) {
   1470     vsd(0x10, dst, xmm0, src);
   1471   }
   1472   void vmovsd(const Operand& dst, XMMRegister src) {
   1473     vsd(0x11, src, xmm0, dst);
   1474   }
   1475 
   1476 #define AVX_SP_3(instr, opcode) \
   1477   AVX_S_3(instr, opcode)        \
   1478   AVX_P_3(instr, opcode)
   1479 
   1480 #define AVX_S_3(instr, opcode)  \
   1481   AVX_3(instr##ss, opcode, vss) \
   1482   AVX_3(instr##sd, opcode, vsd)
   1483 
   1484 #define AVX_P_3(instr, opcode)  \
   1485   AVX_3(instr##ps, opcode, vps) \
   1486   AVX_3(instr##pd, opcode, vpd)
   1487 
   1488 #define AVX_3(instr, opcode, impl)                                     \
   1489   void instr(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
   1490     impl(opcode, dst, src1, src2);                                     \
   1491   }                                                                    \
   1492   void instr(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
   1493     impl(opcode, dst, src1, src2);                                     \
   1494   }
   1495 
   1496   AVX_SP_3(vsqrt, 0x51);
   1497   AVX_SP_3(vadd, 0x58);
   1498   AVX_SP_3(vsub, 0x5c);
   1499   AVX_SP_3(vmul, 0x59);
   1500   AVX_SP_3(vdiv, 0x5e);
   1501   AVX_SP_3(vmin, 0x5d);
   1502   AVX_SP_3(vmax, 0x5f);
   1503   AVX_P_3(vand, 0x54);
   1504   AVX_P_3(vor, 0x56);
   1505   AVX_P_3(vxor, 0x57);
   1506   AVX_3(vcvtsd2ss, 0x5a, vsd);
   1507 
   1508 #undef AVX_3
   1509 #undef AVX_S_3
   1510 #undef AVX_P_3
   1511 #undef AVX_SP_3
   1512 
   1513   void vpsrlq(XMMRegister dst, XMMRegister src, byte imm8) {
   1514     XMMRegister iop = {2};
   1515     vpd(0x73, iop, dst, src);
   1516     emit(imm8);
   1517   }
   1518   void vpsllq(XMMRegister dst, XMMRegister src, byte imm8) {
   1519     XMMRegister iop = {6};
   1520     vpd(0x73, iop, dst, src);
   1521     emit(imm8);
   1522   }
   1523   void vcvtss2sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1524     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
   1525   }
   1526   void vcvtss2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1527     vinstr(0x5a, dst, src1, src2, kF3, k0F, kWIG);
   1528   }
   1529   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
   1530     XMMRegister isrc2 = {src2.code()};
   1531     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW0);
   1532   }
   1533   void vcvtlsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1534     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW0);
   1535   }
   1536   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
   1537     XMMRegister isrc2 = {src2.code()};
   1538     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW0);
   1539   }
   1540   void vcvtlsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1541     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW0);
   1542   }
   1543   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, Register src2) {
   1544     XMMRegister isrc2 = {src2.code()};
   1545     vinstr(0x2a, dst, src1, isrc2, kF3, k0F, kW1);
   1546   }
   1547   void vcvtqsi2ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1548     vinstr(0x2a, dst, src1, src2, kF3, k0F, kW1);
   1549   }
   1550   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, Register src2) {
   1551     XMMRegister isrc2 = {src2.code()};
   1552     vinstr(0x2a, dst, src1, isrc2, kF2, k0F, kW1);
   1553   }
   1554   void vcvtqsi2sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1555     vinstr(0x2a, dst, src1, src2, kF2, k0F, kW1);
   1556   }
   1557   void vcvttss2si(Register dst, XMMRegister src) {
   1558     XMMRegister idst = {dst.code()};
   1559     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
   1560   }
   1561   void vcvttss2si(Register dst, const Operand& src) {
   1562     XMMRegister idst = {dst.code()};
   1563     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW0);
   1564   }
   1565   void vcvttsd2si(Register dst, XMMRegister src) {
   1566     XMMRegister idst = {dst.code()};
   1567     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
   1568   }
   1569   void vcvttsd2si(Register dst, const Operand& src) {
   1570     XMMRegister idst = {dst.code()};
   1571     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW0);
   1572   }
   1573   void vcvttss2siq(Register dst, XMMRegister src) {
   1574     XMMRegister idst = {dst.code()};
   1575     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
   1576   }
   1577   void vcvttss2siq(Register dst, const Operand& src) {
   1578     XMMRegister idst = {dst.code()};
   1579     vinstr(0x2c, idst, xmm0, src, kF3, k0F, kW1);
   1580   }
   1581   void vcvttsd2siq(Register dst, XMMRegister src) {
   1582     XMMRegister idst = {dst.code()};
   1583     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
   1584   }
   1585   void vcvttsd2siq(Register dst, const Operand& src) {
   1586     XMMRegister idst = {dst.code()};
   1587     vinstr(0x2c, idst, xmm0, src, kF2, k0F, kW1);
   1588   }
   1589   void vcvtsd2si(Register dst, XMMRegister src) {
   1590     XMMRegister idst = {dst.code()};
   1591     vinstr(0x2d, idst, xmm0, src, kF2, k0F, kW0);
   1592   }
   1593   void vucomisd(XMMRegister dst, XMMRegister src) {
   1594     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
   1595   }
   1596   void vucomisd(XMMRegister dst, const Operand& src) {
   1597     vinstr(0x2e, dst, xmm0, src, k66, k0F, kWIG);
   1598   }
   1599   void vroundss(XMMRegister dst, XMMRegister src1, XMMRegister src2,
   1600                 RoundingMode mode) {
   1601     vinstr(0x0a, dst, src1, src2, k66, k0F3A, kWIG);
   1602     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
   1603   }
   1604   void vroundsd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
   1605                 RoundingMode mode) {
   1606     vinstr(0x0b, dst, src1, src2, k66, k0F3A, kWIG);
   1607     emit(static_cast<byte>(mode) | 0x8);  // Mask precision exception.
   1608   }
   1609 
   1610   void vsd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1611     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
   1612   }
   1613   void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2) {
   1614     vinstr(op, dst, src1, src2, kF2, k0F, kWIG);
   1615   }
   1616 
   1617   void vmovss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
   1618     vss(0x10, dst, src1, src2);
   1619   }
   1620   void vmovss(XMMRegister dst, const Operand& src) {
   1621     vss(0x10, dst, xmm0, src);
   1622   }
   1623   void vmovss(const Operand& dst, XMMRegister src) {
   1624     vss(0x11, src, xmm0, dst);
   1625   }
   1626   void vucomiss(XMMRegister dst, XMMRegister src);
   1627   void vucomiss(XMMRegister dst, const Operand& src);
   1628   void vss(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
   1629   void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
   1630 
   1631   void vmovaps(XMMRegister dst, XMMRegister src) { vps(0x28, dst, xmm0, src); }
   1632   void vmovups(XMMRegister dst, XMMRegister src) { vps(0x10, dst, xmm0, src); }
   1633   void vmovups(XMMRegister dst, const Operand& src) {
   1634     vps(0x10, dst, xmm0, src);
   1635   }
   1636   void vmovups(const Operand& dst, XMMRegister src) {
   1637     vps(0x11, src, xmm0, dst);
   1638   }
   1639   void vmovapd(XMMRegister dst, XMMRegister src) { vpd(0x28, dst, xmm0, src); }
   1640   void vmovupd(XMMRegister dst, const Operand& src) {
   1641     vpd(0x10, dst, xmm0, src);
   1642   }
   1643   void vmovupd(const Operand& dst, XMMRegister src) {
   1644     vpd(0x11, src, xmm0, dst);
   1645   }
   1646   void vmovmskps(Register dst, XMMRegister src) {
   1647     XMMRegister idst = {dst.code()};
   1648     vps(0x50, idst, xmm0, src);
   1649   }
   1650   void vmovmskpd(Register dst, XMMRegister src) {
   1651     XMMRegister idst = {dst.code()};
   1652     vpd(0x50, idst, xmm0, src);
   1653   }
   1654   void vcmpps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
   1655     vps(0xC2, dst, src1, src2);
   1656     emit(cmp);
   1657   }
   1658   void vcmpps(XMMRegister dst, XMMRegister src1, const Operand& src2,
   1659               int8_t cmp) {
   1660     vps(0xC2, dst, src1, src2);
   1661     emit(cmp);
   1662   }
   1663   void vcmppd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int8_t cmp) {
   1664     vpd(0xC2, dst, src1, src2);
   1665     emit(cmp);
   1666   }
   1667   void vcmppd(XMMRegister dst, XMMRegister src1, const Operand& src2,
   1668               int8_t cmp) {
   1669     vpd(0xC2, dst, src1, src2);
   1670     emit(cmp);
   1671   }
   1672 
   1673 #define AVX_CMP_P(instr, imm8)                                             \
   1674   void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
   1675     vcmpps(dst, src1, src2, imm8);                                         \
   1676   }                                                                        \
   1677   void instr##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
   1678     vcmpps(dst, src1, src2, imm8);                                         \
   1679   }                                                                        \
   1680   void instr##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
   1681     vcmppd(dst, src1, src2, imm8);                                         \
   1682   }                                                                        \
   1683   void instr##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
   1684     vcmppd(dst, src1, src2, imm8);                                         \
   1685   }
   1686 
   1687   AVX_CMP_P(vcmpeq, 0x0);
   1688   AVX_CMP_P(vcmplt, 0x1);
   1689   AVX_CMP_P(vcmple, 0x2);
   1690   AVX_CMP_P(vcmpneq, 0x4);
   1691   AVX_CMP_P(vcmpnlt, 0x5);
   1692   AVX_CMP_P(vcmpnle, 0x6);
   1693 
   1694 #undef AVX_CMP_P
   1695 
   1696   void vlddqu(XMMRegister dst, const Operand& src) {
   1697     vinstr(0xF0, dst, xmm0, src, kF2, k0F, kWIG);
   1698   }
   1699   void vpsllw(XMMRegister dst, XMMRegister src, int8_t imm8) {
   1700     XMMRegister iop = {6};
   1701     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
   1702     emit(imm8);
   1703   }
   1704   void vpsrlw(XMMRegister dst, XMMRegister src, int8_t imm8) {
   1705     XMMRegister iop = {2};
   1706     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
   1707     emit(imm8);
   1708   }
   1709   void vpsraw(XMMRegister dst, XMMRegister src, int8_t imm8) {
   1710     XMMRegister iop = {4};
   1711     vinstr(0x71, iop, dst, src, k66, k0F, kWIG);
   1712     emit(imm8);
   1713   }
   1714   void vpslld(XMMRegister dst, XMMRegister src, int8_t imm8) {
   1715     XMMRegister iop = {6};
   1716     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
   1717     emit(imm8);
   1718   }
   1719   void vpsrld(XMMRegister dst, XMMRegister src, int8_t imm8) {
   1720     XMMRegister iop = {2};
   1721     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
   1722     emit(imm8);
   1723   }
   1724   void vpsrad(XMMRegister dst, XMMRegister src, int8_t imm8) {
   1725     XMMRegister iop = {4};
   1726     vinstr(0x72, iop, dst, src, k66, k0F, kWIG);
   1727     emit(imm8);
   1728   }
   1729   void vpextrb(Register dst, XMMRegister src, int8_t imm8) {
   1730     XMMRegister idst = {dst.code()};
   1731     vinstr(0x14, src, xmm0, idst, k66, k0F3A, kW0);
   1732     emit(imm8);
   1733   }
   1734   void vpextrb(const Operand& dst, XMMRegister src, int8_t imm8) {
   1735     vinstr(0x14, src, xmm0, dst, k66, k0F3A, kW0);
   1736     emit(imm8);
   1737   }
   1738   void vpextrw(Register dst, XMMRegister src, int8_t imm8) {
   1739     XMMRegister idst = {dst.code()};
   1740     vinstr(0xc5, idst, xmm0, src, k66, k0F, kW0);
   1741     emit(imm8);
   1742   }
   1743   void vpextrw(const Operand& dst, XMMRegister src, int8_t imm8) {
   1744     vinstr(0x15, src, xmm0, dst, k66, k0F3A, kW0);
   1745     emit(imm8);
   1746   }
   1747   void vpextrd(Register dst, XMMRegister src, int8_t imm8) {
   1748     XMMRegister idst = {dst.code()};
   1749     vinstr(0x16, src, xmm0, idst, k66, k0F3A, kW0);
   1750     emit(imm8);
   1751   }
   1752   void vpextrd(const Operand& dst, XMMRegister src, int8_t imm8) {
   1753     vinstr(0x16, src, xmm0, dst, k66, k0F3A, kW0);
   1754     emit(imm8);
   1755   }
   1756   void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
   1757     XMMRegister isrc = {src2.code()};
   1758     vinstr(0x20, dst, src1, isrc, k66, k0F3A, kW0);
   1759     emit(imm8);
   1760   }
   1761   void vpinsrb(XMMRegister dst, XMMRegister src1, const Operand& src2,
   1762                int8_t imm8) {
   1763     vinstr(0x20, dst, src1, src2, k66, k0F3A, kW0);
   1764     emit(imm8);
   1765   }
   1766   void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
   1767     XMMRegister isrc = {src2.code()};
   1768     vinstr(0xc4, dst, src1, isrc, k66, k0F, kW0);
   1769     emit(imm8);
   1770   }
   1771   void vpinsrw(XMMRegister dst, XMMRegister src1, const Operand& src2,
   1772                int8_t imm8) {
   1773     vinstr(0xc4, dst, src1, src2, k66, k0F, kW0);
   1774     emit(imm8);
   1775   }
   1776   void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2, int8_t imm8) {
   1777     XMMRegister isrc = {src2.code()};
   1778     vinstr(0x22, dst, src1, isrc, k66, k0F3A, kW0);
   1779     emit(imm8);
   1780   }
   1781   void vpinsrd(XMMRegister dst, XMMRegister src1, const Operand& src2,
   1782                int8_t imm8) {
   1783     vinstr(0x22, dst, src1, src2, k66, k0F3A, kW0);
   1784     emit(imm8);
   1785   }
   1786   void vpshufd(XMMRegister dst, XMMRegister src, int8_t imm8) {
   1787     vinstr(0x70, dst, xmm0, src, k66, k0F, kWIG);
   1788     emit(imm8);
   1789   }
   1790 
   1791   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
   1792   void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
   1793   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
   1794   void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
   1795 
   1796   // BMI instruction
   1797   void andnq(Register dst, Register src1, Register src2) {
   1798     bmi1q(0xf2, dst, src1, src2);
   1799   }
   1800   void andnq(Register dst, Register src1, const Operand& src2) {
   1801     bmi1q(0xf2, dst, src1, src2);
   1802   }
   1803   void andnl(Register dst, Register src1, Register src2) {
   1804     bmi1l(0xf2, dst, src1, src2);
   1805   }
   1806   void andnl(Register dst, Register src1, const Operand& src2) {
   1807     bmi1l(0xf2, dst, src1, src2);
   1808   }
   1809   void bextrq(Register dst, Register src1, Register src2) {
   1810     bmi1q(0xf7, dst, src2, src1);
   1811   }
   1812   void bextrq(Register dst, const Operand& src1, Register src2) {
   1813     bmi1q(0xf7, dst, src2, src1);
   1814   }
   1815   void bextrl(Register dst, Register src1, Register src2) {
   1816     bmi1l(0xf7, dst, src2, src1);
   1817   }
   1818   void bextrl(Register dst, const Operand& src1, Register src2) {
   1819     bmi1l(0xf7, dst, src2, src1);
   1820   }
   1821   void blsiq(Register dst, Register src) {
   1822     Register ireg = {3};
   1823     bmi1q(0xf3, ireg, dst, src);
   1824   }
   1825   void blsiq(Register dst, const Operand& src) {
   1826     Register ireg = {3};
   1827     bmi1q(0xf3, ireg, dst, src);
   1828   }
   1829   void blsil(Register dst, Register src) {
   1830     Register ireg = {3};
   1831     bmi1l(0xf3, ireg, dst, src);
   1832   }
   1833   void blsil(Register dst, const Operand& src) {
   1834     Register ireg = {3};
   1835     bmi1l(0xf3, ireg, dst, src);
   1836   }
   1837   void blsmskq(Register dst, Register src) {
   1838     Register ireg = {2};
   1839     bmi1q(0xf3, ireg, dst, src);
   1840   }
   1841   void blsmskq(Register dst, const Operand& src) {
   1842     Register ireg = {2};
   1843     bmi1q(0xf3, ireg, dst, src);
   1844   }
   1845   void blsmskl(Register dst, Register src) {
   1846     Register ireg = {2};
   1847     bmi1l(0xf3, ireg, dst, src);
   1848   }
   1849   void blsmskl(Register dst, const Operand& src) {
   1850     Register ireg = {2};
   1851     bmi1l(0xf3, ireg, dst, src);
   1852   }
   1853   void blsrq(Register dst, Register src) {
   1854     Register ireg = {1};
   1855     bmi1q(0xf3, ireg, dst, src);
   1856   }
   1857   void blsrq(Register dst, const Operand& src) {
   1858     Register ireg = {1};
   1859     bmi1q(0xf3, ireg, dst, src);
   1860   }
   1861   void blsrl(Register dst, Register src) {
   1862     Register ireg = {1};
   1863     bmi1l(0xf3, ireg, dst, src);
   1864   }
   1865   void blsrl(Register dst, const Operand& src) {
   1866     Register ireg = {1};
   1867     bmi1l(0xf3, ireg, dst, src);
   1868   }
   1869   void tzcntq(Register dst, Register src);
   1870   void tzcntq(Register dst, const Operand& src);
   1871   void tzcntl(Register dst, Register src);
   1872   void tzcntl(Register dst, const Operand& src);
   1873 
   1874   void lzcntq(Register dst, Register src);
   1875   void lzcntq(Register dst, const Operand& src);
   1876   void lzcntl(Register dst, Register src);
   1877   void lzcntl(Register dst, const Operand& src);
   1878 
   1879   void popcntq(Register dst, Register src);
   1880   void popcntq(Register dst, const Operand& src);
   1881   void popcntl(Register dst, Register src);
   1882   void popcntl(Register dst, const Operand& src);
   1883 
   1884   void bzhiq(Register dst, Register src1, Register src2) {
   1885     bmi2q(kNone, 0xf5, dst, src2, src1);
   1886   }
   1887   void bzhiq(Register dst, const Operand& src1, Register src2) {
   1888     bmi2q(kNone, 0xf5, dst, src2, src1);
   1889   }
   1890   void bzhil(Register dst, Register src1, Register src2) {
   1891     bmi2l(kNone, 0xf5, dst, src2, src1);
   1892   }
   1893   void bzhil(Register dst, const Operand& src1, Register src2) {
   1894     bmi2l(kNone, 0xf5, dst, src2, src1);
   1895   }
   1896   void mulxq(Register dst1, Register dst2, Register src) {
   1897     bmi2q(kF2, 0xf6, dst1, dst2, src);
   1898   }
   1899   void mulxq(Register dst1, Register dst2, const Operand& src) {
   1900     bmi2q(kF2, 0xf6, dst1, dst2, src);
   1901   }
   1902   void mulxl(Register dst1, Register dst2, Register src) {
   1903     bmi2l(kF2, 0xf6, dst1, dst2, src);
   1904   }
   1905   void mulxl(Register dst1, Register dst2, const Operand& src) {
   1906     bmi2l(kF2, 0xf6, dst1, dst2, src);
   1907   }
   1908   void pdepq(Register dst, Register src1, Register src2) {
   1909     bmi2q(kF2, 0xf5, dst, src1, src2);
   1910   }
   1911   void pdepq(Register dst, Register src1, const Operand& src2) {
   1912     bmi2q(kF2, 0xf5, dst, src1, src2);
   1913   }
   1914   void pdepl(Register dst, Register src1, Register src2) {
   1915     bmi2l(kF2, 0xf5, dst, src1, src2);
   1916   }
   1917   void pdepl(Register dst, Register src1, const Operand& src2) {
   1918     bmi2l(kF2, 0xf5, dst, src1, src2);
   1919   }
   1920   void pextq(Register dst, Register src1, Register src2) {
   1921     bmi2q(kF3, 0xf5, dst, src1, src2);
   1922   }
   1923   void pextq(Register dst, Register src1, const Operand& src2) {
   1924     bmi2q(kF3, 0xf5, dst, src1, src2);
   1925   }
   1926   void pextl(Register dst, Register src1, Register src2) {
   1927     bmi2l(kF3, 0xf5, dst, src1, src2);
   1928   }
   1929   void pextl(Register dst, Register src1, const Operand& src2) {
   1930     bmi2l(kF3, 0xf5, dst, src1, src2);
   1931   }
   1932   void sarxq(Register dst, Register src1, Register src2) {
   1933     bmi2q(kF3, 0xf7, dst, src2, src1);
   1934   }
   1935   void sarxq(Register dst, const Operand& src1, Register src2) {
   1936     bmi2q(kF3, 0xf7, dst, src2, src1);
   1937   }
   1938   void sarxl(Register dst, Register src1, Register src2) {
   1939     bmi2l(kF3, 0xf7, dst, src2, src1);
   1940   }
   1941   void sarxl(Register dst, const Operand& src1, Register src2) {
   1942     bmi2l(kF3, 0xf7, dst, src2, src1);
   1943   }
   1944   void shlxq(Register dst, Register src1, Register src2) {
   1945     bmi2q(k66, 0xf7, dst, src2, src1);
   1946   }
   1947   void shlxq(Register dst, const Operand& src1, Register src2) {
   1948     bmi2q(k66, 0xf7, dst, src2, src1);
   1949   }
   1950   void shlxl(Register dst, Register src1, Register src2) {
   1951     bmi2l(k66, 0xf7, dst, src2, src1);
   1952   }
   1953   void shlxl(Register dst, const Operand& src1, Register src2) {
   1954     bmi2l(k66, 0xf7, dst, src2, src1);
   1955   }
   1956   void shrxq(Register dst, Register src1, Register src2) {
   1957     bmi2q(kF2, 0xf7, dst, src2, src1);
   1958   }
   1959   void shrxq(Register dst, const Operand& src1, Register src2) {
   1960     bmi2q(kF2, 0xf7, dst, src2, src1);
   1961   }
   1962   void shrxl(Register dst, Register src1, Register src2) {
   1963     bmi2l(kF2, 0xf7, dst, src2, src1);
   1964   }
   1965   void shrxl(Register dst, const Operand& src1, Register src2) {
   1966     bmi2l(kF2, 0xf7, dst, src2, src1);
   1967   }
   1968   void rorxq(Register dst, Register src, byte imm8);
   1969   void rorxq(Register dst, const Operand& src, byte imm8);
   1970   void rorxl(Register dst, Register src, byte imm8);
   1971   void rorxl(Register dst, const Operand& src, byte imm8);
   1972 
   1973   // Check the code size generated from label to here.
   1974   int SizeOfCodeGeneratedSince(Label* label) {
   1975     return pc_offset() - label->pos();
   1976   }
   1977 
   1978   // Mark address of a debug break slot.
   1979   void RecordDebugBreakSlot(RelocInfo::Mode mode);
   1980 
   1981   // Record a comment relocation entry that can be used by a disassembler.
   1982   // Use --code-comments to enable.
   1983   void RecordComment(const char* msg);
   1984 
   1985   // Record a deoptimization reason that can be used by a log or cpu profiler.
   1986   // Use --trace-deopt to enable.
   1987   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
   1988                          int id);
   1989 
   1990   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
   1991                                           ConstantPoolEntry::Access access,
   1992                                           ConstantPoolEntry::Type type) {
   1993     // No embedded constant pool support.
   1994     UNREACHABLE();
   1995   }
   1996 
   1997   void RecordProtectedInstructionLanding(int pc_offset);
   1998 
   1999   // Writes a single word of data in the code stream.
   2000   // Used for inline tables, e.g., jump-tables.
   2001   void db(uint8_t data);
   2002   void dd(uint32_t data);
   2003   void dq(uint64_t data);
   2004   void dp(uintptr_t data) { dq(data); }
   2005   void dq(Label* label);
   2006 
   2007   // Check if there is less than kGap bytes available in the buffer.
   2008   // If this is the case, we need to grow the buffer before emitting
   2009   // an instruction or relocation information.
   2010   inline bool buffer_overflow() const {
   2011     return pc_ >= reloc_info_writer.pos() - kGap;
   2012   }
   2013 
   2014   // Get the number of bytes available in the buffer.
   2015   inline int available_space() const {
   2016     return static_cast<int>(reloc_info_writer.pos() - pc_);
   2017   }
   2018 
   2019   static bool IsNop(Address addr);
   2020 
   2021   // Avoid overflows for displacements etc.
   2022   static const int kMaximalBufferSize = 512*MB;
   2023 
   2024   byte byte_at(int pos)  { return buffer_[pos]; }
   2025   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
   2026 
   2027   Address pc() const { return pc_; }
   2028 
   2029  protected:
   2030   // Call near indirect
   2031   void call(const Operand& operand);
   2032 
   2033  private:
   2034   byte* addr_at(int pos)  { return buffer_ + pos; }
   2035   uint32_t long_at(int pos)  {
   2036     return *reinterpret_cast<uint32_t*>(addr_at(pos));
   2037   }
   2038   void long_at_put(int pos, uint32_t x)  {
   2039     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
   2040   }
   2041 
   2042   // code emission
   2043   void GrowBuffer();
   2044 
   2045   void emit(byte x) { *pc_++ = x; }
   2046   inline void emitl(uint32_t x);
   2047   inline void emitp(void* x, RelocInfo::Mode rmode);
   2048   inline void emitq(uint64_t x);
   2049   inline void emitw(uint16_t x);
   2050   inline void emit_code_target(Handle<Code> target,
   2051                                RelocInfo::Mode rmode,
   2052                                TypeFeedbackId ast_id = TypeFeedbackId::None());
   2053   inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
   2054   inline void emit(Immediate x);
   2055 
   2056   // Emits a REX prefix that encodes a 64-bit operand size and
   2057   // the top bit of both register codes.
   2058   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
   2059   // REX.W is set.
   2060   inline void emit_rex_64(XMMRegister reg, Register rm_reg);
   2061   inline void emit_rex_64(Register reg, XMMRegister rm_reg);
   2062   inline void emit_rex_64(Register reg, Register rm_reg);
   2063 
   2064   // Emits a REX prefix that encodes a 64-bit operand size and
   2065   // the top bit of the destination, index, and base register codes.
   2066   // The high bit of reg is used for REX.R, the high bit of op's base
   2067   // register is used for REX.B, and the high bit of op's index register
   2068   // is used for REX.X.  REX.W is set.
   2069   inline void emit_rex_64(Register reg, const Operand& op);
   2070   inline void emit_rex_64(XMMRegister reg, const Operand& op);
   2071 
   2072   // Emits a REX prefix that encodes a 64-bit operand size and
   2073   // the top bit of the register code.
   2074   // The high bit of register is used for REX.B.
   2075   // REX.W is set and REX.R and REX.X are clear.
   2076   inline void emit_rex_64(Register rm_reg);
   2077 
   2078   // Emits a REX prefix that encodes a 64-bit operand size and
   2079   // the top bit of the index and base register codes.
   2080   // The high bit of op's base register is used for REX.B, and the high
   2081   // bit of op's index register is used for REX.X.
   2082   // REX.W is set and REX.R clear.
   2083   inline void emit_rex_64(const Operand& op);
   2084 
   2085   // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
   2086   void emit_rex_64() { emit(0x48); }
   2087 
   2088   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
   2089   // REX.W is clear.
   2090   inline void emit_rex_32(Register reg, Register rm_reg);
   2091 
   2092   // The high bit of reg is used for REX.R, the high bit of op's base
   2093   // register is used for REX.B, and the high bit of op's index register
   2094   // is used for REX.X.  REX.W is cleared.
   2095   inline void emit_rex_32(Register reg, const Operand& op);
   2096 
   2097   // High bit of rm_reg goes to REX.B.
   2098   // REX.W, REX.R and REX.X are clear.
   2099   inline void emit_rex_32(Register rm_reg);
   2100 
   2101   // High bit of base goes to REX.B and high bit of index to REX.X.
   2102   // REX.W and REX.R are clear.
   2103   inline void emit_rex_32(const Operand& op);
   2104 
   2105   // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
   2106   // REX.W is cleared.  If no REX bits are set, no byte is emitted.
   2107   inline void emit_optional_rex_32(Register reg, Register rm_reg);
   2108 
   2109   // The high bit of reg is used for REX.R, the high bit of op's base
   2110   // register is used for REX.B, and the high bit of op's index register
   2111   // is used for REX.X.  REX.W is cleared.  If no REX bits are set, nothing
   2112   // is emitted.
   2113   inline void emit_optional_rex_32(Register reg, const Operand& op);
   2114 
   2115   // As for emit_optional_rex_32(Register, Register), except that
   2116   // the registers are XMM registers.
   2117   inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
   2118 
   2119   // As for emit_optional_rex_32(Register, Register), except that
   2120   // one of the registers is an XMM registers.
   2121   inline void emit_optional_rex_32(XMMRegister reg, Register base);
   2122 
   2123   // As for emit_optional_rex_32(Register, Register), except that
   2124   // one of the registers is an XMM registers.
   2125   inline void emit_optional_rex_32(Register reg, XMMRegister base);
   2126 
   2127   // As for emit_optional_rex_32(Register, const Operand&), except that
   2128   // the register is an XMM register.
   2129   inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
   2130 
   2131   // Optionally do as emit_rex_32(Register) if the register number has
   2132   // the high bit set.
   2133   inline void emit_optional_rex_32(Register rm_reg);
   2134   inline void emit_optional_rex_32(XMMRegister rm_reg);
   2135 
   2136   // Optionally do as emit_rex_32(const Operand&) if the operand register
   2137   // numbers have a high bit set.
   2138   inline void emit_optional_rex_32(const Operand& op);
   2139 
   2140   void emit_rex(int size) {
   2141     if (size == kInt64Size) {
   2142       emit_rex_64();
   2143     } else {
   2144       DCHECK(size == kInt32Size);
   2145     }
   2146   }
   2147 
   2148   template<class P1>
   2149   void emit_rex(P1 p1, int size) {
   2150     if (size == kInt64Size) {
   2151       emit_rex_64(p1);
   2152     } else {
   2153       DCHECK(size == kInt32Size);
   2154       emit_optional_rex_32(p1);
   2155     }
   2156   }
   2157 
   2158   template<class P1, class P2>
   2159   void emit_rex(P1 p1, P2 p2, int size) {
   2160     if (size == kInt64Size) {
   2161       emit_rex_64(p1, p2);
   2162     } else {
   2163       DCHECK(size == kInt32Size);
   2164       emit_optional_rex_32(p1, p2);
   2165     }
   2166   }
   2167 
   2168   // Emit vex prefix
   2169   void emit_vex2_byte0() { emit(0xc5); }
   2170   inline void emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l,
   2171                               SIMDPrefix pp);
   2172   void emit_vex3_byte0() { emit(0xc4); }
   2173   inline void emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m);
   2174   inline void emit_vex3_byte1(XMMRegister reg, const Operand& rm,
   2175                               LeadingOpcode m);
   2176   inline void emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l,
   2177                               SIMDPrefix pp);
   2178   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, XMMRegister rm,
   2179                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
   2180                               VexW w);
   2181   inline void emit_vex_prefix(Register reg, Register v, Register rm,
   2182                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
   2183                               VexW w);
   2184   inline void emit_vex_prefix(XMMRegister reg, XMMRegister v, const Operand& rm,
   2185                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
   2186                               VexW w);
   2187   inline void emit_vex_prefix(Register reg, Register v, const Operand& rm,
   2188                               VectorLength l, SIMDPrefix pp, LeadingOpcode m,
   2189                               VexW w);
   2190 
   2191   // Emit the ModR/M byte, and optionally the SIB byte and
   2192   // 1- or 4-byte offset for a memory operand.  Also encodes
   2193   // the second operand of the operation, a register or operation
   2194   // subcode, into the reg field of the ModR/M byte.
   2195   void emit_operand(Register reg, const Operand& adr) {
   2196     emit_operand(reg.low_bits(), adr);
   2197   }
   2198 
   2199   // Emit the ModR/M byte, and optionally the SIB byte and
   2200   // 1- or 4-byte offset for a memory operand.  Also used to encode
   2201   // a three-bit opcode extension into the ModR/M byte.
   2202   void emit_operand(int rm, const Operand& adr);
   2203 
   2204   // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
   2205   void emit_modrm(Register reg, Register rm_reg) {
   2206     emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
   2207   }
   2208 
   2209   // Emit a ModR/M byte with an operation subcode in the reg field and
   2210   // a register in the rm_reg field.
   2211   void emit_modrm(int code, Register rm_reg) {
   2212     DCHECK(is_uint3(code));
   2213     emit(0xC0 | code << 3 | rm_reg.low_bits());
   2214   }
   2215 
   2216   // Emit the code-object-relative offset of the label's position
   2217   inline void emit_code_relative_offset(Label* label);
   2218 
   2219   // The first argument is the reg field, the second argument is the r/m field.
   2220   void emit_sse_operand(XMMRegister dst, XMMRegister src);
   2221   void emit_sse_operand(XMMRegister reg, const Operand& adr);
   2222   void emit_sse_operand(Register reg, const Operand& adr);
   2223   void emit_sse_operand(XMMRegister dst, Register src);
   2224   void emit_sse_operand(Register dst, XMMRegister src);
   2225   void emit_sse_operand(XMMRegister dst);
   2226 
   2227   // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
   2228   // AND, OR, XOR, or CMP.  The encodings of these operations are all
   2229   // similar, differing just in the opcode or in the reg field of the
   2230   // ModR/M byte.
   2231   void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
   2232   void arithmetic_op_8(byte opcode, Register reg, const Operand& rm_reg);
   2233   void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
   2234   void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
   2235   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
   2236   void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
   2237   void arithmetic_op(byte opcode,
   2238                      Register reg,
   2239                      const Operand& rm_reg,
   2240                      int size);
   2241   // Operate on a byte in memory or register.
   2242   void immediate_arithmetic_op_8(byte subcode,
   2243                                  Register dst,
   2244                                  Immediate src);
   2245   void immediate_arithmetic_op_8(byte subcode,
   2246                                  const Operand& dst,
   2247                                  Immediate src);
   2248   // Operate on a word in memory or register.
   2249   void immediate_arithmetic_op_16(byte subcode,
   2250                                   Register dst,
   2251                                   Immediate src);
   2252   void immediate_arithmetic_op_16(byte subcode,
   2253                                   const Operand& dst,
   2254                                   Immediate src);
   2255   // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
   2256   void immediate_arithmetic_op(byte subcode,
   2257                                Register dst,
   2258                                Immediate src,
   2259                                int size);
   2260   void immediate_arithmetic_op(byte subcode,
   2261                                const Operand& dst,
   2262                                Immediate src,
   2263                                int size);
   2264 
   2265   // Emit machine code for a shift operation.
   2266   void shift(Operand dst, Immediate shift_amount, int subcode, int size);
   2267   void shift(Register dst, Immediate shift_amount, int subcode, int size);
   2268   // Shift dst by cl % 64 bits.
   2269   void shift(Register dst, int subcode, int size);
   2270   void shift(Operand dst, int subcode, int size);
   2271 
   2272   void emit_farith(int b1, int b2, int i);
   2273 
   2274   // labels
   2275   // void print(Label* L);
   2276   void bind_to(Label* L, int pos);
   2277 
   2278   // record reloc info for current pc_
   2279   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
   2280 
   2281   // Arithmetics
   2282   void emit_add(Register dst, Register src, int size) {
   2283     arithmetic_op(0x03, dst, src, size);
   2284   }
   2285 
   2286   void emit_add(Register dst, Immediate src, int size) {
   2287     immediate_arithmetic_op(0x0, dst, src, size);
   2288   }
   2289 
   2290   void emit_add(Register dst, const Operand& src, int size) {
   2291     arithmetic_op(0x03, dst, src, size);
   2292   }
   2293 
   2294   void emit_add(const Operand& dst, Register src, int size) {
   2295     arithmetic_op(0x1, src, dst, size);
   2296   }
   2297 
   2298   void emit_add(const Operand& dst, Immediate src, int size) {
   2299     immediate_arithmetic_op(0x0, dst, src, size);
   2300   }
   2301 
   2302   void emit_and(Register dst, Register src, int size) {
   2303     arithmetic_op(0x23, dst, src, size);
   2304   }
   2305 
   2306   void emit_and(Register dst, const Operand& src, int size) {
   2307     arithmetic_op(0x23, dst, src, size);
   2308   }
   2309 
   2310   void emit_and(const Operand& dst, Register src, int size) {
   2311     arithmetic_op(0x21, src, dst, size);
   2312   }
   2313 
   2314   void emit_and(Register dst, Immediate src, int size) {
   2315     immediate_arithmetic_op(0x4, dst, src, size);
   2316   }
   2317 
   2318   void emit_and(const Operand& dst, Immediate src, int size) {
   2319     immediate_arithmetic_op(0x4, dst, src, size);
   2320   }
   2321 
   2322   void emit_cmp(Register dst, Register src, int size) {
   2323     arithmetic_op(0x3B, dst, src, size);
   2324   }
   2325 
   2326   void emit_cmp(Register dst, const Operand& src, int size) {
   2327     arithmetic_op(0x3B, dst, src, size);
   2328   }
   2329 
   2330   void emit_cmp(const Operand& dst, Register src, int size) {
   2331     arithmetic_op(0x39, src, dst, size);
   2332   }
   2333 
   2334   void emit_cmp(Register dst, Immediate src, int size) {
   2335     immediate_arithmetic_op(0x7, dst, src, size);
   2336   }
   2337 
   2338   void emit_cmp(const Operand& dst, Immediate src, int size) {
   2339     immediate_arithmetic_op(0x7, dst, src, size);
   2340   }
   2341 
   2342   // Compare {al,ax,eax,rax} with src.  If equal, set ZF and write dst into
   2343   // src. Otherwise clear ZF and write src into {al,ax,eax,rax}.  This
   2344   // operation is only atomic if prefixed by the lock instruction.
   2345   void emit_cmpxchg(const Operand& dst, Register src, int size);
   2346 
   2347   void emit_dec(Register dst, int size);
   2348   void emit_dec(const Operand& dst, int size);
   2349 
   2350   // Divide rdx:rax by src.  Quotient in rax, remainder in rdx when size is 64.
   2351   // Divide edx:eax by lower 32 bits of src.  Quotient in eax, remainder in edx
   2352   // when size is 32.
   2353   void emit_idiv(Register src, int size);
   2354   void emit_div(Register src, int size);
   2355 
   2356   // Signed multiply instructions.
   2357   // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
   2358   void emit_imul(Register src, int size);
   2359   void emit_imul(const Operand& src, int size);
   2360   void emit_imul(Register dst, Register src, int size);
   2361   void emit_imul(Register dst, const Operand& src, int size);
   2362   void emit_imul(Register dst, Register src, Immediate imm, int size);
   2363   void emit_imul(Register dst, const Operand& src, Immediate imm, int size);
   2364 
   2365   void emit_inc(Register dst, int size);
   2366   void emit_inc(const Operand& dst, int size);
   2367 
   2368   void emit_lea(Register dst, const Operand& src, int size);
   2369 
   2370   void emit_mov(Register dst, const Operand& src, int size);
   2371   void emit_mov(Register dst, Register src, int size);
   2372   void emit_mov(const Operand& dst, Register src, int size);
   2373   void emit_mov(Register dst, Immediate value, int size);
   2374   void emit_mov(const Operand& dst, Immediate value, int size);
   2375 
   2376   void emit_movzxb(Register dst, const Operand& src, int size);
   2377   void emit_movzxb(Register dst, Register src, int size);
   2378   void emit_movzxw(Register dst, const Operand& src, int size);
   2379   void emit_movzxw(Register dst, Register src, int size);
   2380 
   2381   void emit_neg(Register dst, int size);
   2382   void emit_neg(const Operand& dst, int size);
   2383 
   2384   void emit_not(Register dst, int size);
   2385   void emit_not(const Operand& dst, int size);
   2386 
   2387   void emit_or(Register dst, Register src, int size) {
   2388     arithmetic_op(0x0B, dst, src, size);
   2389   }
   2390 
   2391   void emit_or(Register dst, const Operand& src, int size) {
   2392     arithmetic_op(0x0B, dst, src, size);
   2393   }
   2394 
   2395   void emit_or(const Operand& dst, Register src, int size) {
   2396     arithmetic_op(0x9, src, dst, size);
   2397   }
   2398 
   2399   void emit_or(Register dst, Immediate src, int size) {
   2400     immediate_arithmetic_op(0x1, dst, src, size);
   2401   }
   2402 
   2403   void emit_or(const Operand& dst, Immediate src, int size) {
   2404     immediate_arithmetic_op(0x1, dst, src, size);
   2405   }
   2406 
   2407   void emit_repmovs(int size);
   2408 
   2409   void emit_sbb(Register dst, Register src, int size) {
   2410     arithmetic_op(0x1b, dst, src, size);
   2411   }
   2412 
   2413   void emit_sub(Register dst, Register src, int size) {
   2414     arithmetic_op(0x2B, dst, src, size);
   2415   }
   2416 
   2417   void emit_sub(Register dst, Immediate src, int size) {
   2418     immediate_arithmetic_op(0x5, dst, src, size);
   2419   }
   2420 
   2421   void emit_sub(Register dst, const Operand& src, int size) {
   2422     arithmetic_op(0x2B, dst, src, size);
   2423   }
   2424 
   2425   void emit_sub(const Operand& dst, Register src, int size) {
   2426     arithmetic_op(0x29, src, dst, size);
   2427   }
   2428 
   2429   void emit_sub(const Operand& dst, Immediate src, int size) {
   2430     immediate_arithmetic_op(0x5, dst, src, size);
   2431   }
   2432 
   2433   void emit_test(Register dst, Register src, int size);
   2434   void emit_test(Register reg, Immediate mask, int size);
   2435   void emit_test(const Operand& op, Register reg, int size);
   2436   void emit_test(const Operand& op, Immediate mask, int size);
   2437   void emit_test(Register reg, const Operand& op, int size) {
   2438     return emit_test(op, reg, size);
   2439   }
   2440 
   2441   void emit_xchg(Register dst, Register src, int size);
   2442   void emit_xchg(Register dst, const Operand& src, int size);
   2443 
   2444   void emit_xor(Register dst, Register src, int size) {
   2445     if (size == kInt64Size && dst.code() == src.code()) {
   2446     // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
   2447     // there is no need to make this a 64 bit operation.
   2448       arithmetic_op(0x33, dst, src, kInt32Size);
   2449     } else {
   2450       arithmetic_op(0x33, dst, src, size);
   2451     }
   2452   }
   2453 
   2454   void emit_xor(Register dst, const Operand& src, int size) {
   2455     arithmetic_op(0x33, dst, src, size);
   2456   }
   2457 
   2458   void emit_xor(Register dst, Immediate src, int size) {
   2459     immediate_arithmetic_op(0x6, dst, src, size);
   2460   }
   2461 
   2462   void emit_xor(const Operand& dst, Immediate src, int size) {
   2463     immediate_arithmetic_op(0x6, dst, src, size);
   2464   }
   2465 
   2466   void emit_xor(const Operand& dst, Register src, int size) {
   2467     arithmetic_op(0x31, src, dst, size);
   2468   }
   2469 
   2470   // Most BMI instructions are similiar.
   2471   void bmi1q(byte op, Register reg, Register vreg, Register rm);
   2472   void bmi1q(byte op, Register reg, Register vreg, const Operand& rm);
   2473   void bmi1l(byte op, Register reg, Register vreg, Register rm);
   2474   void bmi1l(byte op, Register reg, Register vreg, const Operand& rm);
   2475   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
   2476   void bmi2q(SIMDPrefix pp, byte op, Register reg, Register vreg,
   2477              const Operand& rm);
   2478   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg, Register rm);
   2479   void bmi2l(SIMDPrefix pp, byte op, Register reg, Register vreg,
   2480              const Operand& rm);
   2481 
   2482   friend class CodePatcher;
   2483   friend class EnsureSpace;
   2484   friend class RegExpMacroAssemblerX64;
   2485 
   2486   // code generation
   2487   RelocInfoWriter reloc_info_writer;
   2488 
   2489   // Internal reference positions, required for (potential) patching in
   2490   // GrowBuffer(); contains only those internal references whose labels
   2491   // are already bound.
   2492   std::deque<int> internal_reference_positions_;
   2493 
   2494   List< Handle<Code> > code_targets_;
   2495 };
   2496 
   2497 
   2498 // Helper class that ensures that there is enough space for generating
   2499 // instructions and relocation information.  The constructor makes
   2500 // sure that there is enough space and (in debug mode) the destructor
   2501 // checks that we did not generate too much.
   2502 class EnsureSpace BASE_EMBEDDED {
   2503  public:
   2504   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
   2505     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
   2506 #ifdef DEBUG
   2507     space_before_ = assembler_->available_space();
   2508 #endif
   2509   }
   2510 
   2511 #ifdef DEBUG
   2512   ~EnsureSpace() {
   2513     int bytes_generated = space_before_ - assembler_->available_space();
   2514     DCHECK(bytes_generated < assembler_->kGap);
   2515   }
   2516 #endif
   2517 
   2518  private:
   2519   Assembler* assembler_;
   2520 #ifdef DEBUG
   2521   int space_before_;
   2522 #endif
   2523 };
   2524 
   2525 }  // namespace internal
   2526 }  // namespace v8
   2527 
   2528 #endif  // V8_X64_ASSEMBLER_X64_H_
   2529