Home | History | Annotate | Download | only in examples
      1 // Copyright 2015, VIXL authors
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #include "../test-runner.h"
     28 #include "../test-utils-aarch64.h"
     29 #include "custom-disassembler.h"
     30 #include "examples.h"
     31 #include "non-const-visitor.h"
     32 
     33 #include "aarch64/macro-assembler-aarch64.h"
     34 #include "aarch64/debugger-aarch64.h"
     35 #include "aarch64/simulator-aarch64.h"
     36 #define TEST(name) TEST_(EXAMPLE_##name)
     37 
     38 using namespace vixl;
     39 using namespace vixl::aarch64;
     40 
     41 
     42 TEST(custom_disassembler) { TestCustomDisassembler(); }
     43 
     44 
     45 // The tests below only work with the simulator.
     46 #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
     47 
     48 #define __ masm->
     49 
     50 uint64_t FactorialC(uint64_t n) {
     51   uint64_t result = 1;
     52 
     53   while (n != 0) {
     54     result *= n;
     55     n--;
     56   }
     57 
     58   return result;
     59 }
     60 
     61 // Multiply two column-major 4x4 matrices of 32 bit floating point values.
     62 // Return a column-major 4x4 matrix of 32 bit floating point values in 'C'.
     63 void MatrixMultiplyC(float C[16], float A[16], float B[16]) {
     64   C[0] = A[0] * B[0] + A[4] * B[1] + A[8] * B[2] + A[12] * B[3];
     65   C[1] = A[1] * B[0] + A[5] * B[1] + A[9] * B[2] + A[13] * B[3];
     66   C[2] = A[2] * B[0] + A[6] * B[1] + A[10] * B[2] + A[14] * B[3];
     67   C[3] = A[3] * B[0] + A[7] * B[1] + A[11] * B[2] + A[15] * B[3];
     68 
     69   C[4] = A[0] * B[4] + A[4] * B[5] + A[8] * B[6] + A[12] * B[7];
     70   C[5] = A[1] * B[4] + A[5] * B[5] + A[9] * B[6] + A[13] * B[7];
     71   C[6] = A[2] * B[4] + A[6] * B[5] + A[10] * B[6] + A[14] * B[7];
     72   C[7] = A[3] * B[4] + A[7] * B[5] + A[11] * B[6] + A[15] * B[7];
     73 
     74   C[8] = A[0] * B[8] + A[4] * B[9] + A[8] * B[10] + A[12] * B[11];
     75   C[9] = A[1] * B[8] + A[5] * B[9] + A[9] * B[10] + A[13] * B[11];
     76   C[10] = A[2] * B[8] + A[6] * B[9] + A[10] * B[10] + A[14] * B[11];
     77   C[11] = A[3] * B[8] + A[7] * B[9] + A[11] * B[10] + A[15] * B[11];
     78 
     79   C[12] = A[0] * B[12] + A[4] * B[13] + A[8] * B[14] + A[12] * B[15];
     80   C[13] = A[1] * B[12] + A[5] * B[13] + A[9] * B[14] + A[13] * B[15];
     81   C[14] = A[2] * B[12] + A[6] * B[13] + A[10] * B[14] + A[14] * B[15];
     82   C[15] = A[3] * B[12] + A[7] * B[13] + A[11] * B[14] + A[15] * B[15];
     83 }
     84 
     85 double Add3DoubleC(double x, double y, double z) { return x + y + z; }
     86 
     87 double Add4DoubleC(uint64_t a, double b, uint64_t c, double d) {
     88   return static_cast<double>(a) + b + static_cast<double>(c) + d;
     89 }
     90 
     91 uint32_t SumArrayC(uint8_t* array, uint32_t size) {
     92   uint32_t result = 0;
     93 
     94   for (uint32_t i = 0; i < size; ++i) {
     95     result += array[i];
     96   }
     97 
     98   return result;
     99 }
    100 
    101 
    102 void GenerateTestWrapper(MacroAssembler* masm, RegisterDump* regs) {
    103   __ Push(xzr, lr);
    104   __ Blr(x15);
    105   regs->Dump(masm);
    106   __ Pop(lr, xzr);
    107   __ Ret();
    108 }
    109 
    110 
    111 #define TEST_FUNCTION(Func)                                              \
    112   do {                                                                   \
    113     int64_t saved_xregs[13];                                             \
    114     saved_xregs[0] = simulator.ReadXRegister(19);                        \
    115     saved_xregs[1] = simulator.ReadXRegister(20);                        \
    116     saved_xregs[2] = simulator.ReadXRegister(21);                        \
    117     saved_xregs[3] = simulator.ReadXRegister(22);                        \
    118     saved_xregs[4] = simulator.ReadXRegister(23);                        \
    119     saved_xregs[5] = simulator.ReadXRegister(24);                        \
    120     saved_xregs[6] = simulator.ReadXRegister(25);                        \
    121     saved_xregs[7] = simulator.ReadXRegister(26);                        \
    122     saved_xregs[8] = simulator.ReadXRegister(27);                        \
    123     saved_xregs[9] = simulator.ReadXRegister(28);                        \
    124     saved_xregs[10] = simulator.ReadXRegister(29);                       \
    125     saved_xregs[11] = simulator.ReadXRegister(30);                       \
    126     saved_xregs[12] = simulator.ReadXRegister(31);                       \
    127                                                                          \
    128     uint64_t saved_dregs[8];                                             \
    129     saved_dregs[0] = simulator.ReadDRegisterBits(8);                     \
    130     saved_dregs[1] = simulator.ReadDRegisterBits(9);                     \
    131     saved_dregs[2] = simulator.ReadDRegisterBits(10);                    \
    132     saved_dregs[3] = simulator.ReadDRegisterBits(11);                    \
    133     saved_dregs[4] = simulator.ReadDRegisterBits(12);                    \
    134     saved_dregs[5] = simulator.ReadDRegisterBits(13);                    \
    135     saved_dregs[6] = simulator.ReadDRegisterBits(14);                    \
    136     saved_dregs[7] = simulator.ReadDRegisterBits(15);                    \
    137                                                                          \
    138     simulator.WriteXRegister(15, masm.GetLabelAddress<uint64_t>(&Func)); \
    139     simulator.RunFrom(masm.GetLabelAddress<Instruction*>(&test));        \
    140                                                                          \
    141     VIXL_CHECK(saved_xregs[0] == simulator.ReadXRegister(19));           \
    142     VIXL_CHECK(saved_xregs[1] == simulator.ReadXRegister(20));           \
    143     VIXL_CHECK(saved_xregs[2] == simulator.ReadXRegister(21));           \
    144     VIXL_CHECK(saved_xregs[3] == simulator.ReadXRegister(22));           \
    145     VIXL_CHECK(saved_xregs[4] == simulator.ReadXRegister(23));           \
    146     VIXL_CHECK(saved_xregs[5] == simulator.ReadXRegister(24));           \
    147     VIXL_CHECK(saved_xregs[6] == simulator.ReadXRegister(25));           \
    148     VIXL_CHECK(saved_xregs[7] == simulator.ReadXRegister(26));           \
    149     VIXL_CHECK(saved_xregs[8] == simulator.ReadXRegister(27));           \
    150     VIXL_CHECK(saved_xregs[9] == simulator.ReadXRegister(28));           \
    151     VIXL_CHECK(saved_xregs[10] == simulator.ReadXRegister(29));          \
    152     VIXL_CHECK(saved_xregs[11] == simulator.ReadXRegister(30));          \
    153     VIXL_CHECK(saved_xregs[12] == simulator.ReadXRegister(31));          \
    154                                                                          \
    155     VIXL_CHECK(saved_dregs[0] == simulator.ReadDRegisterBits(8));        \
    156     VIXL_CHECK(saved_dregs[1] == simulator.ReadDRegisterBits(9));        \
    157     VIXL_CHECK(saved_dregs[2] == simulator.ReadDRegisterBits(10));       \
    158     VIXL_CHECK(saved_dregs[3] == simulator.ReadDRegisterBits(11));       \
    159     VIXL_CHECK(saved_dregs[4] == simulator.ReadDRegisterBits(12));       \
    160     VIXL_CHECK(saved_dregs[5] == simulator.ReadDRegisterBits(13));       \
    161     VIXL_CHECK(saved_dregs[6] == simulator.ReadDRegisterBits(14));       \
    162     VIXL_CHECK(saved_dregs[7] == simulator.ReadDRegisterBits(15));       \
    163                                                                          \
    164   } while (0)
    165 
    166 #define START()                                       \
    167   MacroAssembler masm;                                \
    168   Decoder decoder;                                    \
    169   Debugger simulator(&decoder);                       \
    170   simulator.SetColouredTrace(Test::coloured_trace()); \
    171   PrintDisassembler* pdis = NULL;                     \
    172   Instrument* inst = NULL;                            \
    173   if (Test::trace_sim()) {                            \
    174     pdis = new PrintDisassembler(stdout);             \
    175     decoder.PrependVisitor(pdis);                     \
    176   }                                                   \
    177   if (Test::instruction_stats()) {                    \
    178     inst = new Instrument("vixl_stats.csv", 10);      \
    179     inst->Enable();                                   \
    180     decoder.AppendVisitor(inst);                      \
    181   }                                                   \
    182   RegisterDump regs;                                  \
    183                                                       \
    184   Label test;                                         \
    185   masm.Bind(&test);                                   \
    186   GenerateTestWrapper(&masm, &regs);                  \
    187   masm.FinalizeCode()
    188 
    189 
    190 #define FACTORIAL_DOTEST(N)                                           \
    191   do {                                                                \
    192     simulator.ResetState();                                           \
    193     simulator.WriteXRegister(0, N);                                   \
    194     TEST_FUNCTION(factorial);                                         \
    195     VIXL_CHECK(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \
    196   } while (0)
    197 
    198 TEST(factorial) {
    199   START();
    200 
    201   Label factorial;
    202   masm.Bind(&factorial);
    203   GenerateFactorial(&masm);
    204   masm.FinalizeCode();
    205 
    206   FACTORIAL_DOTEST(0);
    207   FACTORIAL_DOTEST(1);
    208   FACTORIAL_DOTEST(5);
    209   FACTORIAL_DOTEST(10);
    210   FACTORIAL_DOTEST(20);
    211   FACTORIAL_DOTEST(25);
    212 }
    213 
    214 
    215 #define FACTORIAL_REC_DOTEST(N)                                       \
    216   do {                                                                \
    217     simulator.ResetState();                                           \
    218     simulator.WriteXRegister(0, N);                                   \
    219     TEST_FUNCTION(factorial_rec);                                     \
    220     VIXL_CHECK(static_cast<uint64_t>(regs.xreg(0)) == FactorialC(N)); \
    221   } while (0)
    222 
    223 TEST(factorial_rec) {
    224   START();
    225 
    226   Label factorial_rec;
    227   masm.Bind(&factorial_rec);
    228   GenerateFactorialRec(&masm);
    229   masm.FinalizeCode();
    230 
    231   FACTORIAL_REC_DOTEST(0);
    232   FACTORIAL_REC_DOTEST(1);
    233   FACTORIAL_REC_DOTEST(5);
    234   FACTORIAL_REC_DOTEST(10);
    235   FACTORIAL_REC_DOTEST(20);
    236   FACTORIAL_REC_DOTEST(25);
    237 }
    238 
    239 TEST(neon_matrix_multiply) {
    240   START();
    241 
    242   Label neon_matrix_multiply;
    243   masm.Bind(&neon_matrix_multiply);
    244   GenerateNEONMatrixMultiply(&masm);
    245   masm.FinalizeCode();
    246 
    247   {
    248     const int kRowSize = 4;
    249     const int kColSize = 4;
    250     const int kLength = kRowSize * kColSize;
    251 
    252     float mat1[kLength], mat2[kLength], expected[kLength], output[kLength];
    253 
    254     // Fill the two input matrices with some 32 bit floating point values.
    255 
    256     mat1[0] = 1.0f;
    257     mat1[4] = 2.0f;
    258     mat1[8] = 3.0f;
    259     mat1[12] = 4.0f;
    260     mat1[1] = 52.03f;
    261     mat1[5] = 12.24f;
    262     mat1[9] = 53.56f;
    263     mat1[13] = 22.22f;
    264     mat1[2] = 4.43f;
    265     mat1[6] = 5.00f;
    266     mat1[10] = 7.00f;
    267     mat1[14] = 3.11f;
    268     mat1[3] = 43.47f;
    269     mat1[7] = 10.97f;
    270     mat1[11] = 37.78f;
    271     mat1[15] = 90.91f;
    272 
    273     mat2[0] = 1.0f;
    274     mat2[4] = 11.24f;
    275     mat2[8] = 21.00f;
    276     mat2[12] = 21.31f;
    277     mat2[1] = 2.0f;
    278     mat2[5] = 2.24f;
    279     mat2[9] = 8.56f;
    280     mat2[13] = 52.03f;
    281     mat2[2] = 3.0f;
    282     mat2[6] = 51.00f;
    283     mat2[10] = 21.00f;
    284     mat2[14] = 33.11f;
    285     mat2[3] = 4.0f;
    286     mat2[7] = 0.00f;
    287     mat2[11] = 84.00f;
    288     mat2[15] = 1.97f;
    289 
    290     MatrixMultiplyC(expected, mat1, mat2);
    291 
    292     simulator.ResetState();
    293     simulator.WriteXRegister(0, reinterpret_cast<uintptr_t>(output));
    294     simulator.WriteXRegister(1, reinterpret_cast<uintptr_t>(mat1));
    295     simulator.WriteXRegister(2, reinterpret_cast<uintptr_t>(mat2));
    296     TEST_FUNCTION(neon_matrix_multiply);
    297 
    298     // Check that the results match what is expected.
    299     for (int i = 0; i < kLength; i++) {
    300       VIXL_CHECK(output[i] == expected[i]);
    301     }
    302   }
    303 }
    304 
    305 TEST(add2_vectors) {
    306   START();
    307 
    308   // Create and initialize the assembler and the simulator.
    309   Label add2_vectors;
    310   masm.Bind(&add2_vectors);
    311   GenerateAdd2Vectors(&masm);
    312   masm.FinalizeCode();
    313 
    314   // Initialize input data for the example function.
    315   uint8_t A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 200};
    316   uint8_t B[] =
    317       {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 50};
    318   uint8_t D[ARRAY_SIZE(A)];
    319   uintptr_t A_addr = reinterpret_cast<uintptr_t>(A);
    320   uintptr_t B_addr = reinterpret_cast<uintptr_t>(B);
    321 
    322   // Check whether number of elements in vectors match.
    323   VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(B));
    324   VIXL_STATIC_ASSERT(ARRAY_SIZE(A) == ARRAY_SIZE(D));
    325 
    326   // Compute vector sum for comparison later.
    327   for (unsigned i = 0; i < ARRAY_SIZE(A); i++) {
    328     D[i] = A[i] + B[i];
    329   }
    330 
    331   // Set up simulator and run example function.
    332   simulator.ResetState();
    333   simulator.WriteXRegister(0, A_addr);
    334   simulator.WriteXRegister(1, B_addr);
    335   simulator.WriteXRegister(2, ARRAY_SIZE(A));
    336   TEST_FUNCTION(add2_vectors);
    337 
    338   // Compare vectors to ensure sums are equal.
    339   for (unsigned i = 0; i < ARRAY_SIZE(A); i++) {
    340     VIXL_CHECK(A[i] == D[i]);
    341   }
    342 }
    343 
    344 #define ADD3_DOUBLE_DOTEST(A, B, C)                   \
    345   do {                                                \
    346     simulator.ResetState();                           \
    347     simulator.WriteDRegister(0, A);                   \
    348     simulator.WriteDRegister(1, B);                   \
    349     simulator.WriteDRegister(2, C);                   \
    350     TEST_FUNCTION(add3_double);                       \
    351     VIXL_CHECK(regs.dreg(0) == Add3DoubleC(A, B, C)); \
    352   } while (0)
    353 
    354 TEST(add3_double) {
    355   START();
    356 
    357   Label add3_double;
    358   masm.Bind(&add3_double);
    359   GenerateAdd3Double(&masm);
    360   masm.FinalizeCode();
    361 
    362   ADD3_DOUBLE_DOTEST(0.0, 0.0, 0.0);
    363   ADD3_DOUBLE_DOTEST(457.698, 14.36, 2.00025);
    364   ADD3_DOUBLE_DOTEST(-45.55, -98.9, -0.354);
    365   ADD3_DOUBLE_DOTEST(.55, .9, .12);
    366 }
    367 
    368 
    369 #define ADD4_DOUBLE_DOTEST(A, B, C, D)                   \
    370   do {                                                   \
    371     simulator.ResetState();                              \
    372     simulator.WriteXRegister(0, A);                      \
    373     simulator.WriteDRegister(0, B);                      \
    374     simulator.WriteXRegister(1, C);                      \
    375     simulator.WriteDRegister(1, D);                      \
    376     TEST_FUNCTION(add4_double);                          \
    377     VIXL_CHECK(regs.dreg(0) == Add4DoubleC(A, B, C, D)); \
    378   } while (0)
    379 
    380 TEST(add4_double) {
    381   START();
    382 
    383   Label add4_double;
    384   masm.Bind(&add4_double);
    385   GenerateAdd4Double(&masm);
    386   masm.FinalizeCode();
    387 
    388   ADD4_DOUBLE_DOTEST(0, 0, 0, 0);
    389   ADD4_DOUBLE_DOTEST(4, 3.287, 6, 13.48);
    390   ADD4_DOUBLE_DOTEST(56, 665.368, 0, -4932.4697);
    391   ADD4_DOUBLE_DOTEST(56, 0, 546, 0);
    392   ADD4_DOUBLE_DOTEST(0, 0.658, 0, 0.00000011540026);
    393 }
    394 
    395 
    396 #define SUM_ARRAY_DOTEST(Array)                                      \
    397   do {                                                               \
    398     simulator.ResetState();                                          \
    399     uintptr_t addr = reinterpret_cast<uintptr_t>(Array);             \
    400     simulator.WriteXRegister(0, addr);                               \
    401     simulator.WriteXRegister(1, ARRAY_SIZE(Array));                  \
    402     TEST_FUNCTION(sum_array);                                        \
    403     VIXL_CHECK(regs.xreg(0) == SumArrayC(Array, ARRAY_SIZE(Array))); \
    404   } while (0)
    405 
    406 TEST(sum_array) {
    407   START();
    408 
    409   Label sum_array;
    410   masm.Bind(&sum_array);
    411   GenerateSumArray(&masm);
    412   masm.FinalizeCode();
    413 
    414   uint8_t data1[] = {4, 9, 13, 3, 2, 6, 5};
    415   SUM_ARRAY_DOTEST(data1);
    416 
    417   uint8_t data2[] = {42};
    418   SUM_ARRAY_DOTEST(data2);
    419 
    420   uint8_t data3[1000];
    421   for (unsigned int i = 0; i < ARRAY_SIZE(data3); ++i) data3[i] = 255;
    422   SUM_ARRAY_DOTEST(data3);
    423 }
    424 
    425 
    426 #define ABS_DOTEST(X)                   \
    427   do {                                  \
    428     simulator.ResetState();             \
    429     simulator.WriteXRegister(0, X);     \
    430     TEST_FUNCTION(func_abs);            \
    431     VIXL_CHECK(regs.xreg(0) == abs(X)); \
    432   } while (0)
    433 
    434 TEST(abs) {
    435   START();
    436 
    437   Label func_abs;
    438   masm.Bind(&func_abs);
    439   GenerateAbs(&masm);
    440   masm.FinalizeCode();
    441 
    442   ABS_DOTEST(-42);
    443   ABS_DOTEST(0);
    444   ABS_DOTEST(545);
    445   ABS_DOTEST(-428751489);
    446 }
    447 
    448 
    449 TEST(crc32) {
    450   START();
    451 
    452   Label crc32;
    453   masm.Bind(&crc32);
    454   GenerateCrc32(&masm);
    455   masm.FinalizeCode();
    456 
    457   const char* msg = "Hello World!";
    458   uintptr_t msg_addr = reinterpret_cast<uintptr_t>(msg);
    459   size_t msg_size = strlen(msg);
    460   int64_t chksum = INT64_C(0xe3d6e35c);
    461   simulator.WriteXRegister(0, msg_addr);
    462   simulator.WriteXRegister(1, msg_size);
    463   TEST_FUNCTION(crc32);
    464   VIXL_CHECK(regs.xreg(0) == chksum);
    465 }
    466 
    467 
    468 TEST(swap4) {
    469   START();
    470 
    471   Label swap4;
    472   masm.Bind(&swap4);
    473   GenerateSwap4(&masm);
    474   masm.FinalizeCode();
    475 
    476   int64_t a = 15;
    477   int64_t b = 26;
    478   int64_t c = 46;
    479   int64_t d = 79;
    480 
    481   simulator.WriteXRegister(0, a);
    482   simulator.WriteXRegister(1, b);
    483   simulator.WriteXRegister(2, c);
    484   simulator.WriteXRegister(3, d);
    485   TEST_FUNCTION(swap4);
    486   VIXL_CHECK(regs.xreg(0) == d);
    487   VIXL_CHECK(regs.xreg(1) == c);
    488   VIXL_CHECK(regs.xreg(2) == b);
    489   VIXL_CHECK(regs.xreg(3) == a);
    490 }
    491 
    492 
    493 TEST(swap_int32) {
    494   START();
    495 
    496   Label swap_int32;
    497   masm.Bind(&swap_int32);
    498   GenerateSwapInt32(&masm);
    499   masm.FinalizeCode();
    500 
    501   int32_t x = 168;
    502   int32_t y = 246;
    503   simulator.WriteWRegister(0, x);
    504   simulator.WriteWRegister(1, y);
    505   TEST_FUNCTION(swap_int32);
    506   VIXL_CHECK(regs.wreg(0) == y);
    507   VIXL_CHECK(regs.wreg(1) == x);
    508 }
    509 
    510 
    511 #define CHECKBOUNDS_DOTEST(Value, Low, High)                         \
    512   do {                                                               \
    513     simulator.ResetState();                                          \
    514     simulator.WriteXRegister(0, Value);                              \
    515     simulator.WriteXRegister(1, Low);                                \
    516     simulator.WriteXRegister(2, High);                               \
    517     TEST_FUNCTION(check_bounds);                                     \
    518     VIXL_CHECK(regs.xreg(0) == ((Low <= Value) && (Value <= High))); \
    519   } while (0)
    520 
    521 TEST(check_bounds) {
    522   START();
    523 
    524   Label check_bounds;
    525   masm.Bind(&check_bounds);
    526   GenerateCheckBounds(&masm);
    527   masm.FinalizeCode();
    528 
    529   CHECKBOUNDS_DOTEST(0, 100, 200);
    530   CHECKBOUNDS_DOTEST(58, 100, 200);
    531   CHECKBOUNDS_DOTEST(99, 100, 200);
    532   CHECKBOUNDS_DOTEST(100, 100, 200);
    533   CHECKBOUNDS_DOTEST(101, 100, 200);
    534   CHECKBOUNDS_DOTEST(150, 100, 200);
    535   CHECKBOUNDS_DOTEST(199, 100, 200);
    536   CHECKBOUNDS_DOTEST(200, 100, 200);
    537   CHECKBOUNDS_DOTEST(201, 100, 200);
    538 }
    539 
    540 
    541 #define GETTING_STARTED_DOTEST(Value)                         \
    542   do {                                                        \
    543     simulator.ResetState();                                   \
    544     simulator.WriteXRegister(0, Value);                       \
    545     TEST_FUNCTION(demo_function);                             \
    546     VIXL_CHECK(regs.xreg(0) == (Value & 0x1122334455667788)); \
    547   } while (0)
    548 
    549 TEST(getting_started) {
    550   START();
    551 
    552   Label demo_function;
    553   masm.Bind(&demo_function);
    554   GenerateDemoFunction(&masm);
    555   masm.FinalizeCode();
    556 
    557   GETTING_STARTED_DOTEST(0x8899aabbccddeeff);
    558   GETTING_STARTED_DOTEST(0x1122334455667788);
    559   GETTING_STARTED_DOTEST(0x0000000000000000);
    560   GETTING_STARTED_DOTEST(0xffffffffffffffff);
    561   GETTING_STARTED_DOTEST(0x5a5a5a5a5a5a5a5a);
    562 }
    563 
    564 
    565 TEST(non_const_visitor) {
    566   MacroAssembler masm;
    567 
    568   Label code_start, code_end;
    569   masm.Bind(&code_start);
    570   GenerateNonConstVisitorTestCode(&masm);
    571   masm.Bind(&code_end);
    572   masm.FinalizeCode();
    573   Instruction* instr_start = masm.GetLabelAddress<Instruction*>(&code_start);
    574   Instruction* instr_end = masm.GetLabelAddress<Instruction*>(&code_end);
    575 
    576   int64_t res_orig = RunNonConstVisitorTestGeneratedCode(instr_start);
    577 
    578   ModifyNonConstVisitorTestGeneratedCode(instr_start, instr_end);
    579 
    580   int64_t res_mod = RunNonConstVisitorTestGeneratedCode(instr_start);
    581   VIXL_CHECK(res_orig == -res_mod);
    582 }
    583 
    584 
    585 TEST(literal_example) {
    586   VIXL_ASSERT(LiteralExample(1, 2) == 3);
    587   VIXL_ASSERT(LiteralExample(INT64_C(0x100000000), 0x1) ==
    588               INT64_C(0x100000001));
    589 }
    590 
    591 
    592 // This is an approximation of the result that works for the ranges tested
    593 // below.
    594 #define RUNTIME_CALLS_EXPECTED(A, B) ((A + B) << 2)
    595 
    596 #define RUNTIME_CALLS_DOTEST(A, B, R)                                  \
    597   do {                                                                 \
    598     simulator.ResetState();                                            \
    599     simulator.WriteWRegister(0, A);                                    \
    600     simulator.WriteWRegister(1, B);                                    \
    601     TEST_FUNCTION(start);                                              \
    602     VIXL_CHECK(regs.wreg<int32_t>(0) == RUNTIME_CALLS_EXPECTED(A, B)); \
    603   } while (0)
    604 
    605 TEST(runtime_calls) {
    606   START();
    607 
    608   Label start;
    609   masm.Bind(&start);
    610   GenerateRuntimeCallExamples(&masm);
    611   masm.FinalizeCode();
    612 
    613   RUNTIME_CALLS_DOTEST(0, 0);
    614   RUNTIME_CALLS_DOTEST(1, -2);
    615   RUNTIME_CALLS_DOTEST(123, 456);
    616 }
    617 
    618 #endif  // VIXL_INCLUDE_SIMULATOR_AARCH64
    619