Home | History | Annotate | Download | only in dec
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // main entry for the decoder
     11 //
     12 // Authors: Vikas Arora (vikaas.arora (at) gmail.com)
     13 //          Jyrki Alakuijala (jyrki (at) google.com)
     14 
     15 #include <stdlib.h>
     16 
     17 #include "./alphai_dec.h"
     18 #include "./vp8li_dec.h"
     19 #include "../dsp/dsp.h"
     20 #include "../dsp/lossless.h"
     21 #include "../dsp/lossless_common.h"
     22 #include "../dsp/yuv.h"
     23 #include "../utils/endian_inl_utils.h"
     24 #include "../utils/huffman_utils.h"
     25 #include "../utils/utils.h"
     26 
     27 #define NUM_ARGB_CACHE_ROWS          16
     28 
     29 static const int kCodeLengthLiterals = 16;
     30 static const int kCodeLengthRepeatCode = 16;
     31 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
     32 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
     33 
     34 // -----------------------------------------------------------------------------
     35 //  Five Huffman codes are used at each meta code:
     36 //  1. green + length prefix codes + color cache codes,
     37 //  2. alpha,
     38 //  3. red,
     39 //  4. blue, and,
     40 //  5. distance prefix codes.
     41 typedef enum {
     42   GREEN = 0,
     43   RED   = 1,
     44   BLUE  = 2,
     45   ALPHA = 3,
     46   DIST  = 4
     47 } HuffIndex;
     48 
     49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
     50   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
     51   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
     52   NUM_DISTANCE_CODES
     53 };
     54 
     55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
     56   0, 1, 1, 1, 0
     57 };
     58 
     59 #define NUM_CODE_LENGTH_CODES       19
     60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
     61   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
     62 };
     63 
     64 #define CODE_TO_PLANE_CODES        120
     65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
     66   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
     67   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
     68   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
     69   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
     70   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
     71   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
     72   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
     73   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
     74   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
     75   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
     76   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
     77   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
     78 };
     79 
     80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
     81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
     82 // distance) and lookup table sizes for them in worst case are 630 and 410
     83 // respectively. Size of green alphabet depends on color cache size and is equal
     84 // to 256 (green component values) + 24 (length prefix values)
     85 // + color_cache_size (between 0 and 2048).
     86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
     87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
     88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
     89 static const int kTableSize[12] = {
     90   FIXED_TABLE_SIZE + 654,
     91   FIXED_TABLE_SIZE + 656,
     92   FIXED_TABLE_SIZE + 658,
     93   FIXED_TABLE_SIZE + 662,
     94   FIXED_TABLE_SIZE + 670,
     95   FIXED_TABLE_SIZE + 686,
     96   FIXED_TABLE_SIZE + 718,
     97   FIXED_TABLE_SIZE + 782,
     98   FIXED_TABLE_SIZE + 912,
     99   FIXED_TABLE_SIZE + 1168,
    100   FIXED_TABLE_SIZE + 1680,
    101   FIXED_TABLE_SIZE + 2704
    102 };
    103 
    104 static int DecodeImageStream(int xsize, int ysize,
    105                              int is_level0,
    106                              VP8LDecoder* const dec,
    107                              uint32_t** const decoded_data);
    108 
    109 //------------------------------------------------------------------------------
    110 
    111 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
    112   return (size >= VP8L_FRAME_HEADER_SIZE &&
    113           data[0] == VP8L_MAGIC_BYTE &&
    114           (data[4] >> 5) == 0);  // version
    115 }
    116 
    117 static int ReadImageInfo(VP8LBitReader* const br,
    118                          int* const width, int* const height,
    119                          int* const has_alpha) {
    120   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
    121   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
    122   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
    123   *has_alpha = VP8LReadBits(br, 1);
    124   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
    125   return !br->eos_;
    126 }
    127 
    128 int VP8LGetInfo(const uint8_t* data, size_t data_size,
    129                 int* const width, int* const height, int* const has_alpha) {
    130   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
    131     return 0;         // not enough data
    132   } else if (!VP8LCheckSignature(data, data_size)) {
    133     return 0;         // bad signature
    134   } else {
    135     int w, h, a;
    136     VP8LBitReader br;
    137     VP8LInitBitReader(&br, data, data_size);
    138     if (!ReadImageInfo(&br, &w, &h, &a)) {
    139       return 0;
    140     }
    141     if (width != NULL) *width = w;
    142     if (height != NULL) *height = h;
    143     if (has_alpha != NULL) *has_alpha = a;
    144     return 1;
    145   }
    146 }
    147 
    148 //------------------------------------------------------------------------------
    149 
    150 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
    151                                        VP8LBitReader* const br) {
    152   int extra_bits, offset;
    153   if (distance_symbol < 4) {
    154     return distance_symbol + 1;
    155   }
    156   extra_bits = (distance_symbol - 2) >> 1;
    157   offset = (2 + (distance_symbol & 1)) << extra_bits;
    158   return offset + VP8LReadBits(br, extra_bits) + 1;
    159 }
    160 
    161 static WEBP_INLINE int GetCopyLength(int length_symbol,
    162                                      VP8LBitReader* const br) {
    163   // Length and distance prefixes are encoded the same way.
    164   return GetCopyDistance(length_symbol, br);
    165 }
    166 
    167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
    168   if (plane_code > CODE_TO_PLANE_CODES) {
    169     return plane_code - CODE_TO_PLANE_CODES;
    170   } else {
    171     const int dist_code = kCodeToPlane[plane_code - 1];
    172     const int yoffset = dist_code >> 4;
    173     const int xoffset = 8 - (dist_code & 0xf);
    174     const int dist = yoffset * xsize + xoffset;
    175     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
    176   }
    177 }
    178 
    179 //------------------------------------------------------------------------------
    180 // Decodes the next Huffman code from bit-stream.
    181 // FillBitWindow(br) needs to be called at minimum every second call
    182 // to ReadSymbol, in order to pre-fetch enough bits.
    183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
    184                                   VP8LBitReader* const br) {
    185   int nbits;
    186   uint32_t val = VP8LPrefetchBits(br);
    187   table += val & HUFFMAN_TABLE_MASK;
    188   nbits = table->bits - HUFFMAN_TABLE_BITS;
    189   if (nbits > 0) {
    190     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
    191     val = VP8LPrefetchBits(br);
    192     table += table->value;
    193     table += val & ((1 << nbits) - 1);
    194   }
    195   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
    196   return table->value;
    197 }
    198 
    199 // Reads packed symbol depending on GREEN channel
    200 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
    201 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
    202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
    203                                          VP8LBitReader* const br,
    204                                          uint32_t* const dst) {
    205   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
    206   const HuffmanCode32 code = group->packed_table[val];
    207   assert(group->use_packed_table);
    208   if (code.bits < BITS_SPECIAL_MARKER) {
    209     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
    210     *dst = code.value;
    211     return PACKED_NON_LITERAL_CODE;
    212   } else {
    213     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
    214     assert(code.value >= NUM_LITERAL_CODES);
    215     return code.value;
    216   }
    217 }
    218 
    219 static int AccumulateHCode(HuffmanCode hcode, int shift,
    220                            HuffmanCode32* const huff) {
    221   huff->bits += hcode.bits;
    222   huff->value |= (uint32_t)hcode.value << shift;
    223   assert(huff->bits <= HUFFMAN_TABLE_BITS);
    224   return hcode.bits;
    225 }
    226 
    227 static void BuildPackedTable(HTreeGroup* const htree_group) {
    228   uint32_t code;
    229   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
    230     uint32_t bits = code;
    231     HuffmanCode32* const huff = &htree_group->packed_table[bits];
    232     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
    233     if (hcode.value >= NUM_LITERAL_CODES) {
    234       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
    235       huff->value = hcode.value;
    236     } else {
    237       huff->bits = 0;
    238       huff->value = 0;
    239       bits >>= AccumulateHCode(hcode, 8, huff);
    240       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
    241       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
    242       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
    243       (void)bits;
    244     }
    245   }
    246 }
    247 
    248 static int ReadHuffmanCodeLengths(
    249     VP8LDecoder* const dec, const int* const code_length_code_lengths,
    250     int num_symbols, int* const code_lengths) {
    251   int ok = 0;
    252   VP8LBitReader* const br = &dec->br_;
    253   int symbol;
    254   int max_symbol;
    255   int prev_code_len = DEFAULT_CODE_LENGTH;
    256   HuffmanCode table[1 << LENGTHS_TABLE_BITS];
    257 
    258   if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
    259                              code_length_code_lengths,
    260                              NUM_CODE_LENGTH_CODES)) {
    261     goto End;
    262   }
    263 
    264   if (VP8LReadBits(br, 1)) {    // use length
    265     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
    266     max_symbol = 2 + VP8LReadBits(br, length_nbits);
    267     if (max_symbol > num_symbols) {
    268       goto End;
    269     }
    270   } else {
    271     max_symbol = num_symbols;
    272   }
    273 
    274   symbol = 0;
    275   while (symbol < num_symbols) {
    276     const HuffmanCode* p;
    277     int code_len;
    278     if (max_symbol-- == 0) break;
    279     VP8LFillBitWindow(br);
    280     p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
    281     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
    282     code_len = p->value;
    283     if (code_len < kCodeLengthLiterals) {
    284       code_lengths[symbol++] = code_len;
    285       if (code_len != 0) prev_code_len = code_len;
    286     } else {
    287       const int use_prev = (code_len == kCodeLengthRepeatCode);
    288       const int slot = code_len - kCodeLengthLiterals;
    289       const int extra_bits = kCodeLengthExtraBits[slot];
    290       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
    291       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
    292       if (symbol + repeat > num_symbols) {
    293         goto End;
    294       } else {
    295         const int length = use_prev ? prev_code_len : 0;
    296         while (repeat-- > 0) code_lengths[symbol++] = length;
    297       }
    298     }
    299   }
    300   ok = 1;
    301 
    302  End:
    303   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    304   return ok;
    305 }
    306 
    307 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
    308 // tree.
    309 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
    310                            int* const code_lengths, HuffmanCode* const table) {
    311   int ok = 0;
    312   int size = 0;
    313   VP8LBitReader* const br = &dec->br_;
    314   const int simple_code = VP8LReadBits(br, 1);
    315 
    316   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
    317 
    318   if (simple_code) {  // Read symbols, codes & code lengths directly.
    319     const int num_symbols = VP8LReadBits(br, 1) + 1;
    320     const int first_symbol_len_code = VP8LReadBits(br, 1);
    321     // The first code is either 1 bit or 8 bit code.
    322     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
    323     code_lengths[symbol] = 1;
    324     // The second code (if present), is always 8 bit long.
    325     if (num_symbols == 2) {
    326       symbol = VP8LReadBits(br, 8);
    327       code_lengths[symbol] = 1;
    328     }
    329     ok = 1;
    330   } else {  // Decode Huffman-coded code lengths.
    331     int i;
    332     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
    333     const int num_codes = VP8LReadBits(br, 4) + 4;
    334     if (num_codes > NUM_CODE_LENGTH_CODES) {
    335       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    336       return 0;
    337     }
    338 
    339     for (i = 0; i < num_codes; ++i) {
    340       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
    341     }
    342     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
    343                                 code_lengths);
    344   }
    345 
    346   ok = ok && !br->eos_;
    347   if (ok) {
    348     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
    349                                  code_lengths, alphabet_size);
    350   }
    351   if (!ok || size == 0) {
    352     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    353     return 0;
    354   }
    355   return size;
    356 }
    357 
    358 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
    359                             int color_cache_bits, int allow_recursion) {
    360   int i, j;
    361   VP8LBitReader* const br = &dec->br_;
    362   VP8LMetadata* const hdr = &dec->hdr_;
    363   uint32_t* huffman_image = NULL;
    364   HTreeGroup* htree_groups = NULL;
    365   HuffmanCode* huffman_tables = NULL;
    366   HuffmanCode* next = NULL;
    367   int num_htree_groups = 1;
    368   int max_alphabet_size = 0;
    369   int* code_lengths = NULL;
    370   const int table_size = kTableSize[color_cache_bits];
    371 
    372   if (allow_recursion && VP8LReadBits(br, 1)) {
    373     // use meta Huffman codes.
    374     const int huffman_precision = VP8LReadBits(br, 3) + 2;
    375     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
    376     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
    377     const int huffman_pixs = huffman_xsize * huffman_ysize;
    378     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
    379                            &huffman_image)) {
    380       goto Error;
    381     }
    382     hdr->huffman_subsample_bits_ = huffman_precision;
    383     for (i = 0; i < huffman_pixs; ++i) {
    384       // The huffman data is stored in red and green bytes.
    385       const int group = (huffman_image[i] >> 8) & 0xffff;
    386       huffman_image[i] = group;
    387       if (group >= num_htree_groups) {
    388         num_htree_groups = group + 1;
    389       }
    390     }
    391   }
    392 
    393   if (br->eos_) goto Error;
    394 
    395   // Find maximum alphabet size for the htree group.
    396   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    397     int alphabet_size = kAlphabetSize[j];
    398     if (j == 0 && color_cache_bits > 0) {
    399       alphabet_size += 1 << color_cache_bits;
    400     }
    401     if (max_alphabet_size < alphabet_size) {
    402       max_alphabet_size = alphabet_size;
    403     }
    404   }
    405 
    406   huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
    407                                                 sizeof(*huffman_tables));
    408   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
    409   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
    410                                       sizeof(*code_lengths));
    411 
    412   if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
    413     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    414     goto Error;
    415   }
    416 
    417   next = huffman_tables;
    418   for (i = 0; i < num_htree_groups; ++i) {
    419     HTreeGroup* const htree_group = &htree_groups[i];
    420     HuffmanCode** const htrees = htree_group->htrees;
    421     int size;
    422     int total_size = 0;
    423     int is_trivial_literal = 1;
    424     int max_bits = 0;
    425     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    426       int alphabet_size = kAlphabetSize[j];
    427       htrees[j] = next;
    428       if (j == 0 && color_cache_bits > 0) {
    429         alphabet_size += 1 << color_cache_bits;
    430       }
    431       size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
    432       if (size == 0) {
    433         goto Error;
    434       }
    435       if (is_trivial_literal && kLiteralMap[j] == 1) {
    436         is_trivial_literal = (next->bits == 0);
    437       }
    438       total_size += next->bits;
    439       next += size;
    440       if (j <= ALPHA) {
    441         int local_max_bits = code_lengths[0];
    442         int k;
    443         for (k = 1; k < alphabet_size; ++k) {
    444           if (code_lengths[k] > local_max_bits) {
    445             local_max_bits = code_lengths[k];
    446           }
    447         }
    448         max_bits += local_max_bits;
    449       }
    450     }
    451     htree_group->is_trivial_literal = is_trivial_literal;
    452     htree_group->is_trivial_code = 0;
    453     if (is_trivial_literal) {
    454       const int red = htrees[RED][0].value;
    455       const int blue = htrees[BLUE][0].value;
    456       const int alpha = htrees[ALPHA][0].value;
    457       htree_group->literal_arb =
    458           ((uint32_t)alpha << 24) | (red << 16) | blue;
    459       if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
    460         htree_group->is_trivial_code = 1;
    461         htree_group->literal_arb |= htrees[GREEN][0].value << 8;
    462       }
    463     }
    464     htree_group->use_packed_table = !htree_group->is_trivial_code &&
    465                                     (max_bits < HUFFMAN_PACKED_BITS);
    466     if (htree_group->use_packed_table) BuildPackedTable(htree_group);
    467   }
    468   WebPSafeFree(code_lengths);
    469 
    470   // All OK. Finalize pointers and return.
    471   hdr->huffman_image_ = huffman_image;
    472   hdr->num_htree_groups_ = num_htree_groups;
    473   hdr->htree_groups_ = htree_groups;
    474   hdr->huffman_tables_ = huffman_tables;
    475   return 1;
    476 
    477  Error:
    478   WebPSafeFree(code_lengths);
    479   WebPSafeFree(huffman_image);
    480   WebPSafeFree(huffman_tables);
    481   VP8LHtreeGroupsFree(htree_groups);
    482   return 0;
    483 }
    484 
    485 //------------------------------------------------------------------------------
    486 // Scaling.
    487 
    488 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
    489   const int num_channels = 4;
    490   const int in_width = io->mb_w;
    491   const int out_width = io->scaled_width;
    492   const int in_height = io->mb_h;
    493   const int out_height = io->scaled_height;
    494   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
    495   rescaler_t* work;        // Rescaler work area.
    496   const uint64_t scaled_data_size = (uint64_t)out_width;
    497   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
    498   const uint64_t memory_size = sizeof(*dec->rescaler) +
    499                                work_size * sizeof(*work) +
    500                                scaled_data_size * sizeof(*scaled_data);
    501   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
    502   if (memory == NULL) {
    503     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    504     return 0;
    505   }
    506   assert(dec->rescaler_memory == NULL);
    507   dec->rescaler_memory = memory;
    508 
    509   dec->rescaler = (WebPRescaler*)memory;
    510   memory += sizeof(*dec->rescaler);
    511   work = (rescaler_t*)memory;
    512   memory += work_size * sizeof(*work);
    513   scaled_data = (uint32_t*)memory;
    514 
    515   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
    516                    out_width, out_height, 0, num_channels, work);
    517   return 1;
    518 }
    519 
    520 //------------------------------------------------------------------------------
    521 // Export to ARGB
    522 
    523 // We have special "export" function since we need to convert from BGRA
    524 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
    525                   int rgba_stride, uint8_t* const rgba) {
    526   uint32_t* const src = (uint32_t*)rescaler->dst;
    527   const int dst_width = rescaler->dst_width;
    528   int num_lines_out = 0;
    529   while (WebPRescalerHasPendingOutput(rescaler)) {
    530     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
    531     WebPRescalerExportRow(rescaler);
    532     WebPMultARGBRow(src, dst_width, 1);
    533     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
    534     ++num_lines_out;
    535   }
    536   return num_lines_out;
    537 }
    538 
    539 // Emit scaled rows.
    540 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
    541                                 uint8_t* in, int in_stride, int mb_h,
    542                                 uint8_t* const out, int out_stride) {
    543   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
    544   int num_lines_in = 0;
    545   int num_lines_out = 0;
    546   while (num_lines_in < mb_h) {
    547     uint8_t* const row_in = in + num_lines_in * in_stride;
    548     uint8_t* const row_out = out + num_lines_out * out_stride;
    549     const int lines_left = mb_h - num_lines_in;
    550     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
    551     int lines_imported;
    552     assert(needed_lines > 0 && needed_lines <= lines_left);
    553     WebPMultARGBRows(row_in, in_stride,
    554                      dec->rescaler->src_width, needed_lines, 0);
    555     lines_imported =
    556         WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
    557     assert(lines_imported == needed_lines);
    558     num_lines_in += lines_imported;
    559     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
    560   }
    561   return num_lines_out;
    562 }
    563 
    564 // Emit rows without any scaling.
    565 static int EmitRows(WEBP_CSP_MODE colorspace,
    566                     const uint8_t* row_in, int in_stride,
    567                     int mb_w, int mb_h,
    568                     uint8_t* const out, int out_stride) {
    569   int lines = mb_h;
    570   uint8_t* row_out = out;
    571   while (lines-- > 0) {
    572     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
    573     row_in += in_stride;
    574     row_out += out_stride;
    575   }
    576   return mb_h;  // Num rows out == num rows in.
    577 }
    578 
    579 //------------------------------------------------------------------------------
    580 // Export to YUVA
    581 
    582 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
    583                           const WebPDecBuffer* const output) {
    584   const WebPYUVABuffer* const buf = &output->u.YUVA;
    585 
    586   // first, the luma plane
    587   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
    588 
    589   // then U/V planes
    590   {
    591     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
    592     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
    593     // even lines: store values
    594     // odd lines: average with previous values
    595     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
    596   }
    597   // Lastly, store alpha if needed.
    598   if (buf->a != NULL) {
    599     uint8_t* const a = buf->a + y_pos * buf->a_stride;
    600 #if defined(WORDS_BIGENDIAN)
    601     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
    602 #else
    603     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
    604 #endif
    605   }
    606 }
    607 
    608 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
    609   WebPRescaler* const rescaler = dec->rescaler;
    610   uint32_t* const src = (uint32_t*)rescaler->dst;
    611   const int dst_width = rescaler->dst_width;
    612   int num_lines_out = 0;
    613   while (WebPRescalerHasPendingOutput(rescaler)) {
    614     WebPRescalerExportRow(rescaler);
    615     WebPMultARGBRow(src, dst_width, 1);
    616     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
    617     ++y_pos;
    618     ++num_lines_out;
    619   }
    620   return num_lines_out;
    621 }
    622 
    623 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
    624                                 uint8_t* in, int in_stride, int mb_h) {
    625   int num_lines_in = 0;
    626   int y_pos = dec->last_out_row_;
    627   while (num_lines_in < mb_h) {
    628     const int lines_left = mb_h - num_lines_in;
    629     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
    630     int lines_imported;
    631     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
    632     lines_imported =
    633         WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
    634     assert(lines_imported == needed_lines);
    635     num_lines_in += lines_imported;
    636     in += needed_lines * in_stride;
    637     y_pos += ExportYUVA(dec, y_pos);
    638   }
    639   return y_pos;
    640 }
    641 
    642 static int EmitRowsYUVA(const VP8LDecoder* const dec,
    643                         const uint8_t* in, int in_stride,
    644                         int mb_w, int num_rows) {
    645   int y_pos = dec->last_out_row_;
    646   while (num_rows-- > 0) {
    647     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
    648     in += in_stride;
    649     ++y_pos;
    650   }
    651   return y_pos;
    652 }
    653 
    654 //------------------------------------------------------------------------------
    655 // Cropping.
    656 
    657 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
    658 // crop options. Also updates the input data pointer, so that it points to the
    659 // start of the cropped window. Note that pixels are in ARGB format even if
    660 // 'in_data' is uint8_t*.
    661 // Returns true if the crop window is not empty.
    662 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
    663                          uint8_t** const in_data, int pixel_stride) {
    664   assert(y_start < y_end);
    665   assert(io->crop_left < io->crop_right);
    666   if (y_end > io->crop_bottom) {
    667     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
    668   }
    669   if (y_start < io->crop_top) {
    670     const int delta = io->crop_top - y_start;
    671     y_start = io->crop_top;
    672     *in_data += delta * pixel_stride;
    673   }
    674   if (y_start >= y_end) return 0;  // Crop window is empty.
    675 
    676   *in_data += io->crop_left * sizeof(uint32_t);
    677 
    678   io->mb_y = y_start - io->crop_top;
    679   io->mb_w = io->crop_right - io->crop_left;
    680   io->mb_h = y_end - y_start;
    681   return 1;  // Non-empty crop window.
    682 }
    683 
    684 //------------------------------------------------------------------------------
    685 
    686 static WEBP_INLINE int GetMetaIndex(
    687     const uint32_t* const image, int xsize, int bits, int x, int y) {
    688   if (bits == 0) return 0;
    689   return image[xsize * (y >> bits) + (x >> bits)];
    690 }
    691 
    692 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
    693                                                    int x, int y) {
    694   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
    695                                       hdr->huffman_subsample_bits_, x, y);
    696   assert(meta_index < hdr->num_htree_groups_);
    697   return hdr->htree_groups_ + meta_index;
    698 }
    699 
    700 //------------------------------------------------------------------------------
    701 // Main loop, with custom row-processing function
    702 
    703 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
    704 
    705 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
    706                                    const uint32_t* const rows) {
    707   int n = dec->next_transform_;
    708   const int cache_pixs = dec->width_ * num_rows;
    709   const int start_row = dec->last_row_;
    710   const int end_row = start_row + num_rows;
    711   const uint32_t* rows_in = rows;
    712   uint32_t* const rows_out = dec->argb_cache_;
    713 
    714   // Inverse transforms.
    715   while (n-- > 0) {
    716     VP8LTransform* const transform = &dec->transforms_[n];
    717     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
    718     rows_in = rows_out;
    719   }
    720   if (rows_in != rows_out) {
    721     // No transform called, hence just copy.
    722     memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
    723   }
    724 }
    725 
    726 // Processes (transforms, scales & color-converts) the rows decoded after the
    727 // last call.
    728 static void ProcessRows(VP8LDecoder* const dec, int row) {
    729   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
    730   const int num_rows = row - dec->last_row_;
    731 
    732   assert(row <= dec->io_->crop_bottom);
    733   // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
    734   // of argb_cache_), but we currently don't need more than that.
    735   assert(num_rows <= NUM_ARGB_CACHE_ROWS);
    736   if (num_rows > 0) {    // Emit output.
    737     VP8Io* const io = dec->io_;
    738     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
    739     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
    740 
    741     ApplyInverseTransforms(dec, num_rows, rows);
    742     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
    743       // Nothing to output (this time).
    744     } else {
    745       const WebPDecBuffer* const output = dec->output_;
    746       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
    747         const WebPRGBABuffer* const buf = &output->u.RGBA;
    748         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
    749         const int num_rows_out = io->use_scaling ?
    750             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
    751                                  rgba, buf->stride) :
    752             EmitRows(output->colorspace, rows_data, in_stride,
    753                      io->mb_w, io->mb_h, rgba, buf->stride);
    754         // Update 'last_out_row_'.
    755         dec->last_out_row_ += num_rows_out;
    756       } else {                              // convert to YUVA
    757         dec->last_out_row_ = io->use_scaling ?
    758             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
    759             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
    760       }
    761       assert(dec->last_out_row_ <= output->height);
    762     }
    763   }
    764 
    765   // Update 'last_row_'.
    766   dec->last_row_ = row;
    767   assert(dec->last_row_ <= dec->height_);
    768 }
    769 
    770 // Row-processing for the special case when alpha data contains only one
    771 // transform (color indexing), and trivial non-green literals.
    772 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
    773   int i;
    774   if (hdr->color_cache_size_ > 0) return 0;
    775   // When the Huffman tree contains only one symbol, we can skip the
    776   // call to ReadSymbol() for red/blue/alpha channels.
    777   for (i = 0; i < hdr->num_htree_groups_; ++i) {
    778     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
    779     if (htrees[RED][0].bits > 0) return 0;
    780     if (htrees[BLUE][0].bits > 0) return 0;
    781     if (htrees[ALPHA][0].bits > 0) return 0;
    782   }
    783   return 1;
    784 }
    785 
    786 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
    787                              int first_row, int last_row,
    788                              uint8_t* out, int stride) {
    789   if (alph_dec->filter_ != WEBP_FILTER_NONE) {
    790     int y;
    791     const uint8_t* prev_line = alph_dec->prev_line_;
    792     assert(WebPUnfilters[alph_dec->filter_] != NULL);
    793     for (y = first_row; y < last_row; ++y) {
    794       WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
    795       prev_line = out;
    796       out += stride;
    797     }
    798     alph_dec->prev_line_ = prev_line;
    799   }
    800 }
    801 
    802 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
    803   // For vertical and gradient filtering, we need to decode the part above the
    804   // crop_top row, in order to have the correct spatial predictors.
    805   ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
    806   const int top_row =
    807       (alph_dec->filter_ == WEBP_FILTER_NONE ||
    808        alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
    809                                                     : dec->last_row_;
    810   const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
    811   assert(last_row <= dec->io_->crop_bottom);
    812   if (last_row > first_row) {
    813     // Special method for paletted alpha data. We only process the cropped area.
    814     const int width = dec->io_->width;
    815     uint8_t* out = alph_dec->output_ + width * first_row;
    816     const uint8_t* const in =
    817       (uint8_t*)dec->pixels_ + dec->width_ * first_row;
    818     VP8LTransform* const transform = &dec->transforms_[0];
    819     assert(dec->next_transform_ == 1);
    820     assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
    821     VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
    822                                         in, out);
    823     AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
    824   }
    825   dec->last_row_ = dec->last_out_row_ = last_row;
    826 }
    827 
    828 //------------------------------------------------------------------------------
    829 // Helper functions for fast pattern copy (8b and 32b)
    830 
    831 // cyclic rotation of pattern word
    832 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
    833 #if defined(WORDS_BIGENDIAN)
    834   return ((V & 0xff000000u) >> 24) | (V << 8);
    835 #else
    836   return ((V & 0xffu) << 24) | (V >> 8);
    837 #endif
    838 }
    839 
    840 // copy 1, 2 or 4-bytes pattern
    841 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
    842                                            int length, uint32_t pattern) {
    843   int i;
    844   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
    845   while ((uintptr_t)dst & 3) {
    846     *dst++ = *src++;
    847     pattern = Rotate8b(pattern);
    848     --length;
    849   }
    850   // Copy the pattern 4 bytes at a time.
    851   for (i = 0; i < (length >> 2); ++i) {
    852     ((uint32_t*)dst)[i] = pattern;
    853   }
    854   // Finish with left-overs. 'pattern' is still correctly positioned,
    855   // so no Rotate8b() call is needed.
    856   for (i <<= 2; i < length; ++i) {
    857     dst[i] = src[i];
    858   }
    859 }
    860 
    861 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
    862   const uint8_t* src = dst - dist;
    863   if (length >= 8) {
    864     uint32_t pattern = 0;
    865     switch (dist) {
    866       case 1:
    867         pattern = src[0];
    868 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
    869         pattern |= pattern << 8;
    870         pattern |= pattern << 16;
    871 #elif defined(WEBP_USE_MIPS_DSP_R2)
    872         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
    873 #else
    874         pattern = 0x01010101u * pattern;
    875 #endif
    876         break;
    877       case 2:
    878         memcpy(&pattern, src, sizeof(uint16_t));
    879 #if defined(__arm__) || defined(_M_ARM)
    880         pattern |= pattern << 16;
    881 #elif defined(WEBP_USE_MIPS_DSP_R2)
    882         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
    883 #else
    884         pattern = 0x00010001u * pattern;
    885 #endif
    886         break;
    887       case 4:
    888         memcpy(&pattern, src, sizeof(uint32_t));
    889         break;
    890       default:
    891         goto Copy;
    892         break;
    893     }
    894     CopySmallPattern8b(src, dst, length, pattern);
    895     return;
    896   }
    897  Copy:
    898   if (dist >= length) {  // no overlap -> use memcpy()
    899     memcpy(dst, src, length * sizeof(*dst));
    900   } else {
    901     int i;
    902     for (i = 0; i < length; ++i) dst[i] = src[i];
    903   }
    904 }
    905 
    906 // copy pattern of 1 or 2 uint32_t's
    907 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
    908                                             uint32_t* dst,
    909                                             int length, uint64_t pattern) {
    910   int i;
    911   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
    912     *dst++ = *src++;
    913     pattern = (pattern >> 32) | (pattern << 32);
    914     --length;
    915   }
    916   assert(0 == ((uintptr_t)dst & 7));
    917   for (i = 0; i < (length >> 1); ++i) {
    918     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
    919   }
    920   if (length & 1) {                   // Finish with left-over.
    921     dst[i << 1] = src[i << 1];
    922   }
    923 }
    924 
    925 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
    926                                      int dist, int length) {
    927   const uint32_t* const src = dst - dist;
    928   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
    929     uint64_t pattern;
    930     if (dist == 1) {
    931       pattern = (uint64_t)src[0];
    932       pattern |= pattern << 32;
    933     } else {
    934       memcpy(&pattern, src, sizeof(pattern));
    935     }
    936     CopySmallPattern32b(src, dst, length, pattern);
    937   } else if (dist >= length) {  // no overlap
    938     memcpy(dst, src, length * sizeof(*dst));
    939   } else {
    940     int i;
    941     for (i = 0; i < length; ++i) dst[i] = src[i];
    942   }
    943 }
    944 
    945 //------------------------------------------------------------------------------
    946 
    947 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
    948                            int width, int height, int last_row) {
    949   int ok = 1;
    950   int row = dec->last_pixel_ / width;
    951   int col = dec->last_pixel_ % width;
    952   VP8LBitReader* const br = &dec->br_;
    953   VP8LMetadata* const hdr = &dec->hdr_;
    954   int pos = dec->last_pixel_;         // current position
    955   const int end = width * height;     // End of data
    956   const int last = width * last_row;  // Last pixel to decode
    957   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
    958   const int mask = hdr->huffman_mask_;
    959   const HTreeGroup* htree_group =
    960       (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
    961   assert(pos <= end);
    962   assert(last_row <= height);
    963   assert(Is8bOptimizable(hdr));
    964 
    965   while (!br->eos_ && pos < last) {
    966     int code;
    967     // Only update when changing tile.
    968     if ((col & mask) == 0) {
    969       htree_group = GetHtreeGroupForPos(hdr, col, row);
    970     }
    971     assert(htree_group != NULL);
    972     VP8LFillBitWindow(br);
    973     code = ReadSymbol(htree_group->htrees[GREEN], br);
    974     if (code < NUM_LITERAL_CODES) {  // Literal
    975       data[pos] = code;
    976       ++pos;
    977       ++col;
    978       if (col >= width) {
    979         col = 0;
    980         ++row;
    981         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
    982           ExtractPalettedAlphaRows(dec, row);
    983         }
    984       }
    985     } else if (code < len_code_limit) {  // Backward reference
    986       int dist_code, dist;
    987       const int length_sym = code - NUM_LITERAL_CODES;
    988       const int length = GetCopyLength(length_sym, br);
    989       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
    990       VP8LFillBitWindow(br);
    991       dist_code = GetCopyDistance(dist_symbol, br);
    992       dist = PlaneCodeToDistance(width, dist_code);
    993       if (pos >= dist && end - pos >= length) {
    994         CopyBlock8b(data + pos, dist, length);
    995       } else {
    996         ok = 0;
    997         goto End;
    998       }
    999       pos += length;
   1000       col += length;
   1001       while (col >= width) {
   1002         col -= width;
   1003         ++row;
   1004         if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
   1005           ExtractPalettedAlphaRows(dec, row);
   1006         }
   1007       }
   1008       if (pos < last && (col & mask)) {
   1009         htree_group = GetHtreeGroupForPos(hdr, col, row);
   1010       }
   1011     } else {  // Not reached
   1012       ok = 0;
   1013       goto End;
   1014     }
   1015     assert(br->eos_ == VP8LIsEndOfStream(br));
   1016   }
   1017   // Process the remaining rows corresponding to last row-block.
   1018   ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
   1019 
   1020  End:
   1021   if (!ok || (br->eos_ && pos < end)) {
   1022     ok = 0;
   1023     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
   1024                             : VP8_STATUS_BITSTREAM_ERROR;
   1025   } else {
   1026     dec->last_pixel_ = pos;
   1027   }
   1028   return ok;
   1029 }
   1030 
   1031 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
   1032   assert(dec->incremental_);
   1033   dec->saved_br_ = dec->br_;
   1034   dec->saved_last_pixel_ = last_pixel;
   1035   if (dec->hdr_.color_cache_size_ > 0) {
   1036     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
   1037   }
   1038 }
   1039 
   1040 static void RestoreState(VP8LDecoder* const dec) {
   1041   assert(dec->br_.eos_);
   1042   dec->status_ = VP8_STATUS_SUSPENDED;
   1043   dec->br_ = dec->saved_br_;
   1044   dec->last_pixel_ = dec->saved_last_pixel_;
   1045   if (dec->hdr_.color_cache_size_ > 0) {
   1046     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
   1047   }
   1048 }
   1049 
   1050 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
   1051 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
   1052                            int width, int height, int last_row,
   1053                            ProcessRowsFunc process_func) {
   1054   int row = dec->last_pixel_ / width;
   1055   int col = dec->last_pixel_ % width;
   1056   VP8LBitReader* const br = &dec->br_;
   1057   VP8LMetadata* const hdr = &dec->hdr_;
   1058   uint32_t* src = data + dec->last_pixel_;
   1059   uint32_t* last_cached = src;
   1060   uint32_t* const src_end = data + width * height;     // End of data
   1061   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
   1062   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
   1063   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
   1064   int next_sync_row = dec->incremental_ ? row : 1 << 24;
   1065   VP8LColorCache* const color_cache =
   1066       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
   1067   const int mask = hdr->huffman_mask_;
   1068   const HTreeGroup* htree_group =
   1069       (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
   1070   assert(dec->last_row_ < last_row);
   1071   assert(src_last <= src_end);
   1072 
   1073   while (src < src_last) {
   1074     int code;
   1075     if (row >= next_sync_row) {
   1076       SaveState(dec, (int)(src - data));
   1077       next_sync_row = row + SYNC_EVERY_N_ROWS;
   1078     }
   1079     // Only update when changing tile. Note we could use this test:
   1080     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
   1081     // but that's actually slower and needs storing the previous col/row.
   1082     if ((col & mask) == 0) {
   1083       htree_group = GetHtreeGroupForPos(hdr, col, row);
   1084     }
   1085     assert(htree_group != NULL);
   1086     if (htree_group->is_trivial_code) {
   1087       *src = htree_group->literal_arb;
   1088       goto AdvanceByOne;
   1089     }
   1090     VP8LFillBitWindow(br);
   1091     if (htree_group->use_packed_table) {
   1092       code = ReadPackedSymbols(htree_group, br, src);
   1093       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
   1094     } else {
   1095       code = ReadSymbol(htree_group->htrees[GREEN], br);
   1096     }
   1097     if (br->eos_) break;  // early out
   1098     if (code < NUM_LITERAL_CODES) {  // Literal
   1099       if (htree_group->is_trivial_literal) {
   1100         *src = htree_group->literal_arb | (code << 8);
   1101       } else {
   1102         int red, blue, alpha;
   1103         red = ReadSymbol(htree_group->htrees[RED], br);
   1104         VP8LFillBitWindow(br);
   1105         blue = ReadSymbol(htree_group->htrees[BLUE], br);
   1106         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
   1107         if (br->eos_) break;
   1108         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
   1109       }
   1110     AdvanceByOne:
   1111       ++src;
   1112       ++col;
   1113       if (col >= width) {
   1114         col = 0;
   1115         ++row;
   1116         if (process_func != NULL) {
   1117           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
   1118             process_func(dec, row);
   1119           }
   1120         }
   1121         if (color_cache != NULL) {
   1122           while (last_cached < src) {
   1123             VP8LColorCacheInsert(color_cache, *last_cached++);
   1124           }
   1125         }
   1126       }
   1127     } else if (code < len_code_limit) {  // Backward reference
   1128       int dist_code, dist;
   1129       const int length_sym = code - NUM_LITERAL_CODES;
   1130       const int length = GetCopyLength(length_sym, br);
   1131       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
   1132       VP8LFillBitWindow(br);
   1133       dist_code = GetCopyDistance(dist_symbol, br);
   1134       dist = PlaneCodeToDistance(width, dist_code);
   1135       if (br->eos_) break;
   1136       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
   1137         goto Error;
   1138       } else {
   1139         CopyBlock32b(src, dist, length);
   1140       }
   1141       src += length;
   1142       col += length;
   1143       while (col >= width) {
   1144         col -= width;
   1145         ++row;
   1146         if (process_func != NULL) {
   1147           if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
   1148             process_func(dec, row);
   1149           }
   1150         }
   1151       }
   1152       // Because of the check done above (before 'src' was incremented by
   1153       // 'length'), the following holds true.
   1154       assert(src <= src_end);
   1155       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
   1156       if (color_cache != NULL) {
   1157         while (last_cached < src) {
   1158           VP8LColorCacheInsert(color_cache, *last_cached++);
   1159         }
   1160       }
   1161     } else if (code < color_cache_limit) {  // Color cache
   1162       const int key = code - len_code_limit;
   1163       assert(color_cache != NULL);
   1164       while (last_cached < src) {
   1165         VP8LColorCacheInsert(color_cache, *last_cached++);
   1166       }
   1167       *src = VP8LColorCacheLookup(color_cache, key);
   1168       goto AdvanceByOne;
   1169     } else {  // Not reached
   1170       goto Error;
   1171     }
   1172     assert(br->eos_ == VP8LIsEndOfStream(br));
   1173   }
   1174 
   1175   if (dec->incremental_ && br->eos_ && src < src_end) {
   1176     RestoreState(dec);
   1177   } else if (!br->eos_) {
   1178     // Process the remaining rows corresponding to last row-block.
   1179     if (process_func != NULL) {
   1180       process_func(dec, row > last_row ? last_row : row);
   1181     }
   1182     dec->status_ = VP8_STATUS_OK;
   1183     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
   1184   } else {
   1185     // if not incremental, and we are past the end of buffer (eos_=1), then this
   1186     // is a real bitstream error.
   1187     goto Error;
   1188   }
   1189   return 1;
   1190 
   1191  Error:
   1192   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1193   return 0;
   1194 }
   1195 
   1196 // -----------------------------------------------------------------------------
   1197 // VP8LTransform
   1198 
   1199 static void ClearTransform(VP8LTransform* const transform) {
   1200   WebPSafeFree(transform->data_);
   1201   transform->data_ = NULL;
   1202 }
   1203 
   1204 // For security reason, we need to remap the color map to span
   1205 // the total possible bundled values, and not just the num_colors.
   1206 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
   1207   int i;
   1208   const int final_num_colors = 1 << (8 >> transform->bits_);
   1209   uint32_t* const new_color_map =
   1210       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
   1211                                 sizeof(*new_color_map));
   1212   if (new_color_map == NULL) {
   1213     return 0;
   1214   } else {
   1215     uint8_t* const data = (uint8_t*)transform->data_;
   1216     uint8_t* const new_data = (uint8_t*)new_color_map;
   1217     new_color_map[0] = transform->data_[0];
   1218     for (i = 4; i < 4 * num_colors; ++i) {
   1219       // Equivalent to AddPixelEq(), on a byte-basis.
   1220       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
   1221     }
   1222     for (; i < 4 * final_num_colors; ++i) {
   1223       new_data[i] = 0;  // black tail.
   1224     }
   1225     WebPSafeFree(transform->data_);
   1226     transform->data_ = new_color_map;
   1227   }
   1228   return 1;
   1229 }
   1230 
   1231 static int ReadTransform(int* const xsize, int const* ysize,
   1232                          VP8LDecoder* const dec) {
   1233   int ok = 1;
   1234   VP8LBitReader* const br = &dec->br_;
   1235   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
   1236   const VP8LImageTransformType type =
   1237       (VP8LImageTransformType)VP8LReadBits(br, 2);
   1238 
   1239   // Each transform type can only be present once in the stream.
   1240   if (dec->transforms_seen_ & (1U << type)) {
   1241     return 0;  // Already there, let's not accept the second same transform.
   1242   }
   1243   dec->transforms_seen_ |= (1U << type);
   1244 
   1245   transform->type_ = type;
   1246   transform->xsize_ = *xsize;
   1247   transform->ysize_ = *ysize;
   1248   transform->data_ = NULL;
   1249   ++dec->next_transform_;
   1250   assert(dec->next_transform_ <= NUM_TRANSFORMS);
   1251 
   1252   switch (type) {
   1253     case PREDICTOR_TRANSFORM:
   1254     case CROSS_COLOR_TRANSFORM:
   1255       transform->bits_ = VP8LReadBits(br, 3) + 2;
   1256       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
   1257                                                transform->bits_),
   1258                              VP8LSubSampleSize(transform->ysize_,
   1259                                                transform->bits_),
   1260                              0, dec, &transform->data_);
   1261       break;
   1262     case COLOR_INDEXING_TRANSFORM: {
   1263        const int num_colors = VP8LReadBits(br, 8) + 1;
   1264        const int bits = (num_colors > 16) ? 0
   1265                       : (num_colors > 4) ? 1
   1266                       : (num_colors > 2) ? 2
   1267                       : 3;
   1268        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
   1269        transform->bits_ = bits;
   1270        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
   1271        ok = ok && ExpandColorMap(num_colors, transform);
   1272       break;
   1273     }
   1274     case SUBTRACT_GREEN:
   1275       break;
   1276     default:
   1277       assert(0);    // can't happen
   1278       break;
   1279   }
   1280 
   1281   return ok;
   1282 }
   1283 
   1284 // -----------------------------------------------------------------------------
   1285 // VP8LMetadata
   1286 
   1287 static void InitMetadata(VP8LMetadata* const hdr) {
   1288   assert(hdr != NULL);
   1289   memset(hdr, 0, sizeof(*hdr));
   1290 }
   1291 
   1292 static void ClearMetadata(VP8LMetadata* const hdr) {
   1293   assert(hdr != NULL);
   1294 
   1295   WebPSafeFree(hdr->huffman_image_);
   1296   WebPSafeFree(hdr->huffman_tables_);
   1297   VP8LHtreeGroupsFree(hdr->htree_groups_);
   1298   VP8LColorCacheClear(&hdr->color_cache_);
   1299   VP8LColorCacheClear(&hdr->saved_color_cache_);
   1300   InitMetadata(hdr);
   1301 }
   1302 
   1303 // -----------------------------------------------------------------------------
   1304 // VP8LDecoder
   1305 
   1306 VP8LDecoder* VP8LNew(void) {
   1307   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
   1308   if (dec == NULL) return NULL;
   1309   dec->status_ = VP8_STATUS_OK;
   1310   dec->state_ = READ_DIM;
   1311 
   1312   VP8LDspInit();  // Init critical function pointers.
   1313 
   1314   return dec;
   1315 }
   1316 
   1317 void VP8LClear(VP8LDecoder* const dec) {
   1318   int i;
   1319   if (dec == NULL) return;
   1320   ClearMetadata(&dec->hdr_);
   1321 
   1322   WebPSafeFree(dec->pixels_);
   1323   dec->pixels_ = NULL;
   1324   for (i = 0; i < dec->next_transform_; ++i) {
   1325     ClearTransform(&dec->transforms_[i]);
   1326   }
   1327   dec->next_transform_ = 0;
   1328   dec->transforms_seen_ = 0;
   1329 
   1330   WebPSafeFree(dec->rescaler_memory);
   1331   dec->rescaler_memory = NULL;
   1332 
   1333   dec->output_ = NULL;   // leave no trace behind
   1334 }
   1335 
   1336 void VP8LDelete(VP8LDecoder* const dec) {
   1337   if (dec != NULL) {
   1338     VP8LClear(dec);
   1339     WebPSafeFree(dec);
   1340   }
   1341 }
   1342 
   1343 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
   1344   VP8LMetadata* const hdr = &dec->hdr_;
   1345   const int num_bits = hdr->huffman_subsample_bits_;
   1346   dec->width_ = width;
   1347   dec->height_ = height;
   1348 
   1349   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
   1350   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
   1351 }
   1352 
   1353 static int DecodeImageStream(int xsize, int ysize,
   1354                              int is_level0,
   1355                              VP8LDecoder* const dec,
   1356                              uint32_t** const decoded_data) {
   1357   int ok = 1;
   1358   int transform_xsize = xsize;
   1359   int transform_ysize = ysize;
   1360   VP8LBitReader* const br = &dec->br_;
   1361   VP8LMetadata* const hdr = &dec->hdr_;
   1362   uint32_t* data = NULL;
   1363   int color_cache_bits = 0;
   1364 
   1365   // Read the transforms (may recurse).
   1366   if (is_level0) {
   1367     while (ok && VP8LReadBits(br, 1)) {
   1368       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
   1369     }
   1370   }
   1371 
   1372   // Color cache
   1373   if (ok && VP8LReadBits(br, 1)) {
   1374     color_cache_bits = VP8LReadBits(br, 4);
   1375     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
   1376     if (!ok) {
   1377       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1378       goto End;
   1379     }
   1380   }
   1381 
   1382   // Read the Huffman codes (may recurse).
   1383   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
   1384                               color_cache_bits, is_level0);
   1385   if (!ok) {
   1386     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1387     goto End;
   1388   }
   1389 
   1390   // Finish setting up the color-cache
   1391   if (color_cache_bits > 0) {
   1392     hdr->color_cache_size_ = 1 << color_cache_bits;
   1393     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
   1394       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1395       ok = 0;
   1396       goto End;
   1397     }
   1398   } else {
   1399     hdr->color_cache_size_ = 0;
   1400   }
   1401   UpdateDecoder(dec, transform_xsize, transform_ysize);
   1402 
   1403   if (is_level0) {   // level 0 complete
   1404     dec->state_ = READ_HDR;
   1405     goto End;
   1406   }
   1407 
   1408   {
   1409     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
   1410     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
   1411     if (data == NULL) {
   1412       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1413       ok = 0;
   1414       goto End;
   1415     }
   1416   }
   1417 
   1418   // Use the Huffman trees to decode the LZ77 encoded data.
   1419   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
   1420                        transform_ysize, NULL);
   1421   ok = ok && !br->eos_;
   1422 
   1423  End:
   1424   if (!ok) {
   1425     WebPSafeFree(data);
   1426     ClearMetadata(hdr);
   1427   } else {
   1428     if (decoded_data != NULL) {
   1429       *decoded_data = data;
   1430     } else {
   1431       // We allocate image data in this function only for transforms. At level 0
   1432       // (that is: not the transforms), we shouldn't have allocated anything.
   1433       assert(data == NULL);
   1434       assert(is_level0);
   1435     }
   1436     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
   1437     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
   1438   }
   1439   return ok;
   1440 }
   1441 
   1442 //------------------------------------------------------------------------------
   1443 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
   1444 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
   1445   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
   1446   // Scratch buffer corresponding to top-prediction row for transforming the
   1447   // first row in the row-blocks. Not needed for paletted alpha.
   1448   const uint64_t cache_top_pixels = (uint16_t)final_width;
   1449   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
   1450   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
   1451   const uint64_t total_num_pixels =
   1452       num_pixels + cache_top_pixels + cache_pixels;
   1453 
   1454   assert(dec->width_ <= final_width);
   1455   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
   1456   if (dec->pixels_ == NULL) {
   1457     dec->argb_cache_ = NULL;    // for sanity check
   1458     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1459     return 0;
   1460   }
   1461   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
   1462   return 1;
   1463 }
   1464 
   1465 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
   1466   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
   1467   dec->argb_cache_ = NULL;    // for sanity check
   1468   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
   1469   if (dec->pixels_ == NULL) {
   1470     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1471     return 0;
   1472   }
   1473   return 1;
   1474 }
   1475 
   1476 //------------------------------------------------------------------------------
   1477 
   1478 // Special row-processing that only stores the alpha data.
   1479 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
   1480   int cur_row = dec->last_row_;
   1481   int num_rows = last_row - cur_row;
   1482   const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
   1483 
   1484   assert(last_row <= dec->io_->crop_bottom);
   1485   while (num_rows > 0) {
   1486     const int num_rows_to_process =
   1487         (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
   1488     // Extract alpha (which is stored in the green plane).
   1489     ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
   1490     uint8_t* const output = alph_dec->output_;
   1491     const int width = dec->io_->width;      // the final width (!= dec->width_)
   1492     const int cache_pixs = width * num_rows_to_process;
   1493     uint8_t* const dst = output + width * cur_row;
   1494     const uint32_t* const src = dec->argb_cache_;
   1495     ApplyInverseTransforms(dec, num_rows_to_process, in);
   1496     WebPExtractGreen(src, dst, cache_pixs);
   1497     AlphaApplyFilter(alph_dec,
   1498                      cur_row, cur_row + num_rows_to_process, dst, width);
   1499     num_rows -= num_rows_to_process;
   1500     in += num_rows_to_process * dec->width_;
   1501     cur_row += num_rows_to_process;
   1502   }
   1503   assert(cur_row == last_row);
   1504   dec->last_row_ = dec->last_out_row_ = last_row;
   1505 }
   1506 
   1507 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
   1508                           const uint8_t* const data, size_t data_size) {
   1509   int ok = 0;
   1510   VP8LDecoder* dec = VP8LNew();
   1511 
   1512   if (dec == NULL) return 0;
   1513 
   1514   assert(alph_dec != NULL);
   1515   alph_dec->vp8l_dec_ = dec;
   1516 
   1517   dec->width_ = alph_dec->width_;
   1518   dec->height_ = alph_dec->height_;
   1519   dec->io_ = &alph_dec->io_;
   1520   dec->io_->opaque = alph_dec;
   1521   dec->io_->width = alph_dec->width_;
   1522   dec->io_->height = alph_dec->height_;
   1523 
   1524   dec->status_ = VP8_STATUS_OK;
   1525   VP8LInitBitReader(&dec->br_, data, data_size);
   1526 
   1527   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
   1528     goto Err;
   1529   }
   1530 
   1531   // Special case: if alpha data uses only the color indexing transform and
   1532   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
   1533   // method that only needs allocation of 1 byte per pixel (alpha channel).
   1534   if (dec->next_transform_ == 1 &&
   1535       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
   1536       Is8bOptimizable(&dec->hdr_)) {
   1537     alph_dec->use_8b_decode_ = 1;
   1538     ok = AllocateInternalBuffers8b(dec);
   1539   } else {
   1540     // Allocate internal buffers (note that dec->width_ may have changed here).
   1541     alph_dec->use_8b_decode_ = 0;
   1542     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
   1543   }
   1544 
   1545   if (!ok) goto Err;
   1546 
   1547   return 1;
   1548 
   1549  Err:
   1550   VP8LDelete(alph_dec->vp8l_dec_);
   1551   alph_dec->vp8l_dec_ = NULL;
   1552   return 0;
   1553 }
   1554 
   1555 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
   1556   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
   1557   assert(dec != NULL);
   1558   assert(last_row <= dec->height_);
   1559 
   1560   if (dec->last_row_ >= last_row) {
   1561     return 1;  // done
   1562   }
   1563 
   1564   if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
   1565 
   1566   // Decode (with special row processing).
   1567   return alph_dec->use_8b_decode_ ?
   1568       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
   1569                       last_row) :
   1570       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1571                       last_row, ExtractAlphaRows);
   1572 }
   1573 
   1574 //------------------------------------------------------------------------------
   1575 
   1576 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
   1577   int width, height, has_alpha;
   1578 
   1579   if (dec == NULL) return 0;
   1580   if (io == NULL) {
   1581     dec->status_ = VP8_STATUS_INVALID_PARAM;
   1582     return 0;
   1583   }
   1584 
   1585   dec->io_ = io;
   1586   dec->status_ = VP8_STATUS_OK;
   1587   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
   1588   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
   1589     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1590     goto Error;
   1591   }
   1592   dec->state_ = READ_DIM;
   1593   io->width = width;
   1594   io->height = height;
   1595 
   1596   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
   1597   return 1;
   1598 
   1599  Error:
   1600   VP8LClear(dec);
   1601   assert(dec->status_ != VP8_STATUS_OK);
   1602   return 0;
   1603 }
   1604 
   1605 int VP8LDecodeImage(VP8LDecoder* const dec) {
   1606   VP8Io* io = NULL;
   1607   WebPDecParams* params = NULL;
   1608 
   1609   // Sanity checks.
   1610   if (dec == NULL) return 0;
   1611 
   1612   assert(dec->hdr_.huffman_tables_ != NULL);
   1613   assert(dec->hdr_.htree_groups_ != NULL);
   1614   assert(dec->hdr_.num_htree_groups_ > 0);
   1615 
   1616   io = dec->io_;
   1617   assert(io != NULL);
   1618   params = (WebPDecParams*)io->opaque;
   1619   assert(params != NULL);
   1620 
   1621   // Initialization.
   1622   if (dec->state_ != READ_DATA) {
   1623     dec->output_ = params->output;
   1624     assert(dec->output_ != NULL);
   1625 
   1626     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
   1627       dec->status_ = VP8_STATUS_INVALID_PARAM;
   1628       goto Err;
   1629     }
   1630 
   1631     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
   1632 
   1633     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
   1634 
   1635     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
   1636       // need the alpha-multiply functions for premultiplied output or rescaling
   1637       WebPInitAlphaProcessing();
   1638     }
   1639     if (!WebPIsRGBMode(dec->output_->colorspace)) {
   1640       WebPInitConvertARGBToYUV();
   1641       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
   1642     }
   1643     if (dec->incremental_) {
   1644       if (dec->hdr_.color_cache_size_ > 0 &&
   1645           dec->hdr_.saved_color_cache_.colors_ == NULL) {
   1646         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
   1647                                 dec->hdr_.color_cache_.hash_bits_)) {
   1648           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1649           goto Err;
   1650         }
   1651       }
   1652     }
   1653     dec->state_ = READ_DATA;
   1654   }
   1655 
   1656   // Decode.
   1657   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1658                        io->crop_bottom, ProcessRows)) {
   1659     goto Err;
   1660   }
   1661 
   1662   params->last_y = dec->last_out_row_;
   1663   return 1;
   1664 
   1665  Err:
   1666   VP8LClear(dec);
   1667   assert(dec->status_ != VP8_STATUS_OK);
   1668   return 0;
   1669 }
   1670 
   1671 //------------------------------------------------------------------------------
   1672