Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/ADT/DenseSet.h"
     25 #include "llvm/ADT/FoldingSet.h"
     26 #include "llvm/ADT/SetVector.h"
     27 #include "llvm/Analysis/LoopInfo.h"
     28 #include "llvm/IR/ConstantRange.h"
     29 #include "llvm/IR/Instructions.h"
     30 #include "llvm/IR/Operator.h"
     31 #include "llvm/IR/PassManager.h"
     32 #include "llvm/IR/ValueHandle.h"
     33 #include "llvm/IR/ValueMap.h"
     34 #include "llvm/Pass.h"
     35 #include "llvm/Support/Allocator.h"
     36 #include "llvm/Support/DataTypes.h"
     37 
     38 namespace llvm {
     39 class APInt;
     40 class AssumptionCache;
     41 class Constant;
     42 class ConstantInt;
     43 class DominatorTree;
     44 class Type;
     45 class ScalarEvolution;
     46 class DataLayout;
     47 class TargetLibraryInfo;
     48 class LLVMContext;
     49 class Operator;
     50 class SCEV;
     51 class SCEVAddRecExpr;
     52 class SCEVConstant;
     53 class SCEVExpander;
     54 class SCEVPredicate;
     55 class SCEVUnknown;
     56 class Function;
     57 
     58 template <> struct FoldingSetTrait<SCEV>;
     59 template <> struct FoldingSetTrait<SCEVPredicate>;
     60 
     61 /// This class represents an analyzed expression in the program.  These are
     62 /// opaque objects that the client is not allowed to do much with directly.
     63 ///
     64 class SCEV : public FoldingSetNode {
     65   friend struct FoldingSetTrait<SCEV>;
     66 
     67   /// A reference to an Interned FoldingSetNodeID for this node.  The
     68   /// ScalarEvolution's BumpPtrAllocator holds the data.
     69   FoldingSetNodeIDRef FastID;
     70 
     71   // The SCEV baseclass this node corresponds to
     72   const unsigned short SCEVType;
     73 
     74 protected:
     75   /// This field is initialized to zero and may be used in subclasses to store
     76   /// miscellaneous information.
     77   unsigned short SubclassData;
     78 
     79 private:
     80   SCEV(const SCEV &) = delete;
     81   void operator=(const SCEV &) = delete;
     82 
     83 public:
     84   /// NoWrapFlags are bitfield indices into SubclassData.
     85   ///
     86   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     87   /// no-signed-wrap <NSW> properties, which are derived from the IR
     88   /// operator. NSW is a misnomer that we use to mean no signed overflow or
     89   /// underflow.
     90   ///
     91   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
     92   /// the integer domain, abs(step) * max-iteration(loop) <=
     93   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
     94   /// its start value if the step is non-zero.  Computing the same value on
     95   /// each iteration is not considered wrapping, and recurrences with step = 0
     96   /// are trivially <NW>.  <NW> is independent of the sign of step and the
     97   /// value the add recurrence starts with.
     98   ///
     99   /// Note that NUW and NSW are also valid properties of a recurrence, and
    100   /// either implies NW. For convenience, NW will be set for a recurrence
    101   /// whenever either NUW or NSW are set.
    102   enum NoWrapFlags {
    103     FlagAnyWrap = 0,    // No guarantee.
    104     FlagNW = (1 << 0),  // No self-wrap.
    105     FlagNUW = (1 << 1), // No unsigned wrap.
    106     FlagNSW = (1 << 2), // No signed wrap.
    107     NoWrapMask = (1 << 3) - 1
    108   };
    109 
    110   explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy)
    111       : FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    112 
    113   unsigned getSCEVType() const { return SCEVType; }
    114 
    115   /// Return the LLVM type of this SCEV expression.
    116   ///
    117   Type *getType() const;
    118 
    119   /// Return true if the expression is a constant zero.
    120   ///
    121   bool isZero() const;
    122 
    123   /// Return true if the expression is a constant one.
    124   ///
    125   bool isOne() const;
    126 
    127   /// Return true if the expression is a constant all-ones value.
    128   ///
    129   bool isAllOnesValue() const;
    130 
    131   /// Return true if the specified scev is negated, but not a constant.
    132   bool isNonConstantNegative() const;
    133 
    134   /// Print out the internal representation of this scalar to the specified
    135   /// stream.  This should really only be used for debugging purposes.
    136   void print(raw_ostream &OS) const;
    137 
    138   /// This method is used for debugging.
    139   ///
    140   void dump() const;
    141 };
    142 
    143 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    144 // temporary FoldingSetNodeID values.
    145 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    146   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
    147   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
    148                      FoldingSetNodeID &TempID) {
    149     return ID == X.FastID;
    150   }
    151   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    152     return X.FastID.ComputeHash();
    153   }
    154 };
    155 
    156 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    157   S.print(OS);
    158   return OS;
    159 }
    160 
    161 /// An object of this class is returned by queries that could not be answered.
    162 /// For example, if you ask for the number of iterations of a linked-list
    163 /// traversal loop, you will get one of these.  None of the standard SCEV
    164 /// operations are valid on this class, it is just a marker.
    165 struct SCEVCouldNotCompute : public SCEV {
    166   SCEVCouldNotCompute();
    167 
    168   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    169   static bool classof(const SCEV *S);
    170 };
    171 
    172 /// This class represents an assumption made using SCEV expressions which can
    173 /// be checked at run-time.
    174 class SCEVPredicate : public FoldingSetNode {
    175   friend struct FoldingSetTrait<SCEVPredicate>;
    176 
    177   /// A reference to an Interned FoldingSetNodeID for this node.  The
    178   /// ScalarEvolution's BumpPtrAllocator holds the data.
    179   FoldingSetNodeIDRef FastID;
    180 
    181 public:
    182   enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
    183 
    184 protected:
    185   SCEVPredicateKind Kind;
    186   ~SCEVPredicate() = default;
    187   SCEVPredicate(const SCEVPredicate &) = default;
    188   SCEVPredicate &operator=(const SCEVPredicate &) = default;
    189 
    190 public:
    191   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
    192 
    193   SCEVPredicateKind getKind() const { return Kind; }
    194 
    195   /// Returns the estimated complexity of this predicate.  This is roughly
    196   /// measured in the number of run-time checks required.
    197   virtual unsigned getComplexity() const { return 1; }
    198 
    199   /// Returns true if the predicate is always true. This means that no
    200   /// assumptions were made and nothing needs to be checked at run-time.
    201   virtual bool isAlwaysTrue() const = 0;
    202 
    203   /// Returns true if this predicate implies \p N.
    204   virtual bool implies(const SCEVPredicate *N) const = 0;
    205 
    206   /// Prints a textual representation of this predicate with an indentation of
    207   /// \p Depth.
    208   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
    209 
    210   /// Returns the SCEV to which this predicate applies, or nullptr if this is
    211   /// a SCEVUnionPredicate.
    212   virtual const SCEV *getExpr() const = 0;
    213 };
    214 
    215 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
    216   P.print(OS);
    217   return OS;
    218 }
    219 
    220 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
    221 // temporary FoldingSetNodeID values.
    222 template <>
    223 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
    224 
    225   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
    226     ID = X.FastID;
    227   }
    228 
    229   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
    230                      unsigned IDHash, FoldingSetNodeID &TempID) {
    231     return ID == X.FastID;
    232   }
    233   static unsigned ComputeHash(const SCEVPredicate &X,
    234                               FoldingSetNodeID &TempID) {
    235     return X.FastID.ComputeHash();
    236   }
    237 };
    238 
    239 /// This class represents an assumption that two SCEV expressions are equal,
    240 /// and this can be checked at run-time. We assume that the left hand side is
    241 /// a SCEVUnknown and the right hand side a constant.
    242 class SCEVEqualPredicate final : public SCEVPredicate {
    243   /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
    244   /// constant.
    245   const SCEVUnknown *LHS;
    246   const SCEVConstant *RHS;
    247 
    248 public:
    249   SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
    250                      const SCEVConstant *RHS);
    251 
    252   /// Implementation of the SCEVPredicate interface
    253   bool implies(const SCEVPredicate *N) const override;
    254   void print(raw_ostream &OS, unsigned Depth = 0) const override;
    255   bool isAlwaysTrue() const override;
    256   const SCEV *getExpr() const override;
    257 
    258   /// Returns the left hand side of the equality.
    259   const SCEVUnknown *getLHS() const { return LHS; }
    260 
    261   /// Returns the right hand side of the equality.
    262   const SCEVConstant *getRHS() const { return RHS; }
    263 
    264   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    265   static inline bool classof(const SCEVPredicate *P) {
    266     return P->getKind() == P_Equal;
    267   }
    268 };
    269 
    270 /// This class represents an assumption made on an AddRec expression. Given an
    271 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
    272 /// flags (defined below) in the first X iterations of the loop, where X is a
    273 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
    274 ///
    275 /// Note that this does not imply that X is equal to the backedge taken
    276 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
    277 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
    278 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
    279 /// have more than X iterations.
    280 class SCEVWrapPredicate final : public SCEVPredicate {
    281 public:
    282   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
    283   /// for FlagNUSW. The increment is considered to be signed, and a + b
    284   /// (where b is the increment) is considered to wrap if:
    285   ///    zext(a + b) != zext(a) + sext(b)
    286   ///
    287   /// If Signed is a function that takes an n-bit tuple and maps to the
    288   /// integer domain as the tuples value interpreted as twos complement,
    289   /// and Unsigned a function that takes an n-bit tuple and maps to the
    290   /// integer domain as as the base two value of input tuple, then a + b
    291   /// has IncrementNUSW iff:
    292   ///
    293   /// 0 <= Unsigned(a) + Signed(b) < 2^n
    294   ///
    295   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
    296   ///
    297   /// Note that the IncrementNUSW flag is not commutative: if base + inc
    298   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
    299   /// property. The reason for this is that this is used for sign/zero
    300   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
    301   /// assumed. A {base,+,inc} expression is already non-commutative with
    302   /// regards to base and inc, since it is interpreted as:
    303   ///     (((base + inc) + inc) + inc) ...
    304   enum IncrementWrapFlags {
    305     IncrementAnyWrap = 0,     // No guarantee.
    306     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
    307     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
    308                               // (equivalent with SCEV::NSW)
    309     IncrementNoWrapMask = (1 << 2) - 1
    310   };
    311 
    312   /// Convenient IncrementWrapFlags manipulation methods.
    313   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
    314   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
    315              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
    316     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    317     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
    318            "Invalid flags value!");
    319     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
    320   }
    321 
    322   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
    323   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
    324     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    325     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
    326 
    327     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
    328   }
    329 
    330   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
    331   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
    332            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
    333     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
    334     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
    335            "Invalid flags value!");
    336 
    337     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
    338   }
    339 
    340   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
    341   /// SCEVAddRecExpr.
    342   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
    343   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
    344 
    345 private:
    346   const SCEVAddRecExpr *AR;
    347   IncrementWrapFlags Flags;
    348 
    349 public:
    350   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
    351                              const SCEVAddRecExpr *AR,
    352                              IncrementWrapFlags Flags);
    353 
    354   /// Returns the set assumed no overflow flags.
    355   IncrementWrapFlags getFlags() const { return Flags; }
    356   /// Implementation of the SCEVPredicate interface
    357   const SCEV *getExpr() const override;
    358   bool implies(const SCEVPredicate *N) const override;
    359   void print(raw_ostream &OS, unsigned Depth = 0) const override;
    360   bool isAlwaysTrue() const override;
    361 
    362   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    363   static inline bool classof(const SCEVPredicate *P) {
    364     return P->getKind() == P_Wrap;
    365   }
    366 };
    367 
    368 /// This class represents a composition of other SCEV predicates, and is the
    369 /// class that most clients will interact with.  This is equivalent to a
    370 /// logical "AND" of all the predicates in the union.
    371 ///
    372 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
    373 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
    374 class SCEVUnionPredicate final : public SCEVPredicate {
    375 private:
    376   typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
    377       PredicateMap;
    378 
    379   /// Vector with references to all predicates in this union.
    380   SmallVector<const SCEVPredicate *, 16> Preds;
    381   /// Maps SCEVs to predicates for quick look-ups.
    382   PredicateMap SCEVToPreds;
    383 
    384 public:
    385   SCEVUnionPredicate();
    386 
    387   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
    388     return Preds;
    389   }
    390 
    391   /// Adds a predicate to this union.
    392   void add(const SCEVPredicate *N);
    393 
    394   /// Returns a reference to a vector containing all predicates which apply to
    395   /// \p Expr.
    396   ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
    397 
    398   /// Implementation of the SCEVPredicate interface
    399   bool isAlwaysTrue() const override;
    400   bool implies(const SCEVPredicate *N) const override;
    401   void print(raw_ostream &OS, unsigned Depth) const override;
    402   const SCEV *getExpr() const override;
    403 
    404   /// We estimate the complexity of a union predicate as the size number of
    405   /// predicates in the union.
    406   unsigned getComplexity() const override { return Preds.size(); }
    407 
    408   /// Methods for support type inquiry through isa, cast, and dyn_cast:
    409   static inline bool classof(const SCEVPredicate *P) {
    410     return P->getKind() == P_Union;
    411   }
    412 };
    413 
    414 /// The main scalar evolution driver. Because client code (intentionally)
    415 /// can't do much with the SCEV objects directly, they must ask this class
    416 /// for services.
    417 class ScalarEvolution {
    418 public:
    419   /// An enum describing the relationship between a SCEV and a loop.
    420   enum LoopDisposition {
    421     LoopVariant,   ///< The SCEV is loop-variant (unknown).
    422     LoopInvariant, ///< The SCEV is loop-invariant.
    423     LoopComputable ///< The SCEV varies predictably with the loop.
    424   };
    425 
    426   /// An enum describing the relationship between a SCEV and a basic block.
    427   enum BlockDisposition {
    428     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    429     DominatesBlock,        ///< The SCEV dominates the block.
    430     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    431   };
    432 
    433   /// Convenient NoWrapFlags manipulation that hides enum casts and is
    434   /// visible in the ScalarEvolution name space.
    435   LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
    436                                                     int Mask) {
    437     return (SCEV::NoWrapFlags)(Flags & Mask);
    438   }
    439   LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
    440                                                    SCEV::NoWrapFlags OnFlags) {
    441     return (SCEV::NoWrapFlags)(Flags | OnFlags);
    442   }
    443   LLVM_NODISCARD static SCEV::NoWrapFlags
    444   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
    445     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    446   }
    447 
    448 private:
    449   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
    450   /// Value is deleted.
    451   class SCEVCallbackVH final : public CallbackVH {
    452     ScalarEvolution *SE;
    453     void deleted() override;
    454     void allUsesReplacedWith(Value *New) override;
    455 
    456   public:
    457     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
    458   };
    459 
    460   friend class SCEVCallbackVH;
    461   friend class SCEVExpander;
    462   friend class SCEVUnknown;
    463 
    464   /// The function we are analyzing.
    465   ///
    466   Function &F;
    467 
    468   /// Does the module have any calls to the llvm.experimental.guard intrinsic
    469   /// at all?  If this is false, we avoid doing work that will only help if
    470   /// thare are guards present in the IR.
    471   ///
    472   bool HasGuards;
    473 
    474   /// The target library information for the target we are targeting.
    475   ///
    476   TargetLibraryInfo &TLI;
    477 
    478   /// The tracker for @llvm.assume intrinsics in this function.
    479   AssumptionCache &AC;
    480 
    481   /// The dominator tree.
    482   ///
    483   DominatorTree &DT;
    484 
    485   /// The loop information for the function we are currently analyzing.
    486   ///
    487   LoopInfo &LI;
    488 
    489   /// This SCEV is used to represent unknown trip counts and things.
    490   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
    491 
    492   /// The typedef for HasRecMap.
    493   ///
    494   typedef DenseMap<const SCEV *, bool> HasRecMapType;
    495 
    496   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
    497   HasRecMapType HasRecMap;
    498 
    499   /// The typedef for ExprValueMap.
    500   ///
    501   typedef std::pair<Value *, ConstantInt *> ValueOffsetPair;
    502   typedef DenseMap<const SCEV *, SetVector<ValueOffsetPair>> ExprValueMapType;
    503 
    504   /// ExprValueMap -- This map records the original values from which
    505   /// the SCEV expr is generated from.
    506   ///
    507   /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
    508   /// of SCEV -> Value:
    509   /// Suppose we know S1 expands to V1, and
    510   ///  S1 = S2 + C_a
    511   ///  S3 = S2 + C_b
    512   /// where C_a and C_b are different SCEVConstants. Then we'd like to
    513   /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
    514   /// It is helpful when S2 is a complex SCEV expr.
    515   ///
    516   /// In order to do that, we represent ExprValueMap as a mapping from
    517   /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
    518   /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
    519   /// is expanded, it will first expand S2 to V1 - C_a because of
    520   /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
    521   ///
    522   /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
    523   /// to V - Offset.
    524   ExprValueMapType ExprValueMap;
    525 
    526   /// The typedef for ValueExprMap.
    527   ///
    528   typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>
    529       ValueExprMapType;
    530 
    531   /// This is a cache of the values we have analyzed so far.
    532   ///
    533   ValueExprMapType ValueExprMap;
    534 
    535   /// Mark predicate values currently being processed by isImpliedCond.
    536   SmallPtrSet<Value *, 6> PendingLoopPredicates;
    537 
    538   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
    539   /// conditions dominating the backedge of a loop.
    540   bool WalkingBEDominatingConds;
    541 
    542   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
    543   /// predicate by splitting it into a set of independent predicates.
    544   bool ProvingSplitPredicate;
    545 
    546   /// Memoized values for the GetMinTrailingZeros
    547   DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
    548 
    549   /// Private helper method for the GetMinTrailingZeros method
    550   uint32_t GetMinTrailingZerosImpl(const SCEV *S);
    551 
    552   /// Information about the number of loop iterations for which a loop exit's
    553   /// branch condition evaluates to the not-taken path.  This is a temporary
    554   /// pair of exact and max expressions that are eventually summarized in
    555   /// ExitNotTakenInfo and BackedgeTakenInfo.
    556   struct ExitLimit {
    557     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
    558     const SCEV *MaxNotTaken; // The exit is not taken at most this many times
    559     bool MaxOrZero; // Not taken either exactly MaxNotTaken or zero times
    560 
    561     /// A set of predicate guards for this ExitLimit. The result is only valid
    562     /// if all of the predicates in \c Predicates evaluate to 'true' at
    563     /// run-time.
    564     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
    565 
    566     void addPredicate(const SCEVPredicate *P) {
    567       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
    568       Predicates.insert(P);
    569     }
    570 
    571     /*implicit*/ ExitLimit(const SCEV *E)
    572         : ExactNotTaken(E), MaxNotTaken(E), MaxOrZero(false) {}
    573 
    574     ExitLimit(
    575         const SCEV *E, const SCEV *M, bool MaxOrZero,
    576         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
    577         : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
    578       assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
    579               !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
    580              "Exact is not allowed to be less precise than Max");
    581       for (auto *PredSet : PredSetList)
    582         for (auto *P : *PredSet)
    583           addPredicate(P);
    584     }
    585 
    586     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
    587               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
    588         : ExitLimit(E, M, MaxOrZero, {&PredSet}) {}
    589 
    590     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero)
    591         : ExitLimit(E, M, MaxOrZero, None) {}
    592 
    593     /// Test whether this ExitLimit contains any computed information, or
    594     /// whether it's all SCEVCouldNotCompute values.
    595     bool hasAnyInfo() const {
    596       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
    597              !isa<SCEVCouldNotCompute>(MaxNotTaken);
    598     }
    599 
    600     /// Test whether this ExitLimit contains all information.
    601     bool hasFullInfo() const {
    602       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
    603     }
    604   };
    605 
    606   /// Information about the number of times a particular loop exit may be
    607   /// reached before exiting the loop.
    608   struct ExitNotTakenInfo {
    609     PoisoningVH<BasicBlock> ExitingBlock;
    610     const SCEV *ExactNotTaken;
    611     std::unique_ptr<SCEVUnionPredicate> Predicate;
    612     bool hasAlwaysTruePredicate() const {
    613       return !Predicate || Predicate->isAlwaysTrue();
    614     }
    615 
    616     explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
    617                               const SCEV *ExactNotTaken,
    618                               std::unique_ptr<SCEVUnionPredicate> Predicate)
    619         : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
    620           Predicate(std::move(Predicate)) {}
    621   };
    622 
    623   /// Information about the backedge-taken count of a loop. This currently
    624   /// includes an exact count and a maximum count.
    625   ///
    626   class BackedgeTakenInfo {
    627     /// A list of computable exits and their not-taken counts.  Loops almost
    628     /// never have more than one computable exit.
    629     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
    630 
    631     /// The pointer part of \c MaxAndComplete is an expression indicating the
    632     /// least maximum backedge-taken count of the loop that is known, or a
    633     /// SCEVCouldNotCompute. This expression is only valid if the predicates
    634     /// associated with all loop exits are true.
    635     ///
    636     /// The integer part of \c MaxAndComplete is a boolean indicating if \c
    637     /// ExitNotTaken has an element for every exiting block in the loop.
    638     PointerIntPair<const SCEV *, 1> MaxAndComplete;
    639 
    640     /// True iff the backedge is taken either exactly Max or zero times.
    641     bool MaxOrZero;
    642 
    643     /// \name Helper projection functions on \c MaxAndComplete.
    644     /// @{
    645     bool isComplete() const { return MaxAndComplete.getInt(); }
    646     const SCEV *getMax() const { return MaxAndComplete.getPointer(); }
    647     /// @}
    648 
    649   public:
    650     BackedgeTakenInfo() : MaxAndComplete(nullptr, 0) {}
    651 
    652     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
    653     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
    654 
    655     typedef std::pair<BasicBlock *, ExitLimit> EdgeExitInfo;
    656 
    657     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    658     BackedgeTakenInfo(SmallVectorImpl<EdgeExitInfo> &&ExitCounts, bool Complete,
    659                       const SCEV *MaxCount, bool MaxOrZero);
    660 
    661     /// Test whether this BackedgeTakenInfo contains any computed information,
    662     /// or whether it's all SCEVCouldNotCompute values.
    663     bool hasAnyInfo() const {
    664       return !ExitNotTaken.empty() || !isa<SCEVCouldNotCompute>(getMax());
    665     }
    666 
    667     /// Test whether this BackedgeTakenInfo contains complete information.
    668     bool hasFullInfo() const { return isComplete(); }
    669 
    670     /// Return an expression indicating the exact backedge-taken count of the
    671     /// loop if it is known or SCEVCouldNotCompute otherwise. This is the
    672     /// number of times the loop header can be guaranteed to execute, minus
    673     /// one.
    674     ///
    675     /// If the SCEV predicate associated with the answer can be different
    676     /// from AlwaysTrue, we must add a (non null) Predicates argument.
    677     /// The SCEV predicate associated with the answer will be added to
    678     /// Predicates. A run-time check needs to be emitted for the SCEV
    679     /// predicate in order for the answer to be valid.
    680     ///
    681     /// Note that we should always know if we need to pass a predicate
    682     /// argument or not from the way the ExitCounts vector was computed.
    683     /// If we allowed SCEV predicates to be generated when populating this
    684     /// vector, this information can contain them and therefore a
    685     /// SCEVPredicate argument should be added to getExact.
    686     const SCEV *getExact(ScalarEvolution *SE,
    687                          SCEVUnionPredicate *Predicates = nullptr) const;
    688 
    689     /// Return the number of times this loop exit may fall through to the back
    690     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
    691     /// this block before this number of iterations, but may exit via another
    692     /// block.
    693     const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    694 
    695     /// Get the max backedge taken count for the loop.
    696     const SCEV *getMax(ScalarEvolution *SE) const;
    697 
    698     /// Return true if the number of times this backedge is taken is either the
    699     /// value returned by getMax or zero.
    700     bool isMaxOrZero(ScalarEvolution *SE) const;
    701 
    702     /// Return true if any backedge taken count expressions refer to the given
    703     /// subexpression.
    704     bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
    705 
    706     /// Invalidate this result and free associated memory.
    707     void clear();
    708   };
    709 
    710   /// Cache the backedge-taken count of the loops for this function as they
    711   /// are computed.
    712   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
    713 
    714   /// Cache the predicated backedge-taken count of the loops for this
    715   /// function as they are computed.
    716   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
    717 
    718   /// This map contains entries for all of the PHI instructions that we
    719   /// attempt to compute constant evolutions for.  This allows us to avoid
    720   /// potentially expensive recomputation of these properties.  An instruction
    721   /// maps to null if we are unable to compute its exit value.
    722   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
    723 
    724   /// This map contains entries for all the expressions that we attempt to
    725   /// compute getSCEVAtScope information for, which can be expensive in
    726   /// extreme cases.
    727   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
    728       ValuesAtScopes;
    729 
    730   /// Memoized computeLoopDisposition results.
    731   DenseMap<const SCEV *,
    732            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
    733       LoopDispositions;
    734 
    735   struct LoopProperties {
    736     /// Set to true if the loop contains no instruction that can have side
    737     /// effects (i.e. via throwing an exception, volatile or atomic access).
    738     bool HasNoAbnormalExits;
    739 
    740     /// Set to true if the loop contains no instruction that can abnormally exit
    741     /// the loop (i.e. via throwing an exception, by terminating the thread
    742     /// cleanly or by infinite looping in a called function).  Strictly
    743     /// speaking, the last one is not leaving the loop, but is identical to
    744     /// leaving the loop for reasoning about undefined behavior.
    745     bool HasNoSideEffects;
    746   };
    747 
    748   /// Cache for \c getLoopProperties.
    749   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
    750 
    751   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
    752   LoopProperties getLoopProperties(const Loop *L);
    753 
    754   bool loopHasNoSideEffects(const Loop *L) {
    755     return getLoopProperties(L).HasNoSideEffects;
    756   }
    757 
    758   bool loopHasNoAbnormalExits(const Loop *L) {
    759     return getLoopProperties(L).HasNoAbnormalExits;
    760   }
    761 
    762   /// Compute a LoopDisposition value.
    763   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    764 
    765   /// Memoized computeBlockDisposition results.
    766   DenseMap<
    767       const SCEV *,
    768       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
    769       BlockDispositions;
    770 
    771   /// Compute a BlockDisposition value.
    772   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    773 
    774   /// Memoized results from getRange
    775   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    776 
    777   /// Memoized results from getRange
    778   DenseMap<const SCEV *, ConstantRange> SignedRanges;
    779 
    780   /// Used to parameterize getRange
    781   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
    782 
    783   /// Set the memoized range for the given SCEV.
    784   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
    785                                 const ConstantRange &CR) {
    786     DenseMap<const SCEV *, ConstantRange> &Cache =
    787         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
    788 
    789     auto Pair = Cache.insert({S, CR});
    790     if (!Pair.second)
    791       Pair.first->second = CR;
    792     return Pair.first->second;
    793   }
    794 
    795   /// Determine the range for a particular SCEV.
    796   ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
    797 
    798   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
    799   /// Helper for \c getRange.
    800   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
    801                                     const SCEV *MaxBECount, unsigned BitWidth);
    802 
    803   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
    804   /// Stop} by "factoring out" a ternary expression from the add recurrence.
    805   /// Helper called by \c getRange.
    806   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
    807                                      const SCEV *MaxBECount, unsigned BitWidth);
    808 
    809   /// We know that there is no SCEV for the specified value.  Analyze the
    810   /// expression.
    811   const SCEV *createSCEV(Value *V);
    812 
    813   /// Provide the special handling we need to analyze PHI SCEVs.
    814   const SCEV *createNodeForPHI(PHINode *PN);
    815 
    816   /// Helper function called from createNodeForPHI.
    817   const SCEV *createAddRecFromPHI(PHINode *PN);
    818 
    819   /// Helper function called from createNodeForPHI.
    820   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
    821 
    822   /// Provide special handling for a select-like instruction (currently this
    823   /// is either a select instruction or a phi node).  \p I is the instruction
    824   /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
    825   /// FalseVal".
    826   const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
    827                                        Value *TrueVal, Value *FalseVal);
    828 
    829   /// Provide the special handling we need to analyze GEP SCEVs.
    830   const SCEV *createNodeForGEP(GEPOperator *GEP);
    831 
    832   /// Implementation code for getSCEVAtScope; called at most once for each
    833   /// SCEV+Loop pair.
    834   ///
    835   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    836 
    837   /// This looks up computed SCEV values for all instructions that depend on
    838   /// the given instruction and removes them from the ValueExprMap map if they
    839   /// reference SymName. This is used during PHI resolution.
    840   void forgetSymbolicName(Instruction *I, const SCEV *SymName);
    841 
    842   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
    843   /// values if the loop hasn't been analyzed yet. The returned result is
    844   /// guaranteed not to be predicated.
    845   const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    846 
    847   /// Similar to getBackedgeTakenInfo, but will add predicates as required
    848   /// with the purpose of returning complete information.
    849   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
    850 
    851   /// Compute the number of times the specified loop will iterate.
    852   /// If AllowPredicates is set, we will create new SCEV predicates as
    853   /// necessary in order to return an exact answer.
    854   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
    855                                               bool AllowPredicates = false);
    856 
    857   /// Compute the number of times the backedge of the specified loop will
    858   /// execute if it exits via the specified block. If AllowPredicates is set,
    859   /// this call will try to use a minimal set of SCEV predicates in order to
    860   /// return an exact answer.
    861   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
    862                              bool AllowPredicates = false);
    863 
    864   /// Compute the number of times the backedge of the specified loop will
    865   /// execute if its exit condition were a conditional branch of ExitCond,
    866   /// TBB, and FBB.
    867   ///
    868   /// \p ControlsExit is true if ExitCond directly controls the exit
    869   /// branch. In this case, we can assume that the loop exits only if the
    870   /// condition is true and can infer that failing to meet the condition prior
    871   /// to integer wraparound results in undefined behavior.
    872   ///
    873   /// If \p AllowPredicates is set, this call will try to use a minimal set of
    874   /// SCEV predicates in order to return an exact answer.
    875   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
    876                                      BasicBlock *TBB, BasicBlock *FBB,
    877                                      bool ControlsExit,
    878                                      bool AllowPredicates = false);
    879 
    880   /// Compute the number of times the backedge of the specified loop will
    881   /// execute if its exit condition were a conditional branch of the ICmpInst
    882   /// ExitCond, TBB, and FBB. If AllowPredicates is set, this call will try
    883   /// to use a minimal set of SCEV predicates in order to return an exact
    884   /// answer.
    885   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
    886                                      BasicBlock *TBB, BasicBlock *FBB,
    887                                      bool IsSubExpr,
    888                                      bool AllowPredicates = false);
    889 
    890   /// Compute the number of times the backedge of the specified loop will
    891   /// execute if its exit condition were a switch with a single exiting case
    892   /// to ExitingBB.
    893   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
    894                                                  SwitchInst *Switch,
    895                                                  BasicBlock *ExitingBB,
    896                                                  bool IsSubExpr);
    897 
    898   /// Given an exit condition of 'icmp op load X, cst', try to see if we can
    899   /// compute the backedge-taken count.
    900   ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS,
    901                                                 const Loop *L,
    902                                                 ICmpInst::Predicate p);
    903 
    904   /// Compute the exit limit of a loop that is controlled by a
    905   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
    906   /// count in these cases (since SCEV has no way of expressing them), but we
    907   /// can still sometimes compute an upper bound.
    908   ///
    909   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
    910   /// RHS`.
    911   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
    912                                          ICmpInst::Predicate Pred);
    913 
    914   /// If the loop is known to execute a constant number of times (the
    915   /// condition evolves only from constants), try to evaluate a few iterations
    916   /// of the loop until we get the exit condition gets a value of ExitWhen
    917   /// (true or false).  If we cannot evaluate the exit count of the loop,
    918   /// return CouldNotCompute.
    919   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
    920                                            bool ExitWhen);
    921 
    922   /// Return the number of times an exit condition comparing the specified
    923   /// value to zero will execute.  If not computable, return CouldNotCompute.
    924   /// If AllowPredicates is set, this call will try to use a minimal set of
    925   /// SCEV predicates in order to return an exact answer.
    926   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
    927                          bool AllowPredicates = false);
    928 
    929   /// Return the number of times an exit condition checking the specified
    930   /// value for nonzero will execute.  If not computable, return
    931   /// CouldNotCompute.
    932   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
    933 
    934   /// Return the number of times an exit condition containing the specified
    935   /// less-than comparison will execute.  If not computable, return
    936   /// CouldNotCompute.
    937   ///
    938   /// \p isSigned specifies whether the less-than is signed.
    939   ///
    940   /// \p ControlsExit is true when the LHS < RHS condition directly controls
    941   /// the branch (loops exits only if condition is true). In this case, we can
    942   /// use NoWrapFlags to skip overflow checks.
    943   ///
    944   /// If \p AllowPredicates is set, this call will try to use a minimal set of
    945   /// SCEV predicates in order to return an exact answer.
    946   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
    947                              bool isSigned, bool ControlsExit,
    948                              bool AllowPredicates = false);
    949 
    950   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
    951                                 bool isSigned, bool IsSubExpr,
    952                                 bool AllowPredicates = false);
    953 
    954   /// Return a predecessor of BB (which may not be an immediate predecessor)
    955   /// which has exactly one successor from which BB is reachable, or null if
    956   /// no such block is found.
    957   std::pair<BasicBlock *, BasicBlock *>
    958   getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    959 
    960   /// Test whether the condition described by Pred, LHS, and RHS is true
    961   /// whenever the given FoundCondValue value evaluates to true.
    962   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
    963                      Value *FoundCondValue, bool Inverse);
    964 
    965   /// Test whether the condition described by Pred, LHS, and RHS is true
    966   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
    967   /// true.
    968   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
    969                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
    970                      const SCEV *FoundRHS);
    971 
    972   /// Test whether the condition described by Pred, LHS, and RHS is true
    973   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    974   /// true.
    975   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
    976                              const SCEV *RHS, const SCEV *FoundLHS,
    977                              const SCEV *FoundRHS);
    978 
    979   /// Test whether the condition described by Pred, LHS, and RHS is true
    980   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    981   /// true. Here LHS is an operation that includes FoundLHS as one of its
    982   /// arguments.
    983   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
    984                               const SCEV *LHS, const SCEV *RHS,
    985                               const SCEV *FoundLHS, const SCEV *FoundRHS,
    986                               unsigned Depth = 0);
    987 
    988   /// Test whether the condition described by Pred, LHS, and RHS is true.
    989   /// Use only simple non-recursive types of checks, such as range analysis etc.
    990   bool isKnownViaSimpleReasoning(ICmpInst::Predicate Pred,
    991                                  const SCEV *LHS, const SCEV *RHS);
    992 
    993   /// Test whether the condition described by Pred, LHS, and RHS is true
    994   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    995   /// true.
    996   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
    997                                    const SCEV *RHS, const SCEV *FoundLHS,
    998                                    const SCEV *FoundRHS);
    999 
   1000   /// Test whether the condition described by Pred, LHS, and RHS is true
   1001   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
   1002   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
   1003   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
   1004   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
   1005                                       const SCEV *RHS, const SCEV *FoundLHS,
   1006                                       const SCEV *FoundRHS);
   1007 
   1008   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
   1009   /// by a call to \c @llvm.experimental.guard in \p BB.
   1010   bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
   1011                          const SCEV *LHS, const SCEV *RHS);
   1012 
   1013   /// Test whether the condition described by Pred, LHS, and RHS is true
   1014   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
   1015   /// true.
   1016   ///
   1017   /// This routine tries to rule out certain kinds of integer overflow, and
   1018   /// then tries to reason about arithmetic properties of the predicates.
   1019   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
   1020                                           const SCEV *LHS, const SCEV *RHS,
   1021                                           const SCEV *FoundLHS,
   1022                                           const SCEV *FoundRHS);
   1023 
   1024   /// If we know that the specified Phi is in the header of its containing
   1025   /// loop, we know the loop executes a constant number of times, and the PHI
   1026   /// node is just a recurrence involving constants, fold it.
   1027   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
   1028                                               const Loop *L);
   1029 
   1030   /// Test if the given expression is known to satisfy the condition described
   1031   /// by Pred and the known constant ranges of LHS and RHS.
   1032   ///
   1033   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
   1034                                          const SCEV *LHS, const SCEV *RHS);
   1035 
   1036   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
   1037   /// integer overflow.
   1038   ///
   1039   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
   1040   /// positive.
   1041   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
   1042                                      const SCEV *RHS);
   1043 
   1044   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
   1045   /// prove them individually.
   1046   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
   1047                                     const SCEV *RHS);
   1048 
   1049   /// Try to match the Expr as "(L + R)<Flags>".
   1050   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
   1051                       SCEV::NoWrapFlags &Flags);
   1052 
   1053   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
   1054   /// constant, and None if it isn't.
   1055   ///
   1056   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
   1057   /// frugal here since we just bail out of actually constructing and
   1058   /// canonicalizing an expression in the cases where the result isn't going
   1059   /// to be a constant.
   1060   Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
   1061 
   1062   /// Drop memoized information computed for S.
   1063   void forgetMemoizedResults(const SCEV *S);
   1064 
   1065   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
   1066   const SCEV *getExistingSCEV(Value *V);
   1067 
   1068   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
   1069   /// pointer.
   1070   bool checkValidity(const SCEV *S) const;
   1071 
   1072   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
   1073   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
   1074   /// equivalent to proving no signed (resp. unsigned) wrap in
   1075   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
   1076   /// (resp. `SCEVZeroExtendExpr`).
   1077   ///
   1078   template <typename ExtendOpTy>
   1079   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
   1080                                  const Loop *L);
   1081 
   1082   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
   1083   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
   1084 
   1085   bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
   1086                                 ICmpInst::Predicate Pred, bool &Increasing);
   1087 
   1088   /// Return SCEV no-wrap flags that can be proven based on reasoning about
   1089   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
   1090   /// would trigger undefined behavior on overflow.
   1091   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
   1092 
   1093   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
   1094   /// this is more complex than proving that just \p I is never poison, since
   1095   /// SCEV commons expressions across control flow, and you can have cases
   1096   /// like:
   1097   ///
   1098   ///   idx0 = a + b;
   1099   ///   ptr[idx0] = 100;
   1100   ///   if (<condition>) {
   1101   ///     idx1 = a +nsw b;
   1102   ///     ptr[idx1] = 200;
   1103   ///   }
   1104   ///
   1105   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
   1106   /// hence not sign-overflow) only if "<condition>" is true.  Since both
   1107   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
   1108   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
   1109   bool isSCEVExprNeverPoison(const Instruction *I);
   1110 
   1111   /// This is like \c isSCEVExprNeverPoison but it specifically works for
   1112   /// instructions that will get mapped to SCEV add recurrences.  Return true
   1113   /// if \p I will never generate poison under the assumption that \p I is an
   1114   /// add recurrence on the loop \p L.
   1115   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
   1116 
   1117 public:
   1118   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
   1119                   DominatorTree &DT, LoopInfo &LI);
   1120   ~ScalarEvolution();
   1121   ScalarEvolution(ScalarEvolution &&Arg);
   1122 
   1123   LLVMContext &getContext() const { return F.getContext(); }
   1124 
   1125   /// Test if values of the given type are analyzable within the SCEV
   1126   /// framework. This primarily includes integer types, and it can optionally
   1127   /// include pointer types if the ScalarEvolution class has access to
   1128   /// target-specific information.
   1129   bool isSCEVable(Type *Ty) const;
   1130 
   1131   /// Return the size in bits of the specified type, for which isSCEVable must
   1132   /// return true.
   1133   uint64_t getTypeSizeInBits(Type *Ty) const;
   1134 
   1135   /// Return a type with the same bitwidth as the given type and which
   1136   /// represents how SCEV will treat the given type, for which isSCEVable must
   1137   /// return true. For pointer types, this is the pointer-sized integer type.
   1138   Type *getEffectiveSCEVType(Type *Ty) const;
   1139 
   1140   // Returns a wider type among {Ty1, Ty2}.
   1141   Type *getWiderType(Type *Ty1, Type *Ty2) const;
   1142 
   1143   /// Return true if the SCEV is a scAddRecExpr or it contains
   1144   /// scAddRecExpr. The result will be cached in HasRecMap.
   1145   ///
   1146   bool containsAddRecurrence(const SCEV *S);
   1147 
   1148   /// Return the Value set from which the SCEV expr is generated.
   1149   SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S);
   1150 
   1151   /// Erase Value from ValueExprMap and ExprValueMap.
   1152   void eraseValueFromMap(Value *V);
   1153 
   1154   /// Return a SCEV expression for the full generality of the specified
   1155   /// expression.
   1156   const SCEV *getSCEV(Value *V);
   1157 
   1158   const SCEV *getConstant(ConstantInt *V);
   1159   const SCEV *getConstant(const APInt &Val);
   1160   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
   1161   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
   1162   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
   1163   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
   1164   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
   1165   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1166                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
   1167                          unsigned Depth = 0);
   1168   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
   1169                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1170     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
   1171     return getAddExpr(Ops, Flags);
   1172   }
   1173   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
   1174                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1175     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
   1176     return getAddExpr(Ops, Flags);
   1177   }
   1178   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
   1179                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   1180   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
   1181                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1182     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
   1183     return getMulExpr(Ops, Flags);
   1184   }
   1185   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
   1186                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
   1187     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
   1188     return getMulExpr(Ops, Flags);
   1189   }
   1190   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
   1191   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
   1192   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
   1193                             SCEV::NoWrapFlags Flags);
   1194   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
   1195                             const Loop *L, SCEV::NoWrapFlags Flags);
   1196   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
   1197                             const Loop *L, SCEV::NoWrapFlags Flags) {
   1198     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
   1199     return getAddRecExpr(NewOp, L, Flags);
   1200   }
   1201   /// Returns an expression for a GEP
   1202   ///
   1203   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
   1204   /// instead we use IndexExprs.
   1205   /// \p IndexExprs The expressions for the indices.
   1206   const SCEV *getGEPExpr(GEPOperator *GEP,
   1207                          const SmallVectorImpl<const SCEV *> &IndexExprs);
   1208   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
   1209   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
   1210   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
   1211   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
   1212   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
   1213   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
   1214   const SCEV *getUnknown(Value *V);
   1215   const SCEV *getCouldNotCompute();
   1216 
   1217   /// Return a SCEV for the constant 0 of a specific type.
   1218   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
   1219 
   1220   /// Return a SCEV for the constant 1 of a specific type.
   1221   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
   1222 
   1223   /// Return an expression for sizeof AllocTy that is type IntTy
   1224   ///
   1225   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
   1226 
   1227   /// Return an expression for offsetof on the given field with type IntTy
   1228   ///
   1229   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
   1230 
   1231   /// Return the SCEV object corresponding to -V.
   1232   ///
   1233   const SCEV *getNegativeSCEV(const SCEV *V,
   1234                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   1235 
   1236   /// Return the SCEV object corresponding to ~V.
   1237   ///
   1238   const SCEV *getNotSCEV(const SCEV *V);
   1239 
   1240   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
   1241   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
   1242                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
   1243 
   1244   /// Return a SCEV corresponding to a conversion of the input value to the
   1245   /// specified type.  If the type must be extended, it is zero extended.
   1246   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
   1247 
   1248   /// Return a SCEV corresponding to a conversion of the input value to the
   1249   /// specified type.  If the type must be extended, it is sign extended.
   1250   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
   1251 
   1252   /// Return a SCEV corresponding to a conversion of the input value to the
   1253   /// specified type.  If the type must be extended, it is zero extended.  The
   1254   /// conversion must not be narrowing.
   1255   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
   1256 
   1257   /// Return a SCEV corresponding to a conversion of the input value to the
   1258   /// specified type.  If the type must be extended, it is sign extended.  The
   1259   /// conversion must not be narrowing.
   1260   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
   1261 
   1262   /// Return a SCEV corresponding to a conversion of the input value to the
   1263   /// specified type. If the type must be extended, it is extended with
   1264   /// unspecified bits. The conversion must not be narrowing.
   1265   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
   1266 
   1267   /// Return a SCEV corresponding to a conversion of the input value to the
   1268   /// specified type.  The conversion must not be widening.
   1269   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
   1270 
   1271   /// Promote the operands to the wider of the types using zero-extension, and
   1272   /// then perform a umax operation with them.
   1273   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
   1274 
   1275   /// Promote the operands to the wider of the types using zero-extension, and
   1276   /// then perform a umin operation with them.
   1277   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
   1278 
   1279   /// Transitively follow the chain of pointer-type operands until reaching a
   1280   /// SCEV that does not have a single pointer operand. This returns a
   1281   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
   1282   /// cases do exist.
   1283   const SCEV *getPointerBase(const SCEV *V);
   1284 
   1285   /// Return a SCEV expression for the specified value at the specified scope
   1286   /// in the program.  The L value specifies a loop nest to evaluate the
   1287   /// expression at, where null is the top-level or a specified loop is
   1288   /// immediately inside of the loop.
   1289   ///
   1290   /// This method can be used to compute the exit value for a variable defined
   1291   /// in a loop by querying what the value will hold in the parent loop.
   1292   ///
   1293   /// In the case that a relevant loop exit value cannot be computed, the
   1294   /// original value V is returned.
   1295   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
   1296 
   1297   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
   1298   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
   1299 
   1300   /// Test whether entry to the loop is protected by a conditional between LHS
   1301   /// and RHS.  This is used to help avoid max expressions in loop trip
   1302   /// counts, and to eliminate casts.
   1303   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
   1304                                 const SCEV *LHS, const SCEV *RHS);
   1305 
   1306   /// Test whether the backedge of the loop is protected by a conditional
   1307   /// between LHS and RHS.  This is used to to eliminate casts.
   1308   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
   1309                                    const SCEV *LHS, const SCEV *RHS);
   1310 
   1311   /// Returns the maximum trip count of the loop if it is a single-exit
   1312   /// loop and we can compute a small maximum for that loop.
   1313   ///
   1314   /// Implemented in terms of the \c getSmallConstantTripCount overload with
   1315   /// the single exiting block passed to it. See that routine for details.
   1316   unsigned getSmallConstantTripCount(const Loop *L);
   1317 
   1318   /// Returns the maximum trip count of this loop as a normal unsigned
   1319   /// value. Returns 0 if the trip count is unknown or not constant. This
   1320   /// "trip count" assumes that control exits via ExitingBlock. More
   1321   /// precisely, it is the number of times that control may reach ExitingBlock
   1322   /// before taking the branch. For loops with multiple exits, it may not be
   1323   /// the number times that the loop header executes if the loop exits
   1324   /// prematurely via another branch.
   1325   unsigned getSmallConstantTripCount(const Loop *L, BasicBlock *ExitingBlock);
   1326 
   1327   /// Returns the upper bound of the loop trip count as a normal unsigned
   1328   /// value.
   1329   /// Returns 0 if the trip count is unknown or not constant.
   1330   unsigned getSmallConstantMaxTripCount(const Loop *L);
   1331 
   1332   /// Returns the largest constant divisor of the trip count of the
   1333   /// loop if it is a single-exit loop and we can compute a small maximum for
   1334   /// that loop.
   1335   ///
   1336   /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
   1337   /// the single exiting block passed to it. See that routine for details.
   1338   unsigned getSmallConstantTripMultiple(const Loop *L);
   1339 
   1340   /// Returns the largest constant divisor of the trip count of this loop as a
   1341   /// normal unsigned value, if possible. This means that the actual trip
   1342   /// count is always a multiple of the returned value (don't forget the trip
   1343   /// count could very well be zero as well!). As explained in the comments
   1344   /// for getSmallConstantTripCount, this assumes that control exits the loop
   1345   /// via ExitingBlock.
   1346   unsigned getSmallConstantTripMultiple(const Loop *L,
   1347                                         BasicBlock *ExitingBlock);
   1348 
   1349   /// Get the expression for the number of loop iterations for which this loop
   1350   /// is guaranteed not to exit via ExitingBlock. Otherwise return
   1351   /// SCEVCouldNotCompute.
   1352   const SCEV *getExitCount(const Loop *L, BasicBlock *ExitingBlock);
   1353 
   1354   /// If the specified loop has a predictable backedge-taken count, return it,
   1355   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
   1356   /// is the number of times the loop header will be branched to from within
   1357   /// the loop. This is one less than the trip count of the loop, since it
   1358   /// doesn't count the first iteration, when the header is branched to from
   1359   /// outside the loop.
   1360   ///
   1361   /// Note that it is not valid to call this method on a loop without a
   1362   /// loop-invariant backedge-taken count (see
   1363   /// hasLoopInvariantBackedgeTakenCount).
   1364   ///
   1365   const SCEV *getBackedgeTakenCount(const Loop *L);
   1366 
   1367   /// Similar to getBackedgeTakenCount, except it will add a set of
   1368   /// SCEV predicates to Predicates that are required to be true in order for
   1369   /// the answer to be correct. Predicates can be checked with run-time
   1370   /// checks and can be used to perform loop versioning.
   1371   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
   1372                                               SCEVUnionPredicate &Predicates);
   1373 
   1374   /// Similar to getBackedgeTakenCount, except return the least SCEV value
   1375   /// that is known never to be less than the actual backedge taken count.
   1376   const SCEV *getMaxBackedgeTakenCount(const Loop *L);
   1377 
   1378   /// Return true if the backedge taken count is either the value returned by
   1379   /// getMaxBackedgeTakenCount or zero.
   1380   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
   1381 
   1382   /// Return true if the specified loop has an analyzable loop-invariant
   1383   /// backedge-taken count.
   1384   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
   1385 
   1386   /// This method should be called by the client when it has changed a loop in
   1387   /// a way that may effect ScalarEvolution's ability to compute a trip count,
   1388   /// or if the loop is deleted.  This call is potentially expensive for large
   1389   /// loop bodies.
   1390   void forgetLoop(const Loop *L);
   1391 
   1392   /// This method should be called by the client when it has changed a value
   1393   /// in a way that may effect its value, or which may disconnect it from a
   1394   /// def-use chain linking it to a loop.
   1395   void forgetValue(Value *V);
   1396 
   1397   /// Called when the client has changed the disposition of values in
   1398   /// this loop.
   1399   ///
   1400   /// We don't have a way to invalidate per-loop dispositions. Clear and
   1401   /// recompute is simpler.
   1402   void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
   1403 
   1404   /// Determine the minimum number of zero bits that S is guaranteed to end in
   1405   /// (at every loop iteration).  It is, at the same time, the minimum number
   1406   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
   1407   /// If S is guaranteed to be 0, it returns the bitwidth of S.
   1408   uint32_t GetMinTrailingZeros(const SCEV *S);
   1409 
   1410   /// Determine the unsigned range for a particular SCEV.
   1411   ///
   1412   ConstantRange getUnsignedRange(const SCEV *S) {
   1413     return getRange(S, HINT_RANGE_UNSIGNED);
   1414   }
   1415 
   1416   /// Determine the signed range for a particular SCEV.
   1417   ///
   1418   ConstantRange getSignedRange(const SCEV *S) {
   1419     return getRange(S, HINT_RANGE_SIGNED);
   1420   }
   1421 
   1422   /// Test if the given expression is known to be negative.
   1423   ///
   1424   bool isKnownNegative(const SCEV *S);
   1425 
   1426   /// Test if the given expression is known to be positive.
   1427   ///
   1428   bool isKnownPositive(const SCEV *S);
   1429 
   1430   /// Test if the given expression is known to be non-negative.
   1431   ///
   1432   bool isKnownNonNegative(const SCEV *S);
   1433 
   1434   /// Test if the given expression is known to be non-positive.
   1435   ///
   1436   bool isKnownNonPositive(const SCEV *S);
   1437 
   1438   /// Test if the given expression is known to be non-zero.
   1439   ///
   1440   bool isKnownNonZero(const SCEV *S);
   1441 
   1442   /// Test if the given expression is known to satisfy the condition described
   1443   /// by Pred, LHS, and RHS.
   1444   ///
   1445   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
   1446                         const SCEV *RHS);
   1447 
   1448   /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
   1449   /// is monotonically increasing or decreasing.  In the former case set
   1450   /// `Increasing` to true and in the latter case set `Increasing` to false.
   1451   ///
   1452   /// A predicate is said to be monotonically increasing if may go from being
   1453   /// false to being true as the loop iterates, but never the other way
   1454   /// around.  A predicate is said to be monotonically decreasing if may go
   1455   /// from being true to being false as the loop iterates, but never the other
   1456   /// way around.
   1457   bool isMonotonicPredicate(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred,
   1458                             bool &Increasing);
   1459 
   1460   /// Return true if the result of the predicate LHS `Pred` RHS is loop
   1461   /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
   1462   /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
   1463   /// loop invariant form of LHS `Pred` RHS.
   1464   bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
   1465                                 const SCEV *RHS, const Loop *L,
   1466                                 ICmpInst::Predicate &InvariantPred,
   1467                                 const SCEV *&InvariantLHS,
   1468                                 const SCEV *&InvariantRHS);
   1469 
   1470   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
   1471   /// iff any changes were made. If the operands are provably equal or
   1472   /// unequal, LHS and RHS are set to the same value and Pred is set to either
   1473   /// ICMP_EQ or ICMP_NE.
   1474   ///
   1475   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
   1476                             const SCEV *&RHS, unsigned Depth = 0);
   1477 
   1478   /// Return the "disposition" of the given SCEV with respect to the given
   1479   /// loop.
   1480   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
   1481 
   1482   /// Return true if the value of the given SCEV is unchanging in the
   1483   /// specified loop.
   1484   bool isLoopInvariant(const SCEV *S, const Loop *L);
   1485 
   1486   /// Return true if the given SCEV changes value in a known way in the
   1487   /// specified loop.  This property being true implies that the value is
   1488   /// variant in the loop AND that we can emit an expression to compute the
   1489   /// value of the expression at any particular loop iteration.
   1490   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
   1491 
   1492   /// Return the "disposition" of the given SCEV with respect to the given
   1493   /// block.
   1494   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
   1495 
   1496   /// Return true if elements that makes up the given SCEV dominate the
   1497   /// specified basic block.
   1498   bool dominates(const SCEV *S, const BasicBlock *BB);
   1499 
   1500   /// Return true if elements that makes up the given SCEV properly dominate
   1501   /// the specified basic block.
   1502   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
   1503 
   1504   /// Test whether the given SCEV has Op as a direct or indirect operand.
   1505   bool hasOperand(const SCEV *S, const SCEV *Op) const;
   1506 
   1507   /// Return the size of an element read or written by Inst.
   1508   const SCEV *getElementSize(Instruction *Inst);
   1509 
   1510   /// Compute the array dimensions Sizes from the set of Terms extracted from
   1511   /// the memory access function of this SCEVAddRecExpr (second step of
   1512   /// delinearization).
   1513   void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
   1514                            SmallVectorImpl<const SCEV *> &Sizes,
   1515                            const SCEV *ElementSize) const;
   1516 
   1517   void print(raw_ostream &OS) const;
   1518   void verify() const;
   1519   bool invalidate(Function &F, const PreservedAnalyses &PA,
   1520                   FunctionAnalysisManager::Invalidator &Inv);
   1521 
   1522   /// Collect parametric terms occurring in step expressions (first step of
   1523   /// delinearization).
   1524   void collectParametricTerms(const SCEV *Expr,
   1525                               SmallVectorImpl<const SCEV *> &Terms);
   1526 
   1527   /// Return in Subscripts the access functions for each dimension in Sizes
   1528   /// (third step of delinearization).
   1529   void computeAccessFunctions(const SCEV *Expr,
   1530                               SmallVectorImpl<const SCEV *> &Subscripts,
   1531                               SmallVectorImpl<const SCEV *> &Sizes);
   1532 
   1533   /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
   1534   /// subscripts and sizes of an array access.
   1535   ///
   1536   /// The delinearization is a 3 step process: the first two steps compute the
   1537   /// sizes of each subscript and the third step computes the access functions
   1538   /// for the delinearized array:
   1539   ///
   1540   /// 1. Find the terms in the step functions
   1541   /// 2. Compute the array size
   1542   /// 3. Compute the access function: divide the SCEV by the array size
   1543   ///    starting with the innermost dimensions found in step 2. The Quotient
   1544   ///    is the SCEV to be divided in the next step of the recursion. The
   1545   ///    Remainder is the subscript of the innermost dimension. Loop over all
   1546   ///    array dimensions computed in step 2.
   1547   ///
   1548   /// To compute a uniform array size for several memory accesses to the same
   1549   /// object, one can collect in step 1 all the step terms for all the memory
   1550   /// accesses, and compute in step 2 a unique array shape. This guarantees
   1551   /// that the array shape will be the same across all memory accesses.
   1552   ///
   1553   /// FIXME: We could derive the result of steps 1 and 2 from a description of
   1554   /// the array shape given in metadata.
   1555   ///
   1556   /// Example:
   1557   ///
   1558   /// A[][n][m]
   1559   ///
   1560   /// for i
   1561   ///   for j
   1562   ///     for k
   1563   ///       A[j+k][2i][5i] =
   1564   ///
   1565   /// The initial SCEV:
   1566   ///
   1567   /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
   1568   ///
   1569   /// 1. Find the different terms in the step functions:
   1570   /// -> [2*m, 5, n*m, n*m]
   1571   ///
   1572   /// 2. Compute the array size: sort and unique them
   1573   /// -> [n*m, 2*m, 5]
   1574   /// find the GCD of all the terms = 1
   1575   /// divide by the GCD and erase constant terms
   1576   /// -> [n*m, 2*m]
   1577   /// GCD = m
   1578   /// divide by GCD -> [n, 2]
   1579   /// remove constant terms
   1580   /// -> [n]
   1581   /// size of the array is A[unknown][n][m]
   1582   ///
   1583   /// 3. Compute the access function
   1584   /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
   1585   /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
   1586   /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
   1587   /// The remainder is the subscript of the innermost array dimension: [5i].
   1588   ///
   1589   /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
   1590   /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
   1591   /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
   1592   /// The Remainder is the subscript of the next array dimension: [2i].
   1593   ///
   1594   /// The subscript of the outermost dimension is the Quotient: [j+k].
   1595   ///
   1596   /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
   1597   void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
   1598                    SmallVectorImpl<const SCEV *> &Sizes,
   1599                    const SCEV *ElementSize);
   1600 
   1601   /// Return the DataLayout associated with the module this SCEV instance is
   1602   /// operating on.
   1603   const DataLayout &getDataLayout() const {
   1604     return F.getParent()->getDataLayout();
   1605   }
   1606 
   1607   const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
   1608                                          const SCEVConstant *RHS);
   1609 
   1610   const SCEVPredicate *
   1611   getWrapPredicate(const SCEVAddRecExpr *AR,
   1612                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
   1613 
   1614   /// Re-writes the SCEV according to the Predicates in \p A.
   1615   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
   1616                                     SCEVUnionPredicate &A);
   1617   /// Tries to convert the \p S expression to an AddRec expression,
   1618   /// adding additional predicates to \p Preds as required.
   1619   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
   1620       const SCEV *S, const Loop *L,
   1621       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
   1622 
   1623 private:
   1624   /// Compute the backedge taken count knowing the interval difference, the
   1625   /// stride and presence of the equality in the comparison.
   1626   const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
   1627                              bool Equality);
   1628 
   1629   /// Verify if an linear IV with positive stride can overflow when in a
   1630   /// less-than comparison, knowing the invariant term of the comparison,
   1631   /// the stride and the knowledge of NSW/NUW flags on the recurrence.
   1632   bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
   1633                           bool NoWrap);
   1634 
   1635   /// Verify if an linear IV with negative stride can overflow when in a
   1636   /// greater-than comparison, knowing the invariant term of the comparison,
   1637   /// the stride and the knowledge of NSW/NUW flags on the recurrence.
   1638   bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
   1639                           bool NoWrap);
   1640 
   1641   /// Get add expr already created or create a new one
   1642   const SCEV *getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
   1643                                  SCEV::NoWrapFlags Flags);
   1644 
   1645 private:
   1646   FoldingSet<SCEV> UniqueSCEVs;
   1647   FoldingSet<SCEVPredicate> UniquePreds;
   1648   BumpPtrAllocator SCEVAllocator;
   1649 
   1650   /// The head of a linked list of all SCEVUnknown values that have been
   1651   /// allocated. This is used by releaseMemory to locate them all and call
   1652   /// their destructors.
   1653   SCEVUnknown *FirstUnknown;
   1654 };
   1655 
   1656 /// Analysis pass that exposes the \c ScalarEvolution for a function.
   1657 class ScalarEvolutionAnalysis
   1658     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
   1659   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
   1660   static AnalysisKey Key;
   1661 
   1662 public:
   1663   typedef ScalarEvolution Result;
   1664 
   1665   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
   1666 };
   1667 
   1668 /// Printer pass for the \c ScalarEvolutionAnalysis results.
   1669 class ScalarEvolutionPrinterPass
   1670     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
   1671   raw_ostream &OS;
   1672 
   1673 public:
   1674   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
   1675   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
   1676 };
   1677 
   1678 class ScalarEvolutionWrapperPass : public FunctionPass {
   1679   std::unique_ptr<ScalarEvolution> SE;
   1680 
   1681 public:
   1682   static char ID;
   1683 
   1684   ScalarEvolutionWrapperPass();
   1685 
   1686   ScalarEvolution &getSE() { return *SE; }
   1687   const ScalarEvolution &getSE() const { return *SE; }
   1688 
   1689   bool runOnFunction(Function &F) override;
   1690   void releaseMemory() override;
   1691   void getAnalysisUsage(AnalysisUsage &AU) const override;
   1692   void print(raw_ostream &OS, const Module * = nullptr) const override;
   1693   void verifyAnalysis() const override;
   1694 };
   1695 
   1696 /// An interface layer with SCEV used to manage how we see SCEV expressions
   1697 /// for values in the context of existing predicates. We can add new
   1698 /// predicates, but we cannot remove them.
   1699 ///
   1700 /// This layer has multiple purposes:
   1701 ///   - provides a simple interface for SCEV versioning.
   1702 ///   - guarantees that the order of transformations applied on a SCEV
   1703 ///     expression for a single Value is consistent across two different
   1704 ///     getSCEV calls. This means that, for example, once we've obtained
   1705 ///     an AddRec expression for a certain value through expression
   1706 ///     rewriting, we will continue to get an AddRec expression for that
   1707 ///     Value.
   1708 ///   - lowers the number of expression rewrites.
   1709 class PredicatedScalarEvolution {
   1710 public:
   1711   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
   1712   const SCEVUnionPredicate &getUnionPredicate() const;
   1713 
   1714   /// Returns the SCEV expression of V, in the context of the current SCEV
   1715   /// predicate.  The order of transformations applied on the expression of V
   1716   /// returned by ScalarEvolution is guaranteed to be preserved, even when
   1717   /// adding new predicates.
   1718   const SCEV *getSCEV(Value *V);
   1719 
   1720   /// Get the (predicated) backedge count for the analyzed loop.
   1721   const SCEV *getBackedgeTakenCount();
   1722 
   1723   /// Adds a new predicate.
   1724   void addPredicate(const SCEVPredicate &Pred);
   1725 
   1726   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
   1727   /// predicates. If we can't transform the expression into an AddRecExpr we
   1728   /// return nullptr and not add additional SCEV predicates to the current
   1729   /// context.
   1730   const SCEVAddRecExpr *getAsAddRec(Value *V);
   1731 
   1732   /// Proves that V doesn't overflow by adding SCEV predicate.
   1733   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
   1734 
   1735   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
   1736   /// predicate.
   1737   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
   1738 
   1739   /// Returns the ScalarEvolution analysis used.
   1740   ScalarEvolution *getSE() const { return &SE; }
   1741 
   1742   /// We need to explicitly define the copy constructor because of FlagsMap.
   1743   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
   1744 
   1745   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
   1746   /// The printed text is indented by \p Depth.
   1747   void print(raw_ostream &OS, unsigned Depth) const;
   1748 
   1749 private:
   1750   /// Increments the version number of the predicate.  This needs to be called
   1751   /// every time the SCEV predicate changes.
   1752   void updateGeneration();
   1753 
   1754   /// Holds a SCEV and the version number of the SCEV predicate used to
   1755   /// perform the rewrite of the expression.
   1756   typedef std::pair<unsigned, const SCEV *> RewriteEntry;
   1757 
   1758   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
   1759   /// number. If this number doesn't match the current Generation, we will
   1760   /// need to do a rewrite. To preserve the transformation order of previous
   1761   /// rewrites, we will rewrite the previous result instead of the original
   1762   /// SCEV.
   1763   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
   1764 
   1765   /// Records what NoWrap flags we've added to a Value *.
   1766   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
   1767 
   1768   /// The ScalarEvolution analysis.
   1769   ScalarEvolution &SE;
   1770 
   1771   /// The analyzed Loop.
   1772   const Loop &L;
   1773 
   1774   /// The SCEVPredicate that forms our context. We will rewrite all
   1775   /// expressions assuming that this predicate true.
   1776   SCEVUnionPredicate Preds;
   1777 
   1778   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
   1779   /// expression we mark it with the version of the predicate. We use this to
   1780   /// figure out if the predicate has changed from the last rewrite of the
   1781   /// SCEV. If so, we need to perform a new rewrite.
   1782   unsigned Generation;
   1783 
   1784   /// The backedge taken count.
   1785   const SCEV *BackedgeCount;
   1786 };
   1787 }
   1788 
   1789 #endif
   1790