Home | History | Annotate | Download | only in Analysis
      1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This pass exposes codegen information to IR-level passes. Every
     11 /// transformation that uses codegen information is broken into three parts:
     12 /// 1. The IR-level analysis pass.
     13 /// 2. The IR-level transformation interface which provides the needed
     14 ///    information.
     15 /// 3. Codegen-level implementation which uses target-specific hooks.
     16 ///
     17 /// This file defines #2, which is the interface that IR-level transformations
     18 /// use for querying the codegen.
     19 ///
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
     23 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
     24 
     25 #include "llvm/ADT/Optional.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/IR/PassManager.h"
     30 #include "llvm/Pass.h"
     31 #include "llvm/Support/DataTypes.h"
     32 #include <functional>
     33 
     34 namespace llvm {
     35 
     36 class Function;
     37 class GlobalValue;
     38 class Loop;
     39 class ScalarEvolution;
     40 class SCEV;
     41 class Type;
     42 class User;
     43 class Value;
     44 
     45 /// \brief Information about a load/store intrinsic defined by the target.
     46 struct MemIntrinsicInfo {
     47   /// This is the pointer that the intrinsic is loading from or storing to.
     48   /// If this is non-null, then analysis/optimization passes can assume that
     49   /// this intrinsic is functionally equivalent to a load/store from this
     50   /// pointer.
     51   Value *PtrVal = nullptr;
     52 
     53   // Ordering for atomic operations.
     54   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
     55 
     56   // Same Id is set by the target for corresponding load/store intrinsics.
     57   unsigned short MatchingId = 0;
     58 
     59   bool ReadMem = false;
     60   bool WriteMem = false;
     61   bool IsVolatile = false;
     62 
     63   bool isUnordered() const {
     64     return (Ordering == AtomicOrdering::NotAtomic ||
     65             Ordering == AtomicOrdering::Unordered) && !IsVolatile;
     66   }
     67 };
     68 
     69 /// \brief This pass provides access to the codegen interfaces that are needed
     70 /// for IR-level transformations.
     71 class TargetTransformInfo {
     72 public:
     73   /// \brief Construct a TTI object using a type implementing the \c Concept
     74   /// API below.
     75   ///
     76   /// This is used by targets to construct a TTI wrapping their target-specific
     77   /// implementaion that encodes appropriate costs for their target.
     78   template <typename T> TargetTransformInfo(T Impl);
     79 
     80   /// \brief Construct a baseline TTI object using a minimal implementation of
     81   /// the \c Concept API below.
     82   ///
     83   /// The TTI implementation will reflect the information in the DataLayout
     84   /// provided if non-null.
     85   explicit TargetTransformInfo(const DataLayout &DL);
     86 
     87   // Provide move semantics.
     88   TargetTransformInfo(TargetTransformInfo &&Arg);
     89   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
     90 
     91   // We need to define the destructor out-of-line to define our sub-classes
     92   // out-of-line.
     93   ~TargetTransformInfo();
     94 
     95   /// \brief Handle the invalidation of this information.
     96   ///
     97   /// When used as a result of \c TargetIRAnalysis this method will be called
     98   /// when the function this was computed for changes. When it returns false,
     99   /// the information is preserved across those changes.
    100   bool invalidate(Function &, const PreservedAnalyses &,
    101                   FunctionAnalysisManager::Invalidator &) {
    102     // FIXME: We should probably in some way ensure that the subtarget
    103     // information for a function hasn't changed.
    104     return false;
    105   }
    106 
    107   /// \name Generic Target Information
    108   /// @{
    109 
    110   /// \brief Underlying constants for 'cost' values in this interface.
    111   ///
    112   /// Many APIs in this interface return a cost. This enum defines the
    113   /// fundamental values that should be used to interpret (and produce) those
    114   /// costs. The costs are returned as an int rather than a member of this
    115   /// enumeration because it is expected that the cost of one IR instruction
    116   /// may have a multiplicative factor to it or otherwise won't fit directly
    117   /// into the enum. Moreover, it is common to sum or average costs which works
    118   /// better as simple integral values. Thus this enum only provides constants.
    119   /// Also note that the returned costs are signed integers to make it natural
    120   /// to add, subtract, and test with zero (a common boundary condition). It is
    121   /// not expected that 2^32 is a realistic cost to be modeling at any point.
    122   ///
    123   /// Note that these costs should usually reflect the intersection of code-size
    124   /// cost and execution cost. A free instruction is typically one that folds
    125   /// into another instruction. For example, reg-to-reg moves can often be
    126   /// skipped by renaming the registers in the CPU, but they still are encoded
    127   /// and thus wouldn't be considered 'free' here.
    128   enum TargetCostConstants {
    129     TCC_Free = 0,     ///< Expected to fold away in lowering.
    130     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
    131     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
    132   };
    133 
    134   /// \brief Estimate the cost of a specific operation when lowered.
    135   ///
    136   /// Note that this is designed to work on an arbitrary synthetic opcode, and
    137   /// thus work for hypothetical queries before an instruction has even been
    138   /// formed. However, this does *not* work for GEPs, and must not be called
    139   /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
    140   /// analyzing a GEP's cost required more information.
    141   ///
    142   /// Typically only the result type is required, and the operand type can be
    143   /// omitted. However, if the opcode is one of the cast instructions, the
    144   /// operand type is required.
    145   ///
    146   /// The returned cost is defined in terms of \c TargetCostConstants, see its
    147   /// comments for a detailed explanation of the cost values.
    148   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
    149 
    150   /// \brief Estimate the cost of a GEP operation when lowered.
    151   ///
    152   /// The contract for this function is the same as \c getOperationCost except
    153   /// that it supports an interface that provides extra information specific to
    154   /// the GEP operation.
    155   int getGEPCost(Type *PointeeType, const Value *Ptr,
    156                  ArrayRef<const Value *> Operands) const;
    157 
    158   /// \brief Estimate the cost of a function call when lowered.
    159   ///
    160   /// The contract for this is the same as \c getOperationCost except that it
    161   /// supports an interface that provides extra information specific to call
    162   /// instructions.
    163   ///
    164   /// This is the most basic query for estimating call cost: it only knows the
    165   /// function type and (potentially) the number of arguments at the call site.
    166   /// The latter is only interesting for varargs function types.
    167   int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
    168 
    169   /// \brief Estimate the cost of calling a specific function when lowered.
    170   ///
    171   /// This overload adds the ability to reason about the particular function
    172   /// being called in the event it is a library call with special lowering.
    173   int getCallCost(const Function *F, int NumArgs = -1) const;
    174 
    175   /// \brief Estimate the cost of calling a specific function when lowered.
    176   ///
    177   /// This overload allows specifying a set of candidate argument values.
    178   int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
    179 
    180   /// \returns A value by which our inlining threshold should be multiplied.
    181   /// This is primarily used to bump up the inlining threshold wholesale on
    182   /// targets where calls are unusually expensive.
    183   ///
    184   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
    185   /// individual classes of instructions would be better.
    186   unsigned getInliningThresholdMultiplier() const;
    187 
    188   /// \brief Estimate the cost of an intrinsic when lowered.
    189   ///
    190   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
    191   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    192                        ArrayRef<Type *> ParamTys) const;
    193 
    194   /// \brief Estimate the cost of an intrinsic when lowered.
    195   ///
    196   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
    197   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    198                        ArrayRef<const Value *> Arguments) const;
    199 
    200   /// \brief Estimate the cost of a given IR user when lowered.
    201   ///
    202   /// This can estimate the cost of either a ConstantExpr or Instruction when
    203   /// lowered. It has two primary advantages over the \c getOperationCost and
    204   /// \c getGEPCost above, and one significant disadvantage: it can only be
    205   /// used when the IR construct has already been formed.
    206   ///
    207   /// The advantages are that it can inspect the SSA use graph to reason more
    208   /// accurately about the cost. For example, all-constant-GEPs can often be
    209   /// folded into a load or other instruction, but if they are used in some
    210   /// other context they may not be folded. This routine can distinguish such
    211   /// cases.
    212   ///
    213   /// The returned cost is defined in terms of \c TargetCostConstants, see its
    214   /// comments for a detailed explanation of the cost values.
    215   int getUserCost(const User *U) const;
    216 
    217   /// \brief Return true if branch divergence exists.
    218   ///
    219   /// Branch divergence has a significantly negative impact on GPU performance
    220   /// when threads in the same wavefront take different paths due to conditional
    221   /// branches.
    222   bool hasBranchDivergence() const;
    223 
    224   /// \brief Returns whether V is a source of divergence.
    225   ///
    226   /// This function provides the target-dependent information for
    227   /// the target-independent DivergenceAnalysis. DivergenceAnalysis first
    228   /// builds the dependency graph, and then runs the reachability algorithm
    229   /// starting with the sources of divergence.
    230   bool isSourceOfDivergence(const Value *V) const;
    231 
    232   /// Returns the address space ID for a target's 'flat' address space. Note
    233   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
    234   /// refers to as the generic address space. The flat address space is a
    235   /// generic address space that can be used access multiple segments of memory
    236   /// with different address spaces. Access of a memory location through a
    237   /// pointer with this address space is expected to be legal but slower
    238   /// compared to the same memory location accessed through a pointer with a
    239   /// different address space.
    240   //
    241   /// This is for for targets with different pointer representations which can
    242   /// be converted with the addrspacecast instruction. If a pointer is converted
    243   /// to this address space, optimizations should attempt to replace the access
    244   /// with the source address space.
    245   ///
    246   /// \returns ~0u if the target does not have such a flat address space to
    247   /// optimize away.
    248   unsigned getFlatAddressSpace() const;
    249 
    250   /// \brief Test whether calls to a function lower to actual program function
    251   /// calls.
    252   ///
    253   /// The idea is to test whether the program is likely to require a 'call'
    254   /// instruction or equivalent in order to call the given function.
    255   ///
    256   /// FIXME: It's not clear that this is a good or useful query API. Client's
    257   /// should probably move to simpler cost metrics using the above.
    258   /// Alternatively, we could split the cost interface into distinct code-size
    259   /// and execution-speed costs. This would allow modelling the core of this
    260   /// query more accurately as a call is a single small instruction, but
    261   /// incurs significant execution cost.
    262   bool isLoweredToCall(const Function *F) const;
    263 
    264   /// Parameters that control the generic loop unrolling transformation.
    265   struct UnrollingPreferences {
    266     /// The cost threshold for the unrolled loop. Should be relative to the
    267     /// getUserCost values returned by this API, and the expectation is that
    268     /// the unrolled loop's instructions when run through that interface should
    269     /// not exceed this cost. However, this is only an estimate. Also, specific
    270     /// loops may be unrolled even with a cost above this threshold if deemed
    271     /// profitable. Set this to UINT_MAX to disable the loop body cost
    272     /// restriction.
    273     unsigned Threshold;
    274     /// If complete unrolling will reduce the cost of the loop, we will boost
    275     /// the Threshold by a certain percent to allow more aggressive complete
    276     /// unrolling. This value provides the maximum boost percentage that we
    277     /// can apply to Threshold (The value should be no less than 100).
    278     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
    279     ///                                    MaxPercentThresholdBoost / 100)
    280     /// E.g. if complete unrolling reduces the loop execution time by 50%
    281     /// then we boost the threshold by the factor of 2x. If unrolling is not
    282     /// expected to reduce the running time, then we do not increase the
    283     /// threshold.
    284     unsigned MaxPercentThresholdBoost;
    285     /// The cost threshold for the unrolled loop when optimizing for size (set
    286     /// to UINT_MAX to disable).
    287     unsigned OptSizeThreshold;
    288     /// The cost threshold for the unrolled loop, like Threshold, but used
    289     /// for partial/runtime unrolling (set to UINT_MAX to disable).
    290     unsigned PartialThreshold;
    291     /// The cost threshold for the unrolled loop when optimizing for size, like
    292     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
    293     /// UINT_MAX to disable).
    294     unsigned PartialOptSizeThreshold;
    295     /// A forced unrolling factor (the number of concatenated bodies of the
    296     /// original loop in the unrolled loop body). When set to 0, the unrolling
    297     /// transformation will select an unrolling factor based on the current cost
    298     /// threshold and other factors.
    299     unsigned Count;
    300     /// A forced peeling factor (the number of bodied of the original loop
    301     /// that should be peeled off before the loop body). When set to 0, the
    302     /// unrolling transformation will select a peeling factor based on profile
    303     /// information and other factors.
    304     unsigned PeelCount;
    305     /// Default unroll count for loops with run-time trip count.
    306     unsigned DefaultUnrollRuntimeCount;
    307     // Set the maximum unrolling factor. The unrolling factor may be selected
    308     // using the appropriate cost threshold, but may not exceed this number
    309     // (set to UINT_MAX to disable). This does not apply in cases where the
    310     // loop is being fully unrolled.
    311     unsigned MaxCount;
    312     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
    313     /// applies even if full unrolling is selected. This allows a target to fall
    314     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
    315     unsigned FullUnrollMaxCount;
    316     // Represents number of instructions optimized when "back edge"
    317     // becomes "fall through" in unrolled loop.
    318     // For now we count a conditional branch on a backedge and a comparison
    319     // feeding it.
    320     unsigned BEInsns;
    321     /// Allow partial unrolling (unrolling of loops to expand the size of the
    322     /// loop body, not only to eliminate small constant-trip-count loops).
    323     bool Partial;
    324     /// Allow runtime unrolling (unrolling of loops to expand the size of the
    325     /// loop body even when the number of loop iterations is not known at
    326     /// compile time).
    327     bool Runtime;
    328     /// Allow generation of a loop remainder (extra iterations after unroll).
    329     bool AllowRemainder;
    330     /// Allow emitting expensive instructions (such as divisions) when computing
    331     /// the trip count of a loop for runtime unrolling.
    332     bool AllowExpensiveTripCount;
    333     /// Apply loop unroll on any kind of loop
    334     /// (mainly to loops that fail runtime unrolling).
    335     bool Force;
    336     /// Allow using trip count upper bound to unroll loops.
    337     bool UpperBound;
    338     /// Allow peeling off loop iterations for loops with low dynamic tripcount.
    339     bool AllowPeeling;
    340   };
    341 
    342   /// \brief Get target-customized preferences for the generic loop unrolling
    343   /// transformation. The caller will initialize UP with the current
    344   /// target-independent defaults.
    345   void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
    346 
    347   /// @}
    348 
    349   /// \name Scalar Target Information
    350   /// @{
    351 
    352   /// \brief Flags indicating the kind of support for population count.
    353   ///
    354   /// Compared to the SW implementation, HW support is supposed to
    355   /// significantly boost the performance when the population is dense, and it
    356   /// may or may not degrade performance if the population is sparse. A HW
    357   /// support is considered as "Fast" if it can outperform, or is on a par
    358   /// with, SW implementation when the population is sparse; otherwise, it is
    359   /// considered as "Slow".
    360   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
    361 
    362   /// \brief Return true if the specified immediate is legal add immediate, that
    363   /// is the target has add instructions which can add a register with the
    364   /// immediate without having to materialize the immediate into a register.
    365   bool isLegalAddImmediate(int64_t Imm) const;
    366 
    367   /// \brief Return true if the specified immediate is legal icmp immediate,
    368   /// that is the target has icmp instructions which can compare a register
    369   /// against the immediate without having to materialize the immediate into a
    370   /// register.
    371   bool isLegalICmpImmediate(int64_t Imm) const;
    372 
    373   /// \brief Return true if the addressing mode represented by AM is legal for
    374   /// this target, for a load/store of the specified type.
    375   /// The type may be VoidTy, in which case only return true if the addressing
    376   /// mode is legal for a load/store of any legal type.
    377   /// TODO: Handle pre/postinc as well.
    378   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    379                              bool HasBaseReg, int64_t Scale,
    380                              unsigned AddrSpace = 0) const;
    381 
    382   /// \brief Return true if the target supports masked load/store
    383   /// AVX2 and AVX-512 targets allow masks for consecutive load and store
    384   bool isLegalMaskedStore(Type *DataType) const;
    385   bool isLegalMaskedLoad(Type *DataType) const;
    386 
    387   /// \brief Return true if the target supports masked gather/scatter
    388   /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
    389   /// bits scalar type.
    390   bool isLegalMaskedScatter(Type *DataType) const;
    391   bool isLegalMaskedGather(Type *DataType) const;
    392 
    393   /// \brief Return the cost of the scaling factor used in the addressing
    394   /// mode represented by AM for this target, for a load/store
    395   /// of the specified type.
    396   /// If the AM is supported, the return value must be >= 0.
    397   /// If the AM is not supported, it returns a negative value.
    398   /// TODO: Handle pre/postinc as well.
    399   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    400                            bool HasBaseReg, int64_t Scale,
    401                            unsigned AddrSpace = 0) const;
    402 
    403   /// \brief Return true if target supports the load / store
    404   /// instruction with the given Offset on the form reg + Offset. It
    405   /// may be that Offset is too big for a certain type (register
    406   /// class).
    407   bool isFoldableMemAccessOffset(Instruction *I, int64_t Offset) const;
    408 
    409   /// \brief Return true if it's free to truncate a value of type Ty1 to type
    410   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
    411   /// by referencing its sub-register AX.
    412   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
    413 
    414   /// \brief Return true if it is profitable to hoist instruction in the
    415   /// then/else to before if.
    416   bool isProfitableToHoist(Instruction *I) const;
    417 
    418   /// \brief Return true if this type is legal.
    419   bool isTypeLegal(Type *Ty) const;
    420 
    421   /// \brief Returns the target's jmp_buf alignment in bytes.
    422   unsigned getJumpBufAlignment() const;
    423 
    424   /// \brief Returns the target's jmp_buf size in bytes.
    425   unsigned getJumpBufSize() const;
    426 
    427   /// \brief Return true if switches should be turned into lookup tables for the
    428   /// target.
    429   bool shouldBuildLookupTables() const;
    430 
    431   /// \brief Return true if switches should be turned into lookup tables
    432   /// containing this constant value for the target.
    433   bool shouldBuildLookupTablesForConstant(Constant *C) const;
    434 
    435   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
    436 
    437   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
    438                                             unsigned VF) const;
    439 
    440   /// If target has efficient vector element load/store instructions, it can
    441   /// return true here so that insertion/extraction costs are not added to
    442   /// the scalarization cost of a load/store.
    443   bool supportsEfficientVectorElementLoadStore() const;
    444 
    445   /// \brief Don't restrict interleaved unrolling to small loops.
    446   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
    447 
    448   /// \brief Enable matching of interleaved access groups.
    449   bool enableInterleavedAccessVectorization() const;
    450 
    451   /// \brief Indicate that it is potentially unsafe to automatically vectorize
    452   /// floating-point operations because the semantics of vector and scalar
    453   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
    454   /// does not support IEEE-754 denormal numbers, while depending on the
    455   /// platform, scalar floating-point math does.
    456   /// This applies to floating-point math operations and calls, not memory
    457   /// operations, shuffles, or casts.
    458   bool isFPVectorizationPotentiallyUnsafe() const;
    459 
    460   /// \brief Determine if the target supports unaligned memory accesses.
    461   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
    462                                       unsigned BitWidth, unsigned AddressSpace = 0,
    463                                       unsigned Alignment = 1,
    464                                       bool *Fast = nullptr) const;
    465 
    466   /// \brief Return hardware support for population count.
    467   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
    468 
    469   /// \brief Return true if the hardware has a fast square-root instruction.
    470   bool haveFastSqrt(Type *Ty) const;
    471 
    472   /// \brief Return the expected cost of supporting the floating point operation
    473   /// of the specified type.
    474   int getFPOpCost(Type *Ty) const;
    475 
    476   /// \brief Return the expected cost of materializing for the given integer
    477   /// immediate of the specified type.
    478   int getIntImmCost(const APInt &Imm, Type *Ty) const;
    479 
    480   /// \brief Return the expected cost of materialization for the given integer
    481   /// immediate of the specified type for a given instruction. The cost can be
    482   /// zero if the immediate can be folded into the specified instruction.
    483   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    484                     Type *Ty) const;
    485   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    486                     Type *Ty) const;
    487 
    488   /// \brief Return the expected cost for the given integer when optimising
    489   /// for size. This is different than the other integer immediate cost
    490   /// functions in that it is subtarget agnostic. This is useful when you e.g.
    491   /// target one ISA such as Aarch32 but smaller encodings could be possible
    492   /// with another such as Thumb. This return value is used as a penalty when
    493   /// the total costs for a constant is calculated (the bigger the cost, the
    494   /// more beneficial constant hoisting is).
    495   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    496                             Type *Ty) const;
    497   /// @}
    498 
    499   /// \name Vector Target Information
    500   /// @{
    501 
    502   /// \brief The various kinds of shuffle patterns for vector queries.
    503   enum ShuffleKind {
    504     SK_Broadcast,       ///< Broadcast element 0 to all other elements.
    505     SK_Reverse,         ///< Reverse the order of the vector.
    506     SK_Alternate,       ///< Choose alternate elements from vector.
    507     SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
    508     SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
    509     SK_PermuteTwoSrc,   ///< Merge elements from two source vectors into one
    510                         ///< with any shuffle mask.
    511     SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
    512                         ///< shuffle mask.
    513   };
    514 
    515   /// \brief Additional information about an operand's possible values.
    516   enum OperandValueKind {
    517     OK_AnyValue,               // Operand can have any value.
    518     OK_UniformValue,           // Operand is uniform (splat of a value).
    519     OK_UniformConstantValue,   // Operand is uniform constant.
    520     OK_NonUniformConstantValue // Operand is a non uniform constant value.
    521   };
    522 
    523   /// \brief Additional properties of an operand's values.
    524   enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
    525 
    526   /// \return The number of scalar or vector registers that the target has.
    527   /// If 'Vectors' is true, it returns the number of vector registers. If it is
    528   /// set to false, it returns the number of scalar registers.
    529   unsigned getNumberOfRegisters(bool Vector) const;
    530 
    531   /// \return The width of the largest scalar or vector register type.
    532   unsigned getRegisterBitWidth(bool Vector) const;
    533 
    534   /// \return True if it should be considered for address type promotion.
    535   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
    536   /// profitable without finding other extensions fed by the same input.
    537   bool shouldConsiderAddressTypePromotion(
    538       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
    539 
    540   /// \return The size of a cache line in bytes.
    541   unsigned getCacheLineSize() const;
    542 
    543   /// \return How much before a load we should place the prefetch instruction.
    544   /// This is currently measured in number of instructions.
    545   unsigned getPrefetchDistance() const;
    546 
    547   /// \return Some HW prefetchers can handle accesses up to a certain constant
    548   /// stride.  This is the minimum stride in bytes where it makes sense to start
    549   /// adding SW prefetches.  The default is 1, i.e. prefetch with any stride.
    550   unsigned getMinPrefetchStride() const;
    551 
    552   /// \return The maximum number of iterations to prefetch ahead.  If the
    553   /// required number of iterations is more than this number, no prefetching is
    554   /// performed.
    555   unsigned getMaxPrefetchIterationsAhead() const;
    556 
    557   /// \return The maximum interleave factor that any transform should try to
    558   /// perform for this target. This number depends on the level of parallelism
    559   /// and the number of execution units in the CPU.
    560   unsigned getMaxInterleaveFactor(unsigned VF) const;
    561 
    562   /// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc.
    563   /// \p Args is an optional argument which holds the instruction operands
    564   /// values so the TTI can analyize those values searching for special
    565   /// cases\optimizations based on those values.
    566   int getArithmeticInstrCost(
    567       unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
    568       OperandValueKind Opd2Info = OK_AnyValue,
    569       OperandValueProperties Opd1PropInfo = OP_None,
    570       OperandValueProperties Opd2PropInfo = OP_None,
    571       ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
    572 
    573   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
    574   /// The index and subtype parameters are used by the subvector insertion and
    575   /// extraction shuffle kinds.
    576   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
    577                      Type *SubTp = nullptr) const;
    578 
    579   /// \return The expected cost of cast instructions, such as bitcast, trunc,
    580   /// zext, etc. If there is an existing instruction that holds Opcode, it
    581   /// may be passed in the 'I' parameter.
    582   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
    583                        const Instruction *I = nullptr) const;
    584 
    585   /// \return The expected cost of a sign- or zero-extended vector extract. Use
    586   /// -1 to indicate that there is no information about the index value.
    587   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
    588                                unsigned Index = -1) const;
    589 
    590   /// \return The expected cost of control-flow related instructions such as
    591   /// Phi, Ret, Br.
    592   int getCFInstrCost(unsigned Opcode) const;
    593 
    594   /// \returns The expected cost of compare and select instructions. If there
    595   /// is an existing instruction that holds Opcode, it may be passed in the
    596   /// 'I' parameter.
    597   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    598                  Type *CondTy = nullptr, const Instruction *I = nullptr) const;
    599 
    600   /// \return The expected cost of vector Insert and Extract.
    601   /// Use -1 to indicate that there is no information on the index value.
    602   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
    603 
    604   /// \return The cost of Load and Store instructions.
    605   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    606                       unsigned AddressSpace, const Instruction *I = nullptr) const;
    607 
    608   /// \return The cost of masked Load and Store instructions.
    609   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    610                             unsigned AddressSpace) const;
    611 
    612   /// \return The cost of Gather or Scatter operation
    613   /// \p Opcode - is a type of memory access Load or Store
    614   /// \p DataTy - a vector type of the data to be loaded or stored
    615   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
    616   /// \p VariableMask - true when the memory access is predicated with a mask
    617   ///                   that is not a compile-time constant
    618   /// \p Alignment - alignment of single element
    619   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
    620                              bool VariableMask, unsigned Alignment) const;
    621 
    622   /// \return The cost of the interleaved memory operation.
    623   /// \p Opcode is the memory operation code
    624   /// \p VecTy is the vector type of the interleaved access.
    625   /// \p Factor is the interleave factor
    626   /// \p Indices is the indices for interleaved load members (as interleaved
    627   ///    load allows gaps)
    628   /// \p Alignment is the alignment of the memory operation
    629   /// \p AddressSpace is address space of the pointer.
    630   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
    631                                  ArrayRef<unsigned> Indices, unsigned Alignment,
    632                                  unsigned AddressSpace) const;
    633 
    634   /// \brief Calculate the cost of performing a vector reduction.
    635   ///
    636   /// This is the cost of reducing the vector value of type \p Ty to a scalar
    637   /// value using the operation denoted by \p Opcode. The form of the reduction
    638   /// can either be a pairwise reduction or a reduction that splits the vector
    639   /// at every reduction level.
    640   ///
    641   /// Pairwise:
    642   ///  (v0, v1, v2, v3)
    643   ///  ((v0+v1), (v2, v3), undef, undef)
    644   /// Split:
    645   ///  (v0, v1, v2, v3)
    646   ///  ((v0+v2), (v1+v3), undef, undef)
    647   int getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwiseForm) const;
    648 
    649   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
    650   /// Three cases are handled: 1. scalar instruction 2. vector instruction
    651   /// 3. scalar instruction which is to be vectorized with VF.
    652   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    653                             ArrayRef<Value *> Args, FastMathFlags FMF,
    654                             unsigned VF = 1) const;
    655 
    656   /// \returns The cost of Intrinsic instructions. Types analysis only.
    657   /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
    658   /// arguments and the return value will be computed based on types.
    659   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    660                             ArrayRef<Type *> Tys, FastMathFlags FMF,
    661                             unsigned ScalarizationCostPassed = UINT_MAX) const;
    662 
    663   /// \returns The cost of Call instructions.
    664   int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
    665 
    666   /// \returns The number of pieces into which the provided type must be
    667   /// split during legalization. Zero is returned when the answer is unknown.
    668   unsigned getNumberOfParts(Type *Tp) const;
    669 
    670   /// \returns The cost of the address computation. For most targets this can be
    671   /// merged into the instruction indexing mode. Some targets might want to
    672   /// distinguish between address computation for memory operations on vector
    673   /// types and scalar types. Such targets should override this function.
    674   /// The 'SE' parameter holds pointer for the scalar evolution object which
    675   /// is used in order to get the Ptr step value in case of constant stride.
    676   /// The 'Ptr' parameter holds SCEV of the access pointer.
    677   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
    678                                 const SCEV *Ptr = nullptr) const;
    679 
    680   /// \returns The cost, if any, of keeping values of the given types alive
    681   /// over a callsite.
    682   ///
    683   /// Some types may require the use of register classes that do not have
    684   /// any callee-saved registers, so would require a spill and fill.
    685   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
    686 
    687   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
    688   /// will contain additional information - whether the intrinsic may write
    689   /// or read to memory, volatility and the pointer.  Info is undefined
    690   /// if false is returned.
    691   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
    692 
    693   /// \returns A value which is the result of the given memory intrinsic.  New
    694   /// instructions may be created to extract the result from the given intrinsic
    695   /// memory operation.  Returns nullptr if the target cannot create a result
    696   /// from the given intrinsic.
    697   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    698                                            Type *ExpectedType) const;
    699 
    700   /// \returns True if the two functions have compatible attributes for inlining
    701   /// purposes.
    702   bool areInlineCompatible(const Function *Caller,
    703                            const Function *Callee) const;
    704 
    705   /// \returns The bitwidth of the largest vector type that should be used to
    706   /// load/store in the given address space.
    707   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
    708 
    709   /// \returns True if the load instruction is legal to vectorize.
    710   bool isLegalToVectorizeLoad(LoadInst *LI) const;
    711 
    712   /// \returns True if the store instruction is legal to vectorize.
    713   bool isLegalToVectorizeStore(StoreInst *SI) const;
    714 
    715   /// \returns True if it is legal to vectorize the given load chain.
    716   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
    717                                    unsigned Alignment,
    718                                    unsigned AddrSpace) const;
    719 
    720   /// \returns True if it is legal to vectorize the given store chain.
    721   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
    722                                     unsigned Alignment,
    723                                     unsigned AddrSpace) const;
    724 
    725   /// \returns The new vector factor value if the target doesn't support \p
    726   /// SizeInBytes loads or has a better vector factor.
    727   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
    728                                unsigned ChainSizeInBytes,
    729                                VectorType *VecTy) const;
    730 
    731   /// \returns The new vector factor value if the target doesn't support \p
    732   /// SizeInBytes stores or has a better vector factor.
    733   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
    734                                 unsigned ChainSizeInBytes,
    735                                 VectorType *VecTy) const;
    736 
    737   /// @}
    738 
    739 private:
    740   /// \brief The abstract base class used to type erase specific TTI
    741   /// implementations.
    742   class Concept;
    743 
    744   /// \brief The template model for the base class which wraps a concrete
    745   /// implementation in a type erased interface.
    746   template <typename T> class Model;
    747 
    748   std::unique_ptr<Concept> TTIImpl;
    749 };
    750 
    751 class TargetTransformInfo::Concept {
    752 public:
    753   virtual ~Concept() = 0;
    754   virtual const DataLayout &getDataLayout() const = 0;
    755   virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
    756   virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
    757                          ArrayRef<const Value *> Operands) = 0;
    758   virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
    759   virtual int getCallCost(const Function *F, int NumArgs) = 0;
    760   virtual int getCallCost(const Function *F,
    761                           ArrayRef<const Value *> Arguments) = 0;
    762   virtual unsigned getInliningThresholdMultiplier() = 0;
    763   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    764                                ArrayRef<Type *> ParamTys) = 0;
    765   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    766                                ArrayRef<const Value *> Arguments) = 0;
    767   virtual int getUserCost(const User *U) = 0;
    768   virtual bool hasBranchDivergence() = 0;
    769   virtual bool isSourceOfDivergence(const Value *V) = 0;
    770   virtual unsigned getFlatAddressSpace() = 0;
    771   virtual bool isLoweredToCall(const Function *F) = 0;
    772   virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) = 0;
    773   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
    774   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
    775   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
    776                                      int64_t BaseOffset, bool HasBaseReg,
    777                                      int64_t Scale,
    778                                      unsigned AddrSpace) = 0;
    779   virtual bool isLegalMaskedStore(Type *DataType) = 0;
    780   virtual bool isLegalMaskedLoad(Type *DataType) = 0;
    781   virtual bool isLegalMaskedScatter(Type *DataType) = 0;
    782   virtual bool isLegalMaskedGather(Type *DataType) = 0;
    783   virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
    784                                    int64_t BaseOffset, bool HasBaseReg,
    785                                    int64_t Scale, unsigned AddrSpace) = 0;
    786   virtual bool isFoldableMemAccessOffset(Instruction *I, int64_t Offset) = 0;
    787   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
    788   virtual bool isProfitableToHoist(Instruction *I) = 0;
    789   virtual bool isTypeLegal(Type *Ty) = 0;
    790   virtual unsigned getJumpBufAlignment() = 0;
    791   virtual unsigned getJumpBufSize() = 0;
    792   virtual bool shouldBuildLookupTables() = 0;
    793   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
    794   virtual unsigned
    795   getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
    796   virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
    797                                                     unsigned VF) = 0;
    798   virtual bool supportsEfficientVectorElementLoadStore() = 0;
    799   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
    800   virtual bool enableInterleavedAccessVectorization() = 0;
    801   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
    802   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
    803                                               unsigned BitWidth,
    804                                               unsigned AddressSpace,
    805                                               unsigned Alignment,
    806                                               bool *Fast) = 0;
    807   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
    808   virtual bool haveFastSqrt(Type *Ty) = 0;
    809   virtual int getFPOpCost(Type *Ty) = 0;
    810   virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    811                                     Type *Ty) = 0;
    812   virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
    813   virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    814                             Type *Ty) = 0;
    815   virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    816                             Type *Ty) = 0;
    817   virtual unsigned getNumberOfRegisters(bool Vector) = 0;
    818   virtual unsigned getRegisterBitWidth(bool Vector) = 0;
    819   virtual bool shouldConsiderAddressTypePromotion(
    820       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
    821   virtual unsigned getCacheLineSize() = 0;
    822   virtual unsigned getPrefetchDistance() = 0;
    823   virtual unsigned getMinPrefetchStride() = 0;
    824   virtual unsigned getMaxPrefetchIterationsAhead() = 0;
    825   virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
    826   virtual unsigned
    827   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
    828                          OperandValueKind Opd2Info,
    829                          OperandValueProperties Opd1PropInfo,
    830                          OperandValueProperties Opd2PropInfo,
    831                          ArrayRef<const Value *> Args) = 0;
    832   virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
    833                              Type *SubTp) = 0;
    834   virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
    835                                const Instruction *I) = 0;
    836   virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
    837                                        VectorType *VecTy, unsigned Index) = 0;
    838   virtual int getCFInstrCost(unsigned Opcode) = 0;
    839   virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    840                                 Type *CondTy, const Instruction *I) = 0;
    841   virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
    842                                  unsigned Index) = 0;
    843   virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    844                               unsigned AddressSpace, const Instruction *I) = 0;
    845   virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
    846                                     unsigned Alignment,
    847                                     unsigned AddressSpace) = 0;
    848   virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
    849                                      Value *Ptr, bool VariableMask,
    850                                      unsigned Alignment) = 0;
    851   virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    852                                          unsigned Factor,
    853                                          ArrayRef<unsigned> Indices,
    854                                          unsigned Alignment,
    855                                          unsigned AddressSpace) = 0;
    856   virtual int getReductionCost(unsigned Opcode, Type *Ty,
    857                                bool IsPairwiseForm) = 0;
    858   virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    859                       ArrayRef<Type *> Tys, FastMathFlags FMF,
    860                       unsigned ScalarizationCostPassed) = 0;
    861   virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    862          ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
    863   virtual int getCallInstrCost(Function *F, Type *RetTy,
    864                                ArrayRef<Type *> Tys) = 0;
    865   virtual unsigned getNumberOfParts(Type *Tp) = 0;
    866   virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
    867                                         const SCEV *Ptr) = 0;
    868   virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
    869   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
    870                                   MemIntrinsicInfo &Info) = 0;
    871   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    872                                                    Type *ExpectedType) = 0;
    873   virtual bool areInlineCompatible(const Function *Caller,
    874                                    const Function *Callee) const = 0;
    875   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
    876   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
    877   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
    878   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
    879                                            unsigned Alignment,
    880                                            unsigned AddrSpace) const = 0;
    881   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
    882                                             unsigned Alignment,
    883                                             unsigned AddrSpace) const = 0;
    884   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
    885                                        unsigned ChainSizeInBytes,
    886                                        VectorType *VecTy) const = 0;
    887   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
    888                                         unsigned ChainSizeInBytes,
    889                                         VectorType *VecTy) const = 0;
    890 };
    891 
    892 template <typename T>
    893 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
    894   T Impl;
    895 
    896 public:
    897   Model(T Impl) : Impl(std::move(Impl)) {}
    898   ~Model() override {}
    899 
    900   const DataLayout &getDataLayout() const override {
    901     return Impl.getDataLayout();
    902   }
    903 
    904   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
    905     return Impl.getOperationCost(Opcode, Ty, OpTy);
    906   }
    907   int getGEPCost(Type *PointeeType, const Value *Ptr,
    908                  ArrayRef<const Value *> Operands) override {
    909     return Impl.getGEPCost(PointeeType, Ptr, Operands);
    910   }
    911   int getCallCost(FunctionType *FTy, int NumArgs) override {
    912     return Impl.getCallCost(FTy, NumArgs);
    913   }
    914   int getCallCost(const Function *F, int NumArgs) override {
    915     return Impl.getCallCost(F, NumArgs);
    916   }
    917   int getCallCost(const Function *F,
    918                   ArrayRef<const Value *> Arguments) override {
    919     return Impl.getCallCost(F, Arguments);
    920   }
    921   unsigned getInliningThresholdMultiplier() override {
    922     return Impl.getInliningThresholdMultiplier();
    923   }
    924   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    925                        ArrayRef<Type *> ParamTys) override {
    926     return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
    927   }
    928   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    929                        ArrayRef<const Value *> Arguments) override {
    930     return Impl.getIntrinsicCost(IID, RetTy, Arguments);
    931   }
    932   int getUserCost(const User *U) override { return Impl.getUserCost(U); }
    933   bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
    934   bool isSourceOfDivergence(const Value *V) override {
    935     return Impl.isSourceOfDivergence(V);
    936   }
    937 
    938   unsigned getFlatAddressSpace() override {
    939     return Impl.getFlatAddressSpace();
    940   }
    941 
    942   bool isLoweredToCall(const Function *F) override {
    943     return Impl.isLoweredToCall(F);
    944   }
    945   void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) override {
    946     return Impl.getUnrollingPreferences(L, UP);
    947   }
    948   bool isLegalAddImmediate(int64_t Imm) override {
    949     return Impl.isLegalAddImmediate(Imm);
    950   }
    951   bool isLegalICmpImmediate(int64_t Imm) override {
    952     return Impl.isLegalICmpImmediate(Imm);
    953   }
    954   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    955                              bool HasBaseReg, int64_t Scale,
    956                              unsigned AddrSpace) override {
    957     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
    958                                       Scale, AddrSpace);
    959   }
    960   bool isLegalMaskedStore(Type *DataType) override {
    961     return Impl.isLegalMaskedStore(DataType);
    962   }
    963   bool isLegalMaskedLoad(Type *DataType) override {
    964     return Impl.isLegalMaskedLoad(DataType);
    965   }
    966   bool isLegalMaskedScatter(Type *DataType) override {
    967     return Impl.isLegalMaskedScatter(DataType);
    968   }
    969   bool isLegalMaskedGather(Type *DataType) override {
    970     return Impl.isLegalMaskedGather(DataType);
    971   }
    972   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    973                            bool HasBaseReg, int64_t Scale,
    974                            unsigned AddrSpace) override {
    975     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
    976                                      Scale, AddrSpace);
    977   }
    978   bool isFoldableMemAccessOffset(Instruction *I, int64_t Offset) override {
    979     return Impl.isFoldableMemAccessOffset(I, Offset);
    980   }
    981   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
    982     return Impl.isTruncateFree(Ty1, Ty2);
    983   }
    984   bool isProfitableToHoist(Instruction *I) override {
    985     return Impl.isProfitableToHoist(I);
    986   }
    987   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
    988   unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
    989   unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
    990   bool shouldBuildLookupTables() override {
    991     return Impl.shouldBuildLookupTables();
    992   }
    993   bool shouldBuildLookupTablesForConstant(Constant *C) override {
    994     return Impl.shouldBuildLookupTablesForConstant(C);
    995   }
    996   unsigned getScalarizationOverhead(Type *Ty, bool Insert,
    997                                     bool Extract) override {
    998     return Impl.getScalarizationOverhead(Ty, Insert, Extract);
    999   }
   1000   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
   1001                                             unsigned VF) override {
   1002     return Impl.getOperandsScalarizationOverhead(Args, VF);
   1003   }
   1004 
   1005   bool supportsEfficientVectorElementLoadStore() override {
   1006     return Impl.supportsEfficientVectorElementLoadStore();
   1007   }
   1008 
   1009   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
   1010     return Impl.enableAggressiveInterleaving(LoopHasReductions);
   1011   }
   1012   bool enableInterleavedAccessVectorization() override {
   1013     return Impl.enableInterleavedAccessVectorization();
   1014   }
   1015   bool isFPVectorizationPotentiallyUnsafe() override {
   1016     return Impl.isFPVectorizationPotentiallyUnsafe();
   1017   }
   1018   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
   1019                                       unsigned BitWidth, unsigned AddressSpace,
   1020                                       unsigned Alignment, bool *Fast) override {
   1021     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
   1022                                                Alignment, Fast);
   1023   }
   1024   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
   1025     return Impl.getPopcntSupport(IntTyWidthInBit);
   1026   }
   1027   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
   1028 
   1029   int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
   1030 
   1031   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
   1032                             Type *Ty) override {
   1033     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
   1034   }
   1035   int getIntImmCost(const APInt &Imm, Type *Ty) override {
   1036     return Impl.getIntImmCost(Imm, Ty);
   1037   }
   1038   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
   1039                     Type *Ty) override {
   1040     return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
   1041   }
   1042   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
   1043                     Type *Ty) override {
   1044     return Impl.getIntImmCost(IID, Idx, Imm, Ty);
   1045   }
   1046   unsigned getNumberOfRegisters(bool Vector) override {
   1047     return Impl.getNumberOfRegisters(Vector);
   1048   }
   1049   unsigned getRegisterBitWidth(bool Vector) override {
   1050     return Impl.getRegisterBitWidth(Vector);
   1051   }
   1052   bool shouldConsiderAddressTypePromotion(
   1053       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
   1054     return Impl.shouldConsiderAddressTypePromotion(
   1055         I, AllowPromotionWithoutCommonHeader);
   1056   }
   1057   unsigned getCacheLineSize() override {
   1058     return Impl.getCacheLineSize();
   1059   }
   1060   unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
   1061   unsigned getMinPrefetchStride() override {
   1062     return Impl.getMinPrefetchStride();
   1063   }
   1064   unsigned getMaxPrefetchIterationsAhead() override {
   1065     return Impl.getMaxPrefetchIterationsAhead();
   1066   }
   1067   unsigned getMaxInterleaveFactor(unsigned VF) override {
   1068     return Impl.getMaxInterleaveFactor(VF);
   1069   }
   1070   unsigned
   1071   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
   1072                          OperandValueKind Opd2Info,
   1073                          OperandValueProperties Opd1PropInfo,
   1074                          OperandValueProperties Opd2PropInfo,
   1075                          ArrayRef<const Value *> Args) override {
   1076     return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
   1077                                        Opd1PropInfo, Opd2PropInfo, Args);
   1078   }
   1079   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
   1080                      Type *SubTp) override {
   1081     return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
   1082   }
   1083   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
   1084                        const Instruction *I) override {
   1085     return Impl.getCastInstrCost(Opcode, Dst, Src, I);
   1086   }
   1087   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
   1088                                unsigned Index) override {
   1089     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
   1090   }
   1091   int getCFInstrCost(unsigned Opcode) override {
   1092     return Impl.getCFInstrCost(Opcode);
   1093   }
   1094   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
   1095                          const Instruction *I) override {
   1096     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
   1097   }
   1098   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
   1099     return Impl.getVectorInstrCost(Opcode, Val, Index);
   1100   }
   1101   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
   1102                       unsigned AddressSpace, const Instruction *I) override {
   1103     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
   1104   }
   1105   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
   1106                             unsigned AddressSpace) override {
   1107     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
   1108   }
   1109   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
   1110                              Value *Ptr, bool VariableMask,
   1111                              unsigned Alignment) override {
   1112     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
   1113                                        Alignment);
   1114   }
   1115   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
   1116                                  ArrayRef<unsigned> Indices, unsigned Alignment,
   1117                                  unsigned AddressSpace) override {
   1118     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
   1119                                            Alignment, AddressSpace);
   1120   }
   1121   int getReductionCost(unsigned Opcode, Type *Ty,
   1122                        bool IsPairwiseForm) override {
   1123     return Impl.getReductionCost(Opcode, Ty, IsPairwiseForm);
   1124   }
   1125   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
   1126                FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
   1127     return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
   1128                                       ScalarizationCostPassed);
   1129   }
   1130   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
   1131        ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
   1132     return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
   1133   }
   1134   int getCallInstrCost(Function *F, Type *RetTy,
   1135                        ArrayRef<Type *> Tys) override {
   1136     return Impl.getCallInstrCost(F, RetTy, Tys);
   1137   }
   1138   unsigned getNumberOfParts(Type *Tp) override {
   1139     return Impl.getNumberOfParts(Tp);
   1140   }
   1141   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
   1142                                 const SCEV *Ptr) override {
   1143     return Impl.getAddressComputationCost(Ty, SE, Ptr);
   1144   }
   1145   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
   1146     return Impl.getCostOfKeepingLiveOverCall(Tys);
   1147   }
   1148   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
   1149                           MemIntrinsicInfo &Info) override {
   1150     return Impl.getTgtMemIntrinsic(Inst, Info);
   1151   }
   1152   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
   1153                                            Type *ExpectedType) override {
   1154     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
   1155   }
   1156   bool areInlineCompatible(const Function *Caller,
   1157                            const Function *Callee) const override {
   1158     return Impl.areInlineCompatible(Caller, Callee);
   1159   }
   1160   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
   1161     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
   1162   }
   1163   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
   1164     return Impl.isLegalToVectorizeLoad(LI);
   1165   }
   1166   bool isLegalToVectorizeStore(StoreInst *SI) const override {
   1167     return Impl.isLegalToVectorizeStore(SI);
   1168   }
   1169   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
   1170                                    unsigned Alignment,
   1171                                    unsigned AddrSpace) const override {
   1172     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
   1173                                             AddrSpace);
   1174   }
   1175   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
   1176                                     unsigned Alignment,
   1177                                     unsigned AddrSpace) const override {
   1178     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
   1179                                              AddrSpace);
   1180   }
   1181   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
   1182                                unsigned ChainSizeInBytes,
   1183                                VectorType *VecTy) const override {
   1184     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
   1185   }
   1186   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
   1187                                 unsigned ChainSizeInBytes,
   1188                                 VectorType *VecTy) const override {
   1189     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
   1190   }
   1191 };
   1192 
   1193 template <typename T>
   1194 TargetTransformInfo::TargetTransformInfo(T Impl)
   1195     : TTIImpl(new Model<T>(Impl)) {}
   1196 
   1197 /// \brief Analysis pass providing the \c TargetTransformInfo.
   1198 ///
   1199 /// The core idea of the TargetIRAnalysis is to expose an interface through
   1200 /// which LLVM targets can analyze and provide information about the middle
   1201 /// end's target-independent IR. This supports use cases such as target-aware
   1202 /// cost modeling of IR constructs.
   1203 ///
   1204 /// This is a function analysis because much of the cost modeling for targets
   1205 /// is done in a subtarget specific way and LLVM supports compiling different
   1206 /// functions targeting different subtargets in order to support runtime
   1207 /// dispatch according to the observed subtarget.
   1208 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
   1209 public:
   1210   typedef TargetTransformInfo Result;
   1211 
   1212   /// \brief Default construct a target IR analysis.
   1213   ///
   1214   /// This will use the module's datalayout to construct a baseline
   1215   /// conservative TTI result.
   1216   TargetIRAnalysis();
   1217 
   1218   /// \brief Construct an IR analysis pass around a target-provide callback.
   1219   ///
   1220   /// The callback will be called with a particular function for which the TTI
   1221   /// is needed and must return a TTI object for that function.
   1222   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
   1223 
   1224   // Value semantics. We spell out the constructors for MSVC.
   1225   TargetIRAnalysis(const TargetIRAnalysis &Arg)
   1226       : TTICallback(Arg.TTICallback) {}
   1227   TargetIRAnalysis(TargetIRAnalysis &&Arg)
   1228       : TTICallback(std::move(Arg.TTICallback)) {}
   1229   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
   1230     TTICallback = RHS.TTICallback;
   1231     return *this;
   1232   }
   1233   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
   1234     TTICallback = std::move(RHS.TTICallback);
   1235     return *this;
   1236   }
   1237 
   1238   Result run(const Function &F, FunctionAnalysisManager &);
   1239 
   1240 private:
   1241   friend AnalysisInfoMixin<TargetIRAnalysis>;
   1242   static AnalysisKey Key;
   1243 
   1244   /// \brief The callback used to produce a result.
   1245   ///
   1246   /// We use a completely opaque callback so that targets can provide whatever
   1247   /// mechanism they desire for constructing the TTI for a given function.
   1248   ///
   1249   /// FIXME: Should we really use std::function? It's relatively inefficient.
   1250   /// It might be possible to arrange for even stateful callbacks to outlive
   1251   /// the analysis and thus use a function_ref which would be lighter weight.
   1252   /// This may also be less error prone as the callback is likely to reference
   1253   /// the external TargetMachine, and that reference needs to never dangle.
   1254   std::function<Result(const Function &)> TTICallback;
   1255 
   1256   /// \brief Helper function used as the callback in the default constructor.
   1257   static Result getDefaultTTI(const Function &F);
   1258 };
   1259 
   1260 /// \brief Wrapper pass for TargetTransformInfo.
   1261 ///
   1262 /// This pass can be constructed from a TTI object which it stores internally
   1263 /// and is queried by passes.
   1264 class TargetTransformInfoWrapperPass : public ImmutablePass {
   1265   TargetIRAnalysis TIRA;
   1266   Optional<TargetTransformInfo> TTI;
   1267 
   1268   virtual void anchor();
   1269 
   1270 public:
   1271   static char ID;
   1272 
   1273   /// \brief We must provide a default constructor for the pass but it should
   1274   /// never be used.
   1275   ///
   1276   /// Use the constructor below or call one of the creation routines.
   1277   TargetTransformInfoWrapperPass();
   1278 
   1279   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
   1280 
   1281   TargetTransformInfo &getTTI(const Function &F);
   1282 };
   1283 
   1284 /// \brief Create an analysis pass wrapper around a TTI object.
   1285 ///
   1286 /// This analysis pass just holds the TTI instance and makes it available to
   1287 /// clients.
   1288 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
   1289 
   1290 } // End llvm namespace
   1291 
   1292 #endif
   1293