Home | History | Annotate | Download | only in futures.async
      1 //===----------------------------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // XFAIL: libcpp-no-exceptions
     11 // UNSUPPORTED: libcpp-has-no-threads
     12 // UNSUPPORTED: c++98, c++03
     13 
     14 // <future>
     15 
     16 // template <class F, class... Args>
     17 //     future<typename result_of<F(Args...)>::type>
     18 //     async(F&& f, Args&&... args);
     19 
     20 // template <class F, class... Args>
     21 //     future<typename result_of<F(Args...)>::type>
     22 //     async(launch policy, F&& f, Args&&... args);
     23 
     24 
     25 #include <future>
     26 #include <atomic>
     27 #include <memory>
     28 #include <cassert>
     29 
     30 #include "test_macros.h"
     31 
     32 typedef std::chrono::high_resolution_clock Clock;
     33 typedef std::chrono::milliseconds ms;
     34 
     35 std::atomic_bool invoked = ATOMIC_VAR_INIT(false);
     36 
     37 int f0()
     38 {
     39     invoked = true;
     40     std::this_thread::sleep_for(ms(200));
     41     return 3;
     42 }
     43 
     44 int i = 0;
     45 
     46 int& f1()
     47 {
     48     invoked = true;
     49     std::this_thread::sleep_for(ms(200));
     50     return i;
     51 }
     52 
     53 void f2()
     54 {
     55     invoked = true;
     56     std::this_thread::sleep_for(ms(200));
     57 }
     58 
     59 std::unique_ptr<int> f3(int j)
     60 {
     61     invoked = true;
     62     std::this_thread::sleep_for(ms(200));
     63     return std::unique_ptr<int>(new int(j));
     64 }
     65 
     66 std::unique_ptr<int> f4(std::unique_ptr<int>&& p)
     67 {
     68     invoked = true;
     69     std::this_thread::sleep_for(ms(200));
     70     return std::move(p);
     71 }
     72 
     73 void f5(int j)
     74 {
     75     std::this_thread::sleep_for(ms(200));
     76     throw j;
     77 }
     78 
     79 template <class Ret, class CheckLamdba, class ...Args>
     80 void test(CheckLamdba&& getAndCheckFn, bool IsDeferred, Args&&... args) {
     81     // Reset global state.
     82     invoked = false;
     83 
     84     // Create the future and wait
     85     std::future<Ret> f = std::async(std::forward<Args>(args)...);
     86     std::this_thread::sleep_for(ms(300));
     87 
     88     // Check that deferred async's have not invoked the function.
     89     assert(invoked == !IsDeferred);
     90 
     91     // Time the call to f.get() and check that the returned value matches
     92     // what is expected.
     93     Clock::time_point t0 = Clock::now();
     94     assert(getAndCheckFn(f));
     95     Clock::time_point t1 = Clock::now();
     96 
     97     // If the async is deferred it should take more than 100ms, otherwise
     98     // it should take less than 100ms.
     99     if (IsDeferred) {
    100         assert(t1-t0 > ms(100));
    101     } else {
    102         assert(t1-t0 < ms(100));
    103     }
    104 }
    105 
    106 int main()
    107 {
    108     // The default launch policy is implementation defined. libc++ defines
    109     // it to be std::launch::async.
    110     bool DefaultPolicyIsDeferred = false;
    111     bool DPID = DefaultPolicyIsDeferred;
    112 
    113     std::launch AnyPolicy = std::launch::async | std::launch::deferred;
    114     LIBCPP_ASSERT(AnyPolicy == std::launch::any);
    115 
    116     {
    117         auto checkInt = [](std::future<int>& f) { return f.get() == 3; };
    118         test<int>(checkInt, DPID,  f0);
    119         test<int>(checkInt, false, std::launch::async, f0);
    120         test<int>(checkInt, true,  std::launch::deferred, f0);
    121         test<int>(checkInt, DPID,  AnyPolicy, f0);
    122     }
    123     {
    124         auto checkIntRef = [&](std::future<int&>& f) { return &f.get() == &i; };
    125         test<int&>(checkIntRef, DPID,  f1);
    126         test<int&>(checkIntRef, false, std::launch::async, f1);
    127         test<int&>(checkIntRef, true,  std::launch::deferred, f1);
    128         test<int&>(checkIntRef, DPID,  AnyPolicy, f1);
    129     }
    130     {
    131         auto checkVoid = [](std::future<void>& f) { f.get(); return true; };
    132         test<void>(checkVoid, DPID,  f2);
    133         test<void>(checkVoid, false, std::launch::async, f2);
    134         test<void>(checkVoid, true,  std::launch::deferred, f2);
    135         test<void>(checkVoid, DPID,  AnyPolicy, f2);
    136     }
    137     {
    138         using Ret = std::unique_ptr<int>;
    139         auto checkUPtr = [](std::future<Ret>& f) { return *f.get() == 3; };
    140         test<Ret>(checkUPtr, DPID, f3, 3);
    141         test<Ret>(checkUPtr, DPID, f4, std::unique_ptr<int>(new int(3)));
    142     }
    143     {
    144         std::future<void> f = std::async(f5, 3);
    145         std::this_thread::sleep_for(ms(300));
    146         try { f.get(); assert (false); } catch ( int ) {}
    147     }
    148     {
    149         std::future<void> f = std::async(std::launch::deferred, f5, 3);
    150         std::this_thread::sleep_for(ms(300));
    151         try { f.get(); assert (false); } catch ( int ) {}
    152     }
    153 }
    154