Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TypeLocBuilder.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/AST/CommentDiagnostic.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/AST/DeclTemplate.h"
     25 #include "clang/AST/EvaluatedExprVisitor.h"
     26 #include "clang/AST/ExprCXX.h"
     27 #include "clang/AST/StmtCXX.h"
     28 #include "clang/Basic/Builtins.h"
     29 #include "clang/Basic/PartialDiagnostic.h"
     30 #include "clang/Basic/SourceManager.h"
     31 #include "clang/Basic/TargetInfo.h"
     32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
     33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
     34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
     35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
     36 #include "clang/Sema/CXXFieldCollector.h"
     37 #include "clang/Sema/DeclSpec.h"
     38 #include "clang/Sema/DelayedDiagnostic.h"
     39 #include "clang/Sema/Initialization.h"
     40 #include "clang/Sema/Lookup.h"
     41 #include "clang/Sema/ParsedTemplate.h"
     42 #include "clang/Sema/Scope.h"
     43 #include "clang/Sema/ScopeInfo.h"
     44 #include "clang/Sema/Template.h"
     45 #include "llvm/ADT/SmallString.h"
     46 #include "llvm/ADT/Triple.h"
     47 #include <algorithm>
     48 #include <cstring>
     49 #include <functional>
     50 
     51 using namespace clang;
     52 using namespace sema;
     53 
     54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
     55   if (OwnedType) {
     56     Decl *Group[2] = { OwnedType, Ptr };
     57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
     58   }
     59 
     60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
     61 }
     62 
     63 namespace {
     64 
     65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
     66  public:
     67   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
     68                        bool AllowTemplates=false)
     69       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
     70         AllowClassTemplates(AllowTemplates) {
     71     WantExpressionKeywords = false;
     72     WantCXXNamedCasts = false;
     73     WantRemainingKeywords = false;
     74   }
     75 
     76   bool ValidateCandidate(const TypoCorrection &candidate) override {
     77     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
     78       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
     79       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
     80       return (IsType || AllowedTemplate) &&
     81              (AllowInvalidDecl || !ND->isInvalidDecl());
     82     }
     83     return !WantClassName && candidate.isKeyword();
     84   }
     85 
     86  private:
     87   bool AllowInvalidDecl;
     88   bool WantClassName;
     89   bool AllowClassTemplates;
     90 };
     91 
     92 } // end anonymous namespace
     93 
     94 /// \brief Determine whether the token kind starts a simple-type-specifier.
     95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
     96   switch (Kind) {
     97   // FIXME: Take into account the current language when deciding whether a
     98   // token kind is a valid type specifier
     99   case tok::kw_short:
    100   case tok::kw_long:
    101   case tok::kw___int64:
    102   case tok::kw___int128:
    103   case tok::kw_signed:
    104   case tok::kw_unsigned:
    105   case tok::kw_void:
    106   case tok::kw_char:
    107   case tok::kw_int:
    108   case tok::kw_half:
    109   case tok::kw_float:
    110   case tok::kw_double:
    111   case tok::kw___float128:
    112   case tok::kw_wchar_t:
    113   case tok::kw_bool:
    114   case tok::kw___underlying_type:
    115   case tok::kw___auto_type:
    116     return true;
    117 
    118   case tok::annot_typename:
    119   case tok::kw_char16_t:
    120   case tok::kw_char32_t:
    121   case tok::kw_typeof:
    122   case tok::annot_decltype:
    123   case tok::kw_decltype:
    124     return getLangOpts().CPlusPlus;
    125 
    126   default:
    127     break;
    128   }
    129 
    130   return false;
    131 }
    132 
    133 namespace {
    134 enum class UnqualifiedTypeNameLookupResult {
    135   NotFound,
    136   FoundNonType,
    137   FoundType
    138 };
    139 } // end anonymous namespace
    140 
    141 /// \brief Tries to perform unqualified lookup of the type decls in bases for
    142 /// dependent class.
    143 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
    144 /// type decl, \a FoundType if only type decls are found.
    145 static UnqualifiedTypeNameLookupResult
    146 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
    147                                 SourceLocation NameLoc,
    148                                 const CXXRecordDecl *RD) {
    149   if (!RD->hasDefinition())
    150     return UnqualifiedTypeNameLookupResult::NotFound;
    151   // Look for type decls in base classes.
    152   UnqualifiedTypeNameLookupResult FoundTypeDecl =
    153       UnqualifiedTypeNameLookupResult::NotFound;
    154   for (const auto &Base : RD->bases()) {
    155     const CXXRecordDecl *BaseRD = nullptr;
    156     if (auto *BaseTT = Base.getType()->getAs<TagType>())
    157       BaseRD = BaseTT->getAsCXXRecordDecl();
    158     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
    159       // Look for type decls in dependent base classes that have known primary
    160       // templates.
    161       if (!TST || !TST->isDependentType())
    162         continue;
    163       auto *TD = TST->getTemplateName().getAsTemplateDecl();
    164       if (!TD)
    165         continue;
    166       if (auto *BasePrimaryTemplate =
    167           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
    168         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
    169           BaseRD = BasePrimaryTemplate;
    170         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
    171           if (const ClassTemplatePartialSpecializationDecl *PS =
    172                   CTD->findPartialSpecialization(Base.getType()))
    173             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
    174               BaseRD = PS;
    175         }
    176       }
    177     }
    178     if (BaseRD) {
    179       for (NamedDecl *ND : BaseRD->lookup(&II)) {
    180         if (!isa<TypeDecl>(ND))
    181           return UnqualifiedTypeNameLookupResult::FoundNonType;
    182         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
    183       }
    184       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
    185         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
    186         case UnqualifiedTypeNameLookupResult::FoundNonType:
    187           return UnqualifiedTypeNameLookupResult::FoundNonType;
    188         case UnqualifiedTypeNameLookupResult::FoundType:
    189           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
    190           break;
    191         case UnqualifiedTypeNameLookupResult::NotFound:
    192           break;
    193         }
    194       }
    195     }
    196   }
    197 
    198   return FoundTypeDecl;
    199 }
    200 
    201 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
    202                                                       const IdentifierInfo &II,
    203                                                       SourceLocation NameLoc) {
    204   // Lookup in the parent class template context, if any.
    205   const CXXRecordDecl *RD = nullptr;
    206   UnqualifiedTypeNameLookupResult FoundTypeDecl =
    207       UnqualifiedTypeNameLookupResult::NotFound;
    208   for (DeclContext *DC = S.CurContext;
    209        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
    210        DC = DC->getParent()) {
    211     // Look for type decls in dependent base classes that have known primary
    212     // templates.
    213     RD = dyn_cast<CXXRecordDecl>(DC);
    214     if (RD && RD->getDescribedClassTemplate())
    215       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
    216   }
    217   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
    218     return nullptr;
    219 
    220   // We found some types in dependent base classes.  Recover as if the user
    221   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
    222   // lookup during template instantiation.
    223   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
    224 
    225   ASTContext &Context = S.Context;
    226   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
    227                                           cast<Type>(Context.getRecordType(RD)));
    228   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
    229 
    230   CXXScopeSpec SS;
    231   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    232 
    233   TypeLocBuilder Builder;
    234   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
    235   DepTL.setNameLoc(NameLoc);
    236   DepTL.setElaboratedKeywordLoc(SourceLocation());
    237   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
    238   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    239 }
    240 
    241 /// \brief If the identifier refers to a type name within this scope,
    242 /// return the declaration of that type.
    243 ///
    244 /// This routine performs ordinary name lookup of the identifier II
    245 /// within the given scope, with optional C++ scope specifier SS, to
    246 /// determine whether the name refers to a type. If so, returns an
    247 /// opaque pointer (actually a QualType) corresponding to that
    248 /// type. Otherwise, returns NULL.
    249 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
    250                              Scope *S, CXXScopeSpec *SS,
    251                              bool isClassName, bool HasTrailingDot,
    252                              ParsedType ObjectTypePtr,
    253                              bool IsCtorOrDtorName,
    254                              bool WantNontrivialTypeSourceInfo,
    255                              IdentifierInfo **CorrectedII) {
    256   // Determine where we will perform name lookup.
    257   DeclContext *LookupCtx = nullptr;
    258   if (ObjectTypePtr) {
    259     QualType ObjectType = ObjectTypePtr.get();
    260     if (ObjectType->isRecordType())
    261       LookupCtx = computeDeclContext(ObjectType);
    262   } else if (SS && SS->isNotEmpty()) {
    263     LookupCtx = computeDeclContext(*SS, false);
    264 
    265     if (!LookupCtx) {
    266       if (isDependentScopeSpecifier(*SS)) {
    267         // C++ [temp.res]p3:
    268         //   A qualified-id that refers to a type and in which the
    269         //   nested-name-specifier depends on a template-parameter (14.6.2)
    270         //   shall be prefixed by the keyword typename to indicate that the
    271         //   qualified-id denotes a type, forming an
    272         //   elaborated-type-specifier (7.1.5.3).
    273         //
    274         // We therefore do not perform any name lookup if the result would
    275         // refer to a member of an unknown specialization.
    276         if (!isClassName && !IsCtorOrDtorName)
    277           return nullptr;
    278 
    279         // We know from the grammar that this name refers to a type,
    280         // so build a dependent node to describe the type.
    281         if (WantNontrivialTypeSourceInfo)
    282           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
    283 
    284         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
    285         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
    286                                        II, NameLoc);
    287         return ParsedType::make(T);
    288       }
    289 
    290       return nullptr;
    291     }
    292 
    293     if (!LookupCtx->isDependentContext() &&
    294         RequireCompleteDeclContext(*SS, LookupCtx))
    295       return nullptr;
    296   }
    297 
    298   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
    299   // lookup for class-names.
    300   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
    301                                       LookupOrdinaryName;
    302   LookupResult Result(*this, &II, NameLoc, Kind);
    303   if (LookupCtx) {
    304     // Perform "qualified" name lookup into the declaration context we
    305     // computed, which is either the type of the base of a member access
    306     // expression or the declaration context associated with a prior
    307     // nested-name-specifier.
    308     LookupQualifiedName(Result, LookupCtx);
    309 
    310     if (ObjectTypePtr && Result.empty()) {
    311       // C++ [basic.lookup.classref]p3:
    312       //   If the unqualified-id is ~type-name, the type-name is looked up
    313       //   in the context of the entire postfix-expression. If the type T of
    314       //   the object expression is of a class type C, the type-name is also
    315       //   looked up in the scope of class C. At least one of the lookups shall
    316       //   find a name that refers to (possibly cv-qualified) T.
    317       LookupName(Result, S);
    318     }
    319   } else {
    320     // Perform unqualified name lookup.
    321     LookupName(Result, S);
    322 
    323     // For unqualified lookup in a class template in MSVC mode, look into
    324     // dependent base classes where the primary class template is known.
    325     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
    326       if (ParsedType TypeInBase =
    327               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
    328         return TypeInBase;
    329     }
    330   }
    331 
    332   NamedDecl *IIDecl = nullptr;
    333   switch (Result.getResultKind()) {
    334   case LookupResult::NotFound:
    335   case LookupResult::NotFoundInCurrentInstantiation:
    336     if (CorrectedII) {
    337       TypoCorrection Correction = CorrectTypo(
    338           Result.getLookupNameInfo(), Kind, S, SS,
    339           llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
    340           CTK_ErrorRecovery);
    341       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
    342       TemplateTy Template;
    343       bool MemberOfUnknownSpecialization;
    344       UnqualifiedId TemplateName;
    345       TemplateName.setIdentifier(NewII, NameLoc);
    346       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
    347       CXXScopeSpec NewSS, *NewSSPtr = SS;
    348       if (SS && NNS) {
    349         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    350         NewSSPtr = &NewSS;
    351       }
    352       if (Correction && (NNS || NewII != &II) &&
    353           // Ignore a correction to a template type as the to-be-corrected
    354           // identifier is not a template (typo correction for template names
    355           // is handled elsewhere).
    356           !(getLangOpts().CPlusPlus && NewSSPtr &&
    357             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
    358                            Template, MemberOfUnknownSpecialization))) {
    359         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
    360                                     isClassName, HasTrailingDot, ObjectTypePtr,
    361                                     IsCtorOrDtorName,
    362                                     WantNontrivialTypeSourceInfo);
    363         if (Ty) {
    364           diagnoseTypo(Correction,
    365                        PDiag(diag::err_unknown_type_or_class_name_suggest)
    366                          << Result.getLookupName() << isClassName);
    367           if (SS && NNS)
    368             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
    369           *CorrectedII = NewII;
    370           return Ty;
    371         }
    372       }
    373     }
    374     // If typo correction failed or was not performed, fall through
    375   case LookupResult::FoundOverloaded:
    376   case LookupResult::FoundUnresolvedValue:
    377     Result.suppressDiagnostics();
    378     return nullptr;
    379 
    380   case LookupResult::Ambiguous:
    381     // Recover from type-hiding ambiguities by hiding the type.  We'll
    382     // do the lookup again when looking for an object, and we can
    383     // diagnose the error then.  If we don't do this, then the error
    384     // about hiding the type will be immediately followed by an error
    385     // that only makes sense if the identifier was treated like a type.
    386     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
    387       Result.suppressDiagnostics();
    388       return nullptr;
    389     }
    390 
    391     // Look to see if we have a type anywhere in the list of results.
    392     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
    393          Res != ResEnd; ++Res) {
    394       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
    395         if (!IIDecl ||
    396             (*Res)->getLocation().getRawEncoding() <
    397               IIDecl->getLocation().getRawEncoding())
    398           IIDecl = *Res;
    399       }
    400     }
    401 
    402     if (!IIDecl) {
    403       // None of the entities we found is a type, so there is no way
    404       // to even assume that the result is a type. In this case, don't
    405       // complain about the ambiguity. The parser will either try to
    406       // perform this lookup again (e.g., as an object name), which
    407       // will produce the ambiguity, or will complain that it expected
    408       // a type name.
    409       Result.suppressDiagnostics();
    410       return nullptr;
    411     }
    412 
    413     // We found a type within the ambiguous lookup; diagnose the
    414     // ambiguity and then return that type. This might be the right
    415     // answer, or it might not be, but it suppresses any attempt to
    416     // perform the name lookup again.
    417     break;
    418 
    419   case LookupResult::Found:
    420     IIDecl = Result.getFoundDecl();
    421     break;
    422   }
    423 
    424   assert(IIDecl && "Didn't find decl");
    425 
    426   QualType T;
    427   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
    428     DiagnoseUseOfDecl(IIDecl, NameLoc);
    429 
    430     T = Context.getTypeDeclType(TD);
    431     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
    432 
    433     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
    434     // constructor or destructor name (in such a case, the scope specifier
    435     // will be attached to the enclosing Expr or Decl node).
    436     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
    437       if (WantNontrivialTypeSourceInfo) {
    438         // Construct a type with type-source information.
    439         TypeLocBuilder Builder;
    440         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    441 
    442         T = getElaboratedType(ETK_None, *SS, T);
    443         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    444         ElabTL.setElaboratedKeywordLoc(SourceLocation());
    445         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
    446         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    447       } else {
    448         T = getElaboratedType(ETK_None, *SS, T);
    449       }
    450     }
    451   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
    452     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
    453     if (!HasTrailingDot)
    454       T = Context.getObjCInterfaceType(IDecl);
    455   }
    456 
    457   if (T.isNull()) {
    458     // If it's not plausibly a type, suppress diagnostics.
    459     Result.suppressDiagnostics();
    460     return nullptr;
    461   }
    462   return ParsedType::make(T);
    463 }
    464 
    465 // Builds a fake NNS for the given decl context.
    466 static NestedNameSpecifier *
    467 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
    468   for (;; DC = DC->getLookupParent()) {
    469     DC = DC->getPrimaryContext();
    470     auto *ND = dyn_cast<NamespaceDecl>(DC);
    471     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
    472       return NestedNameSpecifier::Create(Context, nullptr, ND);
    473     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
    474       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
    475                                          RD->getTypeForDecl());
    476     else if (isa<TranslationUnitDecl>(DC))
    477       return NestedNameSpecifier::GlobalSpecifier(Context);
    478   }
    479   llvm_unreachable("something isn't in TU scope?");
    480 }
    481 
    482 /// Find the parent class with dependent bases of the innermost enclosing method
    483 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
    484 /// up allowing unqualified dependent type names at class-level, which MSVC
    485 /// correctly rejects.
    486 static const CXXRecordDecl *
    487 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
    488   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
    489     DC = DC->getPrimaryContext();
    490     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
    491       if (MD->getParent()->hasAnyDependentBases())
    492         return MD->getParent();
    493   }
    494   return nullptr;
    495 }
    496 
    497 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
    498                                           SourceLocation NameLoc,
    499                                           bool IsTemplateTypeArg) {
    500   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
    501 
    502   NestedNameSpecifier *NNS = nullptr;
    503   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
    504     // If we weren't able to parse a default template argument, delay lookup
    505     // until instantiation time by making a non-dependent DependentTypeName. We
    506     // pretend we saw a NestedNameSpecifier referring to the current scope, and
    507     // lookup is retried.
    508     // FIXME: This hurts our diagnostic quality, since we get errors like "no
    509     // type named 'Foo' in 'current_namespace'" when the user didn't write any
    510     // name specifiers.
    511     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
    512     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
    513   } else if (const CXXRecordDecl *RD =
    514                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
    515     // Build a DependentNameType that will perform lookup into RD at
    516     // instantiation time.
    517     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
    518                                       RD->getTypeForDecl());
    519 
    520     // Diagnose that this identifier was undeclared, and retry the lookup during
    521     // template instantiation.
    522     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
    523                                                                       << RD;
    524   } else {
    525     // This is not a situation that we should recover from.
    526     return ParsedType();
    527   }
    528 
    529   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
    530 
    531   // Build type location information.  We synthesized the qualifier, so we have
    532   // to build a fake NestedNameSpecifierLoc.
    533   NestedNameSpecifierLocBuilder NNSLocBuilder;
    534   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
    535   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
    536 
    537   TypeLocBuilder Builder;
    538   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
    539   DepTL.setNameLoc(NameLoc);
    540   DepTL.setElaboratedKeywordLoc(SourceLocation());
    541   DepTL.setQualifierLoc(QualifierLoc);
    542   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    543 }
    544 
    545 /// isTagName() - This method is called *for error recovery purposes only*
    546 /// to determine if the specified name is a valid tag name ("struct foo").  If
    547 /// so, this returns the TST for the tag corresponding to it (TST_enum,
    548 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
    549 /// cases in C where the user forgot to specify the tag.
    550 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
    551   // Do a tag name lookup in this scope.
    552   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
    553   LookupName(R, S, false);
    554   R.suppressDiagnostics();
    555   if (R.getResultKind() == LookupResult::Found)
    556     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
    557       switch (TD->getTagKind()) {
    558       case TTK_Struct: return DeclSpec::TST_struct;
    559       case TTK_Interface: return DeclSpec::TST_interface;
    560       case TTK_Union:  return DeclSpec::TST_union;
    561       case TTK_Class:  return DeclSpec::TST_class;
    562       case TTK_Enum:   return DeclSpec::TST_enum;
    563       }
    564     }
    565 
    566   return DeclSpec::TST_unspecified;
    567 }
    568 
    569 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
    570 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
    571 /// then downgrade the missing typename error to a warning.
    572 /// This is needed for MSVC compatibility; Example:
    573 /// @code
    574 /// template<class T> class A {
    575 /// public:
    576 ///   typedef int TYPE;
    577 /// };
    578 /// template<class T> class B : public A<T> {
    579 /// public:
    580 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
    581 /// };
    582 /// @endcode
    583 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
    584   if (CurContext->isRecord()) {
    585     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
    586       return true;
    587 
    588     const Type *Ty = SS->getScopeRep()->getAsType();
    589 
    590     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
    591     for (const auto &Base : RD->bases())
    592       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
    593         return true;
    594     return S->isFunctionPrototypeScope();
    595   }
    596   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
    597 }
    598 
    599 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
    600                                    SourceLocation IILoc,
    601                                    Scope *S,
    602                                    CXXScopeSpec *SS,
    603                                    ParsedType &SuggestedType,
    604                                    bool AllowClassTemplates) {
    605   // We don't have anything to suggest (yet).
    606   SuggestedType = nullptr;
    607 
    608   // There may have been a typo in the name of the type. Look up typo
    609   // results, in case we have something that we can suggest.
    610   if (TypoCorrection Corrected =
    611           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
    612                       llvm::make_unique<TypeNameValidatorCCC>(
    613                           false, false, AllowClassTemplates),
    614                       CTK_ErrorRecovery)) {
    615     if (Corrected.isKeyword()) {
    616       // We corrected to a keyword.
    617       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
    618       II = Corrected.getCorrectionAsIdentifierInfo();
    619     } else {
    620       // We found a similarly-named type or interface; suggest that.
    621       if (!SS || !SS->isSet()) {
    622         diagnoseTypo(Corrected,
    623                      PDiag(diag::err_unknown_typename_suggest) << II);
    624       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
    625         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    626         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    627                                 II->getName().equals(CorrectedStr);
    628         diagnoseTypo(Corrected,
    629                      PDiag(diag::err_unknown_nested_typename_suggest)
    630                        << II << DC << DroppedSpecifier << SS->getRange());
    631       } else {
    632         llvm_unreachable("could not have corrected a typo here");
    633       }
    634 
    635       CXXScopeSpec tmpSS;
    636       if (Corrected.getCorrectionSpecifier())
    637         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
    638                           SourceRange(IILoc));
    639       SuggestedType =
    640           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
    641                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
    642                       /*IsCtorOrDtorName=*/false,
    643                       /*NonTrivialTypeSourceInfo=*/true);
    644     }
    645     return;
    646   }
    647 
    648   if (getLangOpts().CPlusPlus) {
    649     // See if II is a class template that the user forgot to pass arguments to.
    650     UnqualifiedId Name;
    651     Name.setIdentifier(II, IILoc);
    652     CXXScopeSpec EmptySS;
    653     TemplateTy TemplateResult;
    654     bool MemberOfUnknownSpecialization;
    655     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
    656                        Name, nullptr, true, TemplateResult,
    657                        MemberOfUnknownSpecialization) == TNK_Type_template) {
    658       TemplateName TplName = TemplateResult.get();
    659       Diag(IILoc, diag::err_template_missing_args) << TplName;
    660       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
    661         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
    662           << TplDecl->getTemplateParameters()->getSourceRange();
    663       }
    664       return;
    665     }
    666   }
    667 
    668   // FIXME: Should we move the logic that tries to recover from a missing tag
    669   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
    670 
    671   if (!SS || (!SS->isSet() && !SS->isInvalid()))
    672     Diag(IILoc, diag::err_unknown_typename) << II;
    673   else if (DeclContext *DC = computeDeclContext(*SS, false))
    674     Diag(IILoc, diag::err_typename_nested_not_found)
    675       << II << DC << SS->getRange();
    676   else if (isDependentScopeSpecifier(*SS)) {
    677     unsigned DiagID = diag::err_typename_missing;
    678     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
    679       DiagID = diag::ext_typename_missing;
    680 
    681     Diag(SS->getRange().getBegin(), DiagID)
    682       << SS->getScopeRep() << II->getName()
    683       << SourceRange(SS->getRange().getBegin(), IILoc)
    684       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
    685     SuggestedType = ActOnTypenameType(S, SourceLocation(),
    686                                       *SS, *II, IILoc).get();
    687   } else {
    688     assert(SS && SS->isInvalid() &&
    689            "Invalid scope specifier has already been diagnosed");
    690   }
    691 }
    692 
    693 /// \brief Determine whether the given result set contains either a type name
    694 /// or
    695 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
    696   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
    697                        NextToken.is(tok::less);
    698 
    699   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
    700     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
    701       return true;
    702 
    703     if (CheckTemplate && isa<TemplateDecl>(*I))
    704       return true;
    705   }
    706 
    707   return false;
    708 }
    709 
    710 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
    711                                     Scope *S, CXXScopeSpec &SS,
    712                                     IdentifierInfo *&Name,
    713                                     SourceLocation NameLoc) {
    714   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
    715   SemaRef.LookupParsedName(R, S, &SS);
    716   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
    717     StringRef FixItTagName;
    718     switch (Tag->getTagKind()) {
    719       case TTK_Class:
    720         FixItTagName = "class ";
    721         break;
    722 
    723       case TTK_Enum:
    724         FixItTagName = "enum ";
    725         break;
    726 
    727       case TTK_Struct:
    728         FixItTagName = "struct ";
    729         break;
    730 
    731       case TTK_Interface:
    732         FixItTagName = "__interface ";
    733         break;
    734 
    735       case TTK_Union:
    736         FixItTagName = "union ";
    737         break;
    738     }
    739 
    740     StringRef TagName = FixItTagName.drop_back();
    741     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
    742       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
    743       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
    744 
    745     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
    746          I != IEnd; ++I)
    747       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
    748         << Name << TagName;
    749 
    750     // Replace lookup results with just the tag decl.
    751     Result.clear(Sema::LookupTagName);
    752     SemaRef.LookupParsedName(Result, S, &SS);
    753     return true;
    754   }
    755 
    756   return false;
    757 }
    758 
    759 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
    760 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
    761                                   QualType T, SourceLocation NameLoc) {
    762   ASTContext &Context = S.Context;
    763 
    764   TypeLocBuilder Builder;
    765   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
    766 
    767   T = S.getElaboratedType(ETK_None, SS, T);
    768   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
    769   ElabTL.setElaboratedKeywordLoc(SourceLocation());
    770   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
    771   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
    772 }
    773 
    774 Sema::NameClassification
    775 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
    776                    SourceLocation NameLoc, const Token &NextToken,
    777                    bool IsAddressOfOperand,
    778                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
    779   DeclarationNameInfo NameInfo(Name, NameLoc);
    780   ObjCMethodDecl *CurMethod = getCurMethodDecl();
    781 
    782   if (NextToken.is(tok::coloncolon)) {
    783     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
    784                                 QualType(), false, SS, nullptr, false);
    785   }
    786 
    787   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
    788   LookupParsedName(Result, S, &SS, !CurMethod);
    789 
    790   // For unqualified lookup in a class template in MSVC mode, look into
    791   // dependent base classes where the primary class template is known.
    792   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
    793     if (ParsedType TypeInBase =
    794             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
    795       return TypeInBase;
    796   }
    797 
    798   // Perform lookup for Objective-C instance variables (including automatically
    799   // synthesized instance variables), if we're in an Objective-C method.
    800   // FIXME: This lookup really, really needs to be folded in to the normal
    801   // unqualified lookup mechanism.
    802   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
    803     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
    804     if (E.get() || E.isInvalid())
    805       return E;
    806   }
    807 
    808   bool SecondTry = false;
    809   bool IsFilteredTemplateName = false;
    810 
    811 Corrected:
    812   switch (Result.getResultKind()) {
    813   case LookupResult::NotFound:
    814     // If an unqualified-id is followed by a '(', then we have a function
    815     // call.
    816     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
    817       // In C++, this is an ADL-only call.
    818       // FIXME: Reference?
    819       if (getLangOpts().CPlusPlus)
    820         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
    821 
    822       // C90 6.3.2.2:
    823       //   If the expression that precedes the parenthesized argument list in a
    824       //   function call consists solely of an identifier, and if no
    825       //   declaration is visible for this identifier, the identifier is
    826       //   implicitly declared exactly as if, in the innermost block containing
    827       //   the function call, the declaration
    828       //
    829       //     extern int identifier ();
    830       //
    831       //   appeared.
    832       //
    833       // We also allow this in C99 as an extension.
    834       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
    835         Result.addDecl(D);
    836         Result.resolveKind();
    837         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
    838       }
    839     }
    840 
    841     // In C, we first see whether there is a tag type by the same name, in
    842     // which case it's likely that the user just forgot to write "enum",
    843     // "struct", or "union".
    844     if (!getLangOpts().CPlusPlus && !SecondTry &&
    845         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
    846       break;
    847     }
    848 
    849     // Perform typo correction to determine if there is another name that is
    850     // close to this name.
    851     if (!SecondTry && CCC) {
    852       SecondTry = true;
    853       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
    854                                                  Result.getLookupKind(), S,
    855                                                  &SS, std::move(CCC),
    856                                                  CTK_ErrorRecovery)) {
    857         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
    858         unsigned QualifiedDiag = diag::err_no_member_suggest;
    859 
    860         NamedDecl *FirstDecl = Corrected.getFoundDecl();
    861         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
    862         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    863             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
    864           UnqualifiedDiag = diag::err_no_template_suggest;
    865           QualifiedDiag = diag::err_no_member_template_suggest;
    866         } else if (UnderlyingFirstDecl &&
    867                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
    868                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
    869                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
    870           UnqualifiedDiag = diag::err_unknown_typename_suggest;
    871           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
    872         }
    873 
    874         if (SS.isEmpty()) {
    875           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
    876         } else {// FIXME: is this even reachable? Test it.
    877           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
    878           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
    879                                   Name->getName().equals(CorrectedStr);
    880           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
    881                                     << Name << computeDeclContext(SS, false)
    882                                     << DroppedSpecifier << SS.getRange());
    883         }
    884 
    885         // Update the name, so that the caller has the new name.
    886         Name = Corrected.getCorrectionAsIdentifierInfo();
    887 
    888         // Typo correction corrected to a keyword.
    889         if (Corrected.isKeyword())
    890           return Name;
    891 
    892         // Also update the LookupResult...
    893         // FIXME: This should probably go away at some point
    894         Result.clear();
    895         Result.setLookupName(Corrected.getCorrection());
    896         if (FirstDecl)
    897           Result.addDecl(FirstDecl);
    898 
    899         // If we found an Objective-C instance variable, let
    900         // LookupInObjCMethod build the appropriate expression to
    901         // reference the ivar.
    902         // FIXME: This is a gross hack.
    903         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
    904           Result.clear();
    905           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
    906           return E;
    907         }
    908 
    909         goto Corrected;
    910       }
    911     }
    912 
    913     // We failed to correct; just fall through and let the parser deal with it.
    914     Result.suppressDiagnostics();
    915     return NameClassification::Unknown();
    916 
    917   case LookupResult::NotFoundInCurrentInstantiation: {
    918     // We performed name lookup into the current instantiation, and there were
    919     // dependent bases, so we treat this result the same way as any other
    920     // dependent nested-name-specifier.
    921 
    922     // C++ [temp.res]p2:
    923     //   A name used in a template declaration or definition and that is
    924     //   dependent on a template-parameter is assumed not to name a type
    925     //   unless the applicable name lookup finds a type name or the name is
    926     //   qualified by the keyword typename.
    927     //
    928     // FIXME: If the next token is '<', we might want to ask the parser to
    929     // perform some heroics to see if we actually have a
    930     // template-argument-list, which would indicate a missing 'template'
    931     // keyword here.
    932     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
    933                                       NameInfo, IsAddressOfOperand,
    934                                       /*TemplateArgs=*/nullptr);
    935   }
    936 
    937   case LookupResult::Found:
    938   case LookupResult::FoundOverloaded:
    939   case LookupResult::FoundUnresolvedValue:
    940     break;
    941 
    942   case LookupResult::Ambiguous:
    943     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    944         hasAnyAcceptableTemplateNames(Result)) {
    945       // C++ [temp.local]p3:
    946       //   A lookup that finds an injected-class-name (10.2) can result in an
    947       //   ambiguity in certain cases (for example, if it is found in more than
    948       //   one base class). If all of the injected-class-names that are found
    949       //   refer to specializations of the same class template, and if the name
    950       //   is followed by a template-argument-list, the reference refers to the
    951       //   class template itself and not a specialization thereof, and is not
    952       //   ambiguous.
    953       //
    954       // This filtering can make an ambiguous result into an unambiguous one,
    955       // so try again after filtering out template names.
    956       FilterAcceptableTemplateNames(Result);
    957       if (!Result.isAmbiguous()) {
    958         IsFilteredTemplateName = true;
    959         break;
    960       }
    961     }
    962 
    963     // Diagnose the ambiguity and return an error.
    964     return NameClassification::Error();
    965   }
    966 
    967   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
    968       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
    969     // C++ [temp.names]p3:
    970     //   After name lookup (3.4) finds that a name is a template-name or that
    971     //   an operator-function-id or a literal- operator-id refers to a set of
    972     //   overloaded functions any member of which is a function template if
    973     //   this is followed by a <, the < is always taken as the delimiter of a
    974     //   template-argument-list and never as the less-than operator.
    975     if (!IsFilteredTemplateName)
    976       FilterAcceptableTemplateNames(Result);
    977 
    978     if (!Result.empty()) {
    979       bool IsFunctionTemplate;
    980       bool IsVarTemplate;
    981       TemplateName Template;
    982       if (Result.end() - Result.begin() > 1) {
    983         IsFunctionTemplate = true;
    984         Template = Context.getOverloadedTemplateName(Result.begin(),
    985                                                      Result.end());
    986       } else {
    987         TemplateDecl *TD
    988           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
    989         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
    990         IsVarTemplate = isa<VarTemplateDecl>(TD);
    991 
    992         if (SS.isSet() && !SS.isInvalid())
    993           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
    994                                                     /*TemplateKeyword=*/false,
    995                                                       TD);
    996         else
    997           Template = TemplateName(TD);
    998       }
    999 
   1000       if (IsFunctionTemplate) {
   1001         // Function templates always go through overload resolution, at which
   1002         // point we'll perform the various checks (e.g., accessibility) we need
   1003         // to based on which function we selected.
   1004         Result.suppressDiagnostics();
   1005 
   1006         return NameClassification::FunctionTemplate(Template);
   1007       }
   1008 
   1009       return IsVarTemplate ? NameClassification::VarTemplate(Template)
   1010                            : NameClassification::TypeTemplate(Template);
   1011     }
   1012   }
   1013 
   1014   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
   1015   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
   1016     DiagnoseUseOfDecl(Type, NameLoc);
   1017     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
   1018     QualType T = Context.getTypeDeclType(Type);
   1019     if (SS.isNotEmpty())
   1020       return buildNestedType(*this, SS, T, NameLoc);
   1021     return ParsedType::make(T);
   1022   }
   1023 
   1024   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
   1025   if (!Class) {
   1026     // FIXME: It's unfortunate that we don't have a Type node for handling this.
   1027     if (ObjCCompatibleAliasDecl *Alias =
   1028             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
   1029       Class = Alias->getClassInterface();
   1030   }
   1031 
   1032   if (Class) {
   1033     DiagnoseUseOfDecl(Class, NameLoc);
   1034 
   1035     if (NextToken.is(tok::period)) {
   1036       // Interface. <something> is parsed as a property reference expression.
   1037       // Just return "unknown" as a fall-through for now.
   1038       Result.suppressDiagnostics();
   1039       return NameClassification::Unknown();
   1040     }
   1041 
   1042     QualType T = Context.getObjCInterfaceType(Class);
   1043     return ParsedType::make(T);
   1044   }
   1045 
   1046   // We can have a type template here if we're classifying a template argument.
   1047   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
   1048     return NameClassification::TypeTemplate(
   1049         TemplateName(cast<TemplateDecl>(FirstDecl)));
   1050 
   1051   // Check for a tag type hidden by a non-type decl in a few cases where it
   1052   // seems likely a type is wanted instead of the non-type that was found.
   1053   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
   1054   if ((NextToken.is(tok::identifier) ||
   1055        (NextIsOp &&
   1056         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
   1057       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
   1058     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
   1059     DiagnoseUseOfDecl(Type, NameLoc);
   1060     QualType T = Context.getTypeDeclType(Type);
   1061     if (SS.isNotEmpty())
   1062       return buildNestedType(*this, SS, T, NameLoc);
   1063     return ParsedType::make(T);
   1064   }
   1065 
   1066   if (FirstDecl->isCXXClassMember())
   1067     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
   1068                                            nullptr, S);
   1069 
   1070   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
   1071   return BuildDeclarationNameExpr(SS, Result, ADL);
   1072 }
   1073 
   1074 // Determines the context to return to after temporarily entering a
   1075 // context.  This depends in an unnecessarily complicated way on the
   1076 // exact ordering of callbacks from the parser.
   1077 DeclContext *Sema::getContainingDC(DeclContext *DC) {
   1078 
   1079   // Functions defined inline within classes aren't parsed until we've
   1080   // finished parsing the top-level class, so the top-level class is
   1081   // the context we'll need to return to.
   1082   // A Lambda call operator whose parent is a class must not be treated
   1083   // as an inline member function.  A Lambda can be used legally
   1084   // either as an in-class member initializer or a default argument.  These
   1085   // are parsed once the class has been marked complete and so the containing
   1086   // context would be the nested class (when the lambda is defined in one);
   1087   // If the class is not complete, then the lambda is being used in an
   1088   // ill-formed fashion (such as to specify the width of a bit-field, or
   1089   // in an array-bound) - in which case we still want to return the
   1090   // lexically containing DC (which could be a nested class).
   1091   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
   1092     DC = DC->getLexicalParent();
   1093 
   1094     // A function not defined within a class will always return to its
   1095     // lexical context.
   1096     if (!isa<CXXRecordDecl>(DC))
   1097       return DC;
   1098 
   1099     // A C++ inline method/friend is parsed *after* the topmost class
   1100     // it was declared in is fully parsed ("complete");  the topmost
   1101     // class is the context we need to return to.
   1102     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
   1103       DC = RD;
   1104 
   1105     // Return the declaration context of the topmost class the inline method is
   1106     // declared in.
   1107     return DC;
   1108   }
   1109 
   1110   return DC->getLexicalParent();
   1111 }
   1112 
   1113 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
   1114   assert(getContainingDC(DC) == CurContext &&
   1115       "The next DeclContext should be lexically contained in the current one.");
   1116   CurContext = DC;
   1117   S->setEntity(DC);
   1118 }
   1119 
   1120 void Sema::PopDeclContext() {
   1121   assert(CurContext && "DeclContext imbalance!");
   1122 
   1123   CurContext = getContainingDC(CurContext);
   1124   assert(CurContext && "Popped translation unit!");
   1125 }
   1126 
   1127 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
   1128                                                                     Decl *D) {
   1129   // Unlike PushDeclContext, the context to which we return is not necessarily
   1130   // the containing DC of TD, because the new context will be some pre-existing
   1131   // TagDecl definition instead of a fresh one.
   1132   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
   1133   CurContext = cast<TagDecl>(D)->getDefinition();
   1134   assert(CurContext && "skipping definition of undefined tag");
   1135   // Start lookups from the parent of the current context; we don't want to look
   1136   // into the pre-existing complete definition.
   1137   S->setEntity(CurContext->getLookupParent());
   1138   return Result;
   1139 }
   1140 
   1141 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
   1142   CurContext = static_cast<decltype(CurContext)>(Context);
   1143 }
   1144 
   1145 /// EnterDeclaratorContext - Used when we must lookup names in the context
   1146 /// of a declarator's nested name specifier.
   1147 ///
   1148 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
   1149   // C++0x [basic.lookup.unqual]p13:
   1150   //   A name used in the definition of a static data member of class
   1151   //   X (after the qualified-id of the static member) is looked up as
   1152   //   if the name was used in a member function of X.
   1153   // C++0x [basic.lookup.unqual]p14:
   1154   //   If a variable member of a namespace is defined outside of the
   1155   //   scope of its namespace then any name used in the definition of
   1156   //   the variable member (after the declarator-id) is looked up as
   1157   //   if the definition of the variable member occurred in its
   1158   //   namespace.
   1159   // Both of these imply that we should push a scope whose context
   1160   // is the semantic context of the declaration.  We can't use
   1161   // PushDeclContext here because that context is not necessarily
   1162   // lexically contained in the current context.  Fortunately,
   1163   // the containing scope should have the appropriate information.
   1164 
   1165   assert(!S->getEntity() && "scope already has entity");
   1166 
   1167 #ifndef NDEBUG
   1168   Scope *Ancestor = S->getParent();
   1169   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
   1170   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
   1171 #endif
   1172 
   1173   CurContext = DC;
   1174   S->setEntity(DC);
   1175 }
   1176 
   1177 void Sema::ExitDeclaratorContext(Scope *S) {
   1178   assert(S->getEntity() == CurContext && "Context imbalance!");
   1179 
   1180   // Switch back to the lexical context.  The safety of this is
   1181   // enforced by an assert in EnterDeclaratorContext.
   1182   Scope *Ancestor = S->getParent();
   1183   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
   1184   CurContext = Ancestor->getEntity();
   1185 
   1186   // We don't need to do anything with the scope, which is going to
   1187   // disappear.
   1188 }
   1189 
   1190 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
   1191   // We assume that the caller has already called
   1192   // ActOnReenterTemplateScope so getTemplatedDecl() works.
   1193   FunctionDecl *FD = D->getAsFunction();
   1194   if (!FD)
   1195     return;
   1196 
   1197   // Same implementation as PushDeclContext, but enters the context
   1198   // from the lexical parent, rather than the top-level class.
   1199   assert(CurContext == FD->getLexicalParent() &&
   1200     "The next DeclContext should be lexically contained in the current one.");
   1201   CurContext = FD;
   1202   S->setEntity(CurContext);
   1203 
   1204   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
   1205     ParmVarDecl *Param = FD->getParamDecl(P);
   1206     // If the parameter has an identifier, then add it to the scope
   1207     if (Param->getIdentifier()) {
   1208       S->AddDecl(Param);
   1209       IdResolver.AddDecl(Param);
   1210     }
   1211   }
   1212 }
   1213 
   1214 void Sema::ActOnExitFunctionContext() {
   1215   // Same implementation as PopDeclContext, but returns to the lexical parent,
   1216   // rather than the top-level class.
   1217   assert(CurContext && "DeclContext imbalance!");
   1218   CurContext = CurContext->getLexicalParent();
   1219   assert(CurContext && "Popped translation unit!");
   1220 }
   1221 
   1222 /// \brief Determine whether we allow overloading of the function
   1223 /// PrevDecl with another declaration.
   1224 ///
   1225 /// This routine determines whether overloading is possible, not
   1226 /// whether some new function is actually an overload. It will return
   1227 /// true in C++ (where we can always provide overloads) or, as an
   1228 /// extension, in C when the previous function is already an
   1229 /// overloaded function declaration or has the "overloadable"
   1230 /// attribute.
   1231 static bool AllowOverloadingOfFunction(LookupResult &Previous,
   1232                                        ASTContext &Context) {
   1233   if (Context.getLangOpts().CPlusPlus)
   1234     return true;
   1235 
   1236   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
   1237     return true;
   1238 
   1239   return (Previous.getResultKind() == LookupResult::Found
   1240           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
   1241 }
   1242 
   1243 /// Add this decl to the scope shadowed decl chains.
   1244 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
   1245   // Move up the scope chain until we find the nearest enclosing
   1246   // non-transparent context. The declaration will be introduced into this
   1247   // scope.
   1248   while (S->getEntity() && S->getEntity()->isTransparentContext())
   1249     S = S->getParent();
   1250 
   1251   // Add scoped declarations into their context, so that they can be
   1252   // found later. Declarations without a context won't be inserted
   1253   // into any context.
   1254   if (AddToContext)
   1255     CurContext->addDecl(D);
   1256 
   1257   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
   1258   // are function-local declarations.
   1259   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
   1260       !D->getDeclContext()->getRedeclContext()->Equals(
   1261         D->getLexicalDeclContext()->getRedeclContext()) &&
   1262       !D->getLexicalDeclContext()->isFunctionOrMethod())
   1263     return;
   1264 
   1265   // Template instantiations should also not be pushed into scope.
   1266   if (isa<FunctionDecl>(D) &&
   1267       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
   1268     return;
   1269 
   1270   // If this replaces anything in the current scope,
   1271   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
   1272                                IEnd = IdResolver.end();
   1273   for (; I != IEnd; ++I) {
   1274     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
   1275       S->RemoveDecl(*I);
   1276       IdResolver.RemoveDecl(*I);
   1277 
   1278       // Should only need to replace one decl.
   1279       break;
   1280     }
   1281   }
   1282 
   1283   S->AddDecl(D);
   1284 
   1285   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
   1286     // Implicitly-generated labels may end up getting generated in an order that
   1287     // isn't strictly lexical, which breaks name lookup. Be careful to insert
   1288     // the label at the appropriate place in the identifier chain.
   1289     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
   1290       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
   1291       if (IDC == CurContext) {
   1292         if (!S->isDeclScope(*I))
   1293           continue;
   1294       } else if (IDC->Encloses(CurContext))
   1295         break;
   1296     }
   1297 
   1298     IdResolver.InsertDeclAfter(I, D);
   1299   } else {
   1300     IdResolver.AddDecl(D);
   1301   }
   1302 }
   1303 
   1304 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
   1305   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
   1306     TUScope->AddDecl(D);
   1307 }
   1308 
   1309 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
   1310                          bool AllowInlineNamespace) {
   1311   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
   1312 }
   1313 
   1314 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
   1315   DeclContext *TargetDC = DC->getPrimaryContext();
   1316   do {
   1317     if (DeclContext *ScopeDC = S->getEntity())
   1318       if (ScopeDC->getPrimaryContext() == TargetDC)
   1319         return S;
   1320   } while ((S = S->getParent()));
   1321 
   1322   return nullptr;
   1323 }
   1324 
   1325 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
   1326                                             DeclContext*,
   1327                                             ASTContext&);
   1328 
   1329 /// Filters out lookup results that don't fall within the given scope
   1330 /// as determined by isDeclInScope.
   1331 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
   1332                                 bool ConsiderLinkage,
   1333                                 bool AllowInlineNamespace) {
   1334   LookupResult::Filter F = R.makeFilter();
   1335   while (F.hasNext()) {
   1336     NamedDecl *D = F.next();
   1337 
   1338     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
   1339       continue;
   1340 
   1341     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
   1342       continue;
   1343 
   1344     F.erase();
   1345   }
   1346 
   1347   F.done();
   1348 }
   1349 
   1350 static bool isUsingDecl(NamedDecl *D) {
   1351   return isa<UsingShadowDecl>(D) ||
   1352          isa<UnresolvedUsingTypenameDecl>(D) ||
   1353          isa<UnresolvedUsingValueDecl>(D);
   1354 }
   1355 
   1356 /// Removes using shadow declarations from the lookup results.
   1357 static void RemoveUsingDecls(LookupResult &R) {
   1358   LookupResult::Filter F = R.makeFilter();
   1359   while (F.hasNext())
   1360     if (isUsingDecl(F.next()))
   1361       F.erase();
   1362 
   1363   F.done();
   1364 }
   1365 
   1366 /// \brief Check for this common pattern:
   1367 /// @code
   1368 /// class S {
   1369 ///   S(const S&); // DO NOT IMPLEMENT
   1370 ///   void operator=(const S&); // DO NOT IMPLEMENT
   1371 /// };
   1372 /// @endcode
   1373 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
   1374   // FIXME: Should check for private access too but access is set after we get
   1375   // the decl here.
   1376   if (D->doesThisDeclarationHaveABody())
   1377     return false;
   1378 
   1379   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
   1380     return CD->isCopyConstructor();
   1381   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
   1382     return Method->isCopyAssignmentOperator();
   1383   return false;
   1384 }
   1385 
   1386 // We need this to handle
   1387 //
   1388 // typedef struct {
   1389 //   void *foo() { return 0; }
   1390 // } A;
   1391 //
   1392 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
   1393 // for example. If 'A', foo will have external linkage. If we have '*A',
   1394 // foo will have no linkage. Since we can't know until we get to the end
   1395 // of the typedef, this function finds out if D might have non-external linkage.
   1396 // Callers should verify at the end of the TU if it D has external linkage or
   1397 // not.
   1398 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
   1399   const DeclContext *DC = D->getDeclContext();
   1400   while (!DC->isTranslationUnit()) {
   1401     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
   1402       if (!RD->hasNameForLinkage())
   1403         return true;
   1404     }
   1405     DC = DC->getParent();
   1406   }
   1407 
   1408   return !D->isExternallyVisible();
   1409 }
   1410 
   1411 // FIXME: This needs to be refactored; some other isInMainFile users want
   1412 // these semantics.
   1413 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
   1414   if (S.TUKind != TU_Complete)
   1415     return false;
   1416   return S.SourceMgr.isInMainFile(Loc);
   1417 }
   1418 
   1419 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
   1420   assert(D);
   1421 
   1422   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
   1423     return false;
   1424 
   1425   // Ignore all entities declared within templates, and out-of-line definitions
   1426   // of members of class templates.
   1427   if (D->getDeclContext()->isDependentContext() ||
   1428       D->getLexicalDeclContext()->isDependentContext())
   1429     return false;
   1430 
   1431   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1432     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1433       return false;
   1434 
   1435     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   1436       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
   1437         return false;
   1438     } else {
   1439       // 'static inline' functions are defined in headers; don't warn.
   1440       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
   1441         return false;
   1442     }
   1443 
   1444     if (FD->doesThisDeclarationHaveABody() &&
   1445         Context.DeclMustBeEmitted(FD))
   1446       return false;
   1447   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1448     // Constants and utility variables are defined in headers with internal
   1449     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
   1450     // like "inline".)
   1451     if (!isMainFileLoc(*this, VD->getLocation()))
   1452       return false;
   1453 
   1454     if (Context.DeclMustBeEmitted(VD))
   1455       return false;
   1456 
   1457     if (VD->isStaticDataMember() &&
   1458         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
   1459       return false;
   1460 
   1461     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
   1462       return false;
   1463   } else {
   1464     return false;
   1465   }
   1466 
   1467   // Only warn for unused decls internal to the translation unit.
   1468   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
   1469   // for inline functions defined in the main source file, for instance.
   1470   return mightHaveNonExternalLinkage(D);
   1471 }
   1472 
   1473 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
   1474   if (!D)
   1475     return;
   1476 
   1477   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
   1478     const FunctionDecl *First = FD->getFirstDecl();
   1479     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1480       return; // First should already be in the vector.
   1481   }
   1482 
   1483   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1484     const VarDecl *First = VD->getFirstDecl();
   1485     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
   1486       return; // First should already be in the vector.
   1487   }
   1488 
   1489   if (ShouldWarnIfUnusedFileScopedDecl(D))
   1490     UnusedFileScopedDecls.push_back(D);
   1491 }
   1492 
   1493 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
   1494   if (D->isInvalidDecl())
   1495     return false;
   1496 
   1497   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
   1498       D->hasAttr<ObjCPreciseLifetimeAttr>())
   1499     return false;
   1500 
   1501   if (isa<LabelDecl>(D))
   1502     return true;
   1503 
   1504   // Except for labels, we only care about unused decls that are local to
   1505   // functions.
   1506   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
   1507   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
   1508     // For dependent types, the diagnostic is deferred.
   1509     WithinFunction =
   1510         WithinFunction || (R->isLocalClass() && !R->isDependentType());
   1511   if (!WithinFunction)
   1512     return false;
   1513 
   1514   if (isa<TypedefNameDecl>(D))
   1515     return true;
   1516 
   1517   // White-list anything that isn't a local variable.
   1518   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
   1519     return false;
   1520 
   1521   // Types of valid local variables should be complete, so this should succeed.
   1522   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   1523 
   1524     // White-list anything with an __attribute__((unused)) type.
   1525     QualType Ty = VD->getType();
   1526 
   1527     // Only look at the outermost level of typedef.
   1528     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
   1529       if (TT->getDecl()->hasAttr<UnusedAttr>())
   1530         return false;
   1531     }
   1532 
   1533     // If we failed to complete the type for some reason, or if the type is
   1534     // dependent, don't diagnose the variable.
   1535     if (Ty->isIncompleteType() || Ty->isDependentType())
   1536       return false;
   1537 
   1538     if (const TagType *TT = Ty->getAs<TagType>()) {
   1539       const TagDecl *Tag = TT->getDecl();
   1540       if (Tag->hasAttr<UnusedAttr>())
   1541         return false;
   1542 
   1543       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
   1544         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
   1545           return false;
   1546 
   1547         if (const Expr *Init = VD->getInit()) {
   1548           if (const ExprWithCleanups *Cleanups =
   1549                   dyn_cast<ExprWithCleanups>(Init))
   1550             Init = Cleanups->getSubExpr();
   1551           const CXXConstructExpr *Construct =
   1552             dyn_cast<CXXConstructExpr>(Init);
   1553           if (Construct && !Construct->isElidable()) {
   1554             CXXConstructorDecl *CD = Construct->getConstructor();
   1555             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
   1556               return false;
   1557           }
   1558         }
   1559       }
   1560     }
   1561 
   1562     // TODO: __attribute__((unused)) templates?
   1563   }
   1564 
   1565   return true;
   1566 }
   1567 
   1568 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
   1569                                      FixItHint &Hint) {
   1570   if (isa<LabelDecl>(D)) {
   1571     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
   1572                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
   1573     if (AfterColon.isInvalid())
   1574       return;
   1575     Hint = FixItHint::CreateRemoval(CharSourceRange::
   1576                                     getCharRange(D->getLocStart(), AfterColon));
   1577   }
   1578 }
   1579 
   1580 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
   1581   if (D->getTypeForDecl()->isDependentType())
   1582     return;
   1583 
   1584   for (auto *TmpD : D->decls()) {
   1585     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
   1586       DiagnoseUnusedDecl(T);
   1587     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
   1588       DiagnoseUnusedNestedTypedefs(R);
   1589   }
   1590 }
   1591 
   1592 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
   1593 /// unless they are marked attr(unused).
   1594 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
   1595   if (!ShouldDiagnoseUnusedDecl(D))
   1596     return;
   1597 
   1598   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
   1599     // typedefs can be referenced later on, so the diagnostics are emitted
   1600     // at end-of-translation-unit.
   1601     UnusedLocalTypedefNameCandidates.insert(TD);
   1602     return;
   1603   }
   1604 
   1605   FixItHint Hint;
   1606   GenerateFixForUnusedDecl(D, Context, Hint);
   1607 
   1608   unsigned DiagID;
   1609   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
   1610     DiagID = diag::warn_unused_exception_param;
   1611   else if (isa<LabelDecl>(D))
   1612     DiagID = diag::warn_unused_label;
   1613   else
   1614     DiagID = diag::warn_unused_variable;
   1615 
   1616   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
   1617 }
   1618 
   1619 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
   1620   // Verify that we have no forward references left.  If so, there was a goto
   1621   // or address of a label taken, but no definition of it.  Label fwd
   1622   // definitions are indicated with a null substmt which is also not a resolved
   1623   // MS inline assembly label name.
   1624   bool Diagnose = false;
   1625   if (L->isMSAsmLabel())
   1626     Diagnose = !L->isResolvedMSAsmLabel();
   1627   else
   1628     Diagnose = L->getStmt() == nullptr;
   1629   if (Diagnose)
   1630     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
   1631 }
   1632 
   1633 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
   1634   S->mergeNRVOIntoParent();
   1635 
   1636   if (S->decl_empty()) return;
   1637   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
   1638          "Scope shouldn't contain decls!");
   1639 
   1640   for (auto *TmpD : S->decls()) {
   1641     assert(TmpD && "This decl didn't get pushed??");
   1642 
   1643     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
   1644     NamedDecl *D = cast<NamedDecl>(TmpD);
   1645 
   1646     if (!D->getDeclName()) continue;
   1647 
   1648     // Diagnose unused variables in this scope.
   1649     if (!S->hasUnrecoverableErrorOccurred()) {
   1650       DiagnoseUnusedDecl(D);
   1651       if (const auto *RD = dyn_cast<RecordDecl>(D))
   1652         DiagnoseUnusedNestedTypedefs(RD);
   1653     }
   1654 
   1655     // If this was a forward reference to a label, verify it was defined.
   1656     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
   1657       CheckPoppedLabel(LD, *this);
   1658 
   1659     // Remove this name from our lexical scope, and warn on it if we haven't
   1660     // already.
   1661     IdResolver.RemoveDecl(D);
   1662     auto ShadowI = ShadowingDecls.find(D);
   1663     if (ShadowI != ShadowingDecls.end()) {
   1664       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
   1665         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
   1666             << D << FD << FD->getParent();
   1667         Diag(FD->getLocation(), diag::note_previous_declaration);
   1668       }
   1669       ShadowingDecls.erase(ShadowI);
   1670     }
   1671   }
   1672 }
   1673 
   1674 /// \brief Look for an Objective-C class in the translation unit.
   1675 ///
   1676 /// \param Id The name of the Objective-C class we're looking for. If
   1677 /// typo-correction fixes this name, the Id will be updated
   1678 /// to the fixed name.
   1679 ///
   1680 /// \param IdLoc The location of the name in the translation unit.
   1681 ///
   1682 /// \param DoTypoCorrection If true, this routine will attempt typo correction
   1683 /// if there is no class with the given name.
   1684 ///
   1685 /// \returns The declaration of the named Objective-C class, or NULL if the
   1686 /// class could not be found.
   1687 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
   1688                                               SourceLocation IdLoc,
   1689                                               bool DoTypoCorrection) {
   1690   // The third "scope" argument is 0 since we aren't enabling lazy built-in
   1691   // creation from this context.
   1692   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
   1693 
   1694   if (!IDecl && DoTypoCorrection) {
   1695     // Perform typo correction at the given location, but only if we
   1696     // find an Objective-C class name.
   1697     if (TypoCorrection C = CorrectTypo(
   1698             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
   1699             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
   1700             CTK_ErrorRecovery)) {
   1701       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
   1702       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
   1703       Id = IDecl->getIdentifier();
   1704     }
   1705   }
   1706   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
   1707   // This routine must always return a class definition, if any.
   1708   if (Def && Def->getDefinition())
   1709       Def = Def->getDefinition();
   1710   return Def;
   1711 }
   1712 
   1713 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
   1714 /// from S, where a non-field would be declared. This routine copes
   1715 /// with the difference between C and C++ scoping rules in structs and
   1716 /// unions. For example, the following code is well-formed in C but
   1717 /// ill-formed in C++:
   1718 /// @code
   1719 /// struct S6 {
   1720 ///   enum { BAR } e;
   1721 /// };
   1722 ///
   1723 /// void test_S6() {
   1724 ///   struct S6 a;
   1725 ///   a.e = BAR;
   1726 /// }
   1727 /// @endcode
   1728 /// For the declaration of BAR, this routine will return a different
   1729 /// scope. The scope S will be the scope of the unnamed enumeration
   1730 /// within S6. In C++, this routine will return the scope associated
   1731 /// with S6, because the enumeration's scope is a transparent
   1732 /// context but structures can contain non-field names. In C, this
   1733 /// routine will return the translation unit scope, since the
   1734 /// enumeration's scope is a transparent context and structures cannot
   1735 /// contain non-field names.
   1736 Scope *Sema::getNonFieldDeclScope(Scope *S) {
   1737   while (((S->getFlags() & Scope::DeclScope) == 0) ||
   1738          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
   1739          (S->isClassScope() && !getLangOpts().CPlusPlus))
   1740     S = S->getParent();
   1741   return S;
   1742 }
   1743 
   1744 /// \brief Looks up the declaration of "struct objc_super" and
   1745 /// saves it for later use in building builtin declaration of
   1746 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
   1747 /// pre-existing declaration exists no action takes place.
   1748 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
   1749                                         IdentifierInfo *II) {
   1750   if (!II->isStr("objc_msgSendSuper"))
   1751     return;
   1752   ASTContext &Context = ThisSema.Context;
   1753 
   1754   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
   1755                       SourceLocation(), Sema::LookupTagName);
   1756   ThisSema.LookupName(Result, S);
   1757   if (Result.getResultKind() == LookupResult::Found)
   1758     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
   1759       Context.setObjCSuperType(Context.getTagDeclType(TD));
   1760 }
   1761 
   1762 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
   1763   switch (Error) {
   1764   case ASTContext::GE_None:
   1765     return "";
   1766   case ASTContext::GE_Missing_stdio:
   1767     return "stdio.h";
   1768   case ASTContext::GE_Missing_setjmp:
   1769     return "setjmp.h";
   1770   case ASTContext::GE_Missing_ucontext:
   1771     return "ucontext.h";
   1772   }
   1773   llvm_unreachable("unhandled error kind");
   1774 }
   1775 
   1776 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
   1777 /// file scope.  lazily create a decl for it. ForRedeclaration is true
   1778 /// if we're creating this built-in in anticipation of redeclaring the
   1779 /// built-in.
   1780 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
   1781                                      Scope *S, bool ForRedeclaration,
   1782                                      SourceLocation Loc) {
   1783   LookupPredefedObjCSuperType(*this, S, II);
   1784 
   1785   ASTContext::GetBuiltinTypeError Error;
   1786   QualType R = Context.GetBuiltinType(ID, Error);
   1787   if (Error) {
   1788     if (ForRedeclaration)
   1789       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
   1790           << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
   1791     return nullptr;
   1792   }
   1793 
   1794   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
   1795     Diag(Loc, diag::ext_implicit_lib_function_decl)
   1796         << Context.BuiltinInfo.getName(ID) << R;
   1797     if (Context.BuiltinInfo.getHeaderName(ID) &&
   1798         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
   1799       Diag(Loc, diag::note_include_header_or_declare)
   1800           << Context.BuiltinInfo.getHeaderName(ID)
   1801           << Context.BuiltinInfo.getName(ID);
   1802   }
   1803 
   1804   if (R.isNull())
   1805     return nullptr;
   1806 
   1807   DeclContext *Parent = Context.getTranslationUnitDecl();
   1808   if (getLangOpts().CPlusPlus) {
   1809     LinkageSpecDecl *CLinkageDecl =
   1810         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
   1811                                 LinkageSpecDecl::lang_c, false);
   1812     CLinkageDecl->setImplicit();
   1813     Parent->addDecl(CLinkageDecl);
   1814     Parent = CLinkageDecl;
   1815   }
   1816 
   1817   FunctionDecl *New = FunctionDecl::Create(Context,
   1818                                            Parent,
   1819                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
   1820                                            SC_Extern,
   1821                                            false,
   1822                                            R->isFunctionProtoType());
   1823   New->setImplicit();
   1824 
   1825   // Create Decl objects for each parameter, adding them to the
   1826   // FunctionDecl.
   1827   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
   1828     SmallVector<ParmVarDecl*, 16> Params;
   1829     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   1830       ParmVarDecl *parm =
   1831           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
   1832                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
   1833                               SC_None, nullptr);
   1834       parm->setScopeInfo(0, i);
   1835       Params.push_back(parm);
   1836     }
   1837     New->setParams(Params);
   1838   }
   1839 
   1840   AddKnownFunctionAttributes(New);
   1841   RegisterLocallyScopedExternCDecl(New, S);
   1842 
   1843   // TUScope is the translation-unit scope to insert this function into.
   1844   // FIXME: This is hideous. We need to teach PushOnScopeChains to
   1845   // relate Scopes to DeclContexts, and probably eliminate CurContext
   1846   // entirely, but we're not there yet.
   1847   DeclContext *SavedContext = CurContext;
   1848   CurContext = Parent;
   1849   PushOnScopeChains(New, TUScope);
   1850   CurContext = SavedContext;
   1851   return New;
   1852 }
   1853 
   1854 /// Typedef declarations don't have linkage, but they still denote the same
   1855 /// entity if their types are the same.
   1856 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
   1857 /// isSameEntity.
   1858 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
   1859                                                      TypedefNameDecl *Decl,
   1860                                                      LookupResult &Previous) {
   1861   // This is only interesting when modules are enabled.
   1862   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
   1863     return;
   1864 
   1865   // Empty sets are uninteresting.
   1866   if (Previous.empty())
   1867     return;
   1868 
   1869   LookupResult::Filter Filter = Previous.makeFilter();
   1870   while (Filter.hasNext()) {
   1871     NamedDecl *Old = Filter.next();
   1872 
   1873     // Non-hidden declarations are never ignored.
   1874     if (S.isVisible(Old))
   1875       continue;
   1876 
   1877     // Declarations of the same entity are not ignored, even if they have
   1878     // different linkages.
   1879     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
   1880       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
   1881                                 Decl->getUnderlyingType()))
   1882         continue;
   1883 
   1884       // If both declarations give a tag declaration a typedef name for linkage
   1885       // purposes, then they declare the same entity.
   1886       if (S.getLangOpts().CPlusPlus &&
   1887           OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
   1888           Decl->getAnonDeclWithTypedefName())
   1889         continue;
   1890     }
   1891 
   1892     Filter.erase();
   1893   }
   1894 
   1895   Filter.done();
   1896 }
   1897 
   1898 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
   1899   QualType OldType;
   1900   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
   1901     OldType = OldTypedef->getUnderlyingType();
   1902   else
   1903     OldType = Context.getTypeDeclType(Old);
   1904   QualType NewType = New->getUnderlyingType();
   1905 
   1906   if (NewType->isVariablyModifiedType()) {
   1907     // Must not redefine a typedef with a variably-modified type.
   1908     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1909     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
   1910       << Kind << NewType;
   1911     if (Old->getLocation().isValid())
   1912       Diag(Old->getLocation(), diag::note_previous_definition);
   1913     New->setInvalidDecl();
   1914     return true;
   1915   }
   1916 
   1917   if (OldType != NewType &&
   1918       !OldType->isDependentType() &&
   1919       !NewType->isDependentType() &&
   1920       !Context.hasSameType(OldType, NewType)) {
   1921     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
   1922     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
   1923       << Kind << NewType << OldType;
   1924     if (Old->getLocation().isValid())
   1925       Diag(Old->getLocation(), diag::note_previous_definition);
   1926     New->setInvalidDecl();
   1927     return true;
   1928   }
   1929   return false;
   1930 }
   1931 
   1932 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
   1933 /// same name and scope as a previous declaration 'Old'.  Figure out
   1934 /// how to resolve this situation, merging decls or emitting
   1935 /// diagnostics as appropriate. If there was an error, set New to be invalid.
   1936 ///
   1937 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
   1938                                 LookupResult &OldDecls) {
   1939   // If the new decl is known invalid already, don't bother doing any
   1940   // merging checks.
   1941   if (New->isInvalidDecl()) return;
   1942 
   1943   // Allow multiple definitions for ObjC built-in typedefs.
   1944   // FIXME: Verify the underlying types are equivalent!
   1945   if (getLangOpts().ObjC1) {
   1946     const IdentifierInfo *TypeID = New->getIdentifier();
   1947     switch (TypeID->getLength()) {
   1948     default: break;
   1949     case 2:
   1950       {
   1951         if (!TypeID->isStr("id"))
   1952           break;
   1953         QualType T = New->getUnderlyingType();
   1954         if (!T->isPointerType())
   1955           break;
   1956         if (!T->isVoidPointerType()) {
   1957           QualType PT = T->getAs<PointerType>()->getPointeeType();
   1958           if (!PT->isStructureType())
   1959             break;
   1960         }
   1961         Context.setObjCIdRedefinitionType(T);
   1962         // Install the built-in type for 'id', ignoring the current definition.
   1963         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
   1964         return;
   1965       }
   1966     case 5:
   1967       if (!TypeID->isStr("Class"))
   1968         break;
   1969       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
   1970       // Install the built-in type for 'Class', ignoring the current definition.
   1971       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
   1972       return;
   1973     case 3:
   1974       if (!TypeID->isStr("SEL"))
   1975         break;
   1976       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
   1977       // Install the built-in type for 'SEL', ignoring the current definition.
   1978       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
   1979       return;
   1980     }
   1981     // Fall through - the typedef name was not a builtin type.
   1982   }
   1983 
   1984   // Verify the old decl was also a type.
   1985   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
   1986   if (!Old) {
   1987     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   1988       << New->getDeclName();
   1989 
   1990     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
   1991     if (OldD->getLocation().isValid())
   1992       Diag(OldD->getLocation(), diag::note_previous_definition);
   1993 
   1994     return New->setInvalidDecl();
   1995   }
   1996 
   1997   // If the old declaration is invalid, just give up here.
   1998   if (Old->isInvalidDecl())
   1999     return New->setInvalidDecl();
   2000 
   2001   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
   2002     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
   2003     auto *NewTag = New->getAnonDeclWithTypedefName();
   2004     NamedDecl *Hidden = nullptr;
   2005     if (getLangOpts().CPlusPlus && OldTag && NewTag &&
   2006         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
   2007         !hasVisibleDefinition(OldTag, &Hidden)) {
   2008       // There is a definition of this tag, but it is not visible. Use it
   2009       // instead of our tag.
   2010       New->setTypeForDecl(OldTD->getTypeForDecl());
   2011       if (OldTD->isModed())
   2012         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
   2013                                     OldTD->getUnderlyingType());
   2014       else
   2015         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
   2016 
   2017       // Make the old tag definition visible.
   2018       makeMergedDefinitionVisible(Hidden, NewTag->getLocation());
   2019 
   2020       // If this was an unscoped enumeration, yank all of its enumerators
   2021       // out of the scope.
   2022       if (isa<EnumDecl>(NewTag)) {
   2023         Scope *EnumScope = getNonFieldDeclScope(S);
   2024         for (auto *D : NewTag->decls()) {
   2025           auto *ED = cast<EnumConstantDecl>(D);
   2026           assert(EnumScope->isDeclScope(ED));
   2027           EnumScope->RemoveDecl(ED);
   2028           IdResolver.RemoveDecl(ED);
   2029           ED->getLexicalDeclContext()->removeDecl(ED);
   2030         }
   2031       }
   2032     }
   2033   }
   2034 
   2035   // If the typedef types are not identical, reject them in all languages and
   2036   // with any extensions enabled.
   2037   if (isIncompatibleTypedef(Old, New))
   2038     return;
   2039 
   2040   // The types match.  Link up the redeclaration chain and merge attributes if
   2041   // the old declaration was a typedef.
   2042   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
   2043     New->setPreviousDecl(Typedef);
   2044     mergeDeclAttributes(New, Old);
   2045   }
   2046 
   2047   if (getLangOpts().MicrosoftExt)
   2048     return;
   2049 
   2050   if (getLangOpts().CPlusPlus) {
   2051     // C++ [dcl.typedef]p2:
   2052     //   In a given non-class scope, a typedef specifier can be used to
   2053     //   redefine the name of any type declared in that scope to refer
   2054     //   to the type to which it already refers.
   2055     if (!isa<CXXRecordDecl>(CurContext))
   2056       return;
   2057 
   2058     // C++0x [dcl.typedef]p4:
   2059     //   In a given class scope, a typedef specifier can be used to redefine
   2060     //   any class-name declared in that scope that is not also a typedef-name
   2061     //   to refer to the type to which it already refers.
   2062     //
   2063     // This wording came in via DR424, which was a correction to the
   2064     // wording in DR56, which accidentally banned code like:
   2065     //
   2066     //   struct S {
   2067     //     typedef struct A { } A;
   2068     //   };
   2069     //
   2070     // in the C++03 standard. We implement the C++0x semantics, which
   2071     // allow the above but disallow
   2072     //
   2073     //   struct S {
   2074     //     typedef int I;
   2075     //     typedef int I;
   2076     //   };
   2077     //
   2078     // since that was the intent of DR56.
   2079     if (!isa<TypedefNameDecl>(Old))
   2080       return;
   2081 
   2082     Diag(New->getLocation(), diag::err_redefinition)
   2083       << New->getDeclName();
   2084     Diag(Old->getLocation(), diag::note_previous_definition);
   2085     return New->setInvalidDecl();
   2086   }
   2087 
   2088   // Modules always permit redefinition of typedefs, as does C11.
   2089   if (getLangOpts().Modules || getLangOpts().C11)
   2090     return;
   2091 
   2092   // If we have a redefinition of a typedef in C, emit a warning.  This warning
   2093   // is normally mapped to an error, but can be controlled with
   2094   // -Wtypedef-redefinition.  If either the original or the redefinition is
   2095   // in a system header, don't emit this for compatibility with GCC.
   2096   if (getDiagnostics().getSuppressSystemWarnings() &&
   2097       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
   2098        Context.getSourceManager().isInSystemHeader(New->getLocation())))
   2099     return;
   2100 
   2101   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
   2102     << New->getDeclName();
   2103   Diag(Old->getLocation(), diag::note_previous_definition);
   2104 }
   2105 
   2106 /// DeclhasAttr - returns true if decl Declaration already has the target
   2107 /// attribute.
   2108 static bool DeclHasAttr(const Decl *D, const Attr *A) {
   2109   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
   2110   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
   2111   for (const auto *i : D->attrs())
   2112     if (i->getKind() == A->getKind()) {
   2113       if (Ann) {
   2114         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
   2115           return true;
   2116         continue;
   2117       }
   2118       // FIXME: Don't hardcode this check
   2119       if (OA && isa<OwnershipAttr>(i))
   2120         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
   2121       return true;
   2122     }
   2123 
   2124   return false;
   2125 }
   2126 
   2127 static bool isAttributeTargetADefinition(Decl *D) {
   2128   if (VarDecl *VD = dyn_cast<VarDecl>(D))
   2129     return VD->isThisDeclarationADefinition();
   2130   if (TagDecl *TD = dyn_cast<TagDecl>(D))
   2131     return TD->isCompleteDefinition() || TD->isBeingDefined();
   2132   return true;
   2133 }
   2134 
   2135 /// Merge alignment attributes from \p Old to \p New, taking into account the
   2136 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
   2137 ///
   2138 /// \return \c true if any attributes were added to \p New.
   2139 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
   2140   // Look for alignas attributes on Old, and pick out whichever attribute
   2141   // specifies the strictest alignment requirement.
   2142   AlignedAttr *OldAlignasAttr = nullptr;
   2143   AlignedAttr *OldStrictestAlignAttr = nullptr;
   2144   unsigned OldAlign = 0;
   2145   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
   2146     // FIXME: We have no way of representing inherited dependent alignments
   2147     // in a case like:
   2148     //   template<int A, int B> struct alignas(A) X;
   2149     //   template<int A, int B> struct alignas(B) X {};
   2150     // For now, we just ignore any alignas attributes which are not on the
   2151     // definition in such a case.
   2152     if (I->isAlignmentDependent())
   2153       return false;
   2154 
   2155     if (I->isAlignas())
   2156       OldAlignasAttr = I;
   2157 
   2158     unsigned Align = I->getAlignment(S.Context);
   2159     if (Align > OldAlign) {
   2160       OldAlign = Align;
   2161       OldStrictestAlignAttr = I;
   2162     }
   2163   }
   2164 
   2165   // Look for alignas attributes on New.
   2166   AlignedAttr *NewAlignasAttr = nullptr;
   2167   unsigned NewAlign = 0;
   2168   for (auto *I : New->specific_attrs<AlignedAttr>()) {
   2169     if (I->isAlignmentDependent())
   2170       return false;
   2171 
   2172     if (I->isAlignas())
   2173       NewAlignasAttr = I;
   2174 
   2175     unsigned Align = I->getAlignment(S.Context);
   2176     if (Align > NewAlign)
   2177       NewAlign = Align;
   2178   }
   2179 
   2180   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
   2181     // Both declarations have 'alignas' attributes. We require them to match.
   2182     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
   2183     // fall short. (If two declarations both have alignas, they must both match
   2184     // every definition, and so must match each other if there is a definition.)
   2185 
   2186     // If either declaration only contains 'alignas(0)' specifiers, then it
   2187     // specifies the natural alignment for the type.
   2188     if (OldAlign == 0 || NewAlign == 0) {
   2189       QualType Ty;
   2190       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
   2191         Ty = VD->getType();
   2192       else
   2193         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
   2194 
   2195       if (OldAlign == 0)
   2196         OldAlign = S.Context.getTypeAlign(Ty);
   2197       if (NewAlign == 0)
   2198         NewAlign = S.Context.getTypeAlign(Ty);
   2199     }
   2200 
   2201     if (OldAlign != NewAlign) {
   2202       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
   2203         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
   2204         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
   2205       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
   2206     }
   2207   }
   2208 
   2209   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
   2210     // C++11 [dcl.align]p6:
   2211     //   if any declaration of an entity has an alignment-specifier,
   2212     //   every defining declaration of that entity shall specify an
   2213     //   equivalent alignment.
   2214     // C11 6.7.5/7:
   2215     //   If the definition of an object does not have an alignment
   2216     //   specifier, any other declaration of that object shall also
   2217     //   have no alignment specifier.
   2218     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
   2219       << OldAlignasAttr;
   2220     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
   2221       << OldAlignasAttr;
   2222   }
   2223 
   2224   bool AnyAdded = false;
   2225 
   2226   // Ensure we have an attribute representing the strictest alignment.
   2227   if (OldAlign > NewAlign) {
   2228     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
   2229     Clone->setInherited(true);
   2230     New->addAttr(Clone);
   2231     AnyAdded = true;
   2232   }
   2233 
   2234   // Ensure we have an alignas attribute if the old declaration had one.
   2235   if (OldAlignasAttr && !NewAlignasAttr &&
   2236       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
   2237     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
   2238     Clone->setInherited(true);
   2239     New->addAttr(Clone);
   2240     AnyAdded = true;
   2241   }
   2242 
   2243   return AnyAdded;
   2244 }
   2245 
   2246 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
   2247                                const InheritableAttr *Attr,
   2248                                Sema::AvailabilityMergeKind AMK) {
   2249   InheritableAttr *NewAttr = nullptr;
   2250   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
   2251   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
   2252     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
   2253                                       AA->isImplicit(), AA->getIntroduced(),
   2254                                       AA->getDeprecated(),
   2255                                       AA->getObsoleted(), AA->getUnavailable(),
   2256                                       AA->getMessage(), AA->getStrict(),
   2257                                       AA->getReplacement(), AMK,
   2258                                       AttrSpellingListIndex);
   2259   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
   2260     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   2261                                     AttrSpellingListIndex);
   2262   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
   2263     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
   2264                                         AttrSpellingListIndex);
   2265   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
   2266     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
   2267                                    AttrSpellingListIndex);
   2268   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
   2269     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
   2270                                    AttrSpellingListIndex);
   2271   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
   2272     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
   2273                                 FA->getFormatIdx(), FA->getFirstArg(),
   2274                                 AttrSpellingListIndex);
   2275   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
   2276     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
   2277                                  AttrSpellingListIndex);
   2278   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
   2279     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
   2280                                        AttrSpellingListIndex,
   2281                                        IA->getSemanticSpelling());
   2282   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
   2283     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
   2284                                       &S.Context.Idents.get(AA->getSpelling()),
   2285                                       AttrSpellingListIndex);
   2286   else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
   2287     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
   2288   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
   2289     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
   2290   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
   2291     NewAttr = S.mergeInternalLinkageAttr(
   2292         D, InternalLinkageA->getRange(),
   2293         &S.Context.Idents.get(InternalLinkageA->getSpelling()),
   2294         AttrSpellingListIndex);
   2295   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
   2296     NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
   2297                                 &S.Context.Idents.get(CommonA->getSpelling()),
   2298                                 AttrSpellingListIndex);
   2299   else if (isa<AlignedAttr>(Attr))
   2300     // AlignedAttrs are handled separately, because we need to handle all
   2301     // such attributes on a declaration at the same time.
   2302     NewAttr = nullptr;
   2303   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
   2304            (AMK == Sema::AMK_Override ||
   2305             AMK == Sema::AMK_ProtocolImplementation))
   2306     NewAttr = nullptr;
   2307   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
   2308     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
   2309 
   2310   if (NewAttr) {
   2311     NewAttr->setInherited(true);
   2312     D->addAttr(NewAttr);
   2313     if (isa<MSInheritanceAttr>(NewAttr))
   2314       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
   2315     return true;
   2316   }
   2317 
   2318   return false;
   2319 }
   2320 
   2321 static const Decl *getDefinition(const Decl *D) {
   2322   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
   2323     return TD->getDefinition();
   2324   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2325     const VarDecl *Def = VD->getDefinition();
   2326     if (Def)
   2327       return Def;
   2328     return VD->getActingDefinition();
   2329   }
   2330   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
   2331     return FD->getDefinition();
   2332   return nullptr;
   2333 }
   2334 
   2335 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
   2336   for (const auto *Attribute : D->attrs())
   2337     if (Attribute->getKind() == Kind)
   2338       return true;
   2339   return false;
   2340 }
   2341 
   2342 /// checkNewAttributesAfterDef - If we already have a definition, check that
   2343 /// there are no new attributes in this declaration.
   2344 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
   2345   if (!New->hasAttrs())
   2346     return;
   2347 
   2348   const Decl *Def = getDefinition(Old);
   2349   if (!Def || Def == New)
   2350     return;
   2351 
   2352   AttrVec &NewAttributes = New->getAttrs();
   2353   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
   2354     const Attr *NewAttribute = NewAttributes[I];
   2355 
   2356     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
   2357       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
   2358         Sema::SkipBodyInfo SkipBody;
   2359         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
   2360 
   2361         // If we're skipping this definition, drop the "alias" attribute.
   2362         if (SkipBody.ShouldSkip) {
   2363           NewAttributes.erase(NewAttributes.begin() + I);
   2364           --E;
   2365           continue;
   2366         }
   2367       } else {
   2368         VarDecl *VD = cast<VarDecl>(New);
   2369         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
   2370                                 VarDecl::TentativeDefinition
   2371                             ? diag::err_alias_after_tentative
   2372                             : diag::err_redefinition;
   2373         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
   2374         S.Diag(Def->getLocation(), diag::note_previous_definition);
   2375         VD->setInvalidDecl();
   2376       }
   2377       ++I;
   2378       continue;
   2379     }
   2380 
   2381     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
   2382       // Tentative definitions are only interesting for the alias check above.
   2383       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
   2384         ++I;
   2385         continue;
   2386       }
   2387     }
   2388 
   2389     if (hasAttribute(Def, NewAttribute->getKind())) {
   2390       ++I;
   2391       continue; // regular attr merging will take care of validating this.
   2392     }
   2393 
   2394     if (isa<C11NoReturnAttr>(NewAttribute)) {
   2395       // C's _Noreturn is allowed to be added to a function after it is defined.
   2396       ++I;
   2397       continue;
   2398     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
   2399       if (AA->isAlignas()) {
   2400         // C++11 [dcl.align]p6:
   2401         //   if any declaration of an entity has an alignment-specifier,
   2402         //   every defining declaration of that entity shall specify an
   2403         //   equivalent alignment.
   2404         // C11 6.7.5/7:
   2405         //   If the definition of an object does not have an alignment
   2406         //   specifier, any other declaration of that object shall also
   2407         //   have no alignment specifier.
   2408         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
   2409           << AA;
   2410         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
   2411           << AA;
   2412         NewAttributes.erase(NewAttributes.begin() + I);
   2413         --E;
   2414         continue;
   2415       }
   2416     }
   2417 
   2418     S.Diag(NewAttribute->getLocation(),
   2419            diag::warn_attribute_precede_definition);
   2420     S.Diag(Def->getLocation(), diag::note_previous_definition);
   2421     NewAttributes.erase(NewAttributes.begin() + I);
   2422     --E;
   2423   }
   2424 }
   2425 
   2426 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
   2427 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
   2428                                AvailabilityMergeKind AMK) {
   2429   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
   2430     UsedAttr *NewAttr = OldAttr->clone(Context);
   2431     NewAttr->setInherited(true);
   2432     New->addAttr(NewAttr);
   2433   }
   2434 
   2435   if (!Old->hasAttrs() && !New->hasAttrs())
   2436     return;
   2437 
   2438   // Attributes declared post-definition are currently ignored.
   2439   checkNewAttributesAfterDef(*this, New, Old);
   2440 
   2441   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
   2442     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
   2443       if (OldA->getLabel() != NewA->getLabel()) {
   2444         // This redeclaration changes __asm__ label.
   2445         Diag(New->getLocation(), diag::err_different_asm_label);
   2446         Diag(OldA->getLocation(), diag::note_previous_declaration);
   2447       }
   2448     } else if (Old->isUsed()) {
   2449       // This redeclaration adds an __asm__ label to a declaration that has
   2450       // already been ODR-used.
   2451       Diag(New->getLocation(), diag::err_late_asm_label_name)
   2452         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
   2453     }
   2454   }
   2455 
   2456   // Re-declaration cannot add abi_tag's.
   2457   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
   2458     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
   2459       for (const auto &NewTag : NewAbiTagAttr->tags()) {
   2460         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
   2461                       NewTag) == OldAbiTagAttr->tags_end()) {
   2462           Diag(NewAbiTagAttr->getLocation(),
   2463                diag::err_new_abi_tag_on_redeclaration)
   2464               << NewTag;
   2465           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
   2466         }
   2467       }
   2468     } else {
   2469       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
   2470       Diag(Old->getLocation(), diag::note_previous_declaration);
   2471     }
   2472   }
   2473 
   2474   if (!Old->hasAttrs())
   2475     return;
   2476 
   2477   bool foundAny = New->hasAttrs();
   2478 
   2479   // Ensure that any moving of objects within the allocated map is done before
   2480   // we process them.
   2481   if (!foundAny) New->setAttrs(AttrVec());
   2482 
   2483   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
   2484     // Ignore deprecated/unavailable/availability attributes if requested.
   2485     AvailabilityMergeKind LocalAMK = AMK_None;
   2486     if (isa<DeprecatedAttr>(I) ||
   2487         isa<UnavailableAttr>(I) ||
   2488         isa<AvailabilityAttr>(I)) {
   2489       switch (AMK) {
   2490       case AMK_None:
   2491         continue;
   2492 
   2493       case AMK_Redeclaration:
   2494       case AMK_Override:
   2495       case AMK_ProtocolImplementation:
   2496         LocalAMK = AMK;
   2497         break;
   2498       }
   2499     }
   2500 
   2501     // Already handled.
   2502     if (isa<UsedAttr>(I))
   2503       continue;
   2504 
   2505     if (mergeDeclAttribute(*this, New, I, LocalAMK))
   2506       foundAny = true;
   2507   }
   2508 
   2509   if (mergeAlignedAttrs(*this, New, Old))
   2510     foundAny = true;
   2511 
   2512   if (!foundAny) New->dropAttrs();
   2513 }
   2514 
   2515 /// mergeParamDeclAttributes - Copy attributes from the old parameter
   2516 /// to the new one.
   2517 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
   2518                                      const ParmVarDecl *oldDecl,
   2519                                      Sema &S) {
   2520   // C++11 [dcl.attr.depend]p2:
   2521   //   The first declaration of a function shall specify the
   2522   //   carries_dependency attribute for its declarator-id if any declaration
   2523   //   of the function specifies the carries_dependency attribute.
   2524   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
   2525   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
   2526     S.Diag(CDA->getLocation(),
   2527            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
   2528     // Find the first declaration of the parameter.
   2529     // FIXME: Should we build redeclaration chains for function parameters?
   2530     const FunctionDecl *FirstFD =
   2531       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
   2532     const ParmVarDecl *FirstVD =
   2533       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
   2534     S.Diag(FirstVD->getLocation(),
   2535            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
   2536   }
   2537 
   2538   if (!oldDecl->hasAttrs())
   2539     return;
   2540 
   2541   bool foundAny = newDecl->hasAttrs();
   2542 
   2543   // Ensure that any moving of objects within the allocated map is
   2544   // done before we process them.
   2545   if (!foundAny) newDecl->setAttrs(AttrVec());
   2546 
   2547   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
   2548     if (!DeclHasAttr(newDecl, I)) {
   2549       InheritableAttr *newAttr =
   2550         cast<InheritableParamAttr>(I->clone(S.Context));
   2551       newAttr->setInherited(true);
   2552       newDecl->addAttr(newAttr);
   2553       foundAny = true;
   2554     }
   2555   }
   2556 
   2557   if (!foundAny) newDecl->dropAttrs();
   2558 }
   2559 
   2560 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
   2561                                 const ParmVarDecl *OldParam,
   2562                                 Sema &S) {
   2563   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
   2564     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
   2565       if (*Oldnullability != *Newnullability) {
   2566         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
   2567           << DiagNullabilityKind(
   2568                *Newnullability,
   2569                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2570                 != 0))
   2571           << DiagNullabilityKind(
   2572                *Oldnullability,
   2573                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
   2574                 != 0));
   2575         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
   2576       }
   2577     } else {
   2578       QualType NewT = NewParam->getType();
   2579       NewT = S.Context.getAttributedType(
   2580                          AttributedType::getNullabilityAttrKind(*Oldnullability),
   2581                          NewT, NewT);
   2582       NewParam->setType(NewT);
   2583     }
   2584   }
   2585 }
   2586 
   2587 namespace {
   2588 
   2589 /// Used in MergeFunctionDecl to keep track of function parameters in
   2590 /// C.
   2591 struct GNUCompatibleParamWarning {
   2592   ParmVarDecl *OldParm;
   2593   ParmVarDecl *NewParm;
   2594   QualType PromotedType;
   2595 };
   2596 
   2597 } // end anonymous namespace
   2598 
   2599 /// getSpecialMember - get the special member enum for a method.
   2600 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
   2601   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
   2602     if (Ctor->isDefaultConstructor())
   2603       return Sema::CXXDefaultConstructor;
   2604 
   2605     if (Ctor->isCopyConstructor())
   2606       return Sema::CXXCopyConstructor;
   2607 
   2608     if (Ctor->isMoveConstructor())
   2609       return Sema::CXXMoveConstructor;
   2610   } else if (isa<CXXDestructorDecl>(MD)) {
   2611     return Sema::CXXDestructor;
   2612   } else if (MD->isCopyAssignmentOperator()) {
   2613     return Sema::CXXCopyAssignment;
   2614   } else if (MD->isMoveAssignmentOperator()) {
   2615     return Sema::CXXMoveAssignment;
   2616   }
   2617 
   2618   return Sema::CXXInvalid;
   2619 }
   2620 
   2621 // Determine whether the previous declaration was a definition, implicit
   2622 // declaration, or a declaration.
   2623 template <typename T>
   2624 static std::pair<diag::kind, SourceLocation>
   2625 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
   2626   diag::kind PrevDiag;
   2627   SourceLocation OldLocation = Old->getLocation();
   2628   if (Old->isThisDeclarationADefinition())
   2629     PrevDiag = diag::note_previous_definition;
   2630   else if (Old->isImplicit()) {
   2631     PrevDiag = diag::note_previous_implicit_declaration;
   2632     if (OldLocation.isInvalid())
   2633       OldLocation = New->getLocation();
   2634   } else
   2635     PrevDiag = diag::note_previous_declaration;
   2636   return std::make_pair(PrevDiag, OldLocation);
   2637 }
   2638 
   2639 /// canRedefineFunction - checks if a function can be redefined. Currently,
   2640 /// only extern inline functions can be redefined, and even then only in
   2641 /// GNU89 mode.
   2642 static bool canRedefineFunction(const FunctionDecl *FD,
   2643                                 const LangOptions& LangOpts) {
   2644   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
   2645           !LangOpts.CPlusPlus &&
   2646           FD->isInlineSpecified() &&
   2647           FD->getStorageClass() == SC_Extern);
   2648 }
   2649 
   2650 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
   2651   const AttributedType *AT = T->getAs<AttributedType>();
   2652   while (AT && !AT->isCallingConv())
   2653     AT = AT->getModifiedType()->getAs<AttributedType>();
   2654   return AT;
   2655 }
   2656 
   2657 template <typename T>
   2658 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
   2659   const DeclContext *DC = Old->getDeclContext();
   2660   if (DC->isRecord())
   2661     return false;
   2662 
   2663   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
   2664   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
   2665     return true;
   2666   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
   2667     return true;
   2668   return false;
   2669 }
   2670 
   2671 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
   2672 static bool isExternC(VarTemplateDecl *) { return false; }
   2673 
   2674 /// \brief Check whether a redeclaration of an entity introduced by a
   2675 /// using-declaration is valid, given that we know it's not an overload
   2676 /// (nor a hidden tag declaration).
   2677 template<typename ExpectedDecl>
   2678 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
   2679                                    ExpectedDecl *New) {
   2680   // C++11 [basic.scope.declarative]p4:
   2681   //   Given a set of declarations in a single declarative region, each of
   2682   //   which specifies the same unqualified name,
   2683   //   -- they shall all refer to the same entity, or all refer to functions
   2684   //      and function templates; or
   2685   //   -- exactly one declaration shall declare a class name or enumeration
   2686   //      name that is not a typedef name and the other declarations shall all
   2687   //      refer to the same variable or enumerator, or all refer to functions
   2688   //      and function templates; in this case the class name or enumeration
   2689   //      name is hidden (3.3.10).
   2690 
   2691   // C++11 [namespace.udecl]p14:
   2692   //   If a function declaration in namespace scope or block scope has the
   2693   //   same name and the same parameter-type-list as a function introduced
   2694   //   by a using-declaration, and the declarations do not declare the same
   2695   //   function, the program is ill-formed.
   2696 
   2697   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
   2698   if (Old &&
   2699       !Old->getDeclContext()->getRedeclContext()->Equals(
   2700           New->getDeclContext()->getRedeclContext()) &&
   2701       !(isExternC(Old) && isExternC(New)))
   2702     Old = nullptr;
   2703 
   2704   if (!Old) {
   2705     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
   2706     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
   2707     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
   2708     return true;
   2709   }
   2710   return false;
   2711 }
   2712 
   2713 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
   2714                                             const FunctionDecl *B) {
   2715   assert(A->getNumParams() == B->getNumParams());
   2716 
   2717   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
   2718     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
   2719     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
   2720     if (AttrA == AttrB)
   2721       return true;
   2722     return AttrA && AttrB && AttrA->getType() == AttrB->getType();
   2723   };
   2724 
   2725   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
   2726 }
   2727 
   2728 /// MergeFunctionDecl - We just parsed a function 'New' from
   2729 /// declarator D which has the same name and scope as a previous
   2730 /// declaration 'Old'.  Figure out how to resolve this situation,
   2731 /// merging decls or emitting diagnostics as appropriate.
   2732 ///
   2733 /// In C++, New and Old must be declarations that are not
   2734 /// overloaded. Use IsOverload to determine whether New and Old are
   2735 /// overloaded, and to select the Old declaration that New should be
   2736 /// merged with.
   2737 ///
   2738 /// Returns true if there was an error, false otherwise.
   2739 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
   2740                              Scope *S, bool MergeTypeWithOld) {
   2741   // Verify the old decl was also a function.
   2742   FunctionDecl *Old = OldD->getAsFunction();
   2743   if (!Old) {
   2744     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
   2745       if (New->getFriendObjectKind()) {
   2746         Diag(New->getLocation(), diag::err_using_decl_friend);
   2747         Diag(Shadow->getTargetDecl()->getLocation(),
   2748              diag::note_using_decl_target);
   2749         Diag(Shadow->getUsingDecl()->getLocation(),
   2750              diag::note_using_decl) << 0;
   2751         return true;
   2752       }
   2753 
   2754       // Check whether the two declarations might declare the same function.
   2755       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
   2756         return true;
   2757       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
   2758     } else {
   2759       Diag(New->getLocation(), diag::err_redefinition_different_kind)
   2760         << New->getDeclName();
   2761       Diag(OldD->getLocation(), diag::note_previous_definition);
   2762       return true;
   2763     }
   2764   }
   2765 
   2766   // If the old declaration is invalid, just give up here.
   2767   if (Old->isInvalidDecl())
   2768     return true;
   2769 
   2770   diag::kind PrevDiag;
   2771   SourceLocation OldLocation;
   2772   std::tie(PrevDiag, OldLocation) =
   2773       getNoteDiagForInvalidRedeclaration(Old, New);
   2774 
   2775   // Don't complain about this if we're in GNU89 mode and the old function
   2776   // is an extern inline function.
   2777   // Don't complain about specializations. They are not supposed to have
   2778   // storage classes.
   2779   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
   2780       New->getStorageClass() == SC_Static &&
   2781       Old->hasExternalFormalLinkage() &&
   2782       !New->getTemplateSpecializationInfo() &&
   2783       !canRedefineFunction(Old, getLangOpts())) {
   2784     if (getLangOpts().MicrosoftExt) {
   2785       Diag(New->getLocation(), diag::ext_static_non_static) << New;
   2786       Diag(OldLocation, PrevDiag);
   2787     } else {
   2788       Diag(New->getLocation(), diag::err_static_non_static) << New;
   2789       Diag(OldLocation, PrevDiag);
   2790       return true;
   2791     }
   2792   }
   2793 
   2794   if (New->hasAttr<InternalLinkageAttr>() &&
   2795       !Old->hasAttr<InternalLinkageAttr>()) {
   2796     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
   2797         << New->getDeclName();
   2798     Diag(Old->getLocation(), diag::note_previous_definition);
   2799     New->dropAttr<InternalLinkageAttr>();
   2800   }
   2801 
   2802   // If a function is first declared with a calling convention, but is later
   2803   // declared or defined without one, all following decls assume the calling
   2804   // convention of the first.
   2805   //
   2806   // It's OK if a function is first declared without a calling convention,
   2807   // but is later declared or defined with the default calling convention.
   2808   //
   2809   // To test if either decl has an explicit calling convention, we look for
   2810   // AttributedType sugar nodes on the type as written.  If they are missing or
   2811   // were canonicalized away, we assume the calling convention was implicit.
   2812   //
   2813   // Note also that we DO NOT return at this point, because we still have
   2814   // other tests to run.
   2815   QualType OldQType = Context.getCanonicalType(Old->getType());
   2816   QualType NewQType = Context.getCanonicalType(New->getType());
   2817   const FunctionType *OldType = cast<FunctionType>(OldQType);
   2818   const FunctionType *NewType = cast<FunctionType>(NewQType);
   2819   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
   2820   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
   2821   bool RequiresAdjustment = false;
   2822 
   2823   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
   2824     FunctionDecl *First = Old->getFirstDecl();
   2825     const FunctionType *FT =
   2826         First->getType().getCanonicalType()->castAs<FunctionType>();
   2827     FunctionType::ExtInfo FI = FT->getExtInfo();
   2828     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
   2829     if (!NewCCExplicit) {
   2830       // Inherit the CC from the previous declaration if it was specified
   2831       // there but not here.
   2832       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
   2833       RequiresAdjustment = true;
   2834     } else {
   2835       // Calling conventions aren't compatible, so complain.
   2836       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
   2837       Diag(New->getLocation(), diag::err_cconv_change)
   2838         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
   2839         << !FirstCCExplicit
   2840         << (!FirstCCExplicit ? "" :
   2841             FunctionType::getNameForCallConv(FI.getCC()));
   2842 
   2843       // Put the note on the first decl, since it is the one that matters.
   2844       Diag(First->getLocation(), diag::note_previous_declaration);
   2845       return true;
   2846     }
   2847   }
   2848 
   2849   // FIXME: diagnose the other way around?
   2850   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
   2851     NewTypeInfo = NewTypeInfo.withNoReturn(true);
   2852     RequiresAdjustment = true;
   2853   }
   2854 
   2855   // Merge regparm attribute.
   2856   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
   2857       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
   2858     if (NewTypeInfo.getHasRegParm()) {
   2859       Diag(New->getLocation(), diag::err_regparm_mismatch)
   2860         << NewType->getRegParmType()
   2861         << OldType->getRegParmType();
   2862       Diag(OldLocation, diag::note_previous_declaration);
   2863       return true;
   2864     }
   2865 
   2866     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
   2867     RequiresAdjustment = true;
   2868   }
   2869 
   2870   // Merge ns_returns_retained attribute.
   2871   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
   2872     if (NewTypeInfo.getProducesResult()) {
   2873       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
   2874       Diag(OldLocation, diag::note_previous_declaration);
   2875       return true;
   2876     }
   2877 
   2878     NewTypeInfo = NewTypeInfo.withProducesResult(true);
   2879     RequiresAdjustment = true;
   2880   }
   2881 
   2882   if (RequiresAdjustment) {
   2883     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
   2884     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
   2885     New->setType(QualType(AdjustedType, 0));
   2886     NewQType = Context.getCanonicalType(New->getType());
   2887     NewType = cast<FunctionType>(NewQType);
   2888   }
   2889 
   2890   // If this redeclaration makes the function inline, we may need to add it to
   2891   // UndefinedButUsed.
   2892   if (!Old->isInlined() && New->isInlined() &&
   2893       !New->hasAttr<GNUInlineAttr>() &&
   2894       !getLangOpts().GNUInline &&
   2895       Old->isUsed(false) &&
   2896       !Old->isDefined() && !New->isThisDeclarationADefinition())
   2897     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
   2898                                            SourceLocation()));
   2899 
   2900   // If this redeclaration makes it newly gnu_inline, we don't want to warn
   2901   // about it.
   2902   if (New->hasAttr<GNUInlineAttr>() &&
   2903       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
   2904     UndefinedButUsed.erase(Old->getCanonicalDecl());
   2905   }
   2906 
   2907   // If pass_object_size params don't match up perfectly, this isn't a valid
   2908   // redeclaration.
   2909   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
   2910       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
   2911     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
   2912         << New->getDeclName();
   2913     Diag(OldLocation, PrevDiag) << Old << Old->getType();
   2914     return true;
   2915   }
   2916 
   2917   if (getLangOpts().CPlusPlus) {
   2918     // (C++98 13.1p2):
   2919     //   Certain function declarations cannot be overloaded:
   2920     //     -- Function declarations that differ only in the return type
   2921     //        cannot be overloaded.
   2922 
   2923     // Go back to the type source info to compare the declared return types,
   2924     // per C++1y [dcl.type.auto]p13:
   2925     //   Redeclarations or specializations of a function or function template
   2926     //   with a declared return type that uses a placeholder type shall also
   2927     //   use that placeholder, not a deduced type.
   2928     QualType OldDeclaredReturnType =
   2929         (Old->getTypeSourceInfo()
   2930              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2931              : OldType)->getReturnType();
   2932     QualType NewDeclaredReturnType =
   2933         (New->getTypeSourceInfo()
   2934              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
   2935              : NewType)->getReturnType();
   2936     QualType ResQT;
   2937     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
   2938         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
   2939           New->isLocalExternDecl())) {
   2940       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
   2941           OldDeclaredReturnType->isObjCObjectPointerType())
   2942         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
   2943       if (ResQT.isNull()) {
   2944         if (New->isCXXClassMember() && New->isOutOfLine())
   2945           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
   2946               << New << New->getReturnTypeSourceRange();
   2947         else
   2948           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
   2949               << New->getReturnTypeSourceRange();
   2950         Diag(OldLocation, PrevDiag) << Old << Old->getType()
   2951                                     << Old->getReturnTypeSourceRange();
   2952         return true;
   2953       }
   2954       else
   2955         NewQType = ResQT;
   2956     }
   2957 
   2958     QualType OldReturnType = OldType->getReturnType();
   2959     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
   2960     if (OldReturnType != NewReturnType) {
   2961       // If this function has a deduced return type and has already been
   2962       // defined, copy the deduced value from the old declaration.
   2963       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
   2964       if (OldAT && OldAT->isDeduced()) {
   2965         New->setType(
   2966             SubstAutoType(New->getType(),
   2967                           OldAT->isDependentType() ? Context.DependentTy
   2968                                                    : OldAT->getDeducedType()));
   2969         NewQType = Context.getCanonicalType(
   2970             SubstAutoType(NewQType,
   2971                           OldAT->isDependentType() ? Context.DependentTy
   2972                                                    : OldAT->getDeducedType()));
   2973       }
   2974     }
   2975 
   2976     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
   2977     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
   2978     if (OldMethod && NewMethod) {
   2979       // Preserve triviality.
   2980       NewMethod->setTrivial(OldMethod->isTrivial());
   2981 
   2982       // MSVC allows explicit template specialization at class scope:
   2983       // 2 CXXMethodDecls referring to the same function will be injected.
   2984       // We don't want a redeclaration error.
   2985       bool IsClassScopeExplicitSpecialization =
   2986                               OldMethod->isFunctionTemplateSpecialization() &&
   2987                               NewMethod->isFunctionTemplateSpecialization();
   2988       bool isFriend = NewMethod->getFriendObjectKind();
   2989 
   2990       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
   2991           !IsClassScopeExplicitSpecialization) {
   2992         //    -- Member function declarations with the same name and the
   2993         //       same parameter types cannot be overloaded if any of them
   2994         //       is a static member function declaration.
   2995         if (OldMethod->isStatic() != NewMethod->isStatic()) {
   2996           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
   2997           Diag(OldLocation, PrevDiag) << Old << Old->getType();
   2998           return true;
   2999         }
   3000 
   3001         // C++ [class.mem]p1:
   3002         //   [...] A member shall not be declared twice in the
   3003         //   member-specification, except that a nested class or member
   3004         //   class template can be declared and then later defined.
   3005         if (ActiveTemplateInstantiations.empty()) {
   3006           unsigned NewDiag;
   3007           if (isa<CXXConstructorDecl>(OldMethod))
   3008             NewDiag = diag::err_constructor_redeclared;
   3009           else if (isa<CXXDestructorDecl>(NewMethod))
   3010             NewDiag = diag::err_destructor_redeclared;
   3011           else if (isa<CXXConversionDecl>(NewMethod))
   3012             NewDiag = diag::err_conv_function_redeclared;
   3013           else
   3014             NewDiag = diag::err_member_redeclared;
   3015 
   3016           Diag(New->getLocation(), NewDiag);
   3017         } else {
   3018           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
   3019             << New << New->getType();
   3020         }
   3021         Diag(OldLocation, PrevDiag) << Old << Old->getType();
   3022         return true;
   3023 
   3024       // Complain if this is an explicit declaration of a special
   3025       // member that was initially declared implicitly.
   3026       //
   3027       // As an exception, it's okay to befriend such methods in order
   3028       // to permit the implicit constructor/destructor/operator calls.
   3029       } else if (OldMethod->isImplicit()) {
   3030         if (isFriend) {
   3031           NewMethod->setImplicit();
   3032         } else {
   3033           Diag(NewMethod->getLocation(),
   3034                diag::err_definition_of_implicitly_declared_member)
   3035             << New << getSpecialMember(OldMethod);
   3036           return true;
   3037         }
   3038       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
   3039         Diag(NewMethod->getLocation(),
   3040              diag::err_definition_of_explicitly_defaulted_member)
   3041           << getSpecialMember(OldMethod);
   3042         return true;
   3043       }
   3044     }
   3045 
   3046     // C++11 [dcl.attr.noreturn]p1:
   3047     //   The first declaration of a function shall specify the noreturn
   3048     //   attribute if any declaration of that function specifies the noreturn
   3049     //   attribute.
   3050     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
   3051     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
   3052       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
   3053       Diag(Old->getFirstDecl()->getLocation(),
   3054            diag::note_noreturn_missing_first_decl);
   3055     }
   3056 
   3057     // C++11 [dcl.attr.depend]p2:
   3058     //   The first declaration of a function shall specify the
   3059     //   carries_dependency attribute for its declarator-id if any declaration
   3060     //   of the function specifies the carries_dependency attribute.
   3061     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
   3062     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
   3063       Diag(CDA->getLocation(),
   3064            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
   3065       Diag(Old->getFirstDecl()->getLocation(),
   3066            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
   3067     }
   3068 
   3069     // (C++98 8.3.5p3):
   3070     //   All declarations for a function shall agree exactly in both the
   3071     //   return type and the parameter-type-list.
   3072     // We also want to respect all the extended bits except noreturn.
   3073 
   3074     // noreturn should now match unless the old type info didn't have it.
   3075     QualType OldQTypeForComparison = OldQType;
   3076     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
   3077       assert(OldQType == QualType(OldType, 0));
   3078       const FunctionType *OldTypeForComparison
   3079         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
   3080       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
   3081       assert(OldQTypeForComparison.isCanonical());
   3082     }
   3083 
   3084     if (haveIncompatibleLanguageLinkages(Old, New)) {
   3085       // As a special case, retain the language linkage from previous
   3086       // declarations of a friend function as an extension.
   3087       //
   3088       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
   3089       // and is useful because there's otherwise no way to specify language
   3090       // linkage within class scope.
   3091       //
   3092       // Check cautiously as the friend object kind isn't yet complete.
   3093       if (New->getFriendObjectKind() != Decl::FOK_None) {
   3094         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
   3095         Diag(OldLocation, PrevDiag);
   3096       } else {
   3097         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   3098         Diag(OldLocation, PrevDiag);
   3099         return true;
   3100       }
   3101     }
   3102 
   3103     if (OldQTypeForComparison == NewQType)
   3104       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   3105 
   3106     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
   3107         New->isLocalExternDecl()) {
   3108       // It's OK if we couldn't merge types for a local function declaraton
   3109       // if either the old or new type is dependent. We'll merge the types
   3110       // when we instantiate the function.
   3111       return false;
   3112     }
   3113 
   3114     // Fall through for conflicting redeclarations and redefinitions.
   3115   }
   3116 
   3117   // C: Function types need to be compatible, not identical. This handles
   3118   // duplicate function decls like "void f(int); void f(enum X);" properly.
   3119   if (!getLangOpts().CPlusPlus &&
   3120       Context.typesAreCompatible(OldQType, NewQType)) {
   3121     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
   3122     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
   3123     const FunctionProtoType *OldProto = nullptr;
   3124     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
   3125         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
   3126       // The old declaration provided a function prototype, but the
   3127       // new declaration does not. Merge in the prototype.
   3128       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
   3129       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
   3130       NewQType =
   3131           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
   3132                                   OldProto->getExtProtoInfo());
   3133       New->setType(NewQType);
   3134       New->setHasInheritedPrototype();
   3135 
   3136       // Synthesize parameters with the same types.
   3137       SmallVector<ParmVarDecl*, 16> Params;
   3138       for (const auto &ParamType : OldProto->param_types()) {
   3139         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
   3140                                                  SourceLocation(), nullptr,
   3141                                                  ParamType, /*TInfo=*/nullptr,
   3142                                                  SC_None, nullptr);
   3143         Param->setScopeInfo(0, Params.size());
   3144         Param->setImplicit();
   3145         Params.push_back(Param);
   3146       }
   3147 
   3148       New->setParams(Params);
   3149     }
   3150 
   3151     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   3152   }
   3153 
   3154   // GNU C permits a K&R definition to follow a prototype declaration
   3155   // if the declared types of the parameters in the K&R definition
   3156   // match the types in the prototype declaration, even when the
   3157   // promoted types of the parameters from the K&R definition differ
   3158   // from the types in the prototype. GCC then keeps the types from
   3159   // the prototype.
   3160   //
   3161   // If a variadic prototype is followed by a non-variadic K&R definition,
   3162   // the K&R definition becomes variadic.  This is sort of an edge case, but
   3163   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
   3164   // C99 6.9.1p8.
   3165   if (!getLangOpts().CPlusPlus &&
   3166       Old->hasPrototype() && !New->hasPrototype() &&
   3167       New->getType()->getAs<FunctionProtoType>() &&
   3168       Old->getNumParams() == New->getNumParams()) {
   3169     SmallVector<QualType, 16> ArgTypes;
   3170     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
   3171     const FunctionProtoType *OldProto
   3172       = Old->getType()->getAs<FunctionProtoType>();
   3173     const FunctionProtoType *NewProto
   3174       = New->getType()->getAs<FunctionProtoType>();
   3175 
   3176     // Determine whether this is the GNU C extension.
   3177     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
   3178                                                NewProto->getReturnType());
   3179     bool LooseCompatible = !MergedReturn.isNull();
   3180     for (unsigned Idx = 0, End = Old->getNumParams();
   3181          LooseCompatible && Idx != End; ++Idx) {
   3182       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
   3183       ParmVarDecl *NewParm = New->getParamDecl(Idx);
   3184       if (Context.typesAreCompatible(OldParm->getType(),
   3185                                      NewProto->getParamType(Idx))) {
   3186         ArgTypes.push_back(NewParm->getType());
   3187       } else if (Context.typesAreCompatible(OldParm->getType(),
   3188                                             NewParm->getType(),
   3189                                             /*CompareUnqualified=*/true)) {
   3190         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
   3191                                            NewProto->getParamType(Idx) };
   3192         Warnings.push_back(Warn);
   3193         ArgTypes.push_back(NewParm->getType());
   3194       } else
   3195         LooseCompatible = false;
   3196     }
   3197 
   3198     if (LooseCompatible) {
   3199       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
   3200         Diag(Warnings[Warn].NewParm->getLocation(),
   3201              diag::ext_param_promoted_not_compatible_with_prototype)
   3202           << Warnings[Warn].PromotedType
   3203           << Warnings[Warn].OldParm->getType();
   3204         if (Warnings[Warn].OldParm->getLocation().isValid())
   3205           Diag(Warnings[Warn].OldParm->getLocation(),
   3206                diag::note_previous_declaration);
   3207       }
   3208 
   3209       if (MergeTypeWithOld)
   3210         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
   3211                                              OldProto->getExtProtoInfo()));
   3212       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
   3213     }
   3214 
   3215     // Fall through to diagnose conflicting types.
   3216   }
   3217 
   3218   // A function that has already been declared has been redeclared or
   3219   // defined with a different type; show an appropriate diagnostic.
   3220 
   3221   // If the previous declaration was an implicitly-generated builtin
   3222   // declaration, then at the very least we should use a specialized note.
   3223   unsigned BuiltinID;
   3224   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
   3225     // If it's actually a library-defined builtin function like 'malloc'
   3226     // or 'printf', just warn about the incompatible redeclaration.
   3227     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
   3228       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
   3229       Diag(OldLocation, diag::note_previous_builtin_declaration)
   3230         << Old << Old->getType();
   3231 
   3232       // If this is a global redeclaration, just forget hereafter
   3233       // about the "builtin-ness" of the function.
   3234       //
   3235       // Doing this for local extern declarations is problematic.  If
   3236       // the builtin declaration remains visible, a second invalid
   3237       // local declaration will produce a hard error; if it doesn't
   3238       // remain visible, a single bogus local redeclaration (which is
   3239       // actually only a warning) could break all the downstream code.
   3240       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
   3241         New->getIdentifier()->revertBuiltin();
   3242 
   3243       return false;
   3244     }
   3245 
   3246     PrevDiag = diag::note_previous_builtin_declaration;
   3247   }
   3248 
   3249   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
   3250   Diag(OldLocation, PrevDiag) << Old << Old->getType();
   3251   return true;
   3252 }
   3253 
   3254 /// \brief Completes the merge of two function declarations that are
   3255 /// known to be compatible.
   3256 ///
   3257 /// This routine handles the merging of attributes and other
   3258 /// properties of function declarations from the old declaration to
   3259 /// the new declaration, once we know that New is in fact a
   3260 /// redeclaration of Old.
   3261 ///
   3262 /// \returns false
   3263 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
   3264                                         Scope *S, bool MergeTypeWithOld) {
   3265   // Merge the attributes
   3266   mergeDeclAttributes(New, Old);
   3267 
   3268   // Merge "pure" flag.
   3269   if (Old->isPure())
   3270     New->setPure();
   3271 
   3272   // Merge "used" flag.
   3273   if (Old->getMostRecentDecl()->isUsed(false))
   3274     New->setIsUsed();
   3275 
   3276   // Merge attributes from the parameters.  These can mismatch with K&R
   3277   // declarations.
   3278   if (New->getNumParams() == Old->getNumParams())
   3279       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
   3280         ParmVarDecl *NewParam = New->getParamDecl(i);
   3281         ParmVarDecl *OldParam = Old->getParamDecl(i);
   3282         mergeParamDeclAttributes(NewParam, OldParam, *this);
   3283         mergeParamDeclTypes(NewParam, OldParam, *this);
   3284       }
   3285 
   3286   if (getLangOpts().CPlusPlus)
   3287     return MergeCXXFunctionDecl(New, Old, S);
   3288 
   3289   // Merge the function types so the we get the composite types for the return
   3290   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
   3291   // was visible.
   3292   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
   3293   if (!Merged.isNull() && MergeTypeWithOld)
   3294     New->setType(Merged);
   3295 
   3296   return false;
   3297 }
   3298 
   3299 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
   3300                                 ObjCMethodDecl *oldMethod) {
   3301   // Merge the attributes, including deprecated/unavailable
   3302   AvailabilityMergeKind MergeKind =
   3303     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
   3304       ? AMK_ProtocolImplementation
   3305       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
   3306                                                        : AMK_Override;
   3307 
   3308   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
   3309 
   3310   // Merge attributes from the parameters.
   3311   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
   3312                                        oe = oldMethod->param_end();
   3313   for (ObjCMethodDecl::param_iterator
   3314          ni = newMethod->param_begin(), ne = newMethod->param_end();
   3315        ni != ne && oi != oe; ++ni, ++oi)
   3316     mergeParamDeclAttributes(*ni, *oi, *this);
   3317 
   3318   CheckObjCMethodOverride(newMethod, oldMethod);
   3319 }
   3320 
   3321 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
   3322   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
   3323 
   3324   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
   3325          ? diag::err_redefinition_different_type
   3326          : diag::err_redeclaration_different_type)
   3327     << New->getDeclName() << New->getType() << Old->getType();
   3328 
   3329   diag::kind PrevDiag;
   3330   SourceLocation OldLocation;
   3331   std::tie(PrevDiag, OldLocation)
   3332     = getNoteDiagForInvalidRedeclaration(Old, New);
   3333   S.Diag(OldLocation, PrevDiag);
   3334   New->setInvalidDecl();
   3335 }
   3336 
   3337 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
   3338 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
   3339 /// emitting diagnostics as appropriate.
   3340 ///
   3341 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
   3342 /// to here in AddInitializerToDecl. We can't check them before the initializer
   3343 /// is attached.
   3344 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
   3345                              bool MergeTypeWithOld) {
   3346   if (New->isInvalidDecl() || Old->isInvalidDecl())
   3347     return;
   3348 
   3349   QualType MergedT;
   3350   if (getLangOpts().CPlusPlus) {
   3351     if (New->getType()->isUndeducedType()) {
   3352       // We don't know what the new type is until the initializer is attached.
   3353       return;
   3354     } else if (Context.hasSameType(New->getType(), Old->getType())) {
   3355       // These could still be something that needs exception specs checked.
   3356       return MergeVarDeclExceptionSpecs(New, Old);
   3357     }
   3358     // C++ [basic.link]p10:
   3359     //   [...] the types specified by all declarations referring to a given
   3360     //   object or function shall be identical, except that declarations for an
   3361     //   array object can specify array types that differ by the presence or
   3362     //   absence of a major array bound (8.3.4).
   3363     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
   3364       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
   3365       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
   3366 
   3367       // We are merging a variable declaration New into Old. If it has an array
   3368       // bound, and that bound differs from Old's bound, we should diagnose the
   3369       // mismatch.
   3370       if (!NewArray->isIncompleteArrayType()) {
   3371         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
   3372              PrevVD = PrevVD->getPreviousDecl()) {
   3373           const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
   3374           if (PrevVDTy->isIncompleteArrayType())
   3375             continue;
   3376 
   3377           if (!Context.hasSameType(NewArray, PrevVDTy))
   3378             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
   3379         }
   3380       }
   3381 
   3382       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
   3383         if (Context.hasSameType(OldArray->getElementType(),
   3384                                 NewArray->getElementType()))
   3385           MergedT = New->getType();
   3386       }
   3387       // FIXME: Check visibility. New is hidden but has a complete type. If New
   3388       // has no array bound, it should not inherit one from Old, if Old is not
   3389       // visible.
   3390       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
   3391         if (Context.hasSameType(OldArray->getElementType(),
   3392                                 NewArray->getElementType()))
   3393           MergedT = Old->getType();
   3394       }
   3395     }
   3396     else if (New->getType()->isObjCObjectPointerType() &&
   3397                Old->getType()->isObjCObjectPointerType()) {
   3398       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
   3399                                               Old->getType());
   3400     }
   3401   } else {
   3402     // C 6.2.7p2:
   3403     //   All declarations that refer to the same object or function shall have
   3404     //   compatible type.
   3405     MergedT = Context.mergeTypes(New->getType(), Old->getType());
   3406   }
   3407   if (MergedT.isNull()) {
   3408     // It's OK if we couldn't merge types if either type is dependent, for a
   3409     // block-scope variable. In other cases (static data members of class
   3410     // templates, variable templates, ...), we require the types to be
   3411     // equivalent.
   3412     // FIXME: The C++ standard doesn't say anything about this.
   3413     if ((New->getType()->isDependentType() ||
   3414          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
   3415       // If the old type was dependent, we can't merge with it, so the new type
   3416       // becomes dependent for now. We'll reproduce the original type when we
   3417       // instantiate the TypeSourceInfo for the variable.
   3418       if (!New->getType()->isDependentType() && MergeTypeWithOld)
   3419         New->setType(Context.DependentTy);
   3420       return;
   3421     }
   3422     return diagnoseVarDeclTypeMismatch(*this, New, Old);
   3423   }
   3424 
   3425   // Don't actually update the type on the new declaration if the old
   3426   // declaration was an extern declaration in a different scope.
   3427   if (MergeTypeWithOld)
   3428     New->setType(MergedT);
   3429 }
   3430 
   3431 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
   3432                                   LookupResult &Previous) {
   3433   // C11 6.2.7p4:
   3434   //   For an identifier with internal or external linkage declared
   3435   //   in a scope in which a prior declaration of that identifier is
   3436   //   visible, if the prior declaration specifies internal or
   3437   //   external linkage, the type of the identifier at the later
   3438   //   declaration becomes the composite type.
   3439   //
   3440   // If the variable isn't visible, we do not merge with its type.
   3441   if (Previous.isShadowed())
   3442     return false;
   3443 
   3444   if (S.getLangOpts().CPlusPlus) {
   3445     // C++11 [dcl.array]p3:
   3446     //   If there is a preceding declaration of the entity in the same
   3447     //   scope in which the bound was specified, an omitted array bound
   3448     //   is taken to be the same as in that earlier declaration.
   3449     return NewVD->isPreviousDeclInSameBlockScope() ||
   3450            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
   3451             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
   3452   } else {
   3453     // If the old declaration was function-local, don't merge with its
   3454     // type unless we're in the same function.
   3455     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
   3456            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
   3457   }
   3458 }
   3459 
   3460 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
   3461 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
   3462 /// situation, merging decls or emitting diagnostics as appropriate.
   3463 ///
   3464 /// Tentative definition rules (C99 6.9.2p2) are checked by
   3465 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
   3466 /// definitions here, since the initializer hasn't been attached.
   3467 ///
   3468 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
   3469   // If the new decl is already invalid, don't do any other checking.
   3470   if (New->isInvalidDecl())
   3471     return;
   3472 
   3473   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
   3474     return;
   3475 
   3476   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
   3477 
   3478   // Verify the old decl was also a variable or variable template.
   3479   VarDecl *Old = nullptr;
   3480   VarTemplateDecl *OldTemplate = nullptr;
   3481   if (Previous.isSingleResult()) {
   3482     if (NewTemplate) {
   3483       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
   3484       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
   3485 
   3486       if (auto *Shadow =
   3487               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
   3488         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
   3489           return New->setInvalidDecl();
   3490     } else {
   3491       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
   3492 
   3493       if (auto *Shadow =
   3494               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
   3495         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
   3496           return New->setInvalidDecl();
   3497     }
   3498   }
   3499   if (!Old) {
   3500     Diag(New->getLocation(), diag::err_redefinition_different_kind)
   3501       << New->getDeclName();
   3502     Diag(Previous.getRepresentativeDecl()->getLocation(),
   3503          diag::note_previous_definition);
   3504     return New->setInvalidDecl();
   3505   }
   3506 
   3507   // Ensure the template parameters are compatible.
   3508   if (NewTemplate &&
   3509       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
   3510                                       OldTemplate->getTemplateParameters(),
   3511                                       /*Complain=*/true, TPL_TemplateMatch))
   3512     return New->setInvalidDecl();
   3513 
   3514   // C++ [class.mem]p1:
   3515   //   A member shall not be declared twice in the member-specification [...]
   3516   //
   3517   // Here, we need only consider static data members.
   3518   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
   3519     Diag(New->getLocation(), diag::err_duplicate_member)
   3520       << New->getIdentifier();
   3521     Diag(Old->getLocation(), diag::note_previous_declaration);
   3522     New->setInvalidDecl();
   3523   }
   3524 
   3525   mergeDeclAttributes(New, Old);
   3526   // Warn if an already-declared variable is made a weak_import in a subsequent
   3527   // declaration
   3528   if (New->hasAttr<WeakImportAttr>() &&
   3529       Old->getStorageClass() == SC_None &&
   3530       !Old->hasAttr<WeakImportAttr>()) {
   3531     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
   3532     Diag(Old->getLocation(), diag::note_previous_definition);
   3533     // Remove weak_import attribute on new declaration.
   3534     New->dropAttr<WeakImportAttr>();
   3535   }
   3536 
   3537   if (New->hasAttr<InternalLinkageAttr>() &&
   3538       !Old->hasAttr<InternalLinkageAttr>()) {
   3539     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
   3540         << New->getDeclName();
   3541     Diag(Old->getLocation(), diag::note_previous_definition);
   3542     New->dropAttr<InternalLinkageAttr>();
   3543   }
   3544 
   3545   // Merge the types.
   3546   VarDecl *MostRecent = Old->getMostRecentDecl();
   3547   if (MostRecent != Old) {
   3548     MergeVarDeclTypes(New, MostRecent,
   3549                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
   3550     if (New->isInvalidDecl())
   3551       return;
   3552   }
   3553 
   3554   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
   3555   if (New->isInvalidDecl())
   3556     return;
   3557 
   3558   diag::kind PrevDiag;
   3559   SourceLocation OldLocation;
   3560   std::tie(PrevDiag, OldLocation) =
   3561       getNoteDiagForInvalidRedeclaration(Old, New);
   3562 
   3563   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
   3564   if (New->getStorageClass() == SC_Static &&
   3565       !New->isStaticDataMember() &&
   3566       Old->hasExternalFormalLinkage()) {
   3567     if (getLangOpts().MicrosoftExt) {
   3568       Diag(New->getLocation(), diag::ext_static_non_static)
   3569           << New->getDeclName();
   3570       Diag(OldLocation, PrevDiag);
   3571     } else {
   3572       Diag(New->getLocation(), diag::err_static_non_static)
   3573           << New->getDeclName();
   3574       Diag(OldLocation, PrevDiag);
   3575       return New->setInvalidDecl();
   3576     }
   3577   }
   3578   // C99 6.2.2p4:
   3579   //   For an identifier declared with the storage-class specifier
   3580   //   extern in a scope in which a prior declaration of that
   3581   //   identifier is visible,23) if the prior declaration specifies
   3582   //   internal or external linkage, the linkage of the identifier at
   3583   //   the later declaration is the same as the linkage specified at
   3584   //   the prior declaration. If no prior declaration is visible, or
   3585   //   if the prior declaration specifies no linkage, then the
   3586   //   identifier has external linkage.
   3587   if (New->hasExternalStorage() && Old->hasLinkage())
   3588     /* Okay */;
   3589   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
   3590            !New->isStaticDataMember() &&
   3591            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
   3592     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
   3593     Diag(OldLocation, PrevDiag);
   3594     return New->setInvalidDecl();
   3595   }
   3596 
   3597   // Check if extern is followed by non-extern and vice-versa.
   3598   if (New->hasExternalStorage() &&
   3599       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
   3600     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
   3601     Diag(OldLocation, PrevDiag);
   3602     return New->setInvalidDecl();
   3603   }
   3604   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
   3605       !New->hasExternalStorage()) {
   3606     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
   3607     Diag(OldLocation, PrevDiag);
   3608     return New->setInvalidDecl();
   3609   }
   3610 
   3611   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
   3612 
   3613   // FIXME: The test for external storage here seems wrong? We still
   3614   // need to check for mismatches.
   3615   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
   3616       // Don't complain about out-of-line definitions of static members.
   3617       !(Old->getLexicalDeclContext()->isRecord() &&
   3618         !New->getLexicalDeclContext()->isRecord())) {
   3619     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
   3620     Diag(OldLocation, PrevDiag);
   3621     return New->setInvalidDecl();
   3622   }
   3623 
   3624   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
   3625     if (VarDecl *Def = Old->getDefinition()) {
   3626       // C++1z [dcl.fcn.spec]p4:
   3627       //   If the definition of a variable appears in a translation unit before
   3628       //   its first declaration as inline, the program is ill-formed.
   3629       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
   3630       Diag(Def->getLocation(), diag::note_previous_definition);
   3631     }
   3632   }
   3633 
   3634   // If this redeclaration makes the function inline, we may need to add it to
   3635   // UndefinedButUsed.
   3636   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
   3637       !Old->getDefinition() && !New->isThisDeclarationADefinition())
   3638     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
   3639                                            SourceLocation()));
   3640 
   3641   if (New->getTLSKind() != Old->getTLSKind()) {
   3642     if (!Old->getTLSKind()) {
   3643       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
   3644       Diag(OldLocation, PrevDiag);
   3645     } else if (!New->getTLSKind()) {
   3646       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
   3647       Diag(OldLocation, PrevDiag);
   3648     } else {
   3649       // Do not allow redeclaration to change the variable between requiring
   3650       // static and dynamic initialization.
   3651       // FIXME: GCC allows this, but uses the TLS keyword on the first
   3652       // declaration to determine the kind. Do we need to be compatible here?
   3653       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
   3654         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
   3655       Diag(OldLocation, PrevDiag);
   3656     }
   3657   }
   3658 
   3659   // C++ doesn't have tentative definitions, so go right ahead and check here.
   3660   VarDecl *Def;
   3661   if (getLangOpts().CPlusPlus &&
   3662       New->isThisDeclarationADefinition() == VarDecl::Definition &&
   3663       (Def = Old->getDefinition())) {
   3664     NamedDecl *Hidden = nullptr;
   3665     if (!hasVisibleDefinition(Def, &Hidden) &&
   3666         (New->getFormalLinkage() == InternalLinkage ||
   3667          New->getDescribedVarTemplate() ||
   3668          New->getNumTemplateParameterLists() ||
   3669          New->getDeclContext()->isDependentContext())) {
   3670       // The previous definition is hidden, and multiple definitions are
   3671       // permitted (in separate TUs). Form another definition of it.
   3672     } else if (Old->isStaticDataMember() &&
   3673                Old->getCanonicalDecl()->isInline() &&
   3674                Old->getCanonicalDecl()->isConstexpr()) {
   3675       // This definition won't be a definition any more once it's been merged.
   3676       Diag(New->getLocation(),
   3677            diag::warn_deprecated_redundant_constexpr_static_def);
   3678     } else {
   3679       Diag(New->getLocation(), diag::err_redefinition) << New;
   3680       Diag(Def->getLocation(), diag::note_previous_definition);
   3681       New->setInvalidDecl();
   3682       return;
   3683     }
   3684   }
   3685 
   3686   if (haveIncompatibleLanguageLinkages(Old, New)) {
   3687     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
   3688     Diag(OldLocation, PrevDiag);
   3689     New->setInvalidDecl();
   3690     return;
   3691   }
   3692 
   3693   // Merge "used" flag.
   3694   if (Old->getMostRecentDecl()->isUsed(false))
   3695     New->setIsUsed();
   3696 
   3697   // Keep a chain of previous declarations.
   3698   New->setPreviousDecl(Old);
   3699   if (NewTemplate)
   3700     NewTemplate->setPreviousDecl(OldTemplate);
   3701 
   3702   // Inherit access appropriately.
   3703   New->setAccess(Old->getAccess());
   3704   if (NewTemplate)
   3705     NewTemplate->setAccess(New->getAccess());
   3706 
   3707   if (Old->isInline())
   3708     New->setImplicitlyInline();
   3709 }
   3710 
   3711 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3712 /// no declarator (e.g. "struct foo;") is parsed.
   3713 Decl *
   3714 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
   3715                                  RecordDecl *&AnonRecord) {
   3716   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
   3717                                     AnonRecord);
   3718 }
   3719 
   3720 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
   3721 // disambiguate entities defined in different scopes.
   3722 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
   3723 // compatibility.
   3724 // We will pick our mangling number depending on which version of MSVC is being
   3725 // targeted.
   3726 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
   3727   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
   3728              ? S->getMSCurManglingNumber()
   3729              : S->getMSLastManglingNumber();
   3730 }
   3731 
   3732 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
   3733   if (!Context.getLangOpts().CPlusPlus)
   3734     return;
   3735 
   3736   if (isa<CXXRecordDecl>(Tag->getParent())) {
   3737     // If this tag is the direct child of a class, number it if
   3738     // it is anonymous.
   3739     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
   3740       return;
   3741     MangleNumberingContext &MCtx =
   3742         Context.getManglingNumberContext(Tag->getParent());
   3743     Context.setManglingNumber(
   3744         Tag, MCtx.getManglingNumber(
   3745                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
   3746     return;
   3747   }
   3748 
   3749   // If this tag isn't a direct child of a class, number it if it is local.
   3750   Decl *ManglingContextDecl;
   3751   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
   3752           Tag->getDeclContext(), ManglingContextDecl)) {
   3753     Context.setManglingNumber(
   3754         Tag, MCtx->getManglingNumber(
   3755                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
   3756   }
   3757 }
   3758 
   3759 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
   3760                                         TypedefNameDecl *NewTD) {
   3761   if (TagFromDeclSpec->isInvalidDecl())
   3762     return;
   3763 
   3764   // Do nothing if the tag already has a name for linkage purposes.
   3765   if (TagFromDeclSpec->hasNameForLinkage())
   3766     return;
   3767 
   3768   // A well-formed anonymous tag must always be a TUK_Definition.
   3769   assert(TagFromDeclSpec->isThisDeclarationADefinition());
   3770 
   3771   // The type must match the tag exactly;  no qualifiers allowed.
   3772   if (!Context.hasSameType(NewTD->getUnderlyingType(),
   3773                            Context.getTagDeclType(TagFromDeclSpec))) {
   3774     if (getLangOpts().CPlusPlus)
   3775       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
   3776     return;
   3777   }
   3778 
   3779   // If we've already computed linkage for the anonymous tag, then
   3780   // adding a typedef name for the anonymous decl can change that
   3781   // linkage, which might be a serious problem.  Diagnose this as
   3782   // unsupported and ignore the typedef name.  TODO: we should
   3783   // pursue this as a language defect and establish a formal rule
   3784   // for how to handle it.
   3785   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
   3786     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
   3787 
   3788     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
   3789     tagLoc = getLocForEndOfToken(tagLoc);
   3790 
   3791     llvm::SmallString<40> textToInsert;
   3792     textToInsert += ' ';
   3793     textToInsert += NewTD->getIdentifier()->getName();
   3794     Diag(tagLoc, diag::note_typedef_changes_linkage)
   3795         << FixItHint::CreateInsertion(tagLoc, textToInsert);
   3796     return;
   3797   }
   3798 
   3799   // Otherwise, set this is the anon-decl typedef for the tag.
   3800   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
   3801 }
   3802 
   3803 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
   3804   switch (T) {
   3805   case DeclSpec::TST_class:
   3806     return 0;
   3807   case DeclSpec::TST_struct:
   3808     return 1;
   3809   case DeclSpec::TST_interface:
   3810     return 2;
   3811   case DeclSpec::TST_union:
   3812     return 3;
   3813   case DeclSpec::TST_enum:
   3814     return 4;
   3815   default:
   3816     llvm_unreachable("unexpected type specifier");
   3817   }
   3818 }
   3819 
   3820 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
   3821 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
   3822 /// parameters to cope with template friend declarations.
   3823 Decl *
   3824 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
   3825                                  MultiTemplateParamsArg TemplateParams,
   3826                                  bool IsExplicitInstantiation,
   3827                                  RecordDecl *&AnonRecord) {
   3828   Decl *TagD = nullptr;
   3829   TagDecl *Tag = nullptr;
   3830   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
   3831       DS.getTypeSpecType() == DeclSpec::TST_struct ||
   3832       DS.getTypeSpecType() == DeclSpec::TST_interface ||
   3833       DS.getTypeSpecType() == DeclSpec::TST_union ||
   3834       DS.getTypeSpecType() == DeclSpec::TST_enum) {
   3835     TagD = DS.getRepAsDecl();
   3836 
   3837     if (!TagD) // We probably had an error
   3838       return nullptr;
   3839 
   3840     // Note that the above type specs guarantee that the
   3841     // type rep is a Decl, whereas in many of the others
   3842     // it's a Type.
   3843     if (isa<TagDecl>(TagD))
   3844       Tag = cast<TagDecl>(TagD);
   3845     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
   3846       Tag = CTD->getTemplatedDecl();
   3847   }
   3848 
   3849   if (Tag) {
   3850     handleTagNumbering(Tag, S);
   3851     Tag->setFreeStanding();
   3852     if (Tag->isInvalidDecl())
   3853       return Tag;
   3854   }
   3855 
   3856   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
   3857     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
   3858     // or incomplete types shall not be restrict-qualified."
   3859     if (TypeQuals & DeclSpec::TQ_restrict)
   3860       Diag(DS.getRestrictSpecLoc(),
   3861            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
   3862            << DS.getSourceRange();
   3863   }
   3864 
   3865   if (DS.isInlineSpecified())
   3866     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
   3867         << getLangOpts().CPlusPlus1z;
   3868 
   3869   if (DS.isConstexprSpecified()) {
   3870     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
   3871     // and definitions of functions and variables.
   3872     if (Tag)
   3873       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
   3874           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
   3875     else
   3876       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
   3877     // Don't emit warnings after this error.
   3878     return TagD;
   3879   }
   3880 
   3881   if (DS.isConceptSpecified()) {
   3882     // C++ Concepts TS [dcl.spec.concept]p1: A concept definition refers to
   3883     // either a function concept and its definition or a variable concept and
   3884     // its initializer.
   3885     Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
   3886     return TagD;
   3887   }
   3888 
   3889   DiagnoseFunctionSpecifiers(DS);
   3890 
   3891   if (DS.isFriendSpecified()) {
   3892     // If we're dealing with a decl but not a TagDecl, assume that
   3893     // whatever routines created it handled the friendship aspect.
   3894     if (TagD && !Tag)
   3895       return nullptr;
   3896     return ActOnFriendTypeDecl(S, DS, TemplateParams);
   3897   }
   3898 
   3899   const CXXScopeSpec &SS = DS.getTypeSpecScope();
   3900   bool IsExplicitSpecialization =
   3901     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
   3902   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
   3903       !IsExplicitInstantiation && !IsExplicitSpecialization &&
   3904       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
   3905     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
   3906     // nested-name-specifier unless it is an explicit instantiation
   3907     // or an explicit specialization.
   3908     //
   3909     // FIXME: We allow class template partial specializations here too, per the
   3910     // obvious intent of DR1819.
   3911     //
   3912     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
   3913     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
   3914         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
   3915     return nullptr;
   3916   }
   3917 
   3918   // Track whether this decl-specifier declares anything.
   3919   bool DeclaresAnything = true;
   3920 
   3921   // Handle anonymous struct definitions.
   3922   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
   3923     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
   3924         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
   3925       if (getLangOpts().CPlusPlus ||
   3926           Record->getDeclContext()->isRecord()) {
   3927         // If CurContext is a DeclContext that can contain statements,
   3928         // RecursiveASTVisitor won't visit the decls that
   3929         // BuildAnonymousStructOrUnion() will put into CurContext.
   3930         // Also store them here so that they can be part of the
   3931         // DeclStmt that gets created in this case.
   3932         // FIXME: Also return the IndirectFieldDecls created by
   3933         // BuildAnonymousStructOr union, for the same reason?
   3934         if (CurContext->isFunctionOrMethod())
   3935           AnonRecord = Record;
   3936         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
   3937                                            Context.getPrintingPolicy());
   3938       }
   3939 
   3940       DeclaresAnything = false;
   3941     }
   3942   }
   3943 
   3944   // C11 6.7.2.1p2:
   3945   //   A struct-declaration that does not declare an anonymous structure or
   3946   //   anonymous union shall contain a struct-declarator-list.
   3947   //
   3948   // This rule also existed in C89 and C99; the grammar for struct-declaration
   3949   // did not permit a struct-declaration without a struct-declarator-list.
   3950   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
   3951       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
   3952     // Check for Microsoft C extension: anonymous struct/union member.
   3953     // Handle 2 kinds of anonymous struct/union:
   3954     //   struct STRUCT;
   3955     //   union UNION;
   3956     // and
   3957     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
   3958     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
   3959     if ((Tag && Tag->getDeclName()) ||
   3960         DS.getTypeSpecType() == DeclSpec::TST_typename) {
   3961       RecordDecl *Record = nullptr;
   3962       if (Tag)
   3963         Record = dyn_cast<RecordDecl>(Tag);
   3964       else if (const RecordType *RT =
   3965                    DS.getRepAsType().get()->getAsStructureType())
   3966         Record = RT->getDecl();
   3967       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
   3968         Record = UT->getDecl();
   3969 
   3970       if (Record && getLangOpts().MicrosoftExt) {
   3971         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
   3972           << Record->isUnion() << DS.getSourceRange();
   3973         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
   3974       }
   3975 
   3976       DeclaresAnything = false;
   3977     }
   3978   }
   3979 
   3980   // Skip all the checks below if we have a type error.
   3981   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
   3982       (TagD && TagD->isInvalidDecl()))
   3983     return TagD;
   3984 
   3985   if (getLangOpts().CPlusPlus &&
   3986       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
   3987     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
   3988       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
   3989           !Enum->getIdentifier() && !Enum->isInvalidDecl())
   3990         DeclaresAnything = false;
   3991 
   3992   if (!DS.isMissingDeclaratorOk()) {
   3993     // Customize diagnostic for a typedef missing a name.
   3994     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
   3995       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
   3996         << DS.getSourceRange();
   3997     else
   3998       DeclaresAnything = false;
   3999   }
   4000 
   4001   if (DS.isModulePrivateSpecified() &&
   4002       Tag && Tag->getDeclContext()->isFunctionOrMethod())
   4003     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
   4004       << Tag->getTagKind()
   4005       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
   4006 
   4007   ActOnDocumentableDecl(TagD);
   4008 
   4009   // C 6.7/2:
   4010   //   A declaration [...] shall declare at least a declarator [...], a tag,
   4011   //   or the members of an enumeration.
   4012   // C++ [dcl.dcl]p3:
   4013   //   [If there are no declarators], and except for the declaration of an
   4014   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
   4015   //   names into the program, or shall redeclare a name introduced by a
   4016   //   previous declaration.
   4017   if (!DeclaresAnything) {
   4018     // In C, we allow this as a (popular) extension / bug. Don't bother
   4019     // producing further diagnostics for redundant qualifiers after this.
   4020     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
   4021     return TagD;
   4022   }
   4023 
   4024   // C++ [dcl.stc]p1:
   4025   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
   4026   //   init-declarator-list of the declaration shall not be empty.
   4027   // C++ [dcl.fct.spec]p1:
   4028   //   If a cv-qualifier appears in a decl-specifier-seq, the
   4029   //   init-declarator-list of the declaration shall not be empty.
   4030   //
   4031   // Spurious qualifiers here appear to be valid in C.
   4032   unsigned DiagID = diag::warn_standalone_specifier;
   4033   if (getLangOpts().CPlusPlus)
   4034     DiagID = diag::ext_standalone_specifier;
   4035 
   4036   // Note that a linkage-specification sets a storage class, but
   4037   // 'extern "C" struct foo;' is actually valid and not theoretically
   4038   // useless.
   4039   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
   4040     if (SCS == DeclSpec::SCS_mutable)
   4041       // Since mutable is not a viable storage class specifier in C, there is
   4042       // no reason to treat it as an extension. Instead, diagnose as an error.
   4043       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
   4044     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
   4045       Diag(DS.getStorageClassSpecLoc(), DiagID)
   4046         << DeclSpec::getSpecifierName(SCS);
   4047   }
   4048 
   4049   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   4050     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
   4051       << DeclSpec::getSpecifierName(TSCS);
   4052   if (DS.getTypeQualifiers()) {
   4053     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   4054       Diag(DS.getConstSpecLoc(), DiagID) << "const";
   4055     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   4056       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
   4057     // Restrict is covered above.
   4058     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   4059       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
   4060     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
   4061       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
   4062   }
   4063 
   4064   // Warn about ignored type attributes, for example:
   4065   // __attribute__((aligned)) struct A;
   4066   // Attributes should be placed after tag to apply to type declaration.
   4067   if (!DS.getAttributes().empty()) {
   4068     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
   4069     if (TypeSpecType == DeclSpec::TST_class ||
   4070         TypeSpecType == DeclSpec::TST_struct ||
   4071         TypeSpecType == DeclSpec::TST_interface ||
   4072         TypeSpecType == DeclSpec::TST_union ||
   4073         TypeSpecType == DeclSpec::TST_enum) {
   4074       for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
   4075            attrs = attrs->getNext())
   4076         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
   4077             << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
   4078     }
   4079   }
   4080 
   4081   return TagD;
   4082 }
   4083 
   4084 /// We are trying to inject an anonymous member into the given scope;
   4085 /// check if there's an existing declaration that can't be overloaded.
   4086 ///
   4087 /// \return true if this is a forbidden redeclaration
   4088 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
   4089                                          Scope *S,
   4090                                          DeclContext *Owner,
   4091                                          DeclarationName Name,
   4092                                          SourceLocation NameLoc,
   4093                                          bool IsUnion) {
   4094   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
   4095                  Sema::ForRedeclaration);
   4096   if (!SemaRef.LookupName(R, S)) return false;
   4097 
   4098   // Pick a representative declaration.
   4099   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
   4100   assert(PrevDecl && "Expected a non-null Decl");
   4101 
   4102   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
   4103     return false;
   4104 
   4105   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
   4106     << IsUnion << Name;
   4107   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   4108 
   4109   return true;
   4110 }
   4111 
   4112 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
   4113 /// anonymous struct or union AnonRecord into the owning context Owner
   4114 /// and scope S. This routine will be invoked just after we realize
   4115 /// that an unnamed union or struct is actually an anonymous union or
   4116 /// struct, e.g.,
   4117 ///
   4118 /// @code
   4119 /// union {
   4120 ///   int i;
   4121 ///   float f;
   4122 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
   4123 ///    // f into the surrounding scope.x
   4124 /// @endcode
   4125 ///
   4126 /// This routine is recursive, injecting the names of nested anonymous
   4127 /// structs/unions into the owning context and scope as well.
   4128 static bool
   4129 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
   4130                                     RecordDecl *AnonRecord, AccessSpecifier AS,
   4131                                     SmallVectorImpl<NamedDecl *> &Chaining) {
   4132   bool Invalid = false;
   4133 
   4134   // Look every FieldDecl and IndirectFieldDecl with a name.
   4135   for (auto *D : AnonRecord->decls()) {
   4136     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
   4137         cast<NamedDecl>(D)->getDeclName()) {
   4138       ValueDecl *VD = cast<ValueDecl>(D);
   4139       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
   4140                                        VD->getLocation(),
   4141                                        AnonRecord->isUnion())) {
   4142         // C++ [class.union]p2:
   4143         //   The names of the members of an anonymous union shall be
   4144         //   distinct from the names of any other entity in the
   4145         //   scope in which the anonymous union is declared.
   4146         Invalid = true;
   4147       } else {
   4148         // C++ [class.union]p2:
   4149         //   For the purpose of name lookup, after the anonymous union
   4150         //   definition, the members of the anonymous union are
   4151         //   considered to have been defined in the scope in which the
   4152         //   anonymous union is declared.
   4153         unsigned OldChainingSize = Chaining.size();
   4154         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
   4155           Chaining.append(IF->chain_begin(), IF->chain_end());
   4156         else
   4157           Chaining.push_back(VD);
   4158 
   4159         assert(Chaining.size() >= 2);
   4160         NamedDecl **NamedChain =
   4161           new (SemaRef.Context)NamedDecl*[Chaining.size()];
   4162         for (unsigned i = 0; i < Chaining.size(); i++)
   4163           NamedChain[i] = Chaining[i];
   4164 
   4165         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
   4166             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
   4167             VD->getType(), {NamedChain, Chaining.size()});
   4168 
   4169         for (const auto *Attr : VD->attrs())
   4170           IndirectField->addAttr(Attr->clone(SemaRef.Context));
   4171 
   4172         IndirectField->setAccess(AS);
   4173         IndirectField->setImplicit();
   4174         SemaRef.PushOnScopeChains(IndirectField, S);
   4175 
   4176         // That includes picking up the appropriate access specifier.
   4177         if (AS != AS_none) IndirectField->setAccess(AS);
   4178 
   4179         Chaining.resize(OldChainingSize);
   4180       }
   4181     }
   4182   }
   4183 
   4184   return Invalid;
   4185 }
   4186 
   4187 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
   4188 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
   4189 /// illegal input values are mapped to SC_None.
   4190 static StorageClass
   4191 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
   4192   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
   4193   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
   4194          "Parser allowed 'typedef' as storage class VarDecl.");
   4195   switch (StorageClassSpec) {
   4196   case DeclSpec::SCS_unspecified:    return SC_None;
   4197   case DeclSpec::SCS_extern:
   4198     if (DS.isExternInLinkageSpec())
   4199       return SC_None;
   4200     return SC_Extern;
   4201   case DeclSpec::SCS_static:         return SC_Static;
   4202   case DeclSpec::SCS_auto:           return SC_Auto;
   4203   case DeclSpec::SCS_register:       return SC_Register;
   4204   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   4205     // Illegal SCSs map to None: error reporting is up to the caller.
   4206   case DeclSpec::SCS_mutable:        // Fall through.
   4207   case DeclSpec::SCS_typedef:        return SC_None;
   4208   }
   4209   llvm_unreachable("unknown storage class specifier");
   4210 }
   4211 
   4212 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
   4213   assert(Record->hasInClassInitializer());
   4214 
   4215   for (const auto *I : Record->decls()) {
   4216     const auto *FD = dyn_cast<FieldDecl>(I);
   4217     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
   4218       FD = IFD->getAnonField();
   4219     if (FD && FD->hasInClassInitializer())
   4220       return FD->getLocation();
   4221   }
   4222 
   4223   llvm_unreachable("couldn't find in-class initializer");
   4224 }
   4225 
   4226 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
   4227                                       SourceLocation DefaultInitLoc) {
   4228   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
   4229     return;
   4230 
   4231   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
   4232   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
   4233 }
   4234 
   4235 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
   4236                                       CXXRecordDecl *AnonUnion) {
   4237   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
   4238     return;
   4239 
   4240   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
   4241 }
   4242 
   4243 /// BuildAnonymousStructOrUnion - Handle the declaration of an
   4244 /// anonymous structure or union. Anonymous unions are a C++ feature
   4245 /// (C++ [class.union]) and a C11 feature; anonymous structures
   4246 /// are a C11 feature and GNU C++ extension.
   4247 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
   4248                                         AccessSpecifier AS,
   4249                                         RecordDecl *Record,
   4250                                         const PrintingPolicy &Policy) {
   4251   DeclContext *Owner = Record->getDeclContext();
   4252 
   4253   // Diagnose whether this anonymous struct/union is an extension.
   4254   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
   4255     Diag(Record->getLocation(), diag::ext_anonymous_union);
   4256   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
   4257     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
   4258   else if (!Record->isUnion() && !getLangOpts().C11)
   4259     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
   4260 
   4261   // C and C++ require different kinds of checks for anonymous
   4262   // structs/unions.
   4263   bool Invalid = false;
   4264   if (getLangOpts().CPlusPlus) {
   4265     const char *PrevSpec = nullptr;
   4266     unsigned DiagID;
   4267     if (Record->isUnion()) {
   4268       // C++ [class.union]p6:
   4269       //   Anonymous unions declared in a named namespace or in the
   4270       //   global namespace shall be declared static.
   4271       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
   4272           (isa<TranslationUnitDecl>(Owner) ||
   4273            (isa<NamespaceDecl>(Owner) &&
   4274             cast<NamespaceDecl>(Owner)->getDeclName()))) {
   4275         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
   4276           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
   4277 
   4278         // Recover by adding 'static'.
   4279         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
   4280                                PrevSpec, DiagID, Policy);
   4281       }
   4282       // C++ [class.union]p6:
   4283       //   A storage class is not allowed in a declaration of an
   4284       //   anonymous union in a class scope.
   4285       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
   4286                isa<RecordDecl>(Owner)) {
   4287         Diag(DS.getStorageClassSpecLoc(),
   4288              diag::err_anonymous_union_with_storage_spec)
   4289           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   4290 
   4291         // Recover by removing the storage specifier.
   4292         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
   4293                                SourceLocation(),
   4294                                PrevSpec, DiagID, Context.getPrintingPolicy());
   4295       }
   4296     }
   4297 
   4298     // Ignore const/volatile/restrict qualifiers.
   4299     if (DS.getTypeQualifiers()) {
   4300       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   4301         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
   4302           << Record->isUnion() << "const"
   4303           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
   4304       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   4305         Diag(DS.getVolatileSpecLoc(),
   4306              diag::ext_anonymous_struct_union_qualified)
   4307           << Record->isUnion() << "volatile"
   4308           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
   4309       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
   4310         Diag(DS.getRestrictSpecLoc(),
   4311              diag::ext_anonymous_struct_union_qualified)
   4312           << Record->isUnion() << "restrict"
   4313           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
   4314       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   4315         Diag(DS.getAtomicSpecLoc(),
   4316              diag::ext_anonymous_struct_union_qualified)
   4317           << Record->isUnion() << "_Atomic"
   4318           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
   4319       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
   4320         Diag(DS.getUnalignedSpecLoc(),
   4321              diag::ext_anonymous_struct_union_qualified)
   4322           << Record->isUnion() << "__unaligned"
   4323           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
   4324 
   4325       DS.ClearTypeQualifiers();
   4326     }
   4327 
   4328     // C++ [class.union]p2:
   4329     //   The member-specification of an anonymous union shall only
   4330     //   define non-static data members. [Note: nested types and
   4331     //   functions cannot be declared within an anonymous union. ]
   4332     for (auto *Mem : Record->decls()) {
   4333       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
   4334         // C++ [class.union]p3:
   4335         //   An anonymous union shall not have private or protected
   4336         //   members (clause 11).
   4337         assert(FD->getAccess() != AS_none);
   4338         if (FD->getAccess() != AS_public) {
   4339           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
   4340             << Record->isUnion() << (FD->getAccess() == AS_protected);
   4341           Invalid = true;
   4342         }
   4343 
   4344         // C++ [class.union]p1
   4345         //   An object of a class with a non-trivial constructor, a non-trivial
   4346         //   copy constructor, a non-trivial destructor, or a non-trivial copy
   4347         //   assignment operator cannot be a member of a union, nor can an
   4348         //   array of such objects.
   4349         if (CheckNontrivialField(FD))
   4350           Invalid = true;
   4351       } else if (Mem->isImplicit()) {
   4352         // Any implicit members are fine.
   4353       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
   4354         // This is a type that showed up in an
   4355         // elaborated-type-specifier inside the anonymous struct or
   4356         // union, but which actually declares a type outside of the
   4357         // anonymous struct or union. It's okay.
   4358       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
   4359         if (!MemRecord->isAnonymousStructOrUnion() &&
   4360             MemRecord->getDeclName()) {
   4361           // Visual C++ allows type definition in anonymous struct or union.
   4362           if (getLangOpts().MicrosoftExt)
   4363             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
   4364               << Record->isUnion();
   4365           else {
   4366             // This is a nested type declaration.
   4367             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
   4368               << Record->isUnion();
   4369             Invalid = true;
   4370           }
   4371         } else {
   4372           // This is an anonymous type definition within another anonymous type.
   4373           // This is a popular extension, provided by Plan9, MSVC and GCC, but
   4374           // not part of standard C++.
   4375           Diag(MemRecord->getLocation(),
   4376                diag::ext_anonymous_record_with_anonymous_type)
   4377             << Record->isUnion();
   4378         }
   4379       } else if (isa<AccessSpecDecl>(Mem)) {
   4380         // Any access specifier is fine.
   4381       } else if (isa<StaticAssertDecl>(Mem)) {
   4382         // In C++1z, static_assert declarations are also fine.
   4383       } else {
   4384         // We have something that isn't a non-static data
   4385         // member. Complain about it.
   4386         unsigned DK = diag::err_anonymous_record_bad_member;
   4387         if (isa<TypeDecl>(Mem))
   4388           DK = diag::err_anonymous_record_with_type;
   4389         else if (isa<FunctionDecl>(Mem))
   4390           DK = diag::err_anonymous_record_with_function;
   4391         else if (isa<VarDecl>(Mem))
   4392           DK = diag::err_anonymous_record_with_static;
   4393 
   4394         // Visual C++ allows type definition in anonymous struct or union.
   4395         if (getLangOpts().MicrosoftExt &&
   4396             DK == diag::err_anonymous_record_with_type)
   4397           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
   4398             << Record->isUnion();
   4399         else {
   4400           Diag(Mem->getLocation(), DK) << Record->isUnion();
   4401           Invalid = true;
   4402         }
   4403       }
   4404     }
   4405 
   4406     // C++11 [class.union]p8 (DR1460):
   4407     //   At most one variant member of a union may have a
   4408     //   brace-or-equal-initializer.
   4409     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
   4410         Owner->isRecord())
   4411       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
   4412                                 cast<CXXRecordDecl>(Record));
   4413   }
   4414 
   4415   if (!Record->isUnion() && !Owner->isRecord()) {
   4416     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
   4417       << getLangOpts().CPlusPlus;
   4418     Invalid = true;
   4419   }
   4420 
   4421   // Mock up a declarator.
   4422   Declarator Dc(DS, Declarator::MemberContext);
   4423   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   4424   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
   4425 
   4426   // Create a declaration for this anonymous struct/union.
   4427   NamedDecl *Anon = nullptr;
   4428   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
   4429     Anon = FieldDecl::Create(Context, OwningClass,
   4430                              DS.getLocStart(),
   4431                              Record->getLocation(),
   4432                              /*IdentifierInfo=*/nullptr,
   4433                              Context.getTypeDeclType(Record),
   4434                              TInfo,
   4435                              /*BitWidth=*/nullptr, /*Mutable=*/false,
   4436                              /*InitStyle=*/ICIS_NoInit);
   4437     Anon->setAccess(AS);
   4438     if (getLangOpts().CPlusPlus)
   4439       FieldCollector->Add(cast<FieldDecl>(Anon));
   4440   } else {
   4441     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
   4442     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
   4443     if (SCSpec == DeclSpec::SCS_mutable) {
   4444       // mutable can only appear on non-static class members, so it's always
   4445       // an error here
   4446       Diag(Record->getLocation(), diag::err_mutable_nonmember);
   4447       Invalid = true;
   4448       SC = SC_None;
   4449     }
   4450 
   4451     Anon = VarDecl::Create(Context, Owner,
   4452                            DS.getLocStart(),
   4453                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
   4454                            Context.getTypeDeclType(Record),
   4455                            TInfo, SC);
   4456 
   4457     // Default-initialize the implicit variable. This initialization will be
   4458     // trivial in almost all cases, except if a union member has an in-class
   4459     // initializer:
   4460     //   union { int n = 0; };
   4461     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
   4462   }
   4463   Anon->setImplicit();
   4464 
   4465   // Mark this as an anonymous struct/union type.
   4466   Record->setAnonymousStructOrUnion(true);
   4467 
   4468   // Add the anonymous struct/union object to the current
   4469   // context. We'll be referencing this object when we refer to one of
   4470   // its members.
   4471   Owner->addDecl(Anon);
   4472 
   4473   // Inject the members of the anonymous struct/union into the owning
   4474   // context and into the identifier resolver chain for name lookup
   4475   // purposes.
   4476   SmallVector<NamedDecl*, 2> Chain;
   4477   Chain.push_back(Anon);
   4478 
   4479   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
   4480     Invalid = true;
   4481 
   4482   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
   4483     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
   4484       Decl *ManglingContextDecl;
   4485       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
   4486               NewVD->getDeclContext(), ManglingContextDecl)) {
   4487         Context.setManglingNumber(
   4488             NewVD, MCtx->getManglingNumber(
   4489                        NewVD, getMSManglingNumber(getLangOpts(), S)));
   4490         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
   4491       }
   4492     }
   4493   }
   4494 
   4495   if (Invalid)
   4496     Anon->setInvalidDecl();
   4497 
   4498   return Anon;
   4499 }
   4500 
   4501 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
   4502 /// Microsoft C anonymous structure.
   4503 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
   4504 /// Example:
   4505 ///
   4506 /// struct A { int a; };
   4507 /// struct B { struct A; int b; };
   4508 ///
   4509 /// void foo() {
   4510 ///   B var;
   4511 ///   var.a = 3;
   4512 /// }
   4513 ///
   4514 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
   4515                                            RecordDecl *Record) {
   4516   assert(Record && "expected a record!");
   4517 
   4518   // Mock up a declarator.
   4519   Declarator Dc(DS, Declarator::TypeNameContext);
   4520   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
   4521   assert(TInfo && "couldn't build declarator info for anonymous struct");
   4522 
   4523   auto *ParentDecl = cast<RecordDecl>(CurContext);
   4524   QualType RecTy = Context.getTypeDeclType(Record);
   4525 
   4526   // Create a declaration for this anonymous struct.
   4527   NamedDecl *Anon = FieldDecl::Create(Context,
   4528                              ParentDecl,
   4529                              DS.getLocStart(),
   4530                              DS.getLocStart(),
   4531                              /*IdentifierInfo=*/nullptr,
   4532                              RecTy,
   4533                              TInfo,
   4534                              /*BitWidth=*/nullptr, /*Mutable=*/false,
   4535                              /*InitStyle=*/ICIS_NoInit);
   4536   Anon->setImplicit();
   4537 
   4538   // Add the anonymous struct object to the current context.
   4539   CurContext->addDecl(Anon);
   4540 
   4541   // Inject the members of the anonymous struct into the current
   4542   // context and into the identifier resolver chain for name lookup
   4543   // purposes.
   4544   SmallVector<NamedDecl*, 2> Chain;
   4545   Chain.push_back(Anon);
   4546 
   4547   RecordDecl *RecordDef = Record->getDefinition();
   4548   if (RequireCompleteType(Anon->getLocation(), RecTy,
   4549                           diag::err_field_incomplete) ||
   4550       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
   4551                                           AS_none, Chain)) {
   4552     Anon->setInvalidDecl();
   4553     ParentDecl->setInvalidDecl();
   4554   }
   4555 
   4556   return Anon;
   4557 }
   4558 
   4559 /// GetNameForDeclarator - Determine the full declaration name for the
   4560 /// given Declarator.
   4561 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
   4562   return GetNameFromUnqualifiedId(D.getName());
   4563 }
   4564 
   4565 /// \brief Retrieves the declaration name from a parsed unqualified-id.
   4566 DeclarationNameInfo
   4567 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
   4568   DeclarationNameInfo NameInfo;
   4569   NameInfo.setLoc(Name.StartLocation);
   4570 
   4571   switch (Name.getKind()) {
   4572 
   4573   case UnqualifiedId::IK_ImplicitSelfParam:
   4574   case UnqualifiedId::IK_Identifier:
   4575     NameInfo.setName(Name.Identifier);
   4576     NameInfo.setLoc(Name.StartLocation);
   4577     return NameInfo;
   4578 
   4579   case UnqualifiedId::IK_OperatorFunctionId:
   4580     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
   4581                                            Name.OperatorFunctionId.Operator));
   4582     NameInfo.setLoc(Name.StartLocation);
   4583     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
   4584       = Name.OperatorFunctionId.SymbolLocations[0];
   4585     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
   4586       = Name.EndLocation.getRawEncoding();
   4587     return NameInfo;
   4588 
   4589   case UnqualifiedId::IK_LiteralOperatorId:
   4590     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
   4591                                                            Name.Identifier));
   4592     NameInfo.setLoc(Name.StartLocation);
   4593     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
   4594     return NameInfo;
   4595 
   4596   case UnqualifiedId::IK_ConversionFunctionId: {
   4597     TypeSourceInfo *TInfo;
   4598     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
   4599     if (Ty.isNull())
   4600       return DeclarationNameInfo();
   4601     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
   4602                                                Context.getCanonicalType(Ty)));
   4603     NameInfo.setLoc(Name.StartLocation);
   4604     NameInfo.setNamedTypeInfo(TInfo);
   4605     return NameInfo;
   4606   }
   4607 
   4608   case UnqualifiedId::IK_ConstructorName: {
   4609     TypeSourceInfo *TInfo;
   4610     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
   4611     if (Ty.isNull())
   4612       return DeclarationNameInfo();
   4613     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   4614                                               Context.getCanonicalType(Ty)));
   4615     NameInfo.setLoc(Name.StartLocation);
   4616     NameInfo.setNamedTypeInfo(TInfo);
   4617     return NameInfo;
   4618   }
   4619 
   4620   case UnqualifiedId::IK_ConstructorTemplateId: {
   4621     // In well-formed code, we can only have a constructor
   4622     // template-id that refers to the current context, so go there
   4623     // to find the actual type being constructed.
   4624     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
   4625     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
   4626       return DeclarationNameInfo();
   4627 
   4628     // Determine the type of the class being constructed.
   4629     QualType CurClassType = Context.getTypeDeclType(CurClass);
   4630 
   4631     // FIXME: Check two things: that the template-id names the same type as
   4632     // CurClassType, and that the template-id does not occur when the name
   4633     // was qualified.
   4634 
   4635     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
   4636                                     Context.getCanonicalType(CurClassType)));
   4637     NameInfo.setLoc(Name.StartLocation);
   4638     // FIXME: should we retrieve TypeSourceInfo?
   4639     NameInfo.setNamedTypeInfo(nullptr);
   4640     return NameInfo;
   4641   }
   4642 
   4643   case UnqualifiedId::IK_DestructorName: {
   4644     TypeSourceInfo *TInfo;
   4645     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
   4646     if (Ty.isNull())
   4647       return DeclarationNameInfo();
   4648     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
   4649                                               Context.getCanonicalType(Ty)));
   4650     NameInfo.setLoc(Name.StartLocation);
   4651     NameInfo.setNamedTypeInfo(TInfo);
   4652     return NameInfo;
   4653   }
   4654 
   4655   case UnqualifiedId::IK_TemplateId: {
   4656     TemplateName TName = Name.TemplateId->Template.get();
   4657     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
   4658     return Context.getNameForTemplate(TName, TNameLoc);
   4659   }
   4660 
   4661   } // switch (Name.getKind())
   4662 
   4663   llvm_unreachable("Unknown name kind");
   4664 }
   4665 
   4666 static QualType getCoreType(QualType Ty) {
   4667   do {
   4668     if (Ty->isPointerType() || Ty->isReferenceType())
   4669       Ty = Ty->getPointeeType();
   4670     else if (Ty->isArrayType())
   4671       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
   4672     else
   4673       return Ty.withoutLocalFastQualifiers();
   4674   } while (true);
   4675 }
   4676 
   4677 /// hasSimilarParameters - Determine whether the C++ functions Declaration
   4678 /// and Definition have "nearly" matching parameters. This heuristic is
   4679 /// used to improve diagnostics in the case where an out-of-line function
   4680 /// definition doesn't match any declaration within the class or namespace.
   4681 /// Also sets Params to the list of indices to the parameters that differ
   4682 /// between the declaration and the definition. If hasSimilarParameters
   4683 /// returns true and Params is empty, then all of the parameters match.
   4684 static bool hasSimilarParameters(ASTContext &Context,
   4685                                      FunctionDecl *Declaration,
   4686                                      FunctionDecl *Definition,
   4687                                      SmallVectorImpl<unsigned> &Params) {
   4688   Params.clear();
   4689   if (Declaration->param_size() != Definition->param_size())
   4690     return false;
   4691   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
   4692     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
   4693     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
   4694 
   4695     // The parameter types are identical
   4696     if (Context.hasSameType(DefParamTy, DeclParamTy))
   4697       continue;
   4698 
   4699     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
   4700     QualType DefParamBaseTy = getCoreType(DefParamTy);
   4701     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
   4702     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
   4703 
   4704     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
   4705         (DeclTyName && DeclTyName == DefTyName))
   4706       Params.push_back(Idx);
   4707     else  // The two parameters aren't even close
   4708       return false;
   4709   }
   4710 
   4711   return true;
   4712 }
   4713 
   4714 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
   4715 /// declarator needs to be rebuilt in the current instantiation.
   4716 /// Any bits of declarator which appear before the name are valid for
   4717 /// consideration here.  That's specifically the type in the decl spec
   4718 /// and the base type in any member-pointer chunks.
   4719 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
   4720                                                     DeclarationName Name) {
   4721   // The types we specifically need to rebuild are:
   4722   //   - typenames, typeofs, and decltypes
   4723   //   - types which will become injected class names
   4724   // Of course, we also need to rebuild any type referencing such a
   4725   // type.  It's safest to just say "dependent", but we call out a
   4726   // few cases here.
   4727 
   4728   DeclSpec &DS = D.getMutableDeclSpec();
   4729   switch (DS.getTypeSpecType()) {
   4730   case DeclSpec::TST_typename:
   4731   case DeclSpec::TST_typeofType:
   4732   case DeclSpec::TST_underlyingType:
   4733   case DeclSpec::TST_atomic: {
   4734     // Grab the type from the parser.
   4735     TypeSourceInfo *TSI = nullptr;
   4736     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
   4737     if (T.isNull() || !T->isDependentType()) break;
   4738 
   4739     // Make sure there's a type source info.  This isn't really much
   4740     // of a waste; most dependent types should have type source info
   4741     // attached already.
   4742     if (!TSI)
   4743       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
   4744 
   4745     // Rebuild the type in the current instantiation.
   4746     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
   4747     if (!TSI) return true;
   4748 
   4749     // Store the new type back in the decl spec.
   4750     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
   4751     DS.UpdateTypeRep(LocType);
   4752     break;
   4753   }
   4754 
   4755   case DeclSpec::TST_decltype:
   4756   case DeclSpec::TST_typeofExpr: {
   4757     Expr *E = DS.getRepAsExpr();
   4758     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
   4759     if (Result.isInvalid()) return true;
   4760     DS.UpdateExprRep(Result.get());
   4761     break;
   4762   }
   4763 
   4764   default:
   4765     // Nothing to do for these decl specs.
   4766     break;
   4767   }
   4768 
   4769   // It doesn't matter what order we do this in.
   4770   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
   4771     DeclaratorChunk &Chunk = D.getTypeObject(I);
   4772 
   4773     // The only type information in the declarator which can come
   4774     // before the declaration name is the base type of a member
   4775     // pointer.
   4776     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
   4777       continue;
   4778 
   4779     // Rebuild the scope specifier in-place.
   4780     CXXScopeSpec &SS = Chunk.Mem.Scope();
   4781     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
   4782       return true;
   4783   }
   4784 
   4785   return false;
   4786 }
   4787 
   4788 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
   4789   D.setFunctionDefinitionKind(FDK_Declaration);
   4790   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
   4791 
   4792   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
   4793       Dcl && Dcl->getDeclContext()->isFileContext())
   4794     Dcl->setTopLevelDeclInObjCContainer();
   4795 
   4796   return Dcl;
   4797 }
   4798 
   4799 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
   4800 ///   If T is the name of a class, then each of the following shall have a
   4801 ///   name different from T:
   4802 ///     - every static data member of class T;
   4803 ///     - every member function of class T
   4804 ///     - every member of class T that is itself a type;
   4805 /// \returns true if the declaration name violates these rules.
   4806 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
   4807                                    DeclarationNameInfo NameInfo) {
   4808   DeclarationName Name = NameInfo.getName();
   4809 
   4810   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
   4811   while (Record && Record->isAnonymousStructOrUnion())
   4812     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
   4813   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
   4814     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
   4815     return true;
   4816   }
   4817 
   4818   return false;
   4819 }
   4820 
   4821 /// \brief Diagnose a declaration whose declarator-id has the given
   4822 /// nested-name-specifier.
   4823 ///
   4824 /// \param SS The nested-name-specifier of the declarator-id.
   4825 ///
   4826 /// \param DC The declaration context to which the nested-name-specifier
   4827 /// resolves.
   4828 ///
   4829 /// \param Name The name of the entity being declared.
   4830 ///
   4831 /// \param Loc The location of the name of the entity being declared.
   4832 ///
   4833 /// \returns true if we cannot safely recover from this error, false otherwise.
   4834 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
   4835                                         DeclarationName Name,
   4836                                         SourceLocation Loc) {
   4837   DeclContext *Cur = CurContext;
   4838   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
   4839     Cur = Cur->getParent();
   4840 
   4841   // If the user provided a superfluous scope specifier that refers back to the
   4842   // class in which the entity is already declared, diagnose and ignore it.
   4843   //
   4844   // class X {
   4845   //   void X::f();
   4846   // };
   4847   //
   4848   // Note, it was once ill-formed to give redundant qualification in all
   4849   // contexts, but that rule was removed by DR482.
   4850   if (Cur->Equals(DC)) {
   4851     if (Cur->isRecord()) {
   4852       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
   4853                                       : diag::err_member_extra_qualification)
   4854         << Name << FixItHint::CreateRemoval(SS.getRange());
   4855       SS.clear();
   4856     } else {
   4857       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
   4858     }
   4859     return false;
   4860   }
   4861 
   4862   // Check whether the qualifying scope encloses the scope of the original
   4863   // declaration.
   4864   if (!Cur->Encloses(DC)) {
   4865     if (Cur->isRecord())
   4866       Diag(Loc, diag::err_member_qualification)
   4867         << Name << SS.getRange();
   4868     else if (isa<TranslationUnitDecl>(DC))
   4869       Diag(Loc, diag::err_invalid_declarator_global_scope)
   4870         << Name << SS.getRange();
   4871     else if (isa<FunctionDecl>(Cur))
   4872       Diag(Loc, diag::err_invalid_declarator_in_function)
   4873         << Name << SS.getRange();
   4874     else if (isa<BlockDecl>(Cur))
   4875       Diag(Loc, diag::err_invalid_declarator_in_block)
   4876         << Name << SS.getRange();
   4877     else
   4878       Diag(Loc, diag::err_invalid_declarator_scope)
   4879       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
   4880 
   4881     return true;
   4882   }
   4883 
   4884   if (Cur->isRecord()) {
   4885     // Cannot qualify members within a class.
   4886     Diag(Loc, diag::err_member_qualification)
   4887       << Name << SS.getRange();
   4888     SS.clear();
   4889 
   4890     // C++ constructors and destructors with incorrect scopes can break
   4891     // our AST invariants by having the wrong underlying types. If
   4892     // that's the case, then drop this declaration entirely.
   4893     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
   4894          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
   4895         !Context.hasSameType(Name.getCXXNameType(),
   4896                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
   4897       return true;
   4898 
   4899     return false;
   4900   }
   4901 
   4902   // C++11 [dcl.meaning]p1:
   4903   //   [...] "The nested-name-specifier of the qualified declarator-id shall
   4904   //   not begin with a decltype-specifer"
   4905   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
   4906   while (SpecLoc.getPrefix())
   4907     SpecLoc = SpecLoc.getPrefix();
   4908   if (dyn_cast_or_null<DecltypeType>(
   4909         SpecLoc.getNestedNameSpecifier()->getAsType()))
   4910     Diag(Loc, diag::err_decltype_in_declarator)
   4911       << SpecLoc.getTypeLoc().getSourceRange();
   4912 
   4913   return false;
   4914 }
   4915 
   4916 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
   4917                                   MultiTemplateParamsArg TemplateParamLists) {
   4918   // TODO: consider using NameInfo for diagnostic.
   4919   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   4920   DeclarationName Name = NameInfo.getName();
   4921 
   4922   // All of these full declarators require an identifier.  If it doesn't have
   4923   // one, the ParsedFreeStandingDeclSpec action should be used.
   4924   if (!Name) {
   4925     if (!D.isInvalidType())  // Reject this if we think it is valid.
   4926       Diag(D.getDeclSpec().getLocStart(),
   4927            diag::err_declarator_need_ident)
   4928         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
   4929     return nullptr;
   4930   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
   4931     return nullptr;
   4932 
   4933   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   4934   // we find one that is.
   4935   while ((S->getFlags() & Scope::DeclScope) == 0 ||
   4936          (S->getFlags() & Scope::TemplateParamScope) != 0)
   4937     S = S->getParent();
   4938 
   4939   DeclContext *DC = CurContext;
   4940   if (D.getCXXScopeSpec().isInvalid())
   4941     D.setInvalidType();
   4942   else if (D.getCXXScopeSpec().isSet()) {
   4943     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
   4944                                         UPPC_DeclarationQualifier))
   4945       return nullptr;
   4946 
   4947     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
   4948     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
   4949     if (!DC || isa<EnumDecl>(DC)) {
   4950       // If we could not compute the declaration context, it's because the
   4951       // declaration context is dependent but does not refer to a class,
   4952       // class template, or class template partial specialization. Complain
   4953       // and return early, to avoid the coming semantic disaster.
   4954       Diag(D.getIdentifierLoc(),
   4955            diag::err_template_qualified_declarator_no_match)
   4956         << D.getCXXScopeSpec().getScopeRep()
   4957         << D.getCXXScopeSpec().getRange();
   4958       return nullptr;
   4959     }
   4960     bool IsDependentContext = DC->isDependentContext();
   4961 
   4962     if (!IsDependentContext &&
   4963         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
   4964       return nullptr;
   4965 
   4966     // If a class is incomplete, do not parse entities inside it.
   4967     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
   4968       Diag(D.getIdentifierLoc(),
   4969            diag::err_member_def_undefined_record)
   4970         << Name << DC << D.getCXXScopeSpec().getRange();
   4971       return nullptr;
   4972     }
   4973     if (!D.getDeclSpec().isFriendSpecified()) {
   4974       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
   4975                                       Name, D.getIdentifierLoc())) {
   4976         if (DC->isRecord())
   4977           return nullptr;
   4978 
   4979         D.setInvalidType();
   4980       }
   4981     }
   4982 
   4983     // Check whether we need to rebuild the type of the given
   4984     // declaration in the current instantiation.
   4985     if (EnteringContext && IsDependentContext &&
   4986         TemplateParamLists.size() != 0) {
   4987       ContextRAII SavedContext(*this, DC);
   4988       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
   4989         D.setInvalidType();
   4990     }
   4991   }
   4992 
   4993   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   4994   QualType R = TInfo->getType();
   4995 
   4996   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
   4997     // If this is a typedef, we'll end up spewing multiple diagnostics.
   4998     // Just return early; it's safer. If this is a function, let the
   4999     // "constructor cannot have a return type" diagnostic handle it.
   5000     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   5001       return nullptr;
   5002 
   5003   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   5004                                       UPPC_DeclarationType))
   5005     D.setInvalidType();
   5006 
   5007   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
   5008                         ForRedeclaration);
   5009 
   5010   // See if this is a redefinition of a variable in the same scope.
   5011   if (!D.getCXXScopeSpec().isSet()) {
   5012     bool IsLinkageLookup = false;
   5013     bool CreateBuiltins = false;
   5014 
   5015     // If the declaration we're planning to build will be a function
   5016     // or object with linkage, then look for another declaration with
   5017     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
   5018     //
   5019     // If the declaration we're planning to build will be declared with
   5020     // external linkage in the translation unit, create any builtin with
   5021     // the same name.
   5022     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
   5023       /* Do nothing*/;
   5024     else if (CurContext->isFunctionOrMethod() &&
   5025              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
   5026               R->isFunctionType())) {
   5027       IsLinkageLookup = true;
   5028       CreateBuiltins =
   5029           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
   5030     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
   5031                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
   5032       CreateBuiltins = true;
   5033 
   5034     if (IsLinkageLookup)
   5035       Previous.clear(LookupRedeclarationWithLinkage);
   5036 
   5037     LookupName(Previous, S, CreateBuiltins);
   5038   } else { // Something like "int foo::x;"
   5039     LookupQualifiedName(Previous, DC);
   5040 
   5041     // C++ [dcl.meaning]p1:
   5042     //   When the declarator-id is qualified, the declaration shall refer to a
   5043     //  previously declared member of the class or namespace to which the
   5044     //  qualifier refers (or, in the case of a namespace, of an element of the
   5045     //  inline namespace set of that namespace (7.3.1)) or to a specialization
   5046     //  thereof; [...]
   5047     //
   5048     // Note that we already checked the context above, and that we do not have
   5049     // enough information to make sure that Previous contains the declaration
   5050     // we want to match. For example, given:
   5051     //
   5052     //   class X {
   5053     //     void f();
   5054     //     void f(float);
   5055     //   };
   5056     //
   5057     //   void X::f(int) { } // ill-formed
   5058     //
   5059     // In this case, Previous will point to the overload set
   5060     // containing the two f's declared in X, but neither of them
   5061     // matches.
   5062 
   5063     // C++ [dcl.meaning]p1:
   5064     //   [...] the member shall not merely have been introduced by a
   5065     //   using-declaration in the scope of the class or namespace nominated by
   5066     //   the nested-name-specifier of the declarator-id.
   5067     RemoveUsingDecls(Previous);
   5068   }
   5069 
   5070   if (Previous.isSingleResult() &&
   5071       Previous.getFoundDecl()->isTemplateParameter()) {
   5072     // Maybe we will complain about the shadowed template parameter.
   5073     if (!D.isInvalidType())
   5074       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
   5075                                       Previous.getFoundDecl());
   5076 
   5077     // Just pretend that we didn't see the previous declaration.
   5078     Previous.clear();
   5079   }
   5080 
   5081   // In C++, the previous declaration we find might be a tag type
   5082   // (class or enum). In this case, the new declaration will hide the
   5083   // tag type. Note that this does does not apply if we're declaring a
   5084   // typedef (C++ [dcl.typedef]p4).
   5085   if (Previous.isSingleTagDecl() &&
   5086       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
   5087     Previous.clear();
   5088 
   5089   // Check that there are no default arguments other than in the parameters
   5090   // of a function declaration (C++ only).
   5091   if (getLangOpts().CPlusPlus)
   5092     CheckExtraCXXDefaultArguments(D);
   5093 
   5094   if (D.getDeclSpec().isConceptSpecified()) {
   5095     // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
   5096     // applied only to the definition of a function template or variable
   5097     // template, declared in namespace scope
   5098     if (!TemplateParamLists.size()) {
   5099       Diag(D.getDeclSpec().getConceptSpecLoc(),
   5100            diag:: err_concept_wrong_decl_kind);
   5101       return nullptr;
   5102     }
   5103 
   5104     if (!DC->getRedeclContext()->isFileContext()) {
   5105       Diag(D.getIdentifierLoc(),
   5106            diag::err_concept_decls_may_only_appear_in_namespace_scope);
   5107       return nullptr;
   5108     }
   5109   }
   5110 
   5111   NamedDecl *New;
   5112 
   5113   bool AddToScope = true;
   5114   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
   5115     if (TemplateParamLists.size()) {
   5116       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
   5117       return nullptr;
   5118     }
   5119 
   5120     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
   5121   } else if (R->isFunctionType()) {
   5122     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
   5123                                   TemplateParamLists,
   5124                                   AddToScope);
   5125   } else {
   5126     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
   5127                                   AddToScope);
   5128   }
   5129 
   5130   if (!New)
   5131     return nullptr;
   5132 
   5133   // If this has an identifier and is not a function template specialization,
   5134   // add it to the scope stack.
   5135   if (New->getDeclName() && AddToScope) {
   5136     // Only make a locally-scoped extern declaration visible if it is the first
   5137     // declaration of this entity. Qualified lookup for such an entity should
   5138     // only find this declaration if there is no visible declaration of it.
   5139     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
   5140     PushOnScopeChains(New, S, AddToContext);
   5141     if (!AddToContext)
   5142       CurContext->addHiddenDecl(New);
   5143   }
   5144 
   5145   if (isInOpenMPDeclareTargetContext())
   5146     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
   5147 
   5148   return New;
   5149 }
   5150 
   5151 /// Helper method to turn variable array types into constant array
   5152 /// types in certain situations which would otherwise be errors (for
   5153 /// GCC compatibility).
   5154 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
   5155                                                     ASTContext &Context,
   5156                                                     bool &SizeIsNegative,
   5157                                                     llvm::APSInt &Oversized) {
   5158   // This method tries to turn a variable array into a constant
   5159   // array even when the size isn't an ICE.  This is necessary
   5160   // for compatibility with code that depends on gcc's buggy
   5161   // constant expression folding, like struct {char x[(int)(char*)2];}
   5162   SizeIsNegative = false;
   5163   Oversized = 0;
   5164 
   5165   if (T->isDependentType())
   5166     return QualType();
   5167 
   5168   QualifierCollector Qs;
   5169   const Type *Ty = Qs.strip(T);
   5170 
   5171   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
   5172     QualType Pointee = PTy->getPointeeType();
   5173     QualType FixedType =
   5174         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
   5175                                             Oversized);
   5176     if (FixedType.isNull()) return FixedType;
   5177     FixedType = Context.getPointerType(FixedType);
   5178     return Qs.apply(Context, FixedType);
   5179   }
   5180   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
   5181     QualType Inner = PTy->getInnerType();
   5182     QualType FixedType =
   5183         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
   5184                                             Oversized);
   5185     if (FixedType.isNull()) return FixedType;
   5186     FixedType = Context.getParenType(FixedType);
   5187     return Qs.apply(Context, FixedType);
   5188   }
   5189 
   5190   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
   5191   if (!VLATy)
   5192     return QualType();
   5193   // FIXME: We should probably handle this case
   5194   if (VLATy->getElementType()->isVariablyModifiedType())
   5195     return QualType();
   5196 
   5197   llvm::APSInt Res;
   5198   if (!VLATy->getSizeExpr() ||
   5199       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
   5200     return QualType();
   5201 
   5202   // Check whether the array size is negative.
   5203   if (Res.isSigned() && Res.isNegative()) {
   5204     SizeIsNegative = true;
   5205     return QualType();
   5206   }
   5207 
   5208   // Check whether the array is too large to be addressed.
   5209   unsigned ActiveSizeBits
   5210     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
   5211                                               Res);
   5212   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
   5213     Oversized = Res;
   5214     return QualType();
   5215   }
   5216 
   5217   return Context.getConstantArrayType(VLATy->getElementType(),
   5218                                       Res, ArrayType::Normal, 0);
   5219 }
   5220 
   5221 static void
   5222 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
   5223   SrcTL = SrcTL.getUnqualifiedLoc();
   5224   DstTL = DstTL.getUnqualifiedLoc();
   5225   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
   5226     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
   5227     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
   5228                                       DstPTL.getPointeeLoc());
   5229     DstPTL.setStarLoc(SrcPTL.getStarLoc());
   5230     return;
   5231   }
   5232   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
   5233     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
   5234     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
   5235                                       DstPTL.getInnerLoc());
   5236     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
   5237     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
   5238     return;
   5239   }
   5240   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
   5241   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
   5242   TypeLoc SrcElemTL = SrcATL.getElementLoc();
   5243   TypeLoc DstElemTL = DstATL.getElementLoc();
   5244   DstElemTL.initializeFullCopy(SrcElemTL);
   5245   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
   5246   DstATL.setSizeExpr(SrcATL.getSizeExpr());
   5247   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
   5248 }
   5249 
   5250 /// Helper method to turn variable array types into constant array
   5251 /// types in certain situations which would otherwise be errors (for
   5252 /// GCC compatibility).
   5253 static TypeSourceInfo*
   5254 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
   5255                                               ASTContext &Context,
   5256                                               bool &SizeIsNegative,
   5257                                               llvm::APSInt &Oversized) {
   5258   QualType FixedTy
   5259     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
   5260                                           SizeIsNegative, Oversized);
   5261   if (FixedTy.isNull())
   5262     return nullptr;
   5263   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
   5264   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
   5265                                     FixedTInfo->getTypeLoc());
   5266   return FixedTInfo;
   5267 }
   5268 
   5269 /// \brief Register the given locally-scoped extern "C" declaration so
   5270 /// that it can be found later for redeclarations. We include any extern "C"
   5271 /// declaration that is not visible in the translation unit here, not just
   5272 /// function-scope declarations.
   5273 void
   5274 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
   5275   if (!getLangOpts().CPlusPlus &&
   5276       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
   5277     // Don't need to track declarations in the TU in C.
   5278     return;
   5279 
   5280   // Note that we have a locally-scoped external with this name.
   5281   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
   5282 }
   5283 
   5284 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
   5285   // FIXME: We can have multiple results via __attribute__((overloadable)).
   5286   auto Result = Context.getExternCContextDecl()->lookup(Name);
   5287   return Result.empty() ? nullptr : *Result.begin();
   5288 }
   5289 
   5290 /// \brief Diagnose function specifiers on a declaration of an identifier that
   5291 /// does not identify a function.
   5292 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
   5293   // FIXME: We should probably indicate the identifier in question to avoid
   5294   // confusion for constructs like "virtual int a(), b;"
   5295   if (DS.isVirtualSpecified())
   5296     Diag(DS.getVirtualSpecLoc(),
   5297          diag::err_virtual_non_function);
   5298 
   5299   if (DS.isExplicitSpecified())
   5300     Diag(DS.getExplicitSpecLoc(),
   5301          diag::err_explicit_non_function);
   5302 
   5303   if (DS.isNoreturnSpecified())
   5304     Diag(DS.getNoreturnSpecLoc(),
   5305          diag::err_noreturn_non_function);
   5306 }
   5307 
   5308 NamedDecl*
   5309 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
   5310                              TypeSourceInfo *TInfo, LookupResult &Previous) {
   5311   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
   5312   if (D.getCXXScopeSpec().isSet()) {
   5313     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
   5314       << D.getCXXScopeSpec().getRange();
   5315     D.setInvalidType();
   5316     // Pretend we didn't see the scope specifier.
   5317     DC = CurContext;
   5318     Previous.clear();
   5319   }
   5320 
   5321   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   5322 
   5323   if (D.getDeclSpec().isInlineSpecified())
   5324     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
   5325         << getLangOpts().CPlusPlus1z;
   5326   if (D.getDeclSpec().isConstexprSpecified())
   5327     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
   5328       << 1;
   5329   if (D.getDeclSpec().isConceptSpecified())
   5330     Diag(D.getDeclSpec().getConceptSpecLoc(),
   5331          diag::err_concept_wrong_decl_kind);
   5332 
   5333   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
   5334     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
   5335       << D.getName().getSourceRange();
   5336     return nullptr;
   5337   }
   5338 
   5339   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
   5340   if (!NewTD) return nullptr;
   5341 
   5342   // Handle attributes prior to checking for duplicates in MergeVarDecl
   5343   ProcessDeclAttributes(S, NewTD, D);
   5344 
   5345   CheckTypedefForVariablyModifiedType(S, NewTD);
   5346 
   5347   bool Redeclaration = D.isRedeclaration();
   5348   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
   5349   D.setRedeclaration(Redeclaration);
   5350   return ND;
   5351 }
   5352 
   5353 void
   5354 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
   5355   // C99 6.7.7p2: If a typedef name specifies a variably modified type
   5356   // then it shall have block scope.
   5357   // Note that variably modified types must be fixed before merging the decl so
   5358   // that redeclarations will match.
   5359   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
   5360   QualType T = TInfo->getType();
   5361   if (T->isVariablyModifiedType()) {
   5362     getCurFunction()->setHasBranchProtectedScope();
   5363 
   5364     if (S->getFnParent() == nullptr) {
   5365       bool SizeIsNegative;
   5366       llvm::APSInt Oversized;
   5367       TypeSourceInfo *FixedTInfo =
   5368         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   5369                                                       SizeIsNegative,
   5370                                                       Oversized);
   5371       if (FixedTInfo) {
   5372         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
   5373         NewTD->setTypeSourceInfo(FixedTInfo);
   5374       } else {
   5375         if (SizeIsNegative)
   5376           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
   5377         else if (T->isVariableArrayType())
   5378           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
   5379         else if (Oversized.getBoolValue())
   5380           Diag(NewTD->getLocation(), diag::err_array_too_large)
   5381             << Oversized.toString(10);
   5382         else
   5383           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
   5384         NewTD->setInvalidDecl();
   5385       }
   5386     }
   5387   }
   5388 }
   5389 
   5390 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
   5391 /// declares a typedef-name, either using the 'typedef' type specifier or via
   5392 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
   5393 NamedDecl*
   5394 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
   5395                            LookupResult &Previous, bool &Redeclaration) {
   5396   // Merge the decl with the existing one if appropriate. If the decl is
   5397   // in an outer scope, it isn't the same thing.
   5398   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
   5399                        /*AllowInlineNamespace*/false);
   5400   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
   5401   if (!Previous.empty()) {
   5402     Redeclaration = true;
   5403     MergeTypedefNameDecl(S, NewTD, Previous);
   5404   }
   5405 
   5406   // If this is the C FILE type, notify the AST context.
   5407   if (IdentifierInfo *II = NewTD->getIdentifier())
   5408     if (!NewTD->isInvalidDecl() &&
   5409         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   5410       if (II->isStr("FILE"))
   5411         Context.setFILEDecl(NewTD);
   5412       else if (II->isStr("jmp_buf"))
   5413         Context.setjmp_bufDecl(NewTD);
   5414       else if (II->isStr("sigjmp_buf"))
   5415         Context.setsigjmp_bufDecl(NewTD);
   5416       else if (II->isStr("ucontext_t"))
   5417         Context.setucontext_tDecl(NewTD);
   5418     }
   5419 
   5420   return NewTD;
   5421 }
   5422 
   5423 /// \brief Determines whether the given declaration is an out-of-scope
   5424 /// previous declaration.
   5425 ///
   5426 /// This routine should be invoked when name lookup has found a
   5427 /// previous declaration (PrevDecl) that is not in the scope where a
   5428 /// new declaration by the same name is being introduced. If the new
   5429 /// declaration occurs in a local scope, previous declarations with
   5430 /// linkage may still be considered previous declarations (C99
   5431 /// 6.2.2p4-5, C++ [basic.link]p6).
   5432 ///
   5433 /// \param PrevDecl the previous declaration found by name
   5434 /// lookup
   5435 ///
   5436 /// \param DC the context in which the new declaration is being
   5437 /// declared.
   5438 ///
   5439 /// \returns true if PrevDecl is an out-of-scope previous declaration
   5440 /// for a new delcaration with the same name.
   5441 static bool
   5442 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
   5443                                 ASTContext &Context) {
   5444   if (!PrevDecl)
   5445     return false;
   5446 
   5447   if (!PrevDecl->hasLinkage())
   5448     return false;
   5449 
   5450   if (Context.getLangOpts().CPlusPlus) {
   5451     // C++ [basic.link]p6:
   5452     //   If there is a visible declaration of an entity with linkage
   5453     //   having the same name and type, ignoring entities declared
   5454     //   outside the innermost enclosing namespace scope, the block
   5455     //   scope declaration declares that same entity and receives the
   5456     //   linkage of the previous declaration.
   5457     DeclContext *OuterContext = DC->getRedeclContext();
   5458     if (!OuterContext->isFunctionOrMethod())
   5459       // This rule only applies to block-scope declarations.
   5460       return false;
   5461 
   5462     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
   5463     if (PrevOuterContext->isRecord())
   5464       // We found a member function: ignore it.
   5465       return false;
   5466 
   5467     // Find the innermost enclosing namespace for the new and
   5468     // previous declarations.
   5469     OuterContext = OuterContext->getEnclosingNamespaceContext();
   5470     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
   5471 
   5472     // The previous declaration is in a different namespace, so it
   5473     // isn't the same function.
   5474     if (!OuterContext->Equals(PrevOuterContext))
   5475       return false;
   5476   }
   5477 
   5478   return true;
   5479 }
   5480 
   5481 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
   5482   CXXScopeSpec &SS = D.getCXXScopeSpec();
   5483   if (!SS.isSet()) return;
   5484   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
   5485 }
   5486 
   5487 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
   5488   QualType type = decl->getType();
   5489   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
   5490   if (lifetime == Qualifiers::OCL_Autoreleasing) {
   5491     // Various kinds of declaration aren't allowed to be __autoreleasing.
   5492     unsigned kind = -1U;
   5493     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   5494       if (var->hasAttr<BlocksAttr>())
   5495         kind = 0; // __block
   5496       else if (!var->hasLocalStorage())
   5497         kind = 1; // global
   5498     } else if (isa<ObjCIvarDecl>(decl)) {
   5499       kind = 3; // ivar
   5500     } else if (isa<FieldDecl>(decl)) {
   5501       kind = 2; // field
   5502     }
   5503 
   5504     if (kind != -1U) {
   5505       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
   5506         << kind;
   5507     }
   5508   } else if (lifetime == Qualifiers::OCL_None) {
   5509     // Try to infer lifetime.
   5510     if (!type->isObjCLifetimeType())
   5511       return false;
   5512 
   5513     lifetime = type->getObjCARCImplicitLifetime();
   5514     type = Context.getLifetimeQualifiedType(type, lifetime);
   5515     decl->setType(type);
   5516   }
   5517 
   5518   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
   5519     // Thread-local variables cannot have lifetime.
   5520     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
   5521         var->getTLSKind()) {
   5522       Diag(var->getLocation(), diag::err_arc_thread_ownership)
   5523         << var->getType();
   5524       return true;
   5525     }
   5526   }
   5527 
   5528   return false;
   5529 }
   5530 
   5531 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
   5532   // Ensure that an auto decl is deduced otherwise the checks below might cache
   5533   // the wrong linkage.
   5534   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
   5535 
   5536   // 'weak' only applies to declarations with external linkage.
   5537   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
   5538     if (!ND.isExternallyVisible()) {
   5539       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
   5540       ND.dropAttr<WeakAttr>();
   5541     }
   5542   }
   5543   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
   5544     if (ND.isExternallyVisible()) {
   5545       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
   5546       ND.dropAttr<WeakRefAttr>();
   5547       ND.dropAttr<AliasAttr>();
   5548     }
   5549   }
   5550 
   5551   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
   5552     if (VD->hasInit()) {
   5553       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
   5554         assert(VD->isThisDeclarationADefinition() &&
   5555                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
   5556         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
   5557         VD->dropAttr<AliasAttr>();
   5558       }
   5559     }
   5560   }
   5561 
   5562   // 'selectany' only applies to externally visible variable declarations.
   5563   // It does not apply to functions.
   5564   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
   5565     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
   5566       S.Diag(Attr->getLocation(),
   5567              diag::err_attribute_selectany_non_extern_data);
   5568       ND.dropAttr<SelectAnyAttr>();
   5569     }
   5570   }
   5571 
   5572   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
   5573     // dll attributes require external linkage. Static locals may have external
   5574     // linkage but still cannot be explicitly imported or exported.
   5575     auto *VD = dyn_cast<VarDecl>(&ND);
   5576     if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
   5577       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
   5578         << &ND << Attr;
   5579       ND.setInvalidDecl();
   5580     }
   5581   }
   5582 
   5583   // Virtual functions cannot be marked as 'notail'.
   5584   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
   5585     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
   5586       if (MD->isVirtual()) {
   5587         S.Diag(ND.getLocation(),
   5588                diag::err_invalid_attribute_on_virtual_function)
   5589             << Attr;
   5590         ND.dropAttr<NotTailCalledAttr>();
   5591       }
   5592 }
   5593 
   5594 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
   5595                                            NamedDecl *NewDecl,
   5596                                            bool IsSpecialization,
   5597                                            bool IsDefinition) {
   5598   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
   5599     OldDecl = OldTD->getTemplatedDecl();
   5600     if (!IsSpecialization)
   5601       IsDefinition = false;
   5602   }
   5603   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
   5604     NewDecl = NewTD->getTemplatedDecl();
   5605 
   5606   if (!OldDecl || !NewDecl)
   5607     return;
   5608 
   5609   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
   5610   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
   5611   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
   5612   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
   5613 
   5614   // dllimport and dllexport are inheritable attributes so we have to exclude
   5615   // inherited attribute instances.
   5616   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
   5617                     (NewExportAttr && !NewExportAttr->isInherited());
   5618 
   5619   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
   5620   // the only exception being explicit specializations.
   5621   // Implicitly generated declarations are also excluded for now because there
   5622   // is no other way to switch these to use dllimport or dllexport.
   5623   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
   5624 
   5625   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
   5626     // Allow with a warning for free functions and global variables.
   5627     bool JustWarn = false;
   5628     if (!OldDecl->isCXXClassMember()) {
   5629       auto *VD = dyn_cast<VarDecl>(OldDecl);
   5630       if (VD && !VD->getDescribedVarTemplate())
   5631         JustWarn = true;
   5632       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
   5633       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
   5634         JustWarn = true;
   5635     }
   5636 
   5637     // We cannot change a declaration that's been used because IR has already
   5638     // been emitted. Dllimported functions will still work though (modulo
   5639     // address equality) as they can use the thunk.
   5640     if (OldDecl->isUsed())
   5641       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
   5642         JustWarn = false;
   5643 
   5644     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
   5645                                : diag::err_attribute_dll_redeclaration;
   5646     S.Diag(NewDecl->getLocation(), DiagID)
   5647         << NewDecl
   5648         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
   5649     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
   5650     if (!JustWarn) {
   5651       NewDecl->setInvalidDecl();
   5652       return;
   5653     }
   5654   }
   5655 
   5656   // A redeclaration is not allowed to drop a dllimport attribute, the only
   5657   // exceptions being inline function definitions, local extern declarations,
   5658   // qualified friend declarations or special MSVC extension: in the last case,
   5659   // the declaration is treated as if it were marked dllexport.
   5660   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
   5661   bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
   5662   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
   5663     // Ignore static data because out-of-line definitions are diagnosed
   5664     // separately.
   5665     IsStaticDataMember = VD->isStaticDataMember();
   5666     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
   5667                    VarDecl::DeclarationOnly;
   5668   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
   5669     IsInline = FD->isInlined();
   5670     IsQualifiedFriend = FD->getQualifier() &&
   5671                         FD->getFriendObjectKind() == Decl::FOK_Declared;
   5672   }
   5673 
   5674   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
   5675       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
   5676     if (IsMicrosoft && IsDefinition) {
   5677       S.Diag(NewDecl->getLocation(),
   5678              diag::warn_redeclaration_without_import_attribute)
   5679           << NewDecl;
   5680       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
   5681       NewDecl->dropAttr<DLLImportAttr>();
   5682       NewDecl->addAttr(::new (S.Context) DLLExportAttr(
   5683           NewImportAttr->getRange(), S.Context,
   5684           NewImportAttr->getSpellingListIndex()));
   5685     } else {
   5686       S.Diag(NewDecl->getLocation(),
   5687              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
   5688           << NewDecl << OldImportAttr;
   5689       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
   5690       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
   5691       OldDecl->dropAttr<DLLImportAttr>();
   5692       NewDecl->dropAttr<DLLImportAttr>();
   5693     }
   5694   } else if (IsInline && OldImportAttr && !IsMicrosoft) {
   5695     // In MinGW, seeing a function declared inline drops the dllimport attribute.
   5696     OldDecl->dropAttr<DLLImportAttr>();
   5697     NewDecl->dropAttr<DLLImportAttr>();
   5698     S.Diag(NewDecl->getLocation(),
   5699            diag::warn_dllimport_dropped_from_inline_function)
   5700         << NewDecl << OldImportAttr;
   5701   }
   5702 }
   5703 
   5704 /// Given that we are within the definition of the given function,
   5705 /// will that definition behave like C99's 'inline', where the
   5706 /// definition is discarded except for optimization purposes?
   5707 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
   5708   // Try to avoid calling GetGVALinkageForFunction.
   5709 
   5710   // All cases of this require the 'inline' keyword.
   5711   if (!FD->isInlined()) return false;
   5712 
   5713   // This is only possible in C++ with the gnu_inline attribute.
   5714   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
   5715     return false;
   5716 
   5717   // Okay, go ahead and call the relatively-more-expensive function.
   5718 
   5719 #ifndef NDEBUG
   5720   // AST quite reasonably asserts that it's working on a function
   5721   // definition.  We don't really have a way to tell it that we're
   5722   // currently defining the function, so just lie to it in +Asserts
   5723   // builds.  This is an awful hack.
   5724   FD->setLazyBody(1);
   5725 #endif
   5726 
   5727   bool isC99Inline =
   5728       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
   5729 
   5730 #ifndef NDEBUG
   5731   FD->setLazyBody(0);
   5732 #endif
   5733 
   5734   return isC99Inline;
   5735 }
   5736 
   5737 /// Determine whether a variable is extern "C" prior to attaching
   5738 /// an initializer. We can't just call isExternC() here, because that
   5739 /// will also compute and cache whether the declaration is externally
   5740 /// visible, which might change when we attach the initializer.
   5741 ///
   5742 /// This can only be used if the declaration is known to not be a
   5743 /// redeclaration of an internal linkage declaration.
   5744 ///
   5745 /// For instance:
   5746 ///
   5747 ///   auto x = []{};
   5748 ///
   5749 /// Attaching the initializer here makes this declaration not externally
   5750 /// visible, because its type has internal linkage.
   5751 ///
   5752 /// FIXME: This is a hack.
   5753 template<typename T>
   5754 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
   5755   if (S.getLangOpts().CPlusPlus) {
   5756     // In C++, the overloadable attribute negates the effects of extern "C".
   5757     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
   5758       return false;
   5759 
   5760     // So do CUDA's host/device attributes.
   5761     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
   5762                                  D->template hasAttr<CUDAHostAttr>()))
   5763       return false;
   5764   }
   5765   return D->isExternC();
   5766 }
   5767 
   5768 static bool shouldConsiderLinkage(const VarDecl *VD) {
   5769   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
   5770   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC))
   5771     return VD->hasExternalStorage();
   5772   if (DC->isFileContext())
   5773     return true;
   5774   if (DC->isRecord())
   5775     return false;
   5776   llvm_unreachable("Unexpected context");
   5777 }
   5778 
   5779 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
   5780   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
   5781   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
   5782       isa<OMPDeclareReductionDecl>(DC))
   5783     return true;
   5784   if (DC->isRecord())
   5785     return false;
   5786   llvm_unreachable("Unexpected context");
   5787 }
   5788 
   5789 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
   5790                           AttributeList::Kind Kind) {
   5791   for (const AttributeList *L = AttrList; L; L = L->getNext())
   5792     if (L->getKind() == Kind)
   5793       return true;
   5794   return false;
   5795 }
   5796 
   5797 static bool hasParsedAttr(Scope *S, const Declarator &PD,
   5798                           AttributeList::Kind Kind) {
   5799   // Check decl attributes on the DeclSpec.
   5800   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
   5801     return true;
   5802 
   5803   // Walk the declarator structure, checking decl attributes that were in a type
   5804   // position to the decl itself.
   5805   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
   5806     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
   5807       return true;
   5808   }
   5809 
   5810   // Finally, check attributes on the decl itself.
   5811   return hasParsedAttr(S, PD.getAttributes(), Kind);
   5812 }
   5813 
   5814 /// Adjust the \c DeclContext for a function or variable that might be a
   5815 /// function-local external declaration.
   5816 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
   5817   if (!DC->isFunctionOrMethod())
   5818     return false;
   5819 
   5820   // If this is a local extern function or variable declared within a function
   5821   // template, don't add it into the enclosing namespace scope until it is
   5822   // instantiated; it might have a dependent type right now.
   5823   if (DC->isDependentContext())
   5824     return true;
   5825 
   5826   // C++11 [basic.link]p7:
   5827   //   When a block scope declaration of an entity with linkage is not found to
   5828   //   refer to some other declaration, then that entity is a member of the
   5829   //   innermost enclosing namespace.
   5830   //
   5831   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
   5832   // semantically-enclosing namespace, not a lexically-enclosing one.
   5833   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
   5834     DC = DC->getParent();
   5835   return true;
   5836 }
   5837 
   5838 /// \brief Returns true if given declaration has external C language linkage.
   5839 static bool isDeclExternC(const Decl *D) {
   5840   if (const auto *FD = dyn_cast<FunctionDecl>(D))
   5841     return FD->isExternC();
   5842   if (const auto *VD = dyn_cast<VarDecl>(D))
   5843     return VD->isExternC();
   5844 
   5845   llvm_unreachable("Unknown type of decl!");
   5846 }
   5847 
   5848 NamedDecl *
   5849 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   5850                               TypeSourceInfo *TInfo, LookupResult &Previous,
   5851                               MultiTemplateParamsArg TemplateParamLists,
   5852                               bool &AddToScope) {
   5853   QualType R = TInfo->getType();
   5854   DeclarationName Name = GetNameForDeclarator(D).getName();
   5855 
   5856   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
   5857   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
   5858   // argument.
   5859   if (getLangOpts().OpenCL && (R->isImageType() || R->isPipeType())) {
   5860     Diag(D.getIdentifierLoc(),
   5861          diag::err_opencl_type_can_only_be_used_as_function_parameter)
   5862         << R;
   5863     D.setInvalidType();
   5864     return nullptr;
   5865   }
   5866 
   5867   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
   5868   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
   5869 
   5870   // dllimport globals without explicit storage class are treated as extern. We
   5871   // have to change the storage class this early to get the right DeclContext.
   5872   if (SC == SC_None && !DC->isRecord() &&
   5873       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
   5874       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
   5875     SC = SC_Extern;
   5876 
   5877   DeclContext *OriginalDC = DC;
   5878   bool IsLocalExternDecl = SC == SC_Extern &&
   5879                            adjustContextForLocalExternDecl(DC);
   5880 
   5881   if (getLangOpts().OpenCL) {
   5882     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
   5883     QualType NR = R;
   5884     while (NR->isPointerType()) {
   5885       if (NR->isFunctionPointerType()) {
   5886         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
   5887         D.setInvalidType();
   5888         break;
   5889       }
   5890       NR = NR->getPointeeType();
   5891     }
   5892 
   5893     if (!getOpenCLOptions().cl_khr_fp16) {
   5894       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
   5895       // half array type (unless the cl_khr_fp16 extension is enabled).
   5896       if (Context.getBaseElementType(R)->isHalfType()) {
   5897         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
   5898         D.setInvalidType();
   5899       }
   5900     }
   5901   }
   5902 
   5903   if (SCSpec == DeclSpec::SCS_mutable) {
   5904     // mutable can only appear on non-static class members, so it's always
   5905     // an error here
   5906     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
   5907     D.setInvalidType();
   5908     SC = SC_None;
   5909   }
   5910 
   5911   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
   5912       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
   5913                               D.getDeclSpec().getStorageClassSpecLoc())) {
   5914     // In C++11, the 'register' storage class specifier is deprecated.
   5915     // Suppress the warning in system macros, it's used in macros in some
   5916     // popular C system headers, such as in glibc's htonl() macro.
   5917     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5918          getLangOpts().CPlusPlus1z ? diag::ext_register_storage_class
   5919                                    : diag::warn_deprecated_register)
   5920       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5921   }
   5922 
   5923   IdentifierInfo *II = Name.getAsIdentifierInfo();
   5924   if (!II) {
   5925     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
   5926       << Name;
   5927     return nullptr;
   5928   }
   5929 
   5930   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   5931 
   5932   if (!DC->isRecord() && S->getFnParent() == nullptr) {
   5933     // C99 6.9p2: The storage-class specifiers auto and register shall not
   5934     // appear in the declaration specifiers in an external declaration.
   5935     // Global Register+Asm is a GNU extension we support.
   5936     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
   5937       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
   5938       D.setInvalidType();
   5939     }
   5940   }
   5941 
   5942   if (getLangOpts().OpenCL) {
   5943     // OpenCL v1.2 s6.9.b p4:
   5944     // The sampler type cannot be used with the __local and __global address
   5945     // space qualifiers.
   5946     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
   5947       R.getAddressSpace() == LangAS::opencl_global)) {
   5948       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
   5949     }
   5950 
   5951     // OpenCL 1.2 spec, p6.9 r:
   5952     // The event type cannot be used to declare a program scope variable.
   5953     // The event type cannot be used with the __local, __constant and __global
   5954     // address space qualifiers.
   5955     if (R->isEventT()) {
   5956       if (S->getParent() == nullptr) {
   5957         Diag(D.getLocStart(), diag::err_event_t_global_var);
   5958         D.setInvalidType();
   5959       }
   5960 
   5961       if (R.getAddressSpace()) {
   5962         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
   5963         D.setInvalidType();
   5964       }
   5965     }
   5966   }
   5967 
   5968   bool IsExplicitSpecialization = false;
   5969   bool IsVariableTemplateSpecialization = false;
   5970   bool IsPartialSpecialization = false;
   5971   bool IsVariableTemplate = false;
   5972   VarDecl *NewVD = nullptr;
   5973   VarTemplateDecl *NewTemplate = nullptr;
   5974   TemplateParameterList *TemplateParams = nullptr;
   5975   if (!getLangOpts().CPlusPlus) {
   5976     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   5977                             D.getIdentifierLoc(), II,
   5978                             R, TInfo, SC);
   5979 
   5980     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
   5981       ParsingInitForAutoVars.insert(NewVD);
   5982 
   5983     if (D.isInvalidType())
   5984       NewVD->setInvalidDecl();
   5985   } else {
   5986     bool Invalid = false;
   5987 
   5988     if (DC->isRecord() && !CurContext->isRecord()) {
   5989       // This is an out-of-line definition of a static data member.
   5990       switch (SC) {
   5991       case SC_None:
   5992         break;
   5993       case SC_Static:
   5994         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   5995              diag::err_static_out_of_line)
   5996           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   5997         break;
   5998       case SC_Auto:
   5999       case SC_Register:
   6000       case SC_Extern:
   6001         // [dcl.stc] p2: The auto or register specifiers shall be applied only
   6002         // to names of variables declared in a block or to function parameters.
   6003         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
   6004         // of class members
   6005 
   6006         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6007              diag::err_storage_class_for_static_member)
   6008           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   6009         break;
   6010       case SC_PrivateExtern:
   6011         llvm_unreachable("C storage class in c++!");
   6012       }
   6013     }
   6014 
   6015     if (SC == SC_Static && CurContext->isRecord()) {
   6016       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
   6017         if (RD->isLocalClass())
   6018           Diag(D.getIdentifierLoc(),
   6019                diag::err_static_data_member_not_allowed_in_local_class)
   6020             << Name << RD->getDeclName();
   6021 
   6022         // C++98 [class.union]p1: If a union contains a static data member,
   6023         // the program is ill-formed. C++11 drops this restriction.
   6024         if (RD->isUnion())
   6025           Diag(D.getIdentifierLoc(),
   6026                getLangOpts().CPlusPlus11
   6027                  ? diag::warn_cxx98_compat_static_data_member_in_union
   6028                  : diag::ext_static_data_member_in_union) << Name;
   6029         // We conservatively disallow static data members in anonymous structs.
   6030         else if (!RD->getDeclName())
   6031           Diag(D.getIdentifierLoc(),
   6032                diag::err_static_data_member_not_allowed_in_anon_struct)
   6033             << Name << RD->isUnion();
   6034       }
   6035     }
   6036 
   6037     // Match up the template parameter lists with the scope specifier, then
   6038     // determine whether we have a template or a template specialization.
   6039     TemplateParams = MatchTemplateParametersToScopeSpecifier(
   6040         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   6041         D.getCXXScopeSpec(),
   6042         D.getName().getKind() == UnqualifiedId::IK_TemplateId
   6043             ? D.getName().TemplateId
   6044             : nullptr,
   6045         TemplateParamLists,
   6046         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
   6047 
   6048     if (TemplateParams) {
   6049       if (!TemplateParams->size() &&
   6050           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   6051         // There is an extraneous 'template<>' for this variable. Complain
   6052         // about it, but allow the declaration of the variable.
   6053         Diag(TemplateParams->getTemplateLoc(),
   6054              diag::err_template_variable_noparams)
   6055           << II
   6056           << SourceRange(TemplateParams->getTemplateLoc(),
   6057                          TemplateParams->getRAngleLoc());
   6058         TemplateParams = nullptr;
   6059       } else {
   6060         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   6061           // This is an explicit specialization or a partial specialization.
   6062           // FIXME: Check that we can declare a specialization here.
   6063           IsVariableTemplateSpecialization = true;
   6064           IsPartialSpecialization = TemplateParams->size() > 0;
   6065         } else { // if (TemplateParams->size() > 0)
   6066           // This is a template declaration.
   6067           IsVariableTemplate = true;
   6068 
   6069           // Check that we can declare a template here.
   6070           if (CheckTemplateDeclScope(S, TemplateParams))
   6071             return nullptr;
   6072 
   6073           // Only C++1y supports variable templates (N3651).
   6074           Diag(D.getIdentifierLoc(),
   6075                getLangOpts().CPlusPlus14
   6076                    ? diag::warn_cxx11_compat_variable_template
   6077                    : diag::ext_variable_template);
   6078         }
   6079       }
   6080     } else {
   6081       assert(
   6082           (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
   6083           "should have a 'template<>' for this decl");
   6084     }
   6085 
   6086     if (IsVariableTemplateSpecialization) {
   6087       SourceLocation TemplateKWLoc =
   6088           TemplateParamLists.size() > 0
   6089               ? TemplateParamLists[0]->getTemplateLoc()
   6090               : SourceLocation();
   6091       DeclResult Res = ActOnVarTemplateSpecialization(
   6092           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
   6093           IsPartialSpecialization);
   6094       if (Res.isInvalid())
   6095         return nullptr;
   6096       NewVD = cast<VarDecl>(Res.get());
   6097       AddToScope = false;
   6098     } else
   6099       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
   6100                               D.getIdentifierLoc(), II, R, TInfo, SC);
   6101 
   6102     // If this is supposed to be a variable template, create it as such.
   6103     if (IsVariableTemplate) {
   6104       NewTemplate =
   6105           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
   6106                                   TemplateParams, NewVD);
   6107       NewVD->setDescribedVarTemplate(NewTemplate);
   6108     }
   6109 
   6110     // If this decl has an auto type in need of deduction, make a note of the
   6111     // Decl so we can diagnose uses of it in its own initializer.
   6112     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
   6113       ParsingInitForAutoVars.insert(NewVD);
   6114 
   6115     if (D.isInvalidType() || Invalid) {
   6116       NewVD->setInvalidDecl();
   6117       if (NewTemplate)
   6118         NewTemplate->setInvalidDecl();
   6119     }
   6120 
   6121     SetNestedNameSpecifier(NewVD, D);
   6122 
   6123     // If we have any template parameter lists that don't directly belong to
   6124     // the variable (matching the scope specifier), store them.
   6125     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
   6126     if (TemplateParamLists.size() > VDTemplateParamLists)
   6127       NewVD->setTemplateParameterListsInfo(
   6128           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
   6129 
   6130     if (D.getDeclSpec().isConstexprSpecified()) {
   6131       NewVD->setConstexpr(true);
   6132       // C++1z [dcl.spec.constexpr]p1:
   6133       //   A static data member declared with the constexpr specifier is
   6134       //   implicitly an inline variable.
   6135       if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus1z)
   6136         NewVD->setImplicitlyInline();
   6137     }
   6138 
   6139     if (D.getDeclSpec().isConceptSpecified()) {
   6140       if (VarTemplateDecl *VTD = NewVD->getDescribedVarTemplate())
   6141         VTD->setConcept();
   6142 
   6143       // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
   6144       // be declared with the thread_local, inline, friend, or constexpr
   6145       // specifiers, [...]
   6146       if (D.getDeclSpec().getThreadStorageClassSpec() == TSCS_thread_local) {
   6147         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   6148              diag::err_concept_decl_invalid_specifiers)
   6149             << 0 << 0;
   6150         NewVD->setInvalidDecl(true);
   6151       }
   6152 
   6153       if (D.getDeclSpec().isConstexprSpecified()) {
   6154         Diag(D.getDeclSpec().getConstexprSpecLoc(),
   6155              diag::err_concept_decl_invalid_specifiers)
   6156             << 0 << 3;
   6157         NewVD->setInvalidDecl(true);
   6158       }
   6159 
   6160       // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
   6161       // applied only to the definition of a function template or variable
   6162       // template, declared in namespace scope.
   6163       if (IsVariableTemplateSpecialization) {
   6164         Diag(D.getDeclSpec().getConceptSpecLoc(),
   6165              diag::err_concept_specified_specialization)
   6166             << (IsPartialSpecialization ? 2 : 1);
   6167       }
   6168 
   6169       // C++ Concepts TS [dcl.spec.concept]p6: A variable concept has the
   6170       // following restrictions:
   6171       // - The declared type shall have the type bool.
   6172       if (!Context.hasSameType(NewVD->getType(), Context.BoolTy) &&
   6173           !NewVD->isInvalidDecl()) {
   6174         Diag(D.getIdentifierLoc(), diag::err_variable_concept_bool_decl);
   6175         NewVD->setInvalidDecl(true);
   6176       }
   6177     }
   6178   }
   6179 
   6180   if (D.getDeclSpec().isInlineSpecified()) {
   6181     if (CurContext->isFunctionOrMethod()) {
   6182       // 'inline' is not allowed on block scope variable declaration.
   6183       Diag(D.getDeclSpec().getInlineSpecLoc(),
   6184            diag::err_inline_declaration_block_scope) << Name
   6185         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   6186     } else {
   6187       Diag(D.getDeclSpec().getInlineSpecLoc(),
   6188            getLangOpts().CPlusPlus1z ? diag::warn_cxx14_compat_inline_variable
   6189                                      : diag::ext_inline_variable);
   6190       NewVD->setInlineSpecified();
   6191     }
   6192   }
   6193 
   6194   // Set the lexical context. If the declarator has a C++ scope specifier, the
   6195   // lexical context will be different from the semantic context.
   6196   NewVD->setLexicalDeclContext(CurContext);
   6197   if (NewTemplate)
   6198     NewTemplate->setLexicalDeclContext(CurContext);
   6199 
   6200   if (IsLocalExternDecl)
   6201     NewVD->setLocalExternDecl();
   6202 
   6203   bool EmitTLSUnsupportedError = false;
   6204   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
   6205     // C++11 [dcl.stc]p4:
   6206     //   When thread_local is applied to a variable of block scope the
   6207     //   storage-class-specifier static is implied if it does not appear
   6208     //   explicitly.
   6209     // Core issue: 'static' is not implied if the variable is declared
   6210     //   'extern'.
   6211     if (NewVD->hasLocalStorage() &&
   6212         (SCSpec != DeclSpec::SCS_unspecified ||
   6213          TSCS != DeclSpec::TSCS_thread_local ||
   6214          !DC->isFunctionOrMethod()))
   6215       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   6216            diag::err_thread_non_global)
   6217         << DeclSpec::getSpecifierName(TSCS);
   6218     else if (!Context.getTargetInfo().isTLSSupported()) {
   6219       if (getLangOpts().CUDA) {
   6220         // Postpone error emission until we've collected attributes required to
   6221         // figure out whether it's a host or device variable and whether the
   6222         // error should be ignored.
   6223         EmitTLSUnsupportedError = true;
   6224         // We still need to mark the variable as TLS so it shows up in AST with
   6225         // proper storage class for other tools to use even if we're not going
   6226         // to emit any code for it.
   6227         NewVD->setTSCSpec(TSCS);
   6228       } else
   6229         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   6230              diag::err_thread_unsupported);
   6231     } else
   6232       NewVD->setTSCSpec(TSCS);
   6233   }
   6234 
   6235   // C99 6.7.4p3
   6236   //   An inline definition of a function with external linkage shall
   6237   //   not contain a definition of a modifiable object with static or
   6238   //   thread storage duration...
   6239   // We only apply this when the function is required to be defined
   6240   // elsewhere, i.e. when the function is not 'extern inline'.  Note
   6241   // that a local variable with thread storage duration still has to
   6242   // be marked 'static'.  Also note that it's possible to get these
   6243   // semantics in C++ using __attribute__((gnu_inline)).
   6244   if (SC == SC_Static && S->getFnParent() != nullptr &&
   6245       !NewVD->getType().isConstQualified()) {
   6246     FunctionDecl *CurFD = getCurFunctionDecl();
   6247     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
   6248       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   6249            diag::warn_static_local_in_extern_inline);
   6250       MaybeSuggestAddingStaticToDecl(CurFD);
   6251     }
   6252   }
   6253 
   6254   if (D.getDeclSpec().isModulePrivateSpecified()) {
   6255     if (IsVariableTemplateSpecialization)
   6256       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   6257           << (IsPartialSpecialization ? 1 : 0)
   6258           << FixItHint::CreateRemoval(
   6259                  D.getDeclSpec().getModulePrivateSpecLoc());
   6260     else if (IsExplicitSpecialization)
   6261       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
   6262         << 2
   6263         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   6264     else if (NewVD->hasLocalStorage())
   6265       Diag(NewVD->getLocation(), diag::err_module_private_local)
   6266         << 0 << NewVD->getDeclName()
   6267         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   6268         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   6269     else {
   6270       NewVD->setModulePrivate();
   6271       if (NewTemplate)
   6272         NewTemplate->setModulePrivate();
   6273     }
   6274   }
   6275 
   6276   // Handle attributes prior to checking for duplicates in MergeVarDecl
   6277   ProcessDeclAttributes(S, NewVD, D);
   6278 
   6279   if (getLangOpts().CUDA) {
   6280     if (EmitTLSUnsupportedError && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD))
   6281       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   6282            diag::err_thread_unsupported);
   6283     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
   6284     // storage [duration]."
   6285     if (SC == SC_None && S->getFnParent() != nullptr &&
   6286         (NewVD->hasAttr<CUDASharedAttr>() ||
   6287          NewVD->hasAttr<CUDAConstantAttr>())) {
   6288       NewVD->setStorageClass(SC_Static);
   6289     }
   6290   }
   6291 
   6292   // Ensure that dllimport globals without explicit storage class are treated as
   6293   // extern. The storage class is set above using parsed attributes. Now we can
   6294   // check the VarDecl itself.
   6295   assert(!NewVD->hasAttr<DLLImportAttr>() ||
   6296          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
   6297          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
   6298 
   6299   // In auto-retain/release, infer strong retension for variables of
   6300   // retainable type.
   6301   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
   6302     NewVD->setInvalidDecl();
   6303 
   6304   // Handle GNU asm-label extension (encoded as an attribute).
   6305   if (Expr *E = (Expr*)D.getAsmLabel()) {
   6306     // The parser guarantees this is a string.
   6307     StringLiteral *SE = cast<StringLiteral>(E);
   6308     StringRef Label = SE->getString();
   6309     if (S->getFnParent() != nullptr) {
   6310       switch (SC) {
   6311       case SC_None:
   6312       case SC_Auto:
   6313         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
   6314         break;
   6315       case SC_Register:
   6316         // Local Named register
   6317         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
   6318             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
   6319           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   6320         break;
   6321       case SC_Static:
   6322       case SC_Extern:
   6323       case SC_PrivateExtern:
   6324         break;
   6325       }
   6326     } else if (SC == SC_Register) {
   6327       // Global Named register
   6328       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
   6329         const auto &TI = Context.getTargetInfo();
   6330         bool HasSizeMismatch;
   6331 
   6332         if (!TI.isValidGCCRegisterName(Label))
   6333           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
   6334         else if (!TI.validateGlobalRegisterVariable(Label,
   6335                                                     Context.getTypeSize(R),
   6336                                                     HasSizeMismatch))
   6337           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
   6338         else if (HasSizeMismatch)
   6339           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
   6340       }
   6341 
   6342       if (!R->isIntegralType(Context) && !R->isPointerType()) {
   6343         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
   6344         NewVD->setInvalidDecl(true);
   6345       }
   6346     }
   6347 
   6348     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
   6349                                                 Context, Label, 0));
   6350   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   6351     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   6352       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
   6353     if (I != ExtnameUndeclaredIdentifiers.end()) {
   6354       if (isDeclExternC(NewVD)) {
   6355         NewVD->addAttr(I->second);
   6356         ExtnameUndeclaredIdentifiers.erase(I);
   6357       } else
   6358         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
   6359             << /*Variable*/1 << NewVD;
   6360     }
   6361   }
   6362 
   6363   // Diagnose shadowed variables before filtering for scope.
   6364   if (D.getCXXScopeSpec().isEmpty())
   6365     CheckShadow(S, NewVD, Previous);
   6366 
   6367   // Don't consider existing declarations that are in a different
   6368   // scope and are out-of-semantic-context declarations (if the new
   6369   // declaration has linkage).
   6370   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
   6371                        D.getCXXScopeSpec().isNotEmpty() ||
   6372                        IsExplicitSpecialization ||
   6373                        IsVariableTemplateSpecialization);
   6374 
   6375   // Check whether the previous declaration is in the same block scope. This
   6376   // affects whether we merge types with it, per C++11 [dcl.array]p3.
   6377   if (getLangOpts().CPlusPlus &&
   6378       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
   6379     NewVD->setPreviousDeclInSameBlockScope(
   6380         Previous.isSingleResult() && !Previous.isShadowed() &&
   6381         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
   6382 
   6383   if (!getLangOpts().CPlusPlus) {
   6384     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   6385   } else {
   6386     // If this is an explicit specialization of a static data member, check it.
   6387     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
   6388         CheckMemberSpecialization(NewVD, Previous))
   6389       NewVD->setInvalidDecl();
   6390 
   6391     // Merge the decl with the existing one if appropriate.
   6392     if (!Previous.empty()) {
   6393       if (Previous.isSingleResult() &&
   6394           isa<FieldDecl>(Previous.getFoundDecl()) &&
   6395           D.getCXXScopeSpec().isSet()) {
   6396         // The user tried to define a non-static data member
   6397         // out-of-line (C++ [dcl.meaning]p1).
   6398         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
   6399           << D.getCXXScopeSpec().getRange();
   6400         Previous.clear();
   6401         NewVD->setInvalidDecl();
   6402       }
   6403     } else if (D.getCXXScopeSpec().isSet()) {
   6404       // No previous declaration in the qualifying scope.
   6405       Diag(D.getIdentifierLoc(), diag::err_no_member)
   6406         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
   6407         << D.getCXXScopeSpec().getRange();
   6408       NewVD->setInvalidDecl();
   6409     }
   6410 
   6411     if (!IsVariableTemplateSpecialization)
   6412       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
   6413 
   6414     // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare [...]
   6415     // an explicit specialization (14.8.3) or a partial specialization of a
   6416     // concept definition.
   6417     if (IsVariableTemplateSpecialization &&
   6418         !D.getDeclSpec().isConceptSpecified() && !Previous.empty() &&
   6419         Previous.isSingleResult()) {
   6420       NamedDecl *PreviousDecl = Previous.getFoundDecl();
   6421       if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(PreviousDecl)) {
   6422         if (VarTmpl->isConcept()) {
   6423           Diag(NewVD->getLocation(), diag::err_concept_specialized)
   6424               << 1                            /*variable*/
   6425               << (IsPartialSpecialization ? 2 /*partially specialized*/
   6426                                           : 1 /*explicitly specialized*/);
   6427           Diag(VarTmpl->getLocation(), diag::note_previous_declaration);
   6428           NewVD->setInvalidDecl();
   6429         }
   6430       }
   6431     }
   6432 
   6433     if (NewTemplate) {
   6434       VarTemplateDecl *PrevVarTemplate =
   6435           NewVD->getPreviousDecl()
   6436               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
   6437               : nullptr;
   6438 
   6439       // Check the template parameter list of this declaration, possibly
   6440       // merging in the template parameter list from the previous variable
   6441       // template declaration.
   6442       if (CheckTemplateParameterList(
   6443               TemplateParams,
   6444               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
   6445                               : nullptr,
   6446               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
   6447                DC->isDependentContext())
   6448                   ? TPC_ClassTemplateMember
   6449                   : TPC_VarTemplate))
   6450         NewVD->setInvalidDecl();
   6451 
   6452       // If we are providing an explicit specialization of a static variable
   6453       // template, make a note of that.
   6454       if (PrevVarTemplate &&
   6455           PrevVarTemplate->getInstantiatedFromMemberTemplate())
   6456         PrevVarTemplate->setMemberSpecialization();
   6457     }
   6458   }
   6459 
   6460   ProcessPragmaWeak(S, NewVD);
   6461 
   6462   // If this is the first declaration of an extern C variable, update
   6463   // the map of such variables.
   6464   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
   6465       isIncompleteDeclExternC(*this, NewVD))
   6466     RegisterLocallyScopedExternCDecl(NewVD, S);
   6467 
   6468   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
   6469     Decl *ManglingContextDecl;
   6470     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
   6471             NewVD->getDeclContext(), ManglingContextDecl)) {
   6472       Context.setManglingNumber(
   6473           NewVD, MCtx->getManglingNumber(
   6474                      NewVD, getMSManglingNumber(getLangOpts(), S)));
   6475       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
   6476     }
   6477   }
   6478 
   6479   // Special handling of variable named 'main'.
   6480   if (Name.isIdentifier() && Name.getAsIdentifierInfo()->isStr("main") &&
   6481       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   6482       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
   6483 
   6484     // C++ [basic.start.main]p3
   6485     // A program that declares a variable main at global scope is ill-formed.
   6486     if (getLangOpts().CPlusPlus)
   6487       Diag(D.getLocStart(), diag::err_main_global_variable);
   6488 
   6489     // In C, and external-linkage variable named main results in undefined
   6490     // behavior.
   6491     else if (NewVD->hasExternalFormalLinkage())
   6492       Diag(D.getLocStart(), diag::warn_main_redefined);
   6493   }
   6494 
   6495   if (D.isRedeclaration() && !Previous.empty()) {
   6496     checkDLLAttributeRedeclaration(
   6497         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
   6498         IsExplicitSpecialization, D.isFunctionDefinition());
   6499   }
   6500 
   6501   if (NewTemplate) {
   6502     if (NewVD->isInvalidDecl())
   6503       NewTemplate->setInvalidDecl();
   6504     ActOnDocumentableDecl(NewTemplate);
   6505     return NewTemplate;
   6506   }
   6507 
   6508   return NewVD;
   6509 }
   6510 
   6511 /// Enum describing the %select options in diag::warn_decl_shadow.
   6512 enum ShadowedDeclKind { SDK_Local, SDK_Global, SDK_StaticMember, SDK_Field };
   6513 
   6514 /// Determine what kind of declaration we're shadowing.
   6515 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
   6516                                                 const DeclContext *OldDC) {
   6517   if (isa<RecordDecl>(OldDC))
   6518     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
   6519   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
   6520 }
   6521 
   6522 /// \brief Diagnose variable or built-in function shadowing.  Implements
   6523 /// -Wshadow.
   6524 ///
   6525 /// This method is called whenever a VarDecl is added to a "useful"
   6526 /// scope.
   6527 ///
   6528 /// \param S the scope in which the shadowing name is being declared
   6529 /// \param R the lookup of the name
   6530 ///
   6531 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
   6532   // Return if warning is ignored.
   6533   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
   6534     return;
   6535 
   6536   // Don't diagnose declarations at file scope.
   6537   if (D->hasGlobalStorage())
   6538     return;
   6539 
   6540   DeclContext *NewDC = D->getDeclContext();
   6541 
   6542   // Only diagnose if we're shadowing an unambiguous field or variable.
   6543   if (R.getResultKind() != LookupResult::Found)
   6544     return;
   6545 
   6546   NamedDecl* ShadowedDecl = R.getFoundDecl();
   6547   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
   6548     return;
   6549 
   6550   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
   6551     // Fields are not shadowed by variables in C++ static methods.
   6552     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
   6553       if (MD->isStatic())
   6554         return;
   6555 
   6556     // Fields shadowed by constructor parameters are a special case. Usually
   6557     // the constructor initializes the field with the parameter.
   6558     if (isa<CXXConstructorDecl>(NewDC) && isa<ParmVarDecl>(D)) {
   6559       // Remember that this was shadowed so we can either warn about its
   6560       // modification or its existence depending on warning settings.
   6561       D = D->getCanonicalDecl();
   6562       ShadowingDecls.insert({D, FD});
   6563       return;
   6564     }
   6565   }
   6566 
   6567   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
   6568     if (shadowedVar->isExternC()) {
   6569       // For shadowing external vars, make sure that we point to the global
   6570       // declaration, not a locally scoped extern declaration.
   6571       for (auto I : shadowedVar->redecls())
   6572         if (I->isFileVarDecl()) {
   6573           ShadowedDecl = I;
   6574           break;
   6575         }
   6576     }
   6577 
   6578   DeclContext *OldDC = ShadowedDecl->getDeclContext();
   6579 
   6580   // Only warn about certain kinds of shadowing for class members.
   6581   if (NewDC && NewDC->isRecord()) {
   6582     // In particular, don't warn about shadowing non-class members.
   6583     if (!OldDC->isRecord())
   6584       return;
   6585 
   6586     // TODO: should we warn about static data members shadowing
   6587     // static data members from base classes?
   6588 
   6589     // TODO: don't diagnose for inaccessible shadowed members.
   6590     // This is hard to do perfectly because we might friend the
   6591     // shadowing context, but that's just a false negative.
   6592   }
   6593 
   6594 
   6595   DeclarationName Name = R.getLookupName();
   6596 
   6597   // Emit warning and note.
   6598   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
   6599     return;
   6600   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
   6601   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
   6602   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   6603 }
   6604 
   6605 /// \brief Check -Wshadow without the advantage of a previous lookup.
   6606 void Sema::CheckShadow(Scope *S, VarDecl *D) {
   6607   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
   6608     return;
   6609 
   6610   LookupResult R(*this, D->getDeclName(), D->getLocation(),
   6611                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
   6612   LookupName(R, S);
   6613   CheckShadow(S, D, R);
   6614 }
   6615 
   6616 /// Check if 'E', which is an expression that is about to be modified, refers
   6617 /// to a constructor parameter that shadows a field.
   6618 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
   6619   // Quickly ignore expressions that can't be shadowing ctor parameters.
   6620   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
   6621     return;
   6622   E = E->IgnoreParenImpCasts();
   6623   auto *DRE = dyn_cast<DeclRefExpr>(E);
   6624   if (!DRE)
   6625     return;
   6626   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
   6627   auto I = ShadowingDecls.find(D);
   6628   if (I == ShadowingDecls.end())
   6629     return;
   6630   const NamedDecl *ShadowedDecl = I->second;
   6631   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
   6632   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
   6633   Diag(D->getLocation(), diag::note_var_declared_here) << D;
   6634   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
   6635 
   6636   // Avoid issuing multiple warnings about the same decl.
   6637   ShadowingDecls.erase(I);
   6638 }
   6639 
   6640 /// Check for conflict between this global or extern "C" declaration and
   6641 /// previous global or extern "C" declarations. This is only used in C++.
   6642 template<typename T>
   6643 static bool checkGlobalOrExternCConflict(
   6644     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
   6645   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
   6646   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
   6647 
   6648   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
   6649     // The common case: this global doesn't conflict with any extern "C"
   6650     // declaration.
   6651     return false;
   6652   }
   6653 
   6654   if (Prev) {
   6655     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
   6656       // Both the old and new declarations have C language linkage. This is a
   6657       // redeclaration.
   6658       Previous.clear();
   6659       Previous.addDecl(Prev);
   6660       return true;
   6661     }
   6662 
   6663     // This is a global, non-extern "C" declaration, and there is a previous
   6664     // non-global extern "C" declaration. Diagnose if this is a variable
   6665     // declaration.
   6666     if (!isa<VarDecl>(ND))
   6667       return false;
   6668   } else {
   6669     // The declaration is extern "C". Check for any declaration in the
   6670     // translation unit which might conflict.
   6671     if (IsGlobal) {
   6672       // We have already performed the lookup into the translation unit.
   6673       IsGlobal = false;
   6674       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   6675            I != E; ++I) {
   6676         if (isa<VarDecl>(*I)) {
   6677           Prev = *I;
   6678           break;
   6679         }
   6680       }
   6681     } else {
   6682       DeclContext::lookup_result R =
   6683           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
   6684       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
   6685            I != E; ++I) {
   6686         if (isa<VarDecl>(*I)) {
   6687           Prev = *I;
   6688           break;
   6689         }
   6690         // FIXME: If we have any other entity with this name in global scope,
   6691         // the declaration is ill-formed, but that is a defect: it breaks the
   6692         // 'stat' hack, for instance. Only variables can have mangled name
   6693         // clashes with extern "C" declarations, so only they deserve a
   6694         // diagnostic.
   6695       }
   6696     }
   6697 
   6698     if (!Prev)
   6699       return false;
   6700   }
   6701 
   6702   // Use the first declaration's location to ensure we point at something which
   6703   // is lexically inside an extern "C" linkage-spec.
   6704   assert(Prev && "should have found a previous declaration to diagnose");
   6705   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
   6706     Prev = FD->getFirstDecl();
   6707   else
   6708     Prev = cast<VarDecl>(Prev)->getFirstDecl();
   6709 
   6710   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
   6711     << IsGlobal << ND;
   6712   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
   6713     << IsGlobal;
   6714   return false;
   6715 }
   6716 
   6717 /// Apply special rules for handling extern "C" declarations. Returns \c true
   6718 /// if we have found that this is a redeclaration of some prior entity.
   6719 ///
   6720 /// Per C++ [dcl.link]p6:
   6721 ///   Two declarations [for a function or variable] with C language linkage
   6722 ///   with the same name that appear in different scopes refer to the same
   6723 ///   [entity]. An entity with C language linkage shall not be declared with
   6724 ///   the same name as an entity in global scope.
   6725 template<typename T>
   6726 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
   6727                                                   LookupResult &Previous) {
   6728   if (!S.getLangOpts().CPlusPlus) {
   6729     // In C, when declaring a global variable, look for a corresponding 'extern'
   6730     // variable declared in function scope. We don't need this in C++, because
   6731     // we find local extern decls in the surrounding file-scope DeclContext.
   6732     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   6733       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
   6734         Previous.clear();
   6735         Previous.addDecl(Prev);
   6736         return true;
   6737       }
   6738     }
   6739     return false;
   6740   }
   6741 
   6742   // A declaration in the translation unit can conflict with an extern "C"
   6743   // declaration.
   6744   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
   6745     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
   6746 
   6747   // An extern "C" declaration can conflict with a declaration in the
   6748   // translation unit or can be a redeclaration of an extern "C" declaration
   6749   // in another scope.
   6750   if (isIncompleteDeclExternC(S,ND))
   6751     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
   6752 
   6753   // Neither global nor extern "C": nothing to do.
   6754   return false;
   6755 }
   6756 
   6757 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
   6758   // If the decl is already known invalid, don't check it.
   6759   if (NewVD->isInvalidDecl())
   6760     return;
   6761 
   6762   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
   6763   QualType T = TInfo->getType();
   6764 
   6765   // Defer checking an 'auto' type until its initializer is attached.
   6766   if (T->isUndeducedType())
   6767     return;
   6768 
   6769   if (NewVD->hasAttrs())
   6770     CheckAlignasUnderalignment(NewVD);
   6771 
   6772   if (T->isObjCObjectType()) {
   6773     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
   6774       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
   6775     T = Context.getObjCObjectPointerType(T);
   6776     NewVD->setType(T);
   6777   }
   6778 
   6779   // Emit an error if an address space was applied to decl with local storage.
   6780   // This includes arrays of objects with address space qualifiers, but not
   6781   // automatic variables that point to other address spaces.
   6782   // ISO/IEC TR 18037 S5.1.2
   6783   if (!getLangOpts().OpenCL
   6784       && NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
   6785     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
   6786     NewVD->setInvalidDecl();
   6787     return;
   6788   }
   6789 
   6790   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
   6791   // scope.
   6792   if (getLangOpts().OpenCLVersion == 120 &&
   6793       !getOpenCLOptions().cl_clang_storage_class_specifiers &&
   6794       NewVD->isStaticLocal()) {
   6795     Diag(NewVD->getLocation(), diag::err_static_function_scope);
   6796     NewVD->setInvalidDecl();
   6797     return;
   6798   }
   6799 
   6800   if (getLangOpts().OpenCL) {
   6801     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
   6802     if (NewVD->hasAttr<BlocksAttr>()) {
   6803       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
   6804       return;
   6805     }
   6806 
   6807     if (T->isBlockPointerType()) {
   6808       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
   6809       // can't use 'extern' storage class.
   6810       if (!T.isConstQualified()) {
   6811         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
   6812             << 0 /*const*/;
   6813         NewVD->setInvalidDecl();
   6814         return;
   6815       }
   6816       if (NewVD->hasExternalStorage()) {
   6817         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
   6818         NewVD->setInvalidDecl();
   6819         return;
   6820       }
   6821       // OpenCL v2.0 s6.12.5 - Blocks with variadic arguments are not supported.
   6822       // TODO: this check is not enough as it doesn't diagnose the typedef
   6823       const BlockPointerType *BlkTy = T->getAs<BlockPointerType>();
   6824       const FunctionProtoType *FTy =
   6825           BlkTy->getPointeeType()->getAs<FunctionProtoType>();
   6826       if (FTy && FTy->isVariadic()) {
   6827         Diag(NewVD->getLocation(), diag::err_opencl_block_proto_variadic)
   6828             << T << NewVD->getSourceRange();
   6829         NewVD->setInvalidDecl();
   6830         return;
   6831       }
   6832     }
   6833     // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
   6834     // __constant address space.
   6835     // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
   6836     // variables inside a function can also be declared in the global
   6837     // address space.
   6838     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
   6839         NewVD->hasExternalStorage()) {
   6840       if (!T->isSamplerT() &&
   6841           !(T.getAddressSpace() == LangAS::opencl_constant ||
   6842             (T.getAddressSpace() == LangAS::opencl_global &&
   6843              getLangOpts().OpenCLVersion == 200))) {
   6844         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
   6845         if (getLangOpts().OpenCLVersion == 200)
   6846           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
   6847               << Scope << "global or constant";
   6848         else
   6849           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
   6850               << Scope << "constant";
   6851         NewVD->setInvalidDecl();
   6852         return;
   6853       }
   6854     } else {
   6855       if (T.getAddressSpace() == LangAS::opencl_global) {
   6856         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
   6857             << 1 /*is any function*/ << "global";
   6858         NewVD->setInvalidDecl();
   6859         return;
   6860       }
   6861       // OpenCL v1.1 s6.5.2 and s6.5.3 no local or constant variables
   6862       // in functions.
   6863       if (T.getAddressSpace() == LangAS::opencl_constant ||
   6864           T.getAddressSpace() == LangAS::opencl_local) {
   6865         FunctionDecl *FD = getCurFunctionDecl();
   6866         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
   6867           if (T.getAddressSpace() == LangAS::opencl_constant)
   6868             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
   6869                 << 0 /*non-kernel only*/ << "constant";
   6870           else
   6871             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
   6872                 << 0 /*non-kernel only*/ << "local";
   6873           NewVD->setInvalidDecl();
   6874           return;
   6875         }
   6876       }
   6877     }
   6878   }
   6879 
   6880   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
   6881       && !NewVD->hasAttr<BlocksAttr>()) {
   6882     if (getLangOpts().getGC() != LangOptions::NonGC)
   6883       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
   6884     else {
   6885       assert(!getLangOpts().ObjCAutoRefCount);
   6886       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
   6887     }
   6888   }
   6889 
   6890   bool isVM = T->isVariablyModifiedType();
   6891   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
   6892       NewVD->hasAttr<BlocksAttr>())
   6893     getCurFunction()->setHasBranchProtectedScope();
   6894 
   6895   if ((isVM && NewVD->hasLinkage()) ||
   6896       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
   6897     bool SizeIsNegative;
   6898     llvm::APSInt Oversized;
   6899     TypeSourceInfo *FixedTInfo =
   6900       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   6901                                                     SizeIsNegative, Oversized);
   6902     if (!FixedTInfo && T->isVariableArrayType()) {
   6903       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
   6904       // FIXME: This won't give the correct result for
   6905       // int a[10][n];
   6906       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
   6907 
   6908       if (NewVD->isFileVarDecl())
   6909         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
   6910         << SizeRange;
   6911       else if (NewVD->isStaticLocal())
   6912         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
   6913         << SizeRange;
   6914       else
   6915         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
   6916         << SizeRange;
   6917       NewVD->setInvalidDecl();
   6918       return;
   6919     }
   6920 
   6921     if (!FixedTInfo) {
   6922       if (NewVD->isFileVarDecl())
   6923         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
   6924       else
   6925         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
   6926       NewVD->setInvalidDecl();
   6927       return;
   6928     }
   6929 
   6930     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
   6931     NewVD->setType(FixedTInfo->getType());
   6932     NewVD->setTypeSourceInfo(FixedTInfo);
   6933   }
   6934 
   6935   if (T->isVoidType()) {
   6936     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
   6937     //                    of objects and functions.
   6938     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
   6939       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
   6940         << T;
   6941       NewVD->setInvalidDecl();
   6942       return;
   6943     }
   6944   }
   6945 
   6946   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
   6947     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
   6948     NewVD->setInvalidDecl();
   6949     return;
   6950   }
   6951 
   6952   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
   6953     Diag(NewVD->getLocation(), diag::err_block_on_vm);
   6954     NewVD->setInvalidDecl();
   6955     return;
   6956   }
   6957 
   6958   if (NewVD->isConstexpr() && !T->isDependentType() &&
   6959       RequireLiteralType(NewVD->getLocation(), T,
   6960                          diag::err_constexpr_var_non_literal)) {
   6961     NewVD->setInvalidDecl();
   6962     return;
   6963   }
   6964 }
   6965 
   6966 /// \brief Perform semantic checking on a newly-created variable
   6967 /// declaration.
   6968 ///
   6969 /// This routine performs all of the type-checking required for a
   6970 /// variable declaration once it has been built. It is used both to
   6971 /// check variables after they have been parsed and their declarators
   6972 /// have been translated into a declaration, and to check variables
   6973 /// that have been instantiated from a template.
   6974 ///
   6975 /// Sets NewVD->isInvalidDecl() if an error was encountered.
   6976 ///
   6977 /// Returns true if the variable declaration is a redeclaration.
   6978 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
   6979   CheckVariableDeclarationType(NewVD);
   6980 
   6981   // If the decl is already known invalid, don't check it.
   6982   if (NewVD->isInvalidDecl())
   6983     return false;
   6984 
   6985   // If we did not find anything by this name, look for a non-visible
   6986   // extern "C" declaration with the same name.
   6987   if (Previous.empty() &&
   6988       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
   6989     Previous.setShadowed();
   6990 
   6991   if (!Previous.empty()) {
   6992     MergeVarDecl(NewVD, Previous);
   6993     return true;
   6994   }
   6995   return false;
   6996 }
   6997 
   6998 namespace {
   6999 struct FindOverriddenMethod {
   7000   Sema *S;
   7001   CXXMethodDecl *Method;
   7002 
   7003   /// Member lookup function that determines whether a given C++
   7004   /// method overrides a method in a base class, to be used with
   7005   /// CXXRecordDecl::lookupInBases().
   7006   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
   7007     RecordDecl *BaseRecord =
   7008         Specifier->getType()->getAs<RecordType>()->getDecl();
   7009 
   7010     DeclarationName Name = Method->getDeclName();
   7011 
   7012     // FIXME: Do we care about other names here too?
   7013     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   7014       // We really want to find the base class destructor here.
   7015       QualType T = S->Context.getTypeDeclType(BaseRecord);
   7016       CanQualType CT = S->Context.getCanonicalType(T);
   7017 
   7018       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
   7019     }
   7020 
   7021     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
   7022          Path.Decls = Path.Decls.slice(1)) {
   7023       NamedDecl *D = Path.Decls.front();
   7024       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
   7025         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
   7026           return true;
   7027       }
   7028     }
   7029 
   7030     return false;
   7031   }
   7032 };
   7033 
   7034 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
   7035 } // end anonymous namespace
   7036 
   7037 /// \brief Report an error regarding overriding, along with any relevant
   7038 /// overriden methods.
   7039 ///
   7040 /// \param DiagID the primary error to report.
   7041 /// \param MD the overriding method.
   7042 /// \param OEK which overrides to include as notes.
   7043 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
   7044                             OverrideErrorKind OEK = OEK_All) {
   7045   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
   7046   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
   7047                                       E = MD->end_overridden_methods();
   7048        I != E; ++I) {
   7049     // This check (& the OEK parameter) could be replaced by a predicate, but
   7050     // without lambdas that would be overkill. This is still nicer than writing
   7051     // out the diag loop 3 times.
   7052     if ((OEK == OEK_All) ||
   7053         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
   7054         (OEK == OEK_Deleted && (*I)->isDeleted()))
   7055       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
   7056   }
   7057 }
   7058 
   7059 /// AddOverriddenMethods - See if a method overrides any in the base classes,
   7060 /// and if so, check that it's a valid override and remember it.
   7061 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
   7062   // Look for methods in base classes that this method might override.
   7063   CXXBasePaths Paths;
   7064   FindOverriddenMethod FOM;
   7065   FOM.Method = MD;
   7066   FOM.S = this;
   7067   bool hasDeletedOverridenMethods = false;
   7068   bool hasNonDeletedOverridenMethods = false;
   7069   bool AddedAny = false;
   7070   if (DC->lookupInBases(FOM, Paths)) {
   7071     for (auto *I : Paths.found_decls()) {
   7072       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
   7073         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
   7074         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
   7075             !CheckOverridingFunctionAttributes(MD, OldMD) &&
   7076             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
   7077             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
   7078           hasDeletedOverridenMethods |= OldMD->isDeleted();
   7079           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
   7080           AddedAny = true;
   7081         }
   7082       }
   7083     }
   7084   }
   7085 
   7086   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
   7087     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
   7088   }
   7089   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
   7090     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
   7091   }
   7092 
   7093   return AddedAny;
   7094 }
   7095 
   7096 namespace {
   7097   // Struct for holding all of the extra arguments needed by
   7098   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
   7099   struct ActOnFDArgs {
   7100     Scope *S;
   7101     Declarator &D;
   7102     MultiTemplateParamsArg TemplateParamLists;
   7103     bool AddToScope;
   7104   };
   7105 } // end anonymous namespace
   7106 
   7107 namespace {
   7108 
   7109 // Callback to only accept typo corrections that have a non-zero edit distance.
   7110 // Also only accept corrections that have the same parent decl.
   7111 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
   7112  public:
   7113   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
   7114                             CXXRecordDecl *Parent)
   7115       : Context(Context), OriginalFD(TypoFD),
   7116         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
   7117 
   7118   bool ValidateCandidate(const TypoCorrection &candidate) override {
   7119     if (candidate.getEditDistance() == 0)
   7120       return false;
   7121 
   7122     SmallVector<unsigned, 1> MismatchedParams;
   7123     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
   7124                                           CDeclEnd = candidate.end();
   7125          CDecl != CDeclEnd; ++CDecl) {
   7126       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   7127 
   7128       if (FD && !FD->hasBody() &&
   7129           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
   7130         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
   7131           CXXRecordDecl *Parent = MD->getParent();
   7132           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
   7133             return true;
   7134         } else if (!ExpectedParent) {
   7135           return true;
   7136         }
   7137       }
   7138     }
   7139 
   7140     return false;
   7141   }
   7142 
   7143  private:
   7144   ASTContext &Context;
   7145   FunctionDecl *OriginalFD;
   7146   CXXRecordDecl *ExpectedParent;
   7147 };
   7148 
   7149 } // end anonymous namespace
   7150 
   7151 /// \brief Generate diagnostics for an invalid function redeclaration.
   7152 ///
   7153 /// This routine handles generating the diagnostic messages for an invalid
   7154 /// function redeclaration, including finding possible similar declarations
   7155 /// or performing typo correction if there are no previous declarations with
   7156 /// the same name.
   7157 ///
   7158 /// Returns a NamedDecl iff typo correction was performed and substituting in
   7159 /// the new declaration name does not cause new errors.
   7160 static NamedDecl *DiagnoseInvalidRedeclaration(
   7161     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
   7162     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
   7163   DeclarationName Name = NewFD->getDeclName();
   7164   DeclContext *NewDC = NewFD->getDeclContext();
   7165   SmallVector<unsigned, 1> MismatchedParams;
   7166   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
   7167   TypoCorrection Correction;
   7168   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
   7169   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
   7170                                    : diag::err_member_decl_does_not_match;
   7171   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
   7172                     IsLocalFriend ? Sema::LookupLocalFriendName
   7173                                   : Sema::LookupOrdinaryName,
   7174                     Sema::ForRedeclaration);
   7175 
   7176   NewFD->setInvalidDecl();
   7177   if (IsLocalFriend)
   7178     SemaRef.LookupName(Prev, S);
   7179   else
   7180     SemaRef.LookupQualifiedName(Prev, NewDC);
   7181   assert(!Prev.isAmbiguous() &&
   7182          "Cannot have an ambiguity in previous-declaration lookup");
   7183   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   7184   if (!Prev.empty()) {
   7185     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
   7186          Func != FuncEnd; ++Func) {
   7187       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
   7188       if (FD &&
   7189           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   7190         // Add 1 to the index so that 0 can mean the mismatch didn't
   7191         // involve a parameter
   7192         unsigned ParamNum =
   7193             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
   7194         NearMatches.push_back(std::make_pair(FD, ParamNum));
   7195       }
   7196     }
   7197   // If the qualified name lookup yielded nothing, try typo correction
   7198   } else if ((Correction = SemaRef.CorrectTypo(
   7199                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
   7200                   &ExtraArgs.D.getCXXScopeSpec(),
   7201                   llvm::make_unique<DifferentNameValidatorCCC>(
   7202                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
   7203                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
   7204     // Set up everything for the call to ActOnFunctionDeclarator
   7205     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
   7206                               ExtraArgs.D.getIdentifierLoc());
   7207     Previous.clear();
   7208     Previous.setLookupName(Correction.getCorrection());
   7209     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
   7210                                     CDeclEnd = Correction.end();
   7211          CDecl != CDeclEnd; ++CDecl) {
   7212       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
   7213       if (FD && !FD->hasBody() &&
   7214           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
   7215         Previous.addDecl(FD);
   7216       }
   7217     }
   7218     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
   7219 
   7220     NamedDecl *Result;
   7221     // Retry building the function declaration with the new previous
   7222     // declarations, and with errors suppressed.
   7223     {
   7224       // Trap errors.
   7225       Sema::SFINAETrap Trap(SemaRef);
   7226 
   7227       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
   7228       // pieces need to verify the typo-corrected C++ declaration and hopefully
   7229       // eliminate the need for the parameter pack ExtraArgs.
   7230       Result = SemaRef.ActOnFunctionDeclarator(
   7231           ExtraArgs.S, ExtraArgs.D,
   7232           Correction.getCorrectionDecl()->getDeclContext(),
   7233           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
   7234           ExtraArgs.AddToScope);
   7235 
   7236       if (Trap.hasErrorOccurred())
   7237         Result = nullptr;
   7238     }
   7239 
   7240     if (Result) {
   7241       // Determine which correction we picked.
   7242       Decl *Canonical = Result->getCanonicalDecl();
   7243       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
   7244            I != E; ++I)
   7245         if ((*I)->getCanonicalDecl() == Canonical)
   7246           Correction.setCorrectionDecl(*I);
   7247 
   7248       SemaRef.diagnoseTypo(
   7249           Correction,
   7250           SemaRef.PDiag(IsLocalFriend
   7251                           ? diag::err_no_matching_local_friend_suggest
   7252                           : diag::err_member_decl_does_not_match_suggest)
   7253             << Name << NewDC << IsDefinition);
   7254       return Result;
   7255     }
   7256 
   7257     // Pretend the typo correction never occurred
   7258     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
   7259                               ExtraArgs.D.getIdentifierLoc());
   7260     ExtraArgs.D.setRedeclaration(wasRedeclaration);
   7261     Previous.clear();
   7262     Previous.setLookupName(Name);
   7263   }
   7264 
   7265   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
   7266       << Name << NewDC << IsDefinition << NewFD->getLocation();
   7267 
   7268   bool NewFDisConst = false;
   7269   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
   7270     NewFDisConst = NewMD->isConst();
   7271 
   7272   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
   7273        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
   7274        NearMatch != NearMatchEnd; ++NearMatch) {
   7275     FunctionDecl *FD = NearMatch->first;
   7276     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   7277     bool FDisConst = MD && MD->isConst();
   7278     bool IsMember = MD || !IsLocalFriend;
   7279 
   7280     // FIXME: These notes are poorly worded for the local friend case.
   7281     if (unsigned Idx = NearMatch->second) {
   7282       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
   7283       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
   7284       if (Loc.isInvalid()) Loc = FD->getLocation();
   7285       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
   7286                                  : diag::note_local_decl_close_param_match)
   7287         << Idx << FDParam->getType()
   7288         << NewFD->getParamDecl(Idx - 1)->getType();
   7289     } else if (FDisConst != NewFDisConst) {
   7290       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
   7291           << NewFDisConst << FD->getSourceRange().getEnd();
   7292     } else
   7293       SemaRef.Diag(FD->getLocation(),
   7294                    IsMember ? diag::note_member_def_close_match
   7295                             : diag::note_local_decl_close_match);
   7296   }
   7297   return nullptr;
   7298 }
   7299 
   7300 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
   7301   switch (D.getDeclSpec().getStorageClassSpec()) {
   7302   default: llvm_unreachable("Unknown storage class!");
   7303   case DeclSpec::SCS_auto:
   7304   case DeclSpec::SCS_register:
   7305   case DeclSpec::SCS_mutable:
   7306     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   7307                  diag::err_typecheck_sclass_func);
   7308     D.setInvalidType();
   7309     break;
   7310   case DeclSpec::SCS_unspecified: break;
   7311   case DeclSpec::SCS_extern:
   7312     if (D.getDeclSpec().isExternInLinkageSpec())
   7313       return SC_None;
   7314     return SC_Extern;
   7315   case DeclSpec::SCS_static: {
   7316     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
   7317       // C99 6.7.1p5:
   7318       //   The declaration of an identifier for a function that has
   7319       //   block scope shall have no explicit storage-class specifier
   7320       //   other than extern
   7321       // See also (C++ [dcl.stc]p4).
   7322       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   7323                    diag::err_static_block_func);
   7324       break;
   7325     } else
   7326       return SC_Static;
   7327   }
   7328   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
   7329   }
   7330 
   7331   // No explicit storage class has already been returned
   7332   return SC_None;
   7333 }
   7334 
   7335 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
   7336                                            DeclContext *DC, QualType &R,
   7337                                            TypeSourceInfo *TInfo,
   7338                                            StorageClass SC,
   7339                                            bool &IsVirtualOkay) {
   7340   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
   7341   DeclarationName Name = NameInfo.getName();
   7342 
   7343   FunctionDecl *NewFD = nullptr;
   7344   bool isInline = D.getDeclSpec().isInlineSpecified();
   7345 
   7346   if (!SemaRef.getLangOpts().CPlusPlus) {
   7347     // Determine whether the function was written with a
   7348     // prototype. This true when:
   7349     //   - there is a prototype in the declarator, or
   7350     //   - the type R of the function is some kind of typedef or other reference
   7351     //     to a type name (which eventually refers to a function type).
   7352     bool HasPrototype =
   7353       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
   7354       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
   7355 
   7356     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
   7357                                  D.getLocStart(), NameInfo, R,
   7358                                  TInfo, SC, isInline,
   7359                                  HasPrototype, false);
   7360     if (D.isInvalidType())
   7361       NewFD->setInvalidDecl();
   7362 
   7363     return NewFD;
   7364   }
   7365 
   7366   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   7367   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   7368 
   7369   // Check that the return type is not an abstract class type.
   7370   // For record types, this is done by the AbstractClassUsageDiagnoser once
   7371   // the class has been completely parsed.
   7372   if (!DC->isRecord() &&
   7373       SemaRef.RequireNonAbstractType(
   7374           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
   7375           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
   7376     D.setInvalidType();
   7377 
   7378   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
   7379     // This is a C++ constructor declaration.
   7380     assert(DC->isRecord() &&
   7381            "Constructors can only be declared in a member context");
   7382 
   7383     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
   7384     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   7385                                       D.getLocStart(), NameInfo,
   7386                                       R, TInfo, isExplicit, isInline,
   7387                                       /*isImplicitlyDeclared=*/false,
   7388                                       isConstexpr);
   7389 
   7390   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   7391     // This is a C++ destructor declaration.
   7392     if (DC->isRecord()) {
   7393       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
   7394       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
   7395       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
   7396                                         SemaRef.Context, Record,
   7397                                         D.getLocStart(),
   7398                                         NameInfo, R, TInfo, isInline,
   7399                                         /*isImplicitlyDeclared=*/false);
   7400 
   7401       // If the class is complete, then we now create the implicit exception
   7402       // specification. If the class is incomplete or dependent, we can't do
   7403       // it yet.
   7404       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
   7405           Record->getDefinition() && !Record->isBeingDefined() &&
   7406           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
   7407         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
   7408       }
   7409 
   7410       IsVirtualOkay = true;
   7411       return NewDD;
   7412 
   7413     } else {
   7414       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
   7415       D.setInvalidType();
   7416 
   7417       // Create a FunctionDecl to satisfy the function definition parsing
   7418       // code path.
   7419       return FunctionDecl::Create(SemaRef.Context, DC,
   7420                                   D.getLocStart(),
   7421                                   D.getIdentifierLoc(), Name, R, TInfo,
   7422                                   SC, isInline,
   7423                                   /*hasPrototype=*/true, isConstexpr);
   7424     }
   7425 
   7426   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   7427     if (!DC->isRecord()) {
   7428       SemaRef.Diag(D.getIdentifierLoc(),
   7429            diag::err_conv_function_not_member);
   7430       return nullptr;
   7431     }
   7432 
   7433     SemaRef.CheckConversionDeclarator(D, R, SC);
   7434     IsVirtualOkay = true;
   7435     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
   7436                                      D.getLocStart(), NameInfo,
   7437                                      R, TInfo, isInline, isExplicit,
   7438                                      isConstexpr, SourceLocation());
   7439 
   7440   } else if (DC->isRecord()) {
   7441     // If the name of the function is the same as the name of the record,
   7442     // then this must be an invalid constructor that has a return type.
   7443     // (The parser checks for a return type and makes the declarator a
   7444     // constructor if it has no return type).
   7445     if (Name.getAsIdentifierInfo() &&
   7446         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
   7447       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
   7448         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
   7449         << SourceRange(D.getIdentifierLoc());
   7450       return nullptr;
   7451     }
   7452 
   7453     // This is a C++ method declaration.
   7454     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
   7455                                                cast<CXXRecordDecl>(DC),
   7456                                                D.getLocStart(), NameInfo, R,
   7457                                                TInfo, SC, isInline,
   7458                                                isConstexpr, SourceLocation());
   7459     IsVirtualOkay = !Ret->isStatic();
   7460     return Ret;
   7461   } else {
   7462     bool isFriend =
   7463         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
   7464     if (!isFriend && SemaRef.CurContext->isRecord())
   7465       return nullptr;
   7466 
   7467     // Determine whether the function was written with a
   7468     // prototype. This true when:
   7469     //   - we're in C++ (where every function has a prototype),
   7470     return FunctionDecl::Create(SemaRef.Context, DC,
   7471                                 D.getLocStart(),
   7472                                 NameInfo, R, TInfo, SC, isInline,
   7473                                 true/*HasPrototype*/, isConstexpr);
   7474   }
   7475 }
   7476 
   7477 enum OpenCLParamType {
   7478   ValidKernelParam,
   7479   PtrPtrKernelParam,
   7480   PtrKernelParam,
   7481   PrivatePtrKernelParam,
   7482   InvalidKernelParam,
   7483   RecordKernelParam
   7484 };
   7485 
   7486 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
   7487   if (PT->isPointerType()) {
   7488     QualType PointeeType = PT->getPointeeType();
   7489     if (PointeeType->isPointerType())
   7490       return PtrPtrKernelParam;
   7491     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
   7492                                               : PtrKernelParam;
   7493   }
   7494 
   7495   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
   7496   // be used as builtin types.
   7497 
   7498   if (PT->isImageType())
   7499     return PtrKernelParam;
   7500 
   7501   if (PT->isBooleanType())
   7502     return InvalidKernelParam;
   7503 
   7504   if (PT->isEventT())
   7505     return InvalidKernelParam;
   7506 
   7507   if (PT->isHalfType())
   7508     return InvalidKernelParam;
   7509 
   7510   if (PT->isRecordType())
   7511     return RecordKernelParam;
   7512 
   7513   return ValidKernelParam;
   7514 }
   7515 
   7516 static void checkIsValidOpenCLKernelParameter(
   7517   Sema &S,
   7518   Declarator &D,
   7519   ParmVarDecl *Param,
   7520   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
   7521   QualType PT = Param->getType();
   7522 
   7523   // Cache the valid types we encounter to avoid rechecking structs that are
   7524   // used again
   7525   if (ValidTypes.count(PT.getTypePtr()))
   7526     return;
   7527 
   7528   switch (getOpenCLKernelParameterType(PT)) {
   7529   case PtrPtrKernelParam:
   7530     // OpenCL v1.2 s6.9.a:
   7531     // A kernel function argument cannot be declared as a
   7532     // pointer to a pointer type.
   7533     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
   7534     D.setInvalidType();
   7535     return;
   7536 
   7537   case PrivatePtrKernelParam:
   7538     // OpenCL v1.2 s6.9.a:
   7539     // A kernel function argument cannot be declared as a
   7540     // pointer to the private address space.
   7541     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
   7542     D.setInvalidType();
   7543     return;
   7544 
   7545     // OpenCL v1.2 s6.9.k:
   7546     // Arguments to kernel functions in a program cannot be declared with the
   7547     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
   7548     // uintptr_t or a struct and/or union that contain fields declared to be
   7549     // one of these built-in scalar types.
   7550 
   7551   case InvalidKernelParam:
   7552     // OpenCL v1.2 s6.8 n:
   7553     // A kernel function argument cannot be declared
   7554     // of event_t type.
   7555     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   7556     D.setInvalidType();
   7557     return;
   7558 
   7559   case PtrKernelParam:
   7560   case ValidKernelParam:
   7561     ValidTypes.insert(PT.getTypePtr());
   7562     return;
   7563 
   7564   case RecordKernelParam:
   7565     break;
   7566   }
   7567 
   7568   // Track nested structs we will inspect
   7569   SmallVector<const Decl *, 4> VisitStack;
   7570 
   7571   // Track where we are in the nested structs. Items will migrate from
   7572   // VisitStack to HistoryStack as we do the DFS for bad field.
   7573   SmallVector<const FieldDecl *, 4> HistoryStack;
   7574   HistoryStack.push_back(nullptr);
   7575 
   7576   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
   7577   VisitStack.push_back(PD);
   7578 
   7579   assert(VisitStack.back() && "First decl null?");
   7580 
   7581   do {
   7582     const Decl *Next = VisitStack.pop_back_val();
   7583     if (!Next) {
   7584       assert(!HistoryStack.empty());
   7585       // Found a marker, we have gone up a level
   7586       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
   7587         ValidTypes.insert(Hist->getType().getTypePtr());
   7588 
   7589       continue;
   7590     }
   7591 
   7592     // Adds everything except the original parameter declaration (which is not a
   7593     // field itself) to the history stack.
   7594     const RecordDecl *RD;
   7595     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
   7596       HistoryStack.push_back(Field);
   7597       RD = Field->getType()->castAs<RecordType>()->getDecl();
   7598     } else {
   7599       RD = cast<RecordDecl>(Next);
   7600     }
   7601 
   7602     // Add a null marker so we know when we've gone back up a level
   7603     VisitStack.push_back(nullptr);
   7604 
   7605     for (const auto *FD : RD->fields()) {
   7606       QualType QT = FD->getType();
   7607 
   7608       if (ValidTypes.count(QT.getTypePtr()))
   7609         continue;
   7610 
   7611       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
   7612       if (ParamType == ValidKernelParam)
   7613         continue;
   7614 
   7615       if (ParamType == RecordKernelParam) {
   7616         VisitStack.push_back(FD);
   7617         continue;
   7618       }
   7619 
   7620       // OpenCL v1.2 s6.9.p:
   7621       // Arguments to kernel functions that are declared to be a struct or union
   7622       // do not allow OpenCL objects to be passed as elements of the struct or
   7623       // union.
   7624       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
   7625           ParamType == PrivatePtrKernelParam) {
   7626         S.Diag(Param->getLocation(),
   7627                diag::err_record_with_pointers_kernel_param)
   7628           << PT->isUnionType()
   7629           << PT;
   7630       } else {
   7631         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
   7632       }
   7633 
   7634       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
   7635         << PD->getDeclName();
   7636 
   7637       // We have an error, now let's go back up through history and show where
   7638       // the offending field came from
   7639       for (ArrayRef<const FieldDecl *>::const_iterator
   7640                I = HistoryStack.begin() + 1,
   7641                E = HistoryStack.end();
   7642            I != E; ++I) {
   7643         const FieldDecl *OuterField = *I;
   7644         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
   7645           << OuterField->getType();
   7646       }
   7647 
   7648       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
   7649         << QT->isPointerType()
   7650         << QT;
   7651       D.setInvalidType();
   7652       return;
   7653     }
   7654   } while (!VisitStack.empty());
   7655 }
   7656 
   7657 NamedDecl*
   7658 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
   7659                               TypeSourceInfo *TInfo, LookupResult &Previous,
   7660                               MultiTemplateParamsArg TemplateParamLists,
   7661                               bool &AddToScope) {
   7662   QualType R = TInfo->getType();
   7663 
   7664   assert(R.getTypePtr()->isFunctionType());
   7665 
   7666   // TODO: consider using NameInfo for diagnostic.
   7667   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
   7668   DeclarationName Name = NameInfo.getName();
   7669   StorageClass SC = getFunctionStorageClass(*this, D);
   7670 
   7671   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   7672     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   7673          diag::err_invalid_thread)
   7674       << DeclSpec::getSpecifierName(TSCS);
   7675 
   7676   if (D.isFirstDeclarationOfMember())
   7677     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
   7678                            D.getIdentifierLoc());
   7679 
   7680   bool isFriend = false;
   7681   FunctionTemplateDecl *FunctionTemplate = nullptr;
   7682   bool isExplicitSpecialization = false;
   7683   bool isFunctionTemplateSpecialization = false;
   7684 
   7685   bool isDependentClassScopeExplicitSpecialization = false;
   7686   bool HasExplicitTemplateArgs = false;
   7687   TemplateArgumentListInfo TemplateArgs;
   7688 
   7689   bool isVirtualOkay = false;
   7690 
   7691   DeclContext *OriginalDC = DC;
   7692   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
   7693 
   7694   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
   7695                                               isVirtualOkay);
   7696   if (!NewFD) return nullptr;
   7697 
   7698   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
   7699     NewFD->setTopLevelDeclInObjCContainer();
   7700 
   7701   // Set the lexical context. If this is a function-scope declaration, or has a
   7702   // C++ scope specifier, or is the object of a friend declaration, the lexical
   7703   // context will be different from the semantic context.
   7704   NewFD->setLexicalDeclContext(CurContext);
   7705 
   7706   if (IsLocalExternDecl)
   7707     NewFD->setLocalExternDecl();
   7708 
   7709   if (getLangOpts().CPlusPlus) {
   7710     bool isInline = D.getDeclSpec().isInlineSpecified();
   7711     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
   7712     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
   7713     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
   7714     bool isConcept = D.getDeclSpec().isConceptSpecified();
   7715     isFriend = D.getDeclSpec().isFriendSpecified();
   7716     if (isFriend && !isInline && D.isFunctionDefinition()) {
   7717       // C++ [class.friend]p5
   7718       //   A function can be defined in a friend declaration of a
   7719       //   class . . . . Such a function is implicitly inline.
   7720       NewFD->setImplicitlyInline();
   7721     }
   7722 
   7723     // If this is a method defined in an __interface, and is not a constructor
   7724     // or an overloaded operator, then set the pure flag (isVirtual will already
   7725     // return true).
   7726     if (const CXXRecordDecl *Parent =
   7727           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
   7728       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
   7729         NewFD->setPure(true);
   7730 
   7731       // C++ [class.union]p2
   7732       //   A union can have member functions, but not virtual functions.
   7733       if (isVirtual && Parent->isUnion())
   7734         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
   7735     }
   7736 
   7737     SetNestedNameSpecifier(NewFD, D);
   7738     isExplicitSpecialization = false;
   7739     isFunctionTemplateSpecialization = false;
   7740     if (D.isInvalidType())
   7741       NewFD->setInvalidDecl();
   7742 
   7743     // Match up the template parameter lists with the scope specifier, then
   7744     // determine whether we have a template or a template specialization.
   7745     bool Invalid = false;
   7746     if (TemplateParameterList *TemplateParams =
   7747             MatchTemplateParametersToScopeSpecifier(
   7748                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
   7749                 D.getCXXScopeSpec(),
   7750                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
   7751                     ? D.getName().TemplateId
   7752                     : nullptr,
   7753                 TemplateParamLists, isFriend, isExplicitSpecialization,
   7754                 Invalid)) {
   7755       if (TemplateParams->size() > 0) {
   7756         // This is a function template
   7757 
   7758         // Check that we can declare a template here.
   7759         if (CheckTemplateDeclScope(S, TemplateParams))
   7760           NewFD->setInvalidDecl();
   7761 
   7762         // A destructor cannot be a template.
   7763         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
   7764           Diag(NewFD->getLocation(), diag::err_destructor_template);
   7765           NewFD->setInvalidDecl();
   7766         }
   7767 
   7768         // If we're adding a template to a dependent context, we may need to
   7769         // rebuilding some of the types used within the template parameter list,
   7770         // now that we know what the current instantiation is.
   7771         if (DC->isDependentContext()) {
   7772           ContextRAII SavedContext(*this, DC);
   7773           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
   7774             Invalid = true;
   7775         }
   7776 
   7777         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
   7778                                                         NewFD->getLocation(),
   7779                                                         Name, TemplateParams,
   7780                                                         NewFD);
   7781         FunctionTemplate->setLexicalDeclContext(CurContext);
   7782         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
   7783 
   7784         // For source fidelity, store the other template param lists.
   7785         if (TemplateParamLists.size() > 1) {
   7786           NewFD->setTemplateParameterListsInfo(Context,
   7787                                                TemplateParamLists.drop_back(1));
   7788         }
   7789       } else {
   7790         // This is a function template specialization.
   7791         isFunctionTemplateSpecialization = true;
   7792         // For source fidelity, store all the template param lists.
   7793         if (TemplateParamLists.size() > 0)
   7794           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
   7795 
   7796         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
   7797         if (isFriend) {
   7798           // We want to remove the "template<>", found here.
   7799           SourceRange RemoveRange = TemplateParams->getSourceRange();
   7800 
   7801           // If we remove the template<> and the name is not a
   7802           // template-id, we're actually silently creating a problem:
   7803           // the friend declaration will refer to an untemplated decl,
   7804           // and clearly the user wants a template specialization.  So
   7805           // we need to insert '<>' after the name.
   7806           SourceLocation InsertLoc;
   7807           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   7808             InsertLoc = D.getName().getSourceRange().getEnd();
   7809             InsertLoc = getLocForEndOfToken(InsertLoc);
   7810           }
   7811 
   7812           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
   7813             << Name << RemoveRange
   7814             << FixItHint::CreateRemoval(RemoveRange)
   7815             << FixItHint::CreateInsertion(InsertLoc, "<>");
   7816         }
   7817       }
   7818     }
   7819     else {
   7820       // All template param lists were matched against the scope specifier:
   7821       // this is NOT (an explicit specialization of) a template.
   7822       if (TemplateParamLists.size() > 0)
   7823         // For source fidelity, store all the template param lists.
   7824         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
   7825     }
   7826 
   7827     if (Invalid) {
   7828       NewFD->setInvalidDecl();
   7829       if (FunctionTemplate)
   7830         FunctionTemplate->setInvalidDecl();
   7831     }
   7832 
   7833     // C++ [dcl.fct.spec]p5:
   7834     //   The virtual specifier shall only be used in declarations of
   7835     //   nonstatic class member functions that appear within a
   7836     //   member-specification of a class declaration; see 10.3.
   7837     //
   7838     if (isVirtual && !NewFD->isInvalidDecl()) {
   7839       if (!isVirtualOkay) {
   7840         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   7841              diag::err_virtual_non_function);
   7842       } else if (!CurContext->isRecord()) {
   7843         // 'virtual' was specified outside of the class.
   7844         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   7845              diag::err_virtual_out_of_class)
   7846           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   7847       } else if (NewFD->getDescribedFunctionTemplate()) {
   7848         // C++ [temp.mem]p3:
   7849         //  A member function template shall not be virtual.
   7850         Diag(D.getDeclSpec().getVirtualSpecLoc(),
   7851              diag::err_virtual_member_function_template)
   7852           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
   7853       } else {
   7854         // Okay: Add virtual to the method.
   7855         NewFD->setVirtualAsWritten(true);
   7856       }
   7857 
   7858       if (getLangOpts().CPlusPlus14 &&
   7859           NewFD->getReturnType()->isUndeducedType())
   7860         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
   7861     }
   7862 
   7863     if (getLangOpts().CPlusPlus14 &&
   7864         (NewFD->isDependentContext() ||
   7865          (isFriend && CurContext->isDependentContext())) &&
   7866         NewFD->getReturnType()->isUndeducedType()) {
   7867       // If the function template is referenced directly (for instance, as a
   7868       // member of the current instantiation), pretend it has a dependent type.
   7869       // This is not really justified by the standard, but is the only sane
   7870       // thing to do.
   7871       // FIXME: For a friend function, we have not marked the function as being
   7872       // a friend yet, so 'isDependentContext' on the FD doesn't work.
   7873       const FunctionProtoType *FPT =
   7874           NewFD->getType()->castAs<FunctionProtoType>();
   7875       QualType Result =
   7876           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
   7877       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
   7878                                              FPT->getExtProtoInfo()));
   7879     }
   7880 
   7881     // C++ [dcl.fct.spec]p3:
   7882     //  The inline specifier shall not appear on a block scope function
   7883     //  declaration.
   7884     if (isInline && !NewFD->isInvalidDecl()) {
   7885       if (CurContext->isFunctionOrMethod()) {
   7886         // 'inline' is not allowed on block scope function declaration.
   7887         Diag(D.getDeclSpec().getInlineSpecLoc(),
   7888              diag::err_inline_declaration_block_scope) << Name
   7889           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
   7890       }
   7891     }
   7892 
   7893     // C++ [dcl.fct.spec]p6:
   7894     //  The explicit specifier shall be used only in the declaration of a
   7895     //  constructor or conversion function within its class definition;
   7896     //  see 12.3.1 and 12.3.2.
   7897     if (isExplicit && !NewFD->isInvalidDecl()) {
   7898       if (!CurContext->isRecord()) {
   7899         // 'explicit' was specified outside of the class.
   7900         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   7901              diag::err_explicit_out_of_class)
   7902           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   7903       } else if (!isa<CXXConstructorDecl>(NewFD) &&
   7904                  !isa<CXXConversionDecl>(NewFD)) {
   7905         // 'explicit' was specified on a function that wasn't a constructor
   7906         // or conversion function.
   7907         Diag(D.getDeclSpec().getExplicitSpecLoc(),
   7908              diag::err_explicit_non_ctor_or_conv_function)
   7909           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
   7910       }
   7911     }
   7912 
   7913     if (isConstexpr) {
   7914       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
   7915       // are implicitly inline.
   7916       NewFD->setImplicitlyInline();
   7917 
   7918       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
   7919       // be either constructors or to return a literal type. Therefore,
   7920       // destructors cannot be declared constexpr.
   7921       if (isa<CXXDestructorDecl>(NewFD))
   7922         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
   7923     }
   7924 
   7925     if (isConcept) {
   7926       // This is a function concept.
   7927       if (FunctionTemplateDecl *FTD = NewFD->getDescribedFunctionTemplate())
   7928         FTD->setConcept();
   7929 
   7930       // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
   7931       // applied only to the definition of a function template [...]
   7932       if (!D.isFunctionDefinition()) {
   7933         Diag(D.getDeclSpec().getConceptSpecLoc(),
   7934              diag::err_function_concept_not_defined);
   7935         NewFD->setInvalidDecl();
   7936       }
   7937 
   7938       // C++ Concepts TS [dcl.spec.concept]p1: [...] A function concept shall
   7939       // have no exception-specification and is treated as if it were specified
   7940       // with noexcept(true) (15.4). [...]
   7941       if (const FunctionProtoType *FPT = R->getAs<FunctionProtoType>()) {
   7942         if (FPT->hasExceptionSpec()) {
   7943           SourceRange Range;
   7944           if (D.isFunctionDeclarator())
   7945             Range = D.getFunctionTypeInfo().getExceptionSpecRange();
   7946           Diag(NewFD->getLocation(), diag::err_function_concept_exception_spec)
   7947               << FixItHint::CreateRemoval(Range);
   7948           NewFD->setInvalidDecl();
   7949         } else {
   7950           Context.adjustExceptionSpec(NewFD, EST_BasicNoexcept);
   7951         }
   7952 
   7953         // C++ Concepts TS [dcl.spec.concept]p5: A function concept has the
   7954         // following restrictions:
   7955         // - The declared return type shall have the type bool.
   7956         if (!Context.hasSameType(FPT->getReturnType(), Context.BoolTy)) {
   7957           Diag(D.getIdentifierLoc(), diag::err_function_concept_bool_ret);
   7958           NewFD->setInvalidDecl();
   7959         }
   7960 
   7961         // C++ Concepts TS [dcl.spec.concept]p5: A function concept has the
   7962         // following restrictions:
   7963         // - The declaration's parameter list shall be equivalent to an empty
   7964         //   parameter list.
   7965         if (FPT->getNumParams() > 0 || FPT->isVariadic())
   7966           Diag(NewFD->getLocation(), diag::err_function_concept_with_params);
   7967       }
   7968 
   7969       // C++ Concepts TS [dcl.spec.concept]p2: Every concept definition is
   7970       // implicity defined to be a constexpr declaration (implicitly inline)
   7971       NewFD->setImplicitlyInline();
   7972 
   7973       // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
   7974       // be declared with the thread_local, inline, friend, or constexpr
   7975       // specifiers, [...]
   7976       if (isInline) {
   7977         Diag(D.getDeclSpec().getInlineSpecLoc(),
   7978              diag::err_concept_decl_invalid_specifiers)
   7979             << 1 << 1;
   7980         NewFD->setInvalidDecl(true);
   7981       }
   7982 
   7983       if (isFriend) {
   7984         Diag(D.getDeclSpec().getFriendSpecLoc(),
   7985              diag::err_concept_decl_invalid_specifiers)
   7986             << 1 << 2;
   7987         NewFD->setInvalidDecl(true);
   7988       }
   7989 
   7990       if (isConstexpr) {
   7991         Diag(D.getDeclSpec().getConstexprSpecLoc(),
   7992              diag::err_concept_decl_invalid_specifiers)
   7993             << 1 << 3;
   7994         NewFD->setInvalidDecl(true);
   7995       }
   7996 
   7997       // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
   7998       // applied only to the definition of a function template or variable
   7999       // template, declared in namespace scope.
   8000       if (isFunctionTemplateSpecialization) {
   8001         Diag(D.getDeclSpec().getConceptSpecLoc(),
   8002              diag::err_concept_specified_specialization) << 1;
   8003         NewFD->setInvalidDecl(true);
   8004         return NewFD;
   8005       }
   8006     }
   8007 
   8008     // If __module_private__ was specified, mark the function accordingly.
   8009     if (D.getDeclSpec().isModulePrivateSpecified()) {
   8010       if (isFunctionTemplateSpecialization) {
   8011         SourceLocation ModulePrivateLoc
   8012           = D.getDeclSpec().getModulePrivateSpecLoc();
   8013         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
   8014           << 0
   8015           << FixItHint::CreateRemoval(ModulePrivateLoc);
   8016       } else {
   8017         NewFD->setModulePrivate();
   8018         if (FunctionTemplate)
   8019           FunctionTemplate->setModulePrivate();
   8020       }
   8021     }
   8022 
   8023     if (isFriend) {
   8024       if (FunctionTemplate) {
   8025         FunctionTemplate->setObjectOfFriendDecl();
   8026         FunctionTemplate->setAccess(AS_public);
   8027       }
   8028       NewFD->setObjectOfFriendDecl();
   8029       NewFD->setAccess(AS_public);
   8030     }
   8031 
   8032     // If a function is defined as defaulted or deleted, mark it as such now.
   8033     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
   8034     // definition kind to FDK_Definition.
   8035     switch (D.getFunctionDefinitionKind()) {
   8036       case FDK_Declaration:
   8037       case FDK_Definition:
   8038         break;
   8039 
   8040       case FDK_Defaulted:
   8041         NewFD->setDefaulted();
   8042         break;
   8043 
   8044       case FDK_Deleted:
   8045         NewFD->setDeletedAsWritten();
   8046         break;
   8047     }
   8048 
   8049     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
   8050         D.isFunctionDefinition()) {
   8051       // C++ [class.mfct]p2:
   8052       //   A member function may be defined (8.4) in its class definition, in
   8053       //   which case it is an inline member function (7.1.2)
   8054       NewFD->setImplicitlyInline();
   8055     }
   8056 
   8057     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
   8058         !CurContext->isRecord()) {
   8059       // C++ [class.static]p1:
   8060       //   A data or function member of a class may be declared static
   8061       //   in a class definition, in which case it is a static member of
   8062       //   the class.
   8063 
   8064       // Complain about the 'static' specifier if it's on an out-of-line
   8065       // member function definition.
   8066       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
   8067            diag::err_static_out_of_line)
   8068         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
   8069     }
   8070 
   8071     // C++11 [except.spec]p15:
   8072     //   A deallocation function with no exception-specification is treated
   8073     //   as if it were specified with noexcept(true).
   8074     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
   8075     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
   8076          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
   8077         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
   8078       NewFD->setType(Context.getFunctionType(
   8079           FPT->getReturnType(), FPT->getParamTypes(),
   8080           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
   8081   }
   8082 
   8083   // Filter out previous declarations that don't match the scope.
   8084   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
   8085                        D.getCXXScopeSpec().isNotEmpty() ||
   8086                        isExplicitSpecialization ||
   8087                        isFunctionTemplateSpecialization);
   8088 
   8089   // Handle GNU asm-label extension (encoded as an attribute).
   8090   if (Expr *E = (Expr*) D.getAsmLabel()) {
   8091     // The parser guarantees this is a string.
   8092     StringLiteral *SE = cast<StringLiteral>(E);
   8093     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
   8094                                                 SE->getString(), 0));
   8095   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
   8096     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
   8097       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
   8098     if (I != ExtnameUndeclaredIdentifiers.end()) {
   8099       if (isDeclExternC(NewFD)) {
   8100         NewFD->addAttr(I->second);
   8101         ExtnameUndeclaredIdentifiers.erase(I);
   8102       } else
   8103         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
   8104             << /*Variable*/0 << NewFD;
   8105     }
   8106   }
   8107 
   8108   // Copy the parameter declarations from the declarator D to the function
   8109   // declaration NewFD, if they are available.  First scavenge them into Params.
   8110   SmallVector<ParmVarDecl*, 16> Params;
   8111   if (D.isFunctionDeclarator()) {
   8112     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   8113 
   8114     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
   8115     // function that takes no arguments, not a function that takes a
   8116     // single void argument.
   8117     // We let through "const void" here because Sema::GetTypeForDeclarator
   8118     // already checks for that case.
   8119     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
   8120       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
   8121         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
   8122         assert(Param->getDeclContext() != NewFD && "Was set before ?");
   8123         Param->setDeclContext(NewFD);
   8124         Params.push_back(Param);
   8125 
   8126         if (Param->isInvalidDecl())
   8127           NewFD->setInvalidDecl();
   8128       }
   8129     }
   8130   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
   8131     // When we're declaring a function with a typedef, typeof, etc as in the
   8132     // following example, we'll need to synthesize (unnamed)
   8133     // parameters for use in the declaration.
   8134     //
   8135     // @code
   8136     // typedef void fn(int);
   8137     // fn f;
   8138     // @endcode
   8139 
   8140     // Synthesize a parameter for each argument type.
   8141     for (const auto &AI : FT->param_types()) {
   8142       ParmVarDecl *Param =
   8143           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
   8144       Param->setScopeInfo(0, Params.size());
   8145       Params.push_back(Param);
   8146     }
   8147   } else {
   8148     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
   8149            "Should not need args for typedef of non-prototype fn");
   8150   }
   8151 
   8152   // Finally, we know we have the right number of parameters, install them.
   8153   NewFD->setParams(Params);
   8154 
   8155   // Find all anonymous symbols defined during the declaration of this function
   8156   // and add to NewFD. This lets us track decls such 'enum Y' in:
   8157   //
   8158   //   void f(enum Y {AA} x) {}
   8159   //
   8160   // which would otherwise incorrectly end up in the translation unit scope.
   8161   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
   8162   DeclsInPrototypeScope.clear();
   8163 
   8164   if (D.getDeclSpec().isNoreturnSpecified())
   8165     NewFD->addAttr(
   8166         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
   8167                                        Context, 0));
   8168 
   8169   // Functions returning a variably modified type violate C99 6.7.5.2p2
   8170   // because all functions have linkage.
   8171   if (!NewFD->isInvalidDecl() &&
   8172       NewFD->getReturnType()->isVariablyModifiedType()) {
   8173     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
   8174     NewFD->setInvalidDecl();
   8175   }
   8176 
   8177   // Apply an implicit SectionAttr if #pragma code_seg is active.
   8178   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
   8179       !NewFD->hasAttr<SectionAttr>()) {
   8180     NewFD->addAttr(
   8181         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
   8182                                     CodeSegStack.CurrentValue->getString(),
   8183                                     CodeSegStack.CurrentPragmaLocation));
   8184     if (UnifySection(CodeSegStack.CurrentValue->getString(),
   8185                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
   8186                          ASTContext::PSF_Read,
   8187                      NewFD))
   8188       NewFD->dropAttr<SectionAttr>();
   8189   }
   8190 
   8191   // Handle attributes.
   8192   ProcessDeclAttributes(S, NewFD, D);
   8193 
   8194   if (getLangOpts().CUDA)
   8195     maybeAddCUDAHostDeviceAttrs(S, NewFD, Previous);
   8196 
   8197   if (getLangOpts().OpenCL) {
   8198     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
   8199     // type declaration will generate a compilation error.
   8200     unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
   8201     if (AddressSpace == LangAS::opencl_local ||
   8202         AddressSpace == LangAS::opencl_global ||
   8203         AddressSpace == LangAS::opencl_constant) {
   8204       Diag(NewFD->getLocation(),
   8205            diag::err_opencl_return_value_with_address_space);
   8206       NewFD->setInvalidDecl();
   8207     }
   8208   }
   8209 
   8210   if (!getLangOpts().CPlusPlus) {
   8211     // Perform semantic checking on the function declaration.
   8212     bool isExplicitSpecialization=false;
   8213     if (!NewFD->isInvalidDecl() && NewFD->isMain())
   8214       CheckMain(NewFD, D.getDeclSpec());
   8215 
   8216     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
   8217       CheckMSVCRTEntryPoint(NewFD);
   8218 
   8219     if (!NewFD->isInvalidDecl())
   8220       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   8221                                                   isExplicitSpecialization));
   8222     else if (!Previous.empty())
   8223       // Recover gracefully from an invalid redeclaration.
   8224       D.setRedeclaration(true);
   8225     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   8226             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   8227            "previous declaration set still overloaded");
   8228 
   8229     // Diagnose no-prototype function declarations with calling conventions that
   8230     // don't support variadic calls. Only do this in C and do it after merging
   8231     // possibly prototyped redeclarations.
   8232     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
   8233     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
   8234       CallingConv CC = FT->getExtInfo().getCC();
   8235       if (!supportsVariadicCall(CC)) {
   8236         // Windows system headers sometimes accidentally use stdcall without
   8237         // (void) parameters, so we relax this to a warning.
   8238         int DiagID =
   8239             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
   8240         Diag(NewFD->getLocation(), DiagID)
   8241             << FunctionType::getNameForCallConv(CC);
   8242       }
   8243     }
   8244   } else {
   8245     // C++11 [replacement.functions]p3:
   8246     //  The program's definitions shall not be specified as inline.
   8247     //
   8248     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
   8249     //
   8250     // Suppress the diagnostic if the function is __attribute__((used)), since
   8251     // that forces an external definition to be emitted.
   8252     if (D.getDeclSpec().isInlineSpecified() &&
   8253         NewFD->isReplaceableGlobalAllocationFunction() &&
   8254         !NewFD->hasAttr<UsedAttr>())
   8255       Diag(D.getDeclSpec().getInlineSpecLoc(),
   8256            diag::ext_operator_new_delete_declared_inline)
   8257         << NewFD->getDeclName();
   8258 
   8259     // If the declarator is a template-id, translate the parser's template
   8260     // argument list into our AST format.
   8261     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
   8262       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
   8263       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
   8264       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
   8265       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
   8266                                          TemplateId->NumArgs);
   8267       translateTemplateArguments(TemplateArgsPtr,
   8268                                  TemplateArgs);
   8269 
   8270       HasExplicitTemplateArgs = true;
   8271 
   8272       if (NewFD->isInvalidDecl()) {
   8273         HasExplicitTemplateArgs = false;
   8274       } else if (FunctionTemplate) {
   8275         // Function template with explicit template arguments.
   8276         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
   8277           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
   8278 
   8279         HasExplicitTemplateArgs = false;
   8280       } else {
   8281         assert((isFunctionTemplateSpecialization ||
   8282                 D.getDeclSpec().isFriendSpecified()) &&
   8283                "should have a 'template<>' for this decl");
   8284         // "friend void foo<>(int);" is an implicit specialization decl.
   8285         isFunctionTemplateSpecialization = true;
   8286       }
   8287     } else if (isFriend && isFunctionTemplateSpecialization) {
   8288       // This combination is only possible in a recovery case;  the user
   8289       // wrote something like:
   8290       //   template <> friend void foo(int);
   8291       // which we're recovering from as if the user had written:
   8292       //   friend void foo<>(int);
   8293       // Go ahead and fake up a template id.
   8294       HasExplicitTemplateArgs = true;
   8295       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
   8296       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
   8297     }
   8298 
   8299     // If it's a friend (and only if it's a friend), it's possible
   8300     // that either the specialized function type or the specialized
   8301     // template is dependent, and therefore matching will fail.  In
   8302     // this case, don't check the specialization yet.
   8303     bool InstantiationDependent = false;
   8304     if (isFunctionTemplateSpecialization && isFriend &&
   8305         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
   8306          TemplateSpecializationType::anyDependentTemplateArguments(
   8307             TemplateArgs,
   8308             InstantiationDependent))) {
   8309       assert(HasExplicitTemplateArgs &&
   8310              "friend function specialization without template args");
   8311       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
   8312                                                        Previous))
   8313         NewFD->setInvalidDecl();
   8314     } else if (isFunctionTemplateSpecialization) {
   8315       if (CurContext->isDependentContext() && CurContext->isRecord()
   8316           && !isFriend) {
   8317         isDependentClassScopeExplicitSpecialization = true;
   8318         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   8319           diag::ext_function_specialization_in_class :
   8320           diag::err_function_specialization_in_class)
   8321           << NewFD->getDeclName();
   8322       } else if (CheckFunctionTemplateSpecialization(NewFD,
   8323                                   (HasExplicitTemplateArgs ? &TemplateArgs
   8324                                                            : nullptr),
   8325                                                      Previous))
   8326         NewFD->setInvalidDecl();
   8327 
   8328       // C++ [dcl.stc]p1:
   8329       //   A storage-class-specifier shall not be specified in an explicit
   8330       //   specialization (14.7.3)
   8331       FunctionTemplateSpecializationInfo *Info =
   8332           NewFD->getTemplateSpecializationInfo();
   8333       if (Info && SC != SC_None) {
   8334         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
   8335           Diag(NewFD->getLocation(),
   8336                diag::err_explicit_specialization_inconsistent_storage_class)
   8337             << SC
   8338             << FixItHint::CreateRemoval(
   8339                                       D.getDeclSpec().getStorageClassSpecLoc());
   8340 
   8341         else
   8342           Diag(NewFD->getLocation(),
   8343                diag::ext_explicit_specialization_storage_class)
   8344             << FixItHint::CreateRemoval(
   8345                                       D.getDeclSpec().getStorageClassSpecLoc());
   8346       }
   8347     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
   8348       if (CheckMemberSpecialization(NewFD, Previous))
   8349           NewFD->setInvalidDecl();
   8350     }
   8351 
   8352     // Perform semantic checking on the function declaration.
   8353     if (!isDependentClassScopeExplicitSpecialization) {
   8354       if (!NewFD->isInvalidDecl() && NewFD->isMain())
   8355         CheckMain(NewFD, D.getDeclSpec());
   8356 
   8357       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
   8358         CheckMSVCRTEntryPoint(NewFD);
   8359 
   8360       if (!NewFD->isInvalidDecl())
   8361         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
   8362                                                     isExplicitSpecialization));
   8363       else if (!Previous.empty())
   8364         // Recover gracefully from an invalid redeclaration.
   8365         D.setRedeclaration(true);
   8366     }
   8367 
   8368     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
   8369             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
   8370            "previous declaration set still overloaded");
   8371 
   8372     NamedDecl *PrincipalDecl = (FunctionTemplate
   8373                                 ? cast<NamedDecl>(FunctionTemplate)
   8374                                 : NewFD);
   8375 
   8376     if (isFriend && D.isRedeclaration()) {
   8377       AccessSpecifier Access = AS_public;
   8378       if (!NewFD->isInvalidDecl())
   8379         Access = NewFD->getPreviousDecl()->getAccess();
   8380 
   8381       NewFD->setAccess(Access);
   8382       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
   8383     }
   8384 
   8385     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
   8386         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
   8387       PrincipalDecl->setNonMemberOperator();
   8388 
   8389     // If we have a function template, check the template parameter
   8390     // list. This will check and merge default template arguments.
   8391     if (FunctionTemplate) {
   8392       FunctionTemplateDecl *PrevTemplate =
   8393                                      FunctionTemplate->getPreviousDecl();
   8394       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
   8395                        PrevTemplate ? PrevTemplate->getTemplateParameters()
   8396                                     : nullptr,
   8397                             D.getDeclSpec().isFriendSpecified()
   8398                               ? (D.isFunctionDefinition()
   8399                                    ? TPC_FriendFunctionTemplateDefinition
   8400                                    : TPC_FriendFunctionTemplate)
   8401                               : (D.getCXXScopeSpec().isSet() &&
   8402                                  DC && DC->isRecord() &&
   8403                                  DC->isDependentContext())
   8404                                   ? TPC_ClassTemplateMember
   8405                                   : TPC_FunctionTemplate);
   8406     }
   8407 
   8408     if (NewFD->isInvalidDecl()) {
   8409       // Ignore all the rest of this.
   8410     } else if (!D.isRedeclaration()) {
   8411       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
   8412                                        AddToScope };
   8413       // Fake up an access specifier if it's supposed to be a class member.
   8414       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
   8415         NewFD->setAccess(AS_public);
   8416 
   8417       // Qualified decls generally require a previous declaration.
   8418       if (D.getCXXScopeSpec().isSet()) {
   8419         // ...with the major exception of templated-scope or
   8420         // dependent-scope friend declarations.
   8421 
   8422         // TODO: we currently also suppress this check in dependent
   8423         // contexts because (1) the parameter depth will be off when
   8424         // matching friend templates and (2) we might actually be
   8425         // selecting a friend based on a dependent factor.  But there
   8426         // are situations where these conditions don't apply and we
   8427         // can actually do this check immediately.
   8428         if (isFriend &&
   8429             (TemplateParamLists.size() ||
   8430              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
   8431              CurContext->isDependentContext())) {
   8432           // ignore these
   8433         } else {
   8434           // The user tried to provide an out-of-line definition for a
   8435           // function that is a member of a class or namespace, but there
   8436           // was no such member function declared (C++ [class.mfct]p2,
   8437           // C++ [namespace.memdef]p2). For example:
   8438           //
   8439           // class X {
   8440           //   void f() const;
   8441           // };
   8442           //
   8443           // void X::f() { } // ill-formed
   8444           //
   8445           // Complain about this problem, and attempt to suggest close
   8446           // matches (e.g., those that differ only in cv-qualifiers and
   8447           // whether the parameter types are references).
   8448 
   8449           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
   8450                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
   8451             AddToScope = ExtraArgs.AddToScope;
   8452             return Result;
   8453           }
   8454         }
   8455 
   8456         // Unqualified local friend declarations are required to resolve
   8457         // to something.
   8458       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
   8459         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
   8460                 *this, Previous, NewFD, ExtraArgs, true, S)) {
   8461           AddToScope = ExtraArgs.AddToScope;
   8462           return Result;
   8463         }
   8464       }
   8465     } else if (!D.isFunctionDefinition() &&
   8466                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
   8467                !isFriend && !isFunctionTemplateSpecialization &&
   8468                !isExplicitSpecialization) {
   8469       // An out-of-line member function declaration must also be a
   8470       // definition (C++ [class.mfct]p2).
   8471       // Note that this is not the case for explicit specializations of
   8472       // function templates or member functions of class templates, per
   8473       // C++ [temp.expl.spec]p2. We also allow these declarations as an
   8474       // extension for compatibility with old SWIG code which likes to
   8475       // generate them.
   8476       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
   8477         << D.getCXXScopeSpec().getRange();
   8478     }
   8479   }
   8480 
   8481   ProcessPragmaWeak(S, NewFD);
   8482   checkAttributesAfterMerging(*this, *NewFD);
   8483 
   8484   AddKnownFunctionAttributes(NewFD);
   8485 
   8486   if (NewFD->hasAttr<OverloadableAttr>() &&
   8487       !NewFD->getType()->getAs<FunctionProtoType>()) {
   8488     Diag(NewFD->getLocation(),
   8489          diag::err_attribute_overloadable_no_prototype)
   8490       << NewFD;
   8491 
   8492     // Turn this into a variadic function with no parameters.
   8493     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
   8494     FunctionProtoType::ExtProtoInfo EPI(
   8495         Context.getDefaultCallingConvention(true, false));
   8496     EPI.Variadic = true;
   8497     EPI.ExtInfo = FT->getExtInfo();
   8498 
   8499     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
   8500     NewFD->setType(R);
   8501   }
   8502 
   8503   // If there's a #pragma GCC visibility in scope, and this isn't a class
   8504   // member, set the visibility of this function.
   8505   if (!DC->isRecord() && NewFD->isExternallyVisible())
   8506     AddPushedVisibilityAttribute(NewFD);
   8507 
   8508   // If there's a #pragma clang arc_cf_code_audited in scope, consider
   8509   // marking the function.
   8510   AddCFAuditedAttribute(NewFD);
   8511 
   8512   // If this is a function definition, check if we have to apply optnone due to
   8513   // a pragma.
   8514   if(D.isFunctionDefinition())
   8515     AddRangeBasedOptnone(NewFD);
   8516 
   8517   // If this is the first declaration of an extern C variable, update
   8518   // the map of such variables.
   8519   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
   8520       isIncompleteDeclExternC(*this, NewFD))
   8521     RegisterLocallyScopedExternCDecl(NewFD, S);
   8522 
   8523   // Set this FunctionDecl's range up to the right paren.
   8524   NewFD->setRangeEnd(D.getSourceRange().getEnd());
   8525 
   8526   if (D.isRedeclaration() && !Previous.empty()) {
   8527     checkDLLAttributeRedeclaration(
   8528         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
   8529         isExplicitSpecialization || isFunctionTemplateSpecialization,
   8530         D.isFunctionDefinition());
   8531   }
   8532 
   8533   if (getLangOpts().CUDA) {
   8534     IdentifierInfo *II = NewFD->getIdentifier();
   8535     if (II && II->isStr("cudaConfigureCall") && !NewFD->isInvalidDecl() &&
   8536         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
   8537       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
   8538         Diag(NewFD->getLocation(), diag::err_config_scalar_return);
   8539 
   8540       Context.setcudaConfigureCallDecl(NewFD);
   8541     }
   8542 
   8543     // Variadic functions, other than a *declaration* of printf, are not allowed
   8544     // in device-side CUDA code, unless someone passed
   8545     // -fcuda-allow-variadic-functions.
   8546     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
   8547         (NewFD->hasAttr<CUDADeviceAttr>() ||
   8548          NewFD->hasAttr<CUDAGlobalAttr>()) &&
   8549         !(II && II->isStr("printf") && NewFD->isExternC() &&
   8550           !D.isFunctionDefinition())) {
   8551       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
   8552     }
   8553   }
   8554 
   8555   if (getLangOpts().CPlusPlus) {
   8556     if (FunctionTemplate) {
   8557       if (NewFD->isInvalidDecl())
   8558         FunctionTemplate->setInvalidDecl();
   8559       return FunctionTemplate;
   8560     }
   8561   }
   8562 
   8563   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
   8564     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
   8565     if ((getLangOpts().OpenCLVersion >= 120)
   8566         && (SC == SC_Static)) {
   8567       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
   8568       D.setInvalidType();
   8569     }
   8570 
   8571     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
   8572     if (!NewFD->getReturnType()->isVoidType()) {
   8573       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
   8574       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
   8575           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
   8576                                 : FixItHint());
   8577       D.setInvalidType();
   8578     }
   8579 
   8580     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
   8581     for (auto Param : NewFD->parameters())
   8582       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
   8583   }
   8584   for (const ParmVarDecl *Param : NewFD->parameters()) {
   8585     QualType PT = Param->getType();
   8586 
   8587     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
   8588     // types.
   8589     if (getLangOpts().OpenCLVersion >= 200) {
   8590       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
   8591         QualType ElemTy = PipeTy->getElementType();
   8592           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
   8593             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
   8594             D.setInvalidType();
   8595           }
   8596       }
   8597     }
   8598   }
   8599 
   8600   MarkUnusedFileScopedDecl(NewFD);
   8601 
   8602   // Here we have an function template explicit specialization at class scope.
   8603   // The actually specialization will be postponed to template instatiation
   8604   // time via the ClassScopeFunctionSpecializationDecl node.
   8605   if (isDependentClassScopeExplicitSpecialization) {
   8606     ClassScopeFunctionSpecializationDecl *NewSpec =
   8607                          ClassScopeFunctionSpecializationDecl::Create(
   8608                                 Context, CurContext, SourceLocation(),
   8609                                 cast<CXXMethodDecl>(NewFD),
   8610                                 HasExplicitTemplateArgs, TemplateArgs);
   8611     CurContext->addDecl(NewSpec);
   8612     AddToScope = false;
   8613   }
   8614 
   8615   return NewFD;
   8616 }
   8617 
   8618 /// \brief Perform semantic checking of a new function declaration.
   8619 ///
   8620 /// Performs semantic analysis of the new function declaration
   8621 /// NewFD. This routine performs all semantic checking that does not
   8622 /// require the actual declarator involved in the declaration, and is
   8623 /// used both for the declaration of functions as they are parsed
   8624 /// (called via ActOnDeclarator) and for the declaration of functions
   8625 /// that have been instantiated via C++ template instantiation (called
   8626 /// via InstantiateDecl).
   8627 ///
   8628 /// \param IsExplicitSpecialization whether this new function declaration is
   8629 /// an explicit specialization of the previous declaration.
   8630 ///
   8631 /// This sets NewFD->isInvalidDecl() to true if there was an error.
   8632 ///
   8633 /// \returns true if the function declaration is a redeclaration.
   8634 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
   8635                                     LookupResult &Previous,
   8636                                     bool IsExplicitSpecialization) {
   8637   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
   8638          "Variably modified return types are not handled here");
   8639 
   8640   // Determine whether the type of this function should be merged with
   8641   // a previous visible declaration. This never happens for functions in C++,
   8642   // and always happens in C if the previous declaration was visible.
   8643   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
   8644                                !Previous.isShadowed();
   8645 
   8646   bool Redeclaration = false;
   8647   NamedDecl *OldDecl = nullptr;
   8648 
   8649   // Merge or overload the declaration with an existing declaration of
   8650   // the same name, if appropriate.
   8651   if (!Previous.empty()) {
   8652     // Determine whether NewFD is an overload of PrevDecl or
   8653     // a declaration that requires merging. If it's an overload,
   8654     // there's no more work to do here; we'll just add the new
   8655     // function to the scope.
   8656     if (!AllowOverloadingOfFunction(Previous, Context)) {
   8657       NamedDecl *Candidate = Previous.getRepresentativeDecl();
   8658       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
   8659         Redeclaration = true;
   8660         OldDecl = Candidate;
   8661       }
   8662     } else {
   8663       switch (CheckOverload(S, NewFD, Previous, OldDecl,
   8664                             /*NewIsUsingDecl*/ false)) {
   8665       case Ovl_Match:
   8666         Redeclaration = true;
   8667         break;
   8668 
   8669       case Ovl_NonFunction:
   8670         Redeclaration = true;
   8671         break;
   8672 
   8673       case Ovl_Overload:
   8674         Redeclaration = false;
   8675         break;
   8676       }
   8677 
   8678       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   8679         // If a function name is overloadable in C, then every function
   8680         // with that name must be marked "overloadable".
   8681         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   8682           << Redeclaration << NewFD;
   8683         NamedDecl *OverloadedDecl = nullptr;
   8684         if (Redeclaration)
   8685           OverloadedDecl = OldDecl;
   8686         else if (!Previous.empty())
   8687           OverloadedDecl = Previous.getRepresentativeDecl();
   8688         if (OverloadedDecl)
   8689           Diag(OverloadedDecl->getLocation(),
   8690                diag::note_attribute_overloadable_prev_overload);
   8691         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
   8692       }
   8693     }
   8694   }
   8695 
   8696   // Check for a previous extern "C" declaration with this name.
   8697   if (!Redeclaration &&
   8698       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
   8699     if (!Previous.empty()) {
   8700       // This is an extern "C" declaration with the same name as a previous
   8701       // declaration, and thus redeclares that entity...
   8702       Redeclaration = true;
   8703       OldDecl = Previous.getFoundDecl();
   8704       MergeTypeWithPrevious = false;
   8705 
   8706       // ... except in the presence of __attribute__((overloadable)).
   8707       if (OldDecl->hasAttr<OverloadableAttr>()) {
   8708         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
   8709           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
   8710             << Redeclaration << NewFD;
   8711           Diag(Previous.getFoundDecl()->getLocation(),
   8712                diag::note_attribute_overloadable_prev_overload);
   8713           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
   8714         }
   8715         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
   8716           Redeclaration = false;
   8717           OldDecl = nullptr;
   8718         }
   8719       }
   8720     }
   8721   }
   8722 
   8723   // C++11 [dcl.constexpr]p8:
   8724   //   A constexpr specifier for a non-static member function that is not
   8725   //   a constructor declares that member function to be const.
   8726   //
   8727   // This needs to be delayed until we know whether this is an out-of-line
   8728   // definition of a static member function.
   8729   //
   8730   // This rule is not present in C++1y, so we produce a backwards
   8731   // compatibility warning whenever it happens in C++11.
   8732   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
   8733   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
   8734       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
   8735       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
   8736     CXXMethodDecl *OldMD = nullptr;
   8737     if (OldDecl)
   8738       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
   8739     if (!OldMD || !OldMD->isStatic()) {
   8740       const FunctionProtoType *FPT =
   8741         MD->getType()->castAs<FunctionProtoType>();
   8742       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   8743       EPI.TypeQuals |= Qualifiers::Const;
   8744       MD->setType(Context.getFunctionType(FPT->getReturnType(),
   8745                                           FPT->getParamTypes(), EPI));
   8746 
   8747       // Warn that we did this, if we're not performing template instantiation.
   8748       // In that case, we'll have warned already when the template was defined.
   8749       if (ActiveTemplateInstantiations.empty()) {
   8750         SourceLocation AddConstLoc;
   8751         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
   8752                 .IgnoreParens().getAs<FunctionTypeLoc>())
   8753           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
   8754 
   8755         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
   8756           << FixItHint::CreateInsertion(AddConstLoc, " const");
   8757       }
   8758     }
   8759   }
   8760 
   8761   if (Redeclaration) {
   8762     // NewFD and OldDecl represent declarations that need to be
   8763     // merged.
   8764     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
   8765       NewFD->setInvalidDecl();
   8766       return Redeclaration;
   8767     }
   8768 
   8769     Previous.clear();
   8770     Previous.addDecl(OldDecl);
   8771 
   8772     if (FunctionTemplateDecl *OldTemplateDecl
   8773                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
   8774       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
   8775       FunctionTemplateDecl *NewTemplateDecl
   8776         = NewFD->getDescribedFunctionTemplate();
   8777       assert(NewTemplateDecl && "Template/non-template mismatch");
   8778       if (CXXMethodDecl *Method
   8779             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
   8780         Method->setAccess(OldTemplateDecl->getAccess());
   8781         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
   8782       }
   8783 
   8784       // If this is an explicit specialization of a member that is a function
   8785       // template, mark it as a member specialization.
   8786       if (IsExplicitSpecialization &&
   8787           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
   8788         NewTemplateDecl->setMemberSpecialization();
   8789         assert(OldTemplateDecl->isMemberSpecialization());
   8790         // Explicit specializations of a member template do not inherit deleted
   8791         // status from the parent member template that they are specializing.
   8792         if (OldTemplateDecl->getTemplatedDecl()->isDeleted()) {
   8793           FunctionDecl *const OldTemplatedDecl =
   8794               OldTemplateDecl->getTemplatedDecl();
   8795           assert(OldTemplatedDecl->getCanonicalDecl() == OldTemplatedDecl);
   8796           OldTemplatedDecl->setDeletedAsWritten(false);
   8797         }
   8798       }
   8799 
   8800     } else {
   8801       // This needs to happen first so that 'inline' propagates.
   8802       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
   8803 
   8804       if (isa<CXXMethodDecl>(NewFD))
   8805         NewFD->setAccess(OldDecl->getAccess());
   8806     }
   8807   }
   8808 
   8809   // Semantic checking for this function declaration (in isolation).
   8810 
   8811   if (getLangOpts().CPlusPlus) {
   8812     // C++-specific checks.
   8813     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
   8814       CheckConstructor(Constructor);
   8815     } else if (CXXDestructorDecl *Destructor =
   8816                 dyn_cast<CXXDestructorDecl>(NewFD)) {
   8817       CXXRecordDecl *Record = Destructor->getParent();
   8818       QualType ClassType = Context.getTypeDeclType(Record);
   8819 
   8820       // FIXME: Shouldn't we be able to perform this check even when the class
   8821       // type is dependent? Both gcc and edg can handle that.
   8822       if (!ClassType->isDependentType()) {
   8823         DeclarationName Name
   8824           = Context.DeclarationNames.getCXXDestructorName(
   8825                                         Context.getCanonicalType(ClassType));
   8826         if (NewFD->getDeclName() != Name) {
   8827           Diag(NewFD->getLocation(), diag::err_destructor_name);
   8828           NewFD->setInvalidDecl();
   8829           return Redeclaration;
   8830         }
   8831       }
   8832     } else if (CXXConversionDecl *Conversion
   8833                = dyn_cast<CXXConversionDecl>(NewFD)) {
   8834       ActOnConversionDeclarator(Conversion);
   8835     }
   8836 
   8837     // Find any virtual functions that this function overrides.
   8838     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
   8839       if (!Method->isFunctionTemplateSpecialization() &&
   8840           !Method->getDescribedFunctionTemplate() &&
   8841           Method->isCanonicalDecl()) {
   8842         if (AddOverriddenMethods(Method->getParent(), Method)) {
   8843           // If the function was marked as "static", we have a problem.
   8844           if (NewFD->getStorageClass() == SC_Static) {
   8845             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
   8846           }
   8847         }
   8848       }
   8849 
   8850       if (Method->isStatic())
   8851         checkThisInStaticMemberFunctionType(Method);
   8852     }
   8853 
   8854     // Extra checking for C++ overloaded operators (C++ [over.oper]).
   8855     if (NewFD->isOverloadedOperator() &&
   8856         CheckOverloadedOperatorDeclaration(NewFD)) {
   8857       NewFD->setInvalidDecl();
   8858       return Redeclaration;
   8859     }
   8860 
   8861     // Extra checking for C++0x literal operators (C++0x [over.literal]).
   8862     if (NewFD->getLiteralIdentifier() &&
   8863         CheckLiteralOperatorDeclaration(NewFD)) {
   8864       NewFD->setInvalidDecl();
   8865       return Redeclaration;
   8866     }
   8867 
   8868     // In C++, check default arguments now that we have merged decls. Unless
   8869     // the lexical context is the class, because in this case this is done
   8870     // during delayed parsing anyway.
   8871     if (!CurContext->isRecord())
   8872       CheckCXXDefaultArguments(NewFD);
   8873 
   8874     // If this function declares a builtin function, check the type of this
   8875     // declaration against the expected type for the builtin.
   8876     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
   8877       ASTContext::GetBuiltinTypeError Error;
   8878       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
   8879       QualType T = Context.GetBuiltinType(BuiltinID, Error);
   8880       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
   8881         // The type of this function differs from the type of the builtin,
   8882         // so forget about the builtin entirely.
   8883         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
   8884       }
   8885     }
   8886 
   8887     // If this function is declared as being extern "C", then check to see if
   8888     // the function returns a UDT (class, struct, or union type) that is not C
   8889     // compatible, and if it does, warn the user.
   8890     // But, issue any diagnostic on the first declaration only.
   8891     if (Previous.empty() && NewFD->isExternC()) {
   8892       QualType R = NewFD->getReturnType();
   8893       if (R->isIncompleteType() && !R->isVoidType())
   8894         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
   8895             << NewFD << R;
   8896       else if (!R.isPODType(Context) && !R->isVoidType() &&
   8897                !R->isObjCObjectPointerType())
   8898         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
   8899     }
   8900   }
   8901   return Redeclaration;
   8902 }
   8903 
   8904 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
   8905   // C++11 [basic.start.main]p3:
   8906   //   A program that [...] declares main to be inline, static or
   8907   //   constexpr is ill-formed.
   8908   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
   8909   //   appear in a declaration of main.
   8910   // static main is not an error under C99, but we should warn about it.
   8911   // We accept _Noreturn main as an extension.
   8912   if (FD->getStorageClass() == SC_Static)
   8913     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
   8914          ? diag::err_static_main : diag::warn_static_main)
   8915       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   8916   if (FD->isInlineSpecified())
   8917     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
   8918       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
   8919   if (DS.isNoreturnSpecified()) {
   8920     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
   8921     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
   8922     Diag(NoreturnLoc, diag::ext_noreturn_main);
   8923     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
   8924       << FixItHint::CreateRemoval(NoreturnRange);
   8925   }
   8926   if (FD->isConstexpr()) {
   8927     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
   8928       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
   8929     FD->setConstexpr(false);
   8930   }
   8931 
   8932   if (getLangOpts().OpenCL) {
   8933     Diag(FD->getLocation(), diag::err_opencl_no_main)
   8934         << FD->hasAttr<OpenCLKernelAttr>();
   8935     FD->setInvalidDecl();
   8936     return;
   8937   }
   8938 
   8939   QualType T = FD->getType();
   8940   assert(T->isFunctionType() && "function decl is not of function type");
   8941   const FunctionType* FT = T->castAs<FunctionType>();
   8942 
   8943   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
   8944     // In C with GNU extensions we allow main() to have non-integer return
   8945     // type, but we should warn about the extension, and we disable the
   8946     // implicit-return-zero rule.
   8947 
   8948     // GCC in C mode accepts qualified 'int'.
   8949     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
   8950       FD->setHasImplicitReturnZero(true);
   8951     else {
   8952       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
   8953       SourceRange RTRange = FD->getReturnTypeSourceRange();
   8954       if (RTRange.isValid())
   8955         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
   8956             << FixItHint::CreateReplacement(RTRange, "int");
   8957     }
   8958   } else {
   8959     // In C and C++, main magically returns 0 if you fall off the end;
   8960     // set the flag which tells us that.
   8961     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
   8962 
   8963     // All the standards say that main() should return 'int'.
   8964     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
   8965       FD->setHasImplicitReturnZero(true);
   8966     else {
   8967       // Otherwise, this is just a flat-out error.
   8968       SourceRange RTRange = FD->getReturnTypeSourceRange();
   8969       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
   8970           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
   8971                                 : FixItHint());
   8972       FD->setInvalidDecl(true);
   8973     }
   8974   }
   8975 
   8976   // Treat protoless main() as nullary.
   8977   if (isa<FunctionNoProtoType>(FT)) return;
   8978 
   8979   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
   8980   unsigned nparams = FTP->getNumParams();
   8981   assert(FD->getNumParams() == nparams);
   8982 
   8983   bool HasExtraParameters = (nparams > 3);
   8984 
   8985   if (FTP->isVariadic()) {
   8986     Diag(FD->getLocation(), diag::ext_variadic_main);
   8987     // FIXME: if we had information about the location of the ellipsis, we
   8988     // could add a FixIt hint to remove it as a parameter.
   8989   }
   8990 
   8991   // Darwin passes an undocumented fourth argument of type char**.  If
   8992   // other platforms start sprouting these, the logic below will start
   8993   // getting shifty.
   8994   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
   8995     HasExtraParameters = false;
   8996 
   8997   if (HasExtraParameters) {
   8998     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
   8999     FD->setInvalidDecl(true);
   9000     nparams = 3;
   9001   }
   9002 
   9003   // FIXME: a lot of the following diagnostics would be improved
   9004   // if we had some location information about types.
   9005 
   9006   QualType CharPP =
   9007     Context.getPointerType(Context.getPointerType(Context.CharTy));
   9008   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
   9009 
   9010   for (unsigned i = 0; i < nparams; ++i) {
   9011     QualType AT = FTP->getParamType(i);
   9012 
   9013     bool mismatch = true;
   9014 
   9015     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
   9016       mismatch = false;
   9017     else if (Expected[i] == CharPP) {
   9018       // As an extension, the following forms are okay:
   9019       //   char const **
   9020       //   char const * const *
   9021       //   char * const *
   9022 
   9023       QualifierCollector qs;
   9024       const PointerType* PT;
   9025       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
   9026           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
   9027           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
   9028                               Context.CharTy)) {
   9029         qs.removeConst();
   9030         mismatch = !qs.empty();
   9031       }
   9032     }
   9033 
   9034     if (mismatch) {
   9035       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
   9036       // TODO: suggest replacing given type with expected type
   9037       FD->setInvalidDecl(true);
   9038     }
   9039   }
   9040 
   9041   if (nparams == 1 && !FD->isInvalidDecl()) {
   9042     Diag(FD->getLocation(), diag::warn_main_one_arg);
   9043   }
   9044 
   9045   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   9046     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
   9047     FD->setInvalidDecl();
   9048   }
   9049 }
   9050 
   9051 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
   9052   QualType T = FD->getType();
   9053   assert(T->isFunctionType() && "function decl is not of function type");
   9054   const FunctionType *FT = T->castAs<FunctionType>();
   9055 
   9056   // Set an implicit return of 'zero' if the function can return some integral,
   9057   // enumeration, pointer or nullptr type.
   9058   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
   9059       FT->getReturnType()->isAnyPointerType() ||
   9060       FT->getReturnType()->isNullPtrType())
   9061     // DllMain is exempt because a return value of zero means it failed.
   9062     if (FD->getName() != "DllMain")
   9063       FD->setHasImplicitReturnZero(true);
   9064 
   9065   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
   9066     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
   9067     FD->setInvalidDecl();
   9068   }
   9069 }
   9070 
   9071 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
   9072   // FIXME: Need strict checking.  In C89, we need to check for
   9073   // any assignment, increment, decrement, function-calls, or
   9074   // commas outside of a sizeof.  In C99, it's the same list,
   9075   // except that the aforementioned are allowed in unevaluated
   9076   // expressions.  Everything else falls under the
   9077   // "may accept other forms of constant expressions" exception.
   9078   // (We never end up here for C++, so the constant expression
   9079   // rules there don't matter.)
   9080   const Expr *Culprit;
   9081   if (Init->isConstantInitializer(Context, false, &Culprit))
   9082     return false;
   9083   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
   9084     << Culprit->getSourceRange();
   9085   return true;
   9086 }
   9087 
   9088 namespace {
   9089   // Visits an initialization expression to see if OrigDecl is evaluated in
   9090   // its own initialization and throws a warning if it does.
   9091   class SelfReferenceChecker
   9092       : public EvaluatedExprVisitor<SelfReferenceChecker> {
   9093     Sema &S;
   9094     Decl *OrigDecl;
   9095     bool isRecordType;
   9096     bool isPODType;
   9097     bool isReferenceType;
   9098 
   9099     bool isInitList;
   9100     llvm::SmallVector<unsigned, 4> InitFieldIndex;
   9101 
   9102   public:
   9103     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
   9104 
   9105     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
   9106                                                     S(S), OrigDecl(OrigDecl) {
   9107       isPODType = false;
   9108       isRecordType = false;
   9109       isReferenceType = false;
   9110       isInitList = false;
   9111       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
   9112         isPODType = VD->getType().isPODType(S.Context);
   9113         isRecordType = VD->getType()->isRecordType();
   9114         isReferenceType = VD->getType()->isReferenceType();
   9115       }
   9116     }
   9117 
   9118     // For most expressions, just call the visitor.  For initializer lists,
   9119     // track the index of the field being initialized since fields are
   9120     // initialized in order allowing use of previously initialized fields.
   9121     void CheckExpr(Expr *E) {
   9122       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
   9123       if (!InitList) {
   9124         Visit(E);
   9125         return;
   9126       }
   9127 
   9128       // Track and increment the index here.
   9129       isInitList = true;
   9130       InitFieldIndex.push_back(0);
   9131       for (auto Child : InitList->children()) {
   9132         CheckExpr(cast<Expr>(Child));
   9133         ++InitFieldIndex.back();
   9134       }
   9135       InitFieldIndex.pop_back();
   9136     }
   9137 
   9138     // Returns true if MemberExpr is checked and no futher checking is needed.
   9139     // Returns false if additional checking is required.
   9140     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
   9141       llvm::SmallVector<FieldDecl*, 4> Fields;
   9142       Expr *Base = E;
   9143       bool ReferenceField = false;
   9144 
   9145       // Get the field memebers used.
   9146       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   9147         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
   9148         if (!FD)
   9149           return false;
   9150         Fields.push_back(FD);
   9151         if (FD->getType()->isReferenceType())
   9152           ReferenceField = true;
   9153         Base = ME->getBase()->IgnoreParenImpCasts();
   9154       }
   9155 
   9156       // Keep checking only if the base Decl is the same.
   9157       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
   9158       if (!DRE || DRE->getDecl() != OrigDecl)
   9159         return false;
   9160 
   9161       // A reference field can be bound to an unininitialized field.
   9162       if (CheckReference && !ReferenceField)
   9163         return true;
   9164 
   9165       // Convert FieldDecls to their index number.
   9166       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
   9167       for (const FieldDecl *I : llvm::reverse(Fields))
   9168         UsedFieldIndex.push_back(I->getFieldIndex());
   9169 
   9170       // See if a warning is needed by checking the first difference in index
   9171       // numbers.  If field being used has index less than the field being
   9172       // initialized, then the use is safe.
   9173       for (auto UsedIter = UsedFieldIndex.begin(),
   9174                 UsedEnd = UsedFieldIndex.end(),
   9175                 OrigIter = InitFieldIndex.begin(),
   9176                 OrigEnd = InitFieldIndex.end();
   9177            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
   9178         if (*UsedIter < *OrigIter)
   9179           return true;
   9180         if (*UsedIter > *OrigIter)
   9181           break;
   9182       }
   9183 
   9184       // TODO: Add a different warning which will print the field names.
   9185       HandleDeclRefExpr(DRE);
   9186       return true;
   9187     }
   9188 
   9189     // For most expressions, the cast is directly above the DeclRefExpr.
   9190     // For conditional operators, the cast can be outside the conditional
   9191     // operator if both expressions are DeclRefExpr's.
   9192     void HandleValue(Expr *E) {
   9193       E = E->IgnoreParens();
   9194       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
   9195         HandleDeclRefExpr(DRE);
   9196         return;
   9197       }
   9198 
   9199       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   9200         Visit(CO->getCond());
   9201         HandleValue(CO->getTrueExpr());
   9202         HandleValue(CO->getFalseExpr());
   9203         return;
   9204       }
   9205 
   9206       if (BinaryConditionalOperator *BCO =
   9207               dyn_cast<BinaryConditionalOperator>(E)) {
   9208         Visit(BCO->getCond());
   9209         HandleValue(BCO->getFalseExpr());
   9210         return;
   9211       }
   9212 
   9213       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
   9214         HandleValue(OVE->getSourceExpr());
   9215         return;
   9216       }
   9217 
   9218       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   9219         if (BO->getOpcode() == BO_Comma) {
   9220           Visit(BO->getLHS());
   9221           HandleValue(BO->getRHS());
   9222           return;
   9223         }
   9224       }
   9225 
   9226       if (isa<MemberExpr>(E)) {
   9227         if (isInitList) {
   9228           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
   9229                                       false /*CheckReference*/))
   9230             return;
   9231         }
   9232 
   9233         Expr *Base = E->IgnoreParenImpCasts();
   9234         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   9235           // Check for static member variables and don't warn on them.
   9236           if (!isa<FieldDecl>(ME->getMemberDecl()))
   9237             return;
   9238           Base = ME->getBase()->IgnoreParenImpCasts();
   9239         }
   9240         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
   9241           HandleDeclRefExpr(DRE);
   9242         return;
   9243       }
   9244 
   9245       Visit(E);
   9246     }
   9247 
   9248     // Reference types not handled in HandleValue are handled here since all
   9249     // uses of references are bad, not just r-value uses.
   9250     void VisitDeclRefExpr(DeclRefExpr *E) {
   9251       if (isReferenceType)
   9252         HandleDeclRefExpr(E);
   9253     }
   9254 
   9255     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   9256       if (E->getCastKind() == CK_LValueToRValue) {
   9257         HandleValue(E->getSubExpr());
   9258         return;
   9259       }
   9260 
   9261       Inherited::VisitImplicitCastExpr(E);
   9262     }
   9263 
   9264     void VisitMemberExpr(MemberExpr *E) {
   9265       if (isInitList) {
   9266         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
   9267           return;
   9268       }
   9269 
   9270       // Don't warn on arrays since they can be treated as pointers.
   9271       if (E->getType()->canDecayToPointerType()) return;
   9272 
   9273       // Warn when a non-static method call is followed by non-static member
   9274       // field accesses, which is followed by a DeclRefExpr.
   9275       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
   9276       bool Warn = (MD && !MD->isStatic());
   9277       Expr *Base = E->getBase()->IgnoreParenImpCasts();
   9278       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
   9279         if (!isa<FieldDecl>(ME->getMemberDecl()))
   9280           Warn = false;
   9281         Base = ME->getBase()->IgnoreParenImpCasts();
   9282       }
   9283 
   9284       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
   9285         if (Warn)
   9286           HandleDeclRefExpr(DRE);
   9287         return;
   9288       }
   9289 
   9290       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
   9291       // Visit that expression.
   9292       Visit(Base);
   9293     }
   9294 
   9295     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
   9296       Expr *Callee = E->getCallee();
   9297 
   9298       if (isa<UnresolvedLookupExpr>(Callee))
   9299         return Inherited::VisitCXXOperatorCallExpr(E);
   9300 
   9301       Visit(Callee);
   9302       for (auto Arg: E->arguments())
   9303         HandleValue(Arg->IgnoreParenImpCasts());
   9304     }
   9305 
   9306     void VisitUnaryOperator(UnaryOperator *E) {
   9307       // For POD record types, addresses of its own members are well-defined.
   9308       if (E->getOpcode() == UO_AddrOf && isRecordType &&
   9309           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
   9310         if (!isPODType)
   9311           HandleValue(E->getSubExpr());
   9312         return;
   9313       }
   9314 
   9315       if (E->isIncrementDecrementOp()) {
   9316         HandleValue(E->getSubExpr());
   9317         return;
   9318       }
   9319 
   9320       Inherited::VisitUnaryOperator(E);
   9321     }
   9322 
   9323     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
   9324 
   9325     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   9326       if (E->getConstructor()->isCopyConstructor()) {
   9327         Expr *ArgExpr = E->getArg(0);
   9328         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
   9329           if (ILE->getNumInits() == 1)
   9330             ArgExpr = ILE->getInit(0);
   9331         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
   9332           if (ICE->getCastKind() == CK_NoOp)
   9333             ArgExpr = ICE->getSubExpr();
   9334         HandleValue(ArgExpr);
   9335         return;
   9336       }
   9337       Inherited::VisitCXXConstructExpr(E);
   9338     }
   9339 
   9340     void VisitCallExpr(CallExpr *E) {
   9341       // Treat std::move as a use.
   9342       if (E->getNumArgs() == 1) {
   9343         if (FunctionDecl *FD = E->getDirectCallee()) {
   9344           if (FD->isInStdNamespace() && FD->getIdentifier() &&
   9345               FD->getIdentifier()->isStr("move")) {
   9346             HandleValue(E->getArg(0));
   9347             return;
   9348           }
   9349         }
   9350       }
   9351 
   9352       Inherited::VisitCallExpr(E);
   9353     }
   9354 
   9355     void VisitBinaryOperator(BinaryOperator *E) {
   9356       if (E->isCompoundAssignmentOp()) {
   9357         HandleValue(E->getLHS());
   9358         Visit(E->getRHS());
   9359         return;
   9360       }
   9361 
   9362       Inherited::VisitBinaryOperator(E);
   9363     }
   9364 
   9365     // A custom visitor for BinaryConditionalOperator is needed because the
   9366     // regular visitor would check the condition and true expression separately
   9367     // but both point to the same place giving duplicate diagnostics.
   9368     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
   9369       Visit(E->getCond());
   9370       Visit(E->getFalseExpr());
   9371     }
   9372 
   9373     void HandleDeclRefExpr(DeclRefExpr *DRE) {
   9374       Decl* ReferenceDecl = DRE->getDecl();
   9375       if (OrigDecl != ReferenceDecl) return;
   9376       unsigned diag;
   9377       if (isReferenceType) {
   9378         diag = diag::warn_uninit_self_reference_in_reference_init;
   9379       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
   9380         diag = diag::warn_static_self_reference_in_init;
   9381       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
   9382                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
   9383                  DRE->getDecl()->getType()->isRecordType()) {
   9384         diag = diag::warn_uninit_self_reference_in_init;
   9385       } else {
   9386         // Local variables will be handled by the CFG analysis.
   9387         return;
   9388       }
   9389 
   9390       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
   9391                             S.PDiag(diag)
   9392                               << DRE->getNameInfo().getName()
   9393                               << OrigDecl->getLocation()
   9394                               << DRE->getSourceRange());
   9395     }
   9396   };
   9397 
   9398   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
   9399   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
   9400                                  bool DirectInit) {
   9401     // Parameters arguments are occassionially constructed with itself,
   9402     // for instance, in recursive functions.  Skip them.
   9403     if (isa<ParmVarDecl>(OrigDecl))
   9404       return;
   9405 
   9406     E = E->IgnoreParens();
   9407 
   9408     // Skip checking T a = a where T is not a record or reference type.
   9409     // Doing so is a way to silence uninitialized warnings.
   9410     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
   9411       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   9412         if (ICE->getCastKind() == CK_LValueToRValue)
   9413           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
   9414             if (DRE->getDecl() == OrigDecl)
   9415               return;
   9416 
   9417     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
   9418   }
   9419 } // end anonymous namespace
   9420 
   9421 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
   9422                                             DeclarationName Name, QualType Type,
   9423                                             TypeSourceInfo *TSI,
   9424                                             SourceRange Range, bool DirectInit,
   9425                                             Expr *Init) {
   9426   bool IsInitCapture = !VDecl;
   9427   assert((!VDecl || !VDecl->isInitCapture()) &&
   9428          "init captures are expected to be deduced prior to initialization");
   9429 
   9430   ArrayRef<Expr *> DeduceInits = Init;
   9431   if (DirectInit) {
   9432     if (auto *PL = dyn_cast<ParenListExpr>(Init))
   9433       DeduceInits = PL->exprs();
   9434     else if (auto *IL = dyn_cast<InitListExpr>(Init))
   9435       DeduceInits = IL->inits();
   9436   }
   9437 
   9438   // Deduction only works if we have exactly one source expression.
   9439   if (DeduceInits.empty()) {
   9440     // It isn't possible to write this directly, but it is possible to
   9441     // end up in this situation with "auto x(some_pack...);"
   9442     Diag(Init->getLocStart(), IsInitCapture
   9443                                   ? diag::err_init_capture_no_expression
   9444                                   : diag::err_auto_var_init_no_expression)
   9445         << Name << Type << Range;
   9446     return QualType();
   9447   }
   9448 
   9449   if (DeduceInits.size() > 1) {
   9450     Diag(DeduceInits[1]->getLocStart(),
   9451          IsInitCapture ? diag::err_init_capture_multiple_expressions
   9452                        : diag::err_auto_var_init_multiple_expressions)
   9453         << Name << Type << Range;
   9454     return QualType();
   9455   }
   9456 
   9457   Expr *DeduceInit = DeduceInits[0];
   9458   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
   9459     Diag(Init->getLocStart(), IsInitCapture
   9460                                   ? diag::err_init_capture_paren_braces
   9461                                   : diag::err_auto_var_init_paren_braces)
   9462         << isa<InitListExpr>(Init) << Name << Type << Range;
   9463     return QualType();
   9464   }
   9465 
   9466   // Expressions default to 'id' when we're in a debugger.
   9467   bool DefaultedAnyToId = false;
   9468   if (getLangOpts().DebuggerCastResultToId &&
   9469       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
   9470     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   9471     if (Result.isInvalid()) {
   9472       return QualType();
   9473     }
   9474     Init = Result.get();
   9475     DefaultedAnyToId = true;
   9476   }
   9477 
   9478   QualType DeducedType;
   9479   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
   9480     if (!IsInitCapture)
   9481       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
   9482     else if (isa<InitListExpr>(Init))
   9483       Diag(Range.getBegin(),
   9484            diag::err_init_capture_deduction_failure_from_init_list)
   9485           << Name
   9486           << (DeduceInit->getType().isNull() ? TSI->getType()
   9487                                              : DeduceInit->getType())
   9488           << DeduceInit->getSourceRange();
   9489     else
   9490       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
   9491           << Name << TSI->getType()
   9492           << (DeduceInit->getType().isNull() ? TSI->getType()
   9493                                              : DeduceInit->getType())
   9494           << DeduceInit->getSourceRange();
   9495   }
   9496 
   9497   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
   9498   // 'id' instead of a specific object type prevents most of our usual
   9499   // checks.
   9500   // We only want to warn outside of template instantiations, though:
   9501   // inside a template, the 'id' could have come from a parameter.
   9502   if (ActiveTemplateInstantiations.empty() && !DefaultedAnyToId &&
   9503       !IsInitCapture && !DeducedType.isNull() && DeducedType->isObjCIdType()) {
   9504     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
   9505     Diag(Loc, diag::warn_auto_var_is_id) << Name << Range;
   9506   }
   9507 
   9508   return DeducedType;
   9509 }
   9510 
   9511 /// AddInitializerToDecl - Adds the initializer Init to the
   9512 /// declaration dcl. If DirectInit is true, this is C++ direct
   9513 /// initialization rather than copy initialization.
   9514 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
   9515                                 bool DirectInit, bool TypeMayContainAuto) {
   9516   // If there is no declaration, there was an error parsing it.  Just ignore
   9517   // the initializer.
   9518   if (!RealDecl || RealDecl->isInvalidDecl()) {
   9519     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
   9520     return;
   9521   }
   9522 
   9523   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
   9524     // Pure-specifiers are handled in ActOnPureSpecifier.
   9525     Diag(Method->getLocation(), diag::err_member_function_initialization)
   9526       << Method->getDeclName() << Init->getSourceRange();
   9527     Method->setInvalidDecl();
   9528     return;
   9529   }
   9530 
   9531   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
   9532   if (!VDecl) {
   9533     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
   9534     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
   9535     RealDecl->setInvalidDecl();
   9536     return;
   9537   }
   9538 
   9539   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
   9540   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
   9541     // Attempt typo correction early so that the type of the init expression can
   9542     // be deduced based on the chosen correction if the original init contains a
   9543     // TypoExpr.
   9544     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
   9545     if (!Res.isUsable()) {
   9546       RealDecl->setInvalidDecl();
   9547       return;
   9548     }
   9549     Init = Res.get();
   9550 
   9551     QualType DeducedType = deduceVarTypeFromInitializer(
   9552         VDecl, VDecl->getDeclName(), VDecl->getType(),
   9553         VDecl->getTypeSourceInfo(), VDecl->getSourceRange(), DirectInit, Init);
   9554     if (DeducedType.isNull()) {
   9555       RealDecl->setInvalidDecl();
   9556       return;
   9557     }
   9558 
   9559     VDecl->setType(DeducedType);
   9560     assert(VDecl->isLinkageValid());
   9561 
   9562     // In ARC, infer lifetime.
   9563     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
   9564       VDecl->setInvalidDecl();
   9565 
   9566     // If this is a redeclaration, check that the type we just deduced matches
   9567     // the previously declared type.
   9568     if (VarDecl *Old = VDecl->getPreviousDecl()) {
   9569       // We never need to merge the type, because we cannot form an incomplete
   9570       // array of auto, nor deduce such a type.
   9571       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
   9572     }
   9573 
   9574     // Check the deduced type is valid for a variable declaration.
   9575     CheckVariableDeclarationType(VDecl);
   9576     if (VDecl->isInvalidDecl())
   9577       return;
   9578   }
   9579 
   9580   // dllimport cannot be used on variable definitions.
   9581   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
   9582     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
   9583     VDecl->setInvalidDecl();
   9584     return;
   9585   }
   9586 
   9587   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
   9588     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
   9589     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
   9590     VDecl->setInvalidDecl();
   9591     return;
   9592   }
   9593 
   9594   if (!VDecl->getType()->isDependentType()) {
   9595     // A definition must end up with a complete type, which means it must be
   9596     // complete with the restriction that an array type might be completed by
   9597     // the initializer; note that later code assumes this restriction.
   9598     QualType BaseDeclType = VDecl->getType();
   9599     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
   9600       BaseDeclType = Array->getElementType();
   9601     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
   9602                             diag::err_typecheck_decl_incomplete_type)) {
   9603       RealDecl->setInvalidDecl();
   9604       return;
   9605     }
   9606 
   9607     // The variable can not have an abstract class type.
   9608     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
   9609                                diag::err_abstract_type_in_decl,
   9610                                AbstractVariableType))
   9611       VDecl->setInvalidDecl();
   9612   }
   9613 
   9614   VarDecl *Def;
   9615   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
   9616     NamedDecl *Hidden = nullptr;
   9617     if (!hasVisibleDefinition(Def, &Hidden) &&
   9618         (VDecl->getFormalLinkage() == InternalLinkage ||
   9619          VDecl->getDescribedVarTemplate() ||
   9620          VDecl->getNumTemplateParameterLists() ||
   9621          VDecl->getDeclContext()->isDependentContext())) {
   9622       // The previous definition is hidden, and multiple definitions are
   9623       // permitted (in separate TUs). Form another definition of it.
   9624     } else {
   9625       Diag(VDecl->getLocation(), diag::err_redefinition)
   9626         << VDecl->getDeclName();
   9627       Diag(Def->getLocation(), diag::note_previous_definition);
   9628       VDecl->setInvalidDecl();
   9629       return;
   9630     }
   9631   }
   9632 
   9633   if (getLangOpts().CPlusPlus) {
   9634     // C++ [class.static.data]p4
   9635     //   If a static data member is of const integral or const
   9636     //   enumeration type, its declaration in the class definition can
   9637     //   specify a constant-initializer which shall be an integral
   9638     //   constant expression (5.19). In that case, the member can appear
   9639     //   in integral constant expressions. The member shall still be
   9640     //   defined in a namespace scope if it is used in the program and the
   9641     //   namespace scope definition shall not contain an initializer.
   9642     //
   9643     // We already performed a redefinition check above, but for static
   9644     // data members we also need to check whether there was an in-class
   9645     // declaration with an initializer.
   9646     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
   9647       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
   9648           << VDecl->getDeclName();
   9649       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
   9650            diag::note_previous_initializer)
   9651           << 0;
   9652       return;
   9653     }
   9654 
   9655     if (VDecl->hasLocalStorage())
   9656       getCurFunction()->setHasBranchProtectedScope();
   9657 
   9658     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
   9659       VDecl->setInvalidDecl();
   9660       return;
   9661     }
   9662   }
   9663 
   9664   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
   9665   // a kernel function cannot be initialized."
   9666   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
   9667     Diag(VDecl->getLocation(), diag::err_local_cant_init);
   9668     VDecl->setInvalidDecl();
   9669     return;
   9670   }
   9671 
   9672   // Get the decls type and save a reference for later, since
   9673   // CheckInitializerTypes may change it.
   9674   QualType DclT = VDecl->getType(), SavT = DclT;
   9675 
   9676   // Expressions default to 'id' when we're in a debugger
   9677   // and we are assigning it to a variable of Objective-C pointer type.
   9678   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
   9679       Init->getType() == Context.UnknownAnyTy) {
   9680     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
   9681     if (Result.isInvalid()) {
   9682       VDecl->setInvalidDecl();
   9683       return;
   9684     }
   9685     Init = Result.get();
   9686   }
   9687 
   9688   // Perform the initialization.
   9689   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
   9690   if (!VDecl->isInvalidDecl()) {
   9691     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
   9692     InitializationKind Kind =
   9693         DirectInit
   9694             ? CXXDirectInit
   9695                   ? InitializationKind::CreateDirect(VDecl->getLocation(),
   9696                                                      Init->getLocStart(),
   9697                                                      Init->getLocEnd())
   9698                   : InitializationKind::CreateDirectList(VDecl->getLocation())
   9699             : InitializationKind::CreateCopy(VDecl->getLocation(),
   9700                                              Init->getLocStart());
   9701 
   9702     MultiExprArg Args = Init;
   9703     if (CXXDirectInit)
   9704       Args = MultiExprArg(CXXDirectInit->getExprs(),
   9705                           CXXDirectInit->getNumExprs());
   9706 
   9707     // Try to correct any TypoExprs in the initialization arguments.
   9708     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
   9709       ExprResult Res = CorrectDelayedTyposInExpr(
   9710           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
   9711             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
   9712             return Init.Failed() ? ExprError() : E;
   9713           });
   9714       if (Res.isInvalid()) {
   9715         VDecl->setInvalidDecl();
   9716       } else if (Res.get() != Args[Idx]) {
   9717         Args[Idx] = Res.get();
   9718       }
   9719     }
   9720     if (VDecl->isInvalidDecl())
   9721       return;
   9722 
   9723     InitializationSequence InitSeq(*this, Entity, Kind, Args,
   9724                                    /*TopLevelOfInitList=*/false,
   9725                                    /*TreatUnavailableAsInvalid=*/false);
   9726     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
   9727     if (Result.isInvalid()) {
   9728       VDecl->setInvalidDecl();
   9729       return;
   9730     }
   9731 
   9732     Init = Result.getAs<Expr>();
   9733   }
   9734 
   9735   // Check for self-references within variable initializers.
   9736   // Variables declared within a function/method body (except for references)
   9737   // are handled by a dataflow analysis.
   9738   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
   9739       VDecl->getType()->isReferenceType()) {
   9740     CheckSelfReference(*this, RealDecl, Init, DirectInit);
   9741   }
   9742 
   9743   // If the type changed, it means we had an incomplete type that was
   9744   // completed by the initializer. For example:
   9745   //   int ary[] = { 1, 3, 5 };
   9746   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
   9747   if (!VDecl->isInvalidDecl() && (DclT != SavT))
   9748     VDecl->setType(DclT);
   9749 
   9750   if (!VDecl->isInvalidDecl()) {
   9751     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
   9752 
   9753     if (VDecl->hasAttr<BlocksAttr>())
   9754       checkRetainCycles(VDecl, Init);
   9755 
   9756     // It is safe to assign a weak reference into a strong variable.
   9757     // Although this code can still have problems:
   9758     //   id x = self.weakProp;
   9759     //   id y = self.weakProp;
   9760     // we do not warn to warn spuriously when 'x' and 'y' are on separate
   9761     // paths through the function. This should be revisited if
   9762     // -Wrepeated-use-of-weak is made flow-sensitive.
   9763     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
   9764         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
   9765                          Init->getLocStart()))
   9766       getCurFunction()->markSafeWeakUse(Init);
   9767   }
   9768 
   9769   // The initialization is usually a full-expression.
   9770   //
   9771   // FIXME: If this is a braced initialization of an aggregate, it is not
   9772   // an expression, and each individual field initializer is a separate
   9773   // full-expression. For instance, in:
   9774   //
   9775   //   struct Temp { ~Temp(); };
   9776   //   struct S { S(Temp); };
   9777   //   struct T { S a, b; } t = { Temp(), Temp() }
   9778   //
   9779   // we should destroy the first Temp before constructing the second.
   9780   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
   9781                                           false,
   9782                                           VDecl->isConstexpr());
   9783   if (Result.isInvalid()) {
   9784     VDecl->setInvalidDecl();
   9785     return;
   9786   }
   9787   Init = Result.get();
   9788 
   9789   // Attach the initializer to the decl.
   9790   VDecl->setInit(Init);
   9791 
   9792   if (VDecl->isLocalVarDecl()) {
   9793     // C99 6.7.8p4: All the expressions in an initializer for an object that has
   9794     // static storage duration shall be constant expressions or string literals.
   9795     // C++ does not have this restriction.
   9796     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
   9797       const Expr *Culprit;
   9798       if (VDecl->getStorageClass() == SC_Static)
   9799         CheckForConstantInitializer(Init, DclT);
   9800       // C89 is stricter than C99 for non-static aggregate types.
   9801       // C89 6.5.7p3: All the expressions [...] in an initializer list
   9802       // for an object that has aggregate or union type shall be
   9803       // constant expressions.
   9804       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
   9805                isa<InitListExpr>(Init) &&
   9806                !Init->isConstantInitializer(Context, false, &Culprit))
   9807         Diag(Culprit->getExprLoc(),
   9808              diag::ext_aggregate_init_not_constant)
   9809           << Culprit->getSourceRange();
   9810     }
   9811   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
   9812              VDecl->getLexicalDeclContext()->isRecord()) {
   9813     // This is an in-class initialization for a static data member, e.g.,
   9814     //
   9815     // struct S {
   9816     //   static const int value = 17;
   9817     // };
   9818 
   9819     // C++ [class.mem]p4:
   9820     //   A member-declarator can contain a constant-initializer only
   9821     //   if it declares a static member (9.4) of const integral or
   9822     //   const enumeration type, see 9.4.2.
   9823     //
   9824     // C++11 [class.static.data]p3:
   9825     //   If a non-volatile non-inline const static data member is of integral
   9826     //   or enumeration type, its declaration in the class definition can
   9827     //   specify a brace-or-equal-initializer in which every initalizer-clause
   9828     //   that is an assignment-expression is a constant expression. A static
   9829     //   data member of literal type can be declared in the class definition
   9830     //   with the constexpr specifier; if so, its declaration shall specify a
   9831     //   brace-or-equal-initializer in which every initializer-clause that is
   9832     //   an assignment-expression is a constant expression.
   9833 
   9834     // Do nothing on dependent types.
   9835     if (DclT->isDependentType()) {
   9836 
   9837     // Allow any 'static constexpr' members, whether or not they are of literal
   9838     // type. We separately check that every constexpr variable is of literal
   9839     // type.
   9840     } else if (VDecl->isConstexpr()) {
   9841 
   9842     // Require constness.
   9843     } else if (!DclT.isConstQualified()) {
   9844       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
   9845         << Init->getSourceRange();
   9846       VDecl->setInvalidDecl();
   9847 
   9848     // We allow integer constant expressions in all cases.
   9849     } else if (DclT->isIntegralOrEnumerationType()) {
   9850       // Check whether the expression is a constant expression.
   9851       SourceLocation Loc;
   9852       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
   9853         // In C++11, a non-constexpr const static data member with an
   9854         // in-class initializer cannot be volatile.
   9855         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
   9856       else if (Init->isValueDependent())
   9857         ; // Nothing to check.
   9858       else if (Init->isIntegerConstantExpr(Context, &Loc))
   9859         ; // Ok, it's an ICE!
   9860       else if (Init->isEvaluatable(Context)) {
   9861         // If we can constant fold the initializer through heroics, accept it,
   9862         // but report this as a use of an extension for -pedantic.
   9863         Diag(Loc, diag::ext_in_class_initializer_non_constant)
   9864           << Init->getSourceRange();
   9865       } else {
   9866         // Otherwise, this is some crazy unknown case.  Report the issue at the
   9867         // location provided by the isIntegerConstantExpr failed check.
   9868         Diag(Loc, diag::err_in_class_initializer_non_constant)
   9869           << Init->getSourceRange();
   9870         VDecl->setInvalidDecl();
   9871       }
   9872 
   9873     // We allow foldable floating-point constants as an extension.
   9874     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
   9875       // In C++98, this is a GNU extension. In C++11, it is not, but we support
   9876       // it anyway and provide a fixit to add the 'constexpr'.
   9877       if (getLangOpts().CPlusPlus11) {
   9878         Diag(VDecl->getLocation(),
   9879              diag::ext_in_class_initializer_float_type_cxx11)
   9880             << DclT << Init->getSourceRange();
   9881         Diag(VDecl->getLocStart(),
   9882              diag::note_in_class_initializer_float_type_cxx11)
   9883             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   9884       } else {
   9885         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
   9886           << DclT << Init->getSourceRange();
   9887 
   9888         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
   9889           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
   9890             << Init->getSourceRange();
   9891           VDecl->setInvalidDecl();
   9892         }
   9893       }
   9894 
   9895     // Suggest adding 'constexpr' in C++11 for literal types.
   9896     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
   9897       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
   9898         << DclT << Init->getSourceRange()
   9899         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
   9900       VDecl->setConstexpr(true);
   9901 
   9902     } else {
   9903       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
   9904         << DclT << Init->getSourceRange();
   9905       VDecl->setInvalidDecl();
   9906     }
   9907   } else if (VDecl->isFileVarDecl()) {
   9908     if (VDecl->getStorageClass() == SC_Extern &&
   9909         (!getLangOpts().CPlusPlus ||
   9910          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
   9911            VDecl->isExternC())) &&
   9912         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
   9913       Diag(VDecl->getLocation(), diag::warn_extern_init);
   9914 
   9915     // C99 6.7.8p4. All file scoped initializers need to be constant.
   9916     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
   9917       CheckForConstantInitializer(Init, DclT);
   9918   }
   9919 
   9920   // We will represent direct-initialization similarly to copy-initialization:
   9921   //    int x(1);  -as-> int x = 1;
   9922   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
   9923   //
   9924   // Clients that want to distinguish between the two forms, can check for
   9925   // direct initializer using VarDecl::getInitStyle().
   9926   // A major benefit is that clients that don't particularly care about which
   9927   // exactly form was it (like the CodeGen) can handle both cases without
   9928   // special case code.
   9929 
   9930   // C++ 8.5p11:
   9931   // The form of initialization (using parentheses or '=') is generally
   9932   // insignificant, but does matter when the entity being initialized has a
   9933   // class type.
   9934   if (CXXDirectInit) {
   9935     assert(DirectInit && "Call-style initializer must be direct init.");
   9936     VDecl->setInitStyle(VarDecl::CallInit);
   9937   } else if (DirectInit) {
   9938     // This must be list-initialization. No other way is direct-initialization.
   9939     VDecl->setInitStyle(VarDecl::ListInit);
   9940   }
   9941 
   9942   CheckCompleteVariableDeclaration(VDecl);
   9943 }
   9944 
   9945 /// ActOnInitializerError - Given that there was an error parsing an
   9946 /// initializer for the given declaration, try to return to some form
   9947 /// of sanity.
   9948 void Sema::ActOnInitializerError(Decl *D) {
   9949   // Our main concern here is re-establishing invariants like "a
   9950   // variable's type is either dependent or complete".
   9951   if (!D || D->isInvalidDecl()) return;
   9952 
   9953   VarDecl *VD = dyn_cast<VarDecl>(D);
   9954   if (!VD) return;
   9955 
   9956   // Auto types are meaningless if we can't make sense of the initializer.
   9957   if (ParsingInitForAutoVars.count(D)) {
   9958     D->setInvalidDecl();
   9959     return;
   9960   }
   9961 
   9962   QualType Ty = VD->getType();
   9963   if (Ty->isDependentType()) return;
   9964 
   9965   // Require a complete type.
   9966   if (RequireCompleteType(VD->getLocation(),
   9967                           Context.getBaseElementType(Ty),
   9968                           diag::err_typecheck_decl_incomplete_type)) {
   9969     VD->setInvalidDecl();
   9970     return;
   9971   }
   9972 
   9973   // Require a non-abstract type.
   9974   if (RequireNonAbstractType(VD->getLocation(), Ty,
   9975                              diag::err_abstract_type_in_decl,
   9976                              AbstractVariableType)) {
   9977     VD->setInvalidDecl();
   9978     return;
   9979   }
   9980 
   9981   // Don't bother complaining about constructors or destructors,
   9982   // though.
   9983 }
   9984 
   9985 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
   9986                                   bool TypeMayContainAuto) {
   9987   // If there is no declaration, there was an error parsing it. Just ignore it.
   9988   if (!RealDecl)
   9989     return;
   9990 
   9991   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
   9992     QualType Type = Var->getType();
   9993 
   9994     // C++11 [dcl.spec.auto]p3
   9995     if (TypeMayContainAuto && Type->getContainedAutoType()) {
   9996       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
   9997         << Var->getDeclName() << Type;
   9998       Var->setInvalidDecl();
   9999       return;
   10000     }
   10001 
   10002     // C++11 [class.static.data]p3: A static data member can be declared with
   10003     // the constexpr specifier; if so, its declaration shall specify
   10004     // a brace-or-equal-initializer.
   10005     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
   10006     // the definition of a variable [...] or the declaration of a static data
   10007     // member.
   10008     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
   10009       if (Var->isStaticDataMember()) {
   10010         // C++1z removes the relevant rule; the in-class declaration is always
   10011         // a definition there.
   10012         if (!getLangOpts().CPlusPlus1z) {
   10013           Diag(Var->getLocation(),
   10014                diag::err_constexpr_static_mem_var_requires_init)
   10015             << Var->getDeclName();
   10016           Var->setInvalidDecl();
   10017           return;
   10018         }
   10019       } else {
   10020         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
   10021         Var->setInvalidDecl();
   10022         return;
   10023       }
   10024     }
   10025 
   10026     // C++ Concepts TS [dcl.spec.concept]p1: [...]  A variable template
   10027     // definition having the concept specifier is called a variable concept. A
   10028     // concept definition refers to [...] a variable concept and its initializer.
   10029     if (VarTemplateDecl *VTD = Var->getDescribedVarTemplate()) {
   10030       if (VTD->isConcept()) {
   10031         Diag(Var->getLocation(), diag::err_var_concept_not_initialized);
   10032         Var->setInvalidDecl();
   10033         return;
   10034       }
   10035     }
   10036 
   10037     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
   10038     // be initialized.
   10039     if (!Var->isInvalidDecl() &&
   10040         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
   10041         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
   10042       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
   10043       Var->setInvalidDecl();
   10044       return;
   10045     }
   10046 
   10047     switch (Var->isThisDeclarationADefinition()) {
   10048     case VarDecl::Definition:
   10049       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
   10050         break;
   10051 
   10052       // We have an out-of-line definition of a static data member
   10053       // that has an in-class initializer, so we type-check this like
   10054       // a declaration.
   10055       //
   10056       // Fall through
   10057 
   10058     case VarDecl::DeclarationOnly:
   10059       // It's only a declaration.
   10060 
   10061       // Block scope. C99 6.7p7: If an identifier for an object is
   10062       // declared with no linkage (C99 6.2.2p6), the type for the
   10063       // object shall be complete.
   10064       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
   10065           !Var->hasLinkage() && !Var->isInvalidDecl() &&
   10066           RequireCompleteType(Var->getLocation(), Type,
   10067                               diag::err_typecheck_decl_incomplete_type))
   10068         Var->setInvalidDecl();
   10069 
   10070       // Make sure that the type is not abstract.
   10071       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   10072           RequireNonAbstractType(Var->getLocation(), Type,
   10073                                  diag::err_abstract_type_in_decl,
   10074                                  AbstractVariableType))
   10075         Var->setInvalidDecl();
   10076       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
   10077           Var->getStorageClass() == SC_PrivateExtern) {
   10078         Diag(Var->getLocation(), diag::warn_private_extern);
   10079         Diag(Var->getLocation(), diag::note_private_extern);
   10080       }
   10081 
   10082       return;
   10083 
   10084     case VarDecl::TentativeDefinition:
   10085       // File scope. C99 6.9.2p2: A declaration of an identifier for an
   10086       // object that has file scope without an initializer, and without a
   10087       // storage-class specifier or with the storage-class specifier "static",
   10088       // constitutes a tentative definition. Note: A tentative definition with
   10089       // external linkage is valid (C99 6.2.2p5).
   10090       if (!Var->isInvalidDecl()) {
   10091         if (const IncompleteArrayType *ArrayT
   10092                                     = Context.getAsIncompleteArrayType(Type)) {
   10093           if (RequireCompleteType(Var->getLocation(),
   10094                                   ArrayT->getElementType(),
   10095                                   diag::err_illegal_decl_array_incomplete_type))
   10096             Var->setInvalidDecl();
   10097         } else if (Var->getStorageClass() == SC_Static) {
   10098           // C99 6.9.2p3: If the declaration of an identifier for an object is
   10099           // a tentative definition and has internal linkage (C99 6.2.2p3), the
   10100           // declared type shall not be an incomplete type.
   10101           // NOTE: code such as the following
   10102           //     static struct s;
   10103           //     struct s { int a; };
   10104           // is accepted by gcc. Hence here we issue a warning instead of
   10105           // an error and we do not invalidate the static declaration.
   10106           // NOTE: to avoid multiple warnings, only check the first declaration.
   10107           if (Var->isFirstDecl())
   10108             RequireCompleteType(Var->getLocation(), Type,
   10109                                 diag::ext_typecheck_decl_incomplete_type);
   10110         }
   10111       }
   10112 
   10113       // Record the tentative definition; we're done.
   10114       if (!Var->isInvalidDecl())
   10115         TentativeDefinitions.push_back(Var);
   10116       return;
   10117     }
   10118 
   10119     // Provide a specific diagnostic for uninitialized variable
   10120     // definitions with incomplete array type.
   10121     if (Type->isIncompleteArrayType()) {
   10122       Diag(Var->getLocation(),
   10123            diag::err_typecheck_incomplete_array_needs_initializer);
   10124       Var->setInvalidDecl();
   10125       return;
   10126     }
   10127 
   10128     // Provide a specific diagnostic for uninitialized variable
   10129     // definitions with reference type.
   10130     if (Type->isReferenceType()) {
   10131       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
   10132         << Var->getDeclName()
   10133         << SourceRange(Var->getLocation(), Var->getLocation());
   10134       Var->setInvalidDecl();
   10135       return;
   10136     }
   10137 
   10138     // Do not attempt to type-check the default initializer for a
   10139     // variable with dependent type.
   10140     if (Type->isDependentType())
   10141       return;
   10142 
   10143     if (Var->isInvalidDecl())
   10144       return;
   10145 
   10146     if (!Var->hasAttr<AliasAttr>()) {
   10147       if (RequireCompleteType(Var->getLocation(),
   10148                               Context.getBaseElementType(Type),
   10149                               diag::err_typecheck_decl_incomplete_type)) {
   10150         Var->setInvalidDecl();
   10151         return;
   10152       }
   10153     } else {
   10154       return;
   10155     }
   10156 
   10157     // The variable can not have an abstract class type.
   10158     if (RequireNonAbstractType(Var->getLocation(), Type,
   10159                                diag::err_abstract_type_in_decl,
   10160                                AbstractVariableType)) {
   10161       Var->setInvalidDecl();
   10162       return;
   10163     }
   10164 
   10165     // Check for jumps past the implicit initializer.  C++0x
   10166     // clarifies that this applies to a "variable with automatic
   10167     // storage duration", not a "local variable".
   10168     // C++11 [stmt.dcl]p3
   10169     //   A program that jumps from a point where a variable with automatic
   10170     //   storage duration is not in scope to a point where it is in scope is
   10171     //   ill-formed unless the variable has scalar type, class type with a
   10172     //   trivial default constructor and a trivial destructor, a cv-qualified
   10173     //   version of one of these types, or an array of one of the preceding
   10174     //   types and is declared without an initializer.
   10175     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
   10176       if (const RecordType *Record
   10177             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
   10178         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
   10179         // Mark the function for further checking even if the looser rules of
   10180         // C++11 do not require such checks, so that we can diagnose
   10181         // incompatibilities with C++98.
   10182         if (!CXXRecord->isPOD())
   10183           getCurFunction()->setHasBranchProtectedScope();
   10184       }
   10185     }
   10186 
   10187     // C++03 [dcl.init]p9:
   10188     //   If no initializer is specified for an object, and the
   10189     //   object is of (possibly cv-qualified) non-POD class type (or
   10190     //   array thereof), the object shall be default-initialized; if
   10191     //   the object is of const-qualified type, the underlying class
   10192     //   type shall have a user-declared default
   10193     //   constructor. Otherwise, if no initializer is specified for
   10194     //   a non- static object, the object and its subobjects, if
   10195     //   any, have an indeterminate initial value); if the object
   10196     //   or any of its subobjects are of const-qualified type, the
   10197     //   program is ill-formed.
   10198     // C++0x [dcl.init]p11:
   10199     //   If no initializer is specified for an object, the object is
   10200     //   default-initialized; [...].
   10201     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
   10202     InitializationKind Kind
   10203       = InitializationKind::CreateDefault(Var->getLocation());
   10204 
   10205     InitializationSequence InitSeq(*this, Entity, Kind, None);
   10206     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
   10207     if (Init.isInvalid())
   10208       Var->setInvalidDecl();
   10209     else if (Init.get()) {
   10210       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
   10211       // This is important for template substitution.
   10212       Var->setInitStyle(VarDecl::CallInit);
   10213     }
   10214 
   10215     CheckCompleteVariableDeclaration(Var);
   10216   }
   10217 }
   10218 
   10219 void Sema::ActOnCXXForRangeDecl(Decl *D) {
   10220   // If there is no declaration, there was an error parsing it. Ignore it.
   10221   if (!D)
   10222     return;
   10223 
   10224   VarDecl *VD = dyn_cast<VarDecl>(D);
   10225   if (!VD) {
   10226     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
   10227     D->setInvalidDecl();
   10228     return;
   10229   }
   10230 
   10231   VD->setCXXForRangeDecl(true);
   10232 
   10233   // for-range-declaration cannot be given a storage class specifier.
   10234   int Error = -1;
   10235   switch (VD->getStorageClass()) {
   10236   case SC_None:
   10237     break;
   10238   case SC_Extern:
   10239     Error = 0;
   10240     break;
   10241   case SC_Static:
   10242     Error = 1;
   10243     break;
   10244   case SC_PrivateExtern:
   10245     Error = 2;
   10246     break;
   10247   case SC_Auto:
   10248     Error = 3;
   10249     break;
   10250   case SC_Register:
   10251     Error = 4;
   10252     break;
   10253   }
   10254   if (Error != -1) {
   10255     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
   10256       << VD->getDeclName() << Error;
   10257     D->setInvalidDecl();
   10258   }
   10259 }
   10260 
   10261 StmtResult
   10262 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
   10263                                  IdentifierInfo *Ident,
   10264                                  ParsedAttributes &Attrs,
   10265                                  SourceLocation AttrEnd) {
   10266   // C++1y [stmt.iter]p1:
   10267   //   A range-based for statement of the form
   10268   //      for ( for-range-identifier : for-range-initializer ) statement
   10269   //   is equivalent to
   10270   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
   10271   DeclSpec DS(Attrs.getPool().getFactory());
   10272 
   10273   const char *PrevSpec;
   10274   unsigned DiagID;
   10275   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
   10276                      getPrintingPolicy());
   10277 
   10278   Declarator D(DS, Declarator::ForContext);
   10279   D.SetIdentifier(Ident, IdentLoc);
   10280   D.takeAttributes(Attrs, AttrEnd);
   10281 
   10282   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
   10283   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
   10284                 EmptyAttrs, IdentLoc);
   10285   Decl *Var = ActOnDeclarator(S, D);
   10286   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
   10287   FinalizeDeclaration(Var);
   10288   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
   10289                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
   10290 }
   10291 
   10292 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
   10293   if (var->isInvalidDecl()) return;
   10294 
   10295   if (getLangOpts().OpenCL) {
   10296     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
   10297     // initialiser
   10298     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
   10299         !var->hasInit()) {
   10300       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
   10301           << 1 /*Init*/;
   10302       var->setInvalidDecl();
   10303       return;
   10304     }
   10305   }
   10306 
   10307   // In Objective-C, don't allow jumps past the implicit initialization of a
   10308   // local retaining variable.
   10309   if (getLangOpts().ObjC1 &&
   10310       var->hasLocalStorage()) {
   10311     switch (var->getType().getObjCLifetime()) {
   10312     case Qualifiers::OCL_None:
   10313     case Qualifiers::OCL_ExplicitNone:
   10314     case Qualifiers::OCL_Autoreleasing:
   10315       break;
   10316 
   10317     case Qualifiers::OCL_Weak:
   10318     case Qualifiers::OCL_Strong:
   10319       getCurFunction()->setHasBranchProtectedScope();
   10320       break;
   10321     }
   10322   }
   10323 
   10324   // Warn about externally-visible variables being defined without a
   10325   // prior declaration.  We only want to do this for global
   10326   // declarations, but we also specifically need to avoid doing it for
   10327   // class members because the linkage of an anonymous class can
   10328   // change if it's later given a typedef name.
   10329   if (var->isThisDeclarationADefinition() &&
   10330       var->getDeclContext()->getRedeclContext()->isFileContext() &&
   10331       var->isExternallyVisible() && var->hasLinkage() &&
   10332       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
   10333                                   var->getLocation())) {
   10334     // Find a previous declaration that's not a definition.
   10335     VarDecl *prev = var->getPreviousDecl();
   10336     while (prev && prev->isThisDeclarationADefinition())
   10337       prev = prev->getPreviousDecl();
   10338 
   10339     if (!prev)
   10340       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
   10341   }
   10342 
   10343   if (var->getTLSKind() == VarDecl::TLS_Static) {
   10344     const Expr *Culprit;
   10345     if (var->getType().isDestructedType()) {
   10346       // GNU C++98 edits for __thread, [basic.start.term]p3:
   10347       //   The type of an object with thread storage duration shall not
   10348       //   have a non-trivial destructor.
   10349       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
   10350       if (getLangOpts().CPlusPlus11)
   10351         Diag(var->getLocation(), diag::note_use_thread_local);
   10352     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
   10353                !var->getInit()->isConstantInitializer(
   10354                    Context, var->getType()->isReferenceType(), &Culprit)) {
   10355       // GNU C++98 edits for __thread, [basic.start.init]p4:
   10356       //   An object of thread storage duration shall not require dynamic
   10357       //   initialization.
   10358       // FIXME: Need strict checking here.
   10359       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
   10360         << Culprit->getSourceRange();
   10361       if (getLangOpts().CPlusPlus11)
   10362         Diag(var->getLocation(), diag::note_use_thread_local);
   10363     }
   10364   }
   10365 
   10366   // Apply section attributes and pragmas to global variables.
   10367   bool GlobalStorage = var->hasGlobalStorage();
   10368   if (GlobalStorage && var->isThisDeclarationADefinition() &&
   10369       ActiveTemplateInstantiations.empty()) {
   10370     PragmaStack<StringLiteral *> *Stack = nullptr;
   10371     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
   10372     if (var->getType().isConstQualified())
   10373       Stack = &ConstSegStack;
   10374     else if (!var->getInit()) {
   10375       Stack = &BSSSegStack;
   10376       SectionFlags |= ASTContext::PSF_Write;
   10377     } else {
   10378       Stack = &DataSegStack;
   10379       SectionFlags |= ASTContext::PSF_Write;
   10380     }
   10381     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
   10382       var->addAttr(SectionAttr::CreateImplicit(
   10383           Context, SectionAttr::Declspec_allocate,
   10384           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
   10385     }
   10386     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
   10387       if (UnifySection(SA->getName(), SectionFlags, var))
   10388         var->dropAttr<SectionAttr>();
   10389 
   10390     // Apply the init_seg attribute if this has an initializer.  If the
   10391     // initializer turns out to not be dynamic, we'll end up ignoring this
   10392     // attribute.
   10393     if (CurInitSeg && var->getInit())
   10394       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
   10395                                                CurInitSegLoc));
   10396   }
   10397 
   10398   // All the following checks are C++ only.
   10399   if (!getLangOpts().CPlusPlus) return;
   10400 
   10401   QualType type = var->getType();
   10402   if (type->isDependentType()) return;
   10403 
   10404   // __block variables might require us to capture a copy-initializer.
   10405   if (var->hasAttr<BlocksAttr>()) {
   10406     // It's currently invalid to ever have a __block variable with an
   10407     // array type; should we diagnose that here?
   10408 
   10409     // Regardless, we don't want to ignore array nesting when
   10410     // constructing this copy.
   10411     if (type->isStructureOrClassType()) {
   10412       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
   10413       SourceLocation poi = var->getLocation();
   10414       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
   10415       ExprResult result
   10416         = PerformMoveOrCopyInitialization(
   10417             InitializedEntity::InitializeBlock(poi, type, false),
   10418             var, var->getType(), varRef, /*AllowNRVO=*/true);
   10419       if (!result.isInvalid()) {
   10420         result = MaybeCreateExprWithCleanups(result);
   10421         Expr *init = result.getAs<Expr>();
   10422         Context.setBlockVarCopyInits(var, init);
   10423       }
   10424     }
   10425   }
   10426 
   10427   Expr *Init = var->getInit();
   10428   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
   10429   QualType baseType = Context.getBaseElementType(type);
   10430 
   10431   if (!var->getDeclContext()->isDependentContext() &&
   10432       Init && !Init->isValueDependent()) {
   10433     if (IsGlobal && !var->isConstexpr() &&
   10434         !getDiagnostics().isIgnored(diag::warn_global_constructor,
   10435                                     var->getLocation())) {
   10436       // Warn about globals which don't have a constant initializer.  Don't
   10437       // warn about globals with a non-trivial destructor because we already
   10438       // warned about them.
   10439       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
   10440       if (!(RD && !RD->hasTrivialDestructor()) &&
   10441           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
   10442         Diag(var->getLocation(), diag::warn_global_constructor)
   10443           << Init->getSourceRange();
   10444     }
   10445 
   10446     if (var->isConstexpr()) {
   10447       SmallVector<PartialDiagnosticAt, 8> Notes;
   10448       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
   10449         SourceLocation DiagLoc = var->getLocation();
   10450         // If the note doesn't add any useful information other than a source
   10451         // location, fold it into the primary diagnostic.
   10452         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   10453               diag::note_invalid_subexpr_in_const_expr) {
   10454           DiagLoc = Notes[0].first;
   10455           Notes.clear();
   10456         }
   10457         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
   10458           << var << Init->getSourceRange();
   10459         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
   10460           Diag(Notes[I].first, Notes[I].second);
   10461       }
   10462     } else if (var->isUsableInConstantExpressions(Context)) {
   10463       // Check whether the initializer of a const variable of integral or
   10464       // enumeration type is an ICE now, since we can't tell whether it was
   10465       // initialized by a constant expression if we check later.
   10466       var->checkInitIsICE();
   10467     }
   10468   }
   10469 
   10470   // Require the destructor.
   10471   if (const RecordType *recordType = baseType->getAs<RecordType>())
   10472     FinalizeVarWithDestructor(var, recordType);
   10473 }
   10474 
   10475 /// \brief Determines if a variable's alignment is dependent.
   10476 static bool hasDependentAlignment(VarDecl *VD) {
   10477   if (VD->getType()->isDependentType())
   10478     return true;
   10479   for (auto *I : VD->specific_attrs<AlignedAttr>())
   10480     if (I->isAlignmentDependent())
   10481       return true;
   10482   return false;
   10483 }
   10484 
   10485 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
   10486 /// any semantic actions necessary after any initializer has been attached.
   10487 void
   10488 Sema::FinalizeDeclaration(Decl *ThisDecl) {
   10489   // Note that we are no longer parsing the initializer for this declaration.
   10490   ParsingInitForAutoVars.erase(ThisDecl);
   10491 
   10492   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
   10493   if (!VD)
   10494     return;
   10495 
   10496   checkAttributesAfterMerging(*this, *VD);
   10497 
   10498   // Perform TLS alignment check here after attributes attached to the variable
   10499   // which may affect the alignment have been processed. Only perform the check
   10500   // if the target has a maximum TLS alignment (zero means no constraints).
   10501   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
   10502     // Protect the check so that it's not performed on dependent types and
   10503     // dependent alignments (we can't determine the alignment in that case).
   10504     if (VD->getTLSKind() && !hasDependentAlignment(VD)) {
   10505       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
   10506       if (Context.getDeclAlign(VD) > MaxAlignChars) {
   10507         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
   10508           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
   10509           << (unsigned)MaxAlignChars.getQuantity();
   10510       }
   10511     }
   10512   }
   10513 
   10514   if (VD->isStaticLocal()) {
   10515     if (FunctionDecl *FD =
   10516             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
   10517       // Static locals inherit dll attributes from their function.
   10518       if (Attr *A = getDLLAttr(FD)) {
   10519         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
   10520         NewAttr->setInherited(true);
   10521         VD->addAttr(NewAttr);
   10522       }
   10523       // CUDA E.2.9.4: Within the body of a __device__ or __global__
   10524       // function, only __shared__ variables may be declared with
   10525       // static storage class.
   10526       if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
   10527           (FD->hasAttr<CUDADeviceAttr>() || FD->hasAttr<CUDAGlobalAttr>()) &&
   10528           !VD->hasAttr<CUDASharedAttr>()) {
   10529         Diag(VD->getLocation(), diag::err_device_static_local_var);
   10530         VD->setInvalidDecl();
   10531       }
   10532     }
   10533   }
   10534 
   10535   // Perform check for initializers of device-side global variables.
   10536   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
   10537   // 7.5). We must also apply the same checks to all __shared__
   10538   // variables whether they are local or not. CUDA also allows
   10539   // constant initializers for __constant__ and __device__ variables.
   10540   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
   10541     const Expr *Init = VD->getInit();
   10542     if (Init && VD->hasGlobalStorage() &&
   10543         (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
   10544          VD->hasAttr<CUDASharedAttr>())) {
   10545       assert((!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>()));
   10546       bool AllowedInit = false;
   10547       if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
   10548         AllowedInit =
   10549             isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
   10550       // We'll allow constant initializers even if it's a non-empty
   10551       // constructor according to CUDA rules. This deviates from NVCC,
   10552       // but allows us to handle things like constexpr constructors.
   10553       if (!AllowedInit &&
   10554           (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
   10555         AllowedInit = VD->getInit()->isConstantInitializer(
   10556             Context, VD->getType()->isReferenceType());
   10557 
   10558       // Also make sure that destructor, if there is one, is empty.
   10559       if (AllowedInit)
   10560         if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
   10561           AllowedInit =
   10562               isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
   10563 
   10564       if (!AllowedInit) {
   10565         Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
   10566                                     ? diag::err_shared_var_init
   10567                                     : diag::err_dynamic_var_init)
   10568             << Init->getSourceRange();
   10569         VD->setInvalidDecl();
   10570       }
   10571     }
   10572   }
   10573 
   10574   // Grab the dllimport or dllexport attribute off of the VarDecl.
   10575   const InheritableAttr *DLLAttr = getDLLAttr(VD);
   10576 
   10577   // Imported static data members cannot be defined out-of-line.
   10578   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
   10579     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
   10580         VD->isThisDeclarationADefinition()) {
   10581       // We allow definitions of dllimport class template static data members
   10582       // with a warning.
   10583       CXXRecordDecl *Context =
   10584         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
   10585       bool IsClassTemplateMember =
   10586           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
   10587           Context->getDescribedClassTemplate();
   10588 
   10589       Diag(VD->getLocation(),
   10590            IsClassTemplateMember
   10591                ? diag::warn_attribute_dllimport_static_field_definition
   10592                : diag::err_attribute_dllimport_static_field_definition);
   10593       Diag(IA->getLocation(), diag::note_attribute);
   10594       if (!IsClassTemplateMember)
   10595         VD->setInvalidDecl();
   10596     }
   10597   }
   10598 
   10599   // dllimport/dllexport variables cannot be thread local, their TLS index
   10600   // isn't exported with the variable.
   10601   if (DLLAttr && VD->getTLSKind()) {
   10602     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
   10603     if (F && getDLLAttr(F)) {
   10604       assert(VD->isStaticLocal());
   10605       // But if this is a static local in a dlimport/dllexport function, the
   10606       // function will never be inlined, which means the var would never be
   10607       // imported, so having it marked import/export is safe.
   10608     } else {
   10609       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
   10610                                                                     << DLLAttr;
   10611       VD->setInvalidDecl();
   10612     }
   10613   }
   10614 
   10615   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
   10616     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
   10617       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
   10618       VD->dropAttr<UsedAttr>();
   10619     }
   10620   }
   10621 
   10622   const DeclContext *DC = VD->getDeclContext();
   10623   // If there's a #pragma GCC visibility in scope, and this isn't a class
   10624   // member, set the visibility of this variable.
   10625   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
   10626     AddPushedVisibilityAttribute(VD);
   10627 
   10628   // FIXME: Warn on unused templates.
   10629   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
   10630       !isa<VarTemplatePartialSpecializationDecl>(VD))
   10631     MarkUnusedFileScopedDecl(VD);
   10632 
   10633   // Now we have parsed the initializer and can update the table of magic
   10634   // tag values.
   10635   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
   10636       !VD->getType()->isIntegralOrEnumerationType())
   10637     return;
   10638 
   10639   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
   10640     const Expr *MagicValueExpr = VD->getInit();
   10641     if (!MagicValueExpr) {
   10642       continue;
   10643     }
   10644     llvm::APSInt MagicValueInt;
   10645     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
   10646       Diag(I->getRange().getBegin(),
   10647            diag::err_type_tag_for_datatype_not_ice)
   10648         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   10649       continue;
   10650     }
   10651     if (MagicValueInt.getActiveBits() > 64) {
   10652       Diag(I->getRange().getBegin(),
   10653            diag::err_type_tag_for_datatype_too_large)
   10654         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
   10655       continue;
   10656     }
   10657     uint64_t MagicValue = MagicValueInt.getZExtValue();
   10658     RegisterTypeTagForDatatype(I->getArgumentKind(),
   10659                                MagicValue,
   10660                                I->getMatchingCType(),
   10661                                I->getLayoutCompatible(),
   10662                                I->getMustBeNull());
   10663   }
   10664 }
   10665 
   10666 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
   10667                                                    ArrayRef<Decl *> Group) {
   10668   SmallVector<Decl*, 8> Decls;
   10669 
   10670   if (DS.isTypeSpecOwned())
   10671     Decls.push_back(DS.getRepAsDecl());
   10672 
   10673   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
   10674   for (unsigned i = 0, e = Group.size(); i != e; ++i)
   10675     if (Decl *D = Group[i]) {
   10676       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
   10677         if (!FirstDeclaratorInGroup)
   10678           FirstDeclaratorInGroup = DD;
   10679       Decls.push_back(D);
   10680     }
   10681 
   10682   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
   10683     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
   10684       handleTagNumbering(Tag, S);
   10685       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
   10686           getLangOpts().CPlusPlus)
   10687         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
   10688     }
   10689   }
   10690 
   10691   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
   10692 }
   10693 
   10694 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
   10695 /// group, performing any necessary semantic checking.
   10696 Sema::DeclGroupPtrTy
   10697 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
   10698                            bool TypeMayContainAuto) {
   10699   // C++0x [dcl.spec.auto]p7:
   10700   //   If the type deduced for the template parameter U is not the same in each
   10701   //   deduction, the program is ill-formed.
   10702   // FIXME: When initializer-list support is added, a distinction is needed
   10703   // between the deduced type U and the deduced type which 'auto' stands for.
   10704   //   auto a = 0, b = { 1, 2, 3 };
   10705   // is legal because the deduced type U is 'int' in both cases.
   10706   if (TypeMayContainAuto && Group.size() > 1) {
   10707     QualType Deduced;
   10708     CanQualType DeducedCanon;
   10709     VarDecl *DeducedDecl = nullptr;
   10710     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
   10711       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
   10712         AutoType *AT = D->getType()->getContainedAutoType();
   10713         // Don't reissue diagnostics when instantiating a template.
   10714         if (AT && D->isInvalidDecl())
   10715           break;
   10716         QualType U = AT ? AT->getDeducedType() : QualType();
   10717         if (!U.isNull()) {
   10718           CanQualType UCanon = Context.getCanonicalType(U);
   10719           if (Deduced.isNull()) {
   10720             Deduced = U;
   10721             DeducedCanon = UCanon;
   10722             DeducedDecl = D;
   10723           } else if (DeducedCanon != UCanon) {
   10724             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
   10725                  diag::err_auto_different_deductions)
   10726               << (unsigned)AT->getKeyword()
   10727               << Deduced << DeducedDecl->getDeclName()
   10728               << U << D->getDeclName()
   10729               << DeducedDecl->getInit()->getSourceRange()
   10730               << D->getInit()->getSourceRange();
   10731             D->setInvalidDecl();
   10732             break;
   10733           }
   10734         }
   10735       }
   10736     }
   10737   }
   10738 
   10739   ActOnDocumentableDecls(Group);
   10740 
   10741   return DeclGroupPtrTy::make(
   10742       DeclGroupRef::Create(Context, Group.data(), Group.size()));
   10743 }
   10744 
   10745 void Sema::ActOnDocumentableDecl(Decl *D) {
   10746   ActOnDocumentableDecls(D);
   10747 }
   10748 
   10749 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
   10750   // Don't parse the comment if Doxygen diagnostics are ignored.
   10751   if (Group.empty() || !Group[0])
   10752     return;
   10753 
   10754   if (Diags.isIgnored(diag::warn_doc_param_not_found,
   10755                       Group[0]->getLocation()) &&
   10756       Diags.isIgnored(diag::warn_unknown_comment_command_name,
   10757                       Group[0]->getLocation()))
   10758     return;
   10759 
   10760   if (Group.size() >= 2) {
   10761     // This is a decl group.  Normally it will contain only declarations
   10762     // produced from declarator list.  But in case we have any definitions or
   10763     // additional declaration references:
   10764     //   'typedef struct S {} S;'
   10765     //   'typedef struct S *S;'
   10766     //   'struct S *pS;'
   10767     // FinalizeDeclaratorGroup adds these as separate declarations.
   10768     Decl *MaybeTagDecl = Group[0];
   10769     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
   10770       Group = Group.slice(1);
   10771     }
   10772   }
   10773 
   10774   // See if there are any new comments that are not attached to a decl.
   10775   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
   10776   if (!Comments.empty() &&
   10777       !Comments.back()->isAttached()) {
   10778     // There is at least one comment that not attached to a decl.
   10779     // Maybe it should be attached to one of these decls?
   10780     //
   10781     // Note that this way we pick up not only comments that precede the
   10782     // declaration, but also comments that *follow* the declaration -- thanks to
   10783     // the lookahead in the lexer: we've consumed the semicolon and looked
   10784     // ahead through comments.
   10785     for (unsigned i = 0, e = Group.size(); i != e; ++i)
   10786       Context.getCommentForDecl(Group[i], &PP);
   10787   }
   10788 }
   10789 
   10790 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
   10791 /// to introduce parameters into function prototype scope.
   10792 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
   10793   const DeclSpec &DS = D.getDeclSpec();
   10794 
   10795   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
   10796 
   10797   // C++03 [dcl.stc]p2 also permits 'auto'.
   10798   StorageClass SC = SC_None;
   10799   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   10800     SC = SC_Register;
   10801   } else if (getLangOpts().CPlusPlus &&
   10802              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   10803     SC = SC_Auto;
   10804   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   10805     Diag(DS.getStorageClassSpecLoc(),
   10806          diag::err_invalid_storage_class_in_func_decl);
   10807     D.getMutableDeclSpec().ClearStorageClassSpecs();
   10808   }
   10809 
   10810   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
   10811     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
   10812       << DeclSpec::getSpecifierName(TSCS);
   10813   if (DS.isInlineSpecified())
   10814     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
   10815         << getLangOpts().CPlusPlus1z;
   10816   if (DS.isConstexprSpecified())
   10817     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
   10818       << 0;
   10819   if (DS.isConceptSpecified())
   10820     Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
   10821 
   10822   DiagnoseFunctionSpecifiers(DS);
   10823 
   10824   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   10825   QualType parmDeclType = TInfo->getType();
   10826 
   10827   if (getLangOpts().CPlusPlus) {
   10828     // Check that there are no default arguments inside the type of this
   10829     // parameter.
   10830     CheckExtraCXXDefaultArguments(D);
   10831 
   10832     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   10833     if (D.getCXXScopeSpec().isSet()) {
   10834       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
   10835         << D.getCXXScopeSpec().getRange();
   10836       D.getCXXScopeSpec().clear();
   10837     }
   10838   }
   10839 
   10840   // Ensure we have a valid name
   10841   IdentifierInfo *II = nullptr;
   10842   if (D.hasName()) {
   10843     II = D.getIdentifier();
   10844     if (!II) {
   10845       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
   10846         << GetNameForDeclarator(D).getName();
   10847       D.setInvalidType(true);
   10848     }
   10849   }
   10850 
   10851   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
   10852   if (II) {
   10853     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
   10854                    ForRedeclaration);
   10855     LookupName(R, S);
   10856     if (R.isSingleResult()) {
   10857       NamedDecl *PrevDecl = R.getFoundDecl();
   10858       if (PrevDecl->isTemplateParameter()) {
   10859         // Maybe we will complain about the shadowed template parameter.
   10860         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   10861         // Just pretend that we didn't see the previous declaration.
   10862         PrevDecl = nullptr;
   10863       } else if (S->isDeclScope(PrevDecl)) {
   10864         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
   10865         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   10866 
   10867         // Recover by removing the name
   10868         II = nullptr;
   10869         D.SetIdentifier(nullptr, D.getIdentifierLoc());
   10870         D.setInvalidType(true);
   10871       }
   10872     }
   10873   }
   10874 
   10875   // Temporarily put parameter variables in the translation unit, not
   10876   // the enclosing context.  This prevents them from accidentally
   10877   // looking like class members in C++.
   10878   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
   10879                                     D.getLocStart(),
   10880                                     D.getIdentifierLoc(), II,
   10881                                     parmDeclType, TInfo,
   10882                                     SC);
   10883 
   10884   if (D.isInvalidType())
   10885     New->setInvalidDecl();
   10886 
   10887   assert(S->isFunctionPrototypeScope());
   10888   assert(S->getFunctionPrototypeDepth() >= 1);
   10889   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
   10890                     S->getNextFunctionPrototypeIndex());
   10891 
   10892   // Add the parameter declaration into this scope.
   10893   S->AddDecl(New);
   10894   if (II)
   10895     IdResolver.AddDecl(New);
   10896 
   10897   ProcessDeclAttributes(S, New, D);
   10898 
   10899   if (D.getDeclSpec().isModulePrivateSpecified())
   10900     Diag(New->getLocation(), diag::err_module_private_local)
   10901       << 1 << New->getDeclName()
   10902       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   10903       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   10904 
   10905   if (New->hasAttr<BlocksAttr>()) {
   10906     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   10907   }
   10908   return New;
   10909 }
   10910 
   10911 /// \brief Synthesizes a variable for a parameter arising from a
   10912 /// typedef.
   10913 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
   10914                                               SourceLocation Loc,
   10915                                               QualType T) {
   10916   /* FIXME: setting StartLoc == Loc.
   10917      Would it be worth to modify callers so as to provide proper source
   10918      location for the unnamed parameters, embedding the parameter's type? */
   10919   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
   10920                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
   10921                                            SC_None, nullptr);
   10922   Param->setImplicit();
   10923   return Param;
   10924 }
   10925 
   10926 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
   10927   // Don't diagnose unused-parameter errors in template instantiations; we
   10928   // will already have done so in the template itself.
   10929   if (!ActiveTemplateInstantiations.empty())
   10930     return;
   10931 
   10932   for (const ParmVarDecl *Parameter : Parameters) {
   10933     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
   10934         !Parameter->hasAttr<UnusedAttr>()) {
   10935       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
   10936         << Parameter->getDeclName();
   10937     }
   10938   }
   10939 }
   10940 
   10941 void Sema::DiagnoseSizeOfParametersAndReturnValue(
   10942     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
   10943   if (LangOpts.NumLargeByValueCopy == 0) // No check.
   10944     return;
   10945 
   10946   // Warn if the return value is pass-by-value and larger than the specified
   10947   // threshold.
   10948   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
   10949     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
   10950     if (Size > LangOpts.NumLargeByValueCopy)
   10951       Diag(D->getLocation(), diag::warn_return_value_size)
   10952           << D->getDeclName() << Size;
   10953   }
   10954 
   10955   // Warn if any parameter is pass-by-value and larger than the specified
   10956   // threshold.
   10957   for (const ParmVarDecl *Parameter : Parameters) {
   10958     QualType T = Parameter->getType();
   10959     if (T->isDependentType() || !T.isPODType(Context))
   10960       continue;
   10961     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
   10962     if (Size > LangOpts.NumLargeByValueCopy)
   10963       Diag(Parameter->getLocation(), diag::warn_parameter_size)
   10964           << Parameter->getDeclName() << Size;
   10965   }
   10966 }
   10967 
   10968 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
   10969                                   SourceLocation NameLoc, IdentifierInfo *Name,
   10970                                   QualType T, TypeSourceInfo *TSInfo,
   10971                                   StorageClass SC) {
   10972   // In ARC, infer a lifetime qualifier for appropriate parameter types.
   10973   if (getLangOpts().ObjCAutoRefCount &&
   10974       T.getObjCLifetime() == Qualifiers::OCL_None &&
   10975       T->isObjCLifetimeType()) {
   10976 
   10977     Qualifiers::ObjCLifetime lifetime;
   10978 
   10979     // Special cases for arrays:
   10980     //   - if it's const, use __unsafe_unretained
   10981     //   - otherwise, it's an error
   10982     if (T->isArrayType()) {
   10983       if (!T.isConstQualified()) {
   10984         DelayedDiagnostics.add(
   10985             sema::DelayedDiagnostic::makeForbiddenType(
   10986             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
   10987       }
   10988       lifetime = Qualifiers::OCL_ExplicitNone;
   10989     } else {
   10990       lifetime = T->getObjCARCImplicitLifetime();
   10991     }
   10992     T = Context.getLifetimeQualifiedType(T, lifetime);
   10993   }
   10994 
   10995   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
   10996                                          Context.getAdjustedParameterType(T),
   10997                                          TSInfo, SC, nullptr);
   10998 
   10999   // Parameters can not be abstract class types.
   11000   // For record types, this is done by the AbstractClassUsageDiagnoser once
   11001   // the class has been completely parsed.
   11002   if (!CurContext->isRecord() &&
   11003       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
   11004                              AbstractParamType))
   11005     New->setInvalidDecl();
   11006 
   11007   // Parameter declarators cannot be interface types. All ObjC objects are
   11008   // passed by reference.
   11009   if (T->isObjCObjectType()) {
   11010     SourceLocation TypeEndLoc =
   11011         getLocForEndOfToken(TSInfo->getTypeLoc().getLocEnd());
   11012     Diag(NameLoc,
   11013          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
   11014       << FixItHint::CreateInsertion(TypeEndLoc, "*");
   11015     T = Context.getObjCObjectPointerType(T);
   11016     New->setType(T);
   11017   }
   11018 
   11019   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   11020   // duration shall not be qualified by an address-space qualifier."
   11021   // Since all parameters have automatic store duration, they can not have
   11022   // an address space.
   11023   if (T.getAddressSpace() != 0) {
   11024     // OpenCL allows function arguments declared to be an array of a type
   11025     // to be qualified with an address space.
   11026     if (!(getLangOpts().OpenCL && T->isArrayType())) {
   11027       Diag(NameLoc, diag::err_arg_with_address_space);
   11028       New->setInvalidDecl();
   11029     }
   11030   }
   11031 
   11032   return New;
   11033 }
   11034 
   11035 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
   11036                                            SourceLocation LocAfterDecls) {
   11037   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
   11038 
   11039   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
   11040   // for a K&R function.
   11041   if (!FTI.hasPrototype) {
   11042     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
   11043       --i;
   11044       if (FTI.Params[i].Param == nullptr) {
   11045         SmallString<256> Code;
   11046         llvm::raw_svector_ostream(Code)
   11047             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
   11048         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
   11049             << FTI.Params[i].Ident
   11050             << FixItHint::CreateInsertion(LocAfterDecls, Code);
   11051 
   11052         // Implicitly declare the argument as type 'int' for lack of a better
   11053         // type.
   11054         AttributeFactory attrs;
   11055         DeclSpec DS(attrs);
   11056         const char* PrevSpec; // unused
   11057         unsigned DiagID; // unused
   11058         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
   11059                            DiagID, Context.getPrintingPolicy());
   11060         // Use the identifier location for the type source range.
   11061         DS.SetRangeStart(FTI.Params[i].IdentLoc);
   11062         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
   11063         Declarator ParamD(DS, Declarator::KNRTypeListContext);
   11064         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
   11065         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
   11066       }
   11067     }
   11068   }
   11069 }
   11070 
   11071 Decl *
   11072 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
   11073                               MultiTemplateParamsArg TemplateParameterLists,
   11074                               SkipBodyInfo *SkipBody) {
   11075   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
   11076   assert(D.isFunctionDeclarator() && "Not a function declarator!");
   11077   Scope *ParentScope = FnBodyScope->getParent();
   11078 
   11079   D.setFunctionDefinitionKind(FDK_Definition);
   11080   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
   11081   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
   11082 }
   11083 
   11084 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
   11085   Consumer.HandleInlineFunctionDefinition(D);
   11086 }
   11087 
   11088 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
   11089                              const FunctionDecl*& PossibleZeroParamPrototype) {
   11090   // Don't warn about invalid declarations.
   11091   if (FD->isInvalidDecl())
   11092     return false;
   11093 
   11094   // Or declarations that aren't global.
   11095   if (!FD->isGlobal())
   11096     return false;
   11097 
   11098   // Don't warn about C++ member functions.
   11099   if (isa<CXXMethodDecl>(FD))
   11100     return false;
   11101 
   11102   // Don't warn about 'main'.
   11103   if (FD->isMain())
   11104     return false;
   11105 
   11106   // Don't warn about inline functions.
   11107   if (FD->isInlined())
   11108     return false;
   11109 
   11110   // Don't warn about function templates.
   11111   if (FD->getDescribedFunctionTemplate())
   11112     return false;
   11113 
   11114   // Don't warn about function template specializations.
   11115   if (FD->isFunctionTemplateSpecialization())
   11116     return false;
   11117 
   11118   // Don't warn for OpenCL kernels.
   11119   if (FD->hasAttr<OpenCLKernelAttr>())
   11120     return false;
   11121 
   11122   // Don't warn on explicitly deleted functions.
   11123   if (FD->isDeleted())
   11124     return false;
   11125 
   11126   bool MissingPrototype = true;
   11127   for (const FunctionDecl *Prev = FD->getPreviousDecl();
   11128        Prev; Prev = Prev->getPreviousDecl()) {
   11129     // Ignore any declarations that occur in function or method
   11130     // scope, because they aren't visible from the header.
   11131     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
   11132       continue;
   11133 
   11134     MissingPrototype = !Prev->getType()->isFunctionProtoType();
   11135     if (FD->getNumParams() == 0)
   11136       PossibleZeroParamPrototype = Prev;
   11137     break;
   11138   }
   11139 
   11140   return MissingPrototype;
   11141 }
   11142 
   11143 void
   11144 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
   11145                                    const FunctionDecl *EffectiveDefinition,
   11146                                    SkipBodyInfo *SkipBody) {
   11147   // Don't complain if we're in GNU89 mode and the previous definition
   11148   // was an extern inline function.
   11149   const FunctionDecl *Definition = EffectiveDefinition;
   11150   if (!Definition)
   11151     if (!FD->isDefined(Definition))
   11152       return;
   11153 
   11154   if (canRedefineFunction(Definition, getLangOpts()))
   11155     return;
   11156 
   11157   // If we don't have a visible definition of the function, and it's inline or
   11158   // a template, skip the new definition.
   11159   if (SkipBody && !hasVisibleDefinition(Definition) &&
   11160       (Definition->getFormalLinkage() == InternalLinkage ||
   11161        Definition->isInlined() ||
   11162        Definition->getDescribedFunctionTemplate() ||
   11163        Definition->getNumTemplateParameterLists())) {
   11164     SkipBody->ShouldSkip = true;
   11165     if (auto *TD = Definition->getDescribedFunctionTemplate())
   11166       makeMergedDefinitionVisible(TD, FD->getLocation());
   11167     else
   11168       makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition),
   11169                                   FD->getLocation());
   11170     return;
   11171   }
   11172 
   11173   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
   11174       Definition->getStorageClass() == SC_Extern)
   11175     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
   11176         << FD->getDeclName() << getLangOpts().CPlusPlus;
   11177   else
   11178     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
   11179 
   11180   Diag(Definition->getLocation(), diag::note_previous_definition);
   11181   FD->setInvalidDecl();
   11182 }
   11183 
   11184 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
   11185                                    Sema &S) {
   11186   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
   11187 
   11188   LambdaScopeInfo *LSI = S.PushLambdaScope();
   11189   LSI->CallOperator = CallOperator;
   11190   LSI->Lambda = LambdaClass;
   11191   LSI->ReturnType = CallOperator->getReturnType();
   11192   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
   11193 
   11194   if (LCD == LCD_None)
   11195     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
   11196   else if (LCD == LCD_ByCopy)
   11197     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
   11198   else if (LCD == LCD_ByRef)
   11199     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
   11200   DeclarationNameInfo DNI = CallOperator->getNameInfo();
   11201 
   11202   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
   11203   LSI->Mutable = !CallOperator->isConst();
   11204 
   11205   // Add the captures to the LSI so they can be noted as already
   11206   // captured within tryCaptureVar.
   11207   auto I = LambdaClass->field_begin();
   11208   for (const auto &C : LambdaClass->captures()) {
   11209     if (C.capturesVariable()) {
   11210       VarDecl *VD = C.getCapturedVar();
   11211       if (VD->isInitCapture())
   11212         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
   11213       QualType CaptureType = VD->getType();
   11214       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
   11215       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
   11216           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
   11217           /*EllipsisLoc*/C.isPackExpansion()
   11218                          ? C.getEllipsisLoc() : SourceLocation(),
   11219           CaptureType, /*Expr*/ nullptr);
   11220 
   11221     } else if (C.capturesThis()) {
   11222       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
   11223                               /*Expr*/ nullptr,
   11224                               C.getCaptureKind() == LCK_StarThis);
   11225     } else {
   11226       LSI->addVLATypeCapture(C.getLocation(), I->getType());
   11227     }
   11228     ++I;
   11229   }
   11230 }
   11231 
   11232 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
   11233                                     SkipBodyInfo *SkipBody) {
   11234   // Clear the last template instantiation error context.
   11235   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
   11236 
   11237   if (!D)
   11238     return D;
   11239   FunctionDecl *FD = nullptr;
   11240 
   11241   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
   11242     FD = FunTmpl->getTemplatedDecl();
   11243   else
   11244     FD = cast<FunctionDecl>(D);
   11245 
   11246   // See if this is a redefinition.
   11247   if (!FD->isLateTemplateParsed()) {
   11248     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
   11249 
   11250     // If we're skipping the body, we're done. Don't enter the scope.
   11251     if (SkipBody && SkipBody->ShouldSkip)
   11252       return D;
   11253   }
   11254 
   11255   // If we are instantiating a generic lambda call operator, push
   11256   // a LambdaScopeInfo onto the function stack.  But use the information
   11257   // that's already been calculated (ActOnLambdaExpr) to prime the current
   11258   // LambdaScopeInfo.
   11259   // When the template operator is being specialized, the LambdaScopeInfo,
   11260   // has to be properly restored so that tryCaptureVariable doesn't try
   11261   // and capture any new variables. In addition when calculating potential
   11262   // captures during transformation of nested lambdas, it is necessary to
   11263   // have the LSI properly restored.
   11264   if (isGenericLambdaCallOperatorSpecialization(FD)) {
   11265     assert(ActiveTemplateInstantiations.size() &&
   11266       "There should be an active template instantiation on the stack "
   11267       "when instantiating a generic lambda!");
   11268     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
   11269   }
   11270   else
   11271     // Enter a new function scope
   11272     PushFunctionScope();
   11273 
   11274   // Builtin functions cannot be defined.
   11275   if (unsigned BuiltinID = FD->getBuiltinID()) {
   11276     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
   11277         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
   11278       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
   11279       FD->setInvalidDecl();
   11280     }
   11281   }
   11282 
   11283   // The return type of a function definition must be complete
   11284   // (C99 6.9.1p3, C++ [dcl.fct]p6).
   11285   QualType ResultType = FD->getReturnType();
   11286   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
   11287       !FD->isInvalidDecl() &&
   11288       RequireCompleteType(FD->getLocation(), ResultType,
   11289                           diag::err_func_def_incomplete_result))
   11290     FD->setInvalidDecl();
   11291 
   11292   if (FnBodyScope)
   11293     PushDeclContext(FnBodyScope, FD);
   11294 
   11295   // Check the validity of our function parameters
   11296   CheckParmsForFunctionDef(FD->parameters(),
   11297                            /*CheckParameterNames=*/true);
   11298 
   11299   // Introduce our parameters into the function scope
   11300   for (auto Param : FD->parameters()) {
   11301     Param->setOwningFunction(FD);
   11302 
   11303     // If this has an identifier, add it to the scope stack.
   11304     if (Param->getIdentifier() && FnBodyScope) {
   11305       CheckShadow(FnBodyScope, Param);
   11306 
   11307       PushOnScopeChains(Param, FnBodyScope);
   11308     }
   11309   }
   11310 
   11311   // If we had any tags defined in the function prototype,
   11312   // introduce them into the function scope.
   11313   if (FnBodyScope) {
   11314     for (ArrayRef<NamedDecl *>::iterator
   11315              I = FD->getDeclsInPrototypeScope().begin(),
   11316              E = FD->getDeclsInPrototypeScope().end();
   11317          I != E; ++I) {
   11318       NamedDecl *D = *I;
   11319 
   11320       // Some of these decls (like enums) may have been pinned to the
   11321       // translation unit for lack of a real context earlier. If so, remove
   11322       // from the translation unit and reattach to the current context.
   11323       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
   11324         // Is the decl actually in the context?
   11325         if (Context.getTranslationUnitDecl()->containsDecl(D))
   11326           Context.getTranslationUnitDecl()->removeDecl(D);
   11327         // Either way, reassign the lexical decl context to our FunctionDecl.
   11328         D->setLexicalDeclContext(CurContext);
   11329       }
   11330 
   11331       // If the decl has a non-null name, make accessible in the current scope.
   11332       if (!D->getName().empty())
   11333         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
   11334 
   11335       // Similarly, dive into enums and fish their constants out, making them
   11336       // accessible in this scope.
   11337       if (auto *ED = dyn_cast<EnumDecl>(D)) {
   11338         for (auto *EI : ED->enumerators())
   11339           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
   11340       }
   11341     }
   11342   }
   11343 
   11344   // Ensure that the function's exception specification is instantiated.
   11345   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
   11346     ResolveExceptionSpec(D->getLocation(), FPT);
   11347 
   11348   // dllimport cannot be applied to non-inline function definitions.
   11349   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
   11350       !FD->isTemplateInstantiation()) {
   11351     assert(!FD->hasAttr<DLLExportAttr>());
   11352     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
   11353     FD->setInvalidDecl();
   11354     return D;
   11355   }
   11356   // We want to attach documentation to original Decl (which might be
   11357   // a function template).
   11358   ActOnDocumentableDecl(D);
   11359   if (getCurLexicalContext()->isObjCContainer() &&
   11360       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
   11361       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
   11362     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
   11363 
   11364   return D;
   11365 }
   11366 
   11367 /// \brief Given the set of return statements within a function body,
   11368 /// compute the variables that are subject to the named return value
   11369 /// optimization.
   11370 ///
   11371 /// Each of the variables that is subject to the named return value
   11372 /// optimization will be marked as NRVO variables in the AST, and any
   11373 /// return statement that has a marked NRVO variable as its NRVO candidate can
   11374 /// use the named return value optimization.
   11375 ///
   11376 /// This function applies a very simplistic algorithm for NRVO: if every return
   11377 /// statement in the scope of a variable has the same NRVO candidate, that
   11378 /// candidate is an NRVO variable.
   11379 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
   11380   ReturnStmt **Returns = Scope->Returns.data();
   11381 
   11382   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
   11383     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
   11384       if (!NRVOCandidate->isNRVOVariable())
   11385         Returns[I]->setNRVOCandidate(nullptr);
   11386     }
   11387   }
   11388 }
   11389 
   11390 bool Sema::canDelayFunctionBody(const Declarator &D) {
   11391   // We can't delay parsing the body of a constexpr function template (yet).
   11392   if (D.getDeclSpec().isConstexprSpecified())
   11393     return false;
   11394 
   11395   // We can't delay parsing the body of a function template with a deduced
   11396   // return type (yet).
   11397   if (D.getDeclSpec().containsPlaceholderType()) {
   11398     // If the placeholder introduces a non-deduced trailing return type,
   11399     // we can still delay parsing it.
   11400     if (D.getNumTypeObjects()) {
   11401       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
   11402       if (Outer.Kind == DeclaratorChunk::Function &&
   11403           Outer.Fun.hasTrailingReturnType()) {
   11404         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
   11405         return Ty.isNull() || !Ty->isUndeducedType();
   11406       }
   11407     }
   11408     return false;
   11409   }
   11410 
   11411   return true;
   11412 }
   11413 
   11414 bool Sema::canSkipFunctionBody(Decl *D) {
   11415   // We cannot skip the body of a function (or function template) which is
   11416   // constexpr, since we may need to evaluate its body in order to parse the
   11417   // rest of the file.
   11418   // We cannot skip the body of a function with an undeduced return type,
   11419   // because any callers of that function need to know the type.
   11420   if (const FunctionDecl *FD = D->getAsFunction())
   11421     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
   11422       return false;
   11423   return Consumer.shouldSkipFunctionBody(D);
   11424 }
   11425 
   11426 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
   11427   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
   11428     FD->setHasSkippedBody();
   11429   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
   11430     MD->setHasSkippedBody();
   11431   return Decl;
   11432 }
   11433 
   11434 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
   11435   return ActOnFinishFunctionBody(D, BodyArg, false);
   11436 }
   11437 
   11438 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
   11439                                     bool IsInstantiation) {
   11440   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
   11441 
   11442   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   11443   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
   11444 
   11445   if (getLangOpts().Coroutines && !getCurFunction()->CoroutineStmts.empty())
   11446     CheckCompletedCoroutineBody(FD, Body);
   11447 
   11448   if (FD) {
   11449     FD->setBody(Body);
   11450 
   11451     if (getLangOpts().CPlusPlus14) {
   11452       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
   11453           FD->getReturnType()->isUndeducedType()) {
   11454         // If the function has a deduced result type but contains no 'return'
   11455         // statements, the result type as written must be exactly 'auto', and
   11456         // the deduced result type is 'void'.
   11457         if (!FD->getReturnType()->getAs<AutoType>()) {
   11458           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
   11459               << FD->getReturnType();
   11460           FD->setInvalidDecl();
   11461         } else {
   11462           // Substitute 'void' for the 'auto' in the type.
   11463           TypeLoc ResultType = getReturnTypeLoc(FD);
   11464           Context.adjustDeducedFunctionResultType(
   11465               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
   11466         }
   11467       }
   11468     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
   11469       // In C++11, we don't use 'auto' deduction rules for lambda call
   11470       // operators because we don't support return type deduction.
   11471       auto *LSI = getCurLambda();
   11472       if (LSI->HasImplicitReturnType) {
   11473         deduceClosureReturnType(*LSI);
   11474 
   11475         // C++11 [expr.prim.lambda]p4:
   11476         //   [...] if there are no return statements in the compound-statement
   11477         //   [the deduced type is] the type void
   11478         QualType RetType =
   11479             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
   11480 
   11481         // Update the return type to the deduced type.
   11482         const FunctionProtoType *Proto =
   11483             FD->getType()->getAs<FunctionProtoType>();
   11484         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
   11485                                             Proto->getExtProtoInfo()));
   11486       }
   11487     }
   11488 
   11489     // The only way to be included in UndefinedButUsed is if there is an
   11490     // ODR use before the definition. Avoid the expensive map lookup if this
   11491     // is the first declaration.
   11492     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
   11493       if (!FD->isExternallyVisible())
   11494         UndefinedButUsed.erase(FD);
   11495       else if (FD->isInlined() &&
   11496                !LangOpts.GNUInline &&
   11497                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
   11498         UndefinedButUsed.erase(FD);
   11499     }
   11500 
   11501     // If the function implicitly returns zero (like 'main') or is naked,
   11502     // don't complain about missing return statements.
   11503     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
   11504       WP.disableCheckFallThrough();
   11505 
   11506     // MSVC permits the use of pure specifier (=0) on function definition,
   11507     // defined at class scope, warn about this non-standard construct.
   11508     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
   11509       Diag(FD->getLocation(), diag::ext_pure_function_definition);
   11510 
   11511     if (!FD->isInvalidDecl()) {
   11512       // Don't diagnose unused parameters of defaulted or deleted functions.
   11513       if (!FD->isDeleted() && !FD->isDefaulted())
   11514         DiagnoseUnusedParameters(FD->parameters());
   11515       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
   11516                                              FD->getReturnType(), FD);
   11517 
   11518       // If this is a structor, we need a vtable.
   11519       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
   11520         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
   11521       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
   11522         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
   11523 
   11524       // Try to apply the named return value optimization. We have to check
   11525       // if we can do this here because lambdas keep return statements around
   11526       // to deduce an implicit return type.
   11527       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
   11528           !FD->isDependentContext())
   11529         computeNRVO(Body, getCurFunction());
   11530     }
   11531 
   11532     // GNU warning -Wmissing-prototypes:
   11533     //   Warn if a global function is defined without a previous
   11534     //   prototype declaration. This warning is issued even if the
   11535     //   definition itself provides a prototype. The aim is to detect
   11536     //   global functions that fail to be declared in header files.
   11537     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
   11538     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
   11539       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
   11540 
   11541       if (PossibleZeroParamPrototype) {
   11542         // We found a declaration that is not a prototype,
   11543         // but that could be a zero-parameter prototype
   11544         if (TypeSourceInfo *TI =
   11545                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
   11546           TypeLoc TL = TI->getTypeLoc();
   11547           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
   11548             Diag(PossibleZeroParamPrototype->getLocation(),
   11549                  diag::note_declaration_not_a_prototype)
   11550                 << PossibleZeroParamPrototype
   11551                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
   11552         }
   11553       }
   11554     }
   11555 
   11556     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
   11557       const CXXMethodDecl *KeyFunction;
   11558       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
   11559           MD->isVirtual() &&
   11560           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
   11561           MD == KeyFunction->getCanonicalDecl()) {
   11562         // Update the key-function state if necessary for this ABI.
   11563         if (FD->isInlined() &&
   11564             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
   11565           Context.setNonKeyFunction(MD);
   11566 
   11567           // If the newly-chosen key function is already defined, then we
   11568           // need to mark the vtable as used retroactively.
   11569           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
   11570           const FunctionDecl *Definition;
   11571           if (KeyFunction && KeyFunction->isDefined(Definition))
   11572             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
   11573         } else {
   11574           // We just defined they key function; mark the vtable as used.
   11575           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
   11576         }
   11577       }
   11578     }
   11579 
   11580     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
   11581            "Function parsing confused");
   11582   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
   11583     assert(MD == getCurMethodDecl() && "Method parsing confused");
   11584     MD->setBody(Body);
   11585     if (!MD->isInvalidDecl()) {
   11586       DiagnoseUnusedParameters(MD->parameters());
   11587       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
   11588                                              MD->getReturnType(), MD);
   11589 
   11590       if (Body)
   11591         computeNRVO(Body, getCurFunction());
   11592     }
   11593     if (getCurFunction()->ObjCShouldCallSuper) {
   11594       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
   11595         << MD->getSelector().getAsString();
   11596       getCurFunction()->ObjCShouldCallSuper = false;
   11597     }
   11598     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
   11599       const ObjCMethodDecl *InitMethod = nullptr;
   11600       bool isDesignated =
   11601           MD->isDesignatedInitializerForTheInterface(&InitMethod);
   11602       assert(isDesignated && InitMethod);
   11603       (void)isDesignated;
   11604 
   11605       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
   11606         auto IFace = MD->getClassInterface();
   11607         if (!IFace)
   11608           return false;
   11609         auto SuperD = IFace->getSuperClass();
   11610         if (!SuperD)
   11611           return false;
   11612         return SuperD->getIdentifier() ==
   11613             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
   11614       };
   11615       // Don't issue this warning for unavailable inits or direct subclasses
   11616       // of NSObject.
   11617       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
   11618         Diag(MD->getLocation(),
   11619              diag::warn_objc_designated_init_missing_super_call);
   11620         Diag(InitMethod->getLocation(),
   11621              diag::note_objc_designated_init_marked_here);
   11622       }
   11623       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
   11624     }
   11625     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
   11626       // Don't issue this warning for unavaialable inits.
   11627       if (!MD->isUnavailable())
   11628         Diag(MD->getLocation(),
   11629              diag::warn_objc_secondary_init_missing_init_call);
   11630       getCurFunction()->ObjCWarnForNoInitDelegation = false;
   11631     }
   11632   } else {
   11633     return nullptr;
   11634   }
   11635 
   11636   assert(!getCurFunction()->ObjCShouldCallSuper &&
   11637          "This should only be set for ObjC methods, which should have been "
   11638          "handled in the block above.");
   11639 
   11640   // Verify and clean out per-function state.
   11641   if (Body && (!FD || !FD->isDefaulted())) {
   11642     // C++ constructors that have function-try-blocks can't have return
   11643     // statements in the handlers of that block. (C++ [except.handle]p14)
   11644     // Verify this.
   11645     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
   11646       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
   11647 
   11648     // Verify that gotos and switch cases don't jump into scopes illegally.
   11649     if (getCurFunction()->NeedsScopeChecking() &&
   11650         !PP.isCodeCompletionEnabled())
   11651       DiagnoseInvalidJumps(Body);
   11652 
   11653     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
   11654       if (!Destructor->getParent()->isDependentType())
   11655         CheckDestructor(Destructor);
   11656 
   11657       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
   11658                                              Destructor->getParent());
   11659     }
   11660 
   11661     // If any errors have occurred, clear out any temporaries that may have
   11662     // been leftover. This ensures that these temporaries won't be picked up for
   11663     // deletion in some later function.
   11664     if (getDiagnostics().hasErrorOccurred() ||
   11665         getDiagnostics().getSuppressAllDiagnostics()) {
   11666       DiscardCleanupsInEvaluationContext();
   11667     }
   11668     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
   11669         !isa<FunctionTemplateDecl>(dcl)) {
   11670       // Since the body is valid, issue any analysis-based warnings that are
   11671       // enabled.
   11672       ActivePolicy = &WP;
   11673     }
   11674 
   11675     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
   11676         (!CheckConstexprFunctionDecl(FD) ||
   11677          !CheckConstexprFunctionBody(FD, Body)))
   11678       FD->setInvalidDecl();
   11679 
   11680     if (FD && FD->hasAttr<NakedAttr>()) {
   11681       for (const Stmt *S : Body->children()) {
   11682         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
   11683           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
   11684           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
   11685           FD->setInvalidDecl();
   11686           break;
   11687         }
   11688       }
   11689     }
   11690 
   11691     assert(ExprCleanupObjects.size() ==
   11692                ExprEvalContexts.back().NumCleanupObjects &&
   11693            "Leftover temporaries in function");
   11694     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
   11695     assert(MaybeODRUseExprs.empty() &&
   11696            "Leftover expressions for odr-use checking");
   11697   }
   11698 
   11699   if (!IsInstantiation)
   11700     PopDeclContext();
   11701 
   11702   PopFunctionScopeInfo(ActivePolicy, dcl);
   11703   // If any errors have occurred, clear out any temporaries that may have
   11704   // been leftover. This ensures that these temporaries won't be picked up for
   11705   // deletion in some later function.
   11706   if (getDiagnostics().hasErrorOccurred()) {
   11707     DiscardCleanupsInEvaluationContext();
   11708   }
   11709 
   11710   return dcl;
   11711 }
   11712 
   11713 /// When we finish delayed parsing of an attribute, we must attach it to the
   11714 /// relevant Decl.
   11715 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
   11716                                        ParsedAttributes &Attrs) {
   11717   // Always attach attributes to the underlying decl.
   11718   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
   11719     D = TD->getTemplatedDecl();
   11720   ProcessDeclAttributeList(S, D, Attrs.getList());
   11721 
   11722   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
   11723     if (Method->isStatic())
   11724       checkThisInStaticMemberFunctionAttributes(Method);
   11725 }
   11726 
   11727 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
   11728 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
   11729 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
   11730                                           IdentifierInfo &II, Scope *S) {
   11731   // Before we produce a declaration for an implicitly defined
   11732   // function, see whether there was a locally-scoped declaration of
   11733   // this name as a function or variable. If so, use that
   11734   // (non-visible) declaration, and complain about it.
   11735   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
   11736     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
   11737     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
   11738     return ExternCPrev;
   11739   }
   11740 
   11741   // Extension in C99.  Legal in C90, but warn about it.
   11742   unsigned diag_id;
   11743   if (II.getName().startswith("__builtin_"))
   11744     diag_id = diag::warn_builtin_unknown;
   11745   else if (getLangOpts().C99)
   11746     diag_id = diag::ext_implicit_function_decl;
   11747   else
   11748     diag_id = diag::warn_implicit_function_decl;
   11749   Diag(Loc, diag_id) << &II;
   11750 
   11751   // Because typo correction is expensive, only do it if the implicit
   11752   // function declaration is going to be treated as an error.
   11753   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
   11754     TypoCorrection Corrected;
   11755     if (S &&
   11756         (Corrected = CorrectTypo(
   11757              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
   11758              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
   11759       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
   11760                    /*ErrorRecovery*/false);
   11761   }
   11762 
   11763   // Set a Declarator for the implicit definition: int foo();
   11764   const char *Dummy;
   11765   AttributeFactory attrFactory;
   11766   DeclSpec DS(attrFactory);
   11767   unsigned DiagID;
   11768   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
   11769                                   Context.getPrintingPolicy());
   11770   (void)Error; // Silence warning.
   11771   assert(!Error && "Error setting up implicit decl!");
   11772   SourceLocation NoLoc;
   11773   Declarator D(DS, Declarator::BlockContext);
   11774   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
   11775                                              /*IsAmbiguous=*/false,
   11776                                              /*LParenLoc=*/NoLoc,
   11777                                              /*Params=*/nullptr,
   11778                                              /*NumParams=*/0,
   11779                                              /*EllipsisLoc=*/NoLoc,
   11780                                              /*RParenLoc=*/NoLoc,
   11781                                              /*TypeQuals=*/0,
   11782                                              /*RefQualifierIsLvalueRef=*/true,
   11783                                              /*RefQualifierLoc=*/NoLoc,
   11784                                              /*ConstQualifierLoc=*/NoLoc,
   11785                                              /*VolatileQualifierLoc=*/NoLoc,
   11786                                              /*RestrictQualifierLoc=*/NoLoc,
   11787                                              /*MutableLoc=*/NoLoc,
   11788                                              EST_None,
   11789                                              /*ESpecRange=*/SourceRange(),
   11790                                              /*Exceptions=*/nullptr,
   11791                                              /*ExceptionRanges=*/nullptr,
   11792                                              /*NumExceptions=*/0,
   11793                                              /*NoexceptExpr=*/nullptr,
   11794                                              /*ExceptionSpecTokens=*/nullptr,
   11795                                              Loc, Loc, D),
   11796                 DS.getAttributes(),
   11797                 SourceLocation());
   11798   D.SetIdentifier(&II, Loc);
   11799 
   11800   // Insert this function into translation-unit scope.
   11801 
   11802   DeclContext *PrevDC = CurContext;
   11803   CurContext = Context.getTranslationUnitDecl();
   11804 
   11805   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
   11806   FD->setImplicit();
   11807 
   11808   CurContext = PrevDC;
   11809 
   11810   AddKnownFunctionAttributes(FD);
   11811 
   11812   return FD;
   11813 }
   11814 
   11815 /// \brief Adds any function attributes that we know a priori based on
   11816 /// the declaration of this function.
   11817 ///
   11818 /// These attributes can apply both to implicitly-declared builtins
   11819 /// (like __builtin___printf_chk) or to library-declared functions
   11820 /// like NSLog or printf.
   11821 ///
   11822 /// We need to check for duplicate attributes both here and where user-written
   11823 /// attributes are applied to declarations.
   11824 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
   11825   if (FD->isInvalidDecl())
   11826     return;
   11827 
   11828   // If this is a built-in function, map its builtin attributes to
   11829   // actual attributes.
   11830   if (unsigned BuiltinID = FD->getBuiltinID()) {
   11831     // Handle printf-formatting attributes.
   11832     unsigned FormatIdx;
   11833     bool HasVAListArg;
   11834     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
   11835       if (!FD->hasAttr<FormatAttr>()) {
   11836         const char *fmt = "printf";
   11837         unsigned int NumParams = FD->getNumParams();
   11838         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
   11839             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
   11840           fmt = "NSString";
   11841         FD->addAttr(FormatAttr::CreateImplicit(Context,
   11842                                                &Context.Idents.get(fmt),
   11843                                                FormatIdx+1,
   11844                                                HasVAListArg ? 0 : FormatIdx+2,
   11845                                                FD->getLocation()));
   11846       }
   11847     }
   11848     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
   11849                                              HasVAListArg)) {
   11850      if (!FD->hasAttr<FormatAttr>())
   11851        FD->addAttr(FormatAttr::CreateImplicit(Context,
   11852                                               &Context.Idents.get("scanf"),
   11853                                               FormatIdx+1,
   11854                                               HasVAListArg ? 0 : FormatIdx+2,
   11855                                               FD->getLocation()));
   11856     }
   11857 
   11858     // Mark const if we don't care about errno and that is the only
   11859     // thing preventing the function from being const. This allows
   11860     // IRgen to use LLVM intrinsics for such functions.
   11861     if (!getLangOpts().MathErrno &&
   11862         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
   11863       if (!FD->hasAttr<ConstAttr>())
   11864         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
   11865     }
   11866 
   11867     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
   11868         !FD->hasAttr<ReturnsTwiceAttr>())
   11869       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
   11870                                          FD->getLocation()));
   11871     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
   11872       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
   11873     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
   11874       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
   11875     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
   11876       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
   11877     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
   11878         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
   11879       // Add the appropriate attribute, depending on the CUDA compilation mode
   11880       // and which target the builtin belongs to. For example, during host
   11881       // compilation, aux builtins are __device__, while the rest are __host__.
   11882       if (getLangOpts().CUDAIsDevice !=
   11883           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
   11884         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
   11885       else
   11886         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
   11887     }
   11888   }
   11889 
   11890   // If C++ exceptions are enabled but we are told extern "C" functions cannot
   11891   // throw, add an implicit nothrow attribute to any extern "C" function we come
   11892   // across.
   11893   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
   11894       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
   11895     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
   11896     if (!FPT || FPT->getExceptionSpecType() == EST_None)
   11897       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
   11898   }
   11899 
   11900   IdentifierInfo *Name = FD->getIdentifier();
   11901   if (!Name)
   11902     return;
   11903   if ((!getLangOpts().CPlusPlus &&
   11904        FD->getDeclContext()->isTranslationUnit()) ||
   11905       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
   11906        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
   11907        LinkageSpecDecl::lang_c)) {
   11908     // Okay: this could be a libc/libm/Objective-C function we know
   11909     // about.
   11910   } else
   11911     return;
   11912 
   11913   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
   11914     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
   11915     // target-specific builtins, perhaps?
   11916     if (!FD->hasAttr<FormatAttr>())
   11917       FD->addAttr(FormatAttr::CreateImplicit(Context,
   11918                                              &Context.Idents.get("printf"), 2,
   11919                                              Name->isStr("vasprintf") ? 0 : 3,
   11920                                              FD->getLocation()));
   11921   }
   11922 
   11923   if (Name->isStr("__CFStringMakeConstantString")) {
   11924     // We already have a __builtin___CFStringMakeConstantString,
   11925     // but builds that use -fno-constant-cfstrings don't go through that.
   11926     if (!FD->hasAttr<FormatArgAttr>())
   11927       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
   11928                                                 FD->getLocation()));
   11929   }
   11930 }
   11931 
   11932 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
   11933                                     TypeSourceInfo *TInfo) {
   11934   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
   11935   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
   11936 
   11937   if (!TInfo) {
   11938     assert(D.isInvalidType() && "no declarator info for valid type");
   11939     TInfo = Context.getTrivialTypeSourceInfo(T);
   11940   }
   11941 
   11942   // Scope manipulation handled by caller.
   11943   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
   11944                                            D.getLocStart(),
   11945                                            D.getIdentifierLoc(),
   11946                                            D.getIdentifier(),
   11947                                            TInfo);
   11948 
   11949   // Bail out immediately if we have an invalid declaration.
   11950   if (D.isInvalidType()) {
   11951     NewTD->setInvalidDecl();
   11952     return NewTD;
   11953   }
   11954 
   11955   if (D.getDeclSpec().isModulePrivateSpecified()) {
   11956     if (CurContext->isFunctionOrMethod())
   11957       Diag(NewTD->getLocation(), diag::err_module_private_local)
   11958         << 2 << NewTD->getDeclName()
   11959         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
   11960         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
   11961     else
   11962       NewTD->setModulePrivate();
   11963   }
   11964 
   11965   // C++ [dcl.typedef]p8:
   11966   //   If the typedef declaration defines an unnamed class (or
   11967   //   enum), the first typedef-name declared by the declaration
   11968   //   to be that class type (or enum type) is used to denote the
   11969   //   class type (or enum type) for linkage purposes only.
   11970   // We need to check whether the type was declared in the declaration.
   11971   switch (D.getDeclSpec().getTypeSpecType()) {
   11972   case TST_enum:
   11973   case TST_struct:
   11974   case TST_interface:
   11975   case TST_union:
   11976   case TST_class: {
   11977     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
   11978     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
   11979     break;
   11980   }
   11981 
   11982   default:
   11983     break;
   11984   }
   11985 
   11986   return NewTD;
   11987 }
   11988 
   11989 /// \brief Check that this is a valid underlying type for an enum declaration.
   11990 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
   11991   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
   11992   QualType T = TI->getType();
   11993 
   11994   if (T->isDependentType())
   11995     return false;
   11996 
   11997   if (const BuiltinType *BT = T->getAs<BuiltinType>())
   11998     if (BT->isInteger())
   11999       return false;
   12000 
   12001   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
   12002   return true;
   12003 }
   12004 
   12005 /// Check whether this is a valid redeclaration of a previous enumeration.
   12006 /// \return true if the redeclaration was invalid.
   12007 bool Sema::CheckEnumRedeclaration(
   12008     SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy,
   12009     bool EnumUnderlyingIsImplicit, const EnumDecl *Prev) {
   12010   bool IsFixed = !EnumUnderlyingTy.isNull();
   12011 
   12012   if (IsScoped != Prev->isScoped()) {
   12013     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
   12014       << Prev->isScoped();
   12015     Diag(Prev->getLocation(), diag::note_previous_declaration);
   12016     return true;
   12017   }
   12018 
   12019   if (IsFixed && Prev->isFixed()) {
   12020     if (!EnumUnderlyingTy->isDependentType() &&
   12021         !Prev->getIntegerType()->isDependentType() &&
   12022         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
   12023                                         Prev->getIntegerType())) {
   12024       // TODO: Highlight the underlying type of the redeclaration.
   12025       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
   12026         << EnumUnderlyingTy << Prev->getIntegerType();
   12027       Diag(Prev->getLocation(), diag::note_previous_declaration)
   12028           << Prev->getIntegerTypeRange();
   12029       return true;
   12030     }
   12031   } else if (IsFixed && !Prev->isFixed() && EnumUnderlyingIsImplicit) {
   12032     ;
   12033   } else if (!IsFixed && Prev->isFixed() && !Prev->getIntegerTypeSourceInfo()) {
   12034     ;
   12035   } else if (IsFixed != Prev->isFixed()) {
   12036     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
   12037       << Prev->isFixed();
   12038     Diag(Prev->getLocation(), diag::note_previous_declaration);
   12039     return true;
   12040   }
   12041 
   12042   return false;
   12043 }
   12044 
   12045 /// \brief Get diagnostic %select index for tag kind for
   12046 /// redeclaration diagnostic message.
   12047 /// WARNING: Indexes apply to particular diagnostics only!
   12048 ///
   12049 /// \returns diagnostic %select index.
   12050 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
   12051   switch (Tag) {
   12052   case TTK_Struct: return 0;
   12053   case TTK_Interface: return 1;
   12054   case TTK_Class:  return 2;
   12055   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
   12056   }
   12057 }
   12058 
   12059 /// \brief Determine if tag kind is a class-key compatible with
   12060 /// class for redeclaration (class, struct, or __interface).
   12061 ///
   12062 /// \returns true iff the tag kind is compatible.
   12063 static bool isClassCompatTagKind(TagTypeKind Tag)
   12064 {
   12065   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
   12066 }
   12067 
   12068 /// \brief Determine whether a tag with a given kind is acceptable
   12069 /// as a redeclaration of the given tag declaration.
   12070 ///
   12071 /// \returns true if the new tag kind is acceptable, false otherwise.
   12072 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
   12073                                         TagTypeKind NewTag, bool isDefinition,
   12074                                         SourceLocation NewTagLoc,
   12075                                         const IdentifierInfo *Name) {
   12076   // C++ [dcl.type.elab]p3:
   12077   //   The class-key or enum keyword present in the
   12078   //   elaborated-type-specifier shall agree in kind with the
   12079   //   declaration to which the name in the elaborated-type-specifier
   12080   //   refers. This rule also applies to the form of
   12081   //   elaborated-type-specifier that declares a class-name or
   12082   //   friend class since it can be construed as referring to the
   12083   //   definition of the class. Thus, in any
   12084   //   elaborated-type-specifier, the enum keyword shall be used to
   12085   //   refer to an enumeration (7.2), the union class-key shall be
   12086   //   used to refer to a union (clause 9), and either the class or
   12087   //   struct class-key shall be used to refer to a class (clause 9)
   12088   //   declared using the class or struct class-key.
   12089   TagTypeKind OldTag = Previous->getTagKind();
   12090   if (!isDefinition || !isClassCompatTagKind(NewTag))
   12091     if (OldTag == NewTag)
   12092       return true;
   12093 
   12094   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
   12095     // Warn about the struct/class tag mismatch.
   12096     bool isTemplate = false;
   12097     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
   12098       isTemplate = Record->getDescribedClassTemplate();
   12099 
   12100     if (!ActiveTemplateInstantiations.empty()) {
   12101       // In a template instantiation, do not offer fix-its for tag mismatches
   12102       // since they usually mess up the template instead of fixing the problem.
   12103       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   12104         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
   12105         << getRedeclDiagFromTagKind(OldTag);
   12106       return true;
   12107     }
   12108 
   12109     if (isDefinition) {
   12110       // On definitions, check previous tags and issue a fix-it for each
   12111       // one that doesn't match the current tag.
   12112       if (Previous->getDefinition()) {
   12113         // Don't suggest fix-its for redefinitions.
   12114         return true;
   12115       }
   12116 
   12117       bool previousMismatch = false;
   12118       for (auto I : Previous->redecls()) {
   12119         if (I->getTagKind() != NewTag) {
   12120           if (!previousMismatch) {
   12121             previousMismatch = true;
   12122             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
   12123               << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
   12124               << getRedeclDiagFromTagKind(I->getTagKind());
   12125           }
   12126           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
   12127             << getRedeclDiagFromTagKind(NewTag)
   12128             << FixItHint::CreateReplacement(I->getInnerLocStart(),
   12129                  TypeWithKeyword::getTagTypeKindName(NewTag));
   12130         }
   12131       }
   12132       return true;
   12133     }
   12134 
   12135     // Check for a previous definition.  If current tag and definition
   12136     // are same type, do nothing.  If no definition, but disagree with
   12137     // with previous tag type, give a warning, but no fix-it.
   12138     const TagDecl *Redecl = Previous->getDefinition() ?
   12139                             Previous->getDefinition() : Previous;
   12140     if (Redecl->getTagKind() == NewTag) {
   12141       return true;
   12142     }
   12143 
   12144     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
   12145       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
   12146       << getRedeclDiagFromTagKind(OldTag);
   12147     Diag(Redecl->getLocation(), diag::note_previous_use);
   12148 
   12149     // If there is a previous definition, suggest a fix-it.
   12150     if (Previous->getDefinition()) {
   12151         Diag(NewTagLoc, diag::note_struct_class_suggestion)
   12152           << getRedeclDiagFromTagKind(Redecl->getTagKind())
   12153           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
   12154                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
   12155     }
   12156 
   12157     return true;
   12158   }
   12159   return false;
   12160 }
   12161 
   12162 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
   12163 /// from an outer enclosing namespace or file scope inside a friend declaration.
   12164 /// This should provide the commented out code in the following snippet:
   12165 ///   namespace N {
   12166 ///     struct X;
   12167 ///     namespace M {
   12168 ///       struct Y { friend struct /*N::*/ X; };
   12169 ///     }
   12170 ///   }
   12171 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
   12172                                          SourceLocation NameLoc) {
   12173   // While the decl is in a namespace, do repeated lookup of that name and see
   12174   // if we get the same namespace back.  If we do not, continue until
   12175   // translation unit scope, at which point we have a fully qualified NNS.
   12176   SmallVector<IdentifierInfo *, 4> Namespaces;
   12177   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
   12178   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
   12179     // This tag should be declared in a namespace, which can only be enclosed by
   12180     // other namespaces.  Bail if there's an anonymous namespace in the chain.
   12181     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
   12182     if (!Namespace || Namespace->isAnonymousNamespace())
   12183       return FixItHint();
   12184     IdentifierInfo *II = Namespace->getIdentifier();
   12185     Namespaces.push_back(II);
   12186     NamedDecl *Lookup = SemaRef.LookupSingleName(
   12187         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
   12188     if (Lookup == Namespace)
   12189       break;
   12190   }
   12191 
   12192   // Once we have all the namespaces, reverse them to go outermost first, and
   12193   // build an NNS.
   12194   SmallString<64> Insertion;
   12195   llvm::raw_svector_ostream OS(Insertion);
   12196   if (DC->isTranslationUnit())
   12197     OS << "::";
   12198   std::reverse(Namespaces.begin(), Namespaces.end());
   12199   for (auto *II : Namespaces)
   12200     OS << II->getName() << "::";
   12201   return FixItHint::CreateInsertion(NameLoc, Insertion);
   12202 }
   12203 
   12204 /// \brief Determine whether a tag originally declared in context \p OldDC can
   12205 /// be redeclared with an unqualfied name in \p NewDC (assuming name lookup
   12206 /// found a declaration in \p OldDC as a previous decl, perhaps through a
   12207 /// using-declaration).
   12208 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
   12209                                          DeclContext *NewDC) {
   12210   OldDC = OldDC->getRedeclContext();
   12211   NewDC = NewDC->getRedeclContext();
   12212 
   12213   if (OldDC->Equals(NewDC))
   12214     return true;
   12215 
   12216   // In MSVC mode, we allow a redeclaration if the contexts are related (either
   12217   // encloses the other).
   12218   if (S.getLangOpts().MSVCCompat &&
   12219       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
   12220     return true;
   12221 
   12222   return false;
   12223 }
   12224 
   12225 /// Find the DeclContext in which a tag is implicitly declared if we see an
   12226 /// elaborated type specifier in the specified context, and lookup finds
   12227 /// nothing.
   12228 static DeclContext *getTagInjectionContext(DeclContext *DC) {
   12229   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
   12230     DC = DC->getParent();
   12231   return DC;
   12232 }
   12233 
   12234 /// Find the Scope in which a tag is implicitly declared if we see an
   12235 /// elaborated type specifier in the specified context, and lookup finds
   12236 /// nothing.
   12237 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
   12238   while (S->isClassScope() ||
   12239          (LangOpts.CPlusPlus &&
   12240           S->isFunctionPrototypeScope()) ||
   12241          ((S->getFlags() & Scope::DeclScope) == 0) ||
   12242          (S->getEntity() && S->getEntity()->isTransparentContext()))
   12243     S = S->getParent();
   12244   return S;
   12245 }
   12246 
   12247 /// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
   12248 /// former case, Name will be non-null.  In the later case, Name will be null.
   12249 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
   12250 /// reference/declaration/definition of a tag.
   12251 ///
   12252 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
   12253 /// trailing-type-specifier) other than one in an alias-declaration.
   12254 ///
   12255 /// \param SkipBody If non-null, will be set to indicate if the caller should
   12256 /// skip the definition of this tag and treat it as if it were a declaration.
   12257 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
   12258                      SourceLocation KWLoc, CXXScopeSpec &SS,
   12259                      IdentifierInfo *Name, SourceLocation NameLoc,
   12260                      AttributeList *Attr, AccessSpecifier AS,
   12261                      SourceLocation ModulePrivateLoc,
   12262                      MultiTemplateParamsArg TemplateParameterLists,
   12263                      bool &OwnedDecl, bool &IsDependent,
   12264                      SourceLocation ScopedEnumKWLoc,
   12265                      bool ScopedEnumUsesClassTag,
   12266                      TypeResult UnderlyingType,
   12267                      bool IsTypeSpecifier, SkipBodyInfo *SkipBody) {
   12268   // If this is not a definition, it must have a name.
   12269   IdentifierInfo *OrigName = Name;
   12270   assert((Name != nullptr || TUK == TUK_Definition) &&
   12271          "Nameless record must be a definition!");
   12272   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
   12273 
   12274   OwnedDecl = false;
   12275   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
   12276   bool ScopedEnum = ScopedEnumKWLoc.isValid();
   12277 
   12278   // FIXME: Check explicit specializations more carefully.
   12279   bool isExplicitSpecialization = false;
   12280   bool Invalid = false;
   12281 
   12282   // We only need to do this matching if we have template parameters
   12283   // or a scope specifier, which also conveniently avoids this work
   12284   // for non-C++ cases.
   12285   if (TemplateParameterLists.size() > 0 ||
   12286       (SS.isNotEmpty() && TUK != TUK_Reference)) {
   12287     if (TemplateParameterList *TemplateParams =
   12288             MatchTemplateParametersToScopeSpecifier(
   12289                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
   12290                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
   12291       if (Kind == TTK_Enum) {
   12292         Diag(KWLoc, diag::err_enum_template);
   12293         return nullptr;
   12294       }
   12295 
   12296       if (TemplateParams->size() > 0) {
   12297         // This is a declaration or definition of a class template (which may
   12298         // be a member of another template).
   12299 
   12300         if (Invalid)
   12301           return nullptr;
   12302 
   12303         OwnedDecl = false;
   12304         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
   12305                                                SS, Name, NameLoc, Attr,
   12306                                                TemplateParams, AS,
   12307                                                ModulePrivateLoc,
   12308                                                /*FriendLoc*/SourceLocation(),
   12309                                                TemplateParameterLists.size()-1,
   12310                                                TemplateParameterLists.data(),
   12311                                                SkipBody);
   12312         return Result.get();
   12313       } else {
   12314         // The "template<>" header is extraneous.
   12315         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
   12316           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
   12317         isExplicitSpecialization = true;
   12318       }
   12319     }
   12320   }
   12321 
   12322   // Figure out the underlying type if this a enum declaration. We need to do
   12323   // this early, because it's needed to detect if this is an incompatible
   12324   // redeclaration.
   12325   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
   12326   bool EnumUnderlyingIsImplicit = false;
   12327 
   12328   if (Kind == TTK_Enum) {
   12329     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
   12330       // No underlying type explicitly specified, or we failed to parse the
   12331       // type, default to int.
   12332       EnumUnderlying = Context.IntTy.getTypePtr();
   12333     else if (UnderlyingType.get()) {
   12334       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
   12335       // integral type; any cv-qualification is ignored.
   12336       TypeSourceInfo *TI = nullptr;
   12337       GetTypeFromParser(UnderlyingType.get(), &TI);
   12338       EnumUnderlying = TI;
   12339 
   12340       if (CheckEnumUnderlyingType(TI))
   12341         // Recover by falling back to int.
   12342         EnumUnderlying = Context.IntTy.getTypePtr();
   12343 
   12344       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
   12345                                           UPPC_FixedUnderlyingType))
   12346         EnumUnderlying = Context.IntTy.getTypePtr();
   12347 
   12348     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
   12349       if (getLangOpts().MSVCCompat || TUK == TUK_Definition) {
   12350         // Microsoft enums are always of int type.
   12351         EnumUnderlying = Context.IntTy.getTypePtr();
   12352         EnumUnderlyingIsImplicit = true;
   12353       }
   12354     }
   12355   }
   12356 
   12357   DeclContext *SearchDC = CurContext;
   12358   DeclContext *DC = CurContext;
   12359   bool isStdBadAlloc = false;
   12360 
   12361   RedeclarationKind Redecl = ForRedeclaration;
   12362   if (TUK == TUK_Friend || TUK == TUK_Reference)
   12363     Redecl = NotForRedeclaration;
   12364 
   12365   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
   12366   if (Name && SS.isNotEmpty()) {
   12367     // We have a nested-name tag ('struct foo::bar').
   12368 
   12369     // Check for invalid 'foo::'.
   12370     if (SS.isInvalid()) {
   12371       Name = nullptr;
   12372       goto CreateNewDecl;
   12373     }
   12374 
   12375     // If this is a friend or a reference to a class in a dependent
   12376     // context, don't try to make a decl for it.
   12377     if (TUK == TUK_Friend || TUK == TUK_Reference) {
   12378       DC = computeDeclContext(SS, false);
   12379       if (!DC) {
   12380         IsDependent = true;
   12381         return nullptr;
   12382       }
   12383     } else {
   12384       DC = computeDeclContext(SS, true);
   12385       if (!DC) {
   12386         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
   12387           << SS.getRange();
   12388         return nullptr;
   12389       }
   12390     }
   12391 
   12392     if (RequireCompleteDeclContext(SS, DC))
   12393       return nullptr;
   12394 
   12395     SearchDC = DC;
   12396     // Look-up name inside 'foo::'.
   12397     LookupQualifiedName(Previous, DC);
   12398 
   12399     if (Previous.isAmbiguous())
   12400       return nullptr;
   12401 
   12402     if (Previous.empty()) {
   12403       // Name lookup did not find anything. However, if the
   12404       // nested-name-specifier refers to the current instantiation,
   12405       // and that current instantiation has any dependent base
   12406       // classes, we might find something at instantiation time: treat
   12407       // this as a dependent elaborated-type-specifier.
   12408       // But this only makes any sense for reference-like lookups.
   12409       if (Previous.wasNotFoundInCurrentInstantiation() &&
   12410           (TUK == TUK_Reference || TUK == TUK_Friend)) {
   12411         IsDependent = true;
   12412         return nullptr;
   12413       }
   12414 
   12415       // A tag 'foo::bar' must already exist.
   12416       Diag(NameLoc, diag::err_not_tag_in_scope)
   12417         << Kind << Name << DC << SS.getRange();
   12418       Name = nullptr;
   12419       Invalid = true;
   12420       goto CreateNewDecl;
   12421     }
   12422   } else if (Name) {
   12423     // C++14 [class.mem]p14:
   12424     //   If T is the name of a class, then each of the following shall have a
   12425     //   name different from T:
   12426     //    -- every member of class T that is itself a type
   12427     if (TUK != TUK_Reference && TUK != TUK_Friend &&
   12428         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
   12429       return nullptr;
   12430 
   12431     // If this is a named struct, check to see if there was a previous forward
   12432     // declaration or definition.
   12433     // FIXME: We're looking into outer scopes here, even when we
   12434     // shouldn't be. Doing so can result in ambiguities that we
   12435     // shouldn't be diagnosing.
   12436     LookupName(Previous, S);
   12437 
   12438     // When declaring or defining a tag, ignore ambiguities introduced
   12439     // by types using'ed into this scope.
   12440     if (Previous.isAmbiguous() &&
   12441         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
   12442       LookupResult::Filter F = Previous.makeFilter();
   12443       while (F.hasNext()) {
   12444         NamedDecl *ND = F.next();
   12445         if (!ND->getDeclContext()->getRedeclContext()->Equals(
   12446                 SearchDC->getRedeclContext()))
   12447           F.erase();
   12448       }
   12449       F.done();
   12450     }
   12451 
   12452     // C++11 [namespace.memdef]p3:
   12453     //   If the name in a friend declaration is neither qualified nor
   12454     //   a template-id and the declaration is a function or an
   12455     //   elaborated-type-specifier, the lookup to determine whether
   12456     //   the entity has been previously declared shall not consider
   12457     //   any scopes outside the innermost enclosing namespace.
   12458     //
   12459     // MSVC doesn't implement the above rule for types, so a friend tag
   12460     // declaration may be a redeclaration of a type declared in an enclosing
   12461     // scope.  They do implement this rule for friend functions.
   12462     //
   12463     // Does it matter that this should be by scope instead of by
   12464     // semantic context?
   12465     if (!Previous.empty() && TUK == TUK_Friend) {
   12466       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
   12467       LookupResult::Filter F = Previous.makeFilter();
   12468       bool FriendSawTagOutsideEnclosingNamespace = false;
   12469       while (F.hasNext()) {
   12470         NamedDecl *ND = F.next();
   12471         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
   12472         if (DC->isFileContext() &&
   12473             !EnclosingNS->Encloses(ND->getDeclContext())) {
   12474           if (getLangOpts().MSVCCompat)
   12475             FriendSawTagOutsideEnclosingNamespace = true;
   12476           else
   12477             F.erase();
   12478         }
   12479       }
   12480       F.done();
   12481 
   12482       // Diagnose this MSVC extension in the easy case where lookup would have
   12483       // unambiguously found something outside the enclosing namespace.
   12484       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
   12485         NamedDecl *ND = Previous.getFoundDecl();
   12486         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
   12487             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
   12488       }
   12489     }
   12490 
   12491     // Note:  there used to be some attempt at recovery here.
   12492     if (Previous.isAmbiguous())
   12493       return nullptr;
   12494 
   12495     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
   12496       // FIXME: This makes sure that we ignore the contexts associated
   12497       // with C structs, unions, and enums when looking for a matching
   12498       // tag declaration or definition. See the similar lookup tweak
   12499       // in Sema::LookupName; is there a better way to deal with this?
   12500       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
   12501         SearchDC = SearchDC->getParent();
   12502     }
   12503   }
   12504 
   12505   if (Previous.isSingleResult() &&
   12506       Previous.getFoundDecl()->isTemplateParameter()) {
   12507     // Maybe we will complain about the shadowed template parameter.
   12508     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
   12509     // Just pretend that we didn't see the previous declaration.
   12510     Previous.clear();
   12511   }
   12512 
   12513   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
   12514       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
   12515     // This is a declaration of or a reference to "std::bad_alloc".
   12516     isStdBadAlloc = true;
   12517 
   12518     if (Previous.empty() && StdBadAlloc) {
   12519       // std::bad_alloc has been implicitly declared (but made invisible to
   12520       // name lookup). Fill in this implicit declaration as the previous
   12521       // declaration, so that the declarations get chained appropriately.
   12522       Previous.addDecl(getStdBadAlloc());
   12523     }
   12524   }
   12525 
   12526   // If we didn't find a previous declaration, and this is a reference
   12527   // (or friend reference), move to the correct scope.  In C++, we
   12528   // also need to do a redeclaration lookup there, just in case
   12529   // there's a shadow friend decl.
   12530   if (Name && Previous.empty() &&
   12531       (TUK == TUK_Reference || TUK == TUK_Friend)) {
   12532     if (Invalid) goto CreateNewDecl;
   12533     assert(SS.isEmpty());
   12534 
   12535     if (TUK == TUK_Reference) {
   12536       // C++ [basic.scope.pdecl]p5:
   12537       //   -- for an elaborated-type-specifier of the form
   12538       //
   12539       //          class-key identifier
   12540       //
   12541       //      if the elaborated-type-specifier is used in the
   12542       //      decl-specifier-seq or parameter-declaration-clause of a
   12543       //      function defined in namespace scope, the identifier is
   12544       //      declared as a class-name in the namespace that contains
   12545       //      the declaration; otherwise, except as a friend
   12546       //      declaration, the identifier is declared in the smallest
   12547       //      non-class, non-function-prototype scope that contains the
   12548       //      declaration.
   12549       //
   12550       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
   12551       // C structs and unions.
   12552       //
   12553       // It is an error in C++ to declare (rather than define) an enum
   12554       // type, including via an elaborated type specifier.  We'll
   12555       // diagnose that later; for now, declare the enum in the same
   12556       // scope as we would have picked for any other tag type.
   12557       //
   12558       // GNU C also supports this behavior as part of its incomplete
   12559       // enum types extension, while GNU C++ does not.
   12560       //
   12561       // Find the context where we'll be declaring the tag.
   12562       // FIXME: We would like to maintain the current DeclContext as the
   12563       // lexical context,
   12564       SearchDC = getTagInjectionContext(SearchDC);
   12565 
   12566       // Find the scope where we'll be declaring the tag.
   12567       S = getTagInjectionScope(S, getLangOpts());
   12568     } else {
   12569       assert(TUK == TUK_Friend);
   12570       // C++ [namespace.memdef]p3:
   12571       //   If a friend declaration in a non-local class first declares a
   12572       //   class or function, the friend class or function is a member of
   12573       //   the innermost enclosing namespace.
   12574       SearchDC = SearchDC->getEnclosingNamespaceContext();
   12575     }
   12576 
   12577     // In C++, we need to do a redeclaration lookup to properly
   12578     // diagnose some problems.
   12579     // FIXME: redeclaration lookup is also used (with and without C++) to find a
   12580     // hidden declaration so that we don't get ambiguity errors when using a
   12581     // type declared by an elaborated-type-specifier.  In C that is not correct
   12582     // and we should instead merge compatible types found by lookup.
   12583     if (getLangOpts().CPlusPlus) {
   12584       Previous.setRedeclarationKind(ForRedeclaration);
   12585       LookupQualifiedName(Previous, SearchDC);
   12586     } else {
   12587       Previous.setRedeclarationKind(ForRedeclaration);
   12588       LookupName(Previous, S);
   12589     }
   12590   }
   12591 
   12592   // If we have a known previous declaration to use, then use it.
   12593   if (Previous.empty() && SkipBody && SkipBody->Previous)
   12594     Previous.addDecl(SkipBody->Previous);
   12595 
   12596   if (!Previous.empty()) {
   12597     NamedDecl *PrevDecl = Previous.getFoundDecl();
   12598     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
   12599 
   12600     // It's okay to have a tag decl in the same scope as a typedef
   12601     // which hides a tag decl in the same scope.  Finding this
   12602     // insanity with a redeclaration lookup can only actually happen
   12603     // in C++.
   12604     //
   12605     // This is also okay for elaborated-type-specifiers, which is
   12606     // technically forbidden by the current standard but which is
   12607     // okay according to the likely resolution of an open issue;
   12608     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
   12609     if (getLangOpts().CPlusPlus) {
   12610       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   12611         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
   12612           TagDecl *Tag = TT->getDecl();
   12613           if (Tag->getDeclName() == Name &&
   12614               Tag->getDeclContext()->getRedeclContext()
   12615                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
   12616             PrevDecl = Tag;
   12617             Previous.clear();
   12618             Previous.addDecl(Tag);
   12619             Previous.resolveKind();
   12620           }
   12621         }
   12622       }
   12623     }
   12624 
   12625     // If this is a redeclaration of a using shadow declaration, it must
   12626     // declare a tag in the same context. In MSVC mode, we allow a
   12627     // redefinition if either context is within the other.
   12628     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
   12629       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
   12630       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
   12631           isDeclInScope(Shadow, SearchDC, S, isExplicitSpecialization) &&
   12632           !(OldTag && isAcceptableTagRedeclContext(
   12633                           *this, OldTag->getDeclContext(), SearchDC))) {
   12634         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
   12635         Diag(Shadow->getTargetDecl()->getLocation(),
   12636              diag::note_using_decl_target);
   12637         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
   12638             << 0;
   12639         // Recover by ignoring the old declaration.
   12640         Previous.clear();
   12641         goto CreateNewDecl;
   12642       }
   12643     }
   12644 
   12645     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
   12646       // If this is a use of a previous tag, or if the tag is already declared
   12647       // in the same scope (so that the definition/declaration completes or
   12648       // rementions the tag), reuse the decl.
   12649       if (TUK == TUK_Reference || TUK == TUK_Friend ||
   12650           isDeclInScope(DirectPrevDecl, SearchDC, S,
   12651                         SS.isNotEmpty() || isExplicitSpecialization)) {
   12652         // Make sure that this wasn't declared as an enum and now used as a
   12653         // struct or something similar.
   12654         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
   12655                                           TUK == TUK_Definition, KWLoc,
   12656                                           Name)) {
   12657           bool SafeToContinue
   12658             = (PrevTagDecl->getTagKind() != TTK_Enum &&
   12659                Kind != TTK_Enum);
   12660           if (SafeToContinue)
   12661             Diag(KWLoc, diag::err_use_with_wrong_tag)
   12662               << Name
   12663               << FixItHint::CreateReplacement(SourceRange(KWLoc),
   12664                                               PrevTagDecl->getKindName());
   12665           else
   12666             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
   12667           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
   12668 
   12669           if (SafeToContinue)
   12670             Kind = PrevTagDecl->getTagKind();
   12671           else {
   12672             // Recover by making this an anonymous redefinition.
   12673             Name = nullptr;
   12674             Previous.clear();
   12675             Invalid = true;
   12676           }
   12677         }
   12678 
   12679         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
   12680           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
   12681 
   12682           // If this is an elaborated-type-specifier for a scoped enumeration,
   12683           // the 'class' keyword is not necessary and not permitted.
   12684           if (TUK == TUK_Reference || TUK == TUK_Friend) {
   12685             if (ScopedEnum)
   12686               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
   12687                 << PrevEnum->isScoped()
   12688                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
   12689             return PrevTagDecl;
   12690           }
   12691 
   12692           QualType EnumUnderlyingTy;
   12693           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   12694             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
   12695           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
   12696             EnumUnderlyingTy = QualType(T, 0);
   12697 
   12698           // All conflicts with previous declarations are recovered by
   12699           // returning the previous declaration, unless this is a definition,
   12700           // in which case we want the caller to bail out.
   12701           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
   12702                                      ScopedEnum, EnumUnderlyingTy,
   12703                                      EnumUnderlyingIsImplicit, PrevEnum))
   12704             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
   12705         }
   12706 
   12707         // C++11 [class.mem]p1:
   12708         //   A member shall not be declared twice in the member-specification,
   12709         //   except that a nested class or member class template can be declared
   12710         //   and then later defined.
   12711         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
   12712             S->isDeclScope(PrevDecl)) {
   12713           Diag(NameLoc, diag::ext_member_redeclared);
   12714           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
   12715         }
   12716 
   12717         if (!Invalid) {
   12718           // If this is a use, just return the declaration we found, unless
   12719           // we have attributes.
   12720           if (TUK == TUK_Reference || TUK == TUK_Friend) {
   12721             if (Attr) {
   12722               // FIXME: Diagnose these attributes. For now, we create a new
   12723               // declaration to hold them.
   12724             } else if (TUK == TUK_Reference &&
   12725                        (PrevTagDecl->getFriendObjectKind() ==
   12726                             Decl::FOK_Undeclared ||
   12727                         PP.getModuleContainingLocation(
   12728                             PrevDecl->getLocation()) !=
   12729                             PP.getModuleContainingLocation(KWLoc)) &&
   12730                        SS.isEmpty()) {
   12731               // This declaration is a reference to an existing entity, but
   12732               // has different visibility from that entity: it either makes
   12733               // a friend visible or it makes a type visible in a new module.
   12734               // In either case, create a new declaration. We only do this if
   12735               // the declaration would have meant the same thing if no prior
   12736               // declaration were found, that is, if it was found in the same
   12737               // scope where we would have injected a declaration.
   12738               if (!getTagInjectionContext(CurContext)->getRedeclContext()
   12739                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
   12740                 return PrevTagDecl;
   12741               // This is in the injected scope, create a new declaration in
   12742               // that scope.
   12743               S = getTagInjectionScope(S, getLangOpts());
   12744             } else {
   12745               return PrevTagDecl;
   12746             }
   12747           }
   12748 
   12749           // Diagnose attempts to redefine a tag.
   12750           if (TUK == TUK_Definition) {
   12751             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
   12752               // If we're defining a specialization and the previous definition
   12753               // is from an implicit instantiation, don't emit an error
   12754               // here; we'll catch this in the general case below.
   12755               bool IsExplicitSpecializationAfterInstantiation = false;
   12756               if (isExplicitSpecialization) {
   12757                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
   12758                   IsExplicitSpecializationAfterInstantiation =
   12759                     RD->getTemplateSpecializationKind() !=
   12760                     TSK_ExplicitSpecialization;
   12761                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
   12762                   IsExplicitSpecializationAfterInstantiation =
   12763                     ED->getTemplateSpecializationKind() !=
   12764                     TSK_ExplicitSpecialization;
   12765               }
   12766 
   12767               NamedDecl *Hidden = nullptr;
   12768               if (SkipBody && getLangOpts().CPlusPlus &&
   12769                   !hasVisibleDefinition(Def, &Hidden)) {
   12770                 // There is a definition of this tag, but it is not visible. We
   12771                 // explicitly make use of C++'s one definition rule here, and
   12772                 // assume that this definition is identical to the hidden one
   12773                 // we already have. Make the existing definition visible and
   12774                 // use it in place of this one.
   12775                 SkipBody->ShouldSkip = true;
   12776                 makeMergedDefinitionVisible(Hidden, KWLoc);
   12777                 return Def;
   12778               } else if (!IsExplicitSpecializationAfterInstantiation) {
   12779                 // A redeclaration in function prototype scope in C isn't
   12780                 // visible elsewhere, so merely issue a warning.
   12781                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
   12782                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
   12783                 else
   12784                   Diag(NameLoc, diag::err_redefinition) << Name;
   12785                 Diag(Def->getLocation(), diag::note_previous_definition);
   12786                 // If this is a redefinition, recover by making this
   12787                 // struct be anonymous, which will make any later
   12788                 // references get the previous definition.
   12789                 Name = nullptr;
   12790                 Previous.clear();
   12791                 Invalid = true;
   12792               }
   12793             } else {
   12794               // If the type is currently being defined, complain
   12795               // about a nested redefinition.
   12796               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
   12797               if (TD->isBeingDefined()) {
   12798                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
   12799                 Diag(PrevTagDecl->getLocation(),
   12800                      diag::note_previous_definition);
   12801                 Name = nullptr;
   12802                 Previous.clear();
   12803                 Invalid = true;
   12804               }
   12805             }
   12806 
   12807             // Okay, this is definition of a previously declared or referenced
   12808             // tag. We're going to create a new Decl for it.
   12809           }
   12810 
   12811           // Okay, we're going to make a redeclaration.  If this is some kind
   12812           // of reference, make sure we build the redeclaration in the same DC
   12813           // as the original, and ignore the current access specifier.
   12814           if (TUK == TUK_Friend || TUK == TUK_Reference) {
   12815             SearchDC = PrevTagDecl->getDeclContext();
   12816             AS = AS_none;
   12817           }
   12818         }
   12819         // If we get here we have (another) forward declaration or we
   12820         // have a definition.  Just create a new decl.
   12821 
   12822       } else {
   12823         // If we get here, this is a definition of a new tag type in a nested
   12824         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
   12825         // new decl/type.  We set PrevDecl to NULL so that the entities
   12826         // have distinct types.
   12827         Previous.clear();
   12828       }
   12829       // If we get here, we're going to create a new Decl. If PrevDecl
   12830       // is non-NULL, it's a definition of the tag declared by
   12831       // PrevDecl. If it's NULL, we have a new definition.
   12832 
   12833     // Otherwise, PrevDecl is not a tag, but was found with tag
   12834     // lookup.  This is only actually possible in C++, where a few
   12835     // things like templates still live in the tag namespace.
   12836     } else {
   12837       // Use a better diagnostic if an elaborated-type-specifier
   12838       // found the wrong kind of type on the first
   12839       // (non-redeclaration) lookup.
   12840       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
   12841           !Previous.isForRedeclaration()) {
   12842         unsigned Kind = 0;
   12843         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   12844         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   12845         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   12846         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
   12847         Diag(PrevDecl->getLocation(), diag::note_declared_at);
   12848         Invalid = true;
   12849 
   12850       // Otherwise, only diagnose if the declaration is in scope.
   12851       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
   12852                                 SS.isNotEmpty() || isExplicitSpecialization)) {
   12853         // do nothing
   12854 
   12855       // Diagnose implicit declarations introduced by elaborated types.
   12856       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
   12857         unsigned Kind = 0;
   12858         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
   12859         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
   12860         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
   12861         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
   12862         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   12863         Invalid = true;
   12864 
   12865       // Otherwise it's a declaration.  Call out a particularly common
   12866       // case here.
   12867       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
   12868         unsigned Kind = 0;
   12869         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
   12870         Diag(NameLoc, diag::err_tag_definition_of_typedef)
   12871           << Name << Kind << TND->getUnderlyingType();
   12872         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
   12873         Invalid = true;
   12874 
   12875       // Otherwise, diagnose.
   12876       } else {
   12877         // The tag name clashes with something else in the target scope,
   12878         // issue an error and recover by making this tag be anonymous.
   12879         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
   12880         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   12881         Name = nullptr;
   12882         Invalid = true;
   12883       }
   12884 
   12885       // The existing declaration isn't relevant to us; we're in a
   12886       // new scope, so clear out the previous declaration.
   12887       Previous.clear();
   12888     }
   12889   }
   12890 
   12891 CreateNewDecl:
   12892 
   12893   TagDecl *PrevDecl = nullptr;
   12894   if (Previous.isSingleResult())
   12895     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
   12896 
   12897   // If there is an identifier, use the location of the identifier as the
   12898   // location of the decl, otherwise use the location of the struct/union
   12899   // keyword.
   12900   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
   12901 
   12902   // Otherwise, create a new declaration. If there is a previous
   12903   // declaration of the same entity, the two will be linked via
   12904   // PrevDecl.
   12905   TagDecl *New;
   12906 
   12907   bool IsForwardReference = false;
   12908   if (Kind == TTK_Enum) {
   12909     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   12910     // enum X { A, B, C } D;    D should chain to X.
   12911     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
   12912                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
   12913                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
   12914     // If this is an undefined enum, warn.
   12915     if (TUK != TUK_Definition && !Invalid) {
   12916       TagDecl *Def;
   12917       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
   12918           cast<EnumDecl>(New)->isFixed()) {
   12919         // C++0x: 7.2p2: opaque-enum-declaration.
   12920         // Conflicts are diagnosed above. Do nothing.
   12921       }
   12922       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
   12923         Diag(Loc, diag::ext_forward_ref_enum_def)
   12924           << New;
   12925         Diag(Def->getLocation(), diag::note_previous_definition);
   12926       } else {
   12927         unsigned DiagID = diag::ext_forward_ref_enum;
   12928         if (getLangOpts().MSVCCompat)
   12929           DiagID = diag::ext_ms_forward_ref_enum;
   12930         else if (getLangOpts().CPlusPlus)
   12931           DiagID = diag::err_forward_ref_enum;
   12932         Diag(Loc, DiagID);
   12933 
   12934         // If this is a forward-declared reference to an enumeration, make a
   12935         // note of it; we won't actually be introducing the declaration into
   12936         // the declaration context.
   12937         if (TUK == TUK_Reference)
   12938           IsForwardReference = true;
   12939       }
   12940     }
   12941 
   12942     if (EnumUnderlying) {
   12943       EnumDecl *ED = cast<EnumDecl>(New);
   12944       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
   12945         ED->setIntegerTypeSourceInfo(TI);
   12946       else
   12947         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
   12948       ED->setPromotionType(ED->getIntegerType());
   12949     }
   12950   } else {
   12951     // struct/union/class
   12952 
   12953     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
   12954     // struct X { int A; } D;    D should chain to X.
   12955     if (getLangOpts().CPlusPlus) {
   12956       // FIXME: Look for a way to use RecordDecl for simple structs.
   12957       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   12958                                   cast_or_null<CXXRecordDecl>(PrevDecl));
   12959 
   12960       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
   12961         StdBadAlloc = cast<CXXRecordDecl>(New);
   12962     } else
   12963       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
   12964                                cast_or_null<RecordDecl>(PrevDecl));
   12965   }
   12966 
   12967   // C++11 [dcl.type]p3:
   12968   //   A type-specifier-seq shall not define a class or enumeration [...].
   12969   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
   12970     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
   12971       << Context.getTagDeclType(New);
   12972     Invalid = true;
   12973   }
   12974 
   12975   // Maybe add qualifier info.
   12976   if (SS.isNotEmpty()) {
   12977     if (SS.isSet()) {
   12978       // If this is either a declaration or a definition, check the
   12979       // nested-name-specifier against the current context. We don't do this
   12980       // for explicit specializations, because they have similar checking
   12981       // (with more specific diagnostics) in the call to
   12982       // CheckMemberSpecialization, below.
   12983       if (!isExplicitSpecialization &&
   12984           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
   12985           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
   12986         Invalid = true;
   12987 
   12988       New->setQualifierInfo(SS.getWithLocInContext(Context));
   12989       if (TemplateParameterLists.size() > 0) {
   12990         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
   12991       }
   12992     }
   12993     else
   12994       Invalid = true;
   12995   }
   12996 
   12997   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
   12998     // Add alignment attributes if necessary; these attributes are checked when
   12999     // the ASTContext lays out the structure.
   13000     //
   13001     // It is important for implementing the correct semantics that this
   13002     // happen here (in act on tag decl). The #pragma pack stack is
   13003     // maintained as a result of parser callbacks which can occur at
   13004     // many points during the parsing of a struct declaration (because
   13005     // the #pragma tokens are effectively skipped over during the
   13006     // parsing of the struct).
   13007     if (TUK == TUK_Definition) {
   13008       AddAlignmentAttributesForRecord(RD);
   13009       AddMsStructLayoutForRecord(RD);
   13010     }
   13011   }
   13012 
   13013   if (ModulePrivateLoc.isValid()) {
   13014     if (isExplicitSpecialization)
   13015       Diag(New->getLocation(), diag::err_module_private_specialization)
   13016         << 2
   13017         << FixItHint::CreateRemoval(ModulePrivateLoc);
   13018     // __module_private__ does not apply to local classes. However, we only
   13019     // diagnose this as an error when the declaration specifiers are
   13020     // freestanding. Here, we just ignore the __module_private__.
   13021     else if (!SearchDC->isFunctionOrMethod())
   13022       New->setModulePrivate();
   13023   }
   13024 
   13025   // If this is a specialization of a member class (of a class template),
   13026   // check the specialization.
   13027   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
   13028     Invalid = true;
   13029 
   13030   // If we're declaring or defining a tag in function prototype scope in C,
   13031   // note that this type can only be used within the function and add it to
   13032   // the list of decls to inject into the function definition scope.
   13033   if ((Name || Kind == TTK_Enum) &&
   13034       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
   13035     if (getLangOpts().CPlusPlus) {
   13036       // C++ [dcl.fct]p6:
   13037       //   Types shall not be defined in return or parameter types.
   13038       if (TUK == TUK_Definition && !IsTypeSpecifier) {
   13039         Diag(Loc, diag::err_type_defined_in_param_type)
   13040             << Name;
   13041         Invalid = true;
   13042       }
   13043     } else if (!PrevDecl) {
   13044       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
   13045     }
   13046     DeclsInPrototypeScope.push_back(New);
   13047   }
   13048 
   13049   if (Invalid)
   13050     New->setInvalidDecl();
   13051 
   13052   if (Attr)
   13053     ProcessDeclAttributeList(S, New, Attr);
   13054 
   13055   // Set the lexical context. If the tag has a C++ scope specifier, the
   13056   // lexical context will be different from the semantic context.
   13057   New->setLexicalDeclContext(CurContext);
   13058 
   13059   // Mark this as a friend decl if applicable.
   13060   // In Microsoft mode, a friend declaration also acts as a forward
   13061   // declaration so we always pass true to setObjectOfFriendDecl to make
   13062   // the tag name visible.
   13063   if (TUK == TUK_Friend)
   13064     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
   13065 
   13066   // Set the access specifier.
   13067   if (!Invalid && SearchDC->isRecord())
   13068     SetMemberAccessSpecifier(New, PrevDecl, AS);
   13069 
   13070   if (TUK == TUK_Definition)
   13071     New->startDefinition();
   13072 
   13073   // If this has an identifier, add it to the scope stack.
   13074   if (TUK == TUK_Friend) {
   13075     // We might be replacing an existing declaration in the lookup tables;
   13076     // if so, borrow its access specifier.
   13077     if (PrevDecl)
   13078       New->setAccess(PrevDecl->getAccess());
   13079 
   13080     DeclContext *DC = New->getDeclContext()->getRedeclContext();
   13081     DC->makeDeclVisibleInContext(New);
   13082     if (Name) // can be null along some error paths
   13083       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
   13084         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
   13085   } else if (Name) {
   13086     S = getNonFieldDeclScope(S);
   13087     PushOnScopeChains(New, S, !IsForwardReference);
   13088     if (IsForwardReference)
   13089       SearchDC->makeDeclVisibleInContext(New);
   13090   } else {
   13091     CurContext->addDecl(New);
   13092   }
   13093 
   13094   // If this is the C FILE type, notify the AST context.
   13095   if (IdentifierInfo *II = New->getIdentifier())
   13096     if (!New->isInvalidDecl() &&
   13097         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
   13098         II->isStr("FILE"))
   13099       Context.setFILEDecl(New);
   13100 
   13101   if (PrevDecl)
   13102     mergeDeclAttributes(New, PrevDecl);
   13103 
   13104   // If there's a #pragma GCC visibility in scope, set the visibility of this
   13105   // record.
   13106   AddPushedVisibilityAttribute(New);
   13107 
   13108   OwnedDecl = true;
   13109   // In C++, don't return an invalid declaration. We can't recover well from
   13110   // the cases where we make the type anonymous.
   13111   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
   13112 }
   13113 
   13114 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
   13115   AdjustDeclIfTemplate(TagD);
   13116   TagDecl *Tag = cast<TagDecl>(TagD);
   13117 
   13118   // Enter the tag context.
   13119   PushDeclContext(S, Tag);
   13120 
   13121   ActOnDocumentableDecl(TagD);
   13122 
   13123   // If there's a #pragma GCC visibility in scope, set the visibility of this
   13124   // record.
   13125   AddPushedVisibilityAttribute(Tag);
   13126 }
   13127 
   13128 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
   13129   assert(isa<ObjCContainerDecl>(IDecl) &&
   13130          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
   13131   DeclContext *OCD = cast<DeclContext>(IDecl);
   13132   assert(getContainingDC(OCD) == CurContext &&
   13133       "The next DeclContext should be lexically contained in the current one.");
   13134   CurContext = OCD;
   13135   return IDecl;
   13136 }
   13137 
   13138 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
   13139                                            SourceLocation FinalLoc,
   13140                                            bool IsFinalSpelledSealed,
   13141                                            SourceLocation LBraceLoc) {
   13142   AdjustDeclIfTemplate(TagD);
   13143   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
   13144 
   13145   FieldCollector->StartClass();
   13146 
   13147   if (!Record->getIdentifier())
   13148     return;
   13149 
   13150   if (FinalLoc.isValid())
   13151     Record->addAttr(new (Context)
   13152                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
   13153 
   13154   // C++ [class]p2:
   13155   //   [...] The class-name is also inserted into the scope of the
   13156   //   class itself; this is known as the injected-class-name. For
   13157   //   purposes of access checking, the injected-class-name is treated
   13158   //   as if it were a public member name.
   13159   CXXRecordDecl *InjectedClassName
   13160     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
   13161                             Record->getLocStart(), Record->getLocation(),
   13162                             Record->getIdentifier(),
   13163                             /*PrevDecl=*/nullptr,
   13164                             /*DelayTypeCreation=*/true);
   13165   Context.getTypeDeclType(InjectedClassName, Record);
   13166   InjectedClassName->setImplicit();
   13167   InjectedClassName->setAccess(AS_public);
   13168   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
   13169       InjectedClassName->setDescribedClassTemplate(Template);
   13170   PushOnScopeChains(InjectedClassName, S);
   13171   assert(InjectedClassName->isInjectedClassName() &&
   13172          "Broken injected-class-name");
   13173 }
   13174 
   13175 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
   13176                                     SourceLocation RBraceLoc) {
   13177   AdjustDeclIfTemplate(TagD);
   13178   TagDecl *Tag = cast<TagDecl>(TagD);
   13179   Tag->setRBraceLoc(RBraceLoc);
   13180 
   13181   // Make sure we "complete" the definition even it is invalid.
   13182   if (Tag->isBeingDefined()) {
   13183     assert(Tag->isInvalidDecl() && "We should already have completed it");
   13184     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   13185       RD->completeDefinition();
   13186   }
   13187 
   13188   if (isa<CXXRecordDecl>(Tag))
   13189     FieldCollector->FinishClass();
   13190 
   13191   // Exit this scope of this tag's definition.
   13192   PopDeclContext();
   13193 
   13194   if (getCurLexicalContext()->isObjCContainer() &&
   13195       Tag->getDeclContext()->isFileContext())
   13196     Tag->setTopLevelDeclInObjCContainer();
   13197 
   13198   // Notify the consumer that we've defined a tag.
   13199   if (!Tag->isInvalidDecl())
   13200     Consumer.HandleTagDeclDefinition(Tag);
   13201 }
   13202 
   13203 void Sema::ActOnObjCContainerFinishDefinition() {
   13204   // Exit this scope of this interface definition.
   13205   PopDeclContext();
   13206 }
   13207 
   13208 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
   13209   assert(DC == CurContext && "Mismatch of container contexts");
   13210   OriginalLexicalContext = DC;
   13211   ActOnObjCContainerFinishDefinition();
   13212 }
   13213 
   13214 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
   13215   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
   13216   OriginalLexicalContext = nullptr;
   13217 }
   13218 
   13219 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
   13220   AdjustDeclIfTemplate(TagD);
   13221   TagDecl *Tag = cast<TagDecl>(TagD);
   13222   Tag->setInvalidDecl();
   13223 
   13224   // Make sure we "complete" the definition even it is invalid.
   13225   if (Tag->isBeingDefined()) {
   13226     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
   13227       RD->completeDefinition();
   13228   }
   13229 
   13230   // We're undoing ActOnTagStartDefinition here, not
   13231   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
   13232   // the FieldCollector.
   13233 
   13234   PopDeclContext();
   13235 }
   13236 
   13237 // Note that FieldName may be null for anonymous bitfields.
   13238 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
   13239                                 IdentifierInfo *FieldName,
   13240                                 QualType FieldTy, bool IsMsStruct,
   13241                                 Expr *BitWidth, bool *ZeroWidth) {
   13242   // Default to true; that shouldn't confuse checks for emptiness
   13243   if (ZeroWidth)
   13244     *ZeroWidth = true;
   13245 
   13246   // C99 6.7.2.1p4 - verify the field type.
   13247   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
   13248   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
   13249     // Handle incomplete types with specific error.
   13250     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
   13251       return ExprError();
   13252     if (FieldName)
   13253       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
   13254         << FieldName << FieldTy << BitWidth->getSourceRange();
   13255     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
   13256       << FieldTy << BitWidth->getSourceRange();
   13257   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
   13258                                              UPPC_BitFieldWidth))
   13259     return ExprError();
   13260 
   13261   // If the bit-width is type- or value-dependent, don't try to check
   13262   // it now.
   13263   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
   13264     return BitWidth;
   13265 
   13266   llvm::APSInt Value;
   13267   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
   13268   if (ICE.isInvalid())
   13269     return ICE;
   13270   BitWidth = ICE.get();
   13271 
   13272   if (Value != 0 && ZeroWidth)
   13273     *ZeroWidth = false;
   13274 
   13275   // Zero-width bitfield is ok for anonymous field.
   13276   if (Value == 0 && FieldName)
   13277     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
   13278 
   13279   if (Value.isSigned() && Value.isNegative()) {
   13280     if (FieldName)
   13281       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
   13282                << FieldName << Value.toString(10);
   13283     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
   13284       << Value.toString(10);
   13285   }
   13286 
   13287   if (!FieldTy->isDependentType()) {
   13288     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
   13289     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
   13290     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
   13291 
   13292     // Over-wide bitfields are an error in C or when using the MSVC bitfield
   13293     // ABI.
   13294     bool CStdConstraintViolation =
   13295         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
   13296     bool MSBitfieldViolation =
   13297         Value.ugt(TypeStorageSize) &&
   13298         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
   13299     if (CStdConstraintViolation || MSBitfieldViolation) {
   13300       unsigned DiagWidth =
   13301           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
   13302       if (FieldName)
   13303         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
   13304                << FieldName << (unsigned)Value.getZExtValue()
   13305                << !CStdConstraintViolation << DiagWidth;
   13306 
   13307       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
   13308              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
   13309              << DiagWidth;
   13310     }
   13311 
   13312     // Warn on types where the user might conceivably expect to get all
   13313     // specified bits as value bits: that's all integral types other than
   13314     // 'bool'.
   13315     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
   13316       if (FieldName)
   13317         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
   13318             << FieldName << (unsigned)Value.getZExtValue()
   13319             << (unsigned)TypeWidth;
   13320       else
   13321         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
   13322             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
   13323     }
   13324   }
   13325 
   13326   return BitWidth;
   13327 }
   13328 
   13329 /// ActOnField - Each field of a C struct/union is passed into this in order
   13330 /// to create a FieldDecl object for it.
   13331 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
   13332                        Declarator &D, Expr *BitfieldWidth) {
   13333   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
   13334                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
   13335                                /*InitStyle=*/ICIS_NoInit, AS_public);
   13336   return Res;
   13337 }
   13338 
   13339 /// HandleField - Analyze a field of a C struct or a C++ data member.
   13340 ///
   13341 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
   13342                              SourceLocation DeclStart,
   13343                              Declarator &D, Expr *BitWidth,
   13344                              InClassInitStyle InitStyle,
   13345                              AccessSpecifier AS) {
   13346   IdentifierInfo *II = D.getIdentifier();
   13347   SourceLocation Loc = DeclStart;
   13348   if (II) Loc = D.getIdentifierLoc();
   13349 
   13350   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   13351   QualType T = TInfo->getType();
   13352   if (getLangOpts().CPlusPlus) {
   13353     CheckExtraCXXDefaultArguments(D);
   13354 
   13355     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
   13356                                         UPPC_DataMemberType)) {
   13357       D.setInvalidType();
   13358       T = Context.IntTy;
   13359       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
   13360     }
   13361   }
   13362 
   13363   // TR 18037 does not allow fields to be declared with address spaces.
   13364   if (T.getQualifiers().hasAddressSpace()) {
   13365     Diag(Loc, diag::err_field_with_address_space);
   13366     D.setInvalidType();
   13367   }
   13368 
   13369   // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
   13370   // used as structure or union field: image, sampler, event or block types.
   13371   if (LangOpts.OpenCL && (T->isEventT() || T->isImageType() ||
   13372                           T->isSamplerT() || T->isBlockPointerType())) {
   13373     Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
   13374     D.setInvalidType();
   13375   }
   13376 
   13377   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   13378 
   13379   if (D.getDeclSpec().isInlineSpecified())
   13380     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
   13381         << getLangOpts().CPlusPlus1z;
   13382   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   13383     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   13384          diag::err_invalid_thread)
   13385       << DeclSpec::getSpecifierName(TSCS);
   13386 
   13387   // Check to see if this name was declared as a member previously
   13388   NamedDecl *PrevDecl = nullptr;
   13389   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
   13390   LookupName(Previous, S);
   13391   switch (Previous.getResultKind()) {
   13392     case LookupResult::Found:
   13393     case LookupResult::FoundUnresolvedValue:
   13394       PrevDecl = Previous.getAsSingle<NamedDecl>();
   13395       break;
   13396 
   13397     case LookupResult::FoundOverloaded:
   13398       PrevDecl = Previous.getRepresentativeDecl();
   13399       break;
   13400 
   13401     case LookupResult::NotFound:
   13402     case LookupResult::NotFoundInCurrentInstantiation:
   13403     case LookupResult::Ambiguous:
   13404       break;
   13405   }
   13406   Previous.suppressDiagnostics();
   13407 
   13408   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   13409     // Maybe we will complain about the shadowed template parameter.
   13410     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
   13411     // Just pretend that we didn't see the previous declaration.
   13412     PrevDecl = nullptr;
   13413   }
   13414 
   13415   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
   13416     PrevDecl = nullptr;
   13417 
   13418   bool Mutable
   13419     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
   13420   SourceLocation TSSL = D.getLocStart();
   13421   FieldDecl *NewFD
   13422     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
   13423                      TSSL, AS, PrevDecl, &D);
   13424 
   13425   if (NewFD->isInvalidDecl())
   13426     Record->setInvalidDecl();
   13427 
   13428   if (D.getDeclSpec().isModulePrivateSpecified())
   13429     NewFD->setModulePrivate();
   13430 
   13431   if (NewFD->isInvalidDecl() && PrevDecl) {
   13432     // Don't introduce NewFD into scope; there's already something
   13433     // with the same name in the same scope.
   13434   } else if (II) {
   13435     PushOnScopeChains(NewFD, S);
   13436   } else
   13437     Record->addDecl(NewFD);
   13438 
   13439   return NewFD;
   13440 }
   13441 
   13442 /// \brief Build a new FieldDecl and check its well-formedness.
   13443 ///
   13444 /// This routine builds a new FieldDecl given the fields name, type,
   13445 /// record, etc. \p PrevDecl should refer to any previous declaration
   13446 /// with the same name and in the same scope as the field to be
   13447 /// created.
   13448 ///
   13449 /// \returns a new FieldDecl.
   13450 ///
   13451 /// \todo The Declarator argument is a hack. It will be removed once
   13452 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
   13453                                 TypeSourceInfo *TInfo,
   13454                                 RecordDecl *Record, SourceLocation Loc,
   13455                                 bool Mutable, Expr *BitWidth,
   13456                                 InClassInitStyle InitStyle,
   13457                                 SourceLocation TSSL,
   13458                                 AccessSpecifier AS, NamedDecl *PrevDecl,
   13459                                 Declarator *D) {
   13460   IdentifierInfo *II = Name.getAsIdentifierInfo();
   13461   bool InvalidDecl = false;
   13462   if (D) InvalidDecl = D->isInvalidType();
   13463 
   13464   // If we receive a broken type, recover by assuming 'int' and
   13465   // marking this declaration as invalid.
   13466   if (T.isNull()) {
   13467     InvalidDecl = true;
   13468     T = Context.IntTy;
   13469   }
   13470 
   13471   QualType EltTy = Context.getBaseElementType(T);
   13472   if (!EltTy->isDependentType()) {
   13473     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
   13474       // Fields of incomplete type force their record to be invalid.
   13475       Record->setInvalidDecl();
   13476       InvalidDecl = true;
   13477     } else {
   13478       NamedDecl *Def;
   13479       EltTy->isIncompleteType(&Def);
   13480       if (Def && Def->isInvalidDecl()) {
   13481         Record->setInvalidDecl();
   13482         InvalidDecl = true;
   13483       }
   13484     }
   13485   }
   13486 
   13487   // OpenCL v1.2 s6.9.c: bitfields are not supported.
   13488   if (BitWidth && getLangOpts().OpenCL) {
   13489     Diag(Loc, diag::err_opencl_bitfields);
   13490     InvalidDecl = true;
   13491   }
   13492 
   13493   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   13494   // than a variably modified type.
   13495   if (!InvalidDecl && T->isVariablyModifiedType()) {
   13496     bool SizeIsNegative;
   13497     llvm::APSInt Oversized;
   13498 
   13499     TypeSourceInfo *FixedTInfo =
   13500       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
   13501                                                     SizeIsNegative,
   13502                                                     Oversized);
   13503     if (FixedTInfo) {
   13504       Diag(Loc, diag::warn_illegal_constant_array_size);
   13505       TInfo = FixedTInfo;
   13506       T = FixedTInfo->getType();
   13507     } else {
   13508       if (SizeIsNegative)
   13509         Diag(Loc, diag::err_typecheck_negative_array_size);
   13510       else if (Oversized.getBoolValue())
   13511         Diag(Loc, diag::err_array_too_large)
   13512           << Oversized.toString(10);
   13513       else
   13514         Diag(Loc, diag::err_typecheck_field_variable_size);
   13515       InvalidDecl = true;
   13516     }
   13517   }
   13518 
   13519   // Fields can not have abstract class types
   13520   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
   13521                                              diag::err_abstract_type_in_decl,
   13522                                              AbstractFieldType))
   13523     InvalidDecl = true;
   13524 
   13525   bool ZeroWidth = false;
   13526   if (InvalidDecl)
   13527     BitWidth = nullptr;
   13528   // If this is declared as a bit-field, check the bit-field.
   13529   if (BitWidth) {
   13530     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
   13531                               &ZeroWidth).get();
   13532     if (!BitWidth) {
   13533       InvalidDecl = true;
   13534       BitWidth = nullptr;
   13535       ZeroWidth = false;
   13536     }
   13537   }
   13538 
   13539   // Check that 'mutable' is consistent with the type of the declaration.
   13540   if (!InvalidDecl && Mutable) {
   13541     unsigned DiagID = 0;
   13542     if (T->isReferenceType())
   13543       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
   13544                                         : diag::err_mutable_reference;
   13545     else if (T.isConstQualified())
   13546       DiagID = diag::err_mutable_const;
   13547 
   13548     if (DiagID) {
   13549       SourceLocation ErrLoc = Loc;
   13550       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
   13551         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
   13552       Diag(ErrLoc, DiagID);
   13553       if (DiagID != diag::ext_mutable_reference) {
   13554         Mutable = false;
   13555         InvalidDecl = true;
   13556       }
   13557     }
   13558   }
   13559 
   13560   // C++11 [class.union]p8 (DR1460):
   13561   //   At most one variant member of a union may have a
   13562   //   brace-or-equal-initializer.
   13563   if (InitStyle != ICIS_NoInit)
   13564     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
   13565 
   13566   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
   13567                                        BitWidth, Mutable, InitStyle);
   13568   if (InvalidDecl)
   13569     NewFD->setInvalidDecl();
   13570 
   13571   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
   13572     Diag(Loc, diag::err_duplicate_member) << II;
   13573     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   13574     NewFD->setInvalidDecl();
   13575   }
   13576 
   13577   if (!InvalidDecl && getLangOpts().CPlusPlus) {
   13578     if (Record->isUnion()) {
   13579       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   13580         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
   13581         if (RDecl->getDefinition()) {
   13582           // C++ [class.union]p1: An object of a class with a non-trivial
   13583           // constructor, a non-trivial copy constructor, a non-trivial
   13584           // destructor, or a non-trivial copy assignment operator
   13585           // cannot be a member of a union, nor can an array of such
   13586           // objects.
   13587           if (CheckNontrivialField(NewFD))
   13588             NewFD->setInvalidDecl();
   13589         }
   13590       }
   13591 
   13592       // C++ [class.union]p1: If a union contains a member of reference type,
   13593       // the program is ill-formed, except when compiling with MSVC extensions
   13594       // enabled.
   13595       if (EltTy->isReferenceType()) {
   13596         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
   13597                                     diag::ext_union_member_of_reference_type :
   13598                                     diag::err_union_member_of_reference_type)
   13599           << NewFD->getDeclName() << EltTy;
   13600         if (!getLangOpts().MicrosoftExt)
   13601           NewFD->setInvalidDecl();
   13602       }
   13603     }
   13604   }
   13605 
   13606   // FIXME: We need to pass in the attributes given an AST
   13607   // representation, not a parser representation.
   13608   if (D) {
   13609     // FIXME: The current scope is almost... but not entirely... correct here.
   13610     ProcessDeclAttributes(getCurScope(), NewFD, *D);
   13611 
   13612     if (NewFD->hasAttrs())
   13613       CheckAlignasUnderalignment(NewFD);
   13614   }
   13615 
   13616   // In auto-retain/release, infer strong retension for fields of
   13617   // retainable type.
   13618   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
   13619     NewFD->setInvalidDecl();
   13620 
   13621   if (T.isObjCGCWeak())
   13622     Diag(Loc, diag::warn_attribute_weak_on_field);
   13623 
   13624   NewFD->setAccess(AS);
   13625   return NewFD;
   13626 }
   13627 
   13628 bool Sema::CheckNontrivialField(FieldDecl *FD) {
   13629   assert(FD);
   13630   assert(getLangOpts().CPlusPlus && "valid check only for C++");
   13631 
   13632   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
   13633     return false;
   13634 
   13635   QualType EltTy = Context.getBaseElementType(FD->getType());
   13636   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
   13637     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
   13638     if (RDecl->getDefinition()) {
   13639       // We check for copy constructors before constructors
   13640       // because otherwise we'll never get complaints about
   13641       // copy constructors.
   13642 
   13643       CXXSpecialMember member = CXXInvalid;
   13644       // We're required to check for any non-trivial constructors. Since the
   13645       // implicit default constructor is suppressed if there are any
   13646       // user-declared constructors, we just need to check that there is a
   13647       // trivial default constructor and a trivial copy constructor. (We don't
   13648       // worry about move constructors here, since this is a C++98 check.)
   13649       if (RDecl->hasNonTrivialCopyConstructor())
   13650         member = CXXCopyConstructor;
   13651       else if (!RDecl->hasTrivialDefaultConstructor())
   13652         member = CXXDefaultConstructor;
   13653       else if (RDecl->hasNonTrivialCopyAssignment())
   13654         member = CXXCopyAssignment;
   13655       else if (RDecl->hasNonTrivialDestructor())
   13656         member = CXXDestructor;
   13657 
   13658       if (member != CXXInvalid) {
   13659         if (!getLangOpts().CPlusPlus11 &&
   13660             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
   13661           // Objective-C++ ARC: it is an error to have a non-trivial field of
   13662           // a union. However, system headers in Objective-C programs
   13663           // occasionally have Objective-C lifetime objects within unions,
   13664           // and rather than cause the program to fail, we make those
   13665           // members unavailable.
   13666           SourceLocation Loc = FD->getLocation();
   13667           if (getSourceManager().isInSystemHeader(Loc)) {
   13668             if (!FD->hasAttr<UnavailableAttr>())
   13669               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
   13670                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
   13671             return false;
   13672           }
   13673         }
   13674 
   13675         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
   13676                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
   13677                diag::err_illegal_union_or_anon_struct_member)
   13678           << FD->getParent()->isUnion() << FD->getDeclName() << member;
   13679         DiagnoseNontrivial(RDecl, member);
   13680         return !getLangOpts().CPlusPlus11;
   13681       }
   13682     }
   13683   }
   13684 
   13685   return false;
   13686 }
   13687 
   13688 /// TranslateIvarVisibility - Translate visibility from a token ID to an
   13689 ///  AST enum value.
   13690 static ObjCIvarDecl::AccessControl
   13691 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
   13692   switch (ivarVisibility) {
   13693   default: llvm_unreachable("Unknown visitibility kind");
   13694   case tok::objc_private: return ObjCIvarDecl::Private;
   13695   case tok::objc_public: return ObjCIvarDecl::Public;
   13696   case tok::objc_protected: return ObjCIvarDecl::Protected;
   13697   case tok::objc_package: return ObjCIvarDecl::Package;
   13698   }
   13699 }
   13700 
   13701 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
   13702 /// in order to create an IvarDecl object for it.
   13703 Decl *Sema::ActOnIvar(Scope *S,
   13704                                 SourceLocation DeclStart,
   13705                                 Declarator &D, Expr *BitfieldWidth,
   13706                                 tok::ObjCKeywordKind Visibility) {
   13707 
   13708   IdentifierInfo *II = D.getIdentifier();
   13709   Expr *BitWidth = (Expr*)BitfieldWidth;
   13710   SourceLocation Loc = DeclStart;
   13711   if (II) Loc = D.getIdentifierLoc();
   13712 
   13713   // FIXME: Unnamed fields can be handled in various different ways, for
   13714   // example, unnamed unions inject all members into the struct namespace!
   13715 
   13716   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   13717   QualType T = TInfo->getType();
   13718 
   13719   if (BitWidth) {
   13720     // 6.7.2.1p3, 6.7.2.1p4
   13721     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
   13722     if (!BitWidth)
   13723       D.setInvalidType();
   13724   } else {
   13725     // Not a bitfield.
   13726 
   13727     // validate II.
   13728 
   13729   }
   13730   if (T->isReferenceType()) {
   13731     Diag(Loc, diag::err_ivar_reference_type);
   13732     D.setInvalidType();
   13733   }
   13734   // C99 6.7.2.1p8: A member of a structure or union may have any type other
   13735   // than a variably modified type.
   13736   else if (T->isVariablyModifiedType()) {
   13737     Diag(Loc, diag::err_typecheck_ivar_variable_size);
   13738     D.setInvalidType();
   13739   }
   13740 
   13741   // Get the visibility (access control) for this ivar.
   13742   ObjCIvarDecl::AccessControl ac =
   13743     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
   13744                                         : ObjCIvarDecl::None;
   13745   // Must set ivar's DeclContext to its enclosing interface.
   13746   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
   13747   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
   13748     return nullptr;
   13749   ObjCContainerDecl *EnclosingContext;
   13750   if (ObjCImplementationDecl *IMPDecl =
   13751       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   13752     if (LangOpts.ObjCRuntime.isFragile()) {
   13753     // Case of ivar declared in an implementation. Context is that of its class.
   13754       EnclosingContext = IMPDecl->getClassInterface();
   13755       assert(EnclosingContext && "Implementation has no class interface!");
   13756     }
   13757     else
   13758       EnclosingContext = EnclosingDecl;
   13759   } else {
   13760     if (ObjCCategoryDecl *CDecl =
   13761         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   13762       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
   13763         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
   13764         return nullptr;
   13765       }
   13766     }
   13767     EnclosingContext = EnclosingDecl;
   13768   }
   13769 
   13770   // Construct the decl.
   13771   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
   13772                                              DeclStart, Loc, II, T,
   13773                                              TInfo, ac, (Expr *)BitfieldWidth);
   13774 
   13775   if (II) {
   13776     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
   13777                                            ForRedeclaration);
   13778     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
   13779         && !isa<TagDecl>(PrevDecl)) {
   13780       Diag(Loc, diag::err_duplicate_member) << II;
   13781       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
   13782       NewID->setInvalidDecl();
   13783     }
   13784   }
   13785 
   13786   // Process attributes attached to the ivar.
   13787   ProcessDeclAttributes(S, NewID, D);
   13788 
   13789   if (D.isInvalidType())
   13790     NewID->setInvalidDecl();
   13791 
   13792   // In ARC, infer 'retaining' for ivars of retainable type.
   13793   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
   13794     NewID->setInvalidDecl();
   13795 
   13796   if (D.getDeclSpec().isModulePrivateSpecified())
   13797     NewID->setModulePrivate();
   13798 
   13799   if (II) {
   13800     // FIXME: When interfaces are DeclContexts, we'll need to add
   13801     // these to the interface.
   13802     S->AddDecl(NewID);
   13803     IdResolver.AddDecl(NewID);
   13804   }
   13805 
   13806   if (LangOpts.ObjCRuntime.isNonFragile() &&
   13807       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
   13808     Diag(Loc, diag::warn_ivars_in_interface);
   13809 
   13810   return NewID;
   13811 }
   13812 
   13813 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
   13814 /// class and class extensions. For every class \@interface and class
   13815 /// extension \@interface, if the last ivar is a bitfield of any type,
   13816 /// then add an implicit `char :0` ivar to the end of that interface.
   13817 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
   13818                              SmallVectorImpl<Decl *> &AllIvarDecls) {
   13819   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
   13820     return;
   13821 
   13822   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
   13823   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
   13824 
   13825   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
   13826     return;
   13827   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
   13828   if (!ID) {
   13829     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
   13830       if (!CD->IsClassExtension())
   13831         return;
   13832     }
   13833     // No need to add this to end of @implementation.
   13834     else
   13835       return;
   13836   }
   13837   // All conditions are met. Add a new bitfield to the tail end of ivars.
   13838   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
   13839   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
   13840 
   13841   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
   13842                               DeclLoc, DeclLoc, nullptr,
   13843                               Context.CharTy,
   13844                               Context.getTrivialTypeSourceInfo(Context.CharTy,
   13845                                                                DeclLoc),
   13846                               ObjCIvarDecl::Private, BW,
   13847                               true);
   13848   AllIvarDecls.push_back(Ivar);
   13849 }
   13850 
   13851 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
   13852                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
   13853                        SourceLocation RBrac, AttributeList *Attr) {
   13854   assert(EnclosingDecl && "missing record or interface decl");
   13855 
   13856   // If this is an Objective-C @implementation or category and we have
   13857   // new fields here we should reset the layout of the interface since
   13858   // it will now change.
   13859   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
   13860     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
   13861     switch (DC->getKind()) {
   13862     default: break;
   13863     case Decl::ObjCCategory:
   13864       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
   13865       break;
   13866     case Decl::ObjCImplementation:
   13867       Context.
   13868         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
   13869       break;
   13870     }
   13871   }
   13872 
   13873   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
   13874 
   13875   // Start counting up the number of named members; make sure to include
   13876   // members of anonymous structs and unions in the total.
   13877   unsigned NumNamedMembers = 0;
   13878   if (Record) {
   13879     for (const auto *I : Record->decls()) {
   13880       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
   13881         if (IFD->getDeclName())
   13882           ++NumNamedMembers;
   13883     }
   13884   }
   13885 
   13886   // Verify that all the fields are okay.
   13887   SmallVector<FieldDecl*, 32> RecFields;
   13888 
   13889   bool ARCErrReported = false;
   13890   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
   13891        i != end; ++i) {
   13892     FieldDecl *FD = cast<FieldDecl>(*i);
   13893 
   13894     // Get the type for the field.
   13895     const Type *FDTy = FD->getType().getTypePtr();
   13896 
   13897     if (!FD->isAnonymousStructOrUnion()) {
   13898       // Remember all fields written by the user.
   13899       RecFields.push_back(FD);
   13900     }
   13901 
   13902     // If the field is already invalid for some reason, don't emit more
   13903     // diagnostics about it.
   13904     if (FD->isInvalidDecl()) {
   13905       EnclosingDecl->setInvalidDecl();
   13906       continue;
   13907     }
   13908 
   13909     // C99 6.7.2.1p2:
   13910     //   A structure or union shall not contain a member with
   13911     //   incomplete or function type (hence, a structure shall not
   13912     //   contain an instance of itself, but may contain a pointer to
   13913     //   an instance of itself), except that the last member of a
   13914     //   structure with more than one named member may have incomplete
   13915     //   array type; such a structure (and any union containing,
   13916     //   possibly recursively, a member that is such a structure)
   13917     //   shall not be a member of a structure or an element of an
   13918     //   array.
   13919     if (FDTy->isFunctionType()) {
   13920       // Field declared as a function.
   13921       Diag(FD->getLocation(), diag::err_field_declared_as_function)
   13922         << FD->getDeclName();
   13923       FD->setInvalidDecl();
   13924       EnclosingDecl->setInvalidDecl();
   13925       continue;
   13926     } else if (FDTy->isIncompleteArrayType() && Record &&
   13927                ((i + 1 == Fields.end() && !Record->isUnion()) ||
   13928                 ((getLangOpts().MicrosoftExt ||
   13929                   getLangOpts().CPlusPlus) &&
   13930                  (i + 1 == Fields.end() || Record->isUnion())))) {
   13931       // Flexible array member.
   13932       // Microsoft and g++ is more permissive regarding flexible array.
   13933       // It will accept flexible array in union and also
   13934       // as the sole element of a struct/class.
   13935       unsigned DiagID = 0;
   13936       if (Record->isUnion())
   13937         DiagID = getLangOpts().MicrosoftExt
   13938                      ? diag::ext_flexible_array_union_ms
   13939                      : getLangOpts().CPlusPlus
   13940                            ? diag::ext_flexible_array_union_gnu
   13941                            : diag::err_flexible_array_union;
   13942       else if (NumNamedMembers < 1)
   13943         DiagID = getLangOpts().MicrosoftExt
   13944                      ? diag::ext_flexible_array_empty_aggregate_ms
   13945                      : getLangOpts().CPlusPlus
   13946                            ? diag::ext_flexible_array_empty_aggregate_gnu
   13947                            : diag::err_flexible_array_empty_aggregate;
   13948 
   13949       if (DiagID)
   13950         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
   13951                                         << Record->getTagKind();
   13952       // While the layout of types that contain virtual bases is not specified
   13953       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
   13954       // virtual bases after the derived members.  This would make a flexible
   13955       // array member declared at the end of an object not adjacent to the end
   13956       // of the type.
   13957       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
   13958         if (RD->getNumVBases() != 0)
   13959           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
   13960             << FD->getDeclName() << Record->getTagKind();
   13961       if (!getLangOpts().C99)
   13962         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
   13963           << FD->getDeclName() << Record->getTagKind();
   13964 
   13965       // If the element type has a non-trivial destructor, we would not
   13966       // implicitly destroy the elements, so disallow it for now.
   13967       //
   13968       // FIXME: GCC allows this. We should probably either implicitly delete
   13969       // the destructor of the containing class, or just allow this.
   13970       QualType BaseElem = Context.getBaseElementType(FD->getType());
   13971       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
   13972         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
   13973           << FD->getDeclName() << FD->getType();
   13974         FD->setInvalidDecl();
   13975         EnclosingDecl->setInvalidDecl();
   13976         continue;
   13977       }
   13978       // Okay, we have a legal flexible array member at the end of the struct.
   13979       Record->setHasFlexibleArrayMember(true);
   13980     } else if (!FDTy->isDependentType() &&
   13981                RequireCompleteType(FD->getLocation(), FD->getType(),
   13982                                    diag::err_field_incomplete)) {
   13983       // Incomplete type
   13984       FD->setInvalidDecl();
   13985       EnclosingDecl->setInvalidDecl();
   13986       continue;
   13987     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
   13988       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
   13989         // A type which contains a flexible array member is considered to be a
   13990         // flexible array member.
   13991         Record->setHasFlexibleArrayMember(true);
   13992         if (!Record->isUnion()) {
   13993           // If this is a struct/class and this is not the last element, reject
   13994           // it.  Note that GCC supports variable sized arrays in the middle of
   13995           // structures.
   13996           if (i + 1 != Fields.end())
   13997             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
   13998               << FD->getDeclName() << FD->getType();
   13999           else {
   14000             // We support flexible arrays at the end of structs in
   14001             // other structs as an extension.
   14002             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
   14003               << FD->getDeclName();
   14004           }
   14005         }
   14006       }
   14007       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
   14008           RequireNonAbstractType(FD->getLocation(), FD->getType(),
   14009                                  diag::err_abstract_type_in_decl,
   14010                                  AbstractIvarType)) {
   14011         // Ivars can not have abstract class types
   14012         FD->setInvalidDecl();
   14013       }
   14014       if (Record && FDTTy->getDecl()->hasObjectMember())
   14015         Record->setHasObjectMember(true);
   14016       if (Record && FDTTy->getDecl()->hasVolatileMember())
   14017         Record->setHasVolatileMember(true);
   14018     } else if (FDTy->isObjCObjectType()) {
   14019       /// A field cannot be an Objective-c object
   14020       Diag(FD->getLocation(), diag::err_statically_allocated_object)
   14021         << FixItHint::CreateInsertion(FD->getLocation(), "*");
   14022       QualType T = Context.getObjCObjectPointerType(FD->getType());
   14023       FD->setType(T);
   14024     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
   14025                (!getLangOpts().CPlusPlus || Record->isUnion())) {
   14026       // It's an error in ARC if a field has lifetime.
   14027       // We don't want to report this in a system header, though,
   14028       // so we just make the field unavailable.
   14029       // FIXME: that's really not sufficient; we need to make the type
   14030       // itself invalid to, say, initialize or copy.
   14031       QualType T = FD->getType();
   14032       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
   14033       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
   14034         SourceLocation loc = FD->getLocation();
   14035         if (getSourceManager().isInSystemHeader(loc)) {
   14036           if (!FD->hasAttr<UnavailableAttr>()) {
   14037             FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
   14038                           UnavailableAttr::IR_ARCFieldWithOwnership, loc));
   14039           }
   14040         } else {
   14041           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
   14042             << T->isBlockPointerType() << Record->getTagKind();
   14043         }
   14044         ARCErrReported = true;
   14045       }
   14046     } else if (getLangOpts().ObjC1 &&
   14047                getLangOpts().getGC() != LangOptions::NonGC &&
   14048                Record && !Record->hasObjectMember()) {
   14049       if (FD->getType()->isObjCObjectPointerType() ||
   14050           FD->getType().isObjCGCStrong())
   14051         Record->setHasObjectMember(true);
   14052       else if (Context.getAsArrayType(FD->getType())) {
   14053         QualType BaseType = Context.getBaseElementType(FD->getType());
   14054         if (BaseType->isRecordType() &&
   14055             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
   14056           Record->setHasObjectMember(true);
   14057         else if (BaseType->isObjCObjectPointerType() ||
   14058                  BaseType.isObjCGCStrong())
   14059                Record->setHasObjectMember(true);
   14060       }
   14061     }
   14062     if (Record && FD->getType().isVolatileQualified())
   14063       Record->setHasVolatileMember(true);
   14064     // Keep track of the number of named members.
   14065     if (FD->getIdentifier())
   14066       ++NumNamedMembers;
   14067   }
   14068 
   14069   // Okay, we successfully defined 'Record'.
   14070   if (Record) {
   14071     bool Completed = false;
   14072     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
   14073       if (!CXXRecord->isInvalidDecl()) {
   14074         // Set access bits correctly on the directly-declared conversions.
   14075         for (CXXRecordDecl::conversion_iterator
   14076                I = CXXRecord->conversion_begin(),
   14077                E = CXXRecord->conversion_end(); I != E; ++I)
   14078           I.setAccess((*I)->getAccess());
   14079       }
   14080 
   14081       if (!CXXRecord->isDependentType()) {
   14082         if (CXXRecord->hasUserDeclaredDestructor()) {
   14083           // Adjust user-defined destructor exception spec.
   14084           if (getLangOpts().CPlusPlus11)
   14085             AdjustDestructorExceptionSpec(CXXRecord,
   14086                                           CXXRecord->getDestructor());
   14087         }
   14088 
   14089         if (!CXXRecord->isInvalidDecl()) {
   14090           // Add any implicitly-declared members to this class.
   14091           AddImplicitlyDeclaredMembersToClass(CXXRecord);
   14092 
   14093           // If we have virtual base classes, we may end up finding multiple
   14094           // final overriders for a given virtual function. Check for this
   14095           // problem now.
   14096           if (CXXRecord->getNumVBases()) {
   14097             CXXFinalOverriderMap FinalOverriders;
   14098             CXXRecord->getFinalOverriders(FinalOverriders);
   14099 
   14100             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
   14101                                              MEnd = FinalOverriders.end();
   14102                  M != MEnd; ++M) {
   14103               for (OverridingMethods::iterator SO = M->second.begin(),
   14104                                             SOEnd = M->second.end();
   14105                    SO != SOEnd; ++SO) {
   14106                 assert(SO->second.size() > 0 &&
   14107                        "Virtual function without overridding functions?");
   14108                 if (SO->second.size() == 1)
   14109                   continue;
   14110 
   14111                 // C++ [class.virtual]p2:
   14112                 //   In a derived class, if a virtual member function of a base
   14113                 //   class subobject has more than one final overrider the
   14114                 //   program is ill-formed.
   14115                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
   14116                   << (const NamedDecl *)M->first << Record;
   14117                 Diag(M->first->getLocation(),
   14118                      diag::note_overridden_virtual_function);
   14119                 for (OverridingMethods::overriding_iterator
   14120                           OM = SO->second.begin(),
   14121                        OMEnd = SO->second.end();
   14122                      OM != OMEnd; ++OM)
   14123                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
   14124                     << (const NamedDecl *)M->first << OM->Method->getParent();
   14125 
   14126                 Record->setInvalidDecl();
   14127               }
   14128             }
   14129             CXXRecord->completeDefinition(&FinalOverriders);
   14130             Completed = true;
   14131           }
   14132         }
   14133       }
   14134     }
   14135 
   14136     if (!Completed)
   14137       Record->completeDefinition();
   14138 
   14139     if (Record->hasAttrs()) {
   14140       CheckAlignasUnderalignment(Record);
   14141 
   14142       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
   14143         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
   14144                                            IA->getRange(), IA->getBestCase(),
   14145                                            IA->getSemanticSpelling());
   14146     }
   14147 
   14148     // Check if the structure/union declaration is a type that can have zero
   14149     // size in C. For C this is a language extension, for C++ it may cause
   14150     // compatibility problems.
   14151     bool CheckForZeroSize;
   14152     if (!getLangOpts().CPlusPlus) {
   14153       CheckForZeroSize = true;
   14154     } else {
   14155       // For C++ filter out types that cannot be referenced in C code.
   14156       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
   14157       CheckForZeroSize =
   14158           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
   14159           !CXXRecord->isDependentType() &&
   14160           CXXRecord->isCLike();
   14161     }
   14162     if (CheckForZeroSize) {
   14163       bool ZeroSize = true;
   14164       bool IsEmpty = true;
   14165       unsigned NonBitFields = 0;
   14166       for (RecordDecl::field_iterator I = Record->field_begin(),
   14167                                       E = Record->field_end();
   14168            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
   14169         IsEmpty = false;
   14170         if (I->isUnnamedBitfield()) {
   14171           if (I->getBitWidthValue(Context) > 0)
   14172             ZeroSize = false;
   14173         } else {
   14174           ++NonBitFields;
   14175           QualType FieldType = I->getType();
   14176           if (FieldType->isIncompleteType() ||
   14177               !Context.getTypeSizeInChars(FieldType).isZero())
   14178             ZeroSize = false;
   14179         }
   14180       }
   14181 
   14182       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
   14183       // allowed in C++, but warn if its declaration is inside
   14184       // extern "C" block.
   14185       if (ZeroSize) {
   14186         Diag(RecLoc, getLangOpts().CPlusPlus ?
   14187                          diag::warn_zero_size_struct_union_in_extern_c :
   14188                          diag::warn_zero_size_struct_union_compat)
   14189           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
   14190       }
   14191 
   14192       // Structs without named members are extension in C (C99 6.7.2.1p7),
   14193       // but are accepted by GCC.
   14194       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
   14195         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
   14196                                diag::ext_no_named_members_in_struct_union)
   14197           << Record->isUnion();
   14198       }
   14199     }
   14200   } else {
   14201     ObjCIvarDecl **ClsFields =
   14202       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
   14203     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
   14204       ID->setEndOfDefinitionLoc(RBrac);
   14205       // Add ivar's to class's DeclContext.
   14206       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   14207         ClsFields[i]->setLexicalDeclContext(ID);
   14208         ID->addDecl(ClsFields[i]);
   14209       }
   14210       // Must enforce the rule that ivars in the base classes may not be
   14211       // duplicates.
   14212       if (ID->getSuperClass())
   14213         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
   14214     } else if (ObjCImplementationDecl *IMPDecl =
   14215                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
   14216       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
   14217       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
   14218         // Ivar declared in @implementation never belongs to the implementation.
   14219         // Only it is in implementation's lexical context.
   14220         ClsFields[I]->setLexicalDeclContext(IMPDecl);
   14221       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
   14222       IMPDecl->setIvarLBraceLoc(LBrac);
   14223       IMPDecl->setIvarRBraceLoc(RBrac);
   14224     } else if (ObjCCategoryDecl *CDecl =
   14225                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
   14226       // case of ivars in class extension; all other cases have been
   14227       // reported as errors elsewhere.
   14228       // FIXME. Class extension does not have a LocEnd field.
   14229       // CDecl->setLocEnd(RBrac);
   14230       // Add ivar's to class extension's DeclContext.
   14231       // Diagnose redeclaration of private ivars.
   14232       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
   14233       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
   14234         if (IDecl) {
   14235           if (const ObjCIvarDecl *ClsIvar =
   14236               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
   14237             Diag(ClsFields[i]->getLocation(),
   14238                  diag::err_duplicate_ivar_declaration);
   14239             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   14240             continue;
   14241           }
   14242           for (const auto *Ext : IDecl->known_extensions()) {
   14243             if (const ObjCIvarDecl *ClsExtIvar
   14244                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
   14245               Diag(ClsFields[i]->getLocation(),
   14246                    diag::err_duplicate_ivar_declaration);
   14247               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   14248               continue;
   14249             }
   14250           }
   14251         }
   14252         ClsFields[i]->setLexicalDeclContext(CDecl);
   14253         CDecl->addDecl(ClsFields[i]);
   14254       }
   14255       CDecl->setIvarLBraceLoc(LBrac);
   14256       CDecl->setIvarRBraceLoc(RBrac);
   14257     }
   14258   }
   14259 
   14260   if (Attr)
   14261     ProcessDeclAttributeList(S, Record, Attr);
   14262 }
   14263 
   14264 /// \brief Determine whether the given integral value is representable within
   14265 /// the given type T.
   14266 static bool isRepresentableIntegerValue(ASTContext &Context,
   14267                                         llvm::APSInt &Value,
   14268                                         QualType T) {
   14269   assert(T->isIntegralType(Context) && "Integral type required!");
   14270   unsigned BitWidth = Context.getIntWidth(T);
   14271 
   14272   if (Value.isUnsigned() || Value.isNonNegative()) {
   14273     if (T->isSignedIntegerOrEnumerationType())
   14274       --BitWidth;
   14275     return Value.getActiveBits() <= BitWidth;
   14276   }
   14277   return Value.getMinSignedBits() <= BitWidth;
   14278 }
   14279 
   14280 // \brief Given an integral type, return the next larger integral type
   14281 // (or a NULL type of no such type exists).
   14282 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
   14283   // FIXME: Int128/UInt128 support, which also needs to be introduced into
   14284   // enum checking below.
   14285   assert(T->isIntegralType(Context) && "Integral type required!");
   14286   const unsigned NumTypes = 4;
   14287   QualType SignedIntegralTypes[NumTypes] = {
   14288     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
   14289   };
   14290   QualType UnsignedIntegralTypes[NumTypes] = {
   14291     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
   14292     Context.UnsignedLongLongTy
   14293   };
   14294 
   14295   unsigned BitWidth = Context.getTypeSize(T);
   14296   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
   14297                                                         : UnsignedIntegralTypes;
   14298   for (unsigned I = 0; I != NumTypes; ++I)
   14299     if (Context.getTypeSize(Types[I]) > BitWidth)
   14300       return Types[I];
   14301 
   14302   return QualType();
   14303 }
   14304 
   14305 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
   14306                                           EnumConstantDecl *LastEnumConst,
   14307                                           SourceLocation IdLoc,
   14308                                           IdentifierInfo *Id,
   14309                                           Expr *Val) {
   14310   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   14311   llvm::APSInt EnumVal(IntWidth);
   14312   QualType EltTy;
   14313 
   14314   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
   14315     Val = nullptr;
   14316 
   14317   if (Val)
   14318     Val = DefaultLvalueConversion(Val).get();
   14319 
   14320   if (Val) {
   14321     if (Enum->isDependentType() || Val->isTypeDependent())
   14322       EltTy = Context.DependentTy;
   14323     else {
   14324       SourceLocation ExpLoc;
   14325       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
   14326           !getLangOpts().MSVCCompat) {
   14327         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
   14328         // constant-expression in the enumerator-definition shall be a converted
   14329         // constant expression of the underlying type.
   14330         EltTy = Enum->getIntegerType();
   14331         ExprResult Converted =
   14332           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
   14333                                            CCEK_Enumerator);
   14334         if (Converted.isInvalid())
   14335           Val = nullptr;
   14336         else
   14337           Val = Converted.get();
   14338       } else if (!Val->isValueDependent() &&
   14339                  !(Val = VerifyIntegerConstantExpression(Val,
   14340                                                          &EnumVal).get())) {
   14341         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
   14342       } else {
   14343         if (Enum->isFixed()) {
   14344           EltTy = Enum->getIntegerType();
   14345 
   14346           // In Obj-C and Microsoft mode, require the enumeration value to be
   14347           // representable in the underlying type of the enumeration. In C++11,
   14348           // we perform a non-narrowing conversion as part of converted constant
   14349           // expression checking.
   14350           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   14351             if (getLangOpts().MSVCCompat) {
   14352               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
   14353               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
   14354             } else
   14355               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
   14356           } else
   14357             Val = ImpCastExprToType(Val, EltTy,
   14358                                     EltTy->isBooleanType() ?
   14359                                     CK_IntegralToBoolean : CK_IntegralCast)
   14360                     .get();
   14361         } else if (getLangOpts().CPlusPlus) {
   14362           // C++11 [dcl.enum]p5:
   14363           //   If the underlying type is not fixed, the type of each enumerator
   14364           //   is the type of its initializing value:
   14365           //     - If an initializer is specified for an enumerator, the
   14366           //       initializing value has the same type as the expression.
   14367           EltTy = Val->getType();
   14368         } else {
   14369           // C99 6.7.2.2p2:
   14370           //   The expression that defines the value of an enumeration constant
   14371           //   shall be an integer constant expression that has a value
   14372           //   representable as an int.
   14373 
   14374           // Complain if the value is not representable in an int.
   14375           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
   14376             Diag(IdLoc, diag::ext_enum_value_not_int)
   14377               << EnumVal.toString(10) << Val->getSourceRange()
   14378               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
   14379           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
   14380             // Force the type of the expression to 'int'.
   14381             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
   14382           }
   14383           EltTy = Val->getType();
   14384         }
   14385       }
   14386     }
   14387   }
   14388 
   14389   if (!Val) {
   14390     if (Enum->isDependentType())
   14391       EltTy = Context.DependentTy;
   14392     else if (!LastEnumConst) {
   14393       // C++0x [dcl.enum]p5:
   14394       //   If the underlying type is not fixed, the type of each enumerator
   14395       //   is the type of its initializing value:
   14396       //     - If no initializer is specified for the first enumerator, the
   14397       //       initializing value has an unspecified integral type.
   14398       //
   14399       // GCC uses 'int' for its unspecified integral type, as does
   14400       // C99 6.7.2.2p3.
   14401       if (Enum->isFixed()) {
   14402         EltTy = Enum->getIntegerType();
   14403       }
   14404       else {
   14405         EltTy = Context.IntTy;
   14406       }
   14407     } else {
   14408       // Assign the last value + 1.
   14409       EnumVal = LastEnumConst->getInitVal();
   14410       ++EnumVal;
   14411       EltTy = LastEnumConst->getType();
   14412 
   14413       // Check for overflow on increment.
   14414       if (EnumVal < LastEnumConst->getInitVal()) {
   14415         // C++0x [dcl.enum]p5:
   14416         //   If the underlying type is not fixed, the type of each enumerator
   14417         //   is the type of its initializing value:
   14418         //
   14419         //     - Otherwise the type of the initializing value is the same as
   14420         //       the type of the initializing value of the preceding enumerator
   14421         //       unless the incremented value is not representable in that type,
   14422         //       in which case the type is an unspecified integral type
   14423         //       sufficient to contain the incremented value. If no such type
   14424         //       exists, the program is ill-formed.
   14425         QualType T = getNextLargerIntegralType(Context, EltTy);
   14426         if (T.isNull() || Enum->isFixed()) {
   14427           // There is no integral type larger enough to represent this
   14428           // value. Complain, then allow the value to wrap around.
   14429           EnumVal = LastEnumConst->getInitVal();
   14430           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
   14431           ++EnumVal;
   14432           if (Enum->isFixed())
   14433             // When the underlying type is fixed, this is ill-formed.
   14434             Diag(IdLoc, diag::err_enumerator_wrapped)
   14435               << EnumVal.toString(10)
   14436               << EltTy;
   14437           else
   14438             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
   14439               << EnumVal.toString(10);
   14440         } else {
   14441           EltTy = T;
   14442         }
   14443 
   14444         // Retrieve the last enumerator's value, extent that type to the
   14445         // type that is supposed to be large enough to represent the incremented
   14446         // value, then increment.
   14447         EnumVal = LastEnumConst->getInitVal();
   14448         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   14449         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
   14450         ++EnumVal;
   14451 
   14452         // If we're not in C++, diagnose the overflow of enumerator values,
   14453         // which in C99 means that the enumerator value is not representable in
   14454         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
   14455         // permits enumerator values that are representable in some larger
   14456         // integral type.
   14457         if (!getLangOpts().CPlusPlus && !T.isNull())
   14458           Diag(IdLoc, diag::warn_enum_value_overflow);
   14459       } else if (!getLangOpts().CPlusPlus &&
   14460                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
   14461         // Enforce C99 6.7.2.2p2 even when we compute the next value.
   14462         Diag(IdLoc, diag::ext_enum_value_not_int)
   14463           << EnumVal.toString(10) << 1;
   14464       }
   14465     }
   14466   }
   14467 
   14468   if (!EltTy->isDependentType()) {
   14469     // Make the enumerator value match the signedness and size of the
   14470     // enumerator's type.
   14471     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
   14472     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
   14473   }
   14474 
   14475   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
   14476                                   Val, EnumVal);
   14477 }
   14478 
   14479 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
   14480                                                 SourceLocation IILoc) {
   14481   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
   14482       !getLangOpts().CPlusPlus)
   14483     return SkipBodyInfo();
   14484 
   14485   // We have an anonymous enum definition. Look up the first enumerator to
   14486   // determine if we should merge the definition with an existing one and
   14487   // skip the body.
   14488   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
   14489                                          ForRedeclaration);
   14490   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
   14491   if (!PrevECD)
   14492     return SkipBodyInfo();
   14493 
   14494   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
   14495   NamedDecl *Hidden;
   14496   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
   14497     SkipBodyInfo Skip;
   14498     Skip.Previous = Hidden;
   14499     return Skip;
   14500   }
   14501 
   14502   return SkipBodyInfo();
   14503 }
   14504 
   14505 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
   14506                               SourceLocation IdLoc, IdentifierInfo *Id,
   14507                               AttributeList *Attr,
   14508                               SourceLocation EqualLoc, Expr *Val) {
   14509   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
   14510   EnumConstantDecl *LastEnumConst =
   14511     cast_or_null<EnumConstantDecl>(lastEnumConst);
   14512 
   14513   // The scope passed in may not be a decl scope.  Zip up the scope tree until
   14514   // we find one that is.
   14515   S = getNonFieldDeclScope(S);
   14516 
   14517   // Verify that there isn't already something declared with this name in this
   14518   // scope.
   14519   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
   14520                                          ForRedeclaration);
   14521   if (PrevDecl && PrevDecl->isTemplateParameter()) {
   14522     // Maybe we will complain about the shadowed template parameter.
   14523     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
   14524     // Just pretend that we didn't see the previous declaration.
   14525     PrevDecl = nullptr;
   14526   }
   14527 
   14528   // C++ [class.mem]p15:
   14529   // If T is the name of a class, then each of the following shall have a name
   14530   // different from T:
   14531   // - every enumerator of every member of class T that is an unscoped
   14532   // enumerated type
   14533   if (!TheEnumDecl->isScoped())
   14534     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
   14535                             DeclarationNameInfo(Id, IdLoc));
   14536 
   14537   EnumConstantDecl *New =
   14538     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
   14539   if (!New)
   14540     return nullptr;
   14541 
   14542   if (PrevDecl) {
   14543     // When in C++, we may get a TagDecl with the same name; in this case the
   14544     // enum constant will 'hide' the tag.
   14545     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
   14546            "Received TagDecl when not in C++!");
   14547     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S) &&
   14548         shouldLinkPossiblyHiddenDecl(PrevDecl, New)) {
   14549       if (isa<EnumConstantDecl>(PrevDecl))
   14550         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
   14551       else
   14552         Diag(IdLoc, diag::err_redefinition) << Id;
   14553       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   14554       return nullptr;
   14555     }
   14556   }
   14557 
   14558   // Process attributes.
   14559   if (Attr) ProcessDeclAttributeList(S, New, Attr);
   14560 
   14561   // Register this decl in the current scope stack.
   14562   New->setAccess(TheEnumDecl->getAccess());
   14563   PushOnScopeChains(New, S);
   14564 
   14565   ActOnDocumentableDecl(New);
   14566 
   14567   return New;
   14568 }
   14569 
   14570 // Returns true when the enum initial expression does not trigger the
   14571 // duplicate enum warning.  A few common cases are exempted as follows:
   14572 // Element2 = Element1
   14573 // Element2 = Element1 + 1
   14574 // Element2 = Element1 - 1
   14575 // Where Element2 and Element1 are from the same enum.
   14576 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
   14577   Expr *InitExpr = ECD->getInitExpr();
   14578   if (!InitExpr)
   14579     return true;
   14580   InitExpr = InitExpr->IgnoreImpCasts();
   14581 
   14582   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
   14583     if (!BO->isAdditiveOp())
   14584       return true;
   14585     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
   14586     if (!IL)
   14587       return true;
   14588     if (IL->getValue() != 1)
   14589       return true;
   14590 
   14591     InitExpr = BO->getLHS();
   14592   }
   14593 
   14594   // This checks if the elements are from the same enum.
   14595   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
   14596   if (!DRE)
   14597     return true;
   14598 
   14599   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
   14600   if (!EnumConstant)
   14601     return true;
   14602 
   14603   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
   14604       Enum)
   14605     return true;
   14606 
   14607   return false;
   14608 }
   14609 
   14610 namespace {
   14611 struct DupKey {
   14612   int64_t val;
   14613   bool isTombstoneOrEmptyKey;
   14614   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
   14615     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
   14616 };
   14617 
   14618 static DupKey GetDupKey(const llvm::APSInt& Val) {
   14619   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
   14620                 false);
   14621 }
   14622 
   14623 struct DenseMapInfoDupKey {
   14624   static DupKey getEmptyKey() { return DupKey(0, true); }
   14625   static DupKey getTombstoneKey() { return DupKey(1, true); }
   14626   static unsigned getHashValue(const DupKey Key) {
   14627     return (unsigned)(Key.val * 37);
   14628   }
   14629   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
   14630     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
   14631            LHS.val == RHS.val;
   14632   }
   14633 };
   14634 } // end anonymous namespace
   14635 
   14636 // Emits a warning when an element is implicitly set a value that
   14637 // a previous element has already been set to.
   14638 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
   14639                                         EnumDecl *Enum,
   14640                                         QualType EnumType) {
   14641   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
   14642     return;
   14643   // Avoid anonymous enums
   14644   if (!Enum->getIdentifier())
   14645     return;
   14646 
   14647   // Only check for small enums.
   14648   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
   14649     return;
   14650 
   14651   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
   14652   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
   14653 
   14654   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
   14655   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
   14656           ValueToVectorMap;
   14657 
   14658   DuplicatesVector DupVector;
   14659   ValueToVectorMap EnumMap;
   14660 
   14661   // Populate the EnumMap with all values represented by enum constants without
   14662   // an initialier.
   14663   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   14664     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
   14665 
   14666     // Null EnumConstantDecl means a previous diagnostic has been emitted for
   14667     // this constant.  Skip this enum since it may be ill-formed.
   14668     if (!ECD) {
   14669       return;
   14670     }
   14671 
   14672     if (ECD->getInitExpr())
   14673       continue;
   14674 
   14675     DupKey Key = GetDupKey(ECD->getInitVal());
   14676     DeclOrVector &Entry = EnumMap[Key];
   14677 
   14678     // First time encountering this value.
   14679     if (Entry.isNull())
   14680       Entry = ECD;
   14681   }
   14682 
   14683   // Create vectors for any values that has duplicates.
   14684   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   14685     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
   14686     if (!ValidDuplicateEnum(ECD, Enum))
   14687       continue;
   14688 
   14689     DupKey Key = GetDupKey(ECD->getInitVal());
   14690 
   14691     DeclOrVector& Entry = EnumMap[Key];
   14692     if (Entry.isNull())
   14693       continue;
   14694 
   14695     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
   14696       // Ensure constants are different.
   14697       if (D == ECD)
   14698         continue;
   14699 
   14700       // Create new vector and push values onto it.
   14701       ECDVector *Vec = new ECDVector();
   14702       Vec->push_back(D);
   14703       Vec->push_back(ECD);
   14704 
   14705       // Update entry to point to the duplicates vector.
   14706       Entry = Vec;
   14707 
   14708       // Store the vector somewhere we can consult later for quick emission of
   14709       // diagnostics.
   14710       DupVector.push_back(Vec);
   14711       continue;
   14712     }
   14713 
   14714     ECDVector *Vec = Entry.get<ECDVector*>();
   14715     // Make sure constants are not added more than once.
   14716     if (*Vec->begin() == ECD)
   14717       continue;
   14718 
   14719     Vec->push_back(ECD);
   14720   }
   14721 
   14722   // Emit diagnostics.
   14723   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
   14724                                   DupVectorEnd = DupVector.end();
   14725        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
   14726     ECDVector *Vec = *DupVectorIter;
   14727     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
   14728 
   14729     // Emit warning for one enum constant.
   14730     ECDVector::iterator I = Vec->begin();
   14731     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
   14732       << (*I)->getName() << (*I)->getInitVal().toString(10)
   14733       << (*I)->getSourceRange();
   14734     ++I;
   14735 
   14736     // Emit one note for each of the remaining enum constants with
   14737     // the same value.
   14738     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
   14739       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
   14740         << (*I)->getName() << (*I)->getInitVal().toString(10)
   14741         << (*I)->getSourceRange();
   14742     delete Vec;
   14743   }
   14744 }
   14745 
   14746 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
   14747                              bool AllowMask) const {
   14748   assert(ED->hasAttr<FlagEnumAttr>() && "looking for value in non-flag enum");
   14749   assert(ED->isCompleteDefinition() && "expected enum definition");
   14750 
   14751   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
   14752   llvm::APInt &FlagBits = R.first->second;
   14753 
   14754   if (R.second) {
   14755     for (auto *E : ED->enumerators()) {
   14756       const auto &EVal = E->getInitVal();
   14757       // Only single-bit enumerators introduce new flag values.
   14758       if (EVal.isPowerOf2())
   14759         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
   14760     }
   14761   }
   14762 
   14763   // A value is in a flag enum if either its bits are a subset of the enum's
   14764   // flag bits (the first condition) or we are allowing masks and the same is
   14765   // true of its complement (the second condition). When masks are allowed, we
   14766   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
   14767   //
   14768   // While it's true that any value could be used as a mask, the assumption is
   14769   // that a mask will have all of the insignificant bits set. Anything else is
   14770   // likely a logic error.
   14771   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
   14772   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
   14773 }
   14774 
   14775 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
   14776                          SourceLocation RBraceLoc, Decl *EnumDeclX,
   14777                          ArrayRef<Decl *> Elements,
   14778                          Scope *S, AttributeList *Attr) {
   14779   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
   14780   QualType EnumType = Context.getTypeDeclType(Enum);
   14781 
   14782   if (Attr)
   14783     ProcessDeclAttributeList(S, Enum, Attr);
   14784 
   14785   if (Enum->isDependentType()) {
   14786     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   14787       EnumConstantDecl *ECD =
   14788         cast_or_null<EnumConstantDecl>(Elements[i]);
   14789       if (!ECD) continue;
   14790 
   14791       ECD->setType(EnumType);
   14792     }
   14793 
   14794     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
   14795     return;
   14796   }
   14797 
   14798   // TODO: If the result value doesn't fit in an int, it must be a long or long
   14799   // long value.  ISO C does not support this, but GCC does as an extension,
   14800   // emit a warning.
   14801   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
   14802   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
   14803   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
   14804 
   14805   // Verify that all the values are okay, compute the size of the values, and
   14806   // reverse the list.
   14807   unsigned NumNegativeBits = 0;
   14808   unsigned NumPositiveBits = 0;
   14809 
   14810   // Keep track of whether all elements have type int.
   14811   bool AllElementsInt = true;
   14812 
   14813   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   14814     EnumConstantDecl *ECD =
   14815       cast_or_null<EnumConstantDecl>(Elements[i]);
   14816     if (!ECD) continue;  // Already issued a diagnostic.
   14817 
   14818     const llvm::APSInt &InitVal = ECD->getInitVal();
   14819 
   14820     // Keep track of the size of positive and negative values.
   14821     if (InitVal.isUnsigned() || InitVal.isNonNegative())
   14822       NumPositiveBits = std::max(NumPositiveBits,
   14823                                  (unsigned)InitVal.getActiveBits());
   14824     else
   14825       NumNegativeBits = std::max(NumNegativeBits,
   14826                                  (unsigned)InitVal.getMinSignedBits());
   14827 
   14828     // Keep track of whether every enum element has type int (very commmon).
   14829     if (AllElementsInt)
   14830       AllElementsInt = ECD->getType() == Context.IntTy;
   14831   }
   14832 
   14833   // Figure out the type that should be used for this enum.
   14834   QualType BestType;
   14835   unsigned BestWidth;
   14836 
   14837   // C++0x N3000 [conv.prom]p3:
   14838   //   An rvalue of an unscoped enumeration type whose underlying
   14839   //   type is not fixed can be converted to an rvalue of the first
   14840   //   of the following types that can represent all the values of
   14841   //   the enumeration: int, unsigned int, long int, unsigned long
   14842   //   int, long long int, or unsigned long long int.
   14843   // C99 6.4.4.3p2:
   14844   //   An identifier declared as an enumeration constant has type int.
   14845   // The C99 rule is modified by a gcc extension
   14846   QualType BestPromotionType;
   14847 
   14848   bool Packed = Enum->hasAttr<PackedAttr>();
   14849   // -fshort-enums is the equivalent to specifying the packed attribute on all
   14850   // enum definitions.
   14851   if (LangOpts.ShortEnums)
   14852     Packed = true;
   14853 
   14854   if (Enum->isFixed()) {
   14855     BestType = Enum->getIntegerType();
   14856     if (BestType->isPromotableIntegerType())
   14857       BestPromotionType = Context.getPromotedIntegerType(BestType);
   14858     else
   14859       BestPromotionType = BestType;
   14860 
   14861     BestWidth = Context.getIntWidth(BestType);
   14862   }
   14863   else if (NumNegativeBits) {
   14864     // If there is a negative value, figure out the smallest integer type (of
   14865     // int/long/longlong) that fits.
   14866     // If it's packed, check also if it fits a char or a short.
   14867     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
   14868       BestType = Context.SignedCharTy;
   14869       BestWidth = CharWidth;
   14870     } else if (Packed && NumNegativeBits <= ShortWidth &&
   14871                NumPositiveBits < ShortWidth) {
   14872       BestType = Context.ShortTy;
   14873       BestWidth = ShortWidth;
   14874     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
   14875       BestType = Context.IntTy;
   14876       BestWidth = IntWidth;
   14877     } else {
   14878       BestWidth = Context.getTargetInfo().getLongWidth();
   14879 
   14880       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
   14881         BestType = Context.LongTy;
   14882       } else {
   14883         BestWidth = Context.getTargetInfo().getLongLongWidth();
   14884 
   14885         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
   14886           Diag(Enum->getLocation(), diag::ext_enum_too_large);
   14887         BestType = Context.LongLongTy;
   14888       }
   14889     }
   14890     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
   14891   } else {
   14892     // If there is no negative value, figure out the smallest type that fits
   14893     // all of the enumerator values.
   14894     // If it's packed, check also if it fits a char or a short.
   14895     if (Packed && NumPositiveBits <= CharWidth) {
   14896       BestType = Context.UnsignedCharTy;
   14897       BestPromotionType = Context.IntTy;
   14898       BestWidth = CharWidth;
   14899     } else if (Packed && NumPositiveBits <= ShortWidth) {
   14900       BestType = Context.UnsignedShortTy;
   14901       BestPromotionType = Context.IntTy;
   14902       BestWidth = ShortWidth;
   14903     } else if (NumPositiveBits <= IntWidth) {
   14904       BestType = Context.UnsignedIntTy;
   14905       BestWidth = IntWidth;
   14906       BestPromotionType
   14907         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   14908                            ? Context.UnsignedIntTy : Context.IntTy;
   14909     } else if (NumPositiveBits <=
   14910                (BestWidth = Context.getTargetInfo().getLongWidth())) {
   14911       BestType = Context.UnsignedLongTy;
   14912       BestPromotionType
   14913         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   14914                            ? Context.UnsignedLongTy : Context.LongTy;
   14915     } else {
   14916       BestWidth = Context.getTargetInfo().getLongLongWidth();
   14917       assert(NumPositiveBits <= BestWidth &&
   14918              "How could an initializer get larger than ULL?");
   14919       BestType = Context.UnsignedLongLongTy;
   14920       BestPromotionType
   14921         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
   14922                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
   14923     }
   14924   }
   14925 
   14926   // Loop over all of the enumerator constants, changing their types to match
   14927   // the type of the enum if needed.
   14928   for (auto *D : Elements) {
   14929     auto *ECD = cast_or_null<EnumConstantDecl>(D);
   14930     if (!ECD) continue;  // Already issued a diagnostic.
   14931 
   14932     // Standard C says the enumerators have int type, but we allow, as an
   14933     // extension, the enumerators to be larger than int size.  If each
   14934     // enumerator value fits in an int, type it as an int, otherwise type it the
   14935     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
   14936     // that X has type 'int', not 'unsigned'.
   14937 
   14938     // Determine whether the value fits into an int.
   14939     llvm::APSInt InitVal = ECD->getInitVal();
   14940 
   14941     // If it fits into an integer type, force it.  Otherwise force it to match
   14942     // the enum decl type.
   14943     QualType NewTy;
   14944     unsigned NewWidth;
   14945     bool NewSign;
   14946     if (!getLangOpts().CPlusPlus &&
   14947         !Enum->isFixed() &&
   14948         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
   14949       NewTy = Context.IntTy;
   14950       NewWidth = IntWidth;
   14951       NewSign = true;
   14952     } else if (ECD->getType() == BestType) {
   14953       // Already the right type!
   14954       if (getLangOpts().CPlusPlus)
   14955         // C++ [dcl.enum]p4: Following the closing brace of an
   14956         // enum-specifier, each enumerator has the type of its
   14957         // enumeration.
   14958         ECD->setType(EnumType);
   14959       continue;
   14960     } else {
   14961       NewTy = BestType;
   14962       NewWidth = BestWidth;
   14963       NewSign = BestType->isSignedIntegerOrEnumerationType();
   14964     }
   14965 
   14966     // Adjust the APSInt value.
   14967     InitVal = InitVal.extOrTrunc(NewWidth);
   14968     InitVal.setIsSigned(NewSign);
   14969     ECD->setInitVal(InitVal);
   14970 
   14971     // Adjust the Expr initializer and type.
   14972     if (ECD->getInitExpr() &&
   14973         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
   14974       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
   14975                                                 CK_IntegralCast,
   14976                                                 ECD->getInitExpr(),
   14977                                                 /*base paths*/ nullptr,
   14978                                                 VK_RValue));
   14979     if (getLangOpts().CPlusPlus)
   14980       // C++ [dcl.enum]p4: Following the closing brace of an
   14981       // enum-specifier, each enumerator has the type of its
   14982       // enumeration.
   14983       ECD->setType(EnumType);
   14984     else
   14985       ECD->setType(NewTy);
   14986   }
   14987 
   14988   Enum->completeDefinition(BestType, BestPromotionType,
   14989                            NumPositiveBits, NumNegativeBits);
   14990 
   14991   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
   14992 
   14993   if (Enum->hasAttr<FlagEnumAttr>()) {
   14994     for (Decl *D : Elements) {
   14995       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
   14996       if (!ECD) continue;  // Already issued a diagnostic.
   14997 
   14998       llvm::APSInt InitVal = ECD->getInitVal();
   14999       if (InitVal != 0 && !InitVal.isPowerOf2() &&
   15000           !IsValueInFlagEnum(Enum, InitVal, true))
   15001         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
   15002           << ECD << Enum;
   15003     }
   15004   }
   15005 
   15006   // Now that the enum type is defined, ensure it's not been underaligned.
   15007   if (Enum->hasAttrs())
   15008     CheckAlignasUnderalignment(Enum);
   15009 }
   15010 
   15011 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
   15012                                   SourceLocation StartLoc,
   15013                                   SourceLocation EndLoc) {
   15014   StringLiteral *AsmString = cast<StringLiteral>(expr);
   15015 
   15016   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
   15017                                                    AsmString, StartLoc,
   15018                                                    EndLoc);
   15019   CurContext->addDecl(New);
   15020   return New;
   15021 }
   15022 
   15023 static void checkModuleImportContext(Sema &S, Module *M,
   15024                                      SourceLocation ImportLoc, DeclContext *DC,
   15025                                      bool FromInclude = false) {
   15026   SourceLocation ExternCLoc;
   15027 
   15028   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
   15029     switch (LSD->getLanguage()) {
   15030     case LinkageSpecDecl::lang_c:
   15031       if (ExternCLoc.isInvalid())
   15032         ExternCLoc = LSD->getLocStart();
   15033       break;
   15034     case LinkageSpecDecl::lang_cxx:
   15035       break;
   15036     }
   15037     DC = LSD->getParent();
   15038   }
   15039 
   15040   while (isa<LinkageSpecDecl>(DC))
   15041     DC = DC->getParent();
   15042 
   15043   if (!isa<TranslationUnitDecl>(DC)) {
   15044     S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
   15045                           ? diag::ext_module_import_not_at_top_level_noop
   15046                           : diag::err_module_import_not_at_top_level_fatal)
   15047         << M->getFullModuleName() << DC;
   15048     S.Diag(cast<Decl>(DC)->getLocStart(),
   15049            diag::note_module_import_not_at_top_level) << DC;
   15050   } else if (!M->IsExternC && ExternCLoc.isValid()) {
   15051     S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
   15052       << M->getFullModuleName();
   15053     S.Diag(ExternCLoc, diag::note_module_import_in_extern_c);
   15054   }
   15055 }
   15056 
   15057 void Sema::diagnoseMisplacedModuleImport(Module *M, SourceLocation ImportLoc) {
   15058   return checkModuleImportContext(*this, M, ImportLoc, CurContext);
   15059 }
   15060 
   15061 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
   15062                                    SourceLocation ImportLoc,
   15063                                    ModuleIdPath Path) {
   15064   Module *Mod =
   15065       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
   15066                                    /*IsIncludeDirective=*/false);
   15067   if (!Mod)
   15068     return true;
   15069 
   15070   VisibleModules.setVisible(Mod, ImportLoc);
   15071 
   15072   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
   15073 
   15074   // FIXME: we should support importing a submodule within a different submodule
   15075   // of the same top-level module. Until we do, make it an error rather than
   15076   // silently ignoring the import.
   15077   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
   15078     Diag(ImportLoc, getLangOpts().CompilingModule
   15079                         ? diag::err_module_self_import
   15080                         : diag::err_module_import_in_implementation)
   15081         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
   15082 
   15083   SmallVector<SourceLocation, 2> IdentifierLocs;
   15084   Module *ModCheck = Mod;
   15085   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
   15086     // If we've run out of module parents, just drop the remaining identifiers.
   15087     // We need the length to be consistent.
   15088     if (!ModCheck)
   15089       break;
   15090     ModCheck = ModCheck->Parent;
   15091 
   15092     IdentifierLocs.push_back(Path[I].second);
   15093   }
   15094 
   15095   ImportDecl *Import = ImportDecl::Create(Context,
   15096                                           Context.getTranslationUnitDecl(),
   15097                                           AtLoc.isValid()? AtLoc : ImportLoc,
   15098                                           Mod, IdentifierLocs);
   15099   Context.getTranslationUnitDecl()->addDecl(Import);
   15100   return Import;
   15101 }
   15102 
   15103 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
   15104   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
   15105 
   15106   // Determine whether we're in the #include buffer for a module. The #includes
   15107   // in that buffer do not qualify as module imports; they're just an
   15108   // implementation detail of us building the module.
   15109   //
   15110   // FIXME: Should we even get ActOnModuleInclude calls for those?
   15111   bool IsInModuleIncludes =
   15112       TUKind == TU_Module &&
   15113       getSourceManager().isWrittenInMainFile(DirectiveLoc);
   15114 
   15115   // Similarly, if we're in the implementation of a module, don't
   15116   // synthesize an illegal module import. FIXME: Why not?
   15117   bool ShouldAddImport =
   15118       !IsInModuleIncludes &&
   15119       (getLangOpts().CompilingModule ||
   15120        getLangOpts().CurrentModule.empty() ||
   15121        getLangOpts().CurrentModule != Mod->getTopLevelModuleName());
   15122 
   15123   // If this module import was due to an inclusion directive, create an
   15124   // implicit import declaration to capture it in the AST.
   15125   if (ShouldAddImport) {
   15126     TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
   15127     ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
   15128                                                      DirectiveLoc, Mod,
   15129                                                      DirectiveLoc);
   15130     TU->addDecl(ImportD);
   15131     Consumer.HandleImplicitImportDecl(ImportD);
   15132   }
   15133 
   15134   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
   15135   VisibleModules.setVisible(Mod, DirectiveLoc);
   15136 }
   15137 
   15138 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
   15139   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
   15140 
   15141   if (getLangOpts().ModulesLocalVisibility)
   15142     VisibleModulesStack.push_back(std::move(VisibleModules));
   15143   VisibleModules.setVisible(Mod, DirectiveLoc);
   15144 }
   15145 
   15146 void Sema::ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod) {
   15147   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
   15148 
   15149   if (getLangOpts().ModulesLocalVisibility) {
   15150     VisibleModules = std::move(VisibleModulesStack.back());
   15151     VisibleModulesStack.pop_back();
   15152     VisibleModules.setVisible(Mod, DirectiveLoc);
   15153     // Leaving a module hides namespace names, so our visible namespace cache
   15154     // is now out of date.
   15155     VisibleNamespaceCache.clear();
   15156   }
   15157 }
   15158 
   15159 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
   15160                                                       Module *Mod) {
   15161   // Bail if we're not allowed to implicitly import a module here.
   15162   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
   15163     return;
   15164 
   15165   // Create the implicit import declaration.
   15166   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
   15167   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
   15168                                                    Loc, Mod, Loc);
   15169   TU->addDecl(ImportD);
   15170   Consumer.HandleImplicitImportDecl(ImportD);
   15171 
   15172   // Make the module visible.
   15173   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
   15174   VisibleModules.setVisible(Mod, Loc);
   15175 }
   15176 
   15177 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
   15178                                       IdentifierInfo* AliasName,
   15179                                       SourceLocation PragmaLoc,
   15180                                       SourceLocation NameLoc,
   15181                                       SourceLocation AliasNameLoc) {
   15182   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
   15183                                          LookupOrdinaryName);
   15184   AsmLabelAttr *Attr =
   15185       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
   15186 
   15187   // If a declaration that:
   15188   // 1) declares a function or a variable
   15189   // 2) has external linkage
   15190   // already exists, add a label attribute to it.
   15191   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
   15192     if (isDeclExternC(PrevDecl))
   15193       PrevDecl->addAttr(Attr);
   15194     else
   15195       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
   15196           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
   15197   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
   15198   } else
   15199     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
   15200 }
   15201 
   15202 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
   15203                              SourceLocation PragmaLoc,
   15204                              SourceLocation NameLoc) {
   15205   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
   15206 
   15207   if (PrevDecl) {
   15208     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
   15209   } else {
   15210     (void)WeakUndeclaredIdentifiers.insert(
   15211       std::pair<IdentifierInfo*,WeakInfo>
   15212         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
   15213   }
   15214 }
   15215 
   15216 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
   15217                                 IdentifierInfo* AliasName,
   15218                                 SourceLocation PragmaLoc,
   15219                                 SourceLocation NameLoc,
   15220                                 SourceLocation AliasNameLoc) {
   15221   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
   15222                                     LookupOrdinaryName);
   15223   WeakInfo W = WeakInfo(Name, NameLoc);
   15224 
   15225   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
   15226     if (!PrevDecl->hasAttr<AliasAttr>())
   15227       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
   15228         DeclApplyPragmaWeak(TUScope, ND, W);
   15229   } else {
   15230     (void)WeakUndeclaredIdentifiers.insert(
   15231       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
   15232   }
   15233 }
   15234 
   15235 Decl *Sema::getObjCDeclContext() const {
   15236   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
   15237 }
   15238 
   15239 AvailabilityResult Sema::getCurContextAvailability() const {
   15240   const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
   15241   if (!D)
   15242     return AR_Available;
   15243 
   15244   // If we are within an Objective-C method, we should consult
   15245   // both the availability of the method as well as the
   15246   // enclosing class.  If the class is (say) deprecated,
   15247   // the entire method is considered deprecated from the
   15248   // purpose of checking if the current context is deprecated.
   15249   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
   15250     AvailabilityResult R = MD->getAvailability();
   15251     if (R != AR_Available)
   15252       return R;
   15253     D = MD->getClassInterface();
   15254   }
   15255   // If we are within an Objective-c @implementation, it
   15256   // gets the same availability context as the @interface.
   15257   else if (const ObjCImplementationDecl *ID =
   15258             dyn_cast<ObjCImplementationDecl>(D)) {
   15259     D = ID->getClassInterface();
   15260   }
   15261   // Recover from user error.
   15262   return D ? D->getAvailability() : AR_Available;
   15263 }
   15264