1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Linker/IRMover.h" 11 #include "LinkDiagnosticInfo.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/DiagnosticPrinter.h" 18 #include "llvm/IR/GVMaterializer.h" 19 #include "llvm/IR/Intrinsics.h" 20 #include "llvm/IR/TypeFinder.h" 21 #include "llvm/Support/Error.h" 22 #include "llvm/Transforms/Utils/Cloning.h" 23 #include <utility> 24 using namespace llvm; 25 26 //===----------------------------------------------------------------------===// 27 // TypeMap implementation. 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 class TypeMapTy : public ValueMapTypeRemapper { 32 /// This is a mapping from a source type to a destination type to use. 33 DenseMap<Type *, Type *> MappedTypes; 34 35 /// When checking to see if two subgraphs are isomorphic, we speculatively 36 /// add types to MappedTypes, but keep track of them here in case we need to 37 /// roll back. 38 SmallVector<Type *, 16> SpeculativeTypes; 39 40 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 41 42 /// This is a list of non-opaque structs in the source module that are mapped 43 /// to an opaque struct in the destination module. 44 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 45 46 /// This is the set of opaque types in the destination modules who are 47 /// getting a body from the source module. 48 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 49 50 public: 51 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 52 : DstStructTypesSet(DstStructTypesSet) {} 53 54 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 55 /// Indicate that the specified type in the destination module is conceptually 56 /// equivalent to the specified type in the source module. 57 void addTypeMapping(Type *DstTy, Type *SrcTy); 58 59 /// Produce a body for an opaque type in the dest module from a type 60 /// definition in the source module. 61 void linkDefinedTypeBodies(); 62 63 /// Return the mapped type to use for the specified input type from the 64 /// source module. 65 Type *get(Type *SrcTy); 66 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 67 68 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes); 69 70 FunctionType *get(FunctionType *T) { 71 return cast<FunctionType>(get((Type *)T)); 72 } 73 74 private: 75 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 76 77 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 78 }; 79 } 80 81 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 82 assert(SpeculativeTypes.empty()); 83 assert(SpeculativeDstOpaqueTypes.empty()); 84 85 // Check to see if these types are recursively isomorphic and establish a 86 // mapping between them if so. 87 if (!areTypesIsomorphic(DstTy, SrcTy)) { 88 // Oops, they aren't isomorphic. Just discard this request by rolling out 89 // any speculative mappings we've established. 90 for (Type *Ty : SpeculativeTypes) 91 MappedTypes.erase(Ty); 92 93 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 94 SpeculativeDstOpaqueTypes.size()); 95 for (StructType *Ty : SpeculativeDstOpaqueTypes) 96 DstResolvedOpaqueTypes.erase(Ty); 97 } else { 98 for (Type *Ty : SpeculativeTypes) 99 if (auto *STy = dyn_cast<StructType>(Ty)) 100 if (STy->hasName()) 101 STy->setName(""); 102 } 103 SpeculativeTypes.clear(); 104 SpeculativeDstOpaqueTypes.clear(); 105 } 106 107 /// Recursively walk this pair of types, returning true if they are isomorphic, 108 /// false if they are not. 109 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 110 // Two types with differing kinds are clearly not isomorphic. 111 if (DstTy->getTypeID() != SrcTy->getTypeID()) 112 return false; 113 114 // If we have an entry in the MappedTypes table, then we have our answer. 115 Type *&Entry = MappedTypes[SrcTy]; 116 if (Entry) 117 return Entry == DstTy; 118 119 // Two identical types are clearly isomorphic. Remember this 120 // non-speculatively. 121 if (DstTy == SrcTy) { 122 Entry = DstTy; 123 return true; 124 } 125 126 // Okay, we have two types with identical kinds that we haven't seen before. 127 128 // If this is an opaque struct type, special case it. 129 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 130 // Mapping an opaque type to any struct, just keep the dest struct. 131 if (SSTy->isOpaque()) { 132 Entry = DstTy; 133 SpeculativeTypes.push_back(SrcTy); 134 return true; 135 } 136 137 // Mapping a non-opaque source type to an opaque dest. If this is the first 138 // type that we're mapping onto this destination type then we succeed. Keep 139 // the dest, but fill it in later. If this is the second (different) type 140 // that we're trying to map onto the same opaque type then we fail. 141 if (cast<StructType>(DstTy)->isOpaque()) { 142 // We can only map one source type onto the opaque destination type. 143 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 144 return false; 145 SrcDefinitionsToResolve.push_back(SSTy); 146 SpeculativeTypes.push_back(SrcTy); 147 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 148 Entry = DstTy; 149 return true; 150 } 151 } 152 153 // If the number of subtypes disagree between the two types, then we fail. 154 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 155 return false; 156 157 // Fail if any of the extra properties (e.g. array size) of the type disagree. 158 if (isa<IntegerType>(DstTy)) 159 return false; // bitwidth disagrees. 160 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 161 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 162 return false; 163 164 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 165 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 166 return false; 167 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 168 StructType *SSTy = cast<StructType>(SrcTy); 169 if (DSTy->isLiteral() != SSTy->isLiteral() || 170 DSTy->isPacked() != SSTy->isPacked()) 171 return false; 172 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) { 173 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 174 return false; 175 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) { 176 if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements()) 177 return false; 178 } 179 180 // Otherwise, we speculate that these two types will line up and recursively 181 // check the subelements. 182 Entry = DstTy; 183 SpeculativeTypes.push_back(SrcTy); 184 185 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 186 if (!areTypesIsomorphic(DstTy->getContainedType(I), 187 SrcTy->getContainedType(I))) 188 return false; 189 190 // If everything seems to have lined up, then everything is great. 191 return true; 192 } 193 194 void TypeMapTy::linkDefinedTypeBodies() { 195 SmallVector<Type *, 16> Elements; 196 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 197 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 198 assert(DstSTy->isOpaque()); 199 200 // Map the body of the source type over to a new body for the dest type. 201 Elements.resize(SrcSTy->getNumElements()); 202 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 203 Elements[I] = get(SrcSTy->getElementType(I)); 204 205 DstSTy->setBody(Elements, SrcSTy->isPacked()); 206 DstStructTypesSet.switchToNonOpaque(DstSTy); 207 } 208 SrcDefinitionsToResolve.clear(); 209 DstResolvedOpaqueTypes.clear(); 210 } 211 212 void TypeMapTy::finishType(StructType *DTy, StructType *STy, 213 ArrayRef<Type *> ETypes) { 214 DTy->setBody(ETypes, STy->isPacked()); 215 216 // Steal STy's name. 217 if (STy->hasName()) { 218 SmallString<16> TmpName = STy->getName(); 219 STy->setName(""); 220 DTy->setName(TmpName); 221 } 222 223 DstStructTypesSet.addNonOpaque(DTy); 224 } 225 226 Type *TypeMapTy::get(Type *Ty) { 227 SmallPtrSet<StructType *, 8> Visited; 228 return get(Ty, Visited); 229 } 230 231 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 232 // If we already have an entry for this type, return it. 233 Type **Entry = &MappedTypes[Ty]; 234 if (*Entry) 235 return *Entry; 236 237 // These are types that LLVM itself will unique. 238 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 239 240 #ifndef NDEBUG 241 if (!IsUniqued) { 242 for (auto &Pair : MappedTypes) { 243 assert(!(Pair.first != Ty && Pair.second == Ty) && 244 "mapping to a source type"); 245 } 246 } 247 #endif 248 249 if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) { 250 StructType *DTy = StructType::create(Ty->getContext()); 251 return *Entry = DTy; 252 } 253 254 // If this is not a recursive type, then just map all of the elements and 255 // then rebuild the type from inside out. 256 SmallVector<Type *, 4> ElementTypes; 257 258 // If there are no element types to map, then the type is itself. This is 259 // true for the anonymous {} struct, things like 'float', integers, etc. 260 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 261 return *Entry = Ty; 262 263 // Remap all of the elements, keeping track of whether any of them change. 264 bool AnyChange = false; 265 ElementTypes.resize(Ty->getNumContainedTypes()); 266 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 267 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 268 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 269 } 270 271 // If we found our type while recursively processing stuff, just use it. 272 Entry = &MappedTypes[Ty]; 273 if (*Entry) { 274 if (auto *DTy = dyn_cast<StructType>(*Entry)) { 275 if (DTy->isOpaque()) { 276 auto *STy = cast<StructType>(Ty); 277 finishType(DTy, STy, ElementTypes); 278 } 279 } 280 return *Entry; 281 } 282 283 // If all of the element types mapped directly over and the type is not 284 // a nomed struct, then the type is usable as-is. 285 if (!AnyChange && IsUniqued) 286 return *Entry = Ty; 287 288 // Otherwise, rebuild a modified type. 289 switch (Ty->getTypeID()) { 290 default: 291 llvm_unreachable("unknown derived type to remap"); 292 case Type::ArrayTyID: 293 return *Entry = ArrayType::get(ElementTypes[0], 294 cast<ArrayType>(Ty)->getNumElements()); 295 case Type::VectorTyID: 296 return *Entry = VectorType::get(ElementTypes[0], 297 cast<VectorType>(Ty)->getNumElements()); 298 case Type::PointerTyID: 299 return *Entry = PointerType::get(ElementTypes[0], 300 cast<PointerType>(Ty)->getAddressSpace()); 301 case Type::FunctionTyID: 302 return *Entry = FunctionType::get(ElementTypes[0], 303 makeArrayRef(ElementTypes).slice(1), 304 cast<FunctionType>(Ty)->isVarArg()); 305 case Type::StructTyID: { 306 auto *STy = cast<StructType>(Ty); 307 bool IsPacked = STy->isPacked(); 308 if (IsUniqued) 309 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 310 311 // If the type is opaque, we can just use it directly. 312 if (STy->isOpaque()) { 313 DstStructTypesSet.addOpaque(STy); 314 return *Entry = Ty; 315 } 316 317 if (StructType *OldT = 318 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 319 STy->setName(""); 320 return *Entry = OldT; 321 } 322 323 if (!AnyChange) { 324 DstStructTypesSet.addNonOpaque(STy); 325 return *Entry = Ty; 326 } 327 328 StructType *DTy = StructType::create(Ty->getContext()); 329 finishType(DTy, STy, ElementTypes); 330 return *Entry = DTy; 331 } 332 } 333 } 334 335 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 336 const Twine &Msg) 337 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 338 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 339 340 //===----------------------------------------------------------------------===// 341 // IRLinker implementation. 342 //===----------------------------------------------------------------------===// 343 344 namespace { 345 class IRLinker; 346 347 /// Creates prototypes for functions that are lazily linked on the fly. This 348 /// speeds up linking for modules with many/ lazily linked functions of which 349 /// few get used. 350 class GlobalValueMaterializer final : public ValueMaterializer { 351 IRLinker &TheIRLinker; 352 353 public: 354 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 355 Value *materialize(Value *V) override; 356 }; 357 358 class LocalValueMaterializer final : public ValueMaterializer { 359 IRLinker &TheIRLinker; 360 361 public: 362 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 363 Value *materialize(Value *V) override; 364 }; 365 366 /// Type of the Metadata map in \a ValueToValueMapTy. 367 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 368 369 /// This is responsible for keeping track of the state used for moving data 370 /// from SrcM to DstM. 371 class IRLinker { 372 Module &DstM; 373 std::unique_ptr<Module> SrcM; 374 375 /// See IRMover::move(). 376 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor; 377 378 TypeMapTy TypeMap; 379 GlobalValueMaterializer GValMaterializer; 380 LocalValueMaterializer LValMaterializer; 381 382 /// A metadata map that's shared between IRLinker instances. 383 MDMapT &SharedMDs; 384 385 /// Mapping of values from what they used to be in Src, to what they are now 386 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 387 /// due to the use of Value handles which the Linker doesn't actually need, 388 /// but this allows us to reuse the ValueMapper code. 389 ValueToValueMapTy ValueMap; 390 ValueToValueMapTy AliasValueMap; 391 392 DenseSet<GlobalValue *> ValuesToLink; 393 std::vector<GlobalValue *> Worklist; 394 395 void maybeAdd(GlobalValue *GV) { 396 if (ValuesToLink.insert(GV).second) 397 Worklist.push_back(GV); 398 } 399 400 /// Set to true when all global value body linking is complete (including 401 /// lazy linking). Used to prevent metadata linking from creating new 402 /// references. 403 bool DoneLinkingBodies = false; 404 405 /// The Error encountered during materialization. We use an Optional here to 406 /// avoid needing to manage an unconsumed success value. 407 Optional<Error> FoundError; 408 void setError(Error E) { 409 if (E) 410 FoundError = std::move(E); 411 } 412 413 /// Most of the errors produced by this module are inconvertible StringErrors. 414 /// This convenience function lets us return one of those more easily. 415 Error stringErr(const Twine &T) { 416 return make_error<StringError>(T, inconvertibleErrorCode()); 417 } 418 419 /// Entry point for mapping values and alternate context for mapping aliases. 420 ValueMapper Mapper; 421 unsigned AliasMCID; 422 423 /// Handles cloning of a global values from the source module into 424 /// the destination module, including setting the attributes and visibility. 425 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 426 427 void emitWarning(const Twine &Message) { 428 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 429 } 430 431 /// Given a global in the source module, return the global in the 432 /// destination module that is being linked to, if any. 433 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 434 // If the source has no name it can't link. If it has local linkage, 435 // there is no name match-up going on. 436 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 437 return nullptr; 438 439 // Otherwise see if we have a match in the destination module's symtab. 440 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 441 if (!DGV) 442 return nullptr; 443 444 // If we found a global with the same name in the dest module, but it has 445 // internal linkage, we are really not doing any linkage here. 446 if (DGV->hasLocalLinkage()) 447 return nullptr; 448 449 // Otherwise, we do in fact link to the destination global. 450 return DGV; 451 } 452 453 void computeTypeMapping(); 454 455 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 456 const GlobalVariable *SrcGV); 457 458 /// Given the GlobaValue \p SGV in the source module, and the matching 459 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 460 /// into the destination module. 461 /// 462 /// Note this code may call the client-provided \p AddLazyFor. 463 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 464 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias); 465 466 Error linkModuleFlagsMetadata(); 467 468 void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src); 469 Error linkFunctionBody(Function &Dst, Function &Src); 470 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src); 471 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 472 473 /// Functions that take care of cloning a specific global value type 474 /// into the destination module. 475 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 476 Function *copyFunctionProto(const Function *SF); 477 GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA); 478 479 void linkNamedMDNodes(); 480 481 public: 482 IRLinker(Module &DstM, MDMapT &SharedMDs, 483 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 484 ArrayRef<GlobalValue *> ValuesToLink, 485 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor) 486 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 487 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 488 SharedMDs(SharedMDs), 489 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap, 490 &GValMaterializer), 491 AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap, 492 &LValMaterializer)) { 493 ValueMap.getMDMap() = std::move(SharedMDs); 494 for (GlobalValue *GV : ValuesToLink) 495 maybeAdd(GV); 496 } 497 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 498 499 Error run(); 500 Value *materialize(Value *V, bool ForAlias); 501 }; 502 } 503 504 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 505 /// table. This is good for all clients except for us. Go through the trouble 506 /// to force this back. 507 static void forceRenaming(GlobalValue *GV, StringRef Name) { 508 // If the global doesn't force its name or if it already has the right name, 509 // there is nothing for us to do. 510 if (GV->hasLocalLinkage() || GV->getName() == Name) 511 return; 512 513 Module *M = GV->getParent(); 514 515 // If there is a conflict, rename the conflict. 516 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 517 GV->takeName(ConflictGV); 518 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 519 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 520 } else { 521 GV->setName(Name); // Force the name back 522 } 523 } 524 525 Value *GlobalValueMaterializer::materialize(Value *SGV) { 526 return TheIRLinker.materialize(SGV, false); 527 } 528 529 Value *LocalValueMaterializer::materialize(Value *SGV) { 530 return TheIRLinker.materialize(SGV, true); 531 } 532 533 Value *IRLinker::materialize(Value *V, bool ForAlias) { 534 auto *SGV = dyn_cast<GlobalValue>(V); 535 if (!SGV) 536 return nullptr; 537 538 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias); 539 if (!NewProto) { 540 setError(NewProto.takeError()); 541 return nullptr; 542 } 543 if (!*NewProto) 544 return nullptr; 545 546 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 547 if (!New) 548 return *NewProto; 549 550 // If we already created the body, just return. 551 if (auto *F = dyn_cast<Function>(New)) { 552 if (!F->isDeclaration()) 553 return New; 554 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 555 if (V->hasInitializer() || V->hasAppendingLinkage()) 556 return New; 557 } else { 558 auto *A = cast<GlobalAlias>(New); 559 if (A->getAliasee()) 560 return New; 561 } 562 563 // When linking a global for an alias, it will always be linked. However we 564 // need to check if it was not already scheduled to satify a reference from a 565 // regular global value initializer. We know if it has been schedule if the 566 // "New" GlobalValue that is mapped here for the alias is the same as the one 567 // already mapped. If there is an entry in the ValueMap but the value is 568 // different, it means that the value already had a definition in the 569 // destination module (linkonce for instance), but we need a new definition 570 // for the alias ("New" will be different. 571 if (ForAlias && ValueMap.lookup(SGV) == New) 572 return New; 573 574 if (ForAlias || shouldLink(New, *SGV)) 575 setError(linkGlobalValueBody(*New, *SGV)); 576 577 return New; 578 } 579 580 /// Loop through the global variables in the src module and merge them into the 581 /// dest module. 582 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 583 // No linking to be performed or linking from the source: simply create an 584 // identical version of the symbol over in the dest module... the 585 // initializer will be filled in later by LinkGlobalInits. 586 GlobalVariable *NewDGV = 587 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 588 SGVar->isConstant(), GlobalValue::ExternalLinkage, 589 /*init*/ nullptr, SGVar->getName(), 590 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 591 SGVar->getType()->getAddressSpace()); 592 NewDGV->setAlignment(SGVar->getAlignment()); 593 return NewDGV; 594 } 595 596 /// Link the function in the source module into the destination module if 597 /// needed, setting up mapping information. 598 Function *IRLinker::copyFunctionProto(const Function *SF) { 599 // If there is no linkage to be performed or we are linking from the source, 600 // bring SF over. 601 return Function::Create(TypeMap.get(SF->getFunctionType()), 602 GlobalValue::ExternalLinkage, SF->getName(), &DstM); 603 } 604 605 /// Set up prototypes for any aliases that come over from the source module. 606 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) { 607 // If there is no linkage to be performed or we're linking from the source, 608 // bring over SGA. 609 auto *Ty = TypeMap.get(SGA->getValueType()); 610 return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(), 611 GlobalValue::ExternalLinkage, SGA->getName(), 612 &DstM); 613 } 614 615 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 616 bool ForDefinition) { 617 GlobalValue *NewGV; 618 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 619 NewGV = copyGlobalVariableProto(SGVar); 620 } else if (auto *SF = dyn_cast<Function>(SGV)) { 621 NewGV = copyFunctionProto(SF); 622 } else { 623 if (ForDefinition) 624 NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV)); 625 else 626 NewGV = new GlobalVariable( 627 DstM, TypeMap.get(SGV->getValueType()), 628 /*isConstant*/ false, GlobalValue::ExternalLinkage, 629 /*init*/ nullptr, SGV->getName(), 630 /*insertbefore*/ nullptr, SGV->getThreadLocalMode(), 631 SGV->getType()->getAddressSpace()); 632 } 633 634 if (ForDefinition) 635 NewGV->setLinkage(SGV->getLinkage()); 636 else if (SGV->hasExternalWeakLinkage()) 637 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 638 639 NewGV->copyAttributesFrom(SGV); 640 641 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 642 // Metadata for global variables and function declarations is copied eagerly. 643 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) 644 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 645 } 646 647 // Remove these copied constants in case this stays a declaration, since 648 // they point to the source module. If the def is linked the values will 649 // be mapped in during linkFunctionBody. 650 if (auto *NewF = dyn_cast<Function>(NewGV)) { 651 NewF->setPersonalityFn(nullptr); 652 NewF->setPrefixData(nullptr); 653 NewF->setPrologueData(nullptr); 654 } 655 656 return NewGV; 657 } 658 659 /// Loop over all of the linked values to compute type mappings. For example, 660 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 661 /// types 'Foo' but one got renamed when the module was loaded into the same 662 /// LLVMContext. 663 void IRLinker::computeTypeMapping() { 664 for (GlobalValue &SGV : SrcM->globals()) { 665 GlobalValue *DGV = getLinkedToGlobal(&SGV); 666 if (!DGV) 667 continue; 668 669 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 670 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 671 continue; 672 } 673 674 // Unify the element type of appending arrays. 675 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 676 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 677 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 678 } 679 680 for (GlobalValue &SGV : *SrcM) 681 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 682 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 683 684 for (GlobalValue &SGV : SrcM->aliases()) 685 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 686 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 687 688 // Incorporate types by name, scanning all the types in the source module. 689 // At this point, the destination module may have a type "%foo = { i32 }" for 690 // example. When the source module got loaded into the same LLVMContext, if 691 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 692 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 693 for (StructType *ST : Types) { 694 if (!ST->hasName()) 695 continue; 696 697 // Check to see if there is a dot in the name followed by a digit. 698 size_t DotPos = ST->getName().rfind('.'); 699 if (DotPos == 0 || DotPos == StringRef::npos || 700 ST->getName().back() == '.' || 701 !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1]))) 702 continue; 703 704 // Check to see if the destination module has a struct with the prefix name. 705 StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos)); 706 if (!DST) 707 continue; 708 709 // Don't use it if this actually came from the source module. They're in 710 // the same LLVMContext after all. Also don't use it unless the type is 711 // actually used in the destination module. This can happen in situations 712 // like this: 713 // 714 // Module A Module B 715 // -------- -------- 716 // %Z = type { %A } %B = type { %C.1 } 717 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 718 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 719 // %C = type { i8* } %B.3 = type { %C.1 } 720 // 721 // When we link Module B with Module A, the '%B' in Module B is 722 // used. However, that would then use '%C.1'. But when we process '%C.1', 723 // we prefer to take the '%C' version. So we are then left with both 724 // '%C.1' and '%C' being used for the same types. This leads to some 725 // variables using one type and some using the other. 726 if (TypeMap.DstStructTypesSet.hasType(DST)) 727 TypeMap.addTypeMapping(DST, ST); 728 } 729 730 // Now that we have discovered all of the type equivalences, get a body for 731 // any 'opaque' types in the dest module that are now resolved. 732 TypeMap.linkDefinedTypeBodies(); 733 } 734 735 static void getArrayElements(const Constant *C, 736 SmallVectorImpl<Constant *> &Dest) { 737 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 738 739 for (unsigned i = 0; i != NumElements; ++i) 740 Dest.push_back(C->getAggregateElement(i)); 741 } 742 743 /// If there were any appending global variables, link them together now. 744 Expected<Constant *> 745 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 746 const GlobalVariable *SrcGV) { 747 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 748 ->getElementType(); 749 750 // FIXME: This upgrade is done during linking to support the C API. Once the 751 // old form is deprecated, we should move this upgrade to 752 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 753 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 754 StringRef Name = SrcGV->getName(); 755 bool IsNewStructor = false; 756 bool IsOldStructor = false; 757 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 758 if (cast<StructType>(EltTy)->getNumElements() == 3) 759 IsNewStructor = true; 760 else 761 IsOldStructor = true; 762 } 763 764 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo(); 765 if (IsOldStructor) { 766 auto &ST = *cast<StructType>(EltTy); 767 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 768 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 769 } 770 771 uint64_t DstNumElements = 0; 772 if (DstGV) { 773 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 774 DstNumElements = DstTy->getNumElements(); 775 776 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 777 return stringErr( 778 "Linking globals named '" + SrcGV->getName() + 779 "': can only link appending global with another appending " 780 "global!"); 781 782 // Check to see that they two arrays agree on type. 783 if (EltTy != DstTy->getElementType()) 784 return stringErr("Appending variables with different element types!"); 785 if (DstGV->isConstant() != SrcGV->isConstant()) 786 return stringErr("Appending variables linked with different const'ness!"); 787 788 if (DstGV->getAlignment() != SrcGV->getAlignment()) 789 return stringErr( 790 "Appending variables with different alignment need to be linked!"); 791 792 if (DstGV->getVisibility() != SrcGV->getVisibility()) 793 return stringErr( 794 "Appending variables with different visibility need to be linked!"); 795 796 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 797 return stringErr( 798 "Appending variables with different unnamed_addr need to be linked!"); 799 800 if (DstGV->getSection() != SrcGV->getSection()) 801 return stringErr( 802 "Appending variables with different section name need to be linked!"); 803 } 804 805 SmallVector<Constant *, 16> SrcElements; 806 getArrayElements(SrcGV->getInitializer(), SrcElements); 807 808 if (IsNewStructor) 809 SrcElements.erase( 810 std::remove_if(SrcElements.begin(), SrcElements.end(), 811 [this](Constant *E) { 812 auto *Key = dyn_cast<GlobalValue>( 813 E->getAggregateElement(2)->stripPointerCasts()); 814 if (!Key) 815 return false; 816 GlobalValue *DGV = getLinkedToGlobal(Key); 817 return !shouldLink(DGV, *Key); 818 }), 819 SrcElements.end()); 820 uint64_t NewSize = DstNumElements + SrcElements.size(); 821 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 822 823 // Create the new global variable. 824 GlobalVariable *NG = new GlobalVariable( 825 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 826 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 827 SrcGV->getType()->getAddressSpace()); 828 829 NG->copyAttributesFrom(SrcGV); 830 forceRenaming(NG, SrcGV->getName()); 831 832 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 833 834 Mapper.scheduleMapAppendingVariable(*NG, 835 DstGV ? DstGV->getInitializer() : nullptr, 836 IsOldStructor, SrcElements); 837 838 // Replace any uses of the two global variables with uses of the new 839 // global. 840 if (DstGV) { 841 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType())); 842 DstGV->eraseFromParent(); 843 } 844 845 return Ret; 846 } 847 848 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 849 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 850 return true; 851 852 if (DGV && !DGV->isDeclarationForLinker()) 853 return false; 854 855 if (SGV.hasAvailableExternallyLinkage()) 856 return true; 857 858 if (SGV.isDeclaration() || DoneLinkingBodies) 859 return false; 860 861 // Callback to the client to give a chance to lazily add the Global to the 862 // list of value to link. 863 bool LazilyAdded = false; 864 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 865 maybeAdd(&GV); 866 LazilyAdded = true; 867 }); 868 return LazilyAdded; 869 } 870 871 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 872 bool ForAlias) { 873 GlobalValue *DGV = getLinkedToGlobal(SGV); 874 875 bool ShouldLink = shouldLink(DGV, *SGV); 876 877 // just missing from map 878 if (ShouldLink) { 879 auto I = ValueMap.find(SGV); 880 if (I != ValueMap.end()) 881 return cast<Constant>(I->second); 882 883 I = AliasValueMap.find(SGV); 884 if (I != AliasValueMap.end()) 885 return cast<Constant>(I->second); 886 } 887 888 if (!ShouldLink && ForAlias) 889 DGV = nullptr; 890 891 // Handle the ultra special appending linkage case first. 892 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage()); 893 if (SGV->hasAppendingLinkage()) 894 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 895 cast<GlobalVariable>(SGV)); 896 897 GlobalValue *NewGV; 898 if (DGV && !ShouldLink) { 899 NewGV = DGV; 900 } else { 901 // If we are done linking global value bodies (i.e. we are performing 902 // metadata linking), don't link in the global value due to this 903 // reference, simply map it to null. 904 if (DoneLinkingBodies) 905 return nullptr; 906 907 NewGV = copyGlobalValueProto(SGV, ShouldLink); 908 if (ShouldLink || !ForAlias) 909 forceRenaming(NewGV, SGV->getName()); 910 } 911 912 // Overloaded intrinsics have overloaded types names as part of their 913 // names. If we renamed overloaded types we should rename the intrinsic 914 // as well. 915 if (Function *F = dyn_cast<Function>(NewGV)) 916 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) 917 NewGV = Remangled.getValue(); 918 919 if (ShouldLink || ForAlias) { 920 if (const Comdat *SC = SGV->getComdat()) { 921 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 922 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 923 DC->setSelectionKind(SC->getSelectionKind()); 924 GO->setComdat(DC); 925 } 926 } 927 } 928 929 if (!ShouldLink && ForAlias) 930 NewGV->setLinkage(GlobalValue::InternalLinkage); 931 932 Constant *C = NewGV; 933 if (DGV) 934 C = ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType())); 935 936 if (DGV && NewGV != DGV) { 937 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType())); 938 DGV->eraseFromParent(); 939 } 940 941 return C; 942 } 943 944 /// Update the initializers in the Dest module now that all globals that may be 945 /// referenced are in Dest. 946 void IRLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) { 947 // Figure out what the initializer looks like in the dest module. 948 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 949 } 950 951 /// Copy the source function over into the dest function and fix up references 952 /// to values. At this point we know that Dest is an external function, and 953 /// that Src is not. 954 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 955 assert(Dst.isDeclaration() && !Src.isDeclaration()); 956 957 // Materialize if needed. 958 if (std::error_code EC = Src.materialize()) 959 return errorCodeToError(EC); 960 961 // Link in the operands without remapping. 962 if (Src.hasPrefixData()) 963 Dst.setPrefixData(Src.getPrefixData()); 964 if (Src.hasPrologueData()) 965 Dst.setPrologueData(Src.getPrologueData()); 966 if (Src.hasPersonalityFn()) 967 Dst.setPersonalityFn(Src.getPersonalityFn()); 968 969 // Copy over the metadata attachments without remapping. 970 Dst.copyMetadata(&Src, 0); 971 972 // Steal arguments and splice the body of Src into Dst. 973 Dst.stealArgumentListFrom(Src); 974 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList()); 975 976 // Everything has been moved over. Remap it. 977 Mapper.scheduleRemapFunction(Dst); 978 return Error::success(); 979 } 980 981 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) { 982 Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID); 983 } 984 985 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 986 if (auto *F = dyn_cast<Function>(&Src)) 987 return linkFunctionBody(cast<Function>(Dst), *F); 988 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 989 linkGlobalInit(cast<GlobalVariable>(Dst), *GVar); 990 return Error::success(); 991 } 992 linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src)); 993 return Error::success(); 994 } 995 996 /// Insert all of the named MDNodes in Src into the Dest module. 997 void IRLinker::linkNamedMDNodes() { 998 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 999 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1000 // Don't link module flags here. Do them separately. 1001 if (&NMD == SrcModFlags) 1002 continue; 1003 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1004 // Add Src elements into Dest node. 1005 for (const MDNode *Op : NMD.operands()) 1006 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1007 } 1008 } 1009 1010 /// Merge the linker flags in Src into the Dest module. 1011 Error IRLinker::linkModuleFlagsMetadata() { 1012 // If the source module has no module flags, we are done. 1013 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1014 if (!SrcModFlags) 1015 return Error::success(); 1016 1017 // If the destination module doesn't have module flags yet, then just copy 1018 // over the source module's flags. 1019 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1020 if (DstModFlags->getNumOperands() == 0) { 1021 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1022 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1023 1024 return Error::success(); 1025 } 1026 1027 // First build a map of the existing module flags and requirements. 1028 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1029 SmallSetVector<MDNode *, 16> Requirements; 1030 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1031 MDNode *Op = DstModFlags->getOperand(I); 1032 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0)); 1033 MDString *ID = cast<MDString>(Op->getOperand(1)); 1034 1035 if (Behavior->getZExtValue() == Module::Require) { 1036 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1037 } else { 1038 Flags[ID] = std::make_pair(Op, I); 1039 } 1040 } 1041 1042 // Merge in the flags from the source module, and also collect its set of 1043 // requirements. 1044 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1045 MDNode *SrcOp = SrcModFlags->getOperand(I); 1046 ConstantInt *SrcBehavior = 1047 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1048 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1049 MDNode *DstOp; 1050 unsigned DstIndex; 1051 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1052 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1053 1054 // If this is a requirement, add it and continue. 1055 if (SrcBehaviorValue == Module::Require) { 1056 // If the destination module does not already have this requirement, add 1057 // it. 1058 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1059 DstModFlags->addOperand(SrcOp); 1060 } 1061 continue; 1062 } 1063 1064 // If there is no existing flag with this ID, just add it. 1065 if (!DstOp) { 1066 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1067 DstModFlags->addOperand(SrcOp); 1068 continue; 1069 } 1070 1071 // Otherwise, perform a merge. 1072 ConstantInt *DstBehavior = 1073 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1074 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1075 1076 // If either flag has override behavior, handle it first. 1077 if (DstBehaviorValue == Module::Override) { 1078 // Diagnose inconsistent flags which both have override behavior. 1079 if (SrcBehaviorValue == Module::Override && 1080 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1081 return stringErr("linking module flags '" + ID->getString() + 1082 "': IDs have conflicting override values"); 1083 continue; 1084 } else if (SrcBehaviorValue == Module::Override) { 1085 // Update the destination flag to that of the source. 1086 DstModFlags->setOperand(DstIndex, SrcOp); 1087 Flags[ID].first = SrcOp; 1088 continue; 1089 } 1090 1091 // Diagnose inconsistent merge behavior types. 1092 if (SrcBehaviorValue != DstBehaviorValue) 1093 return stringErr("linking module flags '" + ID->getString() + 1094 "': IDs have conflicting behaviors"); 1095 1096 auto replaceDstValue = [&](MDNode *New) { 1097 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1098 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1099 DstModFlags->setOperand(DstIndex, Flag); 1100 Flags[ID].first = Flag; 1101 }; 1102 1103 // Perform the merge for standard behavior types. 1104 switch (SrcBehaviorValue) { 1105 case Module::Require: 1106 case Module::Override: 1107 llvm_unreachable("not possible"); 1108 case Module::Error: { 1109 // Emit an error if the values differ. 1110 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) 1111 return stringErr("linking module flags '" + ID->getString() + 1112 "': IDs have conflicting values"); 1113 continue; 1114 } 1115 case Module::Warning: { 1116 // Emit a warning if the values differ. 1117 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1118 emitWarning("linking module flags '" + ID->getString() + 1119 "': IDs have conflicting values"); 1120 } 1121 continue; 1122 } 1123 case Module::Append: { 1124 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1125 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1126 SmallVector<Metadata *, 8> MDs; 1127 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands()); 1128 MDs.append(DstValue->op_begin(), DstValue->op_end()); 1129 MDs.append(SrcValue->op_begin(), SrcValue->op_end()); 1130 1131 replaceDstValue(MDNode::get(DstM.getContext(), MDs)); 1132 break; 1133 } 1134 case Module::AppendUnique: { 1135 SmallSetVector<Metadata *, 16> Elts; 1136 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2)); 1137 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1138 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1139 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1140 1141 replaceDstValue(MDNode::get(DstM.getContext(), 1142 makeArrayRef(Elts.begin(), Elts.end()))); 1143 break; 1144 } 1145 } 1146 } 1147 1148 // Check all of the requirements. 1149 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) { 1150 MDNode *Requirement = Requirements[I]; 1151 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1152 Metadata *ReqValue = Requirement->getOperand(1); 1153 1154 MDNode *Op = Flags[Flag].first; 1155 if (!Op || Op->getOperand(2) != ReqValue) 1156 return stringErr("linking module flags '" + Flag->getString() + 1157 "': does not have the required value"); 1158 } 1159 return Error::success(); 1160 } 1161 1162 // This function returns true if the triples match. 1163 static bool triplesMatch(const Triple &T0, const Triple &T1) { 1164 // If vendor is apple, ignore the version number. 1165 if (T0.getVendor() == Triple::Apple) 1166 return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() && 1167 T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS(); 1168 1169 return T0 == T1; 1170 } 1171 1172 // This function returns the merged triple. 1173 static std::string mergeTriples(const Triple &SrcTriple, 1174 const Triple &DstTriple) { 1175 // If vendor is apple, pick the triple with the larger version number. 1176 if (SrcTriple.getVendor() == Triple::Apple) 1177 if (DstTriple.isOSVersionLT(SrcTriple)) 1178 return SrcTriple.str(); 1179 1180 return DstTriple.str(); 1181 } 1182 1183 Error IRLinker::run() { 1184 // Ensure metadata materialized before value mapping. 1185 if (SrcM->getMaterializer()) 1186 if (std::error_code EC = SrcM->getMaterializer()->materializeMetadata()) 1187 return errorCodeToError(EC); 1188 1189 // Inherit the target data from the source module if the destination module 1190 // doesn't have one already. 1191 if (DstM.getDataLayout().isDefault()) 1192 DstM.setDataLayout(SrcM->getDataLayout()); 1193 1194 if (SrcM->getDataLayout() != DstM.getDataLayout()) { 1195 emitWarning("Linking two modules of different data layouts: '" + 1196 SrcM->getModuleIdentifier() + "' is '" + 1197 SrcM->getDataLayoutStr() + "' whereas '" + 1198 DstM.getModuleIdentifier() + "' is '" + 1199 DstM.getDataLayoutStr() + "'\n"); 1200 } 1201 1202 // Copy the target triple from the source to dest if the dest's is empty. 1203 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1204 DstM.setTargetTriple(SrcM->getTargetTriple()); 1205 1206 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1207 1208 if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple)) 1209 emitWarning("Linking two modules of different target triples: " + 1210 SrcM->getModuleIdentifier() + "' is '" + 1211 SrcM->getTargetTriple() + "' whereas '" + 1212 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1213 "'\n"); 1214 1215 DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple)); 1216 1217 // Append the module inline asm string. 1218 if (!SrcM->getModuleInlineAsm().empty()) { 1219 if (DstM.getModuleInlineAsm().empty()) 1220 DstM.setModuleInlineAsm(SrcM->getModuleInlineAsm()); 1221 else 1222 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" + 1223 SrcM->getModuleInlineAsm()); 1224 } 1225 1226 // Loop over all of the linked values to compute type mappings. 1227 computeTypeMapping(); 1228 1229 std::reverse(Worklist.begin(), Worklist.end()); 1230 while (!Worklist.empty()) { 1231 GlobalValue *GV = Worklist.back(); 1232 Worklist.pop_back(); 1233 1234 // Already mapped. 1235 if (ValueMap.find(GV) != ValueMap.end() || 1236 AliasValueMap.find(GV) != AliasValueMap.end()) 1237 continue; 1238 1239 assert(!GV->isDeclaration()); 1240 Mapper.mapValue(*GV); 1241 if (FoundError) 1242 return std::move(*FoundError); 1243 } 1244 1245 // Note that we are done linking global value bodies. This prevents 1246 // metadata linking from creating new references. 1247 DoneLinkingBodies = true; 1248 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1249 1250 // Remap all of the named MDNodes in Src into the DstM module. We do this 1251 // after linking GlobalValues so that MDNodes that reference GlobalValues 1252 // are properly remapped. 1253 linkNamedMDNodes(); 1254 1255 // Merge the module flags into the DstM module. 1256 return linkModuleFlagsMetadata(); 1257 } 1258 1259 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1260 : ETypes(E), IsPacked(P) {} 1261 1262 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1263 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1264 1265 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1266 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1267 } 1268 1269 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1270 return !this->operator==(That); 1271 } 1272 1273 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1274 return DenseMapInfo<StructType *>::getEmptyKey(); 1275 } 1276 1277 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1278 return DenseMapInfo<StructType *>::getTombstoneKey(); 1279 } 1280 1281 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1282 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1283 Key.IsPacked); 1284 } 1285 1286 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1287 return getHashValue(KeyTy(ST)); 1288 } 1289 1290 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1291 const StructType *RHS) { 1292 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1293 return false; 1294 return LHS == KeyTy(RHS); 1295 } 1296 1297 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1298 const StructType *RHS) { 1299 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1300 return LHS == RHS; 1301 return KeyTy(LHS) == KeyTy(RHS); 1302 } 1303 1304 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1305 assert(!Ty->isOpaque()); 1306 NonOpaqueStructTypes.insert(Ty); 1307 } 1308 1309 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1310 assert(!Ty->isOpaque()); 1311 NonOpaqueStructTypes.insert(Ty); 1312 bool Removed = OpaqueStructTypes.erase(Ty); 1313 (void)Removed; 1314 assert(Removed); 1315 } 1316 1317 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1318 assert(Ty->isOpaque()); 1319 OpaqueStructTypes.insert(Ty); 1320 } 1321 1322 StructType * 1323 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1324 bool IsPacked) { 1325 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1326 auto I = NonOpaqueStructTypes.find_as(Key); 1327 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1328 } 1329 1330 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1331 if (Ty->isOpaque()) 1332 return OpaqueStructTypes.count(Ty); 1333 auto I = NonOpaqueStructTypes.find(Ty); 1334 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1335 } 1336 1337 IRMover::IRMover(Module &M) : Composite(M) { 1338 TypeFinder StructTypes; 1339 StructTypes.run(M, true); 1340 for (StructType *Ty : StructTypes) { 1341 if (Ty->isOpaque()) 1342 IdentifiedStructTypes.addOpaque(Ty); 1343 else 1344 IdentifiedStructTypes.addNonOpaque(Ty); 1345 } 1346 } 1347 1348 Error IRMover::move( 1349 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink, 1350 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor) { 1351 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1352 std::move(Src), ValuesToLink, std::move(AddLazyFor)); 1353 Error E = TheIRLinker.run(); 1354 Composite.dropTriviallyDeadConstantArrays(); 1355 return E; 1356 } 1357