Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Linker/IRMover.h"
     11 #include "LinkDiagnosticInfo.h"
     12 #include "llvm/ADT/SetVector.h"
     13 #include "llvm/ADT/SmallString.h"
     14 #include "llvm/ADT/Triple.h"
     15 #include "llvm/IR/Constants.h"
     16 #include "llvm/IR/DebugInfo.h"
     17 #include "llvm/IR/DiagnosticPrinter.h"
     18 #include "llvm/IR/GVMaterializer.h"
     19 #include "llvm/IR/Intrinsics.h"
     20 #include "llvm/IR/TypeFinder.h"
     21 #include "llvm/Support/Error.h"
     22 #include "llvm/Transforms/Utils/Cloning.h"
     23 #include <utility>
     24 using namespace llvm;
     25 
     26 //===----------------------------------------------------------------------===//
     27 // TypeMap implementation.
     28 //===----------------------------------------------------------------------===//
     29 
     30 namespace {
     31 class TypeMapTy : public ValueMapTypeRemapper {
     32   /// This is a mapping from a source type to a destination type to use.
     33   DenseMap<Type *, Type *> MappedTypes;
     34 
     35   /// When checking to see if two subgraphs are isomorphic, we speculatively
     36   /// add types to MappedTypes, but keep track of them here in case we need to
     37   /// roll back.
     38   SmallVector<Type *, 16> SpeculativeTypes;
     39 
     40   SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
     41 
     42   /// This is a list of non-opaque structs in the source module that are mapped
     43   /// to an opaque struct in the destination module.
     44   SmallVector<StructType *, 16> SrcDefinitionsToResolve;
     45 
     46   /// This is the set of opaque types in the destination modules who are
     47   /// getting a body from the source module.
     48   SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
     49 
     50 public:
     51   TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
     52       : DstStructTypesSet(DstStructTypesSet) {}
     53 
     54   IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
     55   /// Indicate that the specified type in the destination module is conceptually
     56   /// equivalent to the specified type in the source module.
     57   void addTypeMapping(Type *DstTy, Type *SrcTy);
     58 
     59   /// Produce a body for an opaque type in the dest module from a type
     60   /// definition in the source module.
     61   void linkDefinedTypeBodies();
     62 
     63   /// Return the mapped type to use for the specified input type from the
     64   /// source module.
     65   Type *get(Type *SrcTy);
     66   Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
     67 
     68   void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
     69 
     70   FunctionType *get(FunctionType *T) {
     71     return cast<FunctionType>(get((Type *)T));
     72   }
     73 
     74 private:
     75   Type *remapType(Type *SrcTy) override { return get(SrcTy); }
     76 
     77   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
     78 };
     79 }
     80 
     81 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
     82   assert(SpeculativeTypes.empty());
     83   assert(SpeculativeDstOpaqueTypes.empty());
     84 
     85   // Check to see if these types are recursively isomorphic and establish a
     86   // mapping between them if so.
     87   if (!areTypesIsomorphic(DstTy, SrcTy)) {
     88     // Oops, they aren't isomorphic.  Just discard this request by rolling out
     89     // any speculative mappings we've established.
     90     for (Type *Ty : SpeculativeTypes)
     91       MappedTypes.erase(Ty);
     92 
     93     SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
     94                                    SpeculativeDstOpaqueTypes.size());
     95     for (StructType *Ty : SpeculativeDstOpaqueTypes)
     96       DstResolvedOpaqueTypes.erase(Ty);
     97   } else {
     98     for (Type *Ty : SpeculativeTypes)
     99       if (auto *STy = dyn_cast<StructType>(Ty))
    100         if (STy->hasName())
    101           STy->setName("");
    102   }
    103   SpeculativeTypes.clear();
    104   SpeculativeDstOpaqueTypes.clear();
    105 }
    106 
    107 /// Recursively walk this pair of types, returning true if they are isomorphic,
    108 /// false if they are not.
    109 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
    110   // Two types with differing kinds are clearly not isomorphic.
    111   if (DstTy->getTypeID() != SrcTy->getTypeID())
    112     return false;
    113 
    114   // If we have an entry in the MappedTypes table, then we have our answer.
    115   Type *&Entry = MappedTypes[SrcTy];
    116   if (Entry)
    117     return Entry == DstTy;
    118 
    119   // Two identical types are clearly isomorphic.  Remember this
    120   // non-speculatively.
    121   if (DstTy == SrcTy) {
    122     Entry = DstTy;
    123     return true;
    124   }
    125 
    126   // Okay, we have two types with identical kinds that we haven't seen before.
    127 
    128   // If this is an opaque struct type, special case it.
    129   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    130     // Mapping an opaque type to any struct, just keep the dest struct.
    131     if (SSTy->isOpaque()) {
    132       Entry = DstTy;
    133       SpeculativeTypes.push_back(SrcTy);
    134       return true;
    135     }
    136 
    137     // Mapping a non-opaque source type to an opaque dest.  If this is the first
    138     // type that we're mapping onto this destination type then we succeed.  Keep
    139     // the dest, but fill it in later. If this is the second (different) type
    140     // that we're trying to map onto the same opaque type then we fail.
    141     if (cast<StructType>(DstTy)->isOpaque()) {
    142       // We can only map one source type onto the opaque destination type.
    143       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
    144         return false;
    145       SrcDefinitionsToResolve.push_back(SSTy);
    146       SpeculativeTypes.push_back(SrcTy);
    147       SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
    148       Entry = DstTy;
    149       return true;
    150     }
    151   }
    152 
    153   // If the number of subtypes disagree between the two types, then we fail.
    154   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    155     return false;
    156 
    157   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    158   if (isa<IntegerType>(DstTy))
    159     return false; // bitwidth disagrees.
    160   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    161     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    162       return false;
    163 
    164   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    165     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    166       return false;
    167   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    168     StructType *SSTy = cast<StructType>(SrcTy);
    169     if (DSTy->isLiteral() != SSTy->isLiteral() ||
    170         DSTy->isPacked() != SSTy->isPacked())
    171       return false;
    172   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    173     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    174       return false;
    175   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    176     if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
    177       return false;
    178   }
    179 
    180   // Otherwise, we speculate that these two types will line up and recursively
    181   // check the subelements.
    182   Entry = DstTy;
    183   SpeculativeTypes.push_back(SrcTy);
    184 
    185   for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
    186     if (!areTypesIsomorphic(DstTy->getContainedType(I),
    187                             SrcTy->getContainedType(I)))
    188       return false;
    189 
    190   // If everything seems to have lined up, then everything is great.
    191   return true;
    192 }
    193 
    194 void TypeMapTy::linkDefinedTypeBodies() {
    195   SmallVector<Type *, 16> Elements;
    196   for (StructType *SrcSTy : SrcDefinitionsToResolve) {
    197     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    198     assert(DstSTy->isOpaque());
    199 
    200     // Map the body of the source type over to a new body for the dest type.
    201     Elements.resize(SrcSTy->getNumElements());
    202     for (unsigned I = 0, E = Elements.size(); I != E; ++I)
    203       Elements[I] = get(SrcSTy->getElementType(I));
    204 
    205     DstSTy->setBody(Elements, SrcSTy->isPacked());
    206     DstStructTypesSet.switchToNonOpaque(DstSTy);
    207   }
    208   SrcDefinitionsToResolve.clear();
    209   DstResolvedOpaqueTypes.clear();
    210 }
    211 
    212 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
    213                            ArrayRef<Type *> ETypes) {
    214   DTy->setBody(ETypes, STy->isPacked());
    215 
    216   // Steal STy's name.
    217   if (STy->hasName()) {
    218     SmallString<16> TmpName = STy->getName();
    219     STy->setName("");
    220     DTy->setName(TmpName);
    221   }
    222 
    223   DstStructTypesSet.addNonOpaque(DTy);
    224 }
    225 
    226 Type *TypeMapTy::get(Type *Ty) {
    227   SmallPtrSet<StructType *, 8> Visited;
    228   return get(Ty, Visited);
    229 }
    230 
    231 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
    232   // If we already have an entry for this type, return it.
    233   Type **Entry = &MappedTypes[Ty];
    234   if (*Entry)
    235     return *Entry;
    236 
    237   // These are types that LLVM itself will unique.
    238   bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
    239 
    240 #ifndef NDEBUG
    241   if (!IsUniqued) {
    242     for (auto &Pair : MappedTypes) {
    243       assert(!(Pair.first != Ty && Pair.second == Ty) &&
    244              "mapping to a source type");
    245     }
    246   }
    247 #endif
    248 
    249   if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
    250     StructType *DTy = StructType::create(Ty->getContext());
    251     return *Entry = DTy;
    252   }
    253 
    254   // If this is not a recursive type, then just map all of the elements and
    255   // then rebuild the type from inside out.
    256   SmallVector<Type *, 4> ElementTypes;
    257 
    258   // If there are no element types to map, then the type is itself.  This is
    259   // true for the anonymous {} struct, things like 'float', integers, etc.
    260   if (Ty->getNumContainedTypes() == 0 && IsUniqued)
    261     return *Entry = Ty;
    262 
    263   // Remap all of the elements, keeping track of whether any of them change.
    264   bool AnyChange = false;
    265   ElementTypes.resize(Ty->getNumContainedTypes());
    266   for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
    267     ElementTypes[I] = get(Ty->getContainedType(I), Visited);
    268     AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
    269   }
    270 
    271   // If we found our type while recursively processing stuff, just use it.
    272   Entry = &MappedTypes[Ty];
    273   if (*Entry) {
    274     if (auto *DTy = dyn_cast<StructType>(*Entry)) {
    275       if (DTy->isOpaque()) {
    276         auto *STy = cast<StructType>(Ty);
    277         finishType(DTy, STy, ElementTypes);
    278       }
    279     }
    280     return *Entry;
    281   }
    282 
    283   // If all of the element types mapped directly over and the type is not
    284   // a nomed struct, then the type is usable as-is.
    285   if (!AnyChange && IsUniqued)
    286     return *Entry = Ty;
    287 
    288   // Otherwise, rebuild a modified type.
    289   switch (Ty->getTypeID()) {
    290   default:
    291     llvm_unreachable("unknown derived type to remap");
    292   case Type::ArrayTyID:
    293     return *Entry = ArrayType::get(ElementTypes[0],
    294                                    cast<ArrayType>(Ty)->getNumElements());
    295   case Type::VectorTyID:
    296     return *Entry = VectorType::get(ElementTypes[0],
    297                                     cast<VectorType>(Ty)->getNumElements());
    298   case Type::PointerTyID:
    299     return *Entry = PointerType::get(ElementTypes[0],
    300                                      cast<PointerType>(Ty)->getAddressSpace());
    301   case Type::FunctionTyID:
    302     return *Entry = FunctionType::get(ElementTypes[0],
    303                                       makeArrayRef(ElementTypes).slice(1),
    304                                       cast<FunctionType>(Ty)->isVarArg());
    305   case Type::StructTyID: {
    306     auto *STy = cast<StructType>(Ty);
    307     bool IsPacked = STy->isPacked();
    308     if (IsUniqued)
    309       return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
    310 
    311     // If the type is opaque, we can just use it directly.
    312     if (STy->isOpaque()) {
    313       DstStructTypesSet.addOpaque(STy);
    314       return *Entry = Ty;
    315     }
    316 
    317     if (StructType *OldT =
    318             DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
    319       STy->setName("");
    320       return *Entry = OldT;
    321     }
    322 
    323     if (!AnyChange) {
    324       DstStructTypesSet.addNonOpaque(STy);
    325       return *Entry = Ty;
    326     }
    327 
    328     StructType *DTy = StructType::create(Ty->getContext());
    329     finishType(DTy, STy, ElementTypes);
    330     return *Entry = DTy;
    331   }
    332   }
    333 }
    334 
    335 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
    336                                        const Twine &Msg)
    337     : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
    338 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
    339 
    340 //===----------------------------------------------------------------------===//
    341 // IRLinker implementation.
    342 //===----------------------------------------------------------------------===//
    343 
    344 namespace {
    345 class IRLinker;
    346 
    347 /// Creates prototypes for functions that are lazily linked on the fly. This
    348 /// speeds up linking for modules with many/ lazily linked functions of which
    349 /// few get used.
    350 class GlobalValueMaterializer final : public ValueMaterializer {
    351   IRLinker &TheIRLinker;
    352 
    353 public:
    354   GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
    355   Value *materialize(Value *V) override;
    356 };
    357 
    358 class LocalValueMaterializer final : public ValueMaterializer {
    359   IRLinker &TheIRLinker;
    360 
    361 public:
    362   LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
    363   Value *materialize(Value *V) override;
    364 };
    365 
    366 /// Type of the Metadata map in \a ValueToValueMapTy.
    367 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
    368 
    369 /// This is responsible for keeping track of the state used for moving data
    370 /// from SrcM to DstM.
    371 class IRLinker {
    372   Module &DstM;
    373   std::unique_ptr<Module> SrcM;
    374 
    375   /// See IRMover::move().
    376   std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
    377 
    378   TypeMapTy TypeMap;
    379   GlobalValueMaterializer GValMaterializer;
    380   LocalValueMaterializer LValMaterializer;
    381 
    382   /// A metadata map that's shared between IRLinker instances.
    383   MDMapT &SharedMDs;
    384 
    385   /// Mapping of values from what they used to be in Src, to what they are now
    386   /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
    387   /// due to the use of Value handles which the Linker doesn't actually need,
    388   /// but this allows us to reuse the ValueMapper code.
    389   ValueToValueMapTy ValueMap;
    390   ValueToValueMapTy AliasValueMap;
    391 
    392   DenseSet<GlobalValue *> ValuesToLink;
    393   std::vector<GlobalValue *> Worklist;
    394 
    395   void maybeAdd(GlobalValue *GV) {
    396     if (ValuesToLink.insert(GV).second)
    397       Worklist.push_back(GV);
    398   }
    399 
    400   /// Set to true when all global value body linking is complete (including
    401   /// lazy linking). Used to prevent metadata linking from creating new
    402   /// references.
    403   bool DoneLinkingBodies = false;
    404 
    405   /// The Error encountered during materialization. We use an Optional here to
    406   /// avoid needing to manage an unconsumed success value.
    407   Optional<Error> FoundError;
    408   void setError(Error E) {
    409     if (E)
    410       FoundError = std::move(E);
    411   }
    412 
    413   /// Most of the errors produced by this module are inconvertible StringErrors.
    414   /// This convenience function lets us return one of those more easily.
    415   Error stringErr(const Twine &T) {
    416     return make_error<StringError>(T, inconvertibleErrorCode());
    417   }
    418 
    419   /// Entry point for mapping values and alternate context for mapping aliases.
    420   ValueMapper Mapper;
    421   unsigned AliasMCID;
    422 
    423   /// Handles cloning of a global values from the source module into
    424   /// the destination module, including setting the attributes and visibility.
    425   GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
    426 
    427   void emitWarning(const Twine &Message) {
    428     SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
    429   }
    430 
    431   /// Given a global in the source module, return the global in the
    432   /// destination module that is being linked to, if any.
    433   GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
    434     // If the source has no name it can't link.  If it has local linkage,
    435     // there is no name match-up going on.
    436     if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    437       return nullptr;
    438 
    439     // Otherwise see if we have a match in the destination module's symtab.
    440     GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
    441     if (!DGV)
    442       return nullptr;
    443 
    444     // If we found a global with the same name in the dest module, but it has
    445     // internal linkage, we are really not doing any linkage here.
    446     if (DGV->hasLocalLinkage())
    447       return nullptr;
    448 
    449     // Otherwise, we do in fact link to the destination global.
    450     return DGV;
    451   }
    452 
    453   void computeTypeMapping();
    454 
    455   Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
    456                                              const GlobalVariable *SrcGV);
    457 
    458   /// Given the GlobaValue \p SGV in the source module, and the matching
    459   /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
    460   /// into the destination module.
    461   ///
    462   /// Note this code may call the client-provided \p AddLazyFor.
    463   bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
    464   Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
    465 
    466   Error linkModuleFlagsMetadata();
    467 
    468   void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
    469   Error linkFunctionBody(Function &Dst, Function &Src);
    470   void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
    471   Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
    472 
    473   /// Functions that take care of cloning a specific global value type
    474   /// into the destination module.
    475   GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
    476   Function *copyFunctionProto(const Function *SF);
    477   GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
    478 
    479   void linkNamedMDNodes();
    480 
    481 public:
    482   IRLinker(Module &DstM, MDMapT &SharedMDs,
    483            IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
    484            ArrayRef<GlobalValue *> ValuesToLink,
    485            std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor)
    486       : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
    487         TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
    488         SharedMDs(SharedMDs),
    489         Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
    490                &GValMaterializer),
    491         AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
    492                                                          &LValMaterializer)) {
    493     ValueMap.getMDMap() = std::move(SharedMDs);
    494     for (GlobalValue *GV : ValuesToLink)
    495       maybeAdd(GV);
    496   }
    497   ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
    498 
    499   Error run();
    500   Value *materialize(Value *V, bool ForAlias);
    501 };
    502 }
    503 
    504 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
    505 /// table. This is good for all clients except for us. Go through the trouble
    506 /// to force this back.
    507 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    508   // If the global doesn't force its name or if it already has the right name,
    509   // there is nothing for us to do.
    510   if (GV->hasLocalLinkage() || GV->getName() == Name)
    511     return;
    512 
    513   Module *M = GV->getParent();
    514 
    515   // If there is a conflict, rename the conflict.
    516   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    517     GV->takeName(ConflictGV);
    518     ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
    519     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    520   } else {
    521     GV->setName(Name); // Force the name back
    522   }
    523 }
    524 
    525 Value *GlobalValueMaterializer::materialize(Value *SGV) {
    526   return TheIRLinker.materialize(SGV, false);
    527 }
    528 
    529 Value *LocalValueMaterializer::materialize(Value *SGV) {
    530   return TheIRLinker.materialize(SGV, true);
    531 }
    532 
    533 Value *IRLinker::materialize(Value *V, bool ForAlias) {
    534   auto *SGV = dyn_cast<GlobalValue>(V);
    535   if (!SGV)
    536     return nullptr;
    537 
    538   Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
    539   if (!NewProto) {
    540     setError(NewProto.takeError());
    541     return nullptr;
    542   }
    543   if (!*NewProto)
    544     return nullptr;
    545 
    546   GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
    547   if (!New)
    548     return *NewProto;
    549 
    550   // If we already created the body, just return.
    551   if (auto *F = dyn_cast<Function>(New)) {
    552     if (!F->isDeclaration())
    553       return New;
    554   } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
    555     if (V->hasInitializer() || V->hasAppendingLinkage())
    556       return New;
    557   } else {
    558     auto *A = cast<GlobalAlias>(New);
    559     if (A->getAliasee())
    560       return New;
    561   }
    562 
    563   // When linking a global for an alias, it will always be linked. However we
    564   // need to check if it was not already scheduled to satify a reference from a
    565   // regular global value initializer. We know if it has been schedule if the
    566   // "New" GlobalValue that is mapped here for the alias is the same as the one
    567   // already mapped. If there is an entry in the ValueMap but the value is
    568   // different, it means that the value already had a definition in the
    569   // destination module (linkonce for instance), but we need a new definition
    570   // for the alias ("New" will be different.
    571   if (ForAlias && ValueMap.lookup(SGV) == New)
    572     return New;
    573 
    574   if (ForAlias || shouldLink(New, *SGV))
    575     setError(linkGlobalValueBody(*New, *SGV));
    576 
    577   return New;
    578 }
    579 
    580 /// Loop through the global variables in the src module and merge them into the
    581 /// dest module.
    582 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
    583   // No linking to be performed or linking from the source: simply create an
    584   // identical version of the symbol over in the dest module... the
    585   // initializer will be filled in later by LinkGlobalInits.
    586   GlobalVariable *NewDGV =
    587       new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
    588                          SGVar->isConstant(), GlobalValue::ExternalLinkage,
    589                          /*init*/ nullptr, SGVar->getName(),
    590                          /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
    591                          SGVar->getType()->getAddressSpace());
    592   NewDGV->setAlignment(SGVar->getAlignment());
    593   return NewDGV;
    594 }
    595 
    596 /// Link the function in the source module into the destination module if
    597 /// needed, setting up mapping information.
    598 Function *IRLinker::copyFunctionProto(const Function *SF) {
    599   // If there is no linkage to be performed or we are linking from the source,
    600   // bring SF over.
    601   return Function::Create(TypeMap.get(SF->getFunctionType()),
    602                           GlobalValue::ExternalLinkage, SF->getName(), &DstM);
    603 }
    604 
    605 /// Set up prototypes for any aliases that come over from the source module.
    606 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
    607   // If there is no linkage to be performed or we're linking from the source,
    608   // bring over SGA.
    609   auto *Ty = TypeMap.get(SGA->getValueType());
    610   return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
    611                              GlobalValue::ExternalLinkage, SGA->getName(),
    612                              &DstM);
    613 }
    614 
    615 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
    616                                             bool ForDefinition) {
    617   GlobalValue *NewGV;
    618   if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
    619     NewGV = copyGlobalVariableProto(SGVar);
    620   } else if (auto *SF = dyn_cast<Function>(SGV)) {
    621     NewGV = copyFunctionProto(SF);
    622   } else {
    623     if (ForDefinition)
    624       NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
    625     else
    626       NewGV = new GlobalVariable(
    627           DstM, TypeMap.get(SGV->getValueType()),
    628           /*isConstant*/ false, GlobalValue::ExternalLinkage,
    629           /*init*/ nullptr, SGV->getName(),
    630           /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
    631           SGV->getType()->getAddressSpace());
    632   }
    633 
    634   if (ForDefinition)
    635     NewGV->setLinkage(SGV->getLinkage());
    636   else if (SGV->hasExternalWeakLinkage())
    637     NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
    638 
    639   NewGV->copyAttributesFrom(SGV);
    640 
    641   if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
    642     // Metadata for global variables and function declarations is copied eagerly.
    643     if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
    644       NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
    645   }
    646 
    647   // Remove these copied constants in case this stays a declaration, since
    648   // they point to the source module. If the def is linked the values will
    649   // be mapped in during linkFunctionBody.
    650   if (auto *NewF = dyn_cast<Function>(NewGV)) {
    651     NewF->setPersonalityFn(nullptr);
    652     NewF->setPrefixData(nullptr);
    653     NewF->setPrologueData(nullptr);
    654   }
    655 
    656   return NewGV;
    657 }
    658 
    659 /// Loop over all of the linked values to compute type mappings.  For example,
    660 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
    661 /// types 'Foo' but one got renamed when the module was loaded into the same
    662 /// LLVMContext.
    663 void IRLinker::computeTypeMapping() {
    664   for (GlobalValue &SGV : SrcM->globals()) {
    665     GlobalValue *DGV = getLinkedToGlobal(&SGV);
    666     if (!DGV)
    667       continue;
    668 
    669     if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
    670       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    671       continue;
    672     }
    673 
    674     // Unify the element type of appending arrays.
    675     ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
    676     ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
    677     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    678   }
    679 
    680   for (GlobalValue &SGV : *SrcM)
    681     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
    682       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    683 
    684   for (GlobalValue &SGV : SrcM->aliases())
    685     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
    686       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    687 
    688   // Incorporate types by name, scanning all the types in the source module.
    689   // At this point, the destination module may have a type "%foo = { i32 }" for
    690   // example.  When the source module got loaded into the same LLVMContext, if
    691   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
    692   std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
    693   for (StructType *ST : Types) {
    694     if (!ST->hasName())
    695       continue;
    696 
    697     // Check to see if there is a dot in the name followed by a digit.
    698     size_t DotPos = ST->getName().rfind('.');
    699     if (DotPos == 0 || DotPos == StringRef::npos ||
    700         ST->getName().back() == '.' ||
    701         !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
    702       continue;
    703 
    704     // Check to see if the destination module has a struct with the prefix name.
    705     StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
    706     if (!DST)
    707       continue;
    708 
    709     // Don't use it if this actually came from the source module. They're in
    710     // the same LLVMContext after all. Also don't use it unless the type is
    711     // actually used in the destination module. This can happen in situations
    712     // like this:
    713     //
    714     //      Module A                         Module B
    715     //      --------                         --------
    716     //   %Z = type { %A }                %B = type { %C.1 }
    717     //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    718     //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    719     //   %C = type { i8* }               %B.3 = type { %C.1 }
    720     //
    721     // When we link Module B with Module A, the '%B' in Module B is
    722     // used. However, that would then use '%C.1'. But when we process '%C.1',
    723     // we prefer to take the '%C' version. So we are then left with both
    724     // '%C.1' and '%C' being used for the same types. This leads to some
    725     // variables using one type and some using the other.
    726     if (TypeMap.DstStructTypesSet.hasType(DST))
    727       TypeMap.addTypeMapping(DST, ST);
    728   }
    729 
    730   // Now that we have discovered all of the type equivalences, get a body for
    731   // any 'opaque' types in the dest module that are now resolved.
    732   TypeMap.linkDefinedTypeBodies();
    733 }
    734 
    735 static void getArrayElements(const Constant *C,
    736                              SmallVectorImpl<Constant *> &Dest) {
    737   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
    738 
    739   for (unsigned i = 0; i != NumElements; ++i)
    740     Dest.push_back(C->getAggregateElement(i));
    741 }
    742 
    743 /// If there were any appending global variables, link them together now.
    744 Expected<Constant *>
    745 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    746                                 const GlobalVariable *SrcGV) {
    747   Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
    748                     ->getElementType();
    749 
    750   // FIXME: This upgrade is done during linking to support the C API.  Once the
    751   // old form is deprecated, we should move this upgrade to
    752   // llvm::UpgradeGlobalVariable() and simplify the logic here and in
    753   // Mapper::mapAppendingVariable() in ValueMapper.cpp.
    754   StringRef Name = SrcGV->getName();
    755   bool IsNewStructor = false;
    756   bool IsOldStructor = false;
    757   if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
    758     if (cast<StructType>(EltTy)->getNumElements() == 3)
    759       IsNewStructor = true;
    760     else
    761       IsOldStructor = true;
    762   }
    763 
    764   PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
    765   if (IsOldStructor) {
    766     auto &ST = *cast<StructType>(EltTy);
    767     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
    768     EltTy = StructType::get(SrcGV->getContext(), Tys, false);
    769   }
    770 
    771   uint64_t DstNumElements = 0;
    772   if (DstGV) {
    773     ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
    774     DstNumElements = DstTy->getNumElements();
    775 
    776     if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    777       return stringErr(
    778           "Linking globals named '" + SrcGV->getName() +
    779           "': can only link appending global with another appending "
    780           "global!");
    781 
    782     // Check to see that they two arrays agree on type.
    783     if (EltTy != DstTy->getElementType())
    784       return stringErr("Appending variables with different element types!");
    785     if (DstGV->isConstant() != SrcGV->isConstant())
    786       return stringErr("Appending variables linked with different const'ness!");
    787 
    788     if (DstGV->getAlignment() != SrcGV->getAlignment())
    789       return stringErr(
    790           "Appending variables with different alignment need to be linked!");
    791 
    792     if (DstGV->getVisibility() != SrcGV->getVisibility())
    793       return stringErr(
    794           "Appending variables with different visibility need to be linked!");
    795 
    796     if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
    797       return stringErr(
    798           "Appending variables with different unnamed_addr need to be linked!");
    799 
    800     if (DstGV->getSection() != SrcGV->getSection())
    801       return stringErr(
    802           "Appending variables with different section name need to be linked!");
    803   }
    804 
    805   SmallVector<Constant *, 16> SrcElements;
    806   getArrayElements(SrcGV->getInitializer(), SrcElements);
    807 
    808   if (IsNewStructor)
    809     SrcElements.erase(
    810         std::remove_if(SrcElements.begin(), SrcElements.end(),
    811                        [this](Constant *E) {
    812                          auto *Key = dyn_cast<GlobalValue>(
    813                              E->getAggregateElement(2)->stripPointerCasts());
    814                          if (!Key)
    815                            return false;
    816                          GlobalValue *DGV = getLinkedToGlobal(Key);
    817                          return !shouldLink(DGV, *Key);
    818                        }),
    819         SrcElements.end());
    820   uint64_t NewSize = DstNumElements + SrcElements.size();
    821   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    822 
    823   // Create the new global variable.
    824   GlobalVariable *NG = new GlobalVariable(
    825       DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
    826       /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
    827       SrcGV->getType()->getAddressSpace());
    828 
    829   NG->copyAttributesFrom(SrcGV);
    830   forceRenaming(NG, SrcGV->getName());
    831 
    832   Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
    833 
    834   Mapper.scheduleMapAppendingVariable(*NG,
    835                                       DstGV ? DstGV->getInitializer() : nullptr,
    836                                       IsOldStructor, SrcElements);
    837 
    838   // Replace any uses of the two global variables with uses of the new
    839   // global.
    840   if (DstGV) {
    841     DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    842     DstGV->eraseFromParent();
    843   }
    844 
    845   return Ret;
    846 }
    847 
    848 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
    849   if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
    850     return true;
    851 
    852   if (DGV && !DGV->isDeclarationForLinker())
    853     return false;
    854 
    855   if (SGV.hasAvailableExternallyLinkage())
    856     return true;
    857 
    858   if (SGV.isDeclaration() || DoneLinkingBodies)
    859     return false;
    860 
    861   // Callback to the client to give a chance to lazily add the Global to the
    862   // list of value to link.
    863   bool LazilyAdded = false;
    864   AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
    865     maybeAdd(&GV);
    866     LazilyAdded = true;
    867   });
    868   return LazilyAdded;
    869 }
    870 
    871 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
    872                                                     bool ForAlias) {
    873   GlobalValue *DGV = getLinkedToGlobal(SGV);
    874 
    875   bool ShouldLink = shouldLink(DGV, *SGV);
    876 
    877   // just missing from map
    878   if (ShouldLink) {
    879     auto I = ValueMap.find(SGV);
    880     if (I != ValueMap.end())
    881       return cast<Constant>(I->second);
    882 
    883     I = AliasValueMap.find(SGV);
    884     if (I != AliasValueMap.end())
    885       return cast<Constant>(I->second);
    886   }
    887 
    888   if (!ShouldLink && ForAlias)
    889     DGV = nullptr;
    890 
    891   // Handle the ultra special appending linkage case first.
    892   assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
    893   if (SGV->hasAppendingLinkage())
    894     return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
    895                                  cast<GlobalVariable>(SGV));
    896 
    897   GlobalValue *NewGV;
    898   if (DGV && !ShouldLink) {
    899     NewGV = DGV;
    900   } else {
    901     // If we are done linking global value bodies (i.e. we are performing
    902     // metadata linking), don't link in the global value due to this
    903     // reference, simply map it to null.
    904     if (DoneLinkingBodies)
    905       return nullptr;
    906 
    907     NewGV = copyGlobalValueProto(SGV, ShouldLink);
    908     if (ShouldLink || !ForAlias)
    909       forceRenaming(NewGV, SGV->getName());
    910   }
    911 
    912   // Overloaded intrinsics have overloaded types names as part of their
    913   // names. If we renamed overloaded types we should rename the intrinsic
    914   // as well.
    915   if (Function *F = dyn_cast<Function>(NewGV))
    916     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
    917       NewGV = Remangled.getValue();
    918 
    919   if (ShouldLink || ForAlias) {
    920     if (const Comdat *SC = SGV->getComdat()) {
    921       if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
    922         Comdat *DC = DstM.getOrInsertComdat(SC->getName());
    923         DC->setSelectionKind(SC->getSelectionKind());
    924         GO->setComdat(DC);
    925       }
    926     }
    927   }
    928 
    929   if (!ShouldLink && ForAlias)
    930     NewGV->setLinkage(GlobalValue::InternalLinkage);
    931 
    932   Constant *C = NewGV;
    933   if (DGV)
    934     C = ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType()));
    935 
    936   if (DGV && NewGV != DGV) {
    937     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
    938     DGV->eraseFromParent();
    939   }
    940 
    941   return C;
    942 }
    943 
    944 /// Update the initializers in the Dest module now that all globals that may be
    945 /// referenced are in Dest.
    946 void IRLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
    947   // Figure out what the initializer looks like in the dest module.
    948   Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
    949 }
    950 
    951 /// Copy the source function over into the dest function and fix up references
    952 /// to values. At this point we know that Dest is an external function, and
    953 /// that Src is not.
    954 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
    955   assert(Dst.isDeclaration() && !Src.isDeclaration());
    956 
    957   // Materialize if needed.
    958   if (std::error_code EC = Src.materialize())
    959     return errorCodeToError(EC);
    960 
    961   // Link in the operands without remapping.
    962   if (Src.hasPrefixData())
    963     Dst.setPrefixData(Src.getPrefixData());
    964   if (Src.hasPrologueData())
    965     Dst.setPrologueData(Src.getPrologueData());
    966   if (Src.hasPersonalityFn())
    967     Dst.setPersonalityFn(Src.getPersonalityFn());
    968 
    969   // Copy over the metadata attachments without remapping.
    970   Dst.copyMetadata(&Src, 0);
    971 
    972   // Steal arguments and splice the body of Src into Dst.
    973   Dst.stealArgumentListFrom(Src);
    974   Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
    975 
    976   // Everything has been moved over.  Remap it.
    977   Mapper.scheduleRemapFunction(Dst);
    978   return Error::success();
    979 }
    980 
    981 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
    982   Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
    983 }
    984 
    985 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
    986   if (auto *F = dyn_cast<Function>(&Src))
    987     return linkFunctionBody(cast<Function>(Dst), *F);
    988   if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
    989     linkGlobalInit(cast<GlobalVariable>(Dst), *GVar);
    990     return Error::success();
    991   }
    992   linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
    993   return Error::success();
    994 }
    995 
    996 /// Insert all of the named MDNodes in Src into the Dest module.
    997 void IRLinker::linkNamedMDNodes() {
    998   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
    999   for (const NamedMDNode &NMD : SrcM->named_metadata()) {
   1000     // Don't link module flags here. Do them separately.
   1001     if (&NMD == SrcModFlags)
   1002       continue;
   1003     NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
   1004     // Add Src elements into Dest node.
   1005     for (const MDNode *Op : NMD.operands())
   1006       DestNMD->addOperand(Mapper.mapMDNode(*Op));
   1007   }
   1008 }
   1009 
   1010 /// Merge the linker flags in Src into the Dest module.
   1011 Error IRLinker::linkModuleFlagsMetadata() {
   1012   // If the source module has no module flags, we are done.
   1013   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
   1014   if (!SrcModFlags)
   1015     return Error::success();
   1016 
   1017   // If the destination module doesn't have module flags yet, then just copy
   1018   // over the source module's flags.
   1019   NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
   1020   if (DstModFlags->getNumOperands() == 0) {
   1021     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
   1022       DstModFlags->addOperand(SrcModFlags->getOperand(I));
   1023 
   1024     return Error::success();
   1025   }
   1026 
   1027   // First build a map of the existing module flags and requirements.
   1028   DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
   1029   SmallSetVector<MDNode *, 16> Requirements;
   1030   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
   1031     MDNode *Op = DstModFlags->getOperand(I);
   1032     ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
   1033     MDString *ID = cast<MDString>(Op->getOperand(1));
   1034 
   1035     if (Behavior->getZExtValue() == Module::Require) {
   1036       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
   1037     } else {
   1038       Flags[ID] = std::make_pair(Op, I);
   1039     }
   1040   }
   1041 
   1042   // Merge in the flags from the source module, and also collect its set of
   1043   // requirements.
   1044   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
   1045     MDNode *SrcOp = SrcModFlags->getOperand(I);
   1046     ConstantInt *SrcBehavior =
   1047         mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
   1048     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
   1049     MDNode *DstOp;
   1050     unsigned DstIndex;
   1051     std::tie(DstOp, DstIndex) = Flags.lookup(ID);
   1052     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
   1053 
   1054     // If this is a requirement, add it and continue.
   1055     if (SrcBehaviorValue == Module::Require) {
   1056       // If the destination module does not already have this requirement, add
   1057       // it.
   1058       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
   1059         DstModFlags->addOperand(SrcOp);
   1060       }
   1061       continue;
   1062     }
   1063 
   1064     // If there is no existing flag with this ID, just add it.
   1065     if (!DstOp) {
   1066       Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
   1067       DstModFlags->addOperand(SrcOp);
   1068       continue;
   1069     }
   1070 
   1071     // Otherwise, perform a merge.
   1072     ConstantInt *DstBehavior =
   1073         mdconst::extract<ConstantInt>(DstOp->getOperand(0));
   1074     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
   1075 
   1076     // If either flag has override behavior, handle it first.
   1077     if (DstBehaviorValue == Module::Override) {
   1078       // Diagnose inconsistent flags which both have override behavior.
   1079       if (SrcBehaviorValue == Module::Override &&
   1080           SrcOp->getOperand(2) != DstOp->getOperand(2))
   1081         return stringErr("linking module flags '" + ID->getString() +
   1082                          "': IDs have conflicting override values");
   1083       continue;
   1084     } else if (SrcBehaviorValue == Module::Override) {
   1085       // Update the destination flag to that of the source.
   1086       DstModFlags->setOperand(DstIndex, SrcOp);
   1087       Flags[ID].first = SrcOp;
   1088       continue;
   1089     }
   1090 
   1091     // Diagnose inconsistent merge behavior types.
   1092     if (SrcBehaviorValue != DstBehaviorValue)
   1093       return stringErr("linking module flags '" + ID->getString() +
   1094                        "': IDs have conflicting behaviors");
   1095 
   1096     auto replaceDstValue = [&](MDNode *New) {
   1097       Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
   1098       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
   1099       DstModFlags->setOperand(DstIndex, Flag);
   1100       Flags[ID].first = Flag;
   1101     };
   1102 
   1103     // Perform the merge for standard behavior types.
   1104     switch (SrcBehaviorValue) {
   1105     case Module::Require:
   1106     case Module::Override:
   1107       llvm_unreachable("not possible");
   1108     case Module::Error: {
   1109       // Emit an error if the values differ.
   1110       if (SrcOp->getOperand(2) != DstOp->getOperand(2))
   1111         return stringErr("linking module flags '" + ID->getString() +
   1112                          "': IDs have conflicting values");
   1113       continue;
   1114     }
   1115     case Module::Warning: {
   1116       // Emit a warning if the values differ.
   1117       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1118         emitWarning("linking module flags '" + ID->getString() +
   1119                     "': IDs have conflicting values");
   1120       }
   1121       continue;
   1122     }
   1123     case Module::Append: {
   1124       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1125       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1126       SmallVector<Metadata *, 8> MDs;
   1127       MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
   1128       MDs.append(DstValue->op_begin(), DstValue->op_end());
   1129       MDs.append(SrcValue->op_begin(), SrcValue->op_end());
   1130 
   1131       replaceDstValue(MDNode::get(DstM.getContext(), MDs));
   1132       break;
   1133     }
   1134     case Module::AppendUnique: {
   1135       SmallSetVector<Metadata *, 16> Elts;
   1136       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1137       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1138       Elts.insert(DstValue->op_begin(), DstValue->op_end());
   1139       Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
   1140 
   1141       replaceDstValue(MDNode::get(DstM.getContext(),
   1142                                   makeArrayRef(Elts.begin(), Elts.end())));
   1143       break;
   1144     }
   1145     }
   1146   }
   1147 
   1148   // Check all of the requirements.
   1149   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
   1150     MDNode *Requirement = Requirements[I];
   1151     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
   1152     Metadata *ReqValue = Requirement->getOperand(1);
   1153 
   1154     MDNode *Op = Flags[Flag].first;
   1155     if (!Op || Op->getOperand(2) != ReqValue)
   1156       return stringErr("linking module flags '" + Flag->getString() +
   1157                        "': does not have the required value");
   1158   }
   1159   return Error::success();
   1160 }
   1161 
   1162 // This function returns true if the triples match.
   1163 static bool triplesMatch(const Triple &T0, const Triple &T1) {
   1164   // If vendor is apple, ignore the version number.
   1165   if (T0.getVendor() == Triple::Apple)
   1166     return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() &&
   1167            T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS();
   1168 
   1169   return T0 == T1;
   1170 }
   1171 
   1172 // This function returns the merged triple.
   1173 static std::string mergeTriples(const Triple &SrcTriple,
   1174                                 const Triple &DstTriple) {
   1175   // If vendor is apple, pick the triple with the larger version number.
   1176   if (SrcTriple.getVendor() == Triple::Apple)
   1177     if (DstTriple.isOSVersionLT(SrcTriple))
   1178       return SrcTriple.str();
   1179 
   1180   return DstTriple.str();
   1181 }
   1182 
   1183 Error IRLinker::run() {
   1184   // Ensure metadata materialized before value mapping.
   1185   if (SrcM->getMaterializer())
   1186     if (std::error_code EC = SrcM->getMaterializer()->materializeMetadata())
   1187       return errorCodeToError(EC);
   1188 
   1189   // Inherit the target data from the source module if the destination module
   1190   // doesn't have one already.
   1191   if (DstM.getDataLayout().isDefault())
   1192     DstM.setDataLayout(SrcM->getDataLayout());
   1193 
   1194   if (SrcM->getDataLayout() != DstM.getDataLayout()) {
   1195     emitWarning("Linking two modules of different data layouts: '" +
   1196                 SrcM->getModuleIdentifier() + "' is '" +
   1197                 SrcM->getDataLayoutStr() + "' whereas '" +
   1198                 DstM.getModuleIdentifier() + "' is '" +
   1199                 DstM.getDataLayoutStr() + "'\n");
   1200   }
   1201 
   1202   // Copy the target triple from the source to dest if the dest's is empty.
   1203   if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
   1204     DstM.setTargetTriple(SrcM->getTargetTriple());
   1205 
   1206   Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
   1207 
   1208   if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
   1209     emitWarning("Linking two modules of different target triples: " +
   1210                 SrcM->getModuleIdentifier() + "' is '" +
   1211                 SrcM->getTargetTriple() + "' whereas '" +
   1212                 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
   1213                 "'\n");
   1214 
   1215   DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple));
   1216 
   1217   // Append the module inline asm string.
   1218   if (!SrcM->getModuleInlineAsm().empty()) {
   1219     if (DstM.getModuleInlineAsm().empty())
   1220       DstM.setModuleInlineAsm(SrcM->getModuleInlineAsm());
   1221     else
   1222       DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
   1223                               SrcM->getModuleInlineAsm());
   1224   }
   1225 
   1226   // Loop over all of the linked values to compute type mappings.
   1227   computeTypeMapping();
   1228 
   1229   std::reverse(Worklist.begin(), Worklist.end());
   1230   while (!Worklist.empty()) {
   1231     GlobalValue *GV = Worklist.back();
   1232     Worklist.pop_back();
   1233 
   1234     // Already mapped.
   1235     if (ValueMap.find(GV) != ValueMap.end() ||
   1236         AliasValueMap.find(GV) != AliasValueMap.end())
   1237       continue;
   1238 
   1239     assert(!GV->isDeclaration());
   1240     Mapper.mapValue(*GV);
   1241     if (FoundError)
   1242       return std::move(*FoundError);
   1243   }
   1244 
   1245   // Note that we are done linking global value bodies. This prevents
   1246   // metadata linking from creating new references.
   1247   DoneLinkingBodies = true;
   1248   Mapper.addFlags(RF_NullMapMissingGlobalValues);
   1249 
   1250   // Remap all of the named MDNodes in Src into the DstM module. We do this
   1251   // after linking GlobalValues so that MDNodes that reference GlobalValues
   1252   // are properly remapped.
   1253   linkNamedMDNodes();
   1254 
   1255   // Merge the module flags into the DstM module.
   1256   return linkModuleFlagsMetadata();
   1257 }
   1258 
   1259 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
   1260     : ETypes(E), IsPacked(P) {}
   1261 
   1262 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
   1263     : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
   1264 
   1265 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
   1266   return IsPacked == That.IsPacked && ETypes == That.ETypes;
   1267 }
   1268 
   1269 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
   1270   return !this->operator==(That);
   1271 }
   1272 
   1273 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
   1274   return DenseMapInfo<StructType *>::getEmptyKey();
   1275 }
   1276 
   1277 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
   1278   return DenseMapInfo<StructType *>::getTombstoneKey();
   1279 }
   1280 
   1281 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
   1282   return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
   1283                       Key.IsPacked);
   1284 }
   1285 
   1286 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
   1287   return getHashValue(KeyTy(ST));
   1288 }
   1289 
   1290 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
   1291                                          const StructType *RHS) {
   1292   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
   1293     return false;
   1294   return LHS == KeyTy(RHS);
   1295 }
   1296 
   1297 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
   1298                                          const StructType *RHS) {
   1299   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
   1300     return LHS == RHS;
   1301   return KeyTy(LHS) == KeyTy(RHS);
   1302 }
   1303 
   1304 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
   1305   assert(!Ty->isOpaque());
   1306   NonOpaqueStructTypes.insert(Ty);
   1307 }
   1308 
   1309 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
   1310   assert(!Ty->isOpaque());
   1311   NonOpaqueStructTypes.insert(Ty);
   1312   bool Removed = OpaqueStructTypes.erase(Ty);
   1313   (void)Removed;
   1314   assert(Removed);
   1315 }
   1316 
   1317 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
   1318   assert(Ty->isOpaque());
   1319   OpaqueStructTypes.insert(Ty);
   1320 }
   1321 
   1322 StructType *
   1323 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
   1324                                                 bool IsPacked) {
   1325   IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
   1326   auto I = NonOpaqueStructTypes.find_as(Key);
   1327   return I == NonOpaqueStructTypes.end() ? nullptr : *I;
   1328 }
   1329 
   1330 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
   1331   if (Ty->isOpaque())
   1332     return OpaqueStructTypes.count(Ty);
   1333   auto I = NonOpaqueStructTypes.find(Ty);
   1334   return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
   1335 }
   1336 
   1337 IRMover::IRMover(Module &M) : Composite(M) {
   1338   TypeFinder StructTypes;
   1339   StructTypes.run(M, true);
   1340   for (StructType *Ty : StructTypes) {
   1341     if (Ty->isOpaque())
   1342       IdentifiedStructTypes.addOpaque(Ty);
   1343     else
   1344       IdentifiedStructTypes.addNonOpaque(Ty);
   1345   }
   1346 }
   1347 
   1348 Error IRMover::move(
   1349     std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
   1350     std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor) {
   1351   IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
   1352                        std::move(Src), ValuesToLink, std::move(AddLazyFor));
   1353   Error E = TheIRLinker.run();
   1354   Composite.dropTriviallyDeadConstantArrays();
   1355   return E;
   1356 }
   1357