Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Aggregate Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenModule.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "llvm/IR/Constants.h"
     22 #include "llvm/IR/Function.h"
     23 #include "llvm/IR/GlobalVariable.h"
     24 #include "llvm/IR/Intrinsics.h"
     25 using namespace clang;
     26 using namespace CodeGen;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                        Aggregate Expression Emitter
     30 //===----------------------------------------------------------------------===//
     31 
     32 namespace  {
     33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
     34   CodeGenFunction &CGF;
     35   CGBuilderTy &Builder;
     36   AggValueSlot Dest;
     37   bool IsResultUnused;
     38 
     39   /// We want to use 'dest' as the return slot except under two
     40   /// conditions:
     41   ///   - The destination slot requires garbage collection, so we
     42   ///     need to use the GC API.
     43   ///   - The destination slot is potentially aliased.
     44   bool shouldUseDestForReturnSlot() const {
     45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
     46   }
     47 
     48   ReturnValueSlot getReturnValueSlot() const {
     49     if (!shouldUseDestForReturnSlot())
     50       return ReturnValueSlot();
     51 
     52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
     53                            IsResultUnused);
     54   }
     55 
     56   AggValueSlot EnsureSlot(QualType T) {
     57     if (!Dest.isIgnored()) return Dest;
     58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
     59   }
     60   void EnsureDest(QualType T) {
     61     if (!Dest.isIgnored()) return;
     62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
     63   }
     64 
     65 public:
     66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
     67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
     68     IsResultUnused(IsResultUnused) { }
     69 
     70   //===--------------------------------------------------------------------===//
     71   //                               Utilities
     72   //===--------------------------------------------------------------------===//
     73 
     74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
     75   /// represents a value lvalue, this method emits the address of the lvalue,
     76   /// then loads the result into DestPtr.
     77   void EmitAggLoadOfLValue(const Expr *E);
     78 
     79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
     80   void EmitFinalDestCopy(QualType type, const LValue &src);
     81   void EmitFinalDestCopy(QualType type, RValue src);
     82   void EmitCopy(QualType type, const AggValueSlot &dest,
     83                 const AggValueSlot &src);
     84 
     85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
     86 
     87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
     88                      QualType elementType, InitListExpr *E);
     89 
     90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
     91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
     92       return AggValueSlot::NeedsGCBarriers;
     93     return AggValueSlot::DoesNotNeedGCBarriers;
     94   }
     95 
     96   bool TypeRequiresGCollection(QualType T);
     97 
     98   //===--------------------------------------------------------------------===//
     99   //                            Visitor Methods
    100   //===--------------------------------------------------------------------===//
    101 
    102   void Visit(Expr *E) {
    103     ApplyDebugLocation DL(CGF, E);
    104     StmtVisitor<AggExprEmitter>::Visit(E);
    105   }
    106 
    107   void VisitStmt(Stmt *S) {
    108     CGF.ErrorUnsupported(S, "aggregate expression");
    109   }
    110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
    111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    112     Visit(GE->getResultExpr());
    113   }
    114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
    115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    116     return Visit(E->getReplacement());
    117   }
    118 
    119   // l-values.
    120   void VisitDeclRefExpr(DeclRefExpr *E) {
    121     // For aggregates, we should always be able to emit the variable
    122     // as an l-value unless it's a reference.  This is due to the fact
    123     // that we can't actually ever see a normal l2r conversion on an
    124     // aggregate in C++, and in C there's no language standard
    125     // actively preventing us from listing variables in the captures
    126     // list of a block.
    127     if (E->getDecl()->getType()->isReferenceType()) {
    128       if (CodeGenFunction::ConstantEmission result
    129             = CGF.tryEmitAsConstant(E)) {
    130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
    131         return;
    132       }
    133     }
    134 
    135     EmitAggLoadOfLValue(E);
    136   }
    137 
    138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
    139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
    140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
    141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
    142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    143     EmitAggLoadOfLValue(E);
    144   }
    145   void VisitPredefinedExpr(const PredefinedExpr *E) {
    146     EmitAggLoadOfLValue(E);
    147   }
    148 
    149   // Operators.
    150   void VisitCastExpr(CastExpr *E);
    151   void VisitCallExpr(const CallExpr *E);
    152   void VisitStmtExpr(const StmtExpr *E);
    153   void VisitBinaryOperator(const BinaryOperator *BO);
    154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
    155   void VisitBinAssign(const BinaryOperator *E);
    156   void VisitBinComma(const BinaryOperator *E);
    157 
    158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
    159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    160     EmitAggLoadOfLValue(E);
    161   }
    162 
    163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
    164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
    165   void VisitChooseExpr(const ChooseExpr *CE);
    166   void VisitInitListExpr(InitListExpr *E);
    167   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
    168   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
    169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    170     Visit(DAE->getExpr());
    171   }
    172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
    174     Visit(DIE->getExpr());
    175   }
    176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
    177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
    178   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
    179   void VisitLambdaExpr(LambdaExpr *E);
    180   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
    181   void VisitExprWithCleanups(ExprWithCleanups *E);
    182   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
    183   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
    184   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
    185   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
    186 
    187   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    188     if (E->isGLValue()) {
    189       LValue LV = CGF.EmitPseudoObjectLValue(E);
    190       return EmitFinalDestCopy(E->getType(), LV);
    191     }
    192 
    193     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
    194   }
    195 
    196   void VisitVAArgExpr(VAArgExpr *E);
    197 
    198   void EmitInitializationToLValue(Expr *E, LValue Address);
    199   void EmitNullInitializationToLValue(LValue Address);
    200   //  case Expr::ChooseExprClass:
    201   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
    202   void VisitAtomicExpr(AtomicExpr *E) {
    203     RValue Res = CGF.EmitAtomicExpr(E);
    204     EmitFinalDestCopy(E->getType(), Res);
    205   }
    206 };
    207 }  // end anonymous namespace.
    208 
    209 //===----------------------------------------------------------------------===//
    210 //                                Utilities
    211 //===----------------------------------------------------------------------===//
    212 
    213 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
    214 /// represents a value lvalue, this method emits the address of the lvalue,
    215 /// then loads the result into DestPtr.
    216 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
    217   LValue LV = CGF.EmitLValue(E);
    218 
    219   // If the type of the l-value is atomic, then do an atomic load.
    220   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
    221     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
    222     return;
    223   }
    224 
    225   EmitFinalDestCopy(E->getType(), LV);
    226 }
    227 
    228 /// \brief True if the given aggregate type requires special GC API calls.
    229 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
    230   // Only record types have members that might require garbage collection.
    231   const RecordType *RecordTy = T->getAs<RecordType>();
    232   if (!RecordTy) return false;
    233 
    234   // Don't mess with non-trivial C++ types.
    235   RecordDecl *Record = RecordTy->getDecl();
    236   if (isa<CXXRecordDecl>(Record) &&
    237       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
    238        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    239     return false;
    240 
    241   // Check whether the type has an object member.
    242   return Record->hasObjectMember();
    243 }
    244 
    245 /// \brief Perform the final move to DestPtr if for some reason
    246 /// getReturnValueSlot() didn't use it directly.
    247 ///
    248 /// The idea is that you do something like this:
    249 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
    250 ///   EmitMoveFromReturnSlot(E, Result);
    251 ///
    252 /// If nothing interferes, this will cause the result to be emitted
    253 /// directly into the return value slot.  Otherwise, a final move
    254 /// will be performed.
    255 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
    256   if (shouldUseDestForReturnSlot()) {
    257     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
    258     // The possibility of undef rvalues complicates that a lot,
    259     // though, so we can't really assert.
    260     return;
    261   }
    262 
    263   // Otherwise, copy from there to the destination.
    264   assert(Dest.getPointer() != src.getAggregatePointer());
    265   EmitFinalDestCopy(E->getType(), src);
    266 }
    267 
    268 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    269 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
    270   assert(src.isAggregate() && "value must be aggregate value!");
    271   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
    272   EmitFinalDestCopy(type, srcLV);
    273 }
    274 
    275 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    276 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
    277   // If Dest is ignored, then we're evaluating an aggregate expression
    278   // in a context that doesn't care about the result.  Note that loads
    279   // from volatile l-values force the existence of a non-ignored
    280   // destination.
    281   if (Dest.isIgnored())
    282     return;
    283 
    284   AggValueSlot srcAgg =
    285     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
    286                             needsGC(type), AggValueSlot::IsAliased);
    287   EmitCopy(type, Dest, srcAgg);
    288 }
    289 
    290 /// Perform a copy from the source into the destination.
    291 ///
    292 /// \param type - the type of the aggregate being copied; qualifiers are
    293 ///   ignored
    294 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
    295                               const AggValueSlot &src) {
    296   if (dest.requiresGCollection()) {
    297     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
    298     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
    299     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
    300                                                       dest.getAddress(),
    301                                                       src.getAddress(),
    302                                                       size);
    303     return;
    304   }
    305 
    306   // If the result of the assignment is used, copy the LHS there also.
    307   // It's volatile if either side is.  Use the minimum alignment of
    308   // the two sides.
    309   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
    310                         dest.isVolatile() || src.isVolatile());
    311 }
    312 
    313 /// \brief Emit the initializer for a std::initializer_list initialized with a
    314 /// real initializer list.
    315 void
    316 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
    317   // Emit an array containing the elements.  The array is externally destructed
    318   // if the std::initializer_list object is.
    319   ASTContext &Ctx = CGF.getContext();
    320   LValue Array = CGF.EmitLValue(E->getSubExpr());
    321   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
    322   Address ArrayPtr = Array.getAddress();
    323 
    324   const ConstantArrayType *ArrayType =
    325       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
    326   assert(ArrayType && "std::initializer_list constructed from non-array");
    327 
    328   // FIXME: Perform the checks on the field types in SemaInit.
    329   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
    330   RecordDecl::field_iterator Field = Record->field_begin();
    331   if (Field == Record->field_end()) {
    332     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    333     return;
    334   }
    335 
    336   // Start pointer.
    337   if (!Field->getType()->isPointerType() ||
    338       !Ctx.hasSameType(Field->getType()->getPointeeType(),
    339                        ArrayType->getElementType())) {
    340     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    341     return;
    342   }
    343 
    344   AggValueSlot Dest = EnsureSlot(E->getType());
    345   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
    346   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
    347   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
    348   llvm::Value *IdxStart[] = { Zero, Zero };
    349   llvm::Value *ArrayStart =
    350       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
    351   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
    352   ++Field;
    353 
    354   if (Field == Record->field_end()) {
    355     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    356     return;
    357   }
    358 
    359   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
    360   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
    361   if (Field->getType()->isPointerType() &&
    362       Ctx.hasSameType(Field->getType()->getPointeeType(),
    363                       ArrayType->getElementType())) {
    364     // End pointer.
    365     llvm::Value *IdxEnd[] = { Zero, Size };
    366     llvm::Value *ArrayEnd =
    367         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
    368     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
    369   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
    370     // Length.
    371     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
    372   } else {
    373     CGF.ErrorUnsupported(E, "weird std::initializer_list");
    374     return;
    375   }
    376 }
    377 
    378 /// \brief Determine if E is a trivial array filler, that is, one that is
    379 /// equivalent to zero-initialization.
    380 static bool isTrivialFiller(Expr *E) {
    381   if (!E)
    382     return true;
    383 
    384   if (isa<ImplicitValueInitExpr>(E))
    385     return true;
    386 
    387   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
    388     if (ILE->getNumInits())
    389       return false;
    390     return isTrivialFiller(ILE->getArrayFiller());
    391   }
    392 
    393   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
    394     return Cons->getConstructor()->isDefaultConstructor() &&
    395            Cons->getConstructor()->isTrivial();
    396 
    397   // FIXME: Are there other cases where we can avoid emitting an initializer?
    398   return false;
    399 }
    400 
    401 /// \brief Emit initialization of an array from an initializer list.
    402 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
    403                                    QualType elementType, InitListExpr *E) {
    404   uint64_t NumInitElements = E->getNumInits();
    405 
    406   uint64_t NumArrayElements = AType->getNumElements();
    407   assert(NumInitElements <= NumArrayElements);
    408 
    409   // DestPtr is an array*.  Construct an elementType* by drilling
    410   // down a level.
    411   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
    412   llvm::Value *indices[] = { zero, zero };
    413   llvm::Value *begin =
    414     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
    415 
    416   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
    417   CharUnits elementAlign =
    418     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
    419 
    420   // Exception safety requires us to destroy all the
    421   // already-constructed members if an initializer throws.
    422   // For that, we'll need an EH cleanup.
    423   QualType::DestructionKind dtorKind = elementType.isDestructedType();
    424   Address endOfInit = Address::invalid();
    425   EHScopeStack::stable_iterator cleanup;
    426   llvm::Instruction *cleanupDominator = nullptr;
    427   if (CGF.needsEHCleanup(dtorKind)) {
    428     // In principle we could tell the cleanup where we are more
    429     // directly, but the control flow can get so varied here that it
    430     // would actually be quite complex.  Therefore we go through an
    431     // alloca.
    432     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
    433                                      "arrayinit.endOfInit");
    434     cleanupDominator = Builder.CreateStore(begin, endOfInit);
    435     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
    436                                          elementAlign,
    437                                          CGF.getDestroyer(dtorKind));
    438     cleanup = CGF.EHStack.stable_begin();
    439 
    440   // Otherwise, remember that we didn't need a cleanup.
    441   } else {
    442     dtorKind = QualType::DK_none;
    443   }
    444 
    445   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
    446 
    447   // The 'current element to initialize'.  The invariants on this
    448   // variable are complicated.  Essentially, after each iteration of
    449   // the loop, it points to the last initialized element, except
    450   // that it points to the beginning of the array before any
    451   // elements have been initialized.
    452   llvm::Value *element = begin;
    453 
    454   // Emit the explicit initializers.
    455   for (uint64_t i = 0; i != NumInitElements; ++i) {
    456     // Advance to the next element.
    457     if (i > 0) {
    458       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
    459 
    460       // Tell the cleanup that it needs to destroy up to this
    461       // element.  TODO: some of these stores can be trivially
    462       // observed to be unnecessary.
    463       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
    464     }
    465 
    466     LValue elementLV =
    467       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
    468     EmitInitializationToLValue(E->getInit(i), elementLV);
    469   }
    470 
    471   // Check whether there's a non-trivial array-fill expression.
    472   Expr *filler = E->getArrayFiller();
    473   bool hasTrivialFiller = isTrivialFiller(filler);
    474 
    475   // Any remaining elements need to be zero-initialized, possibly
    476   // using the filler expression.  We can skip this if the we're
    477   // emitting to zeroed memory.
    478   if (NumInitElements != NumArrayElements &&
    479       !(Dest.isZeroed() && hasTrivialFiller &&
    480         CGF.getTypes().isZeroInitializable(elementType))) {
    481 
    482     // Use an actual loop.  This is basically
    483     //   do { *array++ = filler; } while (array != end);
    484 
    485     // Advance to the start of the rest of the array.
    486     if (NumInitElements) {
    487       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
    488       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
    489     }
    490 
    491     // Compute the end of the array.
    492     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
    493                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
    494                                                  "arrayinit.end");
    495 
    496     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    497     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
    498 
    499     // Jump into the body.
    500     CGF.EmitBlock(bodyBB);
    501     llvm::PHINode *currentElement =
    502       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
    503     currentElement->addIncoming(element, entryBB);
    504 
    505     // Emit the actual filler expression.
    506     LValue elementLV =
    507       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
    508     if (filler)
    509       EmitInitializationToLValue(filler, elementLV);
    510     else
    511       EmitNullInitializationToLValue(elementLV);
    512 
    513     // Move on to the next element.
    514     llvm::Value *nextElement =
    515       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
    516 
    517     // Tell the EH cleanup that we finished with the last element.
    518     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
    519 
    520     // Leave the loop if we're done.
    521     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
    522                                              "arrayinit.done");
    523     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
    524     Builder.CreateCondBr(done, endBB, bodyBB);
    525     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
    526 
    527     CGF.EmitBlock(endBB);
    528   }
    529 
    530   // Leave the partial-array cleanup if we entered one.
    531   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
    532 }
    533 
    534 //===----------------------------------------------------------------------===//
    535 //                            Visitor Methods
    536 //===----------------------------------------------------------------------===//
    537 
    538 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
    539   Visit(E->GetTemporaryExpr());
    540 }
    541 
    542 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
    543   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
    544 }
    545 
    546 void
    547 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    548   if (Dest.isPotentiallyAliased() &&
    549       E->getType().isPODType(CGF.getContext())) {
    550     // For a POD type, just emit a load of the lvalue + a copy, because our
    551     // compound literal might alias the destination.
    552     EmitAggLoadOfLValue(E);
    553     return;
    554   }
    555 
    556   AggValueSlot Slot = EnsureSlot(E->getType());
    557   CGF.EmitAggExpr(E->getInitializer(), Slot);
    558 }
    559 
    560 /// Attempt to look through various unimportant expressions to find a
    561 /// cast of the given kind.
    562 static Expr *findPeephole(Expr *op, CastKind kind) {
    563   while (true) {
    564     op = op->IgnoreParens();
    565     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
    566       if (castE->getCastKind() == kind)
    567         return castE->getSubExpr();
    568       if (castE->getCastKind() == CK_NoOp)
    569         continue;
    570     }
    571     return nullptr;
    572   }
    573 }
    574 
    575 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
    576   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
    577     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
    578   switch (E->getCastKind()) {
    579   case CK_Dynamic: {
    580     // FIXME: Can this actually happen? We have no test coverage for it.
    581     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    582     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
    583                                       CodeGenFunction::TCK_Load);
    584     // FIXME: Do we also need to handle property references here?
    585     if (LV.isSimple())
    586       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    587     else
    588       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    589 
    590     if (!Dest.isIgnored())
    591       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    592     break;
    593   }
    594 
    595   case CK_ToUnion: {
    596     // Evaluate even if the destination is ignored.
    597     if (Dest.isIgnored()) {
    598       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
    599                       /*ignoreResult=*/true);
    600       break;
    601     }
    602 
    603     // GCC union extension
    604     QualType Ty = E->getSubExpr()->getType();
    605     Address CastPtr =
    606       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
    607     EmitInitializationToLValue(E->getSubExpr(),
    608                                CGF.MakeAddrLValue(CastPtr, Ty));
    609     break;
    610   }
    611 
    612   case CK_DerivedToBase:
    613   case CK_BaseToDerived:
    614   case CK_UncheckedDerivedToBase: {
    615     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
    616                 "should have been unpacked before we got here");
    617   }
    618 
    619   case CK_NonAtomicToAtomic:
    620   case CK_AtomicToNonAtomic: {
    621     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
    622 
    623     // Determine the atomic and value types.
    624     QualType atomicType = E->getSubExpr()->getType();
    625     QualType valueType = E->getType();
    626     if (isToAtomic) std::swap(atomicType, valueType);
    627 
    628     assert(atomicType->isAtomicType());
    629     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
    630                           atomicType->castAs<AtomicType>()->getValueType()));
    631 
    632     // Just recurse normally if we're ignoring the result or the
    633     // atomic type doesn't change representation.
    634     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
    635       return Visit(E->getSubExpr());
    636     }
    637 
    638     CastKind peepholeTarget =
    639       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
    640 
    641     // These two cases are reverses of each other; try to peephole them.
    642     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
    643       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
    644                                                      E->getType()) &&
    645            "peephole significantly changed types?");
    646       return Visit(op);
    647     }
    648 
    649     // If we're converting an r-value of non-atomic type to an r-value
    650     // of atomic type, just emit directly into the relevant sub-object.
    651     if (isToAtomic) {
    652       AggValueSlot valueDest = Dest;
    653       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
    654         // Zero-initialize.  (Strictly speaking, we only need to intialize
    655         // the padding at the end, but this is simpler.)
    656         if (!Dest.isZeroed())
    657           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
    658 
    659         // Build a GEP to refer to the subobject.
    660         Address valueAddr =
    661             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
    662                                         CharUnits());
    663         valueDest = AggValueSlot::forAddr(valueAddr,
    664                                           valueDest.getQualifiers(),
    665                                           valueDest.isExternallyDestructed(),
    666                                           valueDest.requiresGCollection(),
    667                                           valueDest.isPotentiallyAliased(),
    668                                           AggValueSlot::IsZeroed);
    669       }
    670 
    671       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
    672       return;
    673     }
    674 
    675     // Otherwise, we're converting an atomic type to a non-atomic type.
    676     // Make an atomic temporary, emit into that, and then copy the value out.
    677     AggValueSlot atomicSlot =
    678       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
    679     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
    680 
    681     Address valueAddr =
    682       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
    683     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
    684     return EmitFinalDestCopy(valueType, rvalue);
    685   }
    686 
    687   case CK_LValueToRValue:
    688     // If we're loading from a volatile type, force the destination
    689     // into existence.
    690     if (E->getSubExpr()->getType().isVolatileQualified()) {
    691       EnsureDest(E->getType());
    692       return Visit(E->getSubExpr());
    693     }
    694 
    695     // fallthrough
    696 
    697   case CK_NoOp:
    698   case CK_UserDefinedConversion:
    699   case CK_ConstructorConversion:
    700     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
    701                                                    E->getType()) &&
    702            "Implicit cast types must be compatible");
    703     Visit(E->getSubExpr());
    704     break;
    705 
    706   case CK_LValueBitCast:
    707     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
    708 
    709   case CK_Dependent:
    710   case CK_BitCast:
    711   case CK_ArrayToPointerDecay:
    712   case CK_FunctionToPointerDecay:
    713   case CK_NullToPointer:
    714   case CK_NullToMemberPointer:
    715   case CK_BaseToDerivedMemberPointer:
    716   case CK_DerivedToBaseMemberPointer:
    717   case CK_MemberPointerToBoolean:
    718   case CK_ReinterpretMemberPointer:
    719   case CK_IntegralToPointer:
    720   case CK_PointerToIntegral:
    721   case CK_PointerToBoolean:
    722   case CK_ToVoid:
    723   case CK_VectorSplat:
    724   case CK_IntegralCast:
    725   case CK_BooleanToSignedIntegral:
    726   case CK_IntegralToBoolean:
    727   case CK_IntegralToFloating:
    728   case CK_FloatingToIntegral:
    729   case CK_FloatingToBoolean:
    730   case CK_FloatingCast:
    731   case CK_CPointerToObjCPointerCast:
    732   case CK_BlockPointerToObjCPointerCast:
    733   case CK_AnyPointerToBlockPointerCast:
    734   case CK_ObjCObjectLValueCast:
    735   case CK_FloatingRealToComplex:
    736   case CK_FloatingComplexToReal:
    737   case CK_FloatingComplexToBoolean:
    738   case CK_FloatingComplexCast:
    739   case CK_FloatingComplexToIntegralComplex:
    740   case CK_IntegralRealToComplex:
    741   case CK_IntegralComplexToReal:
    742   case CK_IntegralComplexToBoolean:
    743   case CK_IntegralComplexCast:
    744   case CK_IntegralComplexToFloatingComplex:
    745   case CK_ARCProduceObject:
    746   case CK_ARCConsumeObject:
    747   case CK_ARCReclaimReturnedObject:
    748   case CK_ARCExtendBlockObject:
    749   case CK_CopyAndAutoreleaseBlockObject:
    750   case CK_BuiltinFnToFnPtr:
    751   case CK_ZeroToOCLEvent:
    752   case CK_AddressSpaceConversion:
    753     llvm_unreachable("cast kind invalid for aggregate types");
    754   }
    755 }
    756 
    757 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
    758   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
    759     EmitAggLoadOfLValue(E);
    760     return;
    761   }
    762 
    763   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
    764   EmitMoveFromReturnSlot(E, RV);
    765 }
    766 
    767 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
    768   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
    769   EmitMoveFromReturnSlot(E, RV);
    770 }
    771 
    772 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
    773   CGF.EmitIgnoredExpr(E->getLHS());
    774   Visit(E->getRHS());
    775 }
    776 
    777 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
    778   CodeGenFunction::StmtExprEvaluation eval(CGF);
    779   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
    780 }
    781 
    782 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
    783   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    784     VisitPointerToDataMemberBinaryOperator(E);
    785   else
    786     CGF.ErrorUnsupported(E, "aggregate binary expression");
    787 }
    788 
    789 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
    790                                                     const BinaryOperator *E) {
    791   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
    792   EmitFinalDestCopy(E->getType(), LV);
    793 }
    794 
    795 /// Is the value of the given expression possibly a reference to or
    796 /// into a __block variable?
    797 static bool isBlockVarRef(const Expr *E) {
    798   // Make sure we look through parens.
    799   E = E->IgnoreParens();
    800 
    801   // Check for a direct reference to a __block variable.
    802   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    803     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
    804     return (var && var->hasAttr<BlocksAttr>());
    805   }
    806 
    807   // More complicated stuff.
    808 
    809   // Binary operators.
    810   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
    811     // For an assignment or pointer-to-member operation, just care
    812     // about the LHS.
    813     if (op->isAssignmentOp() || op->isPtrMemOp())
    814       return isBlockVarRef(op->getLHS());
    815 
    816     // For a comma, just care about the RHS.
    817     if (op->getOpcode() == BO_Comma)
    818       return isBlockVarRef(op->getRHS());
    819 
    820     // FIXME: pointer arithmetic?
    821     return false;
    822 
    823   // Check both sides of a conditional operator.
    824   } else if (const AbstractConditionalOperator *op
    825                = dyn_cast<AbstractConditionalOperator>(E)) {
    826     return isBlockVarRef(op->getTrueExpr())
    827         || isBlockVarRef(op->getFalseExpr());
    828 
    829   // OVEs are required to support BinaryConditionalOperators.
    830   } else if (const OpaqueValueExpr *op
    831                = dyn_cast<OpaqueValueExpr>(E)) {
    832     if (const Expr *src = op->getSourceExpr())
    833       return isBlockVarRef(src);
    834 
    835   // Casts are necessary to get things like (*(int*)&var) = foo().
    836   // We don't really care about the kind of cast here, except
    837   // we don't want to look through l2r casts, because it's okay
    838   // to get the *value* in a __block variable.
    839   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
    840     if (cast->getCastKind() == CK_LValueToRValue)
    841       return false;
    842     return isBlockVarRef(cast->getSubExpr());
    843 
    844   // Handle unary operators.  Again, just aggressively look through
    845   // it, ignoring the operation.
    846   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
    847     return isBlockVarRef(uop->getSubExpr());
    848 
    849   // Look into the base of a field access.
    850   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
    851     return isBlockVarRef(mem->getBase());
    852 
    853   // Look into the base of a subscript.
    854   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
    855     return isBlockVarRef(sub->getBase());
    856   }
    857 
    858   return false;
    859 }
    860 
    861 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
    862   // For an assignment to work, the value on the right has
    863   // to be compatible with the value on the left.
    864   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
    865                                                  E->getRHS()->getType())
    866          && "Invalid assignment");
    867 
    868   // If the LHS might be a __block variable, and the RHS can
    869   // potentially cause a block copy, we need to evaluate the RHS first
    870   // so that the assignment goes the right place.
    871   // This is pretty semantically fragile.
    872   if (isBlockVarRef(E->getLHS()) &&
    873       E->getRHS()->HasSideEffects(CGF.getContext())) {
    874     // Ensure that we have a destination, and evaluate the RHS into that.
    875     EnsureDest(E->getRHS()->getType());
    876     Visit(E->getRHS());
    877 
    878     // Now emit the LHS and copy into it.
    879     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
    880 
    881     // That copy is an atomic copy if the LHS is atomic.
    882     if (LHS.getType()->isAtomicType() ||
    883         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
    884       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
    885       return;
    886     }
    887 
    888     EmitCopy(E->getLHS()->getType(),
    889              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    890                                      needsGC(E->getLHS()->getType()),
    891                                      AggValueSlot::IsAliased),
    892              Dest);
    893     return;
    894   }
    895 
    896   LValue LHS = CGF.EmitLValue(E->getLHS());
    897 
    898   // If we have an atomic type, evaluate into the destination and then
    899   // do an atomic copy.
    900   if (LHS.getType()->isAtomicType() ||
    901       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
    902     EnsureDest(E->getRHS()->getType());
    903     Visit(E->getRHS());
    904     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
    905     return;
    906   }
    907 
    908   // Codegen the RHS so that it stores directly into the LHS.
    909   AggValueSlot LHSSlot =
    910     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    911                             needsGC(E->getLHS()->getType()),
    912                             AggValueSlot::IsAliased);
    913   // A non-volatile aggregate destination might have volatile member.
    914   if (!LHSSlot.isVolatile() &&
    915       CGF.hasVolatileMember(E->getLHS()->getType()))
    916     LHSSlot.setVolatile(true);
    917 
    918   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
    919 
    920   // Copy into the destination if the assignment isn't ignored.
    921   EmitFinalDestCopy(E->getType(), LHS);
    922 }
    923 
    924 void AggExprEmitter::
    925 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
    926   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
    927   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
    928   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
    929 
    930   // Bind the common expression if necessary.
    931   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
    932 
    933   CodeGenFunction::ConditionalEvaluation eval(CGF);
    934   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
    935                            CGF.getProfileCount(E));
    936 
    937   // Save whether the destination's lifetime is externally managed.
    938   bool isExternallyDestructed = Dest.isExternallyDestructed();
    939 
    940   eval.begin(CGF);
    941   CGF.EmitBlock(LHSBlock);
    942   CGF.incrementProfileCounter(E);
    943   Visit(E->getTrueExpr());
    944   eval.end(CGF);
    945 
    946   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
    947   CGF.Builder.CreateBr(ContBlock);
    948 
    949   // If the result of an agg expression is unused, then the emission
    950   // of the LHS might need to create a destination slot.  That's fine
    951   // with us, and we can safely emit the RHS into the same slot, but
    952   // we shouldn't claim that it's already being destructed.
    953   Dest.setExternallyDestructed(isExternallyDestructed);
    954 
    955   eval.begin(CGF);
    956   CGF.EmitBlock(RHSBlock);
    957   Visit(E->getFalseExpr());
    958   eval.end(CGF);
    959 
    960   CGF.EmitBlock(ContBlock);
    961 }
    962 
    963 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
    964   Visit(CE->getChosenSubExpr());
    965 }
    966 
    967 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
    968   Address ArgValue = Address::invalid();
    969   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
    970 
    971   // If EmitVAArg fails, emit an error.
    972   if (!ArgPtr.isValid()) {
    973     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    974     return;
    975   }
    976 
    977   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
    978 }
    979 
    980 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
    981   // Ensure that we have a slot, but if we already do, remember
    982   // whether it was externally destructed.
    983   bool wasExternallyDestructed = Dest.isExternallyDestructed();
    984   EnsureDest(E->getType());
    985 
    986   // We're going to push a destructor if there isn't already one.
    987   Dest.setExternallyDestructed();
    988 
    989   Visit(E->getSubExpr());
    990 
    991   // Push that destructor we promised.
    992   if (!wasExternallyDestructed)
    993     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
    994 }
    995 
    996 void
    997 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
    998   AggValueSlot Slot = EnsureSlot(E->getType());
    999   CGF.EmitCXXConstructExpr(E, Slot);
   1000 }
   1001 
   1002 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
   1003     const CXXInheritedCtorInitExpr *E) {
   1004   AggValueSlot Slot = EnsureSlot(E->getType());
   1005   CGF.EmitInheritedCXXConstructorCall(
   1006       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
   1007       E->inheritedFromVBase(), E);
   1008 }
   1009 
   1010 void
   1011 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
   1012   AggValueSlot Slot = EnsureSlot(E->getType());
   1013   CGF.EmitLambdaExpr(E, Slot);
   1014 }
   1015 
   1016 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
   1017   CGF.enterFullExpression(E);
   1018   CodeGenFunction::RunCleanupsScope cleanups(CGF);
   1019   Visit(E->getSubExpr());
   1020 }
   1021 
   1022 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
   1023   QualType T = E->getType();
   1024   AggValueSlot Slot = EnsureSlot(T);
   1025   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
   1026 }
   1027 
   1028 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
   1029   QualType T = E->getType();
   1030   AggValueSlot Slot = EnsureSlot(T);
   1031   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
   1032 }
   1033 
   1034 /// isSimpleZero - If emitting this value will obviously just cause a store of
   1035 /// zero to memory, return true.  This can return false if uncertain, so it just
   1036 /// handles simple cases.
   1037 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
   1038   E = E->IgnoreParens();
   1039 
   1040   // 0
   1041   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
   1042     return IL->getValue() == 0;
   1043   // +0.0
   1044   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
   1045     return FL->getValue().isPosZero();
   1046   // int()
   1047   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
   1048       CGF.getTypes().isZeroInitializable(E->getType()))
   1049     return true;
   1050   // (int*)0 - Null pointer expressions.
   1051   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
   1052     return ICE->getCastKind() == CK_NullToPointer;
   1053   // '\0'
   1054   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
   1055     return CL->getValue() == 0;
   1056 
   1057   // Otherwise, hard case: conservatively return false.
   1058   return false;
   1059 }
   1060 
   1061 
   1062 void
   1063 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
   1064   QualType type = LV.getType();
   1065   // FIXME: Ignore result?
   1066   // FIXME: Are initializers affected by volatile?
   1067   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
   1068     // Storing "i32 0" to a zero'd memory location is a noop.
   1069     return;
   1070   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
   1071     return EmitNullInitializationToLValue(LV);
   1072   } else if (isa<NoInitExpr>(E)) {
   1073     // Do nothing.
   1074     return;
   1075   } else if (type->isReferenceType()) {
   1076     RValue RV = CGF.EmitReferenceBindingToExpr(E);
   1077     return CGF.EmitStoreThroughLValue(RV, LV);
   1078   }
   1079 
   1080   switch (CGF.getEvaluationKind(type)) {
   1081   case TEK_Complex:
   1082     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
   1083     return;
   1084   case TEK_Aggregate:
   1085     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
   1086                                                AggValueSlot::IsDestructed,
   1087                                       AggValueSlot::DoesNotNeedGCBarriers,
   1088                                                AggValueSlot::IsNotAliased,
   1089                                                Dest.isZeroed()));
   1090     return;
   1091   case TEK_Scalar:
   1092     if (LV.isSimple()) {
   1093       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
   1094     } else {
   1095       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
   1096     }
   1097     return;
   1098   }
   1099   llvm_unreachable("bad evaluation kind");
   1100 }
   1101 
   1102 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
   1103   QualType type = lv.getType();
   1104 
   1105   // If the destination slot is already zeroed out before the aggregate is
   1106   // copied into it, we don't have to emit any zeros here.
   1107   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
   1108     return;
   1109 
   1110   if (CGF.hasScalarEvaluationKind(type)) {
   1111     // For non-aggregates, we can store the appropriate null constant.
   1112     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
   1113     // Note that the following is not equivalent to
   1114     // EmitStoreThroughBitfieldLValue for ARC types.
   1115     if (lv.isBitField()) {
   1116       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
   1117     } else {
   1118       assert(lv.isSimple());
   1119       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
   1120     }
   1121   } else {
   1122     // There's a potential optimization opportunity in combining
   1123     // memsets; that would be easy for arrays, but relatively
   1124     // difficult for structures with the current code.
   1125     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
   1126   }
   1127 }
   1128 
   1129 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
   1130 #if 0
   1131   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
   1132   // (Length of globals? Chunks of zeroed-out space?).
   1133   //
   1134   // If we can, prefer a copy from a global; this is a lot less code for long
   1135   // globals, and it's easier for the current optimizers to analyze.
   1136   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
   1137     llvm::GlobalVariable* GV =
   1138     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
   1139                              llvm::GlobalValue::InternalLinkage, C, "");
   1140     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
   1141     return;
   1142   }
   1143 #endif
   1144   if (E->hadArrayRangeDesignator())
   1145     CGF.ErrorUnsupported(E, "GNU array range designator extension");
   1146 
   1147   AggValueSlot Dest = EnsureSlot(E->getType());
   1148 
   1149   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
   1150 
   1151   // Handle initialization of an array.
   1152   if (E->getType()->isArrayType()) {
   1153     if (E->isStringLiteralInit())
   1154       return Visit(E->getInit(0));
   1155 
   1156     QualType elementType =
   1157         CGF.getContext().getAsArrayType(E->getType())->getElementType();
   1158 
   1159     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
   1160     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
   1161     return;
   1162   }
   1163 
   1164   if (E->getType()->isAtomicType()) {
   1165     // An _Atomic(T) object can be list-initialized from an expression
   1166     // of the same type.
   1167     assert(E->getNumInits() == 1 &&
   1168            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
   1169                                                    E->getType()) &&
   1170            "unexpected list initialization for atomic object");
   1171     return Visit(E->getInit(0));
   1172   }
   1173 
   1174   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
   1175 
   1176   // Do struct initialization; this code just sets each individual member
   1177   // to the approprate value.  This makes bitfield support automatic;
   1178   // the disadvantage is that the generated code is more difficult for
   1179   // the optimizer, especially with bitfields.
   1180   unsigned NumInitElements = E->getNumInits();
   1181   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
   1182 
   1183   // We'll need to enter cleanup scopes in case any of the element
   1184   // initializers throws an exception.
   1185   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
   1186   llvm::Instruction *cleanupDominator = nullptr;
   1187 
   1188   unsigned curInitIndex = 0;
   1189 
   1190   // Emit initialization of base classes.
   1191   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
   1192     assert(E->getNumInits() >= CXXRD->getNumBases() &&
   1193            "missing initializer for base class");
   1194     for (auto &Base : CXXRD->bases()) {
   1195       assert(!Base.isVirtual() && "should not see vbases here");
   1196       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
   1197       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
   1198           Dest.getAddress(), CXXRD, BaseRD,
   1199           /*isBaseVirtual*/ false);
   1200       AggValueSlot AggSlot =
   1201         AggValueSlot::forAddr(V, Qualifiers(),
   1202                               AggValueSlot::IsDestructed,
   1203                               AggValueSlot::DoesNotNeedGCBarriers,
   1204                               AggValueSlot::IsNotAliased);
   1205       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
   1206 
   1207       if (QualType::DestructionKind dtorKind =
   1208               Base.getType().isDestructedType()) {
   1209         CGF.pushDestroy(dtorKind, V, Base.getType());
   1210         cleanups.push_back(CGF.EHStack.stable_begin());
   1211       }
   1212     }
   1213   }
   1214 
   1215   // Prepare a 'this' for CXXDefaultInitExprs.
   1216   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
   1217 
   1218   if (record->isUnion()) {
   1219     // Only initialize one field of a union. The field itself is
   1220     // specified by the initializer list.
   1221     if (!E->getInitializedFieldInUnion()) {
   1222       // Empty union; we have nothing to do.
   1223 
   1224 #ifndef NDEBUG
   1225       // Make sure that it's really an empty and not a failure of
   1226       // semantic analysis.
   1227       for (const auto *Field : record->fields())
   1228         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
   1229 #endif
   1230       return;
   1231     }
   1232 
   1233     // FIXME: volatility
   1234     FieldDecl *Field = E->getInitializedFieldInUnion();
   1235 
   1236     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
   1237     if (NumInitElements) {
   1238       // Store the initializer into the field
   1239       EmitInitializationToLValue(E->getInit(0), FieldLoc);
   1240     } else {
   1241       // Default-initialize to null.
   1242       EmitNullInitializationToLValue(FieldLoc);
   1243     }
   1244 
   1245     return;
   1246   }
   1247 
   1248   // Here we iterate over the fields; this makes it simpler to both
   1249   // default-initialize fields and skip over unnamed fields.
   1250   for (const auto *field : record->fields()) {
   1251     // We're done once we hit the flexible array member.
   1252     if (field->getType()->isIncompleteArrayType())
   1253       break;
   1254 
   1255     // Always skip anonymous bitfields.
   1256     if (field->isUnnamedBitfield())
   1257       continue;
   1258 
   1259     // We're done if we reach the end of the explicit initializers, we
   1260     // have a zeroed object, and the rest of the fields are
   1261     // zero-initializable.
   1262     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
   1263         CGF.getTypes().isZeroInitializable(E->getType()))
   1264       break;
   1265 
   1266 
   1267     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
   1268     // We never generate write-barries for initialized fields.
   1269     LV.setNonGC(true);
   1270 
   1271     if (curInitIndex < NumInitElements) {
   1272       // Store the initializer into the field.
   1273       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
   1274     } else {
   1275       // We're out of initalizers; default-initialize to null
   1276       EmitNullInitializationToLValue(LV);
   1277     }
   1278 
   1279     // Push a destructor if necessary.
   1280     // FIXME: if we have an array of structures, all explicitly
   1281     // initialized, we can end up pushing a linear number of cleanups.
   1282     bool pushedCleanup = false;
   1283     if (QualType::DestructionKind dtorKind
   1284           = field->getType().isDestructedType()) {
   1285       assert(LV.isSimple());
   1286       if (CGF.needsEHCleanup(dtorKind)) {
   1287         if (!cleanupDominator)
   1288           cleanupDominator = CGF.Builder.CreateAlignedLoad(
   1289               CGF.Int8Ty,
   1290               llvm::Constant::getNullValue(CGF.Int8PtrTy),
   1291               CharUnits::One()); // placeholder
   1292 
   1293         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
   1294                         CGF.getDestroyer(dtorKind), false);
   1295         cleanups.push_back(CGF.EHStack.stable_begin());
   1296         pushedCleanup = true;
   1297       }
   1298     }
   1299 
   1300     // If the GEP didn't get used because of a dead zero init or something
   1301     // else, clean it up for -O0 builds and general tidiness.
   1302     if (!pushedCleanup && LV.isSimple())
   1303       if (llvm::GetElementPtrInst *GEP =
   1304             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
   1305         if (GEP->use_empty())
   1306           GEP->eraseFromParent();
   1307   }
   1308 
   1309   // Deactivate all the partial cleanups in reverse order, which
   1310   // generally means popping them.
   1311   for (unsigned i = cleanups.size(); i != 0; --i)
   1312     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
   1313 
   1314   // Destroy the placeholder if we made one.
   1315   if (cleanupDominator)
   1316     cleanupDominator->eraseFromParent();
   1317 }
   1318 
   1319 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
   1320   AggValueSlot Dest = EnsureSlot(E->getType());
   1321 
   1322   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
   1323   EmitInitializationToLValue(E->getBase(), DestLV);
   1324   VisitInitListExpr(E->getUpdater());
   1325 }
   1326 
   1327 //===----------------------------------------------------------------------===//
   1328 //                        Entry Points into this File
   1329 //===----------------------------------------------------------------------===//
   1330 
   1331 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
   1332 /// non-zero bytes that will be stored when outputting the initializer for the
   1333 /// specified initializer expression.
   1334 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
   1335   E = E->IgnoreParens();
   1336 
   1337   // 0 and 0.0 won't require any non-zero stores!
   1338   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
   1339 
   1340   // If this is an initlist expr, sum up the size of sizes of the (present)
   1341   // elements.  If this is something weird, assume the whole thing is non-zero.
   1342   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
   1343   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
   1344     return CGF.getContext().getTypeSizeInChars(E->getType());
   1345 
   1346   // InitListExprs for structs have to be handled carefully.  If there are
   1347   // reference members, we need to consider the size of the reference, not the
   1348   // referencee.  InitListExprs for unions and arrays can't have references.
   1349   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
   1350     if (!RT->isUnionType()) {
   1351       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
   1352       CharUnits NumNonZeroBytes = CharUnits::Zero();
   1353 
   1354       unsigned ILEElement = 0;
   1355       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
   1356         while (ILEElement != CXXRD->getNumBases())
   1357           NumNonZeroBytes +=
   1358               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
   1359       for (const auto *Field : SD->fields()) {
   1360         // We're done once we hit the flexible array member or run out of
   1361         // InitListExpr elements.
   1362         if (Field->getType()->isIncompleteArrayType() ||
   1363             ILEElement == ILE->getNumInits())
   1364           break;
   1365         if (Field->isUnnamedBitfield())
   1366           continue;
   1367 
   1368         const Expr *E = ILE->getInit(ILEElement++);
   1369 
   1370         // Reference values are always non-null and have the width of a pointer.
   1371         if (Field->getType()->isReferenceType())
   1372           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
   1373               CGF.getTarget().getPointerWidth(0));
   1374         else
   1375           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
   1376       }
   1377 
   1378       return NumNonZeroBytes;
   1379     }
   1380   }
   1381 
   1382 
   1383   CharUnits NumNonZeroBytes = CharUnits::Zero();
   1384   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
   1385     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
   1386   return NumNonZeroBytes;
   1387 }
   1388 
   1389 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
   1390 /// zeros in it, emit a memset and avoid storing the individual zeros.
   1391 ///
   1392 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
   1393                                      CodeGenFunction &CGF) {
   1394   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
   1395   // volatile stores.
   1396   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
   1397     return;
   1398 
   1399   // C++ objects with a user-declared constructor don't need zero'ing.
   1400   if (CGF.getLangOpts().CPlusPlus)
   1401     if (const RecordType *RT = CGF.getContext()
   1402                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
   1403       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1404       if (RD->hasUserDeclaredConstructor())
   1405         return;
   1406     }
   1407 
   1408   // If the type is 16-bytes or smaller, prefer individual stores over memset.
   1409   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
   1410   if (Size <= CharUnits::fromQuantity(16))
   1411     return;
   1412 
   1413   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
   1414   // we prefer to emit memset + individual stores for the rest.
   1415   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
   1416   if (NumNonZeroBytes*4 > Size)
   1417     return;
   1418 
   1419   // Okay, it seems like a good idea to use an initial memset, emit the call.
   1420   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
   1421 
   1422   Address Loc = Slot.getAddress();
   1423   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
   1424   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
   1425 
   1426   // Tell the AggExprEmitter that the slot is known zero.
   1427   Slot.setZeroed();
   1428 }
   1429 
   1430 
   1431 
   1432 
   1433 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
   1434 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
   1435 /// the value of the aggregate expression is not needed.  If VolatileDest is
   1436 /// true, DestPtr cannot be 0.
   1437 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
   1438   assert(E && hasAggregateEvaluationKind(E->getType()) &&
   1439          "Invalid aggregate expression to emit");
   1440   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
   1441          "slot has bits but no address");
   1442 
   1443   // Optimize the slot if possible.
   1444   CheckAggExprForMemSetUse(Slot, E, *this);
   1445 
   1446   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
   1447 }
   1448 
   1449 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
   1450   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
   1451   Address Temp = CreateMemTemp(E->getType());
   1452   LValue LV = MakeAddrLValue(Temp, E->getType());
   1453   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
   1454                                          AggValueSlot::DoesNotNeedGCBarriers,
   1455                                          AggValueSlot::IsNotAliased));
   1456   return LV;
   1457 }
   1458 
   1459 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
   1460                                         Address SrcPtr, QualType Ty,
   1461                                         bool isVolatile,
   1462                                         bool isAssignment) {
   1463   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
   1464 
   1465   if (getLangOpts().CPlusPlus) {
   1466     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1467       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
   1468       assert((Record->hasTrivialCopyConstructor() ||
   1469               Record->hasTrivialCopyAssignment() ||
   1470               Record->hasTrivialMoveConstructor() ||
   1471               Record->hasTrivialMoveAssignment() ||
   1472               Record->isUnion()) &&
   1473              "Trying to aggregate-copy a type without a trivial copy/move "
   1474              "constructor or assignment operator");
   1475       // Ignore empty classes in C++.
   1476       if (Record->isEmpty())
   1477         return;
   1478     }
   1479   }
   1480 
   1481   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
   1482   // C99 6.5.16.1p3, which states "If the value being stored in an object is
   1483   // read from another object that overlaps in anyway the storage of the first
   1484   // object, then the overlap shall be exact and the two objects shall have
   1485   // qualified or unqualified versions of a compatible type."
   1486   //
   1487   // memcpy is not defined if the source and destination pointers are exactly
   1488   // equal, but other compilers do this optimization, and almost every memcpy
   1489   // implementation handles this case safely.  If there is a libc that does not
   1490   // safely handle this, we can add a target hook.
   1491 
   1492   // Get data size info for this aggregate. If this is an assignment,
   1493   // don't copy the tail padding, because we might be assigning into a
   1494   // base subobject where the tail padding is claimed.  Otherwise,
   1495   // copying it is fine.
   1496   std::pair<CharUnits, CharUnits> TypeInfo;
   1497   if (isAssignment)
   1498     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
   1499   else
   1500     TypeInfo = getContext().getTypeInfoInChars(Ty);
   1501 
   1502   llvm::Value *SizeVal = nullptr;
   1503   if (TypeInfo.first.isZero()) {
   1504     // But note that getTypeInfo returns 0 for a VLA.
   1505     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
   1506             getContext().getAsArrayType(Ty))) {
   1507       QualType BaseEltTy;
   1508       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
   1509       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
   1510       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
   1511       if (!isAssignment)
   1512         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
   1513       assert(!TypeInfo.first.isZero());
   1514       SizeVal = Builder.CreateNUWMul(
   1515           SizeVal,
   1516           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
   1517       if (!isAssignment) {
   1518         SizeVal = Builder.CreateNUWSub(
   1519             SizeVal,
   1520             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
   1521         SizeVal = Builder.CreateNUWAdd(
   1522             SizeVal, llvm::ConstantInt::get(
   1523                          SizeTy, LastElementTypeInfo.first.getQuantity()));
   1524       }
   1525     }
   1526   }
   1527   if (!SizeVal) {
   1528     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
   1529   }
   1530 
   1531   // FIXME: If we have a volatile struct, the optimizer can remove what might
   1532   // appear to be `extra' memory ops:
   1533   //
   1534   // volatile struct { int i; } a, b;
   1535   //
   1536   // int main() {
   1537   //   a = b;
   1538   //   a = b;
   1539   // }
   1540   //
   1541   // we need to use a different call here.  We use isVolatile to indicate when
   1542   // either the source or the destination is volatile.
   1543 
   1544   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
   1545   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
   1546 
   1547   // Don't do any of the memmove_collectable tests if GC isn't set.
   1548   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
   1549     // fall through
   1550   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
   1551     RecordDecl *Record = RecordTy->getDecl();
   1552     if (Record->hasObjectMember()) {
   1553       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1554                                                     SizeVal);
   1555       return;
   1556     }
   1557   } else if (Ty->isArrayType()) {
   1558     QualType BaseType = getContext().getBaseElementType(Ty);
   1559     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
   1560       if (RecordTy->getDecl()->hasObjectMember()) {
   1561         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1562                                                       SizeVal);
   1563         return;
   1564       }
   1565     }
   1566   }
   1567 
   1568   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
   1569 
   1570   // Determine the metadata to describe the position of any padding in this
   1571   // memcpy, as well as the TBAA tags for the members of the struct, in case
   1572   // the optimizer wishes to expand it in to scalar memory operations.
   1573   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
   1574     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
   1575 }
   1576