Home | History | Annotate | Download | only in AST
      1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "clang/AST/RecordLayout.h"
     11 #include "clang/AST/ASTContext.h"
     12 #include "clang/AST/Attr.h"
     13 #include "clang/AST/CXXInheritance.h"
     14 #include "clang/AST/Decl.h"
     15 #include "clang/AST/DeclCXX.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/Basic/TargetInfo.h"
     19 #include "clang/Sema/SemaDiagnostic.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/Support/Format.h"
     22 #include "llvm/Support/MathExtras.h"
     23 
     24 using namespace clang;
     25 
     26 namespace {
     27 
     28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
     29 /// For a class hierarchy like
     30 ///
     31 /// class A { };
     32 /// class B : A { };
     33 /// class C : A, B { };
     34 ///
     35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
     36 /// instances, one for B and two for A.
     37 ///
     38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
     39 struct BaseSubobjectInfo {
     40   /// Class - The class for this base info.
     41   const CXXRecordDecl *Class;
     42 
     43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
     44   bool IsVirtual;
     45 
     46   /// Bases - Information about the base subobjects.
     47   SmallVector<BaseSubobjectInfo*, 4> Bases;
     48 
     49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
     50   /// of this base info (if one exists).
     51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
     52 
     53   // FIXME: Document.
     54   const BaseSubobjectInfo *Derived;
     55 };
     56 
     57 /// \brief Externally provided layout. Typically used when the AST source, such
     58 /// as DWARF, lacks all the information that was available at compile time, such
     59 /// as alignment attributes on fields and pragmas in effect.
     60 struct ExternalLayout {
     61   ExternalLayout() : Size(0), Align(0) {}
     62 
     63   /// \brief Overall record size in bits.
     64   uint64_t Size;
     65 
     66   /// \brief Overall record alignment in bits.
     67   uint64_t Align;
     68 
     69   /// \brief Record field offsets in bits.
     70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
     71 
     72   /// \brief Direct, non-virtual base offsets.
     73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
     74 
     75   /// \brief Virtual base offsets.
     76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
     77 
     78   /// Get the offset of the given field. The external source must provide
     79   /// entries for all fields in the record.
     80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
     81     assert(FieldOffsets.count(FD) &&
     82            "Field does not have an external offset");
     83     return FieldOffsets[FD];
     84   }
     85 
     86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
     87     auto Known = BaseOffsets.find(RD);
     88     if (Known == BaseOffsets.end())
     89       return false;
     90     BaseOffset = Known->second;
     91     return true;
     92   }
     93 
     94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
     95     auto Known = VirtualBaseOffsets.find(RD);
     96     if (Known == VirtualBaseOffsets.end())
     97       return false;
     98     BaseOffset = Known->second;
     99     return true;
    100   }
    101 };
    102 
    103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
    104 /// offsets while laying out a C++ class.
    105 class EmptySubobjectMap {
    106   const ASTContext &Context;
    107   uint64_t CharWidth;
    108 
    109   /// Class - The class whose empty entries we're keeping track of.
    110   const CXXRecordDecl *Class;
    111 
    112   /// EmptyClassOffsets - A map from offsets to empty record decls.
    113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
    114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
    115   EmptyClassOffsetsMapTy EmptyClassOffsets;
    116 
    117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
    118   /// base subobject.
    119   CharUnits MaxEmptyClassOffset;
    120 
    121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
    122   /// member subobject that is empty.
    123   void ComputeEmptySubobjectSizes();
    124 
    125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
    126 
    127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
    128                                  CharUnits Offset, bool PlacingEmptyBase);
    129 
    130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
    131                                   const CXXRecordDecl *Class,
    132                                   CharUnits Offset);
    133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
    134 
    135   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
    136   /// subobjects beyond the given offset.
    137   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
    138     return Offset <= MaxEmptyClassOffset;
    139   }
    140 
    141   CharUnits
    142   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
    143     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
    144     assert(FieldOffset % CharWidth == 0 &&
    145            "Field offset not at char boundary!");
    146 
    147     return Context.toCharUnitsFromBits(FieldOffset);
    148   }
    149 
    150 protected:
    151   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    152                                  CharUnits Offset) const;
    153 
    154   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    155                                      CharUnits Offset);
    156 
    157   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    158                                       const CXXRecordDecl *Class,
    159                                       CharUnits Offset) const;
    160   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    161                                       CharUnits Offset) const;
    162 
    163 public:
    164   /// This holds the size of the largest empty subobject (either a base
    165   /// or a member). Will be zero if the record being built doesn't contain
    166   /// any empty classes.
    167   CharUnits SizeOfLargestEmptySubobject;
    168 
    169   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
    170   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
    171       ComputeEmptySubobjectSizes();
    172   }
    173 
    174   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
    175   /// at the given offset.
    176   /// Returns false if placing the record will result in two components
    177   /// (direct or indirect) of the same type having the same offset.
    178   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    179                             CharUnits Offset);
    180 
    181   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
    182   /// offset.
    183   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
    184 };
    185 
    186 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
    187   // Check the bases.
    188   for (const CXXBaseSpecifier &Base : Class->bases()) {
    189     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    190 
    191     CharUnits EmptySize;
    192     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
    193     if (BaseDecl->isEmpty()) {
    194       // If the class decl is empty, get its size.
    195       EmptySize = Layout.getSize();
    196     } else {
    197       // Otherwise, we get the largest empty subobject for the decl.
    198       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    199     }
    200 
    201     if (EmptySize > SizeOfLargestEmptySubobject)
    202       SizeOfLargestEmptySubobject = EmptySize;
    203   }
    204 
    205   // Check the fields.
    206   for (const FieldDecl *FD : Class->fields()) {
    207     const RecordType *RT =
    208         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
    209 
    210     // We only care about record types.
    211     if (!RT)
    212       continue;
    213 
    214     CharUnits EmptySize;
    215     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
    216     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
    217     if (MemberDecl->isEmpty()) {
    218       // If the class decl is empty, get its size.
    219       EmptySize = Layout.getSize();
    220     } else {
    221       // Otherwise, we get the largest empty subobject for the decl.
    222       EmptySize = Layout.getSizeOfLargestEmptySubobject();
    223     }
    224 
    225     if (EmptySize > SizeOfLargestEmptySubobject)
    226       SizeOfLargestEmptySubobject = EmptySize;
    227   }
    228 }
    229 
    230 bool
    231 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
    232                                              CharUnits Offset) const {
    233   // We only need to check empty bases.
    234   if (!RD->isEmpty())
    235     return true;
    236 
    237   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
    238   if (I == EmptyClassOffsets.end())
    239     return true;
    240 
    241   const ClassVectorTy &Classes = I->second;
    242   if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
    243     return true;
    244 
    245   // There is already an empty class of the same type at this offset.
    246   return false;
    247 }
    248 
    249 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
    250                                              CharUnits Offset) {
    251   // We only care about empty bases.
    252   if (!RD->isEmpty())
    253     return;
    254 
    255   // If we have empty structures inside a union, we can assign both
    256   // the same offset. Just avoid pushing them twice in the list.
    257   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
    258   if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
    259     return;
    260 
    261   Classes.push_back(RD);
    262 
    263   // Update the empty class offset.
    264   if (Offset > MaxEmptyClassOffset)
    265     MaxEmptyClassOffset = Offset;
    266 }
    267 
    268 bool
    269 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
    270                                                  CharUnits Offset) {
    271   // We don't have to keep looking past the maximum offset that's known to
    272   // contain an empty class.
    273   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    274     return true;
    275 
    276   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
    277     return false;
    278 
    279   // Traverse all non-virtual bases.
    280   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    281   for (const BaseSubobjectInfo *Base : Info->Bases) {
    282     if (Base->IsVirtual)
    283       continue;
    284 
    285     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    286 
    287     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
    288       return false;
    289   }
    290 
    291   if (Info->PrimaryVirtualBaseInfo) {
    292     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    293 
    294     if (Info == PrimaryVirtualBaseInfo->Derived) {
    295       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
    296         return false;
    297     }
    298   }
    299 
    300   // Traverse all member variables.
    301   unsigned FieldNo = 0;
    302   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    303        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    304     if (I->isBitField())
    305       continue;
    306 
    307     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    308     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    309       return false;
    310   }
    311 
    312   return true;
    313 }
    314 
    315 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
    316                                                   CharUnits Offset,
    317                                                   bool PlacingEmptyBase) {
    318   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
    319     // We know that the only empty subobjects that can conflict with empty
    320     // subobject of non-empty bases, are empty bases that can be placed at
    321     // offset zero. Because of this, we only need to keep track of empty base
    322     // subobjects with offsets less than the size of the largest empty
    323     // subobject for our class.
    324     return;
    325   }
    326 
    327   AddSubobjectAtOffset(Info->Class, Offset);
    328 
    329   // Traverse all non-virtual bases.
    330   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
    331   for (const BaseSubobjectInfo *Base : Info->Bases) {
    332     if (Base->IsVirtual)
    333       continue;
    334 
    335     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
    336     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
    337   }
    338 
    339   if (Info->PrimaryVirtualBaseInfo) {
    340     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
    341 
    342     if (Info == PrimaryVirtualBaseInfo->Derived)
    343       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
    344                                 PlacingEmptyBase);
    345   }
    346 
    347   // Traverse all member variables.
    348   unsigned FieldNo = 0;
    349   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
    350        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
    351     if (I->isBitField())
    352       continue;
    353 
    354     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    355     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    356   }
    357 }
    358 
    359 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
    360                                              CharUnits Offset) {
    361   // If we know this class doesn't have any empty subobjects we don't need to
    362   // bother checking.
    363   if (SizeOfLargestEmptySubobject.isZero())
    364     return true;
    365 
    366   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
    367     return false;
    368 
    369   // We are able to place the base at this offset. Make sure to update the
    370   // empty base subobject map.
    371   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
    372   return true;
    373 }
    374 
    375 bool
    376 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
    377                                                   const CXXRecordDecl *Class,
    378                                                   CharUnits Offset) const {
    379   // We don't have to keep looking past the maximum offset that's known to
    380   // contain an empty class.
    381   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    382     return true;
    383 
    384   if (!CanPlaceSubobjectAtOffset(RD, Offset))
    385     return false;
    386 
    387   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    388 
    389   // Traverse all non-virtual bases.
    390   for (const CXXBaseSpecifier &Base : RD->bases()) {
    391     if (Base.isVirtual())
    392       continue;
    393 
    394     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    395 
    396     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    397     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
    398       return false;
    399   }
    400 
    401   if (RD == Class) {
    402     // This is the most derived class, traverse virtual bases as well.
    403     for (const CXXBaseSpecifier &Base : RD->vbases()) {
    404       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
    405 
    406       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    407       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
    408         return false;
    409     }
    410   }
    411 
    412   // Traverse all member variables.
    413   unsigned FieldNo = 0;
    414   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    415        I != E; ++I, ++FieldNo) {
    416     if (I->isBitField())
    417       continue;
    418 
    419     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    420 
    421     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
    422       return false;
    423   }
    424 
    425   return true;
    426 }
    427 
    428 bool
    429 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
    430                                                   CharUnits Offset) const {
    431   // We don't have to keep looking past the maximum offset that's known to
    432   // contain an empty class.
    433   if (!AnyEmptySubobjectsBeyondOffset(Offset))
    434     return true;
    435 
    436   QualType T = FD->getType();
    437   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
    438     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
    439 
    440   // If we have an array type we need to look at every element.
    441   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    442     QualType ElemTy = Context.getBaseElementType(AT);
    443     const RecordType *RT = ElemTy->getAs<RecordType>();
    444     if (!RT)
    445       return true;
    446 
    447     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
    448     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    449 
    450     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    451     CharUnits ElementOffset = Offset;
    452     for (uint64_t I = 0; I != NumElements; ++I) {
    453       // We don't have to keep looking past the maximum offset that's known to
    454       // contain an empty class.
    455       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
    456         return true;
    457 
    458       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
    459         return false;
    460 
    461       ElementOffset += Layout.getSize();
    462     }
    463   }
    464 
    465   return true;
    466 }
    467 
    468 bool
    469 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
    470                                          CharUnits Offset) {
    471   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
    472     return false;
    473 
    474   // We are able to place the member variable at this offset.
    475   // Make sure to update the empty base subobject map.
    476   UpdateEmptyFieldSubobjects(FD, Offset);
    477   return true;
    478 }
    479 
    480 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
    481                                                    const CXXRecordDecl *Class,
    482                                                    CharUnits Offset) {
    483   // We know that the only empty subobjects that can conflict with empty
    484   // field subobjects are subobjects of empty bases that can be placed at offset
    485   // zero. Because of this, we only need to keep track of empty field
    486   // subobjects with offsets less than the size of the largest empty
    487   // subobject for our class.
    488   if (Offset >= SizeOfLargestEmptySubobject)
    489     return;
    490 
    491   AddSubobjectAtOffset(RD, Offset);
    492 
    493   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    494 
    495   // Traverse all non-virtual bases.
    496   for (const CXXBaseSpecifier &Base : RD->bases()) {
    497     if (Base.isVirtual())
    498       continue;
    499 
    500     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    501 
    502     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
    503     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
    504   }
    505 
    506   if (RD == Class) {
    507     // This is the most derived class, traverse virtual bases as well.
    508     for (const CXXBaseSpecifier &Base : RD->vbases()) {
    509       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
    510 
    511       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
    512       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
    513     }
    514   }
    515 
    516   // Traverse all member variables.
    517   unsigned FieldNo = 0;
    518   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
    519        I != E; ++I, ++FieldNo) {
    520     if (I->isBitField())
    521       continue;
    522 
    523     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
    524 
    525     UpdateEmptyFieldSubobjects(*I, FieldOffset);
    526   }
    527 }
    528 
    529 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
    530                                                    CharUnits Offset) {
    531   QualType T = FD->getType();
    532   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
    533     UpdateEmptyFieldSubobjects(RD, RD, Offset);
    534     return;
    535   }
    536 
    537   // If we have an array type we need to update every element.
    538   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
    539     QualType ElemTy = Context.getBaseElementType(AT);
    540     const RecordType *RT = ElemTy->getAs<RecordType>();
    541     if (!RT)
    542       return;
    543 
    544     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
    545     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    546 
    547     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
    548     CharUnits ElementOffset = Offset;
    549 
    550     for (uint64_t I = 0; I != NumElements; ++I) {
    551       // We know that the only empty subobjects that can conflict with empty
    552       // field subobjects are subobjects of empty bases that can be placed at
    553       // offset zero. Because of this, we only need to keep track of empty field
    554       // subobjects with offsets less than the size of the largest empty
    555       // subobject for our class.
    556       if (ElementOffset >= SizeOfLargestEmptySubobject)
    557         return;
    558 
    559       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
    560       ElementOffset += Layout.getSize();
    561     }
    562   }
    563 }
    564 
    565 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
    566 
    567 class ItaniumRecordLayoutBuilder {
    568 protected:
    569   // FIXME: Remove this and make the appropriate fields public.
    570   friend class clang::ASTContext;
    571 
    572   const ASTContext &Context;
    573 
    574   EmptySubobjectMap *EmptySubobjects;
    575 
    576   /// Size - The current size of the record layout.
    577   uint64_t Size;
    578 
    579   /// Alignment - The current alignment of the record layout.
    580   CharUnits Alignment;
    581 
    582   /// \brief The alignment if attribute packed is not used.
    583   CharUnits UnpackedAlignment;
    584 
    585   SmallVector<uint64_t, 16> FieldOffsets;
    586 
    587   /// \brief Whether the external AST source has provided a layout for this
    588   /// record.
    589   unsigned UseExternalLayout : 1;
    590 
    591   /// \brief Whether we need to infer alignment, even when we have an
    592   /// externally-provided layout.
    593   unsigned InferAlignment : 1;
    594 
    595   /// Packed - Whether the record is packed or not.
    596   unsigned Packed : 1;
    597 
    598   unsigned IsUnion : 1;
    599 
    600   unsigned IsMac68kAlign : 1;
    601 
    602   unsigned IsMsStruct : 1;
    603 
    604   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
    605   /// this contains the number of bits in the last unit that can be used for
    606   /// an adjacent bitfield if necessary.  The unit in question is usually
    607   /// a byte, but larger units are used if IsMsStruct.
    608   unsigned char UnfilledBitsInLastUnit;
    609   /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
    610   /// of the previous field if it was a bitfield.
    611   unsigned char LastBitfieldTypeSize;
    612 
    613   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
    614   /// #pragma pack.
    615   CharUnits MaxFieldAlignment;
    616 
    617   /// DataSize - The data size of the record being laid out.
    618   uint64_t DataSize;
    619 
    620   CharUnits NonVirtualSize;
    621   CharUnits NonVirtualAlignment;
    622 
    623   /// PrimaryBase - the primary base class (if one exists) of the class
    624   /// we're laying out.
    625   const CXXRecordDecl *PrimaryBase;
    626 
    627   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
    628   /// out is virtual.
    629   bool PrimaryBaseIsVirtual;
    630 
    631   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
    632   /// pointer, as opposed to inheriting one from a primary base class.
    633   bool HasOwnVFPtr;
    634 
    635   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
    636 
    637   /// Bases - base classes and their offsets in the record.
    638   BaseOffsetsMapTy Bases;
    639 
    640   // VBases - virtual base classes and their offsets in the record.
    641   ASTRecordLayout::VBaseOffsetsMapTy VBases;
    642 
    643   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
    644   /// primary base classes for some other direct or indirect base class.
    645   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
    646 
    647   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
    648   /// inheritance graph order. Used for determining the primary base class.
    649   const CXXRecordDecl *FirstNearlyEmptyVBase;
    650 
    651   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
    652   /// avoid visiting virtual bases more than once.
    653   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
    654 
    655   /// Valid if UseExternalLayout is true.
    656   ExternalLayout External;
    657 
    658   ItaniumRecordLayoutBuilder(const ASTContext &Context,
    659                              EmptySubobjectMap *EmptySubobjects)
    660       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
    661         Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
    662         UseExternalLayout(false), InferAlignment(false), Packed(false),
    663         IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
    664         UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
    665         MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
    666         NonVirtualSize(CharUnits::Zero()),
    667         NonVirtualAlignment(CharUnits::One()), PrimaryBase(nullptr),
    668         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
    669         FirstNearlyEmptyVBase(nullptr) {}
    670 
    671   void Layout(const RecordDecl *D);
    672   void Layout(const CXXRecordDecl *D);
    673   void Layout(const ObjCInterfaceDecl *D);
    674 
    675   void LayoutFields(const RecordDecl *D);
    676   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
    677   void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
    678                           bool FieldPacked, const FieldDecl *D);
    679   void LayoutBitField(const FieldDecl *D);
    680 
    681   TargetCXXABI getCXXABI() const {
    682     return Context.getTargetInfo().getCXXABI();
    683   }
    684 
    685   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
    686   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
    687 
    688   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
    689     BaseSubobjectInfoMapTy;
    690 
    691   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
    692   /// of the class we're laying out to their base subobject info.
    693   BaseSubobjectInfoMapTy VirtualBaseInfo;
    694 
    695   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
    696   /// class we're laying out to their base subobject info.
    697   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
    698 
    699   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
    700   /// bases of the given class.
    701   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
    702 
    703   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
    704   /// single class and all of its base classes.
    705   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
    706                                               bool IsVirtual,
    707                                               BaseSubobjectInfo *Derived);
    708 
    709   /// DeterminePrimaryBase - Determine the primary base of the given class.
    710   void DeterminePrimaryBase(const CXXRecordDecl *RD);
    711 
    712   void SelectPrimaryVBase(const CXXRecordDecl *RD);
    713 
    714   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
    715 
    716   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
    717   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
    718   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
    719 
    720   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
    721   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
    722 
    723   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
    724                                     CharUnits Offset);
    725 
    726   /// LayoutVirtualBases - Lays out all the virtual bases.
    727   void LayoutVirtualBases(const CXXRecordDecl *RD,
    728                           const CXXRecordDecl *MostDerivedClass);
    729 
    730   /// LayoutVirtualBase - Lays out a single virtual base.
    731   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
    732 
    733   /// LayoutBase - Will lay out a base and return the offset where it was
    734   /// placed, in chars.
    735   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
    736 
    737   /// InitializeLayout - Initialize record layout for the given record decl.
    738   void InitializeLayout(const Decl *D);
    739 
    740   /// FinishLayout - Finalize record layout. Adjust record size based on the
    741   /// alignment.
    742   void FinishLayout(const NamedDecl *D);
    743 
    744   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
    745   void UpdateAlignment(CharUnits NewAlignment) {
    746     UpdateAlignment(NewAlignment, NewAlignment);
    747   }
    748 
    749   /// \brief Retrieve the externally-supplied field offset for the given
    750   /// field.
    751   ///
    752   /// \param Field The field whose offset is being queried.
    753   /// \param ComputedOffset The offset that we've computed for this field.
    754   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
    755                                      uint64_t ComputedOffset);
    756 
    757   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
    758                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
    759                           bool isPacked, const FieldDecl *D);
    760 
    761   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
    762 
    763   CharUnits getSize() const {
    764     assert(Size % Context.getCharWidth() == 0);
    765     return Context.toCharUnitsFromBits(Size);
    766   }
    767   uint64_t getSizeInBits() const { return Size; }
    768 
    769   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
    770   void setSize(uint64_t NewSize) { Size = NewSize; }
    771 
    772   CharUnits getAligment() const { return Alignment; }
    773 
    774   CharUnits getDataSize() const {
    775     assert(DataSize % Context.getCharWidth() == 0);
    776     return Context.toCharUnitsFromBits(DataSize);
    777   }
    778   uint64_t getDataSizeInBits() const { return DataSize; }
    779 
    780   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
    781   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
    782 
    783   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
    784   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
    785 };
    786 } // end anonymous namespace
    787 
    788 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
    789   for (const auto &I : RD->bases()) {
    790     assert(!I.getType()->isDependentType() &&
    791            "Cannot layout class with dependent bases.");
    792 
    793     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
    794 
    795     // Check if this is a nearly empty virtual base.
    796     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
    797       // If it's not an indirect primary base, then we've found our primary
    798       // base.
    799       if (!IndirectPrimaryBases.count(Base)) {
    800         PrimaryBase = Base;
    801         PrimaryBaseIsVirtual = true;
    802         return;
    803       }
    804 
    805       // Is this the first nearly empty virtual base?
    806       if (!FirstNearlyEmptyVBase)
    807         FirstNearlyEmptyVBase = Base;
    808     }
    809 
    810     SelectPrimaryVBase(Base);
    811     if (PrimaryBase)
    812       return;
    813   }
    814 }
    815 
    816 /// DeterminePrimaryBase - Determine the primary base of the given class.
    817 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
    818   // If the class isn't dynamic, it won't have a primary base.
    819   if (!RD->isDynamicClass())
    820     return;
    821 
    822   // Compute all the primary virtual bases for all of our direct and
    823   // indirect bases, and record all their primary virtual base classes.
    824   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    825 
    826   // If the record has a dynamic base class, attempt to choose a primary base
    827   // class. It is the first (in direct base class order) non-virtual dynamic
    828   // base class, if one exists.
    829   for (const auto &I : RD->bases()) {
    830     // Ignore virtual bases.
    831     if (I.isVirtual())
    832       continue;
    833 
    834     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
    835 
    836     if (Base->isDynamicClass()) {
    837       // We found it.
    838       PrimaryBase = Base;
    839       PrimaryBaseIsVirtual = false;
    840       return;
    841     }
    842   }
    843 
    844   // Under the Itanium ABI, if there is no non-virtual primary base class,
    845   // try to compute the primary virtual base.  The primary virtual base is
    846   // the first nearly empty virtual base that is not an indirect primary
    847   // virtual base class, if one exists.
    848   if (RD->getNumVBases() != 0) {
    849     SelectPrimaryVBase(RD);
    850     if (PrimaryBase)
    851       return;
    852   }
    853 
    854   // Otherwise, it is the first indirect primary base class, if one exists.
    855   if (FirstNearlyEmptyVBase) {
    856     PrimaryBase = FirstNearlyEmptyVBase;
    857     PrimaryBaseIsVirtual = true;
    858     return;
    859   }
    860 
    861   assert(!PrimaryBase && "Should not get here with a primary base!");
    862 }
    863 
    864 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
    865     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
    866   BaseSubobjectInfo *Info;
    867 
    868   if (IsVirtual) {
    869     // Check if we already have info about this virtual base.
    870     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
    871     if (InfoSlot) {
    872       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
    873       return InfoSlot;
    874     }
    875 
    876     // We don't, create it.
    877     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    878     Info = InfoSlot;
    879   } else {
    880     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
    881   }
    882 
    883   Info->Class = RD;
    884   Info->IsVirtual = IsVirtual;
    885   Info->Derived = nullptr;
    886   Info->PrimaryVirtualBaseInfo = nullptr;
    887 
    888   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
    889   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
    890 
    891   // Check if this base has a primary virtual base.
    892   if (RD->getNumVBases()) {
    893     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
    894     if (Layout.isPrimaryBaseVirtual()) {
    895       // This base does have a primary virtual base.
    896       PrimaryVirtualBase = Layout.getPrimaryBase();
    897       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
    898 
    899       // Now check if we have base subobject info about this primary base.
    900       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    901 
    902       if (PrimaryVirtualBaseInfo) {
    903         if (PrimaryVirtualBaseInfo->Derived) {
    904           // We did have info about this primary base, and it turns out that it
    905           // has already been claimed as a primary virtual base for another
    906           // base.
    907           PrimaryVirtualBase = nullptr;
    908         } else {
    909           // We can claim this base as our primary base.
    910           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    911           PrimaryVirtualBaseInfo->Derived = Info;
    912         }
    913       }
    914     }
    915   }
    916 
    917   // Now go through all direct bases.
    918   for (const auto &I : RD->bases()) {
    919     bool IsVirtual = I.isVirtual();
    920 
    921     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
    922 
    923     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
    924   }
    925 
    926   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
    927     // Traversing the bases must have created the base info for our primary
    928     // virtual base.
    929     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
    930     assert(PrimaryVirtualBaseInfo &&
    931            "Did not create a primary virtual base!");
    932 
    933     // Claim the primary virtual base as our primary virtual base.
    934     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
    935     PrimaryVirtualBaseInfo->Derived = Info;
    936   }
    937 
    938   return Info;
    939 }
    940 
    941 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
    942     const CXXRecordDecl *RD) {
    943   for (const auto &I : RD->bases()) {
    944     bool IsVirtual = I.isVirtual();
    945 
    946     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
    947 
    948     // Compute the base subobject info for this base.
    949     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
    950                                                        nullptr);
    951 
    952     if (IsVirtual) {
    953       // ComputeBaseInfo has already added this base for us.
    954       assert(VirtualBaseInfo.count(BaseDecl) &&
    955              "Did not add virtual base!");
    956     } else {
    957       // Add the base info to the map of non-virtual bases.
    958       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
    959              "Non-virtual base already exists!");
    960       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
    961     }
    962   }
    963 }
    964 
    965 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
    966     CharUnits UnpackedBaseAlign) {
    967   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
    968 
    969   // The maximum field alignment overrides base align.
    970   if (!MaxFieldAlignment.isZero()) {
    971     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
    972     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
    973   }
    974 
    975   // Round up the current record size to pointer alignment.
    976   setSize(getSize().alignTo(BaseAlign));
    977   setDataSize(getSize());
    978 
    979   // Update the alignment.
    980   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
    981 }
    982 
    983 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
    984     const CXXRecordDecl *RD) {
    985   // Then, determine the primary base class.
    986   DeterminePrimaryBase(RD);
    987 
    988   // Compute base subobject info.
    989   ComputeBaseSubobjectInfo(RD);
    990 
    991   // If we have a primary base class, lay it out.
    992   if (PrimaryBase) {
    993     if (PrimaryBaseIsVirtual) {
    994       // If the primary virtual base was a primary virtual base of some other
    995       // base class we'll have to steal it.
    996       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
    997       PrimaryBaseInfo->Derived = nullptr;
    998 
    999       // We have a virtual primary base, insert it as an indirect primary base.
   1000       IndirectPrimaryBases.insert(PrimaryBase);
   1001 
   1002       assert(!VisitedVirtualBases.count(PrimaryBase) &&
   1003              "vbase already visited!");
   1004       VisitedVirtualBases.insert(PrimaryBase);
   1005 
   1006       LayoutVirtualBase(PrimaryBaseInfo);
   1007     } else {
   1008       BaseSubobjectInfo *PrimaryBaseInfo =
   1009         NonVirtualBaseInfo.lookup(PrimaryBase);
   1010       assert(PrimaryBaseInfo &&
   1011              "Did not find base info for non-virtual primary base!");
   1012 
   1013       LayoutNonVirtualBase(PrimaryBaseInfo);
   1014     }
   1015 
   1016   // If this class needs a vtable/vf-table and didn't get one from a
   1017   // primary base, add it in now.
   1018   } else if (RD->isDynamicClass()) {
   1019     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
   1020     CharUnits PtrWidth =
   1021       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   1022     CharUnits PtrAlign =
   1023       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
   1024     EnsureVTablePointerAlignment(PtrAlign);
   1025     HasOwnVFPtr = true;
   1026     setSize(getSize() + PtrWidth);
   1027     setDataSize(getSize());
   1028   }
   1029 
   1030   // Now lay out the non-virtual bases.
   1031   for (const auto &I : RD->bases()) {
   1032 
   1033     // Ignore virtual bases.
   1034     if (I.isVirtual())
   1035       continue;
   1036 
   1037     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
   1038 
   1039     // Skip the primary base, because we've already laid it out.  The
   1040     // !PrimaryBaseIsVirtual check is required because we might have a
   1041     // non-virtual base of the same type as a primary virtual base.
   1042     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
   1043       continue;
   1044 
   1045     // Lay out the base.
   1046     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
   1047     assert(BaseInfo && "Did not find base info for non-virtual base!");
   1048 
   1049     LayoutNonVirtualBase(BaseInfo);
   1050   }
   1051 }
   1052 
   1053 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
   1054     const BaseSubobjectInfo *Base) {
   1055   // Layout the base.
   1056   CharUnits Offset = LayoutBase(Base);
   1057 
   1058   // Add its base class offset.
   1059   assert(!Bases.count(Base->Class) && "base offset already exists!");
   1060   Bases.insert(std::make_pair(Base->Class, Offset));
   1061 
   1062   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1063 }
   1064 
   1065 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
   1066     const BaseSubobjectInfo *Info, CharUnits Offset) {
   1067   // This base isn't interesting, it has no virtual bases.
   1068   if (!Info->Class->getNumVBases())
   1069     return;
   1070 
   1071   // First, check if we have a virtual primary base to add offsets for.
   1072   if (Info->PrimaryVirtualBaseInfo) {
   1073     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
   1074            "Primary virtual base is not virtual!");
   1075     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
   1076       // Add the offset.
   1077       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
   1078              "primary vbase offset already exists!");
   1079       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
   1080                                    ASTRecordLayout::VBaseInfo(Offset, false)));
   1081 
   1082       // Traverse the primary virtual base.
   1083       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
   1084     }
   1085   }
   1086 
   1087   // Now go through all direct non-virtual bases.
   1088   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
   1089   for (const BaseSubobjectInfo *Base : Info->Bases) {
   1090     if (Base->IsVirtual)
   1091       continue;
   1092 
   1093     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
   1094     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
   1095   }
   1096 }
   1097 
   1098 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
   1099     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
   1100   const CXXRecordDecl *PrimaryBase;
   1101   bool PrimaryBaseIsVirtual;
   1102 
   1103   if (MostDerivedClass == RD) {
   1104     PrimaryBase = this->PrimaryBase;
   1105     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
   1106   } else {
   1107     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1108     PrimaryBase = Layout.getPrimaryBase();
   1109     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
   1110   }
   1111 
   1112   for (const CXXBaseSpecifier &Base : RD->bases()) {
   1113     assert(!Base.getType()->isDependentType() &&
   1114            "Cannot layout class with dependent bases.");
   1115 
   1116     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   1117 
   1118     if (Base.isVirtual()) {
   1119       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
   1120         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
   1121 
   1122         // Only lay out the virtual base if it's not an indirect primary base.
   1123         if (!IndirectPrimaryBase) {
   1124           // Only visit virtual bases once.
   1125           if (!VisitedVirtualBases.insert(BaseDecl).second)
   1126             continue;
   1127 
   1128           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
   1129           assert(BaseInfo && "Did not find virtual base info!");
   1130           LayoutVirtualBase(BaseInfo);
   1131         }
   1132       }
   1133     }
   1134 
   1135     if (!BaseDecl->getNumVBases()) {
   1136       // This base isn't interesting since it doesn't have any virtual bases.
   1137       continue;
   1138     }
   1139 
   1140     LayoutVirtualBases(BaseDecl, MostDerivedClass);
   1141   }
   1142 }
   1143 
   1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
   1145     const BaseSubobjectInfo *Base) {
   1146   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
   1147 
   1148   // Layout the base.
   1149   CharUnits Offset = LayoutBase(Base);
   1150 
   1151   // Add its base class offset.
   1152   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
   1153   VBases.insert(std::make_pair(Base->Class,
   1154                        ASTRecordLayout::VBaseInfo(Offset, false)));
   1155 
   1156   AddPrimaryVirtualBaseOffsets(Base, Offset);
   1157 }
   1158 
   1159 CharUnits
   1160 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
   1161   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
   1162 
   1163 
   1164   CharUnits Offset;
   1165 
   1166   // Query the external layout to see if it provides an offset.
   1167   bool HasExternalLayout = false;
   1168   if (UseExternalLayout) {
   1169     llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
   1170     if (Base->IsVirtual)
   1171       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
   1172     else
   1173       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
   1174   }
   1175 
   1176   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
   1177   CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
   1178 
   1179   // If we have an empty base class, try to place it at offset 0.
   1180   if (Base->Class->isEmpty() &&
   1181       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
   1182       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
   1183     setSize(std::max(getSize(), Layout.getSize()));
   1184     UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1185 
   1186     return CharUnits::Zero();
   1187   }
   1188 
   1189   // The maximum field alignment overrides base align.
   1190   if (!MaxFieldAlignment.isZero()) {
   1191     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
   1192     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
   1193   }
   1194 
   1195   if (!HasExternalLayout) {
   1196     // Round up the current record size to the base's alignment boundary.
   1197     Offset = getDataSize().alignTo(BaseAlign);
   1198 
   1199     // Try to place the base.
   1200     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
   1201       Offset += BaseAlign;
   1202   } else {
   1203     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
   1204     (void)Allowed;
   1205     assert(Allowed && "Base subobject externally placed at overlapping offset");
   1206 
   1207     if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
   1208       // The externally-supplied base offset is before the base offset we
   1209       // computed. Assume that the structure is packed.
   1210       Alignment = CharUnits::One();
   1211       InferAlignment = false;
   1212     }
   1213   }
   1214 
   1215   if (!Base->Class->isEmpty()) {
   1216     // Update the data size.
   1217     setDataSize(Offset + Layout.getNonVirtualSize());
   1218 
   1219     setSize(std::max(getSize(), getDataSize()));
   1220   } else
   1221     setSize(std::max(getSize(), Offset + Layout.getSize()));
   1222 
   1223   // Remember max struct/class alignment.
   1224   UpdateAlignment(BaseAlign, UnpackedBaseAlign);
   1225 
   1226   return Offset;
   1227 }
   1228 
   1229 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
   1230   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   1231     IsUnion = RD->isUnion();
   1232     IsMsStruct = RD->isMsStruct(Context);
   1233   }
   1234 
   1235   Packed = D->hasAttr<PackedAttr>();
   1236 
   1237   // Honor the default struct packing maximum alignment flag.
   1238   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
   1239     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
   1240   }
   1241 
   1242   // mac68k alignment supersedes maximum field alignment and attribute aligned,
   1243   // and forces all structures to have 2-byte alignment. The IBM docs on it
   1244   // allude to additional (more complicated) semantics, especially with regard
   1245   // to bit-fields, but gcc appears not to follow that.
   1246   if (D->hasAttr<AlignMac68kAttr>()) {
   1247     IsMac68kAlign = true;
   1248     MaxFieldAlignment = CharUnits::fromQuantity(2);
   1249     Alignment = CharUnits::fromQuantity(2);
   1250   } else {
   1251     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
   1252       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
   1253 
   1254     if (unsigned MaxAlign = D->getMaxAlignment())
   1255       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
   1256   }
   1257 
   1258   // If there is an external AST source, ask it for the various offsets.
   1259   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
   1260     if (ExternalASTSource *Source = Context.getExternalSource()) {
   1261       UseExternalLayout = Source->layoutRecordType(
   1262           RD, External.Size, External.Align, External.FieldOffsets,
   1263           External.BaseOffsets, External.VirtualBaseOffsets);
   1264 
   1265       // Update based on external alignment.
   1266       if (UseExternalLayout) {
   1267         if (External.Align > 0) {
   1268           Alignment = Context.toCharUnitsFromBits(External.Align);
   1269         } else {
   1270           // The external source didn't have alignment information; infer it.
   1271           InferAlignment = true;
   1272         }
   1273       }
   1274     }
   1275 }
   1276 
   1277 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
   1278   InitializeLayout(D);
   1279   LayoutFields(D);
   1280 
   1281   // Finally, round the size of the total struct up to the alignment of the
   1282   // struct itself.
   1283   FinishLayout(D);
   1284 }
   1285 
   1286 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
   1287   InitializeLayout(RD);
   1288 
   1289   // Lay out the vtable and the non-virtual bases.
   1290   LayoutNonVirtualBases(RD);
   1291 
   1292   LayoutFields(RD);
   1293 
   1294   NonVirtualSize = Context.toCharUnitsFromBits(
   1295       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
   1296   NonVirtualAlignment = Alignment;
   1297 
   1298   // Lay out the virtual bases and add the primary virtual base offsets.
   1299   LayoutVirtualBases(RD, RD);
   1300 
   1301   // Finally, round the size of the total struct up to the alignment
   1302   // of the struct itself.
   1303   FinishLayout(RD);
   1304 
   1305 #ifndef NDEBUG
   1306   // Check that we have base offsets for all bases.
   1307   for (const CXXBaseSpecifier &Base : RD->bases()) {
   1308     if (Base.isVirtual())
   1309       continue;
   1310 
   1311     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   1312 
   1313     assert(Bases.count(BaseDecl) && "Did not find base offset!");
   1314   }
   1315 
   1316   // And all virtual bases.
   1317   for (const CXXBaseSpecifier &Base : RD->vbases()) {
   1318     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   1319 
   1320     assert(VBases.count(BaseDecl) && "Did not find base offset!");
   1321   }
   1322 #endif
   1323 }
   1324 
   1325 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
   1326   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
   1327     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
   1328 
   1329     UpdateAlignment(SL.getAlignment());
   1330 
   1331     // We start laying out ivars not at the end of the superclass
   1332     // structure, but at the next byte following the last field.
   1333     setSize(SL.getDataSize());
   1334     setDataSize(getSize());
   1335   }
   1336 
   1337   InitializeLayout(D);
   1338   // Layout each ivar sequentially.
   1339   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
   1340        IVD = IVD->getNextIvar())
   1341     LayoutField(IVD, false);
   1342 
   1343   // Finally, round the size of the total struct up to the alignment of the
   1344   // struct itself.
   1345   FinishLayout(D);
   1346 }
   1347 
   1348 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
   1349   // Layout each field, for now, just sequentially, respecting alignment.  In
   1350   // the future, this will need to be tweakable by targets.
   1351   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
   1352   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
   1353   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
   1354     auto Next(I);
   1355     ++Next;
   1356     LayoutField(*I,
   1357                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
   1358   }
   1359 }
   1360 
   1361 // Rounds the specified size to have it a multiple of the char size.
   1362 static uint64_t
   1363 roundUpSizeToCharAlignment(uint64_t Size,
   1364                            const ASTContext &Context) {
   1365   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
   1366   return llvm::alignTo(Size, CharAlignment);
   1367 }
   1368 
   1369 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
   1370                                                     uint64_t TypeSize,
   1371                                                     bool FieldPacked,
   1372                                                     const FieldDecl *D) {
   1373   assert(Context.getLangOpts().CPlusPlus &&
   1374          "Can only have wide bit-fields in C++!");
   1375 
   1376   // Itanium C++ ABI 2.4:
   1377   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
   1378   //   sizeof(T')*8 <= n.
   1379 
   1380   QualType IntegralPODTypes[] = {
   1381     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
   1382     Context.UnsignedLongTy, Context.UnsignedLongLongTy
   1383   };
   1384 
   1385   QualType Type;
   1386   for (const QualType &QT : IntegralPODTypes) {
   1387     uint64_t Size = Context.getTypeSize(QT);
   1388 
   1389     if (Size > FieldSize)
   1390       break;
   1391 
   1392     Type = QT;
   1393   }
   1394   assert(!Type.isNull() && "Did not find a type!");
   1395 
   1396   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
   1397 
   1398   // We're not going to use any of the unfilled bits in the last byte.
   1399   UnfilledBitsInLastUnit = 0;
   1400   LastBitfieldTypeSize = 0;
   1401 
   1402   uint64_t FieldOffset;
   1403   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
   1404 
   1405   if (IsUnion) {
   1406     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
   1407                                                            Context);
   1408     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
   1409     FieldOffset = 0;
   1410   } else {
   1411     // The bitfield is allocated starting at the next offset aligned
   1412     // appropriately for T', with length n bits.
   1413     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
   1414 
   1415     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1416 
   1417     setDataSize(
   1418         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
   1419     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
   1420   }
   1421 
   1422   // Place this field at the current location.
   1423   FieldOffsets.push_back(FieldOffset);
   1424 
   1425   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
   1426                     Context.toBits(TypeAlign), FieldPacked, D);
   1427 
   1428   // Update the size.
   1429   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1430 
   1431   // Remember max struct/class alignment.
   1432   UpdateAlignment(TypeAlign);
   1433 }
   1434 
   1435 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
   1436   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1437   uint64_t FieldSize = D->getBitWidthValue(Context);
   1438   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
   1439   uint64_t TypeSize = FieldInfo.Width;
   1440   unsigned FieldAlign = FieldInfo.Align;
   1441 
   1442   // UnfilledBitsInLastUnit is the difference between the end of the
   1443   // last allocated bitfield (i.e. the first bit offset available for
   1444   // bitfields) and the end of the current data size in bits (i.e. the
   1445   // first bit offset available for non-bitfields).  The current data
   1446   // size in bits is always a multiple of the char size; additionally,
   1447   // for ms_struct records it's also a multiple of the
   1448   // LastBitfieldTypeSize (if set).
   1449 
   1450   // The struct-layout algorithm is dictated by the platform ABI,
   1451   // which in principle could use almost any rules it likes.  In
   1452   // practice, UNIXy targets tend to inherit the algorithm described
   1453   // in the System V generic ABI.  The basic bitfield layout rule in
   1454   // System V is to place bitfields at the next available bit offset
   1455   // where the entire bitfield would fit in an aligned storage unit of
   1456   // the declared type; it's okay if an earlier or later non-bitfield
   1457   // is allocated in the same storage unit.  However, some targets
   1458   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
   1459   // require this storage unit to be aligned, and therefore always put
   1460   // the bitfield at the next available bit offset.
   1461 
   1462   // ms_struct basically requests a complete replacement of the
   1463   // platform ABI's struct-layout algorithm, with the high-level goal
   1464   // of duplicating MSVC's layout.  For non-bitfields, this follows
   1465   // the standard algorithm.  The basic bitfield layout rule is to
   1466   // allocate an entire unit of the bitfield's declared type
   1467   // (e.g. 'unsigned long'), then parcel it up among successive
   1468   // bitfields whose declared types have the same size, making a new
   1469   // unit as soon as the last can no longer store the whole value.
   1470   // Since it completely replaces the platform ABI's algorithm,
   1471   // settings like !useBitFieldTypeAlignment() do not apply.
   1472 
   1473   // A zero-width bitfield forces the use of a new storage unit for
   1474   // later bitfields.  In general, this occurs by rounding up the
   1475   // current size of the struct as if the algorithm were about to
   1476   // place a non-bitfield of the field's formal type.  Usually this
   1477   // does not change the alignment of the struct itself, but it does
   1478   // on some targets (those that useZeroLengthBitfieldAlignment(),
   1479   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
   1480   // ignored unless they follow a non-zero-width bitfield.
   1481 
   1482   // A field alignment restriction (e.g. from #pragma pack) or
   1483   // specification (e.g. from __attribute__((aligned))) changes the
   1484   // formal alignment of the field.  For System V, this alters the
   1485   // required alignment of the notional storage unit that must contain
   1486   // the bitfield.  For ms_struct, this only affects the placement of
   1487   // new storage units.  In both cases, the effect of #pragma pack is
   1488   // ignored on zero-width bitfields.
   1489 
   1490   // On System V, a packed field (e.g. from #pragma pack or
   1491   // __attribute__((packed))) always uses the next available bit
   1492   // offset.
   1493 
   1494   // In an ms_struct struct, the alignment of a fundamental type is
   1495   // always equal to its size.  This is necessary in order to mimic
   1496   // the i386 alignment rules on targets which might not fully align
   1497   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
   1498 
   1499   // First, some simple bookkeeping to perform for ms_struct structs.
   1500   if (IsMsStruct) {
   1501     // The field alignment for integer types is always the size.
   1502     FieldAlign = TypeSize;
   1503 
   1504     // If the previous field was not a bitfield, or was a bitfield
   1505     // with a different storage unit size, we're done with that
   1506     // storage unit.
   1507     if (LastBitfieldTypeSize != TypeSize) {
   1508       // Also, ignore zero-length bitfields after non-bitfields.
   1509       if (!LastBitfieldTypeSize && !FieldSize)
   1510         FieldAlign = 1;
   1511 
   1512       UnfilledBitsInLastUnit = 0;
   1513       LastBitfieldTypeSize = 0;
   1514     }
   1515   }
   1516 
   1517   // If the field is wider than its declared type, it follows
   1518   // different rules in all cases.
   1519   if (FieldSize > TypeSize) {
   1520     LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
   1521     return;
   1522   }
   1523 
   1524   // Compute the next available bit offset.
   1525   uint64_t FieldOffset =
   1526     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
   1527 
   1528   // Handle targets that don't honor bitfield type alignment.
   1529   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
   1530     // Some such targets do honor it on zero-width bitfields.
   1531     if (FieldSize == 0 &&
   1532         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
   1533       // The alignment to round up to is the max of the field's natural
   1534       // alignment and a target-specific fixed value (sometimes zero).
   1535       unsigned ZeroLengthBitfieldBoundary =
   1536         Context.getTargetInfo().getZeroLengthBitfieldBoundary();
   1537       FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
   1538 
   1539     // If that doesn't apply, just ignore the field alignment.
   1540     } else {
   1541       FieldAlign = 1;
   1542     }
   1543   }
   1544 
   1545   // Remember the alignment we would have used if the field were not packed.
   1546   unsigned UnpackedFieldAlign = FieldAlign;
   1547 
   1548   // Ignore the field alignment if the field is packed unless it has zero-size.
   1549   if (!IsMsStruct && FieldPacked && FieldSize != 0)
   1550     FieldAlign = 1;
   1551 
   1552   // But, if there's an 'aligned' attribute on the field, honor that.
   1553   unsigned ExplicitFieldAlign = D->getMaxAlignment();
   1554   if (ExplicitFieldAlign) {
   1555     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
   1556     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
   1557   }
   1558 
   1559   // But, if there's a #pragma pack in play, that takes precedent over
   1560   // even the 'aligned' attribute, for non-zero-width bitfields.
   1561   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
   1562   if (!MaxFieldAlignment.isZero() && FieldSize) {
   1563     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
   1564     if (FieldPacked)
   1565       FieldAlign = UnpackedFieldAlign;
   1566     else
   1567       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
   1568   }
   1569 
   1570   // But, ms_struct just ignores all of that in unions, even explicit
   1571   // alignment attributes.
   1572   if (IsMsStruct && IsUnion) {
   1573     FieldAlign = UnpackedFieldAlign = 1;
   1574   }
   1575 
   1576   // For purposes of diagnostics, we're going to simultaneously
   1577   // compute the field offsets that we would have used if we weren't
   1578   // adding any alignment padding or if the field weren't packed.
   1579   uint64_t UnpaddedFieldOffset = FieldOffset;
   1580   uint64_t UnpackedFieldOffset = FieldOffset;
   1581 
   1582   // Check if we need to add padding to fit the bitfield within an
   1583   // allocation unit with the right size and alignment.  The rules are
   1584   // somewhat different here for ms_struct structs.
   1585   if (IsMsStruct) {
   1586     // If it's not a zero-width bitfield, and we can fit the bitfield
   1587     // into the active storage unit (and we haven't already decided to
   1588     // start a new storage unit), just do so, regardless of any other
   1589     // other consideration.  Otherwise, round up to the right alignment.
   1590     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
   1591       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
   1592       UnpackedFieldOffset =
   1593           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
   1594       UnfilledBitsInLastUnit = 0;
   1595     }
   1596 
   1597   } else {
   1598     // #pragma pack, with any value, suppresses the insertion of padding.
   1599     bool AllowPadding = MaxFieldAlignment.isZero();
   1600 
   1601     // Compute the real offset.
   1602     if (FieldSize == 0 ||
   1603         (AllowPadding &&
   1604          (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
   1605       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
   1606     } else if (ExplicitFieldAlign &&
   1607                (MaxFieldAlignmentInBits == 0 ||
   1608                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
   1609                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
   1610       // TODO: figure it out what needs to be done on targets that don't honor
   1611       // bit-field type alignment like ARM APCS ABI.
   1612       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
   1613     }
   1614 
   1615     // Repeat the computation for diagnostic purposes.
   1616     if (FieldSize == 0 ||
   1617         (AllowPadding &&
   1618          (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
   1619       UnpackedFieldOffset =
   1620           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
   1621     else if (ExplicitFieldAlign &&
   1622              (MaxFieldAlignmentInBits == 0 ||
   1623               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
   1624              Context.getTargetInfo().useExplicitBitFieldAlignment())
   1625       UnpackedFieldOffset =
   1626           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
   1627   }
   1628 
   1629   // If we're using external layout, give the external layout a chance
   1630   // to override this information.
   1631   if (UseExternalLayout)
   1632     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
   1633 
   1634   // Okay, place the bitfield at the calculated offset.
   1635   FieldOffsets.push_back(FieldOffset);
   1636 
   1637   // Bookkeeping:
   1638 
   1639   // Anonymous members don't affect the overall record alignment,
   1640   // except on targets where they do.
   1641   if (!IsMsStruct &&
   1642       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
   1643       !D->getIdentifier())
   1644     FieldAlign = UnpackedFieldAlign = 1;
   1645 
   1646   // Diagnose differences in layout due to padding or packing.
   1647   if (!UseExternalLayout)
   1648     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
   1649                       UnpackedFieldAlign, FieldPacked, D);
   1650 
   1651   // Update DataSize to include the last byte containing (part of) the bitfield.
   1652 
   1653   // For unions, this is just a max operation, as usual.
   1654   if (IsUnion) {
   1655     // For ms_struct, allocate the entire storage unit --- unless this
   1656     // is a zero-width bitfield, in which case just use a size of 1.
   1657     uint64_t RoundedFieldSize;
   1658     if (IsMsStruct) {
   1659       RoundedFieldSize =
   1660         (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
   1661 
   1662     // Otherwise, allocate just the number of bytes required to store
   1663     // the bitfield.
   1664     } else {
   1665       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
   1666     }
   1667     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
   1668 
   1669   // For non-zero-width bitfields in ms_struct structs, allocate a new
   1670   // storage unit if necessary.
   1671   } else if (IsMsStruct && FieldSize) {
   1672     // We should have cleared UnfilledBitsInLastUnit in every case
   1673     // where we changed storage units.
   1674     if (!UnfilledBitsInLastUnit) {
   1675       setDataSize(FieldOffset + TypeSize);
   1676       UnfilledBitsInLastUnit = TypeSize;
   1677     }
   1678     UnfilledBitsInLastUnit -= FieldSize;
   1679     LastBitfieldTypeSize = TypeSize;
   1680 
   1681   // Otherwise, bump the data size up to include the bitfield,
   1682   // including padding up to char alignment, and then remember how
   1683   // bits we didn't use.
   1684   } else {
   1685     uint64_t NewSizeInBits = FieldOffset + FieldSize;
   1686     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
   1687     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
   1688     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
   1689 
   1690     // The only time we can get here for an ms_struct is if this is a
   1691     // zero-width bitfield, which doesn't count as anything for the
   1692     // purposes of unfilled bits.
   1693     LastBitfieldTypeSize = 0;
   1694   }
   1695 
   1696   // Update the size.
   1697   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1698 
   1699   // Remember max struct/class alignment.
   1700   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
   1701                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
   1702 }
   1703 
   1704 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
   1705                                              bool InsertExtraPadding) {
   1706   if (D->isBitField()) {
   1707     LayoutBitField(D);
   1708     return;
   1709   }
   1710 
   1711   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
   1712 
   1713   // Reset the unfilled bits.
   1714   UnfilledBitsInLastUnit = 0;
   1715   LastBitfieldTypeSize = 0;
   1716 
   1717   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
   1718   CharUnits FieldOffset =
   1719     IsUnion ? CharUnits::Zero() : getDataSize();
   1720   CharUnits FieldSize;
   1721   CharUnits FieldAlign;
   1722 
   1723   if (D->getType()->isIncompleteArrayType()) {
   1724     // This is a flexible array member; we can't directly
   1725     // query getTypeInfo about these, so we figure it out here.
   1726     // Flexible array members don't have any size, but they
   1727     // have to be aligned appropriately for their element type.
   1728     FieldSize = CharUnits::Zero();
   1729     const ArrayType* ATy = Context.getAsArrayType(D->getType());
   1730     FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
   1731   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
   1732     unsigned AS = RT->getPointeeType().getAddressSpace();
   1733     FieldSize =
   1734       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
   1735     FieldAlign =
   1736       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
   1737   } else {
   1738     std::pair<CharUnits, CharUnits> FieldInfo =
   1739       Context.getTypeInfoInChars(D->getType());
   1740     FieldSize = FieldInfo.first;
   1741     FieldAlign = FieldInfo.second;
   1742 
   1743     if (IsMsStruct) {
   1744       // If MS bitfield layout is required, figure out what type is being
   1745       // laid out and align the field to the width of that type.
   1746 
   1747       // Resolve all typedefs down to their base type and round up the field
   1748       // alignment if necessary.
   1749       QualType T = Context.getBaseElementType(D->getType());
   1750       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
   1751         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
   1752         if (TypeSize > FieldAlign)
   1753           FieldAlign = TypeSize;
   1754       }
   1755     }
   1756   }
   1757 
   1758   // The align if the field is not packed. This is to check if the attribute
   1759   // was unnecessary (-Wpacked).
   1760   CharUnits UnpackedFieldAlign = FieldAlign;
   1761   CharUnits UnpackedFieldOffset = FieldOffset;
   1762 
   1763   if (FieldPacked)
   1764     FieldAlign = CharUnits::One();
   1765   CharUnits MaxAlignmentInChars =
   1766     Context.toCharUnitsFromBits(D->getMaxAlignment());
   1767   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
   1768   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
   1769 
   1770   // The maximum field alignment overrides the aligned attribute.
   1771   if (!MaxFieldAlignment.isZero()) {
   1772     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
   1773     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
   1774   }
   1775 
   1776   // Round up the current record size to the field's alignment boundary.
   1777   FieldOffset = FieldOffset.alignTo(FieldAlign);
   1778   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
   1779 
   1780   if (UseExternalLayout) {
   1781     FieldOffset = Context.toCharUnitsFromBits(
   1782                     updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
   1783 
   1784     if (!IsUnion && EmptySubobjects) {
   1785       // Record the fact that we're placing a field at this offset.
   1786       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
   1787       (void)Allowed;
   1788       assert(Allowed && "Externally-placed field cannot be placed here");
   1789     }
   1790   } else {
   1791     if (!IsUnion && EmptySubobjects) {
   1792       // Check if we can place the field at this offset.
   1793       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
   1794         // We couldn't place the field at the offset. Try again at a new offset.
   1795         FieldOffset += FieldAlign;
   1796       }
   1797     }
   1798   }
   1799 
   1800   // Place this field at the current location.
   1801   FieldOffsets.push_back(Context.toBits(FieldOffset));
   1802 
   1803   if (!UseExternalLayout)
   1804     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
   1805                       Context.toBits(UnpackedFieldOffset),
   1806                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
   1807 
   1808   if (InsertExtraPadding) {
   1809     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
   1810     CharUnits ExtraSizeForAsan = ASanAlignment;
   1811     if (FieldSize % ASanAlignment)
   1812       ExtraSizeForAsan +=
   1813           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
   1814     FieldSize += ExtraSizeForAsan;
   1815   }
   1816 
   1817   // Reserve space for this field.
   1818   uint64_t FieldSizeInBits = Context.toBits(FieldSize);
   1819   if (IsUnion)
   1820     setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
   1821   else
   1822     setDataSize(FieldOffset + FieldSize);
   1823 
   1824   // Update the size.
   1825   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
   1826 
   1827   // Remember max struct/class alignment.
   1828   UpdateAlignment(FieldAlign, UnpackedFieldAlign);
   1829 }
   1830 
   1831 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
   1832   // In C++, records cannot be of size 0.
   1833   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
   1834     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
   1835       // Compatibility with gcc requires a class (pod or non-pod)
   1836       // which is not empty but of size 0; such as having fields of
   1837       // array of zero-length, remains of Size 0
   1838       if (RD->isEmpty())
   1839         setSize(CharUnits::One());
   1840     }
   1841     else
   1842       setSize(CharUnits::One());
   1843   }
   1844 
   1845   // Finally, round the size of the record up to the alignment of the
   1846   // record itself.
   1847   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
   1848   uint64_t UnpackedSizeInBits =
   1849       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
   1850   CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
   1851   uint64_t RoundedSize =
   1852       llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));
   1853 
   1854   if (UseExternalLayout) {
   1855     // If we're inferring alignment, and the external size is smaller than
   1856     // our size after we've rounded up to alignment, conservatively set the
   1857     // alignment to 1.
   1858     if (InferAlignment && External.Size < RoundedSize) {
   1859       Alignment = CharUnits::One();
   1860       InferAlignment = false;
   1861     }
   1862     setSize(External.Size);
   1863     return;
   1864   }
   1865 
   1866   // Set the size to the final size.
   1867   setSize(RoundedSize);
   1868 
   1869   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   1870   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
   1871     // Warn if padding was introduced to the struct/class/union.
   1872     if (getSizeInBits() > UnpaddedSize) {
   1873       unsigned PadSize = getSizeInBits() - UnpaddedSize;
   1874       bool InBits = true;
   1875       if (PadSize % CharBitNum == 0) {
   1876         PadSize = PadSize / CharBitNum;
   1877         InBits = false;
   1878       }
   1879       Diag(RD->getLocation(), diag::warn_padded_struct_size)
   1880           << Context.getTypeDeclType(RD)
   1881           << PadSize
   1882           << (InBits ? 1 : 0); // (byte|bit)
   1883     }
   1884 
   1885     // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   1886     // bother since there won't be alignment issues.
   1887     if (Packed && UnpackedAlignment > CharUnits::One() &&
   1888         getSize() == UnpackedSize)
   1889       Diag(D->getLocation(), diag::warn_unnecessary_packed)
   1890           << Context.getTypeDeclType(RD);
   1891   }
   1892 }
   1893 
   1894 void ItaniumRecordLayoutBuilder::UpdateAlignment(
   1895     CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
   1896   // The alignment is not modified when using 'mac68k' alignment or when
   1897   // we have an externally-supplied layout that also provides overall alignment.
   1898   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
   1899     return;
   1900 
   1901   if (NewAlignment > Alignment) {
   1902     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
   1903            "Alignment not a power of 2");
   1904     Alignment = NewAlignment;
   1905   }
   1906 
   1907   if (UnpackedNewAlignment > UnpackedAlignment) {
   1908     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
   1909            "Alignment not a power of 2");
   1910     UnpackedAlignment = UnpackedNewAlignment;
   1911   }
   1912 }
   1913 
   1914 uint64_t
   1915 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
   1916                                                       uint64_t ComputedOffset) {
   1917   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
   1918 
   1919   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
   1920     // The externally-supplied field offset is before the field offset we
   1921     // computed. Assume that the structure is packed.
   1922     Alignment = CharUnits::One();
   1923     InferAlignment = false;
   1924   }
   1925 
   1926   // Use the externally-supplied field offset.
   1927   return ExternalFieldOffset;
   1928 }
   1929 
   1930 /// \brief Get diagnostic %select index for tag kind for
   1931 /// field padding diagnostic message.
   1932 /// WARNING: Indexes apply to particular diagnostics only!
   1933 ///
   1934 /// \returns diagnostic %select index.
   1935 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
   1936   switch (Tag) {
   1937   case TTK_Struct: return 0;
   1938   case TTK_Interface: return 1;
   1939   case TTK_Class: return 2;
   1940   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
   1941   }
   1942 }
   1943 
   1944 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
   1945     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
   1946     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
   1947   // We let objc ivars without warning, objc interfaces generally are not used
   1948   // for padding tricks.
   1949   if (isa<ObjCIvarDecl>(D))
   1950     return;
   1951 
   1952   // Don't warn about structs created without a SourceLocation.  This can
   1953   // be done by clients of the AST, such as codegen.
   1954   if (D->getLocation().isInvalid())
   1955     return;
   1956 
   1957   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
   1958 
   1959   // Warn if padding was introduced to the struct/class.
   1960   if (!IsUnion && Offset > UnpaddedOffset) {
   1961     unsigned PadSize = Offset - UnpaddedOffset;
   1962     bool InBits = true;
   1963     if (PadSize % CharBitNum == 0) {
   1964       PadSize = PadSize / CharBitNum;
   1965       InBits = false;
   1966     }
   1967     if (D->getIdentifier())
   1968       Diag(D->getLocation(), diag::warn_padded_struct_field)
   1969           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   1970           << Context.getTypeDeclType(D->getParent())
   1971           << PadSize
   1972           << (InBits ? 1 : 0) // (byte|bit)
   1973           << D->getIdentifier();
   1974     else
   1975       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
   1976           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
   1977           << Context.getTypeDeclType(D->getParent())
   1978           << PadSize
   1979           << (InBits ? 1 : 0); // (byte|bit)
   1980   }
   1981 
   1982   // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
   1983   // bother since there won't be alignment issues.
   1984   if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
   1985     Diag(D->getLocation(), diag::warn_unnecessary_packed)
   1986         << D->getIdentifier();
   1987 }
   1988 
   1989 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
   1990                                                const CXXRecordDecl *RD) {
   1991   // If a class isn't polymorphic it doesn't have a key function.
   1992   if (!RD->isPolymorphic())
   1993     return nullptr;
   1994 
   1995   // A class that is not externally visible doesn't have a key function. (Or
   1996   // at least, there's no point to assigning a key function to such a class;
   1997   // this doesn't affect the ABI.)
   1998   if (!RD->isExternallyVisible())
   1999     return nullptr;
   2000 
   2001   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
   2002   // Same behavior as GCC.
   2003   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
   2004   if (TSK == TSK_ImplicitInstantiation ||
   2005       TSK == TSK_ExplicitInstantiationDeclaration ||
   2006       TSK == TSK_ExplicitInstantiationDefinition)
   2007     return nullptr;
   2008 
   2009   bool allowInlineFunctions =
   2010     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
   2011 
   2012   for (const CXXMethodDecl *MD : RD->methods()) {
   2013     if (!MD->isVirtual())
   2014       continue;
   2015 
   2016     if (MD->isPure())
   2017       continue;
   2018 
   2019     // Ignore implicit member functions, they are always marked as inline, but
   2020     // they don't have a body until they're defined.
   2021     if (MD->isImplicit())
   2022       continue;
   2023 
   2024     if (MD->isInlineSpecified())
   2025       continue;
   2026 
   2027     if (MD->hasInlineBody())
   2028       continue;
   2029 
   2030     // Ignore inline deleted or defaulted functions.
   2031     if (!MD->isUserProvided())
   2032       continue;
   2033 
   2034     // In certain ABIs, ignore functions with out-of-line inline definitions.
   2035     if (!allowInlineFunctions) {
   2036       const FunctionDecl *Def;
   2037       if (MD->hasBody(Def) && Def->isInlineSpecified())
   2038         continue;
   2039     }
   2040 
   2041     if (Context.getLangOpts().CUDA) {
   2042       // While compiler may see key method in this TU, during CUDA
   2043       // compilation we should ignore methods that are not accessible
   2044       // on this side of compilation.
   2045       if (Context.getLangOpts().CUDAIsDevice) {
   2046         // In device mode ignore methods without __device__ attribute.
   2047         if (!MD->hasAttr<CUDADeviceAttr>())
   2048           continue;
   2049       } else {
   2050         // In host mode ignore __device__-only methods.
   2051         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
   2052           continue;
   2053       }
   2054     }
   2055 
   2056     // If the key function is dllimport but the class isn't, then the class has
   2057     // no key function. The DLL that exports the key function won't export the
   2058     // vtable in this case.
   2059     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
   2060       return nullptr;
   2061 
   2062     // We found it.
   2063     return MD;
   2064   }
   2065 
   2066   return nullptr;
   2067 }
   2068 
   2069 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
   2070                                                    unsigned DiagID) {
   2071   return Context.getDiagnostics().Report(Loc, DiagID);
   2072 }
   2073 
   2074 /// Does the target C++ ABI require us to skip over the tail-padding
   2075 /// of the given class (considering it as a base class) when allocating
   2076 /// objects?
   2077 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
   2078   switch (ABI.getTailPaddingUseRules()) {
   2079   case TargetCXXABI::AlwaysUseTailPadding:
   2080     return false;
   2081 
   2082   case TargetCXXABI::UseTailPaddingUnlessPOD03:
   2083     // FIXME: To the extent that this is meant to cover the Itanium ABI
   2084     // rules, we should implement the restrictions about over-sized
   2085     // bitfields:
   2086     //
   2087     // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
   2088     //   In general, a type is considered a POD for the purposes of
   2089     //   layout if it is a POD type (in the sense of ISO C++
   2090     //   [basic.types]). However, a POD-struct or POD-union (in the
   2091     //   sense of ISO C++ [class]) with a bitfield member whose
   2092     //   declared width is wider than the declared type of the
   2093     //   bitfield is not a POD for the purpose of layout.  Similarly,
   2094     //   an array type is not a POD for the purpose of layout if the
   2095     //   element type of the array is not a POD for the purpose of
   2096     //   layout.
   2097     //
   2098     //   Where references to the ISO C++ are made in this paragraph,
   2099     //   the Technical Corrigendum 1 version of the standard is
   2100     //   intended.
   2101     return RD->isPOD();
   2102 
   2103   case TargetCXXABI::UseTailPaddingUnlessPOD11:
   2104     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
   2105     // but with a lot of abstraction penalty stripped off.  This does
   2106     // assume that these properties are set correctly even in C++98
   2107     // mode; fortunately, that is true because we want to assign
   2108     // consistently semantics to the type-traits intrinsics (or at
   2109     // least as many of them as possible).
   2110     return RD->isTrivial() && RD->isStandardLayout();
   2111   }
   2112 
   2113   llvm_unreachable("bad tail-padding use kind");
   2114 }
   2115 
   2116 static bool isMsLayout(const ASTContext &Context) {
   2117   return Context.getTargetInfo().getCXXABI().isMicrosoft();
   2118 }
   2119 
   2120 // This section contains an implementation of struct layout that is, up to the
   2121 // included tests, compatible with cl.exe (2013).  The layout produced is
   2122 // significantly different than those produced by the Itanium ABI.  Here we note
   2123 // the most important differences.
   2124 //
   2125 // * The alignment of bitfields in unions is ignored when computing the
   2126 //   alignment of the union.
   2127 // * The existence of zero-width bitfield that occurs after anything other than
   2128 //   a non-zero length bitfield is ignored.
   2129 // * There is no explicit primary base for the purposes of layout.  All bases
   2130 //   with vfptrs are laid out first, followed by all bases without vfptrs.
   2131 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
   2132 //   function pointer) and a vbptr (virtual base pointer).  They can each be
   2133 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
   2134 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
   2135 //   placed after the lexicographically last non-virtual base.  This placement
   2136 //   is always before fields but can be in the middle of the non-virtual bases
   2137 //   due to the two-pass layout scheme for non-virtual-bases.
   2138 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
   2139 //   the virtual base and is used in conjunction with virtual overrides during
   2140 //   construction and destruction.  This is always a 4 byte value and is used as
   2141 //   an alternative to constructor vtables.
   2142 // * vtordisps are allocated in a block of memory with size and alignment equal
   2143 //   to the alignment of the completed structure (before applying __declspec(
   2144 //   align())).  The vtordisp always occur at the end of the allocation block,
   2145 //   immediately prior to the virtual base.
   2146 // * vfptrs are injected after all bases and fields have been laid out.  In
   2147 //   order to guarantee proper alignment of all fields, the vfptr injection
   2148 //   pushes all bases and fields back by the alignment imposed by those bases
   2149 //   and fields.  This can potentially add a significant amount of padding.
   2150 //   vfptrs are always injected at offset 0.
   2151 // * vbptrs are injected after all bases and fields have been laid out.  In
   2152 //   order to guarantee proper alignment of all fields, the vfptr injection
   2153 //   pushes all bases and fields back by the alignment imposed by those bases
   2154 //   and fields.  This can potentially add a significant amount of padding.
   2155 //   vbptrs are injected immediately after the last non-virtual base as
   2156 //   lexicographically ordered in the code.  If this site isn't pointer aligned
   2157 //   the vbptr is placed at the next properly aligned location.  Enough padding
   2158 //   is added to guarantee a fit.
   2159 // * The last zero sized non-virtual base can be placed at the end of the
   2160 //   struct (potentially aliasing another object), or may alias with the first
   2161 //   field, even if they are of the same type.
   2162 // * The last zero size virtual base may be placed at the end of the struct
   2163 //   potentially aliasing another object.
   2164 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
   2165 //   between bases or vbases with specific properties.  The criteria for
   2166 //   additional padding between two bases is that the first base is zero sized
   2167 //   or ends with a zero sized subobject and the second base is zero sized or
   2168 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
   2169 //   layout of the so the leading base is not always the first one declared).
   2170 //   This rule does take into account fields that are not records, so padding
   2171 //   will occur even if the last field is, e.g. an int. The padding added for
   2172 //   bases is 1 byte.  The padding added between vbases depends on the alignment
   2173 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
   2174 // * There is no concept of non-virtual alignment, non-virtual alignment and
   2175 //   alignment are always identical.
   2176 // * There is a distinction between alignment and required alignment.
   2177 //   __declspec(align) changes the required alignment of a struct.  This
   2178 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
   2179 //   record inherits required alignment from all of its fields and bases.
   2180 // * __declspec(align) on bitfields has the effect of changing the bitfield's
   2181 //   alignment instead of its required alignment.  This is the only known way
   2182 //   to make the alignment of a struct bigger than 8.  Interestingly enough
   2183 //   this alignment is also immune to the effects of #pragma pack and can be
   2184 //   used to create structures with large alignment under #pragma pack.
   2185 //   However, because it does not impact required alignment, such a structure,
   2186 //   when used as a field or base, will not be aligned if #pragma pack is
   2187 //   still active at the time of use.
   2188 //
   2189 // Known incompatibilities:
   2190 // * all: #pragma pack between fields in a record
   2191 // * 2010 and back: If the last field in a record is a bitfield, every object
   2192 //   laid out after the record will have extra padding inserted before it.  The
   2193 //   extra padding will have size equal to the size of the storage class of the
   2194 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
   2195 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
   2196 //   sized bitfield.
   2197 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
   2198 //   greater due to __declspec(align()) then a second layout phase occurs after
   2199 //   The locations of the vf and vb pointers are known.  This layout phase
   2200 //   suffers from the "last field is a bitfield" bug in 2010 and results in
   2201 //   _every_ field getting padding put in front of it, potentially including the
   2202 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
   2203 //   anything tries to read the vftbl.  The second layout phase also treats
   2204 //   bitfields as separate entities and gives them each storage rather than
   2205 //   packing them.  Additionally, because this phase appears to perform a
   2206 //   (an unstable) sort on the members before laying them out and because merged
   2207 //   bitfields have the same address, the bitfields end up in whatever order
   2208 //   the sort left them in, a behavior we could never hope to replicate.
   2209 
   2210 namespace {
   2211 struct MicrosoftRecordLayoutBuilder {
   2212   struct ElementInfo {
   2213     CharUnits Size;
   2214     CharUnits Alignment;
   2215   };
   2216   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
   2217   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
   2218 private:
   2219   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
   2220   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
   2221 public:
   2222   void layout(const RecordDecl *RD);
   2223   void cxxLayout(const CXXRecordDecl *RD);
   2224   /// \brief Initializes size and alignment and honors some flags.
   2225   void initializeLayout(const RecordDecl *RD);
   2226   /// \brief Initialized C++ layout, compute alignment and virtual alignment and
   2227   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
   2228   /// laid out.
   2229   void initializeCXXLayout(const CXXRecordDecl *RD);
   2230   void layoutNonVirtualBases(const CXXRecordDecl *RD);
   2231   void layoutNonVirtualBase(const CXXRecordDecl *RD,
   2232                             const CXXRecordDecl *BaseDecl,
   2233                             const ASTRecordLayout &BaseLayout,
   2234                             const ASTRecordLayout *&PreviousBaseLayout);
   2235   void injectVFPtr(const CXXRecordDecl *RD);
   2236   void injectVBPtr(const CXXRecordDecl *RD);
   2237   /// \brief Lays out the fields of the record.  Also rounds size up to
   2238   /// alignment.
   2239   void layoutFields(const RecordDecl *RD);
   2240   void layoutField(const FieldDecl *FD);
   2241   void layoutBitField(const FieldDecl *FD);
   2242   /// \brief Lays out a single zero-width bit-field in the record and handles
   2243   /// special cases associated with zero-width bit-fields.
   2244   void layoutZeroWidthBitField(const FieldDecl *FD);
   2245   void layoutVirtualBases(const CXXRecordDecl *RD);
   2246   void finalizeLayout(const RecordDecl *RD);
   2247   /// \brief Gets the size and alignment of a base taking pragma pack and
   2248   /// __declspec(align) into account.
   2249   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
   2250   /// \brief Gets the size and alignment of a field taking pragma  pack and
   2251   /// __declspec(align) into account.  It also updates RequiredAlignment as a
   2252   /// side effect because it is most convenient to do so here.
   2253   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
   2254   /// \brief Places a field at an offset in CharUnits.
   2255   void placeFieldAtOffset(CharUnits FieldOffset) {
   2256     FieldOffsets.push_back(Context.toBits(FieldOffset));
   2257   }
   2258   /// \brief Places a bitfield at a bit offset.
   2259   void placeFieldAtBitOffset(uint64_t FieldOffset) {
   2260     FieldOffsets.push_back(FieldOffset);
   2261   }
   2262   /// \brief Compute the set of virtual bases for which vtordisps are required.
   2263   void computeVtorDispSet(
   2264       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
   2265       const CXXRecordDecl *RD) const;
   2266   const ASTContext &Context;
   2267   /// \brief The size of the record being laid out.
   2268   CharUnits Size;
   2269   /// \brief The non-virtual size of the record layout.
   2270   CharUnits NonVirtualSize;
   2271   /// \brief The data size of the record layout.
   2272   CharUnits DataSize;
   2273   /// \brief The current alignment of the record layout.
   2274   CharUnits Alignment;
   2275   /// \brief The maximum allowed field alignment. This is set by #pragma pack.
   2276   CharUnits MaxFieldAlignment;
   2277   /// \brief The alignment that this record must obey.  This is imposed by
   2278   /// __declspec(align()) on the record itself or one of its fields or bases.
   2279   CharUnits RequiredAlignment;
   2280   /// \brief The size of the allocation of the currently active bitfield.
   2281   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
   2282   /// is true.
   2283   CharUnits CurrentBitfieldSize;
   2284   /// \brief Offset to the virtual base table pointer (if one exists).
   2285   CharUnits VBPtrOffset;
   2286   /// \brief Minimum record size possible.
   2287   CharUnits MinEmptyStructSize;
   2288   /// \brief The size and alignment info of a pointer.
   2289   ElementInfo PointerInfo;
   2290   /// \brief The primary base class (if one exists).
   2291   const CXXRecordDecl *PrimaryBase;
   2292   /// \brief The class we share our vb-pointer with.
   2293   const CXXRecordDecl *SharedVBPtrBase;
   2294   /// \brief The collection of field offsets.
   2295   SmallVector<uint64_t, 16> FieldOffsets;
   2296   /// \brief Base classes and their offsets in the record.
   2297   BaseOffsetsMapTy Bases;
   2298   /// \brief virtual base classes and their offsets in the record.
   2299   ASTRecordLayout::VBaseOffsetsMapTy VBases;
   2300   /// \brief The number of remaining bits in our last bitfield allocation.
   2301   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
   2302   /// true.
   2303   unsigned RemainingBitsInField;
   2304   bool IsUnion : 1;
   2305   /// \brief True if the last field laid out was a bitfield and was not 0
   2306   /// width.
   2307   bool LastFieldIsNonZeroWidthBitfield : 1;
   2308   /// \brief True if the class has its own vftable pointer.
   2309   bool HasOwnVFPtr : 1;
   2310   /// \brief True if the class has a vbtable pointer.
   2311   bool HasVBPtr : 1;
   2312   /// \brief True if the last sub-object within the type is zero sized or the
   2313   /// object itself is zero sized.  This *does not* count members that are not
   2314   /// records.  Only used for MS-ABI.
   2315   bool EndsWithZeroSizedObject : 1;
   2316   /// \brief True if this class is zero sized or first base is zero sized or
   2317   /// has this property.  Only used for MS-ABI.
   2318   bool LeadsWithZeroSizedBase : 1;
   2319 
   2320   /// \brief True if the external AST source provided a layout for this record.
   2321   bool UseExternalLayout : 1;
   2322 
   2323   /// \brief The layout provided by the external AST source. Only active if
   2324   /// UseExternalLayout is true.
   2325   ExternalLayout External;
   2326 };
   2327 } // namespace
   2328 
   2329 MicrosoftRecordLayoutBuilder::ElementInfo
   2330 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
   2331     const ASTRecordLayout &Layout) {
   2332   ElementInfo Info;
   2333   Info.Alignment = Layout.getAlignment();
   2334   // Respect pragma pack.
   2335   if (!MaxFieldAlignment.isZero())
   2336     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
   2337   // Track zero-sized subobjects here where it's already available.
   2338   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
   2339   // Respect required alignment, this is necessary because we may have adjusted
   2340   // the alignment in the case of pragam pack.  Note that the required alignment
   2341   // doesn't actually apply to the struct alignment at this point.
   2342   Alignment = std::max(Alignment, Info.Alignment);
   2343   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
   2344   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
   2345   Info.Size = Layout.getNonVirtualSize();
   2346   return Info;
   2347 }
   2348 
   2349 MicrosoftRecordLayoutBuilder::ElementInfo
   2350 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
   2351     const FieldDecl *FD) {
   2352   // Get the alignment of the field type's natural alignment, ignore any
   2353   // alignment attributes.
   2354   ElementInfo Info;
   2355   std::tie(Info.Size, Info.Alignment) =
   2356       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
   2357   // Respect align attributes on the field.
   2358   CharUnits FieldRequiredAlignment =
   2359       Context.toCharUnitsFromBits(FD->getMaxAlignment());
   2360   // Respect align attributes on the type.
   2361   if (Context.isAlignmentRequired(FD->getType()))
   2362     FieldRequiredAlignment = std::max(
   2363         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
   2364   // Respect attributes applied to subobjects of the field.
   2365   if (FD->isBitField())
   2366     // For some reason __declspec align impacts alignment rather than required
   2367     // alignment when it is applied to bitfields.
   2368     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
   2369   else {
   2370     if (auto RT =
   2371             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
   2372       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
   2373       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
   2374       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
   2375                                         Layout.getRequiredAlignment());
   2376     }
   2377     // Capture required alignment as a side-effect.
   2378     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
   2379   }
   2380   // Respect pragma pack, attribute pack and declspec align
   2381   if (!MaxFieldAlignment.isZero())
   2382     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
   2383   if (FD->hasAttr<PackedAttr>())
   2384     Info.Alignment = CharUnits::One();
   2385   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
   2386   return Info;
   2387 }
   2388 
   2389 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
   2390   // For C record layout, zero-sized records always have size 4.
   2391   MinEmptyStructSize = CharUnits::fromQuantity(4);
   2392   initializeLayout(RD);
   2393   layoutFields(RD);
   2394   DataSize = Size = Size.alignTo(Alignment);
   2395   RequiredAlignment = std::max(
   2396       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
   2397   finalizeLayout(RD);
   2398 }
   2399 
   2400 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
   2401   // The C++ standard says that empty structs have size 1.
   2402   MinEmptyStructSize = CharUnits::One();
   2403   initializeLayout(RD);
   2404   initializeCXXLayout(RD);
   2405   layoutNonVirtualBases(RD);
   2406   layoutFields(RD);
   2407   injectVBPtr(RD);
   2408   injectVFPtr(RD);
   2409   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
   2410     Alignment = std::max(Alignment, PointerInfo.Alignment);
   2411   auto RoundingAlignment = Alignment;
   2412   if (!MaxFieldAlignment.isZero())
   2413     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
   2414   NonVirtualSize = Size = Size.alignTo(RoundingAlignment);
   2415   RequiredAlignment = std::max(
   2416       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
   2417   layoutVirtualBases(RD);
   2418   finalizeLayout(RD);
   2419 }
   2420 
   2421 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
   2422   IsUnion = RD->isUnion();
   2423   Size = CharUnits::Zero();
   2424   Alignment = CharUnits::One();
   2425   // In 64-bit mode we always perform an alignment step after laying out vbases.
   2426   // In 32-bit mode we do not.  The check to see if we need to perform alignment
   2427   // checks the RequiredAlignment field and performs alignment if it isn't 0.
   2428   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
   2429                           ? CharUnits::One()
   2430                           : CharUnits::Zero();
   2431   // Compute the maximum field alignment.
   2432   MaxFieldAlignment = CharUnits::Zero();
   2433   // Honor the default struct packing maximum alignment flag.
   2434   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
   2435       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
   2436   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
   2437   // than the pointer size.
   2438   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
   2439     unsigned PackedAlignment = MFAA->getAlignment();
   2440     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
   2441       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
   2442   }
   2443   // Packed attribute forces max field alignment to be 1.
   2444   if (RD->hasAttr<PackedAttr>())
   2445     MaxFieldAlignment = CharUnits::One();
   2446 
   2447   // Try to respect the external layout if present.
   2448   UseExternalLayout = false;
   2449   if (ExternalASTSource *Source = Context.getExternalSource())
   2450     UseExternalLayout = Source->layoutRecordType(
   2451         RD, External.Size, External.Align, External.FieldOffsets,
   2452         External.BaseOffsets, External.VirtualBaseOffsets);
   2453 }
   2454 
   2455 void
   2456 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
   2457   EndsWithZeroSizedObject = false;
   2458   LeadsWithZeroSizedBase = false;
   2459   HasOwnVFPtr = false;
   2460   HasVBPtr = false;
   2461   PrimaryBase = nullptr;
   2462   SharedVBPtrBase = nullptr;
   2463   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
   2464   // injection.
   2465   PointerInfo.Size =
   2466       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
   2467   PointerInfo.Alignment =
   2468       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
   2469   // Respect pragma pack.
   2470   if (!MaxFieldAlignment.isZero())
   2471     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
   2472 }
   2473 
   2474 void
   2475 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
   2476   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
   2477   // out any bases that do not contain vfptrs.  We implement this as two passes
   2478   // over the bases.  This approach guarantees that the primary base is laid out
   2479   // first.  We use these passes to calculate some additional aggregated
   2480   // information about the bases, such as required alignment and the presence of
   2481   // zero sized members.
   2482   const ASTRecordLayout *PreviousBaseLayout = nullptr;
   2483   // Iterate through the bases and lay out the non-virtual ones.
   2484   for (const CXXBaseSpecifier &Base : RD->bases()) {
   2485     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   2486     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2487     // Mark and skip virtual bases.
   2488     if (Base.isVirtual()) {
   2489       HasVBPtr = true;
   2490       continue;
   2491     }
   2492     // Check for a base to share a VBPtr with.
   2493     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
   2494       SharedVBPtrBase = BaseDecl;
   2495       HasVBPtr = true;
   2496     }
   2497     // Only lay out bases with extendable VFPtrs on the first pass.
   2498     if (!BaseLayout.hasExtendableVFPtr())
   2499       continue;
   2500     // If we don't have a primary base, this one qualifies.
   2501     if (!PrimaryBase) {
   2502       PrimaryBase = BaseDecl;
   2503       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
   2504     }
   2505     // Lay out the base.
   2506     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
   2507   }
   2508   // Figure out if we need a fresh VFPtr for this class.
   2509   if (!PrimaryBase && RD->isDynamicClass())
   2510     for (CXXRecordDecl::method_iterator i = RD->method_begin(),
   2511                                         e = RD->method_end();
   2512          !HasOwnVFPtr && i != e; ++i)
   2513       HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
   2514   // If we don't have a primary base then we have a leading object that could
   2515   // itself lead with a zero-sized object, something we track.
   2516   bool CheckLeadingLayout = !PrimaryBase;
   2517   // Iterate through the bases and lay out the non-virtual ones.
   2518   for (const CXXBaseSpecifier &Base : RD->bases()) {
   2519     if (Base.isVirtual())
   2520       continue;
   2521     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   2522     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2523     // Only lay out bases without extendable VFPtrs on the second pass.
   2524     if (BaseLayout.hasExtendableVFPtr()) {
   2525       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
   2526       continue;
   2527     }
   2528     // If this is the first layout, check to see if it leads with a zero sized
   2529     // object.  If it does, so do we.
   2530     if (CheckLeadingLayout) {
   2531       CheckLeadingLayout = false;
   2532       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
   2533     }
   2534     // Lay out the base.
   2535     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
   2536     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
   2537   }
   2538   // Set our VBPtroffset if we know it at this point.
   2539   if (!HasVBPtr)
   2540     VBPtrOffset = CharUnits::fromQuantity(-1);
   2541   else if (SharedVBPtrBase) {
   2542     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
   2543     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
   2544   }
   2545 }
   2546 
   2547 static bool recordUsesEBO(const RecordDecl *RD) {
   2548   if (!isa<CXXRecordDecl>(RD))
   2549     return false;
   2550   if (RD->hasAttr<EmptyBasesAttr>())
   2551     return true;
   2552   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
   2553     // TODO: Double check with the next version of MSVC.
   2554     if (LVA->getVersion() <= LangOptions::MSVC2015)
   2555       return false;
   2556   // TODO: Some later version of MSVC will change the default behavior of the
   2557   // compiler to enable EBO by default.  When this happens, we will need an
   2558   // additional isCompatibleWithMSVC check.
   2559   return false;
   2560 }
   2561 
   2562 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
   2563     const CXXRecordDecl *RD,
   2564     const CXXRecordDecl *BaseDecl,
   2565     const ASTRecordLayout &BaseLayout,
   2566     const ASTRecordLayout *&PreviousBaseLayout) {
   2567   // Insert padding between two bases if the left first one is zero sized or
   2568   // contains a zero sized subobject and the right is zero sized or one leads
   2569   // with a zero sized base.
   2570   bool MDCUsesEBO = recordUsesEBO(RD);
   2571   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
   2572       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
   2573     Size++;
   2574   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
   2575   CharUnits BaseOffset;
   2576 
   2577   // Respect the external AST source base offset, if present.
   2578   bool FoundBase = false;
   2579   if (UseExternalLayout) {
   2580     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
   2581     if (FoundBase) {
   2582       assert(BaseOffset >= Size && "base offset already allocated");
   2583       Size = BaseOffset;
   2584     }
   2585   }
   2586 
   2587   if (!FoundBase) {
   2588     if (MDCUsesEBO && BaseDecl->isEmpty() &&
   2589         BaseLayout.getNonVirtualSize() == CharUnits::Zero()) {
   2590       BaseOffset = CharUnits::Zero();
   2591     } else {
   2592       // Otherwise, lay the base out at the end of the MDC.
   2593       BaseOffset = Size = Size.alignTo(Info.Alignment);
   2594     }
   2595   }
   2596   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
   2597   Size += BaseLayout.getNonVirtualSize();
   2598   PreviousBaseLayout = &BaseLayout;
   2599 }
   2600 
   2601 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
   2602   LastFieldIsNonZeroWidthBitfield = false;
   2603   for (const FieldDecl *Field : RD->fields())
   2604     layoutField(Field);
   2605 }
   2606 
   2607 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
   2608   if (FD->isBitField()) {
   2609     layoutBitField(FD);
   2610     return;
   2611   }
   2612   LastFieldIsNonZeroWidthBitfield = false;
   2613   ElementInfo Info = getAdjustedElementInfo(FD);
   2614   Alignment = std::max(Alignment, Info.Alignment);
   2615   if (IsUnion) {
   2616     placeFieldAtOffset(CharUnits::Zero());
   2617     Size = std::max(Size, Info.Size);
   2618   } else {
   2619     CharUnits FieldOffset;
   2620     if (UseExternalLayout) {
   2621       FieldOffset =
   2622           Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
   2623       assert(FieldOffset >= Size && "field offset already allocated");
   2624     } else {
   2625       FieldOffset = Size.alignTo(Info.Alignment);
   2626     }
   2627     placeFieldAtOffset(FieldOffset);
   2628     Size = FieldOffset + Info.Size;
   2629   }
   2630 }
   2631 
   2632 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
   2633   unsigned Width = FD->getBitWidthValue(Context);
   2634   if (Width == 0) {
   2635     layoutZeroWidthBitField(FD);
   2636     return;
   2637   }
   2638   ElementInfo Info = getAdjustedElementInfo(FD);
   2639   // Clamp the bitfield to a containable size for the sake of being able
   2640   // to lay them out.  Sema will throw an error.
   2641   if (Width > Context.toBits(Info.Size))
   2642     Width = Context.toBits(Info.Size);
   2643   // Check to see if this bitfield fits into an existing allocation.  Note:
   2644   // MSVC refuses to pack bitfields of formal types with different sizes
   2645   // into the same allocation.
   2646   if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
   2647       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
   2648     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
   2649     RemainingBitsInField -= Width;
   2650     return;
   2651   }
   2652   LastFieldIsNonZeroWidthBitfield = true;
   2653   CurrentBitfieldSize = Info.Size;
   2654   if (IsUnion) {
   2655     placeFieldAtOffset(CharUnits::Zero());
   2656     Size = std::max(Size, Info.Size);
   2657     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
   2658   } else {
   2659     // Allocate a new block of memory and place the bitfield in it.
   2660     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
   2661     placeFieldAtOffset(FieldOffset);
   2662     Size = FieldOffset + Info.Size;
   2663     Alignment = std::max(Alignment, Info.Alignment);
   2664     RemainingBitsInField = Context.toBits(Info.Size) - Width;
   2665   }
   2666 }
   2667 
   2668 void
   2669 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
   2670   // Zero-width bitfields are ignored unless they follow a non-zero-width
   2671   // bitfield.
   2672   if (!LastFieldIsNonZeroWidthBitfield) {
   2673     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
   2674     // TODO: Add a Sema warning that MS ignores alignment for zero
   2675     // sized bitfields that occur after zero-size bitfields or non-bitfields.
   2676     return;
   2677   }
   2678   LastFieldIsNonZeroWidthBitfield = false;
   2679   ElementInfo Info = getAdjustedElementInfo(FD);
   2680   if (IsUnion) {
   2681     placeFieldAtOffset(CharUnits::Zero());
   2682     Size = std::max(Size, Info.Size);
   2683     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
   2684   } else {
   2685     // Round up the current record size to the field's alignment boundary.
   2686     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
   2687     placeFieldAtOffset(FieldOffset);
   2688     Size = FieldOffset;
   2689     Alignment = std::max(Alignment, Info.Alignment);
   2690   }
   2691 }
   2692 
   2693 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
   2694   if (!HasVBPtr || SharedVBPtrBase)
   2695     return;
   2696   // Inject the VBPointer at the injection site.
   2697   CharUnits InjectionSite = VBPtrOffset;
   2698   // But before we do, make sure it's properly aligned.
   2699   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
   2700   // Shift everything after the vbptr down, unless we're using an external
   2701   // layout.
   2702   if (UseExternalLayout)
   2703     return;
   2704   // Determine where the first field should be laid out after the vbptr.
   2705   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
   2706   // Make sure that the amount we push the fields back by is a multiple of the
   2707   // alignment.
   2708   CharUnits Offset = (FieldStart - InjectionSite)
   2709                          .alignTo(std::max(RequiredAlignment, Alignment));
   2710   Size += Offset;
   2711   for (uint64_t &FieldOffset : FieldOffsets)
   2712     FieldOffset += Context.toBits(Offset);
   2713   for (BaseOffsetsMapTy::value_type &Base : Bases)
   2714     if (Base.second >= InjectionSite)
   2715       Base.second += Offset;
   2716 }
   2717 
   2718 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
   2719   if (!HasOwnVFPtr)
   2720     return;
   2721   // Make sure that the amount we push the struct back by is a multiple of the
   2722   // alignment.
   2723   CharUnits Offset =
   2724       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
   2725   // Push back the vbptr, but increase the size of the object and push back
   2726   // regular fields by the offset only if not using external record layout.
   2727   if (HasVBPtr)
   2728     VBPtrOffset += Offset;
   2729 
   2730   if (UseExternalLayout)
   2731     return;
   2732 
   2733   Size += Offset;
   2734 
   2735   // If we're using an external layout, the fields offsets have already
   2736   // accounted for this adjustment.
   2737   for (uint64_t &FieldOffset : FieldOffsets)
   2738     FieldOffset += Context.toBits(Offset);
   2739   for (BaseOffsetsMapTy::value_type &Base : Bases)
   2740     Base.second += Offset;
   2741 }
   2742 
   2743 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
   2744   if (!HasVBPtr)
   2745     return;
   2746   // Vtordisps are always 4 bytes (even in 64-bit mode)
   2747   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
   2748   CharUnits VtorDispAlignment = VtorDispSize;
   2749   // vtordisps respect pragma pack.
   2750   if (!MaxFieldAlignment.isZero())
   2751     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
   2752   // The alignment of the vtordisp is at least the required alignment of the
   2753   // entire record.  This requirement may be present to support vtordisp
   2754   // injection.
   2755   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
   2756     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
   2757     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2758     RequiredAlignment =
   2759         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
   2760   }
   2761   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
   2762   // Compute the vtordisp set.
   2763   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
   2764   computeVtorDispSet(HasVtorDispSet, RD);
   2765   // Iterate through the virtual bases and lay them out.
   2766   const ASTRecordLayout *PreviousBaseLayout = nullptr;
   2767   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
   2768     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
   2769     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
   2770     bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
   2771     // Insert padding between two bases if the left first one is zero sized or
   2772     // contains a zero sized subobject and the right is zero sized or one leads
   2773     // with a zero sized base.  The padding between virtual bases is 4
   2774     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
   2775     // the required alignment, we don't know why.
   2776     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
   2777          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
   2778         HasVtordisp) {
   2779       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
   2780       Alignment = std::max(VtorDispAlignment, Alignment);
   2781     }
   2782     // Insert the virtual base.
   2783     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
   2784     CharUnits BaseOffset;
   2785 
   2786     // Respect the external AST source base offset, if present.
   2787     bool FoundBase = false;
   2788     if (UseExternalLayout) {
   2789       FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset);
   2790       if (FoundBase)
   2791         assert(BaseOffset >= Size && "base offset already allocated");
   2792     }
   2793     if (!FoundBase)
   2794       BaseOffset = Size.alignTo(Info.Alignment);
   2795 
   2796     VBases.insert(std::make_pair(BaseDecl,
   2797         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
   2798     Size = BaseOffset + BaseLayout.getNonVirtualSize();
   2799     PreviousBaseLayout = &BaseLayout;
   2800   }
   2801 }
   2802 
   2803 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
   2804   // Respect required alignment.  Note that in 32-bit mode Required alignment
   2805   // may be 0 and cause size not to be updated.
   2806   DataSize = Size;
   2807   if (!RequiredAlignment.isZero()) {
   2808     Alignment = std::max(Alignment, RequiredAlignment);
   2809     auto RoundingAlignment = Alignment;
   2810     if (!MaxFieldAlignment.isZero())
   2811       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
   2812     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
   2813     Size = Size.alignTo(RoundingAlignment);
   2814   }
   2815   if (Size.isZero()) {
   2816     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
   2817       EndsWithZeroSizedObject = true;
   2818       LeadsWithZeroSizedBase = true;
   2819     }
   2820     // Zero-sized structures have size equal to their alignment if a
   2821     // __declspec(align) came into play.
   2822     if (RequiredAlignment >= MinEmptyStructSize)
   2823       Size = Alignment;
   2824     else
   2825       Size = MinEmptyStructSize;
   2826   }
   2827 
   2828   if (UseExternalLayout) {
   2829     Size = Context.toCharUnitsFromBits(External.Size);
   2830     if (External.Align)
   2831       Alignment = Context.toCharUnitsFromBits(External.Align);
   2832   }
   2833 }
   2834 
   2835 // Recursively walks the non-virtual bases of a class and determines if any of
   2836 // them are in the bases with overridden methods set.
   2837 static bool
   2838 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
   2839                      BasesWithOverriddenMethods,
   2840                  const CXXRecordDecl *RD) {
   2841   if (BasesWithOverriddenMethods.count(RD))
   2842     return true;
   2843   // If any of a virtual bases non-virtual bases (recursively) requires a
   2844   // vtordisp than so does this virtual base.
   2845   for (const CXXBaseSpecifier &Base : RD->bases())
   2846     if (!Base.isVirtual() &&
   2847         RequiresVtordisp(BasesWithOverriddenMethods,
   2848                          Base.getType()->getAsCXXRecordDecl()))
   2849       return true;
   2850   return false;
   2851 }
   2852 
   2853 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
   2854     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
   2855     const CXXRecordDecl *RD) const {
   2856   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
   2857   // vftables.
   2858   if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
   2859     for (const CXXBaseSpecifier &Base : RD->vbases()) {
   2860       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   2861       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
   2862       if (Layout.hasExtendableVFPtr())
   2863         HasVtordispSet.insert(BaseDecl);
   2864     }
   2865     return;
   2866   }
   2867 
   2868   // If any of our bases need a vtordisp for this type, so do we.  Check our
   2869   // direct bases for vtordisp requirements.
   2870   for (const CXXBaseSpecifier &Base : RD->bases()) {
   2871     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   2872     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
   2873     for (const auto &bi : Layout.getVBaseOffsetsMap())
   2874       if (bi.second.hasVtorDisp())
   2875         HasVtordispSet.insert(bi.first);
   2876   }
   2877   // We don't introduce any additional vtordisps if either:
   2878   // * A user declared constructor or destructor aren't declared.
   2879   // * #pragma vtordisp(0) or the /vd0 flag are in use.
   2880   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
   2881       RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
   2882     return;
   2883   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
   2884   // possible for a partially constructed object with virtual base overrides to
   2885   // escape a non-trivial constructor.
   2886   assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
   2887   // Compute a set of base classes which define methods we override.  A virtual
   2888   // base in this set will require a vtordisp.  A virtual base that transitively
   2889   // contains one of these bases as a non-virtual base will also require a
   2890   // vtordisp.
   2891   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
   2892   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
   2893   // Seed the working set with our non-destructor, non-pure virtual methods.
   2894   for (const CXXMethodDecl *MD : RD->methods())
   2895     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
   2896       Work.insert(MD);
   2897   while (!Work.empty()) {
   2898     const CXXMethodDecl *MD = *Work.begin();
   2899     CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
   2900                                    e = MD->end_overridden_methods();
   2901     // If a virtual method has no-overrides it lives in its parent's vtable.
   2902     if (i == e)
   2903       BasesWithOverriddenMethods.insert(MD->getParent());
   2904     else
   2905       Work.insert(i, e);
   2906     // We've finished processing this element, remove it from the working set.
   2907     Work.erase(MD);
   2908   }
   2909   // For each of our virtual bases, check if it is in the set of overridden
   2910   // bases or if it transitively contains a non-virtual base that is.
   2911   for (const CXXBaseSpecifier &Base : RD->vbases()) {
   2912     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
   2913     if (!HasVtordispSet.count(BaseDecl) &&
   2914         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
   2915       HasVtordispSet.insert(BaseDecl);
   2916   }
   2917 }
   2918 
   2919 /// getASTRecordLayout - Get or compute information about the layout of the
   2920 /// specified record (struct/union/class), which indicates its size and field
   2921 /// position information.
   2922 const ASTRecordLayout &
   2923 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
   2924   // These asserts test different things.  A record has a definition
   2925   // as soon as we begin to parse the definition.  That definition is
   2926   // not a complete definition (which is what isDefinition() tests)
   2927   // until we *finish* parsing the definition.
   2928 
   2929   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   2930     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
   2931 
   2932   D = D->getDefinition();
   2933   assert(D && "Cannot get layout of forward declarations!");
   2934   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
   2935   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
   2936 
   2937   // Look up this layout, if already laid out, return what we have.
   2938   // Note that we can't save a reference to the entry because this function
   2939   // is recursive.
   2940   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
   2941   if (Entry) return *Entry;
   2942 
   2943   const ASTRecordLayout *NewEntry = nullptr;
   2944 
   2945   if (isMsLayout(*this)) {
   2946     MicrosoftRecordLayoutBuilder Builder(*this);
   2947     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
   2948       Builder.cxxLayout(RD);
   2949       NewEntry = new (*this) ASTRecordLayout(
   2950           *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
   2951           Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
   2952           Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
   2953           Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
   2954           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
   2955           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
   2956           Builder.Bases, Builder.VBases);
   2957     } else {
   2958       Builder.layout(D);
   2959       NewEntry = new (*this) ASTRecordLayout(
   2960           *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
   2961           Builder.Size, Builder.FieldOffsets);
   2962     }
   2963   } else {
   2964     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
   2965       EmptySubobjectMap EmptySubobjects(*this, RD);
   2966       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
   2967       Builder.Layout(RD);
   2968 
   2969       // In certain situations, we are allowed to lay out objects in the
   2970       // tail-padding of base classes.  This is ABI-dependent.
   2971       // FIXME: this should be stored in the record layout.
   2972       bool skipTailPadding =
   2973           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
   2974 
   2975       // FIXME: This should be done in FinalizeLayout.
   2976       CharUnits DataSize =
   2977           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
   2978       CharUnits NonVirtualSize =
   2979           skipTailPadding ? DataSize : Builder.NonVirtualSize;
   2980       NewEntry = new (*this) ASTRecordLayout(
   2981           *this, Builder.getSize(), Builder.Alignment,
   2982           /*RequiredAlignment : used by MS-ABI)*/
   2983           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
   2984           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
   2985           NonVirtualSize, Builder.NonVirtualAlignment,
   2986           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
   2987           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
   2988           Builder.VBases);
   2989     } else {
   2990       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
   2991       Builder.Layout(D);
   2992 
   2993       NewEntry = new (*this) ASTRecordLayout(
   2994           *this, Builder.getSize(), Builder.Alignment,
   2995           /*RequiredAlignment : used by MS-ABI)*/
   2996           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
   2997     }
   2998   }
   2999 
   3000   ASTRecordLayouts[D] = NewEntry;
   3001 
   3002   if (getLangOpts().DumpRecordLayouts) {
   3003     llvm::outs() << "\n*** Dumping AST Record Layout\n";
   3004     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
   3005   }
   3006 
   3007   return *NewEntry;
   3008 }
   3009 
   3010 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
   3011   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
   3012     return nullptr;
   3013 
   3014   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
   3015   RD = cast<CXXRecordDecl>(RD->getDefinition());
   3016 
   3017   // Beware:
   3018   //  1) computing the key function might trigger deserialization, which might
   3019   //     invalidate iterators into KeyFunctions
   3020   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
   3021   //     invalidate the LazyDeclPtr within the map itself
   3022   LazyDeclPtr Entry = KeyFunctions[RD];
   3023   const Decl *Result =
   3024       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
   3025 
   3026   // Store it back if it changed.
   3027   if (Entry.isOffset() || Entry.isValid() != bool(Result))
   3028     KeyFunctions[RD] = const_cast<Decl*>(Result);
   3029 
   3030   return cast_or_null<CXXMethodDecl>(Result);
   3031 }
   3032 
   3033 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
   3034   assert(Method == Method->getFirstDecl() &&
   3035          "not working with method declaration from class definition");
   3036 
   3037   // Look up the cache entry.  Since we're working with the first
   3038   // declaration, its parent must be the class definition, which is
   3039   // the correct key for the KeyFunctions hash.
   3040   const auto &Map = KeyFunctions;
   3041   auto I = Map.find(Method->getParent());
   3042 
   3043   // If it's not cached, there's nothing to do.
   3044   if (I == Map.end()) return;
   3045 
   3046   // If it is cached, check whether it's the target method, and if so,
   3047   // remove it from the cache. Note, the call to 'get' might invalidate
   3048   // the iterator and the LazyDeclPtr object within the map.
   3049   LazyDeclPtr Ptr = I->second;
   3050   if (Ptr.get(getExternalSource()) == Method) {
   3051     // FIXME: remember that we did this for module / chained PCH state?
   3052     KeyFunctions.erase(Method->getParent());
   3053   }
   3054 }
   3055 
   3056 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
   3057   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
   3058   return Layout.getFieldOffset(FD->getFieldIndex());
   3059 }
   3060 
   3061 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
   3062   uint64_t OffsetInBits;
   3063   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
   3064     OffsetInBits = ::getFieldOffset(*this, FD);
   3065   } else {
   3066     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
   3067 
   3068     OffsetInBits = 0;
   3069     for (const NamedDecl *ND : IFD->chain())
   3070       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
   3071   }
   3072 
   3073   return OffsetInBits;
   3074 }
   3075 
   3076 /// getObjCLayout - Get or compute information about the layout of the
   3077 /// given interface.
   3078 ///
   3079 /// \param Impl - If given, also include the layout of the interface's
   3080 /// implementation. This may differ by including synthesized ivars.
   3081 const ASTRecordLayout &
   3082 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
   3083                           const ObjCImplementationDecl *Impl) const {
   3084   // Retrieve the definition
   3085   if (D->hasExternalLexicalStorage() && !D->getDefinition())
   3086     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
   3087   D = D->getDefinition();
   3088   assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
   3089 
   3090   // Look up this layout, if already laid out, return what we have.
   3091   const ObjCContainerDecl *Key =
   3092     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
   3093   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
   3094     return *Entry;
   3095 
   3096   // Add in synthesized ivar count if laying out an implementation.
   3097   if (Impl) {
   3098     unsigned SynthCount = CountNonClassIvars(D);
   3099     // If there aren't any synthesized ivars then reuse the interface
   3100     // entry. Note we can't cache this because we simply free all
   3101     // entries later; however we shouldn't look up implementations
   3102     // frequently.
   3103     if (SynthCount == 0)
   3104       return getObjCLayout(D, nullptr);
   3105   }
   3106 
   3107   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
   3108   Builder.Layout(D);
   3109 
   3110   const ASTRecordLayout *NewEntry =
   3111     new (*this) ASTRecordLayout(*this, Builder.getSize(),
   3112                                 Builder.Alignment,
   3113                                 /*RequiredAlignment : used by MS-ABI)*/
   3114                                 Builder.Alignment,
   3115                                 Builder.getDataSize(),
   3116                                 Builder.FieldOffsets);
   3117 
   3118   ObjCLayouts[Key] = NewEntry;
   3119 
   3120   return *NewEntry;
   3121 }
   3122 
   3123 static void PrintOffset(raw_ostream &OS,
   3124                         CharUnits Offset, unsigned IndentLevel) {
   3125   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
   3126   OS.indent(IndentLevel * 2);
   3127 }
   3128 
   3129 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
   3130                                 unsigned Begin, unsigned Width,
   3131                                 unsigned IndentLevel) {
   3132   llvm::SmallString<10> Buffer;
   3133   {
   3134     llvm::raw_svector_ostream BufferOS(Buffer);
   3135     BufferOS << Offset.getQuantity() << ':';
   3136     if (Width == 0) {
   3137       BufferOS << '-';
   3138     } else {
   3139       BufferOS << Begin << '-' << (Begin + Width - 1);
   3140     }
   3141   }
   3142 
   3143   OS << llvm::right_justify(Buffer, 10) << " | ";
   3144   OS.indent(IndentLevel * 2);
   3145 }
   3146 
   3147 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
   3148   OS << "           | ";
   3149   OS.indent(IndentLevel * 2);
   3150 }
   3151 
   3152 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
   3153                              const ASTContext &C,
   3154                              CharUnits Offset,
   3155                              unsigned IndentLevel,
   3156                              const char* Description,
   3157                              bool PrintSizeInfo,
   3158                              bool IncludeVirtualBases) {
   3159   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
   3160   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
   3161 
   3162   PrintOffset(OS, Offset, IndentLevel);
   3163   OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
   3164   if (Description)
   3165     OS << ' ' << Description;
   3166   if (CXXRD && CXXRD->isEmpty())
   3167     OS << " (empty)";
   3168   OS << '\n';
   3169 
   3170   IndentLevel++;
   3171 
   3172   // Dump bases.
   3173   if (CXXRD) {
   3174     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
   3175     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
   3176     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
   3177 
   3178     // Vtable pointer.
   3179     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
   3180       PrintOffset(OS, Offset, IndentLevel);
   3181       OS << '(' << *RD << " vtable pointer)\n";
   3182     } else if (HasOwnVFPtr) {
   3183       PrintOffset(OS, Offset, IndentLevel);
   3184       // vfptr (for Microsoft C++ ABI)
   3185       OS << '(' << *RD << " vftable pointer)\n";
   3186     }
   3187 
   3188     // Collect nvbases.
   3189     SmallVector<const CXXRecordDecl *, 4> Bases;
   3190     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
   3191       assert(!Base.getType()->isDependentType() &&
   3192              "Cannot layout class with dependent bases.");
   3193       if (!Base.isVirtual())
   3194         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
   3195     }
   3196 
   3197     // Sort nvbases by offset.
   3198     std::stable_sort(Bases.begin(), Bases.end(),
   3199                      [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
   3200       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
   3201     });
   3202 
   3203     // Dump (non-virtual) bases
   3204     for (const CXXRecordDecl *Base : Bases) {
   3205       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
   3206       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
   3207                        Base == PrimaryBase ? "(primary base)" : "(base)",
   3208                        /*PrintSizeInfo=*/false,
   3209                        /*IncludeVirtualBases=*/false);
   3210     }
   3211 
   3212     // vbptr (for Microsoft C++ ABI)
   3213     if (HasOwnVBPtr) {
   3214       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
   3215       OS << '(' << *RD << " vbtable pointer)\n";
   3216     }
   3217   }
   3218 
   3219   // Dump fields.
   3220   uint64_t FieldNo = 0;
   3221   for (RecordDecl::field_iterator I = RD->field_begin(),
   3222          E = RD->field_end(); I != E; ++I, ++FieldNo) {
   3223     const FieldDecl &Field = **I;
   3224     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
   3225     CharUnits FieldOffset =
   3226       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
   3227 
   3228     // Recursively dump fields of record type.
   3229     if (auto RT = Field.getType()->getAs<RecordType>()) {
   3230       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
   3231                        Field.getName().data(),
   3232                        /*PrintSizeInfo=*/false,
   3233                        /*IncludeVirtualBases=*/true);
   3234       continue;
   3235     }
   3236 
   3237     if (Field.isBitField()) {
   3238       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
   3239       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
   3240       unsigned Width = Field.getBitWidthValue(C);
   3241       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
   3242     } else {
   3243       PrintOffset(OS, FieldOffset, IndentLevel);
   3244     }
   3245     OS << Field.getType().getAsString() << ' ' << Field << '\n';
   3246   }
   3247 
   3248   // Dump virtual bases.
   3249   if (CXXRD && IncludeVirtualBases) {
   3250     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
   3251       Layout.getVBaseOffsetsMap();
   3252 
   3253     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
   3254       assert(Base.isVirtual() && "Found non-virtual class!");
   3255       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
   3256 
   3257       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
   3258 
   3259       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
   3260         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
   3261         OS << "(vtordisp for vbase " << *VBase << ")\n";
   3262       }
   3263 
   3264       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
   3265                        VBase == Layout.getPrimaryBase() ?
   3266                          "(primary virtual base)" : "(virtual base)",
   3267                        /*PrintSizeInfo=*/false,
   3268                        /*IncludeVirtualBases=*/false);
   3269     }
   3270   }
   3271 
   3272   if (!PrintSizeInfo) return;
   3273 
   3274   PrintIndentNoOffset(OS, IndentLevel - 1);
   3275   OS << "[sizeof=" << Layout.getSize().getQuantity();
   3276   if (CXXRD && !isMsLayout(C))
   3277     OS << ", dsize=" << Layout.getDataSize().getQuantity();
   3278   OS << ", align=" << Layout.getAlignment().getQuantity();
   3279 
   3280   if (CXXRD) {
   3281     OS << ",\n";
   3282     PrintIndentNoOffset(OS, IndentLevel - 1);
   3283     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
   3284     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
   3285   }
   3286   OS << "]\n";
   3287 }
   3288 
   3289 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
   3290                                   raw_ostream &OS,
   3291                                   bool Simple) const {
   3292   if (!Simple) {
   3293     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
   3294                        /*PrintSizeInfo*/true,
   3295                        /*IncludeVirtualBases=*/true);
   3296     return;
   3297   }
   3298 
   3299   // The "simple" format is designed to be parsed by the
   3300   // layout-override testing code.  There shouldn't be any external
   3301   // uses of this format --- when LLDB overrides a layout, it sets up
   3302   // the data structures directly --- so feel free to adjust this as
   3303   // you like as long as you also update the rudimentary parser for it
   3304   // in libFrontend.
   3305 
   3306   const ASTRecordLayout &Info = getASTRecordLayout(RD);
   3307   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
   3308   OS << "\nLayout: ";
   3309   OS << "<ASTRecordLayout\n";
   3310   OS << "  Size:" << toBits(Info.getSize()) << "\n";
   3311   if (!isMsLayout(*this))
   3312     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
   3313   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
   3314   OS << "  FieldOffsets: [";
   3315   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
   3316     if (i) OS << ", ";
   3317     OS << Info.getFieldOffset(i);
   3318   }
   3319   OS << "]>\n";
   3320 }
   3321