1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/AST/RecordLayout.h" 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/Attr.h" 13 #include "clang/AST/CXXInheritance.h" 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/DeclCXX.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Sema/SemaDiagnostic.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/Support/Format.h" 22 #include "llvm/Support/MathExtras.h" 23 24 using namespace clang; 25 26 namespace { 27 28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class. 29 /// For a class hierarchy like 30 /// 31 /// class A { }; 32 /// class B : A { }; 33 /// class C : A, B { }; 34 /// 35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo 36 /// instances, one for B and two for A. 37 /// 38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. 39 struct BaseSubobjectInfo { 40 /// Class - The class for this base info. 41 const CXXRecordDecl *Class; 42 43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not. 44 bool IsVirtual; 45 46 /// Bases - Information about the base subobjects. 47 SmallVector<BaseSubobjectInfo*, 4> Bases; 48 49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base 50 /// of this base info (if one exists). 51 BaseSubobjectInfo *PrimaryVirtualBaseInfo; 52 53 // FIXME: Document. 54 const BaseSubobjectInfo *Derived; 55 }; 56 57 /// \brief Externally provided layout. Typically used when the AST source, such 58 /// as DWARF, lacks all the information that was available at compile time, such 59 /// as alignment attributes on fields and pragmas in effect. 60 struct ExternalLayout { 61 ExternalLayout() : Size(0), Align(0) {} 62 63 /// \brief Overall record size in bits. 64 uint64_t Size; 65 66 /// \brief Overall record alignment in bits. 67 uint64_t Align; 68 69 /// \brief Record field offsets in bits. 70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; 71 72 /// \brief Direct, non-virtual base offsets. 73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; 74 75 /// \brief Virtual base offsets. 76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; 77 78 /// Get the offset of the given field. The external source must provide 79 /// entries for all fields in the record. 80 uint64_t getExternalFieldOffset(const FieldDecl *FD) { 81 assert(FieldOffsets.count(FD) && 82 "Field does not have an external offset"); 83 return FieldOffsets[FD]; 84 } 85 86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 87 auto Known = BaseOffsets.find(RD); 88 if (Known == BaseOffsets.end()) 89 return false; 90 BaseOffset = Known->second; 91 return true; 92 } 93 94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { 95 auto Known = VirtualBaseOffsets.find(RD); 96 if (Known == VirtualBaseOffsets.end()) 97 return false; 98 BaseOffset = Known->second; 99 return true; 100 } 101 }; 102 103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different 104 /// offsets while laying out a C++ class. 105 class EmptySubobjectMap { 106 const ASTContext &Context; 107 uint64_t CharWidth; 108 109 /// Class - The class whose empty entries we're keeping track of. 110 const CXXRecordDecl *Class; 111 112 /// EmptyClassOffsets - A map from offsets to empty record decls. 113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; 114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; 115 EmptyClassOffsetsMapTy EmptyClassOffsets; 116 117 /// MaxEmptyClassOffset - The highest offset known to contain an empty 118 /// base subobject. 119 CharUnits MaxEmptyClassOffset; 120 121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or 122 /// member subobject that is empty. 123 void ComputeEmptySubobjectSizes(); 124 125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); 126 127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 128 CharUnits Offset, bool PlacingEmptyBase); 129 130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 131 const CXXRecordDecl *Class, 132 CharUnits Offset); 133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset); 134 135 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty 136 /// subobjects beyond the given offset. 137 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { 138 return Offset <= MaxEmptyClassOffset; 139 } 140 141 CharUnits 142 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const { 143 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo); 144 assert(FieldOffset % CharWidth == 0 && 145 "Field offset not at char boundary!"); 146 147 return Context.toCharUnitsFromBits(FieldOffset); 148 } 149 150 protected: 151 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 152 CharUnits Offset) const; 153 154 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 155 CharUnits Offset); 156 157 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 158 const CXXRecordDecl *Class, 159 CharUnits Offset) const; 160 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 161 CharUnits Offset) const; 162 163 public: 164 /// This holds the size of the largest empty subobject (either a base 165 /// or a member). Will be zero if the record being built doesn't contain 166 /// any empty classes. 167 CharUnits SizeOfLargestEmptySubobject; 168 169 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) 170 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { 171 ComputeEmptySubobjectSizes(); 172 } 173 174 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed 175 /// at the given offset. 176 /// Returns false if placing the record will result in two components 177 /// (direct or indirect) of the same type having the same offset. 178 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 179 CharUnits Offset); 180 181 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given 182 /// offset. 183 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); 184 }; 185 186 void EmptySubobjectMap::ComputeEmptySubobjectSizes() { 187 // Check the bases. 188 for (const CXXBaseSpecifier &Base : Class->bases()) { 189 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 190 191 CharUnits EmptySize; 192 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 193 if (BaseDecl->isEmpty()) { 194 // If the class decl is empty, get its size. 195 EmptySize = Layout.getSize(); 196 } else { 197 // Otherwise, we get the largest empty subobject for the decl. 198 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 199 } 200 201 if (EmptySize > SizeOfLargestEmptySubobject) 202 SizeOfLargestEmptySubobject = EmptySize; 203 } 204 205 // Check the fields. 206 for (const FieldDecl *FD : Class->fields()) { 207 const RecordType *RT = 208 Context.getBaseElementType(FD->getType())->getAs<RecordType>(); 209 210 // We only care about record types. 211 if (!RT) 212 continue; 213 214 CharUnits EmptySize; 215 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl(); 216 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); 217 if (MemberDecl->isEmpty()) { 218 // If the class decl is empty, get its size. 219 EmptySize = Layout.getSize(); 220 } else { 221 // Otherwise, we get the largest empty subobject for the decl. 222 EmptySize = Layout.getSizeOfLargestEmptySubobject(); 223 } 224 225 if (EmptySize > SizeOfLargestEmptySubobject) 226 SizeOfLargestEmptySubobject = EmptySize; 227 } 228 } 229 230 bool 231 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, 232 CharUnits Offset) const { 233 // We only need to check empty bases. 234 if (!RD->isEmpty()) 235 return true; 236 237 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); 238 if (I == EmptyClassOffsets.end()) 239 return true; 240 241 const ClassVectorTy &Classes = I->second; 242 if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end()) 243 return true; 244 245 // There is already an empty class of the same type at this offset. 246 return false; 247 } 248 249 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, 250 CharUnits Offset) { 251 // We only care about empty bases. 252 if (!RD->isEmpty()) 253 return; 254 255 // If we have empty structures inside a union, we can assign both 256 // the same offset. Just avoid pushing them twice in the list. 257 ClassVectorTy &Classes = EmptyClassOffsets[Offset]; 258 if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end()) 259 return; 260 261 Classes.push_back(RD); 262 263 // Update the empty class offset. 264 if (Offset > MaxEmptyClassOffset) 265 MaxEmptyClassOffset = Offset; 266 } 267 268 bool 269 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, 270 CharUnits Offset) { 271 // We don't have to keep looking past the maximum offset that's known to 272 // contain an empty class. 273 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 274 return true; 275 276 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) 277 return false; 278 279 // Traverse all non-virtual bases. 280 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 281 for (const BaseSubobjectInfo *Base : Info->Bases) { 282 if (Base->IsVirtual) 283 continue; 284 285 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 286 287 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) 288 return false; 289 } 290 291 if (Info->PrimaryVirtualBaseInfo) { 292 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 293 294 if (Info == PrimaryVirtualBaseInfo->Derived) { 295 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) 296 return false; 297 } 298 } 299 300 // Traverse all member variables. 301 unsigned FieldNo = 0; 302 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 303 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { 304 if (I->isBitField()) 305 continue; 306 307 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 308 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) 309 return false; 310 } 311 312 return true; 313 } 314 315 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, 316 CharUnits Offset, 317 bool PlacingEmptyBase) { 318 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { 319 // We know that the only empty subobjects that can conflict with empty 320 // subobject of non-empty bases, are empty bases that can be placed at 321 // offset zero. Because of this, we only need to keep track of empty base 322 // subobjects with offsets less than the size of the largest empty 323 // subobject for our class. 324 return; 325 } 326 327 AddSubobjectAtOffset(Info->Class, Offset); 328 329 // Traverse all non-virtual bases. 330 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 331 for (const BaseSubobjectInfo *Base : Info->Bases) { 332 if (Base->IsVirtual) 333 continue; 334 335 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 336 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); 337 } 338 339 if (Info->PrimaryVirtualBaseInfo) { 340 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; 341 342 if (Info == PrimaryVirtualBaseInfo->Derived) 343 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, 344 PlacingEmptyBase); 345 } 346 347 // Traverse all member variables. 348 unsigned FieldNo = 0; 349 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(), 350 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) { 351 if (I->isBitField()) 352 continue; 353 354 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 355 UpdateEmptyFieldSubobjects(*I, FieldOffset); 356 } 357 } 358 359 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, 360 CharUnits Offset) { 361 // If we know this class doesn't have any empty subobjects we don't need to 362 // bother checking. 363 if (SizeOfLargestEmptySubobject.isZero()) 364 return true; 365 366 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) 367 return false; 368 369 // We are able to place the base at this offset. Make sure to update the 370 // empty base subobject map. 371 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); 372 return true; 373 } 374 375 bool 376 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, 377 const CXXRecordDecl *Class, 378 CharUnits Offset) const { 379 // We don't have to keep looking past the maximum offset that's known to 380 // contain an empty class. 381 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 382 return true; 383 384 if (!CanPlaceSubobjectAtOffset(RD, Offset)) 385 return false; 386 387 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 388 389 // Traverse all non-virtual bases. 390 for (const CXXBaseSpecifier &Base : RD->bases()) { 391 if (Base.isVirtual()) 392 continue; 393 394 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 395 396 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 397 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) 398 return false; 399 } 400 401 if (RD == Class) { 402 // This is the most derived class, traverse virtual bases as well. 403 for (const CXXBaseSpecifier &Base : RD->vbases()) { 404 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 405 406 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 407 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) 408 return false; 409 } 410 } 411 412 // Traverse all member variables. 413 unsigned FieldNo = 0; 414 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 415 I != E; ++I, ++FieldNo) { 416 if (I->isBitField()) 417 continue; 418 419 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 420 421 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset)) 422 return false; 423 } 424 425 return true; 426 } 427 428 bool 429 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, 430 CharUnits Offset) const { 431 // We don't have to keep looking past the maximum offset that's known to 432 // contain an empty class. 433 if (!AnyEmptySubobjectsBeyondOffset(Offset)) 434 return true; 435 436 QualType T = FD->getType(); 437 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 438 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); 439 440 // If we have an array type we need to look at every element. 441 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 442 QualType ElemTy = Context.getBaseElementType(AT); 443 const RecordType *RT = ElemTy->getAs<RecordType>(); 444 if (!RT) 445 return true; 446 447 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 448 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 449 450 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 451 CharUnits ElementOffset = Offset; 452 for (uint64_t I = 0; I != NumElements; ++I) { 453 // We don't have to keep looking past the maximum offset that's known to 454 // contain an empty class. 455 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) 456 return true; 457 458 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) 459 return false; 460 461 ElementOffset += Layout.getSize(); 462 } 463 } 464 465 return true; 466 } 467 468 bool 469 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, 470 CharUnits Offset) { 471 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) 472 return false; 473 474 // We are able to place the member variable at this offset. 475 // Make sure to update the empty base subobject map. 476 UpdateEmptyFieldSubobjects(FD, Offset); 477 return true; 478 } 479 480 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, 481 const CXXRecordDecl *Class, 482 CharUnits Offset) { 483 // We know that the only empty subobjects that can conflict with empty 484 // field subobjects are subobjects of empty bases that can be placed at offset 485 // zero. Because of this, we only need to keep track of empty field 486 // subobjects with offsets less than the size of the largest empty 487 // subobject for our class. 488 if (Offset >= SizeOfLargestEmptySubobject) 489 return; 490 491 AddSubobjectAtOffset(RD, Offset); 492 493 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 494 495 // Traverse all non-virtual bases. 496 for (const CXXBaseSpecifier &Base : RD->bases()) { 497 if (Base.isVirtual()) 498 continue; 499 500 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 501 502 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); 503 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset); 504 } 505 506 if (RD == Class) { 507 // This is the most derived class, traverse virtual bases as well. 508 for (const CXXBaseSpecifier &Base : RD->vbases()) { 509 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); 510 511 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); 512 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset); 513 } 514 } 515 516 // Traverse all member variables. 517 unsigned FieldNo = 0; 518 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); 519 I != E; ++I, ++FieldNo) { 520 if (I->isBitField()) 521 continue; 522 523 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo); 524 525 UpdateEmptyFieldSubobjects(*I, FieldOffset); 526 } 527 } 528 529 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD, 530 CharUnits Offset) { 531 QualType T = FD->getType(); 532 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 533 UpdateEmptyFieldSubobjects(RD, RD, Offset); 534 return; 535 } 536 537 // If we have an array type we need to update every element. 538 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { 539 QualType ElemTy = Context.getBaseElementType(AT); 540 const RecordType *RT = ElemTy->getAs<RecordType>(); 541 if (!RT) 542 return; 543 544 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); 545 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 546 547 uint64_t NumElements = Context.getConstantArrayElementCount(AT); 548 CharUnits ElementOffset = Offset; 549 550 for (uint64_t I = 0; I != NumElements; ++I) { 551 // We know that the only empty subobjects that can conflict with empty 552 // field subobjects are subobjects of empty bases that can be placed at 553 // offset zero. Because of this, we only need to keep track of empty field 554 // subobjects with offsets less than the size of the largest empty 555 // subobject for our class. 556 if (ElementOffset >= SizeOfLargestEmptySubobject) 557 return; 558 559 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset); 560 ElementOffset += Layout.getSize(); 561 } 562 } 563 } 564 565 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; 566 567 class ItaniumRecordLayoutBuilder { 568 protected: 569 // FIXME: Remove this and make the appropriate fields public. 570 friend class clang::ASTContext; 571 572 const ASTContext &Context; 573 574 EmptySubobjectMap *EmptySubobjects; 575 576 /// Size - The current size of the record layout. 577 uint64_t Size; 578 579 /// Alignment - The current alignment of the record layout. 580 CharUnits Alignment; 581 582 /// \brief The alignment if attribute packed is not used. 583 CharUnits UnpackedAlignment; 584 585 SmallVector<uint64_t, 16> FieldOffsets; 586 587 /// \brief Whether the external AST source has provided a layout for this 588 /// record. 589 unsigned UseExternalLayout : 1; 590 591 /// \brief Whether we need to infer alignment, even when we have an 592 /// externally-provided layout. 593 unsigned InferAlignment : 1; 594 595 /// Packed - Whether the record is packed or not. 596 unsigned Packed : 1; 597 598 unsigned IsUnion : 1; 599 600 unsigned IsMac68kAlign : 1; 601 602 unsigned IsMsStruct : 1; 603 604 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, 605 /// this contains the number of bits in the last unit that can be used for 606 /// an adjacent bitfield if necessary. The unit in question is usually 607 /// a byte, but larger units are used if IsMsStruct. 608 unsigned char UnfilledBitsInLastUnit; 609 /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type 610 /// of the previous field if it was a bitfield. 611 unsigned char LastBitfieldTypeSize; 612 613 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by 614 /// #pragma pack. 615 CharUnits MaxFieldAlignment; 616 617 /// DataSize - The data size of the record being laid out. 618 uint64_t DataSize; 619 620 CharUnits NonVirtualSize; 621 CharUnits NonVirtualAlignment; 622 623 /// PrimaryBase - the primary base class (if one exists) of the class 624 /// we're laying out. 625 const CXXRecordDecl *PrimaryBase; 626 627 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying 628 /// out is virtual. 629 bool PrimaryBaseIsVirtual; 630 631 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl 632 /// pointer, as opposed to inheriting one from a primary base class. 633 bool HasOwnVFPtr; 634 635 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 636 637 /// Bases - base classes and their offsets in the record. 638 BaseOffsetsMapTy Bases; 639 640 // VBases - virtual base classes and their offsets in the record. 641 ASTRecordLayout::VBaseOffsetsMapTy VBases; 642 643 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are 644 /// primary base classes for some other direct or indirect base class. 645 CXXIndirectPrimaryBaseSet IndirectPrimaryBases; 646 647 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in 648 /// inheritance graph order. Used for determining the primary base class. 649 const CXXRecordDecl *FirstNearlyEmptyVBase; 650 651 /// VisitedVirtualBases - A set of all the visited virtual bases, used to 652 /// avoid visiting virtual bases more than once. 653 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 654 655 /// Valid if UseExternalLayout is true. 656 ExternalLayout External; 657 658 ItaniumRecordLayoutBuilder(const ASTContext &Context, 659 EmptySubobjectMap *EmptySubobjects) 660 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), 661 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()), 662 UseExternalLayout(false), InferAlignment(false), Packed(false), 663 IsUnion(false), IsMac68kAlign(false), IsMsStruct(false), 664 UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0), 665 MaxFieldAlignment(CharUnits::Zero()), DataSize(0), 666 NonVirtualSize(CharUnits::Zero()), 667 NonVirtualAlignment(CharUnits::One()), PrimaryBase(nullptr), 668 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), 669 FirstNearlyEmptyVBase(nullptr) {} 670 671 void Layout(const RecordDecl *D); 672 void Layout(const CXXRecordDecl *D); 673 void Layout(const ObjCInterfaceDecl *D); 674 675 void LayoutFields(const RecordDecl *D); 676 void LayoutField(const FieldDecl *D, bool InsertExtraPadding); 677 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize, 678 bool FieldPacked, const FieldDecl *D); 679 void LayoutBitField(const FieldDecl *D); 680 681 TargetCXXABI getCXXABI() const { 682 return Context.getTargetInfo().getCXXABI(); 683 } 684 685 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. 686 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; 687 688 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> 689 BaseSubobjectInfoMapTy; 690 691 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases 692 /// of the class we're laying out to their base subobject info. 693 BaseSubobjectInfoMapTy VirtualBaseInfo; 694 695 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the 696 /// class we're laying out to their base subobject info. 697 BaseSubobjectInfoMapTy NonVirtualBaseInfo; 698 699 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the 700 /// bases of the given class. 701 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); 702 703 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a 704 /// single class and all of its base classes. 705 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, 706 bool IsVirtual, 707 BaseSubobjectInfo *Derived); 708 709 /// DeterminePrimaryBase - Determine the primary base of the given class. 710 void DeterminePrimaryBase(const CXXRecordDecl *RD); 711 712 void SelectPrimaryVBase(const CXXRecordDecl *RD); 713 714 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); 715 716 /// LayoutNonVirtualBases - Determines the primary base class (if any) and 717 /// lays it out. Will then proceed to lay out all non-virtual base clasess. 718 void LayoutNonVirtualBases(const CXXRecordDecl *RD); 719 720 /// LayoutNonVirtualBase - Lays out a single non-virtual base. 721 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); 722 723 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, 724 CharUnits Offset); 725 726 /// LayoutVirtualBases - Lays out all the virtual bases. 727 void LayoutVirtualBases(const CXXRecordDecl *RD, 728 const CXXRecordDecl *MostDerivedClass); 729 730 /// LayoutVirtualBase - Lays out a single virtual base. 731 void LayoutVirtualBase(const BaseSubobjectInfo *Base); 732 733 /// LayoutBase - Will lay out a base and return the offset where it was 734 /// placed, in chars. 735 CharUnits LayoutBase(const BaseSubobjectInfo *Base); 736 737 /// InitializeLayout - Initialize record layout for the given record decl. 738 void InitializeLayout(const Decl *D); 739 740 /// FinishLayout - Finalize record layout. Adjust record size based on the 741 /// alignment. 742 void FinishLayout(const NamedDecl *D); 743 744 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment); 745 void UpdateAlignment(CharUnits NewAlignment) { 746 UpdateAlignment(NewAlignment, NewAlignment); 747 } 748 749 /// \brief Retrieve the externally-supplied field offset for the given 750 /// field. 751 /// 752 /// \param Field The field whose offset is being queried. 753 /// \param ComputedOffset The offset that we've computed for this field. 754 uint64_t updateExternalFieldOffset(const FieldDecl *Field, 755 uint64_t ComputedOffset); 756 757 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, 758 uint64_t UnpackedOffset, unsigned UnpackedAlign, 759 bool isPacked, const FieldDecl *D); 760 761 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); 762 763 CharUnits getSize() const { 764 assert(Size % Context.getCharWidth() == 0); 765 return Context.toCharUnitsFromBits(Size); 766 } 767 uint64_t getSizeInBits() const { return Size; } 768 769 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } 770 void setSize(uint64_t NewSize) { Size = NewSize; } 771 772 CharUnits getAligment() const { return Alignment; } 773 774 CharUnits getDataSize() const { 775 assert(DataSize % Context.getCharWidth() == 0); 776 return Context.toCharUnitsFromBits(DataSize); 777 } 778 uint64_t getDataSizeInBits() const { return DataSize; } 779 780 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } 781 void setDataSize(uint64_t NewSize) { DataSize = NewSize; } 782 783 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; 784 void operator=(const ItaniumRecordLayoutBuilder &) = delete; 785 }; 786 } // end anonymous namespace 787 788 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { 789 for (const auto &I : RD->bases()) { 790 assert(!I.getType()->isDependentType() && 791 "Cannot layout class with dependent bases."); 792 793 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 794 795 // Check if this is a nearly empty virtual base. 796 if (I.isVirtual() && Context.isNearlyEmpty(Base)) { 797 // If it's not an indirect primary base, then we've found our primary 798 // base. 799 if (!IndirectPrimaryBases.count(Base)) { 800 PrimaryBase = Base; 801 PrimaryBaseIsVirtual = true; 802 return; 803 } 804 805 // Is this the first nearly empty virtual base? 806 if (!FirstNearlyEmptyVBase) 807 FirstNearlyEmptyVBase = Base; 808 } 809 810 SelectPrimaryVBase(Base); 811 if (PrimaryBase) 812 return; 813 } 814 } 815 816 /// DeterminePrimaryBase - Determine the primary base of the given class. 817 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { 818 // If the class isn't dynamic, it won't have a primary base. 819 if (!RD->isDynamicClass()) 820 return; 821 822 // Compute all the primary virtual bases for all of our direct and 823 // indirect bases, and record all their primary virtual base classes. 824 RD->getIndirectPrimaryBases(IndirectPrimaryBases); 825 826 // If the record has a dynamic base class, attempt to choose a primary base 827 // class. It is the first (in direct base class order) non-virtual dynamic 828 // base class, if one exists. 829 for (const auto &I : RD->bases()) { 830 // Ignore virtual bases. 831 if (I.isVirtual()) 832 continue; 833 834 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); 835 836 if (Base->isDynamicClass()) { 837 // We found it. 838 PrimaryBase = Base; 839 PrimaryBaseIsVirtual = false; 840 return; 841 } 842 } 843 844 // Under the Itanium ABI, if there is no non-virtual primary base class, 845 // try to compute the primary virtual base. The primary virtual base is 846 // the first nearly empty virtual base that is not an indirect primary 847 // virtual base class, if one exists. 848 if (RD->getNumVBases() != 0) { 849 SelectPrimaryVBase(RD); 850 if (PrimaryBase) 851 return; 852 } 853 854 // Otherwise, it is the first indirect primary base class, if one exists. 855 if (FirstNearlyEmptyVBase) { 856 PrimaryBase = FirstNearlyEmptyVBase; 857 PrimaryBaseIsVirtual = true; 858 return; 859 } 860 861 assert(!PrimaryBase && "Should not get here with a primary base!"); 862 } 863 864 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 865 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { 866 BaseSubobjectInfo *Info; 867 868 if (IsVirtual) { 869 // Check if we already have info about this virtual base. 870 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; 871 if (InfoSlot) { 872 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); 873 return InfoSlot; 874 } 875 876 // We don't, create it. 877 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 878 Info = InfoSlot; 879 } else { 880 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; 881 } 882 883 Info->Class = RD; 884 Info->IsVirtual = IsVirtual; 885 Info->Derived = nullptr; 886 Info->PrimaryVirtualBaseInfo = nullptr; 887 888 const CXXRecordDecl *PrimaryVirtualBase = nullptr; 889 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; 890 891 // Check if this base has a primary virtual base. 892 if (RD->getNumVBases()) { 893 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 894 if (Layout.isPrimaryBaseVirtual()) { 895 // This base does have a primary virtual base. 896 PrimaryVirtualBase = Layout.getPrimaryBase(); 897 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); 898 899 // Now check if we have base subobject info about this primary base. 900 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 901 902 if (PrimaryVirtualBaseInfo) { 903 if (PrimaryVirtualBaseInfo->Derived) { 904 // We did have info about this primary base, and it turns out that it 905 // has already been claimed as a primary virtual base for another 906 // base. 907 PrimaryVirtualBase = nullptr; 908 } else { 909 // We can claim this base as our primary base. 910 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 911 PrimaryVirtualBaseInfo->Derived = Info; 912 } 913 } 914 } 915 } 916 917 // Now go through all direct bases. 918 for (const auto &I : RD->bases()) { 919 bool IsVirtual = I.isVirtual(); 920 921 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 922 923 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); 924 } 925 926 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { 927 // Traversing the bases must have created the base info for our primary 928 // virtual base. 929 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); 930 assert(PrimaryVirtualBaseInfo && 931 "Did not create a primary virtual base!"); 932 933 // Claim the primary virtual base as our primary virtual base. 934 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; 935 PrimaryVirtualBaseInfo->Derived = Info; 936 } 937 938 return Info; 939 } 940 941 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( 942 const CXXRecordDecl *RD) { 943 for (const auto &I : RD->bases()) { 944 bool IsVirtual = I.isVirtual(); 945 946 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 947 948 // Compute the base subobject info for this base. 949 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, 950 nullptr); 951 952 if (IsVirtual) { 953 // ComputeBaseInfo has already added this base for us. 954 assert(VirtualBaseInfo.count(BaseDecl) && 955 "Did not add virtual base!"); 956 } else { 957 // Add the base info to the map of non-virtual bases. 958 assert(!NonVirtualBaseInfo.count(BaseDecl) && 959 "Non-virtual base already exists!"); 960 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); 961 } 962 } 963 } 964 965 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( 966 CharUnits UnpackedBaseAlign) { 967 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign; 968 969 // The maximum field alignment overrides base align. 970 if (!MaxFieldAlignment.isZero()) { 971 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 972 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); 973 } 974 975 // Round up the current record size to pointer alignment. 976 setSize(getSize().alignTo(BaseAlign)); 977 setDataSize(getSize()); 978 979 // Update the alignment. 980 UpdateAlignment(BaseAlign, UnpackedBaseAlign); 981 } 982 983 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( 984 const CXXRecordDecl *RD) { 985 // Then, determine the primary base class. 986 DeterminePrimaryBase(RD); 987 988 // Compute base subobject info. 989 ComputeBaseSubobjectInfo(RD); 990 991 // If we have a primary base class, lay it out. 992 if (PrimaryBase) { 993 if (PrimaryBaseIsVirtual) { 994 // If the primary virtual base was a primary virtual base of some other 995 // base class we'll have to steal it. 996 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); 997 PrimaryBaseInfo->Derived = nullptr; 998 999 // We have a virtual primary base, insert it as an indirect primary base. 1000 IndirectPrimaryBases.insert(PrimaryBase); 1001 1002 assert(!VisitedVirtualBases.count(PrimaryBase) && 1003 "vbase already visited!"); 1004 VisitedVirtualBases.insert(PrimaryBase); 1005 1006 LayoutVirtualBase(PrimaryBaseInfo); 1007 } else { 1008 BaseSubobjectInfo *PrimaryBaseInfo = 1009 NonVirtualBaseInfo.lookup(PrimaryBase); 1010 assert(PrimaryBaseInfo && 1011 "Did not find base info for non-virtual primary base!"); 1012 1013 LayoutNonVirtualBase(PrimaryBaseInfo); 1014 } 1015 1016 // If this class needs a vtable/vf-table and didn't get one from a 1017 // primary base, add it in now. 1018 } else if (RD->isDynamicClass()) { 1019 assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); 1020 CharUnits PtrWidth = 1021 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1022 CharUnits PtrAlign = 1023 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); 1024 EnsureVTablePointerAlignment(PtrAlign); 1025 HasOwnVFPtr = true; 1026 setSize(getSize() + PtrWidth); 1027 setDataSize(getSize()); 1028 } 1029 1030 // Now lay out the non-virtual bases. 1031 for (const auto &I : RD->bases()) { 1032 1033 // Ignore virtual bases. 1034 if (I.isVirtual()) 1035 continue; 1036 1037 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); 1038 1039 // Skip the primary base, because we've already laid it out. The 1040 // !PrimaryBaseIsVirtual check is required because we might have a 1041 // non-virtual base of the same type as a primary virtual base. 1042 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) 1043 continue; 1044 1045 // Lay out the base. 1046 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); 1047 assert(BaseInfo && "Did not find base info for non-virtual base!"); 1048 1049 LayoutNonVirtualBase(BaseInfo); 1050 } 1051 } 1052 1053 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( 1054 const BaseSubobjectInfo *Base) { 1055 // Layout the base. 1056 CharUnits Offset = LayoutBase(Base); 1057 1058 // Add its base class offset. 1059 assert(!Bases.count(Base->Class) && "base offset already exists!"); 1060 Bases.insert(std::make_pair(Base->Class, Offset)); 1061 1062 AddPrimaryVirtualBaseOffsets(Base, Offset); 1063 } 1064 1065 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( 1066 const BaseSubobjectInfo *Info, CharUnits Offset) { 1067 // This base isn't interesting, it has no virtual bases. 1068 if (!Info->Class->getNumVBases()) 1069 return; 1070 1071 // First, check if we have a virtual primary base to add offsets for. 1072 if (Info->PrimaryVirtualBaseInfo) { 1073 assert(Info->PrimaryVirtualBaseInfo->IsVirtual && 1074 "Primary virtual base is not virtual!"); 1075 if (Info->PrimaryVirtualBaseInfo->Derived == Info) { 1076 // Add the offset. 1077 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && 1078 "primary vbase offset already exists!"); 1079 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, 1080 ASTRecordLayout::VBaseInfo(Offset, false))); 1081 1082 // Traverse the primary virtual base. 1083 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); 1084 } 1085 } 1086 1087 // Now go through all direct non-virtual bases. 1088 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); 1089 for (const BaseSubobjectInfo *Base : Info->Bases) { 1090 if (Base->IsVirtual) 1091 continue; 1092 1093 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); 1094 AddPrimaryVirtualBaseOffsets(Base, BaseOffset); 1095 } 1096 } 1097 1098 void ItaniumRecordLayoutBuilder::LayoutVirtualBases( 1099 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { 1100 const CXXRecordDecl *PrimaryBase; 1101 bool PrimaryBaseIsVirtual; 1102 1103 if (MostDerivedClass == RD) { 1104 PrimaryBase = this->PrimaryBase; 1105 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; 1106 } else { 1107 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1108 PrimaryBase = Layout.getPrimaryBase(); 1109 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 1110 } 1111 1112 for (const CXXBaseSpecifier &Base : RD->bases()) { 1113 assert(!Base.getType()->isDependentType() && 1114 "Cannot layout class with dependent bases."); 1115 1116 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1117 1118 if (Base.isVirtual()) { 1119 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { 1120 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); 1121 1122 // Only lay out the virtual base if it's not an indirect primary base. 1123 if (!IndirectPrimaryBase) { 1124 // Only visit virtual bases once. 1125 if (!VisitedVirtualBases.insert(BaseDecl).second) 1126 continue; 1127 1128 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); 1129 assert(BaseInfo && "Did not find virtual base info!"); 1130 LayoutVirtualBase(BaseInfo); 1131 } 1132 } 1133 } 1134 1135 if (!BaseDecl->getNumVBases()) { 1136 // This base isn't interesting since it doesn't have any virtual bases. 1137 continue; 1138 } 1139 1140 LayoutVirtualBases(BaseDecl, MostDerivedClass); 1141 } 1142 } 1143 1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBase( 1145 const BaseSubobjectInfo *Base) { 1146 assert(!Base->Derived && "Trying to lay out a primary virtual base!"); 1147 1148 // Layout the base. 1149 CharUnits Offset = LayoutBase(Base); 1150 1151 // Add its base class offset. 1152 assert(!VBases.count(Base->Class) && "vbase offset already exists!"); 1153 VBases.insert(std::make_pair(Base->Class, 1154 ASTRecordLayout::VBaseInfo(Offset, false))); 1155 1156 AddPrimaryVirtualBaseOffsets(Base, Offset); 1157 } 1158 1159 CharUnits 1160 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { 1161 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); 1162 1163 1164 CharUnits Offset; 1165 1166 // Query the external layout to see if it provides an offset. 1167 bool HasExternalLayout = false; 1168 if (UseExternalLayout) { 1169 llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known; 1170 if (Base->IsVirtual) 1171 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); 1172 else 1173 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); 1174 } 1175 1176 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); 1177 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign; 1178 1179 // If we have an empty base class, try to place it at offset 0. 1180 if (Base->Class->isEmpty() && 1181 (!HasExternalLayout || Offset == CharUnits::Zero()) && 1182 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { 1183 setSize(std::max(getSize(), Layout.getSize())); 1184 UpdateAlignment(BaseAlign, UnpackedBaseAlign); 1185 1186 return CharUnits::Zero(); 1187 } 1188 1189 // The maximum field alignment overrides base align. 1190 if (!MaxFieldAlignment.isZero()) { 1191 BaseAlign = std::min(BaseAlign, MaxFieldAlignment); 1192 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); 1193 } 1194 1195 if (!HasExternalLayout) { 1196 // Round up the current record size to the base's alignment boundary. 1197 Offset = getDataSize().alignTo(BaseAlign); 1198 1199 // Try to place the base. 1200 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) 1201 Offset += BaseAlign; 1202 } else { 1203 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); 1204 (void)Allowed; 1205 assert(Allowed && "Base subobject externally placed at overlapping offset"); 1206 1207 if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) { 1208 // The externally-supplied base offset is before the base offset we 1209 // computed. Assume that the structure is packed. 1210 Alignment = CharUnits::One(); 1211 InferAlignment = false; 1212 } 1213 } 1214 1215 if (!Base->Class->isEmpty()) { 1216 // Update the data size. 1217 setDataSize(Offset + Layout.getNonVirtualSize()); 1218 1219 setSize(std::max(getSize(), getDataSize())); 1220 } else 1221 setSize(std::max(getSize(), Offset + Layout.getSize())); 1222 1223 // Remember max struct/class alignment. 1224 UpdateAlignment(BaseAlign, UnpackedBaseAlign); 1225 1226 return Offset; 1227 } 1228 1229 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { 1230 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 1231 IsUnion = RD->isUnion(); 1232 IsMsStruct = RD->isMsStruct(Context); 1233 } 1234 1235 Packed = D->hasAttr<PackedAttr>(); 1236 1237 // Honor the default struct packing maximum alignment flag. 1238 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { 1239 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 1240 } 1241 1242 // mac68k alignment supersedes maximum field alignment and attribute aligned, 1243 // and forces all structures to have 2-byte alignment. The IBM docs on it 1244 // allude to additional (more complicated) semantics, especially with regard 1245 // to bit-fields, but gcc appears not to follow that. 1246 if (D->hasAttr<AlignMac68kAttr>()) { 1247 IsMac68kAlign = true; 1248 MaxFieldAlignment = CharUnits::fromQuantity(2); 1249 Alignment = CharUnits::fromQuantity(2); 1250 } else { 1251 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) 1252 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); 1253 1254 if (unsigned MaxAlign = D->getMaxAlignment()) 1255 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); 1256 } 1257 1258 // If there is an external AST source, ask it for the various offsets. 1259 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) 1260 if (ExternalASTSource *Source = Context.getExternalSource()) { 1261 UseExternalLayout = Source->layoutRecordType( 1262 RD, External.Size, External.Align, External.FieldOffsets, 1263 External.BaseOffsets, External.VirtualBaseOffsets); 1264 1265 // Update based on external alignment. 1266 if (UseExternalLayout) { 1267 if (External.Align > 0) { 1268 Alignment = Context.toCharUnitsFromBits(External.Align); 1269 } else { 1270 // The external source didn't have alignment information; infer it. 1271 InferAlignment = true; 1272 } 1273 } 1274 } 1275 } 1276 1277 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { 1278 InitializeLayout(D); 1279 LayoutFields(D); 1280 1281 // Finally, round the size of the total struct up to the alignment of the 1282 // struct itself. 1283 FinishLayout(D); 1284 } 1285 1286 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { 1287 InitializeLayout(RD); 1288 1289 // Lay out the vtable and the non-virtual bases. 1290 LayoutNonVirtualBases(RD); 1291 1292 LayoutFields(RD); 1293 1294 NonVirtualSize = Context.toCharUnitsFromBits( 1295 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); 1296 NonVirtualAlignment = Alignment; 1297 1298 // Lay out the virtual bases and add the primary virtual base offsets. 1299 LayoutVirtualBases(RD, RD); 1300 1301 // Finally, round the size of the total struct up to the alignment 1302 // of the struct itself. 1303 FinishLayout(RD); 1304 1305 #ifndef NDEBUG 1306 // Check that we have base offsets for all bases. 1307 for (const CXXBaseSpecifier &Base : RD->bases()) { 1308 if (Base.isVirtual()) 1309 continue; 1310 1311 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1312 1313 assert(Bases.count(BaseDecl) && "Did not find base offset!"); 1314 } 1315 1316 // And all virtual bases. 1317 for (const CXXBaseSpecifier &Base : RD->vbases()) { 1318 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 1319 1320 assert(VBases.count(BaseDecl) && "Did not find base offset!"); 1321 } 1322 #endif 1323 } 1324 1325 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { 1326 if (ObjCInterfaceDecl *SD = D->getSuperClass()) { 1327 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); 1328 1329 UpdateAlignment(SL.getAlignment()); 1330 1331 // We start laying out ivars not at the end of the superclass 1332 // structure, but at the next byte following the last field. 1333 setSize(SL.getDataSize()); 1334 setDataSize(getSize()); 1335 } 1336 1337 InitializeLayout(D); 1338 // Layout each ivar sequentially. 1339 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; 1340 IVD = IVD->getNextIvar()) 1341 LayoutField(IVD, false); 1342 1343 // Finally, round the size of the total struct up to the alignment of the 1344 // struct itself. 1345 FinishLayout(D); 1346 } 1347 1348 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { 1349 // Layout each field, for now, just sequentially, respecting alignment. In 1350 // the future, this will need to be tweakable by targets. 1351 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); 1352 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); 1353 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { 1354 auto Next(I); 1355 ++Next; 1356 LayoutField(*I, 1357 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember)); 1358 } 1359 } 1360 1361 // Rounds the specified size to have it a multiple of the char size. 1362 static uint64_t 1363 roundUpSizeToCharAlignment(uint64_t Size, 1364 const ASTContext &Context) { 1365 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1366 return llvm::alignTo(Size, CharAlignment); 1367 } 1368 1369 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, 1370 uint64_t TypeSize, 1371 bool FieldPacked, 1372 const FieldDecl *D) { 1373 assert(Context.getLangOpts().CPlusPlus && 1374 "Can only have wide bit-fields in C++!"); 1375 1376 // Itanium C++ ABI 2.4: 1377 // If sizeof(T)*8 < n, let T' be the largest integral POD type with 1378 // sizeof(T')*8 <= n. 1379 1380 QualType IntegralPODTypes[] = { 1381 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy, 1382 Context.UnsignedLongTy, Context.UnsignedLongLongTy 1383 }; 1384 1385 QualType Type; 1386 for (const QualType &QT : IntegralPODTypes) { 1387 uint64_t Size = Context.getTypeSize(QT); 1388 1389 if (Size > FieldSize) 1390 break; 1391 1392 Type = QT; 1393 } 1394 assert(!Type.isNull() && "Did not find a type!"); 1395 1396 CharUnits TypeAlign = Context.getTypeAlignInChars(Type); 1397 1398 // We're not going to use any of the unfilled bits in the last byte. 1399 UnfilledBitsInLastUnit = 0; 1400 LastBitfieldTypeSize = 0; 1401 1402 uint64_t FieldOffset; 1403 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1404 1405 if (IsUnion) { 1406 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, 1407 Context); 1408 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1409 FieldOffset = 0; 1410 } else { 1411 // The bitfield is allocated starting at the next offset aligned 1412 // appropriately for T', with length n bits. 1413 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); 1414 1415 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1416 1417 setDataSize( 1418 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); 1419 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1420 } 1421 1422 // Place this field at the current location. 1423 FieldOffsets.push_back(FieldOffset); 1424 1425 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, 1426 Context.toBits(TypeAlign), FieldPacked, D); 1427 1428 // Update the size. 1429 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1430 1431 // Remember max struct/class alignment. 1432 UpdateAlignment(TypeAlign); 1433 } 1434 1435 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { 1436 bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); 1437 uint64_t FieldSize = D->getBitWidthValue(Context); 1438 TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); 1439 uint64_t TypeSize = FieldInfo.Width; 1440 unsigned FieldAlign = FieldInfo.Align; 1441 1442 // UnfilledBitsInLastUnit is the difference between the end of the 1443 // last allocated bitfield (i.e. the first bit offset available for 1444 // bitfields) and the end of the current data size in bits (i.e. the 1445 // first bit offset available for non-bitfields). The current data 1446 // size in bits is always a multiple of the char size; additionally, 1447 // for ms_struct records it's also a multiple of the 1448 // LastBitfieldTypeSize (if set). 1449 1450 // The struct-layout algorithm is dictated by the platform ABI, 1451 // which in principle could use almost any rules it likes. In 1452 // practice, UNIXy targets tend to inherit the algorithm described 1453 // in the System V generic ABI. The basic bitfield layout rule in 1454 // System V is to place bitfields at the next available bit offset 1455 // where the entire bitfield would fit in an aligned storage unit of 1456 // the declared type; it's okay if an earlier or later non-bitfield 1457 // is allocated in the same storage unit. However, some targets 1458 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't 1459 // require this storage unit to be aligned, and therefore always put 1460 // the bitfield at the next available bit offset. 1461 1462 // ms_struct basically requests a complete replacement of the 1463 // platform ABI's struct-layout algorithm, with the high-level goal 1464 // of duplicating MSVC's layout. For non-bitfields, this follows 1465 // the standard algorithm. The basic bitfield layout rule is to 1466 // allocate an entire unit of the bitfield's declared type 1467 // (e.g. 'unsigned long'), then parcel it up among successive 1468 // bitfields whose declared types have the same size, making a new 1469 // unit as soon as the last can no longer store the whole value. 1470 // Since it completely replaces the platform ABI's algorithm, 1471 // settings like !useBitFieldTypeAlignment() do not apply. 1472 1473 // A zero-width bitfield forces the use of a new storage unit for 1474 // later bitfields. In general, this occurs by rounding up the 1475 // current size of the struct as if the algorithm were about to 1476 // place a non-bitfield of the field's formal type. Usually this 1477 // does not change the alignment of the struct itself, but it does 1478 // on some targets (those that useZeroLengthBitfieldAlignment(), 1479 // e.g. ARM). In ms_struct layout, zero-width bitfields are 1480 // ignored unless they follow a non-zero-width bitfield. 1481 1482 // A field alignment restriction (e.g. from #pragma pack) or 1483 // specification (e.g. from __attribute__((aligned))) changes the 1484 // formal alignment of the field. For System V, this alters the 1485 // required alignment of the notional storage unit that must contain 1486 // the bitfield. For ms_struct, this only affects the placement of 1487 // new storage units. In both cases, the effect of #pragma pack is 1488 // ignored on zero-width bitfields. 1489 1490 // On System V, a packed field (e.g. from #pragma pack or 1491 // __attribute__((packed))) always uses the next available bit 1492 // offset. 1493 1494 // In an ms_struct struct, the alignment of a fundamental type is 1495 // always equal to its size. This is necessary in order to mimic 1496 // the i386 alignment rules on targets which might not fully align 1497 // all types (e.g. Darwin PPC32, where alignof(long long) == 4). 1498 1499 // First, some simple bookkeeping to perform for ms_struct structs. 1500 if (IsMsStruct) { 1501 // The field alignment for integer types is always the size. 1502 FieldAlign = TypeSize; 1503 1504 // If the previous field was not a bitfield, or was a bitfield 1505 // with a different storage unit size, we're done with that 1506 // storage unit. 1507 if (LastBitfieldTypeSize != TypeSize) { 1508 // Also, ignore zero-length bitfields after non-bitfields. 1509 if (!LastBitfieldTypeSize && !FieldSize) 1510 FieldAlign = 1; 1511 1512 UnfilledBitsInLastUnit = 0; 1513 LastBitfieldTypeSize = 0; 1514 } 1515 } 1516 1517 // If the field is wider than its declared type, it follows 1518 // different rules in all cases. 1519 if (FieldSize > TypeSize) { 1520 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D); 1521 return; 1522 } 1523 1524 // Compute the next available bit offset. 1525 uint64_t FieldOffset = 1526 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); 1527 1528 // Handle targets that don't honor bitfield type alignment. 1529 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { 1530 // Some such targets do honor it on zero-width bitfields. 1531 if (FieldSize == 0 && 1532 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { 1533 // The alignment to round up to is the max of the field's natural 1534 // alignment and a target-specific fixed value (sometimes zero). 1535 unsigned ZeroLengthBitfieldBoundary = 1536 Context.getTargetInfo().getZeroLengthBitfieldBoundary(); 1537 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); 1538 1539 // If that doesn't apply, just ignore the field alignment. 1540 } else { 1541 FieldAlign = 1; 1542 } 1543 } 1544 1545 // Remember the alignment we would have used if the field were not packed. 1546 unsigned UnpackedFieldAlign = FieldAlign; 1547 1548 // Ignore the field alignment if the field is packed unless it has zero-size. 1549 if (!IsMsStruct && FieldPacked && FieldSize != 0) 1550 FieldAlign = 1; 1551 1552 // But, if there's an 'aligned' attribute on the field, honor that. 1553 unsigned ExplicitFieldAlign = D->getMaxAlignment(); 1554 if (ExplicitFieldAlign) { 1555 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); 1556 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); 1557 } 1558 1559 // But, if there's a #pragma pack in play, that takes precedent over 1560 // even the 'aligned' attribute, for non-zero-width bitfields. 1561 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); 1562 if (!MaxFieldAlignment.isZero() && FieldSize) { 1563 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); 1564 if (FieldPacked) 1565 FieldAlign = UnpackedFieldAlign; 1566 else 1567 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); 1568 } 1569 1570 // But, ms_struct just ignores all of that in unions, even explicit 1571 // alignment attributes. 1572 if (IsMsStruct && IsUnion) { 1573 FieldAlign = UnpackedFieldAlign = 1; 1574 } 1575 1576 // For purposes of diagnostics, we're going to simultaneously 1577 // compute the field offsets that we would have used if we weren't 1578 // adding any alignment padding or if the field weren't packed. 1579 uint64_t UnpaddedFieldOffset = FieldOffset; 1580 uint64_t UnpackedFieldOffset = FieldOffset; 1581 1582 // Check if we need to add padding to fit the bitfield within an 1583 // allocation unit with the right size and alignment. The rules are 1584 // somewhat different here for ms_struct structs. 1585 if (IsMsStruct) { 1586 // If it's not a zero-width bitfield, and we can fit the bitfield 1587 // into the active storage unit (and we haven't already decided to 1588 // start a new storage unit), just do so, regardless of any other 1589 // other consideration. Otherwise, round up to the right alignment. 1590 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { 1591 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1592 UnpackedFieldOffset = 1593 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1594 UnfilledBitsInLastUnit = 0; 1595 } 1596 1597 } else { 1598 // #pragma pack, with any value, suppresses the insertion of padding. 1599 bool AllowPadding = MaxFieldAlignment.isZero(); 1600 1601 // Compute the real offset. 1602 if (FieldSize == 0 || 1603 (AllowPadding && 1604 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) { 1605 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); 1606 } else if (ExplicitFieldAlign && 1607 (MaxFieldAlignmentInBits == 0 || 1608 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1609 Context.getTargetInfo().useExplicitBitFieldAlignment()) { 1610 // TODO: figure it out what needs to be done on targets that don't honor 1611 // bit-field type alignment like ARM APCS ABI. 1612 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); 1613 } 1614 1615 // Repeat the computation for diagnostic purposes. 1616 if (FieldSize == 0 || 1617 (AllowPadding && 1618 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize)) 1619 UnpackedFieldOffset = 1620 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); 1621 else if (ExplicitFieldAlign && 1622 (MaxFieldAlignmentInBits == 0 || 1623 ExplicitFieldAlign <= MaxFieldAlignmentInBits) && 1624 Context.getTargetInfo().useExplicitBitFieldAlignment()) 1625 UnpackedFieldOffset = 1626 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); 1627 } 1628 1629 // If we're using external layout, give the external layout a chance 1630 // to override this information. 1631 if (UseExternalLayout) 1632 FieldOffset = updateExternalFieldOffset(D, FieldOffset); 1633 1634 // Okay, place the bitfield at the calculated offset. 1635 FieldOffsets.push_back(FieldOffset); 1636 1637 // Bookkeeping: 1638 1639 // Anonymous members don't affect the overall record alignment, 1640 // except on targets where they do. 1641 if (!IsMsStruct && 1642 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && 1643 !D->getIdentifier()) 1644 FieldAlign = UnpackedFieldAlign = 1; 1645 1646 // Diagnose differences in layout due to padding or packing. 1647 if (!UseExternalLayout) 1648 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, 1649 UnpackedFieldAlign, FieldPacked, D); 1650 1651 // Update DataSize to include the last byte containing (part of) the bitfield. 1652 1653 // For unions, this is just a max operation, as usual. 1654 if (IsUnion) { 1655 // For ms_struct, allocate the entire storage unit --- unless this 1656 // is a zero-width bitfield, in which case just use a size of 1. 1657 uint64_t RoundedFieldSize; 1658 if (IsMsStruct) { 1659 RoundedFieldSize = 1660 (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth()); 1661 1662 // Otherwise, allocate just the number of bytes required to store 1663 // the bitfield. 1664 } else { 1665 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); 1666 } 1667 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); 1668 1669 // For non-zero-width bitfields in ms_struct structs, allocate a new 1670 // storage unit if necessary. 1671 } else if (IsMsStruct && FieldSize) { 1672 // We should have cleared UnfilledBitsInLastUnit in every case 1673 // where we changed storage units. 1674 if (!UnfilledBitsInLastUnit) { 1675 setDataSize(FieldOffset + TypeSize); 1676 UnfilledBitsInLastUnit = TypeSize; 1677 } 1678 UnfilledBitsInLastUnit -= FieldSize; 1679 LastBitfieldTypeSize = TypeSize; 1680 1681 // Otherwise, bump the data size up to include the bitfield, 1682 // including padding up to char alignment, and then remember how 1683 // bits we didn't use. 1684 } else { 1685 uint64_t NewSizeInBits = FieldOffset + FieldSize; 1686 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); 1687 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); 1688 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; 1689 1690 // The only time we can get here for an ms_struct is if this is a 1691 // zero-width bitfield, which doesn't count as anything for the 1692 // purposes of unfilled bits. 1693 LastBitfieldTypeSize = 0; 1694 } 1695 1696 // Update the size. 1697 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1698 1699 // Remember max struct/class alignment. 1700 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), 1701 Context.toCharUnitsFromBits(UnpackedFieldAlign)); 1702 } 1703 1704 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, 1705 bool InsertExtraPadding) { 1706 if (D->isBitField()) { 1707 LayoutBitField(D); 1708 return; 1709 } 1710 1711 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; 1712 1713 // Reset the unfilled bits. 1714 UnfilledBitsInLastUnit = 0; 1715 LastBitfieldTypeSize = 0; 1716 1717 bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); 1718 CharUnits FieldOffset = 1719 IsUnion ? CharUnits::Zero() : getDataSize(); 1720 CharUnits FieldSize; 1721 CharUnits FieldAlign; 1722 1723 if (D->getType()->isIncompleteArrayType()) { 1724 // This is a flexible array member; we can't directly 1725 // query getTypeInfo about these, so we figure it out here. 1726 // Flexible array members don't have any size, but they 1727 // have to be aligned appropriately for their element type. 1728 FieldSize = CharUnits::Zero(); 1729 const ArrayType* ATy = Context.getAsArrayType(D->getType()); 1730 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType()); 1731 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) { 1732 unsigned AS = RT->getPointeeType().getAddressSpace(); 1733 FieldSize = 1734 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS)); 1735 FieldAlign = 1736 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS)); 1737 } else { 1738 std::pair<CharUnits, CharUnits> FieldInfo = 1739 Context.getTypeInfoInChars(D->getType()); 1740 FieldSize = FieldInfo.first; 1741 FieldAlign = FieldInfo.second; 1742 1743 if (IsMsStruct) { 1744 // If MS bitfield layout is required, figure out what type is being 1745 // laid out and align the field to the width of that type. 1746 1747 // Resolve all typedefs down to their base type and round up the field 1748 // alignment if necessary. 1749 QualType T = Context.getBaseElementType(D->getType()); 1750 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { 1751 CharUnits TypeSize = Context.getTypeSizeInChars(BTy); 1752 if (TypeSize > FieldAlign) 1753 FieldAlign = TypeSize; 1754 } 1755 } 1756 } 1757 1758 // The align if the field is not packed. This is to check if the attribute 1759 // was unnecessary (-Wpacked). 1760 CharUnits UnpackedFieldAlign = FieldAlign; 1761 CharUnits UnpackedFieldOffset = FieldOffset; 1762 1763 if (FieldPacked) 1764 FieldAlign = CharUnits::One(); 1765 CharUnits MaxAlignmentInChars = 1766 Context.toCharUnitsFromBits(D->getMaxAlignment()); 1767 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars); 1768 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); 1769 1770 // The maximum field alignment overrides the aligned attribute. 1771 if (!MaxFieldAlignment.isZero()) { 1772 FieldAlign = std::min(FieldAlign, MaxFieldAlignment); 1773 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); 1774 } 1775 1776 // Round up the current record size to the field's alignment boundary. 1777 FieldOffset = FieldOffset.alignTo(FieldAlign); 1778 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); 1779 1780 if (UseExternalLayout) { 1781 FieldOffset = Context.toCharUnitsFromBits( 1782 updateExternalFieldOffset(D, Context.toBits(FieldOffset))); 1783 1784 if (!IsUnion && EmptySubobjects) { 1785 // Record the fact that we're placing a field at this offset. 1786 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); 1787 (void)Allowed; 1788 assert(Allowed && "Externally-placed field cannot be placed here"); 1789 } 1790 } else { 1791 if (!IsUnion && EmptySubobjects) { 1792 // Check if we can place the field at this offset. 1793 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { 1794 // We couldn't place the field at the offset. Try again at a new offset. 1795 FieldOffset += FieldAlign; 1796 } 1797 } 1798 } 1799 1800 // Place this field at the current location. 1801 FieldOffsets.push_back(Context.toBits(FieldOffset)); 1802 1803 if (!UseExternalLayout) 1804 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, 1805 Context.toBits(UnpackedFieldOffset), 1806 Context.toBits(UnpackedFieldAlign), FieldPacked, D); 1807 1808 if (InsertExtraPadding) { 1809 CharUnits ASanAlignment = CharUnits::fromQuantity(8); 1810 CharUnits ExtraSizeForAsan = ASanAlignment; 1811 if (FieldSize % ASanAlignment) 1812 ExtraSizeForAsan += 1813 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment); 1814 FieldSize += ExtraSizeForAsan; 1815 } 1816 1817 // Reserve space for this field. 1818 uint64_t FieldSizeInBits = Context.toBits(FieldSize); 1819 if (IsUnion) 1820 setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits)); 1821 else 1822 setDataSize(FieldOffset + FieldSize); 1823 1824 // Update the size. 1825 setSize(std::max(getSizeInBits(), getDataSizeInBits())); 1826 1827 // Remember max struct/class alignment. 1828 UpdateAlignment(FieldAlign, UnpackedFieldAlign); 1829 } 1830 1831 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { 1832 // In C++, records cannot be of size 0. 1833 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { 1834 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 1835 // Compatibility with gcc requires a class (pod or non-pod) 1836 // which is not empty but of size 0; such as having fields of 1837 // array of zero-length, remains of Size 0 1838 if (RD->isEmpty()) 1839 setSize(CharUnits::One()); 1840 } 1841 else 1842 setSize(CharUnits::One()); 1843 } 1844 1845 // Finally, round the size of the record up to the alignment of the 1846 // record itself. 1847 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; 1848 uint64_t UnpackedSizeInBits = 1849 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); 1850 CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits); 1851 uint64_t RoundedSize = 1852 llvm::alignTo(getSizeInBits(), Context.toBits(Alignment)); 1853 1854 if (UseExternalLayout) { 1855 // If we're inferring alignment, and the external size is smaller than 1856 // our size after we've rounded up to alignment, conservatively set the 1857 // alignment to 1. 1858 if (InferAlignment && External.Size < RoundedSize) { 1859 Alignment = CharUnits::One(); 1860 InferAlignment = false; 1861 } 1862 setSize(External.Size); 1863 return; 1864 } 1865 1866 // Set the size to the final size. 1867 setSize(RoundedSize); 1868 1869 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 1870 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { 1871 // Warn if padding was introduced to the struct/class/union. 1872 if (getSizeInBits() > UnpaddedSize) { 1873 unsigned PadSize = getSizeInBits() - UnpaddedSize; 1874 bool InBits = true; 1875 if (PadSize % CharBitNum == 0) { 1876 PadSize = PadSize / CharBitNum; 1877 InBits = false; 1878 } 1879 Diag(RD->getLocation(), diag::warn_padded_struct_size) 1880 << Context.getTypeDeclType(RD) 1881 << PadSize 1882 << (InBits ? 1 : 0); // (byte|bit) 1883 } 1884 1885 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't 1886 // bother since there won't be alignment issues. 1887 if (Packed && UnpackedAlignment > CharUnits::One() && 1888 getSize() == UnpackedSize) 1889 Diag(D->getLocation(), diag::warn_unnecessary_packed) 1890 << Context.getTypeDeclType(RD); 1891 } 1892 } 1893 1894 void ItaniumRecordLayoutBuilder::UpdateAlignment( 1895 CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { 1896 // The alignment is not modified when using 'mac68k' alignment or when 1897 // we have an externally-supplied layout that also provides overall alignment. 1898 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) 1899 return; 1900 1901 if (NewAlignment > Alignment) { 1902 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && 1903 "Alignment not a power of 2"); 1904 Alignment = NewAlignment; 1905 } 1906 1907 if (UnpackedNewAlignment > UnpackedAlignment) { 1908 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && 1909 "Alignment not a power of 2"); 1910 UnpackedAlignment = UnpackedNewAlignment; 1911 } 1912 } 1913 1914 uint64_t 1915 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, 1916 uint64_t ComputedOffset) { 1917 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); 1918 1919 if (InferAlignment && ExternalFieldOffset < ComputedOffset) { 1920 // The externally-supplied field offset is before the field offset we 1921 // computed. Assume that the structure is packed. 1922 Alignment = CharUnits::One(); 1923 InferAlignment = false; 1924 } 1925 1926 // Use the externally-supplied field offset. 1927 return ExternalFieldOffset; 1928 } 1929 1930 /// \brief Get diagnostic %select index for tag kind for 1931 /// field padding diagnostic message. 1932 /// WARNING: Indexes apply to particular diagnostics only! 1933 /// 1934 /// \returns diagnostic %select index. 1935 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { 1936 switch (Tag) { 1937 case TTK_Struct: return 0; 1938 case TTK_Interface: return 1; 1939 case TTK_Class: return 2; 1940 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); 1941 } 1942 } 1943 1944 void ItaniumRecordLayoutBuilder::CheckFieldPadding( 1945 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, 1946 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { 1947 // We let objc ivars without warning, objc interfaces generally are not used 1948 // for padding tricks. 1949 if (isa<ObjCIvarDecl>(D)) 1950 return; 1951 1952 // Don't warn about structs created without a SourceLocation. This can 1953 // be done by clients of the AST, such as codegen. 1954 if (D->getLocation().isInvalid()) 1955 return; 1956 1957 unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); 1958 1959 // Warn if padding was introduced to the struct/class. 1960 if (!IsUnion && Offset > UnpaddedOffset) { 1961 unsigned PadSize = Offset - UnpaddedOffset; 1962 bool InBits = true; 1963 if (PadSize % CharBitNum == 0) { 1964 PadSize = PadSize / CharBitNum; 1965 InBits = false; 1966 } 1967 if (D->getIdentifier()) 1968 Diag(D->getLocation(), diag::warn_padded_struct_field) 1969 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 1970 << Context.getTypeDeclType(D->getParent()) 1971 << PadSize 1972 << (InBits ? 1 : 0) // (byte|bit) 1973 << D->getIdentifier(); 1974 else 1975 Diag(D->getLocation(), diag::warn_padded_struct_anon_field) 1976 << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) 1977 << Context.getTypeDeclType(D->getParent()) 1978 << PadSize 1979 << (InBits ? 1 : 0); // (byte|bit) 1980 } 1981 1982 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't 1983 // bother since there won't be alignment issues. 1984 if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset) 1985 Diag(D->getLocation(), diag::warn_unnecessary_packed) 1986 << D->getIdentifier(); 1987 } 1988 1989 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, 1990 const CXXRecordDecl *RD) { 1991 // If a class isn't polymorphic it doesn't have a key function. 1992 if (!RD->isPolymorphic()) 1993 return nullptr; 1994 1995 // A class that is not externally visible doesn't have a key function. (Or 1996 // at least, there's no point to assigning a key function to such a class; 1997 // this doesn't affect the ABI.) 1998 if (!RD->isExternallyVisible()) 1999 return nullptr; 2000 2001 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. 2002 // Same behavior as GCC. 2003 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 2004 if (TSK == TSK_ImplicitInstantiation || 2005 TSK == TSK_ExplicitInstantiationDeclaration || 2006 TSK == TSK_ExplicitInstantiationDefinition) 2007 return nullptr; 2008 2009 bool allowInlineFunctions = 2010 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); 2011 2012 for (const CXXMethodDecl *MD : RD->methods()) { 2013 if (!MD->isVirtual()) 2014 continue; 2015 2016 if (MD->isPure()) 2017 continue; 2018 2019 // Ignore implicit member functions, they are always marked as inline, but 2020 // they don't have a body until they're defined. 2021 if (MD->isImplicit()) 2022 continue; 2023 2024 if (MD->isInlineSpecified()) 2025 continue; 2026 2027 if (MD->hasInlineBody()) 2028 continue; 2029 2030 // Ignore inline deleted or defaulted functions. 2031 if (!MD->isUserProvided()) 2032 continue; 2033 2034 // In certain ABIs, ignore functions with out-of-line inline definitions. 2035 if (!allowInlineFunctions) { 2036 const FunctionDecl *Def; 2037 if (MD->hasBody(Def) && Def->isInlineSpecified()) 2038 continue; 2039 } 2040 2041 if (Context.getLangOpts().CUDA) { 2042 // While compiler may see key method in this TU, during CUDA 2043 // compilation we should ignore methods that are not accessible 2044 // on this side of compilation. 2045 if (Context.getLangOpts().CUDAIsDevice) { 2046 // In device mode ignore methods without __device__ attribute. 2047 if (!MD->hasAttr<CUDADeviceAttr>()) 2048 continue; 2049 } else { 2050 // In host mode ignore __device__-only methods. 2051 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) 2052 continue; 2053 } 2054 } 2055 2056 // If the key function is dllimport but the class isn't, then the class has 2057 // no key function. The DLL that exports the key function won't export the 2058 // vtable in this case. 2059 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>()) 2060 return nullptr; 2061 2062 // We found it. 2063 return MD; 2064 } 2065 2066 return nullptr; 2067 } 2068 2069 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, 2070 unsigned DiagID) { 2071 return Context.getDiagnostics().Report(Loc, DiagID); 2072 } 2073 2074 /// Does the target C++ ABI require us to skip over the tail-padding 2075 /// of the given class (considering it as a base class) when allocating 2076 /// objects? 2077 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { 2078 switch (ABI.getTailPaddingUseRules()) { 2079 case TargetCXXABI::AlwaysUseTailPadding: 2080 return false; 2081 2082 case TargetCXXABI::UseTailPaddingUnlessPOD03: 2083 // FIXME: To the extent that this is meant to cover the Itanium ABI 2084 // rules, we should implement the restrictions about over-sized 2085 // bitfields: 2086 // 2087 // http://mentorembedded.github.com/cxx-abi/abi.html#POD : 2088 // In general, a type is considered a POD for the purposes of 2089 // layout if it is a POD type (in the sense of ISO C++ 2090 // [basic.types]). However, a POD-struct or POD-union (in the 2091 // sense of ISO C++ [class]) with a bitfield member whose 2092 // declared width is wider than the declared type of the 2093 // bitfield is not a POD for the purpose of layout. Similarly, 2094 // an array type is not a POD for the purpose of layout if the 2095 // element type of the array is not a POD for the purpose of 2096 // layout. 2097 // 2098 // Where references to the ISO C++ are made in this paragraph, 2099 // the Technical Corrigendum 1 version of the standard is 2100 // intended. 2101 return RD->isPOD(); 2102 2103 case TargetCXXABI::UseTailPaddingUnlessPOD11: 2104 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), 2105 // but with a lot of abstraction penalty stripped off. This does 2106 // assume that these properties are set correctly even in C++98 2107 // mode; fortunately, that is true because we want to assign 2108 // consistently semantics to the type-traits intrinsics (or at 2109 // least as many of them as possible). 2110 return RD->isTrivial() && RD->isStandardLayout(); 2111 } 2112 2113 llvm_unreachable("bad tail-padding use kind"); 2114 } 2115 2116 static bool isMsLayout(const ASTContext &Context) { 2117 return Context.getTargetInfo().getCXXABI().isMicrosoft(); 2118 } 2119 2120 // This section contains an implementation of struct layout that is, up to the 2121 // included tests, compatible with cl.exe (2013). The layout produced is 2122 // significantly different than those produced by the Itanium ABI. Here we note 2123 // the most important differences. 2124 // 2125 // * The alignment of bitfields in unions is ignored when computing the 2126 // alignment of the union. 2127 // * The existence of zero-width bitfield that occurs after anything other than 2128 // a non-zero length bitfield is ignored. 2129 // * There is no explicit primary base for the purposes of layout. All bases 2130 // with vfptrs are laid out first, followed by all bases without vfptrs. 2131 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual 2132 // function pointer) and a vbptr (virtual base pointer). They can each be 2133 // shared with a, non-virtual bases. These bases need not be the same. vfptrs 2134 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are 2135 // placed after the lexicographically last non-virtual base. This placement 2136 // is always before fields but can be in the middle of the non-virtual bases 2137 // due to the two-pass layout scheme for non-virtual-bases. 2138 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before 2139 // the virtual base and is used in conjunction with virtual overrides during 2140 // construction and destruction. This is always a 4 byte value and is used as 2141 // an alternative to constructor vtables. 2142 // * vtordisps are allocated in a block of memory with size and alignment equal 2143 // to the alignment of the completed structure (before applying __declspec( 2144 // align())). The vtordisp always occur at the end of the allocation block, 2145 // immediately prior to the virtual base. 2146 // * vfptrs are injected after all bases and fields have been laid out. In 2147 // order to guarantee proper alignment of all fields, the vfptr injection 2148 // pushes all bases and fields back by the alignment imposed by those bases 2149 // and fields. This can potentially add a significant amount of padding. 2150 // vfptrs are always injected at offset 0. 2151 // * vbptrs are injected after all bases and fields have been laid out. In 2152 // order to guarantee proper alignment of all fields, the vfptr injection 2153 // pushes all bases and fields back by the alignment imposed by those bases 2154 // and fields. This can potentially add a significant amount of padding. 2155 // vbptrs are injected immediately after the last non-virtual base as 2156 // lexicographically ordered in the code. If this site isn't pointer aligned 2157 // the vbptr is placed at the next properly aligned location. Enough padding 2158 // is added to guarantee a fit. 2159 // * The last zero sized non-virtual base can be placed at the end of the 2160 // struct (potentially aliasing another object), or may alias with the first 2161 // field, even if they are of the same type. 2162 // * The last zero size virtual base may be placed at the end of the struct 2163 // potentially aliasing another object. 2164 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding 2165 // between bases or vbases with specific properties. The criteria for 2166 // additional padding between two bases is that the first base is zero sized 2167 // or ends with a zero sized subobject and the second base is zero sized or 2168 // trails with a zero sized base or field (sharing of vfptrs can reorder the 2169 // layout of the so the leading base is not always the first one declared). 2170 // This rule does take into account fields that are not records, so padding 2171 // will occur even if the last field is, e.g. an int. The padding added for 2172 // bases is 1 byte. The padding added between vbases depends on the alignment 2173 // of the object but is at least 4 bytes (in both 32 and 64 bit modes). 2174 // * There is no concept of non-virtual alignment, non-virtual alignment and 2175 // alignment are always identical. 2176 // * There is a distinction between alignment and required alignment. 2177 // __declspec(align) changes the required alignment of a struct. This 2178 // alignment is _always_ obeyed, even in the presence of #pragma pack. A 2179 // record inherits required alignment from all of its fields and bases. 2180 // * __declspec(align) on bitfields has the effect of changing the bitfield's 2181 // alignment instead of its required alignment. This is the only known way 2182 // to make the alignment of a struct bigger than 8. Interestingly enough 2183 // this alignment is also immune to the effects of #pragma pack and can be 2184 // used to create structures with large alignment under #pragma pack. 2185 // However, because it does not impact required alignment, such a structure, 2186 // when used as a field or base, will not be aligned if #pragma pack is 2187 // still active at the time of use. 2188 // 2189 // Known incompatibilities: 2190 // * all: #pragma pack between fields in a record 2191 // * 2010 and back: If the last field in a record is a bitfield, every object 2192 // laid out after the record will have extra padding inserted before it. The 2193 // extra padding will have size equal to the size of the storage class of the 2194 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra 2195 // padding can be avoided by adding a 0 sized bitfield after the non-zero- 2196 // sized bitfield. 2197 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or 2198 // greater due to __declspec(align()) then a second layout phase occurs after 2199 // The locations of the vf and vb pointers are known. This layout phase 2200 // suffers from the "last field is a bitfield" bug in 2010 and results in 2201 // _every_ field getting padding put in front of it, potentially including the 2202 // vfptr, leaving the vfprt at a non-zero location which results in a fault if 2203 // anything tries to read the vftbl. The second layout phase also treats 2204 // bitfields as separate entities and gives them each storage rather than 2205 // packing them. Additionally, because this phase appears to perform a 2206 // (an unstable) sort on the members before laying them out and because merged 2207 // bitfields have the same address, the bitfields end up in whatever order 2208 // the sort left them in, a behavior we could never hope to replicate. 2209 2210 namespace { 2211 struct MicrosoftRecordLayoutBuilder { 2212 struct ElementInfo { 2213 CharUnits Size; 2214 CharUnits Alignment; 2215 }; 2216 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; 2217 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {} 2218 private: 2219 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; 2220 void operator=(const MicrosoftRecordLayoutBuilder &) = delete; 2221 public: 2222 void layout(const RecordDecl *RD); 2223 void cxxLayout(const CXXRecordDecl *RD); 2224 /// \brief Initializes size and alignment and honors some flags. 2225 void initializeLayout(const RecordDecl *RD); 2226 /// \brief Initialized C++ layout, compute alignment and virtual alignment and 2227 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is 2228 /// laid out. 2229 void initializeCXXLayout(const CXXRecordDecl *RD); 2230 void layoutNonVirtualBases(const CXXRecordDecl *RD); 2231 void layoutNonVirtualBase(const CXXRecordDecl *RD, 2232 const CXXRecordDecl *BaseDecl, 2233 const ASTRecordLayout &BaseLayout, 2234 const ASTRecordLayout *&PreviousBaseLayout); 2235 void injectVFPtr(const CXXRecordDecl *RD); 2236 void injectVBPtr(const CXXRecordDecl *RD); 2237 /// \brief Lays out the fields of the record. Also rounds size up to 2238 /// alignment. 2239 void layoutFields(const RecordDecl *RD); 2240 void layoutField(const FieldDecl *FD); 2241 void layoutBitField(const FieldDecl *FD); 2242 /// \brief Lays out a single zero-width bit-field in the record and handles 2243 /// special cases associated with zero-width bit-fields. 2244 void layoutZeroWidthBitField(const FieldDecl *FD); 2245 void layoutVirtualBases(const CXXRecordDecl *RD); 2246 void finalizeLayout(const RecordDecl *RD); 2247 /// \brief Gets the size and alignment of a base taking pragma pack and 2248 /// __declspec(align) into account. 2249 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); 2250 /// \brief Gets the size and alignment of a field taking pragma pack and 2251 /// __declspec(align) into account. It also updates RequiredAlignment as a 2252 /// side effect because it is most convenient to do so here. 2253 ElementInfo getAdjustedElementInfo(const FieldDecl *FD); 2254 /// \brief Places a field at an offset in CharUnits. 2255 void placeFieldAtOffset(CharUnits FieldOffset) { 2256 FieldOffsets.push_back(Context.toBits(FieldOffset)); 2257 } 2258 /// \brief Places a bitfield at a bit offset. 2259 void placeFieldAtBitOffset(uint64_t FieldOffset) { 2260 FieldOffsets.push_back(FieldOffset); 2261 } 2262 /// \brief Compute the set of virtual bases for which vtordisps are required. 2263 void computeVtorDispSet( 2264 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, 2265 const CXXRecordDecl *RD) const; 2266 const ASTContext &Context; 2267 /// \brief The size of the record being laid out. 2268 CharUnits Size; 2269 /// \brief The non-virtual size of the record layout. 2270 CharUnits NonVirtualSize; 2271 /// \brief The data size of the record layout. 2272 CharUnits DataSize; 2273 /// \brief The current alignment of the record layout. 2274 CharUnits Alignment; 2275 /// \brief The maximum allowed field alignment. This is set by #pragma pack. 2276 CharUnits MaxFieldAlignment; 2277 /// \brief The alignment that this record must obey. This is imposed by 2278 /// __declspec(align()) on the record itself or one of its fields or bases. 2279 CharUnits RequiredAlignment; 2280 /// \brief The size of the allocation of the currently active bitfield. 2281 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield 2282 /// is true. 2283 CharUnits CurrentBitfieldSize; 2284 /// \brief Offset to the virtual base table pointer (if one exists). 2285 CharUnits VBPtrOffset; 2286 /// \brief Minimum record size possible. 2287 CharUnits MinEmptyStructSize; 2288 /// \brief The size and alignment info of a pointer. 2289 ElementInfo PointerInfo; 2290 /// \brief The primary base class (if one exists). 2291 const CXXRecordDecl *PrimaryBase; 2292 /// \brief The class we share our vb-pointer with. 2293 const CXXRecordDecl *SharedVBPtrBase; 2294 /// \brief The collection of field offsets. 2295 SmallVector<uint64_t, 16> FieldOffsets; 2296 /// \brief Base classes and their offsets in the record. 2297 BaseOffsetsMapTy Bases; 2298 /// \brief virtual base classes and their offsets in the record. 2299 ASTRecordLayout::VBaseOffsetsMapTy VBases; 2300 /// \brief The number of remaining bits in our last bitfield allocation. 2301 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is 2302 /// true. 2303 unsigned RemainingBitsInField; 2304 bool IsUnion : 1; 2305 /// \brief True if the last field laid out was a bitfield and was not 0 2306 /// width. 2307 bool LastFieldIsNonZeroWidthBitfield : 1; 2308 /// \brief True if the class has its own vftable pointer. 2309 bool HasOwnVFPtr : 1; 2310 /// \brief True if the class has a vbtable pointer. 2311 bool HasVBPtr : 1; 2312 /// \brief True if the last sub-object within the type is zero sized or the 2313 /// object itself is zero sized. This *does not* count members that are not 2314 /// records. Only used for MS-ABI. 2315 bool EndsWithZeroSizedObject : 1; 2316 /// \brief True if this class is zero sized or first base is zero sized or 2317 /// has this property. Only used for MS-ABI. 2318 bool LeadsWithZeroSizedBase : 1; 2319 2320 /// \brief True if the external AST source provided a layout for this record. 2321 bool UseExternalLayout : 1; 2322 2323 /// \brief The layout provided by the external AST source. Only active if 2324 /// UseExternalLayout is true. 2325 ExternalLayout External; 2326 }; 2327 } // namespace 2328 2329 MicrosoftRecordLayoutBuilder::ElementInfo 2330 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2331 const ASTRecordLayout &Layout) { 2332 ElementInfo Info; 2333 Info.Alignment = Layout.getAlignment(); 2334 // Respect pragma pack. 2335 if (!MaxFieldAlignment.isZero()) 2336 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2337 // Track zero-sized subobjects here where it's already available. 2338 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2339 // Respect required alignment, this is necessary because we may have adjusted 2340 // the alignment in the case of pragam pack. Note that the required alignment 2341 // doesn't actually apply to the struct alignment at this point. 2342 Alignment = std::max(Alignment, Info.Alignment); 2343 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); 2344 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); 2345 Info.Size = Layout.getNonVirtualSize(); 2346 return Info; 2347 } 2348 2349 MicrosoftRecordLayoutBuilder::ElementInfo 2350 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( 2351 const FieldDecl *FD) { 2352 // Get the alignment of the field type's natural alignment, ignore any 2353 // alignment attributes. 2354 ElementInfo Info; 2355 std::tie(Info.Size, Info.Alignment) = 2356 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); 2357 // Respect align attributes on the field. 2358 CharUnits FieldRequiredAlignment = 2359 Context.toCharUnitsFromBits(FD->getMaxAlignment()); 2360 // Respect align attributes on the type. 2361 if (Context.isAlignmentRequired(FD->getType())) 2362 FieldRequiredAlignment = std::max( 2363 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); 2364 // Respect attributes applied to subobjects of the field. 2365 if (FD->isBitField()) 2366 // For some reason __declspec align impacts alignment rather than required 2367 // alignment when it is applied to bitfields. 2368 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2369 else { 2370 if (auto RT = 2371 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 2372 auto const &Layout = Context.getASTRecordLayout(RT->getDecl()); 2373 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); 2374 FieldRequiredAlignment = std::max(FieldRequiredAlignment, 2375 Layout.getRequiredAlignment()); 2376 } 2377 // Capture required alignment as a side-effect. 2378 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); 2379 } 2380 // Respect pragma pack, attribute pack and declspec align 2381 if (!MaxFieldAlignment.isZero()) 2382 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); 2383 if (FD->hasAttr<PackedAttr>()) 2384 Info.Alignment = CharUnits::One(); 2385 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); 2386 return Info; 2387 } 2388 2389 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { 2390 // For C record layout, zero-sized records always have size 4. 2391 MinEmptyStructSize = CharUnits::fromQuantity(4); 2392 initializeLayout(RD); 2393 layoutFields(RD); 2394 DataSize = Size = Size.alignTo(Alignment); 2395 RequiredAlignment = std::max( 2396 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2397 finalizeLayout(RD); 2398 } 2399 2400 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { 2401 // The C++ standard says that empty structs have size 1. 2402 MinEmptyStructSize = CharUnits::One(); 2403 initializeLayout(RD); 2404 initializeCXXLayout(RD); 2405 layoutNonVirtualBases(RD); 2406 layoutFields(RD); 2407 injectVBPtr(RD); 2408 injectVFPtr(RD); 2409 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) 2410 Alignment = std::max(Alignment, PointerInfo.Alignment); 2411 auto RoundingAlignment = Alignment; 2412 if (!MaxFieldAlignment.isZero()) 2413 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 2414 NonVirtualSize = Size = Size.alignTo(RoundingAlignment); 2415 RequiredAlignment = std::max( 2416 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); 2417 layoutVirtualBases(RD); 2418 finalizeLayout(RD); 2419 } 2420 2421 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { 2422 IsUnion = RD->isUnion(); 2423 Size = CharUnits::Zero(); 2424 Alignment = CharUnits::One(); 2425 // In 64-bit mode we always perform an alignment step after laying out vbases. 2426 // In 32-bit mode we do not. The check to see if we need to perform alignment 2427 // checks the RequiredAlignment field and performs alignment if it isn't 0. 2428 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() 2429 ? CharUnits::One() 2430 : CharUnits::Zero(); 2431 // Compute the maximum field alignment. 2432 MaxFieldAlignment = CharUnits::Zero(); 2433 // Honor the default struct packing maximum alignment flag. 2434 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) 2435 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); 2436 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger 2437 // than the pointer size. 2438 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ 2439 unsigned PackedAlignment = MFAA->getAlignment(); 2440 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0)) 2441 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); 2442 } 2443 // Packed attribute forces max field alignment to be 1. 2444 if (RD->hasAttr<PackedAttr>()) 2445 MaxFieldAlignment = CharUnits::One(); 2446 2447 // Try to respect the external layout if present. 2448 UseExternalLayout = false; 2449 if (ExternalASTSource *Source = Context.getExternalSource()) 2450 UseExternalLayout = Source->layoutRecordType( 2451 RD, External.Size, External.Align, External.FieldOffsets, 2452 External.BaseOffsets, External.VirtualBaseOffsets); 2453 } 2454 2455 void 2456 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { 2457 EndsWithZeroSizedObject = false; 2458 LeadsWithZeroSizedBase = false; 2459 HasOwnVFPtr = false; 2460 HasVBPtr = false; 2461 PrimaryBase = nullptr; 2462 SharedVBPtrBase = nullptr; 2463 // Calculate pointer size and alignment. These are used for vfptr and vbprt 2464 // injection. 2465 PointerInfo.Size = 2466 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 2467 PointerInfo.Alignment = 2468 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0)); 2469 // Respect pragma pack. 2470 if (!MaxFieldAlignment.isZero()) 2471 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); 2472 } 2473 2474 void 2475 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { 2476 // The MS-ABI lays out all bases that contain leading vfptrs before it lays 2477 // out any bases that do not contain vfptrs. We implement this as two passes 2478 // over the bases. This approach guarantees that the primary base is laid out 2479 // first. We use these passes to calculate some additional aggregated 2480 // information about the bases, such as required alignment and the presence of 2481 // zero sized members. 2482 const ASTRecordLayout *PreviousBaseLayout = nullptr; 2483 // Iterate through the bases and lay out the non-virtual ones. 2484 for (const CXXBaseSpecifier &Base : RD->bases()) { 2485 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2486 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2487 // Mark and skip virtual bases. 2488 if (Base.isVirtual()) { 2489 HasVBPtr = true; 2490 continue; 2491 } 2492 // Check for a base to share a VBPtr with. 2493 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { 2494 SharedVBPtrBase = BaseDecl; 2495 HasVBPtr = true; 2496 } 2497 // Only lay out bases with extendable VFPtrs on the first pass. 2498 if (!BaseLayout.hasExtendableVFPtr()) 2499 continue; 2500 // If we don't have a primary base, this one qualifies. 2501 if (!PrimaryBase) { 2502 PrimaryBase = BaseDecl; 2503 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2504 } 2505 // Lay out the base. 2506 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2507 } 2508 // Figure out if we need a fresh VFPtr for this class. 2509 if (!PrimaryBase && RD->isDynamicClass()) 2510 for (CXXRecordDecl::method_iterator i = RD->method_begin(), 2511 e = RD->method_end(); 2512 !HasOwnVFPtr && i != e; ++i) 2513 HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0; 2514 // If we don't have a primary base then we have a leading object that could 2515 // itself lead with a zero-sized object, something we track. 2516 bool CheckLeadingLayout = !PrimaryBase; 2517 // Iterate through the bases and lay out the non-virtual ones. 2518 for (const CXXBaseSpecifier &Base : RD->bases()) { 2519 if (Base.isVirtual()) 2520 continue; 2521 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2522 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2523 // Only lay out bases without extendable VFPtrs on the second pass. 2524 if (BaseLayout.hasExtendableVFPtr()) { 2525 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2526 continue; 2527 } 2528 // If this is the first layout, check to see if it leads with a zero sized 2529 // object. If it does, so do we. 2530 if (CheckLeadingLayout) { 2531 CheckLeadingLayout = false; 2532 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); 2533 } 2534 // Lay out the base. 2535 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); 2536 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); 2537 } 2538 // Set our VBPtroffset if we know it at this point. 2539 if (!HasVBPtr) 2540 VBPtrOffset = CharUnits::fromQuantity(-1); 2541 else if (SharedVBPtrBase) { 2542 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); 2543 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); 2544 } 2545 } 2546 2547 static bool recordUsesEBO(const RecordDecl *RD) { 2548 if (!isa<CXXRecordDecl>(RD)) 2549 return false; 2550 if (RD->hasAttr<EmptyBasesAttr>()) 2551 return true; 2552 if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) 2553 // TODO: Double check with the next version of MSVC. 2554 if (LVA->getVersion() <= LangOptions::MSVC2015) 2555 return false; 2556 // TODO: Some later version of MSVC will change the default behavior of the 2557 // compiler to enable EBO by default. When this happens, we will need an 2558 // additional isCompatibleWithMSVC check. 2559 return false; 2560 } 2561 2562 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( 2563 const CXXRecordDecl *RD, 2564 const CXXRecordDecl *BaseDecl, 2565 const ASTRecordLayout &BaseLayout, 2566 const ASTRecordLayout *&PreviousBaseLayout) { 2567 // Insert padding between two bases if the left first one is zero sized or 2568 // contains a zero sized subobject and the right is zero sized or one leads 2569 // with a zero sized base. 2570 bool MDCUsesEBO = recordUsesEBO(RD); 2571 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 2572 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) 2573 Size++; 2574 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 2575 CharUnits BaseOffset; 2576 2577 // Respect the external AST source base offset, if present. 2578 bool FoundBase = false; 2579 if (UseExternalLayout) { 2580 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); 2581 if (FoundBase) { 2582 assert(BaseOffset >= Size && "base offset already allocated"); 2583 Size = BaseOffset; 2584 } 2585 } 2586 2587 if (!FoundBase) { 2588 if (MDCUsesEBO && BaseDecl->isEmpty() && 2589 BaseLayout.getNonVirtualSize() == CharUnits::Zero()) { 2590 BaseOffset = CharUnits::Zero(); 2591 } else { 2592 // Otherwise, lay the base out at the end of the MDC. 2593 BaseOffset = Size = Size.alignTo(Info.Alignment); 2594 } 2595 } 2596 Bases.insert(std::make_pair(BaseDecl, BaseOffset)); 2597 Size += BaseLayout.getNonVirtualSize(); 2598 PreviousBaseLayout = &BaseLayout; 2599 } 2600 2601 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { 2602 LastFieldIsNonZeroWidthBitfield = false; 2603 for (const FieldDecl *Field : RD->fields()) 2604 layoutField(Field); 2605 } 2606 2607 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { 2608 if (FD->isBitField()) { 2609 layoutBitField(FD); 2610 return; 2611 } 2612 LastFieldIsNonZeroWidthBitfield = false; 2613 ElementInfo Info = getAdjustedElementInfo(FD); 2614 Alignment = std::max(Alignment, Info.Alignment); 2615 if (IsUnion) { 2616 placeFieldAtOffset(CharUnits::Zero()); 2617 Size = std::max(Size, Info.Size); 2618 } else { 2619 CharUnits FieldOffset; 2620 if (UseExternalLayout) { 2621 FieldOffset = 2622 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); 2623 assert(FieldOffset >= Size && "field offset already allocated"); 2624 } else { 2625 FieldOffset = Size.alignTo(Info.Alignment); 2626 } 2627 placeFieldAtOffset(FieldOffset); 2628 Size = FieldOffset + Info.Size; 2629 } 2630 } 2631 2632 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { 2633 unsigned Width = FD->getBitWidthValue(Context); 2634 if (Width == 0) { 2635 layoutZeroWidthBitField(FD); 2636 return; 2637 } 2638 ElementInfo Info = getAdjustedElementInfo(FD); 2639 // Clamp the bitfield to a containable size for the sake of being able 2640 // to lay them out. Sema will throw an error. 2641 if (Width > Context.toBits(Info.Size)) 2642 Width = Context.toBits(Info.Size); 2643 // Check to see if this bitfield fits into an existing allocation. Note: 2644 // MSVC refuses to pack bitfields of formal types with different sizes 2645 // into the same allocation. 2646 if (!IsUnion && LastFieldIsNonZeroWidthBitfield && 2647 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { 2648 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); 2649 RemainingBitsInField -= Width; 2650 return; 2651 } 2652 LastFieldIsNonZeroWidthBitfield = true; 2653 CurrentBitfieldSize = Info.Size; 2654 if (IsUnion) { 2655 placeFieldAtOffset(CharUnits::Zero()); 2656 Size = std::max(Size, Info.Size); 2657 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 2658 } else { 2659 // Allocate a new block of memory and place the bitfield in it. 2660 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 2661 placeFieldAtOffset(FieldOffset); 2662 Size = FieldOffset + Info.Size; 2663 Alignment = std::max(Alignment, Info.Alignment); 2664 RemainingBitsInField = Context.toBits(Info.Size) - Width; 2665 } 2666 } 2667 2668 void 2669 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { 2670 // Zero-width bitfields are ignored unless they follow a non-zero-width 2671 // bitfield. 2672 if (!LastFieldIsNonZeroWidthBitfield) { 2673 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); 2674 // TODO: Add a Sema warning that MS ignores alignment for zero 2675 // sized bitfields that occur after zero-size bitfields or non-bitfields. 2676 return; 2677 } 2678 LastFieldIsNonZeroWidthBitfield = false; 2679 ElementInfo Info = getAdjustedElementInfo(FD); 2680 if (IsUnion) { 2681 placeFieldAtOffset(CharUnits::Zero()); 2682 Size = std::max(Size, Info.Size); 2683 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. 2684 } else { 2685 // Round up the current record size to the field's alignment boundary. 2686 CharUnits FieldOffset = Size.alignTo(Info.Alignment); 2687 placeFieldAtOffset(FieldOffset); 2688 Size = FieldOffset; 2689 Alignment = std::max(Alignment, Info.Alignment); 2690 } 2691 } 2692 2693 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { 2694 if (!HasVBPtr || SharedVBPtrBase) 2695 return; 2696 // Inject the VBPointer at the injection site. 2697 CharUnits InjectionSite = VBPtrOffset; 2698 // But before we do, make sure it's properly aligned. 2699 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); 2700 // Shift everything after the vbptr down, unless we're using an external 2701 // layout. 2702 if (UseExternalLayout) 2703 return; 2704 // Determine where the first field should be laid out after the vbptr. 2705 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; 2706 // Make sure that the amount we push the fields back by is a multiple of the 2707 // alignment. 2708 CharUnits Offset = (FieldStart - InjectionSite) 2709 .alignTo(std::max(RequiredAlignment, Alignment)); 2710 Size += Offset; 2711 for (uint64_t &FieldOffset : FieldOffsets) 2712 FieldOffset += Context.toBits(Offset); 2713 for (BaseOffsetsMapTy::value_type &Base : Bases) 2714 if (Base.second >= InjectionSite) 2715 Base.second += Offset; 2716 } 2717 2718 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { 2719 if (!HasOwnVFPtr) 2720 return; 2721 // Make sure that the amount we push the struct back by is a multiple of the 2722 // alignment. 2723 CharUnits Offset = 2724 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); 2725 // Push back the vbptr, but increase the size of the object and push back 2726 // regular fields by the offset only if not using external record layout. 2727 if (HasVBPtr) 2728 VBPtrOffset += Offset; 2729 2730 if (UseExternalLayout) 2731 return; 2732 2733 Size += Offset; 2734 2735 // If we're using an external layout, the fields offsets have already 2736 // accounted for this adjustment. 2737 for (uint64_t &FieldOffset : FieldOffsets) 2738 FieldOffset += Context.toBits(Offset); 2739 for (BaseOffsetsMapTy::value_type &Base : Bases) 2740 Base.second += Offset; 2741 } 2742 2743 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { 2744 if (!HasVBPtr) 2745 return; 2746 // Vtordisps are always 4 bytes (even in 64-bit mode) 2747 CharUnits VtorDispSize = CharUnits::fromQuantity(4); 2748 CharUnits VtorDispAlignment = VtorDispSize; 2749 // vtordisps respect pragma pack. 2750 if (!MaxFieldAlignment.isZero()) 2751 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); 2752 // The alignment of the vtordisp is at least the required alignment of the 2753 // entire record. This requirement may be present to support vtordisp 2754 // injection. 2755 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 2756 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 2757 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2758 RequiredAlignment = 2759 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); 2760 } 2761 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); 2762 // Compute the vtordisp set. 2763 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; 2764 computeVtorDispSet(HasVtorDispSet, RD); 2765 // Iterate through the virtual bases and lay them out. 2766 const ASTRecordLayout *PreviousBaseLayout = nullptr; 2767 for (const CXXBaseSpecifier &VBase : RD->vbases()) { 2768 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); 2769 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); 2770 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0; 2771 // Insert padding between two bases if the left first one is zero sized or 2772 // contains a zero sized subobject and the right is zero sized or one leads 2773 // with a zero sized base. The padding between virtual bases is 4 2774 // bytes (in both 32 and 64 bits modes) and always involves rounding up to 2775 // the required alignment, we don't know why. 2776 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && 2777 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || 2778 HasVtordisp) { 2779 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; 2780 Alignment = std::max(VtorDispAlignment, Alignment); 2781 } 2782 // Insert the virtual base. 2783 ElementInfo Info = getAdjustedElementInfo(BaseLayout); 2784 CharUnits BaseOffset; 2785 2786 // Respect the external AST source base offset, if present. 2787 bool FoundBase = false; 2788 if (UseExternalLayout) { 2789 FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset); 2790 if (FoundBase) 2791 assert(BaseOffset >= Size && "base offset already allocated"); 2792 } 2793 if (!FoundBase) 2794 BaseOffset = Size.alignTo(Info.Alignment); 2795 2796 VBases.insert(std::make_pair(BaseDecl, 2797 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); 2798 Size = BaseOffset + BaseLayout.getNonVirtualSize(); 2799 PreviousBaseLayout = &BaseLayout; 2800 } 2801 } 2802 2803 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { 2804 // Respect required alignment. Note that in 32-bit mode Required alignment 2805 // may be 0 and cause size not to be updated. 2806 DataSize = Size; 2807 if (!RequiredAlignment.isZero()) { 2808 Alignment = std::max(Alignment, RequiredAlignment); 2809 auto RoundingAlignment = Alignment; 2810 if (!MaxFieldAlignment.isZero()) 2811 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); 2812 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); 2813 Size = Size.alignTo(RoundingAlignment); 2814 } 2815 if (Size.isZero()) { 2816 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { 2817 EndsWithZeroSizedObject = true; 2818 LeadsWithZeroSizedBase = true; 2819 } 2820 // Zero-sized structures have size equal to their alignment if a 2821 // __declspec(align) came into play. 2822 if (RequiredAlignment >= MinEmptyStructSize) 2823 Size = Alignment; 2824 else 2825 Size = MinEmptyStructSize; 2826 } 2827 2828 if (UseExternalLayout) { 2829 Size = Context.toCharUnitsFromBits(External.Size); 2830 if (External.Align) 2831 Alignment = Context.toCharUnitsFromBits(External.Align); 2832 } 2833 } 2834 2835 // Recursively walks the non-virtual bases of a class and determines if any of 2836 // them are in the bases with overridden methods set. 2837 static bool 2838 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & 2839 BasesWithOverriddenMethods, 2840 const CXXRecordDecl *RD) { 2841 if (BasesWithOverriddenMethods.count(RD)) 2842 return true; 2843 // If any of a virtual bases non-virtual bases (recursively) requires a 2844 // vtordisp than so does this virtual base. 2845 for (const CXXBaseSpecifier &Base : RD->bases()) 2846 if (!Base.isVirtual() && 2847 RequiresVtordisp(BasesWithOverriddenMethods, 2848 Base.getType()->getAsCXXRecordDecl())) 2849 return true; 2850 return false; 2851 } 2852 2853 void MicrosoftRecordLayoutBuilder::computeVtorDispSet( 2854 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, 2855 const CXXRecordDecl *RD) const { 2856 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with 2857 // vftables. 2858 if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) { 2859 for (const CXXBaseSpecifier &Base : RD->vbases()) { 2860 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2861 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 2862 if (Layout.hasExtendableVFPtr()) 2863 HasVtordispSet.insert(BaseDecl); 2864 } 2865 return; 2866 } 2867 2868 // If any of our bases need a vtordisp for this type, so do we. Check our 2869 // direct bases for vtordisp requirements. 2870 for (const CXXBaseSpecifier &Base : RD->bases()) { 2871 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2872 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); 2873 for (const auto &bi : Layout.getVBaseOffsetsMap()) 2874 if (bi.second.hasVtorDisp()) 2875 HasVtordispSet.insert(bi.first); 2876 } 2877 // We don't introduce any additional vtordisps if either: 2878 // * A user declared constructor or destructor aren't declared. 2879 // * #pragma vtordisp(0) or the /vd0 flag are in use. 2880 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || 2881 RD->getMSVtorDispMode() == MSVtorDispAttr::Never) 2882 return; 2883 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's 2884 // possible for a partially constructed object with virtual base overrides to 2885 // escape a non-trivial constructor. 2886 assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride); 2887 // Compute a set of base classes which define methods we override. A virtual 2888 // base in this set will require a vtordisp. A virtual base that transitively 2889 // contains one of these bases as a non-virtual base will also require a 2890 // vtordisp. 2891 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; 2892 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; 2893 // Seed the working set with our non-destructor, non-pure virtual methods. 2894 for (const CXXMethodDecl *MD : RD->methods()) 2895 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure()) 2896 Work.insert(MD); 2897 while (!Work.empty()) { 2898 const CXXMethodDecl *MD = *Work.begin(); 2899 CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(), 2900 e = MD->end_overridden_methods(); 2901 // If a virtual method has no-overrides it lives in its parent's vtable. 2902 if (i == e) 2903 BasesWithOverriddenMethods.insert(MD->getParent()); 2904 else 2905 Work.insert(i, e); 2906 // We've finished processing this element, remove it from the working set. 2907 Work.erase(MD); 2908 } 2909 // For each of our virtual bases, check if it is in the set of overridden 2910 // bases or if it transitively contains a non-virtual base that is. 2911 for (const CXXBaseSpecifier &Base : RD->vbases()) { 2912 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 2913 if (!HasVtordispSet.count(BaseDecl) && 2914 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) 2915 HasVtordispSet.insert(BaseDecl); 2916 } 2917 } 2918 2919 /// getASTRecordLayout - Get or compute information about the layout of the 2920 /// specified record (struct/union/class), which indicates its size and field 2921 /// position information. 2922 const ASTRecordLayout & 2923 ASTContext::getASTRecordLayout(const RecordDecl *D) const { 2924 // These asserts test different things. A record has a definition 2925 // as soon as we begin to parse the definition. That definition is 2926 // not a complete definition (which is what isDefinition() tests) 2927 // until we *finish* parsing the definition. 2928 2929 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 2930 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); 2931 2932 D = D->getDefinition(); 2933 assert(D && "Cannot get layout of forward declarations!"); 2934 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!"); 2935 assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); 2936 2937 // Look up this layout, if already laid out, return what we have. 2938 // Note that we can't save a reference to the entry because this function 2939 // is recursive. 2940 const ASTRecordLayout *Entry = ASTRecordLayouts[D]; 2941 if (Entry) return *Entry; 2942 2943 const ASTRecordLayout *NewEntry = nullptr; 2944 2945 if (isMsLayout(*this)) { 2946 MicrosoftRecordLayoutBuilder Builder(*this); 2947 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 2948 Builder.cxxLayout(RD); 2949 NewEntry = new (*this) ASTRecordLayout( 2950 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment, 2951 Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase, 2952 Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets, 2953 Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(), 2954 Builder.PrimaryBase, false, Builder.SharedVBPtrBase, 2955 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, 2956 Builder.Bases, Builder.VBases); 2957 } else { 2958 Builder.layout(D); 2959 NewEntry = new (*this) ASTRecordLayout( 2960 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment, 2961 Builder.Size, Builder.FieldOffsets); 2962 } 2963 } else { 2964 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 2965 EmptySubobjectMap EmptySubobjects(*this, RD); 2966 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); 2967 Builder.Layout(RD); 2968 2969 // In certain situations, we are allowed to lay out objects in the 2970 // tail-padding of base classes. This is ABI-dependent. 2971 // FIXME: this should be stored in the record layout. 2972 bool skipTailPadding = 2973 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); 2974 2975 // FIXME: This should be done in FinalizeLayout. 2976 CharUnits DataSize = 2977 skipTailPadding ? Builder.getSize() : Builder.getDataSize(); 2978 CharUnits NonVirtualSize = 2979 skipTailPadding ? DataSize : Builder.NonVirtualSize; 2980 NewEntry = new (*this) ASTRecordLayout( 2981 *this, Builder.getSize(), Builder.Alignment, 2982 /*RequiredAlignment : used by MS-ABI)*/ 2983 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), 2984 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, 2985 NonVirtualSize, Builder.NonVirtualAlignment, 2986 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, 2987 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, 2988 Builder.VBases); 2989 } else { 2990 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 2991 Builder.Layout(D); 2992 2993 NewEntry = new (*this) ASTRecordLayout( 2994 *this, Builder.getSize(), Builder.Alignment, 2995 /*RequiredAlignment : used by MS-ABI)*/ 2996 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); 2997 } 2998 } 2999 3000 ASTRecordLayouts[D] = NewEntry; 3001 3002 if (getLangOpts().DumpRecordLayouts) { 3003 llvm::outs() << "\n*** Dumping AST Record Layout\n"; 3004 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); 3005 } 3006 3007 return *NewEntry; 3008 } 3009 3010 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { 3011 if (!getTargetInfo().getCXXABI().hasKeyFunctions()) 3012 return nullptr; 3013 3014 assert(RD->getDefinition() && "Cannot get key function for forward decl!"); 3015 RD = cast<CXXRecordDecl>(RD->getDefinition()); 3016 3017 // Beware: 3018 // 1) computing the key function might trigger deserialization, which might 3019 // invalidate iterators into KeyFunctions 3020 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and 3021 // invalidate the LazyDeclPtr within the map itself 3022 LazyDeclPtr Entry = KeyFunctions[RD]; 3023 const Decl *Result = 3024 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); 3025 3026 // Store it back if it changed. 3027 if (Entry.isOffset() || Entry.isValid() != bool(Result)) 3028 KeyFunctions[RD] = const_cast<Decl*>(Result); 3029 3030 return cast_or_null<CXXMethodDecl>(Result); 3031 } 3032 3033 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { 3034 assert(Method == Method->getFirstDecl() && 3035 "not working with method declaration from class definition"); 3036 3037 // Look up the cache entry. Since we're working with the first 3038 // declaration, its parent must be the class definition, which is 3039 // the correct key for the KeyFunctions hash. 3040 const auto &Map = KeyFunctions; 3041 auto I = Map.find(Method->getParent()); 3042 3043 // If it's not cached, there's nothing to do. 3044 if (I == Map.end()) return; 3045 3046 // If it is cached, check whether it's the target method, and if so, 3047 // remove it from the cache. Note, the call to 'get' might invalidate 3048 // the iterator and the LazyDeclPtr object within the map. 3049 LazyDeclPtr Ptr = I->second; 3050 if (Ptr.get(getExternalSource()) == Method) { 3051 // FIXME: remember that we did this for module / chained PCH state? 3052 KeyFunctions.erase(Method->getParent()); 3053 } 3054 } 3055 3056 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { 3057 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); 3058 return Layout.getFieldOffset(FD->getFieldIndex()); 3059 } 3060 3061 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { 3062 uint64_t OffsetInBits; 3063 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { 3064 OffsetInBits = ::getFieldOffset(*this, FD); 3065 } else { 3066 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); 3067 3068 OffsetInBits = 0; 3069 for (const NamedDecl *ND : IFD->chain()) 3070 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); 3071 } 3072 3073 return OffsetInBits; 3074 } 3075 3076 /// getObjCLayout - Get or compute information about the layout of the 3077 /// given interface. 3078 /// 3079 /// \param Impl - If given, also include the layout of the interface's 3080 /// implementation. This may differ by including synthesized ivars. 3081 const ASTRecordLayout & 3082 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D, 3083 const ObjCImplementationDecl *Impl) const { 3084 // Retrieve the definition 3085 if (D->hasExternalLexicalStorage() && !D->getDefinition()) 3086 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); 3087 D = D->getDefinition(); 3088 assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!"); 3089 3090 // Look up this layout, if already laid out, return what we have. 3091 const ObjCContainerDecl *Key = 3092 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D; 3093 if (const ASTRecordLayout *Entry = ObjCLayouts[Key]) 3094 return *Entry; 3095 3096 // Add in synthesized ivar count if laying out an implementation. 3097 if (Impl) { 3098 unsigned SynthCount = CountNonClassIvars(D); 3099 // If there aren't any synthesized ivars then reuse the interface 3100 // entry. Note we can't cache this because we simply free all 3101 // entries later; however we shouldn't look up implementations 3102 // frequently. 3103 if (SynthCount == 0) 3104 return getObjCLayout(D, nullptr); 3105 } 3106 3107 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); 3108 Builder.Layout(D); 3109 3110 const ASTRecordLayout *NewEntry = 3111 new (*this) ASTRecordLayout(*this, Builder.getSize(), 3112 Builder.Alignment, 3113 /*RequiredAlignment : used by MS-ABI)*/ 3114 Builder.Alignment, 3115 Builder.getDataSize(), 3116 Builder.FieldOffsets); 3117 3118 ObjCLayouts[Key] = NewEntry; 3119 3120 return *NewEntry; 3121 } 3122 3123 static void PrintOffset(raw_ostream &OS, 3124 CharUnits Offset, unsigned IndentLevel) { 3125 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity()); 3126 OS.indent(IndentLevel * 2); 3127 } 3128 3129 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, 3130 unsigned Begin, unsigned Width, 3131 unsigned IndentLevel) { 3132 llvm::SmallString<10> Buffer; 3133 { 3134 llvm::raw_svector_ostream BufferOS(Buffer); 3135 BufferOS << Offset.getQuantity() << ':'; 3136 if (Width == 0) { 3137 BufferOS << '-'; 3138 } else { 3139 BufferOS << Begin << '-' << (Begin + Width - 1); 3140 } 3141 } 3142 3143 OS << llvm::right_justify(Buffer, 10) << " | "; 3144 OS.indent(IndentLevel * 2); 3145 } 3146 3147 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { 3148 OS << " | "; 3149 OS.indent(IndentLevel * 2); 3150 } 3151 3152 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, 3153 const ASTContext &C, 3154 CharUnits Offset, 3155 unsigned IndentLevel, 3156 const char* Description, 3157 bool PrintSizeInfo, 3158 bool IncludeVirtualBases) { 3159 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); 3160 auto CXXRD = dyn_cast<CXXRecordDecl>(RD); 3161 3162 PrintOffset(OS, Offset, IndentLevel); 3163 OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString(); 3164 if (Description) 3165 OS << ' ' << Description; 3166 if (CXXRD && CXXRD->isEmpty()) 3167 OS << " (empty)"; 3168 OS << '\n'; 3169 3170 IndentLevel++; 3171 3172 // Dump bases. 3173 if (CXXRD) { 3174 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 3175 bool HasOwnVFPtr = Layout.hasOwnVFPtr(); 3176 bool HasOwnVBPtr = Layout.hasOwnVBPtr(); 3177 3178 // Vtable pointer. 3179 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) { 3180 PrintOffset(OS, Offset, IndentLevel); 3181 OS << '(' << *RD << " vtable pointer)\n"; 3182 } else if (HasOwnVFPtr) { 3183 PrintOffset(OS, Offset, IndentLevel); 3184 // vfptr (for Microsoft C++ ABI) 3185 OS << '(' << *RD << " vftable pointer)\n"; 3186 } 3187 3188 // Collect nvbases. 3189 SmallVector<const CXXRecordDecl *, 4> Bases; 3190 for (const CXXBaseSpecifier &Base : CXXRD->bases()) { 3191 assert(!Base.getType()->isDependentType() && 3192 "Cannot layout class with dependent bases."); 3193 if (!Base.isVirtual()) 3194 Bases.push_back(Base.getType()->getAsCXXRecordDecl()); 3195 } 3196 3197 // Sort nvbases by offset. 3198 std::stable_sort(Bases.begin(), Bases.end(), 3199 [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { 3200 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); 3201 }); 3202 3203 // Dump (non-virtual) bases 3204 for (const CXXRecordDecl *Base : Bases) { 3205 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); 3206 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, 3207 Base == PrimaryBase ? "(primary base)" : "(base)", 3208 /*PrintSizeInfo=*/false, 3209 /*IncludeVirtualBases=*/false); 3210 } 3211 3212 // vbptr (for Microsoft C++ ABI) 3213 if (HasOwnVBPtr) { 3214 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); 3215 OS << '(' << *RD << " vbtable pointer)\n"; 3216 } 3217 } 3218 3219 // Dump fields. 3220 uint64_t FieldNo = 0; 3221 for (RecordDecl::field_iterator I = RD->field_begin(), 3222 E = RD->field_end(); I != E; ++I, ++FieldNo) { 3223 const FieldDecl &Field = **I; 3224 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo); 3225 CharUnits FieldOffset = 3226 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); 3227 3228 // Recursively dump fields of record type. 3229 if (auto RT = Field.getType()->getAs<RecordType>()) { 3230 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel, 3231 Field.getName().data(), 3232 /*PrintSizeInfo=*/false, 3233 /*IncludeVirtualBases=*/true); 3234 continue; 3235 } 3236 3237 if (Field.isBitField()) { 3238 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); 3239 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; 3240 unsigned Width = Field.getBitWidthValue(C); 3241 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); 3242 } else { 3243 PrintOffset(OS, FieldOffset, IndentLevel); 3244 } 3245 OS << Field.getType().getAsString() << ' ' << Field << '\n'; 3246 } 3247 3248 // Dump virtual bases. 3249 if (CXXRD && IncludeVirtualBases) { 3250 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = 3251 Layout.getVBaseOffsetsMap(); 3252 3253 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { 3254 assert(Base.isVirtual() && "Found non-virtual class!"); 3255 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); 3256 3257 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); 3258 3259 if (VtorDisps.find(VBase)->second.hasVtorDisp()) { 3260 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); 3261 OS << "(vtordisp for vbase " << *VBase << ")\n"; 3262 } 3263 3264 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, 3265 VBase == Layout.getPrimaryBase() ? 3266 "(primary virtual base)" : "(virtual base)", 3267 /*PrintSizeInfo=*/false, 3268 /*IncludeVirtualBases=*/false); 3269 } 3270 } 3271 3272 if (!PrintSizeInfo) return; 3273 3274 PrintIndentNoOffset(OS, IndentLevel - 1); 3275 OS << "[sizeof=" << Layout.getSize().getQuantity(); 3276 if (CXXRD && !isMsLayout(C)) 3277 OS << ", dsize=" << Layout.getDataSize().getQuantity(); 3278 OS << ", align=" << Layout.getAlignment().getQuantity(); 3279 3280 if (CXXRD) { 3281 OS << ",\n"; 3282 PrintIndentNoOffset(OS, IndentLevel - 1); 3283 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); 3284 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); 3285 } 3286 OS << "]\n"; 3287 } 3288 3289 void ASTContext::DumpRecordLayout(const RecordDecl *RD, 3290 raw_ostream &OS, 3291 bool Simple) const { 3292 if (!Simple) { 3293 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, 3294 /*PrintSizeInfo*/true, 3295 /*IncludeVirtualBases=*/true); 3296 return; 3297 } 3298 3299 // The "simple" format is designed to be parsed by the 3300 // layout-override testing code. There shouldn't be any external 3301 // uses of this format --- when LLDB overrides a layout, it sets up 3302 // the data structures directly --- so feel free to adjust this as 3303 // you like as long as you also update the rudimentary parser for it 3304 // in libFrontend. 3305 3306 const ASTRecordLayout &Info = getASTRecordLayout(RD); 3307 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n"; 3308 OS << "\nLayout: "; 3309 OS << "<ASTRecordLayout\n"; 3310 OS << " Size:" << toBits(Info.getSize()) << "\n"; 3311 if (!isMsLayout(*this)) 3312 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n"; 3313 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n"; 3314 OS << " FieldOffsets: ["; 3315 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { 3316 if (i) OS << ", "; 3317 OS << Info.getFieldOffset(i); 3318 } 3319 OS << "]>\n"; 3320 } 3321