Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonCommonGEP.cpp ---------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "commgep"
     11 
     12 #include "llvm/Pass.h"
     13 #include "llvm/ADT/FoldingSet.h"
     14 #include "llvm/ADT/STLExtras.h"
     15 #include "llvm/Analysis/LoopInfo.h"
     16 #include "llvm/Analysis/PostDominators.h"
     17 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/Dominators.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/Verifier.h"
     23 #include "llvm/Support/Allocator.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Scalar.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 
     30 #include <map>
     31 #include <set>
     32 #include <vector>
     33 
     34 #include "HexagonTargetMachine.h"
     35 
     36 using namespace llvm;
     37 
     38 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
     39   cl::Hidden, cl::ZeroOrMore);
     40 
     41 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
     42   cl::ZeroOrMore);
     43 
     44 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
     45   cl::Hidden, cl::ZeroOrMore);
     46 
     47 namespace llvm {
     48   void initializeHexagonCommonGEPPass(PassRegistry&);
     49 }
     50 
     51 namespace {
     52   struct GepNode;
     53   typedef std::set<GepNode*> NodeSet;
     54   typedef std::map<GepNode*,Value*> NodeToValueMap;
     55   typedef std::vector<GepNode*> NodeVect;
     56   typedef std::map<GepNode*,NodeVect> NodeChildrenMap;
     57   typedef std::set<Use*> UseSet;
     58   typedef std::map<GepNode*,UseSet> NodeToUsesMap;
     59 
     60   // Numbering map for gep nodes. Used to keep track of ordering for
     61   // gep nodes.
     62   struct NodeOrdering {
     63     NodeOrdering() : LastNum(0) {}
     64 
     65     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
     66     void clear() { Map.clear(); }
     67 
     68     bool operator()(const GepNode *N1, const GepNode *N2) const {
     69       auto F1 = Map.find(N1), F2 = Map.find(N2);
     70       assert(F1 != Map.end() && F2 != Map.end());
     71       return F1->second < F2->second;
     72     }
     73 
     74   private:
     75     std::map<const GepNode *, unsigned> Map;
     76     unsigned LastNum;
     77   };
     78 
     79   class HexagonCommonGEP : public FunctionPass {
     80   public:
     81     static char ID;
     82     HexagonCommonGEP() : FunctionPass(ID) {
     83       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
     84     }
     85     virtual bool runOnFunction(Function &F);
     86     virtual const char *getPassName() const {
     87       return "Hexagon Common GEP";
     88     }
     89 
     90     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     91       AU.addRequired<DominatorTreeWrapperPass>();
     92       AU.addPreserved<DominatorTreeWrapperPass>();
     93       AU.addRequired<PostDominatorTreeWrapperPass>();
     94       AU.addPreserved<PostDominatorTreeWrapperPass>();
     95       AU.addRequired<LoopInfoWrapperPass>();
     96       AU.addPreserved<LoopInfoWrapperPass>();
     97       FunctionPass::getAnalysisUsage(AU);
     98     }
     99 
    100   private:
    101     typedef std::map<Value*,GepNode*> ValueToNodeMap;
    102     typedef std::vector<Value*> ValueVect;
    103     typedef std::map<GepNode*,ValueVect> NodeToValuesMap;
    104 
    105     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
    106     bool isHandledGepForm(GetElementPtrInst *GepI);
    107     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
    108     void collect();
    109     void common();
    110 
    111     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
    112                                      NodeToValueMap &Loc);
    113     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
    114                                         NodeToValueMap &Loc);
    115     bool isInvariantIn(Value *Val, Loop *L);
    116     bool isInvariantIn(GepNode *Node, Loop *L);
    117     bool isInMainPath(BasicBlock *B, Loop *L);
    118     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
    119                                     NodeToValueMap &Loc);
    120     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
    121     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
    122                                 NodeToValueMap &Loc);
    123     void computeNodePlacement(NodeToValueMap &Loc);
    124 
    125     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
    126                         BasicBlock *LocB);
    127     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
    128                             NodeChildrenMap &NCM);
    129     void materialize(NodeToValueMap &Loc);
    130 
    131     void removeDeadCode();
    132 
    133     NodeVect Nodes;
    134     NodeToUsesMap Uses;
    135     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
    136     SpecificBumpPtrAllocator<GepNode> *Mem;
    137     LLVMContext *Ctx;
    138     LoopInfo *LI;
    139     DominatorTree *DT;
    140     PostDominatorTree *PDT;
    141     Function *Fn;
    142   };
    143 }
    144 
    145 
    146 char HexagonCommonGEP::ID = 0;
    147 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
    148       false, false)
    149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    150 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
    151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    152 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
    153       false, false)
    154 
    155 namespace {
    156   struct GepNode {
    157     enum {
    158       None      = 0,
    159       Root      = 0x01,
    160       Internal  = 0x02,
    161       Used      = 0x04
    162     };
    163 
    164     uint32_t Flags;
    165     union {
    166       GepNode *Parent;
    167       Value *BaseVal;
    168     };
    169     Value *Idx;
    170     Type *PTy;  // Type of the pointer operand.
    171 
    172     GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {}
    173     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
    174       if (Flags & Root)
    175         BaseVal = N->BaseVal;
    176       else
    177         Parent = N->Parent;
    178     }
    179     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
    180   };
    181 
    182 
    183   Type *next_type(Type *Ty, Value *Idx) {
    184     // Advance the type.
    185     if (!Ty->isStructTy()) {
    186       Type *NexTy = cast<SequentialType>(Ty)->getElementType();
    187       return NexTy;
    188     }
    189     // Otherwise it is a struct type.
    190     ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
    191     assert(CI && "Struct type with non-constant index");
    192     int64_t i = CI->getValue().getSExtValue();
    193     Type *NextTy = cast<StructType>(Ty)->getElementType(i);
    194     return NextTy;
    195   }
    196 
    197 
    198   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
    199     OS << "{ {";
    200     bool Comma = false;
    201     if (GN.Flags & GepNode::Root) {
    202       OS << "root";
    203       Comma = true;
    204     }
    205     if (GN.Flags & GepNode::Internal) {
    206       if (Comma)
    207         OS << ',';
    208       OS << "internal";
    209       Comma = true;
    210     }
    211     if (GN.Flags & GepNode::Used) {
    212       if (Comma)
    213         OS << ',';
    214       OS << "used";
    215     }
    216     OS << "} ";
    217     if (GN.Flags & GepNode::Root)
    218       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
    219     else
    220       OS << "Parent:" << GN.Parent;
    221 
    222     OS << " Idx:";
    223     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
    224       OS << CI->getValue().getSExtValue();
    225     else if (GN.Idx->hasName())
    226       OS << GN.Idx->getName();
    227     else
    228       OS << "<anon> =" << *GN.Idx;
    229 
    230     OS << " PTy:";
    231     if (GN.PTy->isStructTy()) {
    232       StructType *STy = cast<StructType>(GN.PTy);
    233       if (!STy->isLiteral())
    234         OS << GN.PTy->getStructName();
    235       else
    236         OS << "<anon-struct>:" << *STy;
    237     }
    238     else
    239       OS << *GN.PTy;
    240     OS << " }";
    241     return OS;
    242   }
    243 
    244 
    245   template <typename NodeContainer>
    246   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
    247     typedef typename NodeContainer::const_iterator const_iterator;
    248     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
    249       OS << *I << ' ' << **I << '\n';
    250   }
    251 
    252   raw_ostream &operator<< (raw_ostream &OS,
    253                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
    254   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
    255     dump_node_container(OS, S);
    256     return OS;
    257   }
    258 
    259 
    260   raw_ostream &operator<< (raw_ostream &OS,
    261                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
    262   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
    263     typedef NodeToUsesMap::const_iterator const_iterator;
    264     for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    265       const UseSet &Us = I->second;
    266       OS << I->first << " -> #" << Us.size() << '{';
    267       for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
    268         User *R = (*J)->getUser();
    269         if (R->hasName())
    270           OS << ' ' << R->getName();
    271         else
    272           OS << " <?>(" << *R << ')';
    273       }
    274       OS << " }\n";
    275     }
    276     return OS;
    277   }
    278 
    279 
    280   struct in_set {
    281     in_set(const NodeSet &S) : NS(S) {}
    282     bool operator() (GepNode *N) const {
    283       return NS.find(N) != NS.end();
    284     }
    285   private:
    286     const NodeSet &NS;
    287   };
    288 }
    289 
    290 
    291 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
    292   return A.Allocate();
    293 }
    294 
    295 
    296 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
    297       ValueVect &Order) {
    298   // Compute block ordering for a typical DT-based traversal of the flow
    299   // graph: "before visiting a block, all of its dominators must have been
    300   // visited".
    301 
    302   Order.push_back(Root);
    303   DomTreeNode *DTN = DT->getNode(Root);
    304   typedef GraphTraits<DomTreeNode*> GTN;
    305   typedef GTN::ChildIteratorType Iter;
    306   for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I)
    307     getBlockTraversalOrder((*I)->getBlock(), Order);
    308 }
    309 
    310 
    311 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
    312   // No vector GEPs.
    313   if (!GepI->getType()->isPointerTy())
    314     return false;
    315   // No GEPs without any indices.  (Is this possible?)
    316   if (GepI->idx_begin() == GepI->idx_end())
    317     return false;
    318   return true;
    319 }
    320 
    321 
    322 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
    323       ValueToNodeMap &NM) {
    324   DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
    325   GepNode *N = new (*Mem) GepNode;
    326   Value *PtrOp = GepI->getPointerOperand();
    327   ValueToNodeMap::iterator F = NM.find(PtrOp);
    328   if (F == NM.end()) {
    329     N->BaseVal = PtrOp;
    330     N->Flags |= GepNode::Root;
    331   } else {
    332     // If PtrOp was a GEP instruction, it must have already been processed.
    333     // The ValueToNodeMap entry for it is the last gep node in the generated
    334     // chain. Link to it here.
    335     N->Parent = F->second;
    336   }
    337   N->PTy = PtrOp->getType();
    338   N->Idx = *GepI->idx_begin();
    339 
    340   // Collect the list of users of this GEP instruction. Will add it to the
    341   // last node created for it.
    342   UseSet Us;
    343   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
    344        UI != UE; ++UI) {
    345     // Check if this gep is used by anything other than other geps that
    346     // we will process.
    347     if (isa<GetElementPtrInst>(*UI)) {
    348       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
    349       if (isHandledGepForm(UserG))
    350         continue;
    351     }
    352     Us.insert(&UI.getUse());
    353   }
    354   Nodes.push_back(N);
    355   NodeOrder.insert(N);
    356 
    357   // Skip the first index operand, since we only handle 0. This dereferences
    358   // the pointer operand.
    359   GepNode *PN = N;
    360   Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
    361   for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
    362        OI != OE; ++OI) {
    363     Value *Op = *OI;
    364     GepNode *Nx = new (*Mem) GepNode;
    365     Nx->Parent = PN;  // Link Nx to the previous node.
    366     Nx->Flags |= GepNode::Internal;
    367     Nx->PTy = PtrTy;
    368     Nx->Idx = Op;
    369     Nodes.push_back(Nx);
    370     NodeOrder.insert(Nx);
    371     PN = Nx;
    372 
    373     PtrTy = next_type(PtrTy, Op);
    374   }
    375 
    376   // After last node has been created, update the use information.
    377   if (!Us.empty()) {
    378     PN->Flags |= GepNode::Used;
    379     Uses[PN].insert(Us.begin(), Us.end());
    380   }
    381 
    382   // Link the last node with the originating GEP instruction. This is to
    383   // help with linking chained GEP instructions.
    384   NM.insert(std::make_pair(GepI, PN));
    385 }
    386 
    387 
    388 void HexagonCommonGEP::collect() {
    389   // Establish depth-first traversal order of the dominator tree.
    390   ValueVect BO;
    391   getBlockTraversalOrder(&Fn->front(), BO);
    392 
    393   // The creation of gep nodes requires DT-traversal. When processing a GEP
    394   // instruction that uses another GEP instruction as the base pointer, the
    395   // gep node for the base pointer should already exist.
    396   ValueToNodeMap NM;
    397   for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
    398     BasicBlock *B = cast<BasicBlock>(*I);
    399     for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
    400       if (!isa<GetElementPtrInst>(J))
    401         continue;
    402       GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
    403       if (isHandledGepForm(GepI))
    404         processGepInst(GepI, NM);
    405     }
    406   }
    407 
    408   DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
    409 }
    410 
    411 
    412 namespace {
    413   void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
    414         NodeVect &Roots) {
    415     typedef NodeVect::const_iterator const_iterator;
    416     for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    417       GepNode *N = *I;
    418       if (N->Flags & GepNode::Root) {
    419         Roots.push_back(N);
    420         continue;
    421       }
    422       GepNode *PN = N->Parent;
    423       NCM[PN].push_back(N);
    424     }
    425   }
    426 
    427   void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) {
    428     NodeVect Work;
    429     Work.push_back(Root);
    430     Nodes.insert(Root);
    431 
    432     while (!Work.empty()) {
    433       NodeVect::iterator First = Work.begin();
    434       GepNode *N = *First;
    435       Work.erase(First);
    436       NodeChildrenMap::iterator CF = NCM.find(N);
    437       if (CF != NCM.end()) {
    438         Work.insert(Work.end(), CF->second.begin(), CF->second.end());
    439         Nodes.insert(CF->second.begin(), CF->second.end());
    440       }
    441     }
    442   }
    443 }
    444 
    445 
    446 namespace {
    447   typedef std::set<NodeSet> NodeSymRel;
    448   typedef std::pair<GepNode*,GepNode*> NodePair;
    449   typedef std::set<NodePair> NodePairSet;
    450 
    451   const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
    452     for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
    453       if (I->count(N))
    454         return &*I;
    455     return 0;
    456   }
    457 
    458   // Create an ordered pair of GepNode pointers. The pair will be used in
    459   // determining equality. The only purpose of the ordering is to eliminate
    460   // duplication due to the commutativity of equality/non-equality.
    461   NodePair node_pair(GepNode *N1, GepNode *N2) {
    462     uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
    463     if (P1 <= P2)
    464       return std::make_pair(N1, N2);
    465     return std::make_pair(N2, N1);
    466   }
    467 
    468   unsigned node_hash(GepNode *N) {
    469     // Include everything except flags and parent.
    470     FoldingSetNodeID ID;
    471     ID.AddPointer(N->Idx);
    472     ID.AddPointer(N->PTy);
    473     return ID.ComputeHash();
    474   }
    475 
    476   bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) {
    477     // Don't cache the result for nodes with different hashes. The hash
    478     // comparison is fast enough.
    479     if (node_hash(N1) != node_hash(N2))
    480       return false;
    481 
    482     NodePair NP = node_pair(N1, N2);
    483     NodePairSet::iterator FEq = Eq.find(NP);
    484     if (FEq != Eq.end())
    485       return true;
    486     NodePairSet::iterator FNe = Ne.find(NP);
    487     if (FNe != Ne.end())
    488       return false;
    489     // Not previously compared.
    490     bool Root1 = N1->Flags & GepNode::Root;
    491     bool Root2 = N2->Flags & GepNode::Root;
    492     NodePair P = node_pair(N1, N2);
    493     // If the Root flag has different values, the nodes are different.
    494     // If both nodes are root nodes, but their base pointers differ,
    495     // they are different.
    496     if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
    497       Ne.insert(P);
    498       return false;
    499     }
    500     // Here the root flags are identical, and for root nodes the
    501     // base pointers are equal, so the root nodes are equal.
    502     // For non-root nodes, compare their parent nodes.
    503     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
    504       Eq.insert(P);
    505       return true;
    506     }
    507     return false;
    508   }
    509 }
    510 
    511 
    512 void HexagonCommonGEP::common() {
    513   // The essence of this commoning is finding gep nodes that are equal.
    514   // To do this we need to compare all pairs of nodes. To save time,
    515   // first, partition the set of all nodes into sets of potentially equal
    516   // nodes, and then compare pairs from within each partition.
    517   typedef std::map<unsigned,NodeSet> NodeSetMap;
    518   NodeSetMap MaybeEq;
    519 
    520   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    521     GepNode *N = *I;
    522     unsigned H = node_hash(N);
    523     MaybeEq[H].insert(N);
    524   }
    525 
    526   // Compute the equivalence relation for the gep nodes.  Use two caches,
    527   // one for equality and the other for non-equality.
    528   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
    529   NodePairSet Eq, Ne;  // Caches.
    530   for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
    531        I != E; ++I) {
    532     NodeSet &S = I->second;
    533     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
    534       GepNode *N = *NI;
    535       // If node already has a class, then the class must have been created
    536       // in a prior iteration of this loop. Since equality is transitive,
    537       // nothing more will be added to that class, so skip it.
    538       if (node_class(N, EqRel))
    539         continue;
    540 
    541       // Create a new class candidate now.
    542       NodeSet C;
    543       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
    544         if (node_eq(N, *NJ, Eq, Ne))
    545           C.insert(*NJ);
    546       // If Tmp is empty, N would be the only element in it. Don't bother
    547       // creating a class for it then.
    548       if (!C.empty()) {
    549         C.insert(N);  // Finalize the set before adding it to the relation.
    550         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
    551         (void)Ins;
    552         assert(Ins.second && "Cannot add a class");
    553       }
    554     }
    555   }
    556 
    557   DEBUG({
    558     dbgs() << "Gep node equality:\n";
    559     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
    560       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
    561 
    562     dbgs() << "Gep equivalence classes:\n";
    563     for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
    564       dbgs() << '{';
    565       const NodeSet &S = *I;
    566       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
    567         if (J != S.begin())
    568           dbgs() << ',';
    569         dbgs() << ' ' << *J;
    570       }
    571       dbgs() << " }\n";
    572     }
    573   });
    574 
    575 
    576   // Create a projection from a NodeSet to the minimal element in it.
    577   typedef std::map<const NodeSet*,GepNode*> ProjMap;
    578   ProjMap PM;
    579   for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
    580     const NodeSet &S = *I;
    581     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
    582     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
    583     (void)Ins;
    584     assert(Ins.second && "Cannot add minimal element");
    585 
    586     // Update the min element's flags, and user list.
    587     uint32_t Flags = 0;
    588     UseSet &MinUs = Uses[Min];
    589     for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
    590       GepNode *N = *J;
    591       uint32_t NF = N->Flags;
    592       // If N is used, append all original values of N to the list of
    593       // original values of Min.
    594       if (NF & GepNode::Used)
    595         MinUs.insert(Uses[N].begin(), Uses[N].end());
    596       Flags |= NF;
    597     }
    598     if (MinUs.empty())
    599       Uses.erase(Min);
    600 
    601     // The collected flags should include all the flags from the min element.
    602     assert((Min->Flags & Flags) == Min->Flags);
    603     Min->Flags = Flags;
    604   }
    605 
    606   // Commoning: for each non-root gep node, replace "Parent" with the
    607   // selected (minimum) node from the corresponding equivalence class.
    608   // If a given parent does not have an equivalence class, leave it
    609   // unchanged (it means that it's the only element in its class).
    610   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    611     GepNode *N = *I;
    612     if (N->Flags & GepNode::Root)
    613       continue;
    614     const NodeSet *PC = node_class(N->Parent, EqRel);
    615     if (!PC)
    616       continue;
    617     ProjMap::iterator F = PM.find(PC);
    618     if (F == PM.end())
    619       continue;
    620     // Found a replacement, use it.
    621     GepNode *Rep = F->second;
    622     N->Parent = Rep;
    623   }
    624 
    625   DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
    626 
    627   // Finally, erase the nodes that are no longer used.
    628   NodeSet Erase;
    629   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    630     GepNode *N = *I;
    631     const NodeSet *PC = node_class(N, EqRel);
    632     if (!PC)
    633       continue;
    634     ProjMap::iterator F = PM.find(PC);
    635     if (F == PM.end())
    636       continue;
    637     if (N == F->second)
    638       continue;
    639     // Node for removal.
    640     Erase.insert(*I);
    641   }
    642   NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(),
    643                                            in_set(Erase));
    644   Nodes.resize(std::distance(Nodes.begin(), NewE));
    645 
    646   DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
    647 }
    648 
    649 
    650 namespace {
    651   template <typename T>
    652   BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
    653     DEBUG({
    654       dbgs() << "NCD of {";
    655       for (typename T::iterator I = Blocks.begin(), E = Blocks.end();
    656            I != E; ++I) {
    657         if (!*I)
    658           continue;
    659         BasicBlock *B = cast<BasicBlock>(*I);
    660         dbgs() << ' ' << B->getName();
    661       }
    662       dbgs() << " }\n";
    663     });
    664 
    665     // Allow null basic blocks in Blocks.  In such cases, return 0.
    666     typename T::iterator I = Blocks.begin(), E = Blocks.end();
    667     if (I == E || !*I)
    668       return 0;
    669     BasicBlock *Dom = cast<BasicBlock>(*I);
    670     while (++I != E) {
    671       BasicBlock *B = cast_or_null<BasicBlock>(*I);
    672       Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0;
    673       if (!Dom)
    674         return 0;
    675     }
    676     DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
    677     return Dom;
    678   }
    679 
    680   template <typename T>
    681   BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
    682     // If two blocks, A and B, dominate a block C, then A dominates B,
    683     // or B dominates A.
    684     typename T::iterator I = Blocks.begin(), E = Blocks.end();
    685     // Find the first non-null block.
    686     while (I != E && !*I)
    687       ++I;
    688     if (I == E)
    689       return DT->getRoot();
    690     BasicBlock *DomB = cast<BasicBlock>(*I);
    691     while (++I != E) {
    692       if (!*I)
    693         continue;
    694       BasicBlock *B = cast<BasicBlock>(*I);
    695       if (DT->dominates(B, DomB))
    696         continue;
    697       if (!DT->dominates(DomB, B))
    698         return 0;
    699       DomB = B;
    700     }
    701     return DomB;
    702   }
    703 
    704   // Find the first use in B of any value from Values. If no such use,
    705   // return B->end().
    706   template <typename T>
    707   BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
    708     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
    709     typedef typename T::iterator iterator;
    710     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
    711       Value *V = *I;
    712       // If V is used in a PHI node, the use belongs to the incoming block,
    713       // not the block with the PHI node. In the incoming block, the use
    714       // would be considered as being at the end of it, so it cannot
    715       // influence the position of the first use (which is assumed to be
    716       // at the end to start with).
    717       if (isa<PHINode>(V))
    718         continue;
    719       if (!isa<Instruction>(V))
    720         continue;
    721       Instruction *In = cast<Instruction>(V);
    722       if (In->getParent() != B)
    723         continue;
    724       BasicBlock::iterator It = In->getIterator();
    725       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
    726         FirstUse = It;
    727     }
    728     return FirstUse;
    729   }
    730 
    731   bool is_empty(const BasicBlock *B) {
    732     return B->empty() || (&*B->begin() == B->getTerminator());
    733   }
    734 }
    735 
    736 
    737 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
    738       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    739   DEBUG(dbgs() << "Loc for node:" << Node << '\n');
    740   // Recalculate the placement for Node, assuming that the locations of
    741   // its children in Loc are valid.
    742   // Return 0 if there is no valid placement for Node (for example, it
    743   // uses an index value that is not available at the location required
    744   // to dominate all children, etc.).
    745 
    746   // Find the nearest common dominator for:
    747   // - all users, if the node is used, and
    748   // - all children.
    749   ValueVect Bs;
    750   if (Node->Flags & GepNode::Used) {
    751     // Append all blocks with uses of the original values to the
    752     // block vector Bs.
    753     NodeToUsesMap::iterator UF = Uses.find(Node);
    754     assert(UF != Uses.end() && "Used node with no use information");
    755     UseSet &Us = UF->second;
    756     for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
    757       Use *U = *I;
    758       User *R = U->getUser();
    759       if (!isa<Instruction>(R))
    760         continue;
    761       BasicBlock *PB = isa<PHINode>(R)
    762           ? cast<PHINode>(R)->getIncomingBlock(*U)
    763           : cast<Instruction>(R)->getParent();
    764       Bs.push_back(PB);
    765     }
    766   }
    767   // Append the location of each child.
    768   NodeChildrenMap::iterator CF = NCM.find(Node);
    769   if (CF != NCM.end()) {
    770     NodeVect &Cs = CF->second;
    771     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
    772       GepNode *CN = *I;
    773       NodeToValueMap::iterator LF = Loc.find(CN);
    774       // If the child is only used in GEP instructions (i.e. is not used in
    775       // non-GEP instructions), the nearest dominator computed for it may
    776       // have been null. In such case it won't have a location available.
    777       if (LF == Loc.end())
    778         continue;
    779       Bs.push_back(LF->second);
    780     }
    781   }
    782 
    783   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
    784   if (!DomB)
    785     return 0;
    786   // Check if the index used by Node dominates the computed dominator.
    787   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
    788   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
    789     return 0;
    790 
    791   // Avoid putting nodes into empty blocks.
    792   while (is_empty(DomB)) {
    793     DomTreeNode *N = (*DT)[DomB]->getIDom();
    794     if (!N)
    795       break;
    796     DomB = N->getBlock();
    797   }
    798 
    799   // Otherwise, DomB is fine. Update the location map.
    800   Loc[Node] = DomB;
    801   return DomB;
    802 }
    803 
    804 
    805 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
    806       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    807   DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
    808   // Recalculate the placement of Node, after recursively recalculating the
    809   // placements of all its children.
    810   NodeChildrenMap::iterator CF = NCM.find(Node);
    811   if (CF != NCM.end()) {
    812     NodeVect &Cs = CF->second;
    813     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
    814       recalculatePlacementRec(*I, NCM, Loc);
    815   }
    816   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
    817   DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
    818   return LB;
    819 }
    820 
    821 
    822 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
    823   if (isa<Constant>(Val) || isa<Argument>(Val))
    824     return true;
    825   Instruction *In = dyn_cast<Instruction>(Val);
    826   if (!In)
    827     return false;
    828   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
    829   return DT->properlyDominates(DefB, HdrB);
    830 }
    831 
    832 
    833 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
    834   if (Node->Flags & GepNode::Root)
    835     if (!isInvariantIn(Node->BaseVal, L))
    836       return false;
    837   return isInvariantIn(Node->Idx, L);
    838 }
    839 
    840 
    841 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
    842   BasicBlock *HB = L->getHeader();
    843   BasicBlock *LB = L->getLoopLatch();
    844   // B must post-dominate the loop header or dominate the loop latch.
    845   if (PDT->dominates(B, HB))
    846     return true;
    847   if (LB && DT->dominates(B, LB))
    848     return true;
    849   return false;
    850 }
    851 
    852 
    853 namespace {
    854   BasicBlock *preheader(DominatorTree *DT, Loop *L) {
    855     if (BasicBlock *PH = L->getLoopPreheader())
    856       return PH;
    857     if (!OptSpeculate)
    858       return 0;
    859     DomTreeNode *DN = DT->getNode(L->getHeader());
    860     if (!DN)
    861       return 0;
    862     return DN->getIDom()->getBlock();
    863   }
    864 }
    865 
    866 
    867 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
    868       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    869   // Find the "topmost" location for Node: it must be dominated by both,
    870   // its parent (or the BaseVal, if it's a root node), and by the index
    871   // value.
    872   ValueVect Bs;
    873   if (Node->Flags & GepNode::Root) {
    874     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
    875       Bs.push_back(PIn->getParent());
    876   } else {
    877     Bs.push_back(Loc[Node->Parent]);
    878   }
    879   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
    880     Bs.push_back(IIn->getParent());
    881   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
    882 
    883   // Traverse the loop nest upwards until we find a loop in which Node
    884   // is no longer invariant, or until we get to the upper limit of Node's
    885   // placement. The traversal will also stop when a suitable "preheader"
    886   // cannot be found for a given loop. The "preheader" may actually be
    887   // a regular block outside of the loop (i.e. not guarded), in which case
    888   // the Node will be speculated.
    889   // For nodes that are not in the main path of the containing loop (i.e.
    890   // are not executed in each iteration), do not move them out of the loop.
    891   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
    892   if (LocB) {
    893     Loop *Lp = LI->getLoopFor(LocB);
    894     while (Lp) {
    895       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
    896         break;
    897       BasicBlock *NewLoc = preheader(DT, Lp);
    898       if (!NewLoc || !DT->dominates(TopB, NewLoc))
    899         break;
    900       Lp = Lp->getParentLoop();
    901       LocB = NewLoc;
    902     }
    903   }
    904   Loc[Node] = LocB;
    905 
    906   // Recursively compute the locations of all children nodes.
    907   NodeChildrenMap::iterator CF = NCM.find(Node);
    908   if (CF != NCM.end()) {
    909     NodeVect &Cs = CF->second;
    910     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
    911       adjustForInvariance(*I, NCM, Loc);
    912   }
    913   return LocB;
    914 }
    915 
    916 
    917 namespace {
    918   struct LocationAsBlock {
    919     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
    920     const NodeToValueMap &Map;
    921   };
    922 
    923   raw_ostream &operator<< (raw_ostream &OS,
    924                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
    925   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
    926     for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
    927          I != E; ++I) {
    928       OS << I->first << " -> ";
    929       BasicBlock *B = cast<BasicBlock>(I->second);
    930       OS << B->getName() << '(' << B << ')';
    931       OS << '\n';
    932     }
    933     return OS;
    934   }
    935 
    936   inline bool is_constant(GepNode *N) {
    937     return isa<ConstantInt>(N->Idx);
    938   }
    939 }
    940 
    941 
    942 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
    943       NodeToValueMap &Loc) {
    944   User *R = U->getUser();
    945   DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: "
    946                << *R << '\n');
    947   BasicBlock *PB = cast<Instruction>(R)->getParent();
    948 
    949   GepNode *N = Node;
    950   GepNode *C = 0, *NewNode = 0;
    951   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
    952     // XXX if (single-use) dont-replicate;
    953     GepNode *NewN = new (*Mem) GepNode(N);
    954     Nodes.push_back(NewN);
    955     Loc[NewN] = PB;
    956 
    957     if (N == Node)
    958       NewNode = NewN;
    959     NewN->Flags &= ~GepNode::Used;
    960     if (C)
    961       C->Parent = NewN;
    962     C = NewN;
    963     N = N->Parent;
    964   }
    965   if (!NewNode)
    966     return;
    967 
    968   // Move over all uses that share the same user as U from Node to NewNode.
    969   NodeToUsesMap::iterator UF = Uses.find(Node);
    970   assert(UF != Uses.end());
    971   UseSet &Us = UF->second;
    972   UseSet NewUs;
    973   for (UseSet::iterator I = Us.begin(); I != Us.end(); ) {
    974     User *S = (*I)->getUser();
    975     UseSet::iterator Nx = std::next(I);
    976     if (S == R) {
    977       NewUs.insert(*I);
    978       Us.erase(I);
    979     }
    980     I = Nx;
    981   }
    982   if (Us.empty()) {
    983     Node->Flags &= ~GepNode::Used;
    984     Uses.erase(UF);
    985   }
    986 
    987   // Should at least have U in NewUs.
    988   NewNode->Flags |= GepNode::Used;
    989   DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
    990   assert(!NewUs.empty());
    991   Uses[NewNode] = NewUs;
    992 }
    993 
    994 
    995 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
    996       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    997   // First approximation: extract all chains.
    998   NodeSet Ns;
    999   nodes_for_root(Node, NCM, Ns);
   1000 
   1001   DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
   1002   // Collect all used nodes together with the uses from loads and stores,
   1003   // where the GEP node could be folded into the load/store instruction.
   1004   NodeToUsesMap FNs; // Foldable nodes.
   1005   for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
   1006     GepNode *N = *I;
   1007     if (!(N->Flags & GepNode::Used))
   1008       continue;
   1009     NodeToUsesMap::iterator UF = Uses.find(N);
   1010     assert(UF != Uses.end());
   1011     UseSet &Us = UF->second;
   1012     // Loads/stores that use the node N.
   1013     UseSet LSs;
   1014     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
   1015       Use *U = *J;
   1016       User *R = U->getUser();
   1017       // We're interested in uses that provide the address. It can happen
   1018       // that the value may also be provided via GEP, but we won't handle
   1019       // those cases here for now.
   1020       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
   1021         unsigned PtrX = LoadInst::getPointerOperandIndex();
   1022         if (&Ld->getOperandUse(PtrX) == U)
   1023           LSs.insert(U);
   1024       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
   1025         unsigned PtrX = StoreInst::getPointerOperandIndex();
   1026         if (&St->getOperandUse(PtrX) == U)
   1027           LSs.insert(U);
   1028       }
   1029     }
   1030     // Even if the total use count is 1, separating the chain may still be
   1031     // beneficial, since the constant chain may be longer than the GEP alone
   1032     // would be (e.g. if the parent node has a constant index and also has
   1033     // other children).
   1034     if (!LSs.empty())
   1035       FNs.insert(std::make_pair(N, LSs));
   1036   }
   1037 
   1038   DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
   1039 
   1040   for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
   1041     GepNode *N = I->first;
   1042     UseSet &Us = I->second;
   1043     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
   1044       separateChainForNode(N, *J, Loc);
   1045   }
   1046 }
   1047 
   1048 
   1049 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
   1050   // Compute the inverse of the Node.Parent links. Also, collect the set
   1051   // of root nodes.
   1052   NodeChildrenMap NCM;
   1053   NodeVect Roots;
   1054   invert_find_roots(Nodes, NCM, Roots);
   1055 
   1056   // Compute the initial placement determined by the users' locations, and
   1057   // the locations of the child nodes.
   1058   for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
   1059     recalculatePlacementRec(*I, NCM, Loc);
   1060 
   1061   DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
   1062 
   1063   if (OptEnableInv) {
   1064     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
   1065       adjustForInvariance(*I, NCM, Loc);
   1066 
   1067     DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
   1068                  << LocationAsBlock(Loc));
   1069   }
   1070   if (OptEnableConst) {
   1071     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
   1072       separateConstantChains(*I, NCM, Loc);
   1073   }
   1074   DEBUG(dbgs() << "Node use information:\n" << Uses);
   1075 
   1076   // At the moment, there is no further refinement of the initial placement.
   1077   // Such a refinement could include splitting the nodes if they are placed
   1078   // too far from some of its users.
   1079 
   1080   DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
   1081 }
   1082 
   1083 
   1084 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
   1085       BasicBlock *LocB) {
   1086   DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
   1087                << " for nodes:\n" << NA);
   1088   unsigned Num = NA.size();
   1089   GepNode *RN = NA[0];
   1090   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
   1091 
   1092   Value *NewInst = 0;
   1093   Value *Input = RN->BaseVal;
   1094   Value **IdxList = new Value*[Num+1];
   1095   unsigned nax = 0;
   1096   do {
   1097     unsigned IdxC = 0;
   1098     // If the type of the input of the first node is not a pointer,
   1099     // we need to add an artificial i32 0 to the indices (because the
   1100     // actual input in the IR will be a pointer).
   1101     if (!NA[nax]->PTy->isPointerTy()) {
   1102       Type *Int32Ty = Type::getInt32Ty(*Ctx);
   1103       IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
   1104     }
   1105 
   1106     // Keep adding indices from NA until we have to stop and generate
   1107     // an "intermediate" GEP.
   1108     while (++nax <= Num) {
   1109       GepNode *N = NA[nax-1];
   1110       IdxList[IdxC++] = N->Idx;
   1111       if (nax < Num) {
   1112         // We have to stop, if the expected type of the output of this node
   1113         // is not the same as the input type of the next node.
   1114         Type *NextTy = next_type(N->PTy, N->Idx);
   1115         if (NextTy != NA[nax]->PTy)
   1116           break;
   1117       }
   1118     }
   1119     ArrayRef<Value*> A(IdxList, IdxC);
   1120     Type *InpTy = Input->getType();
   1121     Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
   1122     NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
   1123     DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
   1124     Input = NewInst;
   1125   } while (nax <= Num);
   1126 
   1127   delete[] IdxList;
   1128   return NewInst;
   1129 }
   1130 
   1131 
   1132 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
   1133       NodeChildrenMap &NCM) {
   1134   NodeVect Work;
   1135   Work.push_back(Node);
   1136 
   1137   while (!Work.empty()) {
   1138     NodeVect::iterator First = Work.begin();
   1139     GepNode *N = *First;
   1140     Work.erase(First);
   1141     if (N->Flags & GepNode::Used) {
   1142       NodeToUsesMap::iterator UF = Uses.find(N);
   1143       assert(UF != Uses.end() && "No use information for used node");
   1144       UseSet &Us = UF->second;
   1145       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
   1146         Values.push_back((*I)->getUser());
   1147     }
   1148     NodeChildrenMap::iterator CF = NCM.find(N);
   1149     if (CF != NCM.end()) {
   1150       NodeVect &Cs = CF->second;
   1151       Work.insert(Work.end(), Cs.begin(), Cs.end());
   1152     }
   1153   }
   1154 }
   1155 
   1156 
   1157 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
   1158   DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
   1159   NodeChildrenMap NCM;
   1160   NodeVect Roots;
   1161   // Compute the inversion again, since computing placement could alter
   1162   // "parent" relation between nodes.
   1163   invert_find_roots(Nodes, NCM, Roots);
   1164 
   1165   while (!Roots.empty()) {
   1166     NodeVect::iterator First = Roots.begin();
   1167     GepNode *Root = *First, *Last = *First;
   1168     Roots.erase(First);
   1169 
   1170     NodeVect NA;  // Nodes to assemble.
   1171     // Append to NA all child nodes up to (and including) the first child
   1172     // that:
   1173     // (1) has more than 1 child, or
   1174     // (2) is used, or
   1175     // (3) has a child located in a different block.
   1176     bool LastUsed = false;
   1177     unsigned LastCN = 0;
   1178     // The location may be null if the computation failed (it can legitimately
   1179     // happen for nodes created from dead GEPs).
   1180     Value *LocV = Loc[Last];
   1181     if (!LocV)
   1182       continue;
   1183     BasicBlock *LastB = cast<BasicBlock>(LocV);
   1184     do {
   1185       NA.push_back(Last);
   1186       LastUsed = (Last->Flags & GepNode::Used);
   1187       if (LastUsed)
   1188         break;
   1189       NodeChildrenMap::iterator CF = NCM.find(Last);
   1190       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
   1191       if (LastCN != 1)
   1192         break;
   1193       GepNode *Child = CF->second.front();
   1194       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
   1195       if (ChildB != 0 && LastB != ChildB)
   1196         break;
   1197       Last = Child;
   1198     } while (true);
   1199 
   1200     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
   1201     if (LastUsed || LastCN > 0) {
   1202       ValueVect Urs;
   1203       getAllUsersForNode(Root, Urs, NCM);
   1204       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
   1205       if (FirstUse != LastB->end())
   1206         InsertAt = FirstUse;
   1207     }
   1208 
   1209     // Generate a new instruction for NA.
   1210     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
   1211 
   1212     // Convert all the children of Last node into roots, and append them
   1213     // to the Roots list.
   1214     if (LastCN > 0) {
   1215       NodeVect &Cs = NCM[Last];
   1216       for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
   1217         GepNode *CN = *I;
   1218         CN->Flags &= ~GepNode::Internal;
   1219         CN->Flags |= GepNode::Root;
   1220         CN->BaseVal = NewInst;
   1221         Roots.push_back(CN);
   1222       }
   1223     }
   1224 
   1225     // Lastly, if the Last node was used, replace all uses with the new GEP.
   1226     // The uses reference the original GEP values.
   1227     if (LastUsed) {
   1228       NodeToUsesMap::iterator UF = Uses.find(Last);
   1229       assert(UF != Uses.end() && "No use information found");
   1230       UseSet &Us = UF->second;
   1231       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
   1232         Use *U = *I;
   1233         U->set(NewInst);
   1234       }
   1235     }
   1236   }
   1237 }
   1238 
   1239 
   1240 void HexagonCommonGEP::removeDeadCode() {
   1241   ValueVect BO;
   1242   BO.push_back(&Fn->front());
   1243 
   1244   for (unsigned i = 0; i < BO.size(); ++i) {
   1245     BasicBlock *B = cast<BasicBlock>(BO[i]);
   1246     DomTreeNode *N = DT->getNode(B);
   1247     typedef GraphTraits<DomTreeNode*> GTN;
   1248     typedef GTN::ChildIteratorType Iter;
   1249     for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
   1250       BO.push_back((*I)->getBlock());
   1251   }
   1252 
   1253   for (unsigned i = BO.size(); i > 0; --i) {
   1254     BasicBlock *B = cast<BasicBlock>(BO[i-1]);
   1255     BasicBlock::InstListType &IL = B->getInstList();
   1256     typedef BasicBlock::InstListType::reverse_iterator reverse_iterator;
   1257     ValueVect Ins;
   1258     for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
   1259       Ins.push_back(&*I);
   1260     for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
   1261       Instruction *In = cast<Instruction>(*I);
   1262       if (isInstructionTriviallyDead(In))
   1263         In->eraseFromParent();
   1264     }
   1265   }
   1266 }
   1267 
   1268 
   1269 bool HexagonCommonGEP::runOnFunction(Function &F) {
   1270   if (skipFunction(F))
   1271     return false;
   1272 
   1273   // For now bail out on C++ exception handling.
   1274   for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
   1275     for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
   1276       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
   1277         return false;
   1278 
   1279   Fn = &F;
   1280   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1281   PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
   1282   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1283   Ctx = &F.getContext();
   1284 
   1285   Nodes.clear();
   1286   Uses.clear();
   1287   NodeOrder.clear();
   1288 
   1289   SpecificBumpPtrAllocator<GepNode> Allocator;
   1290   Mem = &Allocator;
   1291 
   1292   collect();
   1293   common();
   1294 
   1295   NodeToValueMap Loc;
   1296   computeNodePlacement(Loc);
   1297   materialize(Loc);
   1298   removeDeadCode();
   1299 
   1300 #ifdef EXPENSIVE_CHECKS
   1301   // Run this only when expensive checks are enabled.
   1302   verifyFunction(F);
   1303 #endif
   1304   return true;
   1305 }
   1306 
   1307 
   1308 namespace llvm {
   1309   FunctionPass *createHexagonCommonGEP() {
   1310     return new HexagonCommonGEP();
   1311   }
   1312 }
   1313