Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements a simple loop reroller.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar.h"
     15 #include "llvm/ADT/MapVector.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/BitVector.h"
     18 #include "llvm/ADT/SmallSet.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/AliasSetTracker.h"
     22 #include "llvm/Analysis/LoopPass.h"
     23 #include "llvm/Analysis/ScalarEvolution.h"
     24 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     26 #include "llvm/Analysis/TargetLibraryInfo.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/IntrinsicInst.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     35 #include "llvm/Transforms/Utils/Local.h"
     36 #include "llvm/Transforms/Utils/LoopUtils.h"
     37 
     38 using namespace llvm;
     39 
     40 #define DEBUG_TYPE "loop-reroll"
     41 
     42 STATISTIC(NumRerolledLoops, "Number of rerolled loops");
     43 
     44 static cl::opt<unsigned>
     45 MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
     46   cl::desc("The maximum increment for loop rerolling"));
     47 
     48 static cl::opt<unsigned>
     49 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
     50                           cl::Hidden,
     51                           cl::desc("The maximum number of failures to tolerate"
     52                                    " during fuzzy matching. (default: 400)"));
     53 
     54 // This loop re-rolling transformation aims to transform loops like this:
     55 //
     56 // int foo(int a);
     57 // void bar(int *x) {
     58 //   for (int i = 0; i < 500; i += 3) {
     59 //     foo(i);
     60 //     foo(i+1);
     61 //     foo(i+2);
     62 //   }
     63 // }
     64 //
     65 // into a loop like this:
     66 //
     67 // void bar(int *x) {
     68 //   for (int i = 0; i < 500; ++i)
     69 //     foo(i);
     70 // }
     71 //
     72 // It does this by looking for loops that, besides the latch code, are composed
     73 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
     74 // to the induction variable, and where each DAG is isomorphic to the DAG
     75 // rooted at the induction variable (excepting the sub-DAGs which root the
     76 // other induction-variable increments). In other words, we're looking for loop
     77 // bodies of the form:
     78 //
     79 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
     80 // f(%iv)
     81 // %iv.1 = add %iv, 1                <-- a root increment
     82 // f(%iv.1)
     83 // %iv.2 = add %iv, 2                <-- a root increment
     84 // f(%iv.2)
     85 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
     86 // f(%iv.scale_m_1)
     87 // ...
     88 // %iv.next = add %iv, scale
     89 // %cmp = icmp(%iv, ...)
     90 // br %cmp, header, exit
     91 //
     92 // where each f(i) is a set of instructions that, collectively, are a function
     93 // only of i (and other loop-invariant values).
     94 //
     95 // As a special case, we can also reroll loops like this:
     96 //
     97 // int foo(int);
     98 // void bar(int *x) {
     99 //   for (int i = 0; i < 500; ++i) {
    100 //     x[3*i] = foo(0);
    101 //     x[3*i+1] = foo(0);
    102 //     x[3*i+2] = foo(0);
    103 //   }
    104 // }
    105 //
    106 // into this:
    107 //
    108 // void bar(int *x) {
    109 //   for (int i = 0; i < 1500; ++i)
    110 //     x[i] = foo(0);
    111 // }
    112 //
    113 // in which case, we're looking for inputs like this:
    114 //
    115 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
    116 // %scaled.iv = mul %iv, scale
    117 // f(%scaled.iv)
    118 // %scaled.iv.1 = add %scaled.iv, 1
    119 // f(%scaled.iv.1)
    120 // %scaled.iv.2 = add %scaled.iv, 2
    121 // f(%scaled.iv.2)
    122 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
    123 // f(%scaled.iv.scale_m_1)
    124 // ...
    125 // %iv.next = add %iv, 1
    126 // %cmp = icmp(%iv, ...)
    127 // br %cmp, header, exit
    128 
    129 namespace {
    130   enum IterationLimits {
    131     /// The maximum number of iterations that we'll try and reroll.
    132     IL_MaxRerollIterations = 32,
    133     /// The bitvector index used by loop induction variables and other
    134     /// instructions that belong to all iterations.
    135     IL_All,
    136     IL_End
    137   };
    138 
    139   class LoopReroll : public LoopPass {
    140   public:
    141     static char ID; // Pass ID, replacement for typeid
    142     LoopReroll() : LoopPass(ID) {
    143       initializeLoopRerollPass(*PassRegistry::getPassRegistry());
    144     }
    145 
    146     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    147 
    148     void getAnalysisUsage(AnalysisUsage &AU) const override {
    149       AU.addRequired<TargetLibraryInfoWrapperPass>();
    150       getLoopAnalysisUsage(AU);
    151     }
    152 
    153   protected:
    154     AliasAnalysis *AA;
    155     LoopInfo *LI;
    156     ScalarEvolution *SE;
    157     TargetLibraryInfo *TLI;
    158     DominatorTree *DT;
    159     bool PreserveLCSSA;
    160 
    161     typedef SmallVector<Instruction *, 16> SmallInstructionVector;
    162     typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
    163 
    164     // Map between induction variable and its increment
    165     DenseMap<Instruction *, int64_t> IVToIncMap;
    166     // For loop with multiple induction variable, remember the one used only to
    167     // control the loop.
    168     Instruction *LoopControlIV;
    169 
    170     // A chain of isomorphic instructions, identified by a single-use PHI
    171     // representing a reduction. Only the last value may be used outside the
    172     // loop.
    173     struct SimpleLoopReduction {
    174       SimpleLoopReduction(Instruction *P, Loop *L)
    175         : Valid(false), Instructions(1, P) {
    176         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
    177         add(L);
    178       }
    179 
    180       bool valid() const {
    181         return Valid;
    182       }
    183 
    184       Instruction *getPHI() const {
    185         assert(Valid && "Using invalid reduction");
    186         return Instructions.front();
    187       }
    188 
    189       Instruction *getReducedValue() const {
    190         assert(Valid && "Using invalid reduction");
    191         return Instructions.back();
    192       }
    193 
    194       Instruction *get(size_t i) const {
    195         assert(Valid && "Using invalid reduction");
    196         return Instructions[i+1];
    197       }
    198 
    199       Instruction *operator [] (size_t i) const { return get(i); }
    200 
    201       // The size, ignoring the initial PHI.
    202       size_t size() const {
    203         assert(Valid && "Using invalid reduction");
    204         return Instructions.size()-1;
    205       }
    206 
    207       typedef SmallInstructionVector::iterator iterator;
    208       typedef SmallInstructionVector::const_iterator const_iterator;
    209 
    210       iterator begin() {
    211         assert(Valid && "Using invalid reduction");
    212         return std::next(Instructions.begin());
    213       }
    214 
    215       const_iterator begin() const {
    216         assert(Valid && "Using invalid reduction");
    217         return std::next(Instructions.begin());
    218       }
    219 
    220       iterator end() { return Instructions.end(); }
    221       const_iterator end() const { return Instructions.end(); }
    222 
    223     protected:
    224       bool Valid;
    225       SmallInstructionVector Instructions;
    226 
    227       void add(Loop *L);
    228     };
    229 
    230     // The set of all reductions, and state tracking of possible reductions
    231     // during loop instruction processing.
    232     struct ReductionTracker {
    233       typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
    234 
    235       // Add a new possible reduction.
    236       void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); }
    237 
    238       // Setup to track possible reductions corresponding to the provided
    239       // rerolling scale. Only reductions with a number of non-PHI instructions
    240       // that is divisible by the scale are considered. Three instructions sets
    241       // are filled in:
    242       //   - A set of all possible instructions in eligible reductions.
    243       //   - A set of all PHIs in eligible reductions
    244       //   - A set of all reduced values (last instructions) in eligible
    245       //     reductions.
    246       void restrictToScale(uint64_t Scale,
    247                            SmallInstructionSet &PossibleRedSet,
    248                            SmallInstructionSet &PossibleRedPHISet,
    249                            SmallInstructionSet &PossibleRedLastSet) {
    250         PossibleRedIdx.clear();
    251         PossibleRedIter.clear();
    252         Reds.clear();
    253 
    254         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
    255           if (PossibleReds[i].size() % Scale == 0) {
    256             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
    257             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
    258 
    259             PossibleRedSet.insert(PossibleReds[i].getPHI());
    260             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
    261             for (Instruction *J : PossibleReds[i]) {
    262               PossibleRedSet.insert(J);
    263               PossibleRedIdx[J] = i;
    264             }
    265           }
    266       }
    267 
    268       // The functions below are used while processing the loop instructions.
    269 
    270       // Are the two instructions both from reductions, and furthermore, from
    271       // the same reduction?
    272       bool isPairInSame(Instruction *J1, Instruction *J2) {
    273         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
    274         if (J1I != PossibleRedIdx.end()) {
    275           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
    276           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
    277             return true;
    278         }
    279 
    280         return false;
    281       }
    282 
    283       // The two provided instructions, the first from the base iteration, and
    284       // the second from iteration i, form a matched pair. If these are part of
    285       // a reduction, record that fact.
    286       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
    287         if (PossibleRedIdx.count(J1)) {
    288           assert(PossibleRedIdx.count(J2) &&
    289                  "Recording reduction vs. non-reduction instruction?");
    290 
    291           PossibleRedIter[J1] = 0;
    292           PossibleRedIter[J2] = i;
    293 
    294           int Idx = PossibleRedIdx[J1];
    295           assert(Idx == PossibleRedIdx[J2] &&
    296                  "Recording pair from different reductions?");
    297           Reds.insert(Idx);
    298         }
    299       }
    300 
    301       // The functions below can be called after we've finished processing all
    302       // instructions in the loop, and we know which reductions were selected.
    303 
    304       bool validateSelected();
    305       void replaceSelected();
    306 
    307     protected:
    308       // The vector of all possible reductions (for any scale).
    309       SmallReductionVector PossibleReds;
    310 
    311       DenseMap<Instruction *, int> PossibleRedIdx;
    312       DenseMap<Instruction *, int> PossibleRedIter;
    313       DenseSet<int> Reds;
    314     };
    315 
    316     // A DAGRootSet models an induction variable being used in a rerollable
    317     // loop. For example,
    318     //
    319     //   x[i*3+0] = y1
    320     //   x[i*3+1] = y2
    321     //   x[i*3+2] = y3
    322     //
    323     //   Base instruction -> i*3
    324     //                    +---+----+
    325     //                   /    |     \
    326     //               ST[y1]  +1     +2  <-- Roots
    327     //                        |      |
    328     //                      ST[y2] ST[y3]
    329     //
    330     // There may be multiple DAGRoots, for example:
    331     //
    332     //   x[i*2+0] = ...   (1)
    333     //   x[i*2+1] = ...   (1)
    334     //   x[i*2+4] = ...   (2)
    335     //   x[i*2+5] = ...   (2)
    336     //   x[(i+1234)*2+5678] = ... (3)
    337     //   x[(i+1234)*2+5679] = ... (3)
    338     //
    339     // The loop will be rerolled by adding a new loop induction variable,
    340     // one for the Base instruction in each DAGRootSet.
    341     //
    342     struct DAGRootSet {
    343       Instruction *BaseInst;
    344       SmallInstructionVector Roots;
    345       // The instructions between IV and BaseInst (but not including BaseInst).
    346       SmallInstructionSet SubsumedInsts;
    347     };
    348 
    349     // The set of all DAG roots, and state tracking of all roots
    350     // for a particular induction variable.
    351     struct DAGRootTracker {
    352       DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
    353                      ScalarEvolution *SE, AliasAnalysis *AA,
    354                      TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
    355                      bool PreserveLCSSA,
    356                      DenseMap<Instruction *, int64_t> &IncrMap,
    357                      Instruction *LoopCtrlIV)
    358           : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
    359             PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap),
    360             LoopControlIV(LoopCtrlIV) {}
    361 
    362       /// Stage 1: Find all the DAG roots for the induction variable.
    363       bool findRoots();
    364       /// Stage 2: Validate if the found roots are valid.
    365       bool validate(ReductionTracker &Reductions);
    366       /// Stage 3: Assuming validate() returned true, perform the
    367       /// replacement.
    368       /// @param IterCount The maximum iteration count of L.
    369       void replace(const SCEV *IterCount);
    370 
    371     protected:
    372       typedef MapVector<Instruction*, BitVector> UsesTy;
    373 
    374       bool findRootsRecursive(Instruction *IVU,
    375                               SmallInstructionSet SubsumedInsts);
    376       bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts);
    377       bool collectPossibleRoots(Instruction *Base,
    378                                 std::map<int64_t,Instruction*> &Roots);
    379 
    380       bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet);
    381       void collectInLoopUserSet(const SmallInstructionVector &Roots,
    382                                 const SmallInstructionSet &Exclude,
    383                                 const SmallInstructionSet &Final,
    384                                 DenseSet<Instruction *> &Users);
    385       void collectInLoopUserSet(Instruction *Root,
    386                                 const SmallInstructionSet &Exclude,
    387                                 const SmallInstructionSet &Final,
    388                                 DenseSet<Instruction *> &Users);
    389 
    390       UsesTy::iterator nextInstr(int Val, UsesTy &In,
    391                                  const SmallInstructionSet &Exclude,
    392                                  UsesTy::iterator *StartI=nullptr);
    393       bool isBaseInst(Instruction *I);
    394       bool isRootInst(Instruction *I);
    395       bool instrDependsOn(Instruction *I,
    396                           UsesTy::iterator Start,
    397                           UsesTy::iterator End);
    398       void replaceIV(Instruction *Inst, Instruction *IV, const SCEV *IterCount);
    399       void updateNonLoopCtrlIncr();
    400 
    401       LoopReroll *Parent;
    402 
    403       // Members of Parent, replicated here for brevity.
    404       Loop *L;
    405       ScalarEvolution *SE;
    406       AliasAnalysis *AA;
    407       TargetLibraryInfo *TLI;
    408       DominatorTree *DT;
    409       LoopInfo *LI;
    410       bool PreserveLCSSA;
    411 
    412       // The loop induction variable.
    413       Instruction *IV;
    414       // Loop step amount.
    415       int64_t Inc;
    416       // Loop reroll count; if Inc == 1, this records the scaling applied
    417       // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
    418       // If Inc is not 1, Scale = Inc.
    419       uint64_t Scale;
    420       // The roots themselves.
    421       SmallVector<DAGRootSet,16> RootSets;
    422       // All increment instructions for IV.
    423       SmallInstructionVector LoopIncs;
    424       // Map of all instructions in the loop (in order) to the iterations
    425       // they are used in (or specially, IL_All for instructions
    426       // used in the loop increment mechanism).
    427       UsesTy Uses;
    428       // Map between induction variable and its increment
    429       DenseMap<Instruction *, int64_t> &IVToIncMap;
    430       Instruction *LoopControlIV;
    431     };
    432 
    433     // Check if it is a compare-like instruction whose user is a branch
    434     bool isCompareUsedByBranch(Instruction *I) {
    435       auto *TI = I->getParent()->getTerminator();
    436       if (!isa<BranchInst>(TI) || !isa<CmpInst>(I))
    437         return false;
    438       return I->hasOneUse() && TI->getOperand(0) == I;
    439     };
    440 
    441     bool isLoopControlIV(Loop *L, Instruction *IV);
    442     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
    443     void collectPossibleReductions(Loop *L,
    444            ReductionTracker &Reductions);
    445     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
    446                 ReductionTracker &Reductions);
    447   };
    448 }
    449 
    450 char LoopReroll::ID = 0;
    451 INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
    452 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    453 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    454 INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
    455 
    456 Pass *llvm::createLoopRerollPass() {
    457   return new LoopReroll;
    458 }
    459 
    460 // Returns true if the provided instruction is used outside the given loop.
    461 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
    462 // non-loop blocks to be outside the loop.
    463 static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
    464   for (User *U : I->users()) {
    465     if (!L->contains(cast<Instruction>(U)))
    466       return true;
    467   }
    468   return false;
    469 }
    470 
    471 static const SCEVConstant *getIncrmentFactorSCEV(ScalarEvolution *SE,
    472                                                  const SCEV *SCEVExpr,
    473                                                  Instruction &IV) {
    474   const SCEVMulExpr *MulSCEV = dyn_cast<SCEVMulExpr>(SCEVExpr);
    475 
    476   // If StepRecurrence of a SCEVExpr is a constant (c1 * c2, c2 = sizeof(ptr)),
    477   // Return c1.
    478   if (!MulSCEV && IV.getType()->isPointerTy())
    479     if (const SCEVConstant *IncSCEV = dyn_cast<SCEVConstant>(SCEVExpr)) {
    480       const PointerType *PTy = cast<PointerType>(IV.getType());
    481       Type *ElTy = PTy->getElementType();
    482       const SCEV *SizeOfExpr =
    483           SE->getSizeOfExpr(SE->getEffectiveSCEVType(IV.getType()), ElTy);
    484       if (IncSCEV->getValue()->getValue().isNegative()) {
    485         const SCEV *NewSCEV =
    486             SE->getUDivExpr(SE->getNegativeSCEV(SCEVExpr), SizeOfExpr);
    487         return dyn_cast<SCEVConstant>(SE->getNegativeSCEV(NewSCEV));
    488       } else {
    489         return dyn_cast<SCEVConstant>(SE->getUDivExpr(SCEVExpr, SizeOfExpr));
    490       }
    491     }
    492 
    493   if (!MulSCEV)
    494     return nullptr;
    495 
    496   // If StepRecurrence of a SCEVExpr is a c * sizeof(x), where c is constant,
    497   // Return c.
    498   const SCEVConstant *CIncSCEV = nullptr;
    499   for (const SCEV *Operand : MulSCEV->operands()) {
    500     if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Operand)) {
    501       CIncSCEV = Constant;
    502     } else if (const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Operand)) {
    503       Type *AllocTy;
    504       if (!Unknown->isSizeOf(AllocTy))
    505         break;
    506     } else {
    507       return nullptr;
    508     }
    509   }
    510   return CIncSCEV;
    511 }
    512 
    513 // Check if an IV is only used to control the loop. There are two cases:
    514 // 1. It only has one use which is loop increment, and the increment is only
    515 // used by comparison and the PHI (could has sext with nsw in between), and the
    516 // comparison is only used by branch.
    517 // 2. It is used by loop increment and the comparison, the loop increment is
    518 // only used by the PHI, and the comparison is used only by the branch.
    519 bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) {
    520   unsigned IVUses = IV->getNumUses();
    521   if (IVUses != 2 && IVUses != 1)
    522     return false;
    523 
    524   for (auto *User : IV->users()) {
    525     int32_t IncOrCmpUses = User->getNumUses();
    526     bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User));
    527 
    528     // User can only have one or two uses.
    529     if (IncOrCmpUses != 2 && IncOrCmpUses != 1)
    530       return false;
    531 
    532     // Case 1
    533     if (IVUses == 1) {
    534       // The only user must be the loop increment.
    535       // The loop increment must have two uses.
    536       if (IsCompInst || IncOrCmpUses != 2)
    537         return false;
    538     }
    539 
    540     // Case 2
    541     if (IVUses == 2 && IncOrCmpUses != 1)
    542       return false;
    543 
    544     // The users of the IV must be a binary operation or a comparison
    545     if (auto *BO = dyn_cast<BinaryOperator>(User)) {
    546       if (BO->getOpcode() == Instruction::Add) {
    547         // Loop Increment
    548         // User of Loop Increment should be either PHI or CMP
    549         for (auto *UU : User->users()) {
    550           if (PHINode *PN = dyn_cast<PHINode>(UU)) {
    551             if (PN != IV)
    552               return false;
    553           }
    554           // Must be a CMP or an ext (of a value with nsw) then CMP
    555           else {
    556             Instruction *UUser = dyn_cast<Instruction>(UU);
    557             // Skip SExt if we are extending an nsw value
    558             // TODO: Allow ZExt too
    559             if (BO->hasNoSignedWrap() && UUser && UUser->getNumUses() == 1 &&
    560                 isa<SExtInst>(UUser))
    561               UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
    562             if (!isCompareUsedByBranch(UUser))
    563               return false;
    564           }
    565         }
    566       } else
    567         return false;
    568       // Compare : can only have one use, and must be branch
    569     } else if (!IsCompInst)
    570       return false;
    571   }
    572   return true;
    573 }
    574 
    575 // Collect the list of loop induction variables with respect to which it might
    576 // be possible to reroll the loop.
    577 void LoopReroll::collectPossibleIVs(Loop *L,
    578                                     SmallInstructionVector &PossibleIVs) {
    579   BasicBlock *Header = L->getHeader();
    580   for (BasicBlock::iterator I = Header->begin(),
    581        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    582     if (!isa<PHINode>(I))
    583       continue;
    584     if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy())
    585       continue;
    586 
    587     if (const SCEVAddRecExpr *PHISCEV =
    588             dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) {
    589       if (PHISCEV->getLoop() != L)
    590         continue;
    591       if (!PHISCEV->isAffine())
    592         continue;
    593       const SCEVConstant *IncSCEV = nullptr;
    594       if (I->getType()->isPointerTy())
    595         IncSCEV =
    596             getIncrmentFactorSCEV(SE, PHISCEV->getStepRecurrence(*SE), *I);
    597       else
    598         IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE));
    599       if (IncSCEV) {
    600         const APInt &AInt = IncSCEV->getValue()->getValue().abs();
    601         if (IncSCEV->getValue()->isZero() || AInt.uge(MaxInc))
    602           continue;
    603         IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue();
    604         DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV
    605                      << "\n");
    606 
    607         if (isLoopControlIV(L, &*I)) {
    608           assert(!LoopControlIV && "Found two loop control only IV");
    609           LoopControlIV = &(*I);
    610           DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I << " = "
    611                        << *PHISCEV << "\n");
    612         } else
    613           PossibleIVs.push_back(&*I);
    614       }
    615     }
    616   }
    617 }
    618 
    619 // Add the remainder of the reduction-variable chain to the instruction vector
    620 // (the initial PHINode has already been added). If successful, the object is
    621 // marked as valid.
    622 void LoopReroll::SimpleLoopReduction::add(Loop *L) {
    623   assert(!Valid && "Cannot add to an already-valid chain");
    624 
    625   // The reduction variable must be a chain of single-use instructions
    626   // (including the PHI), except for the last value (which is used by the PHI
    627   // and also outside the loop).
    628   Instruction *C = Instructions.front();
    629   if (C->user_empty())
    630     return;
    631 
    632   do {
    633     C = cast<Instruction>(*C->user_begin());
    634     if (C->hasOneUse()) {
    635       if (!C->isBinaryOp())
    636         return;
    637 
    638       if (!(isa<PHINode>(Instructions.back()) ||
    639             C->isSameOperationAs(Instructions.back())))
    640         return;
    641 
    642       Instructions.push_back(C);
    643     }
    644   } while (C->hasOneUse());
    645 
    646   if (Instructions.size() < 2 ||
    647       !C->isSameOperationAs(Instructions.back()) ||
    648       C->use_empty())
    649     return;
    650 
    651   // C is now the (potential) last instruction in the reduction chain.
    652   for (User *U : C->users()) {
    653     // The only in-loop user can be the initial PHI.
    654     if (L->contains(cast<Instruction>(U)))
    655       if (cast<Instruction>(U) != Instructions.front())
    656         return;
    657   }
    658 
    659   Instructions.push_back(C);
    660   Valid = true;
    661 }
    662 
    663 // Collect the vector of possible reduction variables.
    664 void LoopReroll::collectPossibleReductions(Loop *L,
    665   ReductionTracker &Reductions) {
    666   BasicBlock *Header = L->getHeader();
    667   for (BasicBlock::iterator I = Header->begin(),
    668        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
    669     if (!isa<PHINode>(I))
    670       continue;
    671     if (!I->getType()->isSingleValueType())
    672       continue;
    673 
    674     SimpleLoopReduction SLR(&*I, L);
    675     if (!SLR.valid())
    676       continue;
    677 
    678     DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
    679           SLR.size() << " chained instructions)\n");
    680     Reductions.addSLR(SLR);
    681   }
    682 }
    683 
    684 // Collect the set of all users of the provided root instruction. This set of
    685 // users contains not only the direct users of the root instruction, but also
    686 // all users of those users, and so on. There are two exceptions:
    687 //
    688 //   1. Instructions in the set of excluded instructions are never added to the
    689 //   use set (even if they are users). This is used, for example, to exclude
    690 //   including root increments in the use set of the primary IV.
    691 //
    692 //   2. Instructions in the set of final instructions are added to the use set
    693 //   if they are users, but their users are not added. This is used, for
    694 //   example, to prevent a reduction update from forcing all later reduction
    695 //   updates into the use set.
    696 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
    697   Instruction *Root, const SmallInstructionSet &Exclude,
    698   const SmallInstructionSet &Final,
    699   DenseSet<Instruction *> &Users) {
    700   SmallInstructionVector Queue(1, Root);
    701   while (!Queue.empty()) {
    702     Instruction *I = Queue.pop_back_val();
    703     if (!Users.insert(I).second)
    704       continue;
    705 
    706     if (!Final.count(I))
    707       for (Use &U : I->uses()) {
    708         Instruction *User = cast<Instruction>(U.getUser());
    709         if (PHINode *PN = dyn_cast<PHINode>(User)) {
    710           // Ignore "wrap-around" uses to PHIs of this loop's header.
    711           if (PN->getIncomingBlock(U) == L->getHeader())
    712             continue;
    713         }
    714 
    715         if (L->contains(User) && !Exclude.count(User)) {
    716           Queue.push_back(User);
    717         }
    718       }
    719 
    720     // We also want to collect single-user "feeder" values.
    721     for (User::op_iterator OI = I->op_begin(),
    722          OIE = I->op_end(); OI != OIE; ++OI) {
    723       if (Instruction *Op = dyn_cast<Instruction>(*OI))
    724         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
    725             !Final.count(Op))
    726           Queue.push_back(Op);
    727     }
    728   }
    729 }
    730 
    731 // Collect all of the users of all of the provided root instructions (combined
    732 // into a single set).
    733 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
    734   const SmallInstructionVector &Roots,
    735   const SmallInstructionSet &Exclude,
    736   const SmallInstructionSet &Final,
    737   DenseSet<Instruction *> &Users) {
    738   for (Instruction *Root : Roots)
    739     collectInLoopUserSet(Root, Exclude, Final, Users);
    740 }
    741 
    742 static bool isSimpleLoadStore(Instruction *I) {
    743   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    744     return LI->isSimple();
    745   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    746     return SI->isSimple();
    747   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    748     return !MI->isVolatile();
    749   return false;
    750 }
    751 
    752 /// Return true if IVU is a "simple" arithmetic operation.
    753 /// This is used for narrowing the search space for DAGRoots; only arithmetic
    754 /// and GEPs can be part of a DAGRoot.
    755 static bool isSimpleArithmeticOp(User *IVU) {
    756   if (Instruction *I = dyn_cast<Instruction>(IVU)) {
    757     switch (I->getOpcode()) {
    758     default: return false;
    759     case Instruction::Add:
    760     case Instruction::Sub:
    761     case Instruction::Mul:
    762     case Instruction::Shl:
    763     case Instruction::AShr:
    764     case Instruction::LShr:
    765     case Instruction::GetElementPtr:
    766     case Instruction::Trunc:
    767     case Instruction::ZExt:
    768     case Instruction::SExt:
    769       return true;
    770     }
    771   }
    772   return false;
    773 }
    774 
    775 static bool isLoopIncrement(User *U, Instruction *IV) {
    776   BinaryOperator *BO = dyn_cast<BinaryOperator>(U);
    777 
    778   if ((BO && BO->getOpcode() != Instruction::Add) ||
    779       (!BO && !isa<GetElementPtrInst>(U)))
    780     return false;
    781 
    782   for (auto *UU : U->users()) {
    783     PHINode *PN = dyn_cast<PHINode>(UU);
    784     if (PN && PN == IV)
    785       return true;
    786   }
    787   return false;
    788 }
    789 
    790 bool LoopReroll::DAGRootTracker::
    791 collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) {
    792   SmallInstructionVector BaseUsers;
    793 
    794   for (auto *I : Base->users()) {
    795     ConstantInt *CI = nullptr;
    796 
    797     if (isLoopIncrement(I, IV)) {
    798       LoopIncs.push_back(cast<Instruction>(I));
    799       continue;
    800     }
    801 
    802     // The root nodes must be either GEPs, ORs or ADDs.
    803     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
    804       if (BO->getOpcode() == Instruction::Add ||
    805           BO->getOpcode() == Instruction::Or)
    806         CI = dyn_cast<ConstantInt>(BO->getOperand(1));
    807     } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
    808       Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1);
    809       CI = dyn_cast<ConstantInt>(LastOperand);
    810     }
    811 
    812     if (!CI) {
    813       if (Instruction *II = dyn_cast<Instruction>(I)) {
    814         BaseUsers.push_back(II);
    815         continue;
    816       } else {
    817         DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I << "\n");
    818         return false;
    819       }
    820     }
    821 
    822     int64_t V = std::abs(CI->getValue().getSExtValue());
    823     if (Roots.find(V) != Roots.end())
    824       // No duplicates, please.
    825       return false;
    826 
    827     Roots[V] = cast<Instruction>(I);
    828   }
    829 
    830   if (Roots.empty())
    831     return false;
    832 
    833   // If we found non-loop-inc, non-root users of Base, assume they are
    834   // for the zeroth root index. This is because "add %a, 0" gets optimized
    835   // away.
    836   if (BaseUsers.size()) {
    837     if (Roots.find(0) != Roots.end()) {
    838       DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
    839       return false;
    840     }
    841     Roots[0] = Base;
    842   }
    843 
    844   // Calculate the number of users of the base, or lowest indexed, iteration.
    845   unsigned NumBaseUses = BaseUsers.size();
    846   if (NumBaseUses == 0)
    847     NumBaseUses = Roots.begin()->second->getNumUses();
    848 
    849   // Check that every node has the same number of users.
    850   for (auto &KV : Roots) {
    851     if (KV.first == 0)
    852       continue;
    853     if (KV.second->getNumUses() != NumBaseUses) {
    854       DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
    855             << "#Base=" << NumBaseUses << ", #Root=" <<
    856             KV.second->getNumUses() << "\n");
    857       return false;
    858     }
    859   }
    860 
    861   return true;
    862 }
    863 
    864 bool LoopReroll::DAGRootTracker::
    865 findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) {
    866   // Does the user look like it could be part of a root set?
    867   // All its users must be simple arithmetic ops.
    868   if (I->getNumUses() > IL_MaxRerollIterations)
    869     return false;
    870 
    871   if ((I->getOpcode() == Instruction::Mul ||
    872        I->getOpcode() == Instruction::PHI) &&
    873       I != IV &&
    874       findRootsBase(I, SubsumedInsts))
    875     return true;
    876 
    877   SubsumedInsts.insert(I);
    878 
    879   for (User *V : I->users()) {
    880     Instruction *I = dyn_cast<Instruction>(V);
    881     if (std::find(LoopIncs.begin(), LoopIncs.end(), I) != LoopIncs.end())
    882       continue;
    883 
    884     if (!I || !isSimpleArithmeticOp(I) ||
    885         !findRootsRecursive(I, SubsumedInsts))
    886       return false;
    887   }
    888   return true;
    889 }
    890 
    891 bool LoopReroll::DAGRootTracker::
    892 findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) {
    893 
    894   // The base instruction needs to be a multiply so
    895   // that we can erase it.
    896   if (IVU->getOpcode() != Instruction::Mul &&
    897       IVU->getOpcode() != Instruction::PHI)
    898     return false;
    899 
    900   std::map<int64_t, Instruction*> V;
    901   if (!collectPossibleRoots(IVU, V))
    902     return false;
    903 
    904   // If we didn't get a root for index zero, then IVU must be
    905   // subsumed.
    906   if (V.find(0) == V.end())
    907     SubsumedInsts.insert(IVU);
    908 
    909   // Partition the vector into monotonically increasing indexes.
    910   DAGRootSet DRS;
    911   DRS.BaseInst = nullptr;
    912 
    913   for (auto &KV : V) {
    914     if (!DRS.BaseInst) {
    915       DRS.BaseInst = KV.second;
    916       DRS.SubsumedInsts = SubsumedInsts;
    917     } else if (DRS.Roots.empty()) {
    918       DRS.Roots.push_back(KV.second);
    919     } else if (V.find(KV.first - 1) != V.end()) {
    920       DRS.Roots.push_back(KV.second);
    921     } else {
    922       // Linear sequence terminated.
    923       RootSets.push_back(DRS);
    924       DRS.BaseInst = KV.second;
    925       DRS.SubsumedInsts = SubsumedInsts;
    926       DRS.Roots.clear();
    927     }
    928   }
    929   RootSets.push_back(DRS);
    930 
    931   return true;
    932 }
    933 
    934 bool LoopReroll::DAGRootTracker::findRoots() {
    935   Inc = IVToIncMap[IV];
    936 
    937   assert(RootSets.empty() && "Unclean state!");
    938   if (std::abs(Inc) == 1) {
    939     for (auto *IVU : IV->users()) {
    940       if (isLoopIncrement(IVU, IV))
    941         LoopIncs.push_back(cast<Instruction>(IVU));
    942     }
    943     if (!findRootsRecursive(IV, SmallInstructionSet()))
    944       return false;
    945     LoopIncs.push_back(IV);
    946   } else {
    947     if (!findRootsBase(IV, SmallInstructionSet()))
    948       return false;
    949   }
    950 
    951   // Ensure all sets have the same size.
    952   if (RootSets.empty()) {
    953     DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
    954     return false;
    955   }
    956   for (auto &V : RootSets) {
    957     if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) {
    958       DEBUG(dbgs()
    959             << "LRR: Aborting because not all root sets have the same size\n");
    960       return false;
    961     }
    962   }
    963 
    964   // And ensure all loop iterations are consecutive. We rely on std::map
    965   // providing ordered traversal.
    966   for (auto &V : RootSets) {
    967     const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(V.BaseInst));
    968     if (!ADR)
    969       return false;
    970 
    971     // Consider a DAGRootSet with N-1 roots (so N different values including
    972     //   BaseInst).
    973     // Define d = Roots[0] - BaseInst, which should be the same as
    974     //   Roots[I] - Roots[I-1] for all I in [1..N).
    975     // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
    976     //   loop iteration J.
    977     //
    978     // Now, For the loop iterations to be consecutive:
    979     //   D = d * N
    980 
    981     unsigned N = V.Roots.size() + 1;
    982     const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(V.Roots[0]), ADR);
    983     const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N);
    984     if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) {
    985       DEBUG(dbgs() << "LRR: Aborting because iterations are not consecutive\n");
    986       return false;
    987     }
    988   }
    989   Scale = RootSets[0].Roots.size() + 1;
    990 
    991   if (Scale > IL_MaxRerollIterations) {
    992     DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
    993           << "#Found=" << Scale << ", #Max=" << IL_MaxRerollIterations
    994           << "\n");
    995     return false;
    996   }
    997 
    998   DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale << "\n");
    999 
   1000   return true;
   1001 }
   1002 
   1003 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) {
   1004   // Populate the MapVector with all instructions in the block, in order first,
   1005   // so we can iterate over the contents later in perfect order.
   1006   for (auto &I : *L->getHeader()) {
   1007     Uses[&I].resize(IL_End);
   1008   }
   1009 
   1010   SmallInstructionSet Exclude;
   1011   for (auto &DRS : RootSets) {
   1012     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
   1013     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
   1014     Exclude.insert(DRS.BaseInst);
   1015   }
   1016   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
   1017 
   1018   for (auto &DRS : RootSets) {
   1019     DenseSet<Instruction*> VBase;
   1020     collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase);
   1021     for (auto *I : VBase) {
   1022       Uses[I].set(0);
   1023     }
   1024 
   1025     unsigned Idx = 1;
   1026     for (auto *Root : DRS.Roots) {
   1027       DenseSet<Instruction*> V;
   1028       collectInLoopUserSet(Root, Exclude, PossibleRedSet, V);
   1029 
   1030       // While we're here, check the use sets are the same size.
   1031       if (V.size() != VBase.size()) {
   1032         DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
   1033         return false;
   1034       }
   1035 
   1036       for (auto *I : V) {
   1037         Uses[I].set(Idx);
   1038       }
   1039       ++Idx;
   1040     }
   1041 
   1042     // Make sure our subsumed instructions are remembered too.
   1043     for (auto *I : DRS.SubsumedInsts) {
   1044       Uses[I].set(IL_All);
   1045     }
   1046   }
   1047 
   1048   // Make sure the loop increments are also accounted for.
   1049 
   1050   Exclude.clear();
   1051   for (auto &DRS : RootSets) {
   1052     Exclude.insert(DRS.Roots.begin(), DRS.Roots.end());
   1053     Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end());
   1054     Exclude.insert(DRS.BaseInst);
   1055   }
   1056 
   1057   DenseSet<Instruction*> V;
   1058   collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V);
   1059   for (auto *I : V) {
   1060     Uses[I].set(IL_All);
   1061   }
   1062 
   1063   return true;
   1064 
   1065 }
   1066 
   1067 /// Get the next instruction in "In" that is a member of set Val.
   1068 /// Start searching from StartI, and do not return anything in Exclude.
   1069 /// If StartI is not given, start from In.begin().
   1070 LoopReroll::DAGRootTracker::UsesTy::iterator
   1071 LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In,
   1072                                       const SmallInstructionSet &Exclude,
   1073                                       UsesTy::iterator *StartI) {
   1074   UsesTy::iterator I = StartI ? *StartI : In.begin();
   1075   while (I != In.end() && (I->second.test(Val) == 0 ||
   1076                            Exclude.count(I->first) != 0))
   1077     ++I;
   1078   return I;
   1079 }
   1080 
   1081 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) {
   1082   for (auto &DRS : RootSets) {
   1083     if (DRS.BaseInst == I)
   1084       return true;
   1085   }
   1086   return false;
   1087 }
   1088 
   1089 bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) {
   1090   for (auto &DRS : RootSets) {
   1091     if (std::find(DRS.Roots.begin(), DRS.Roots.end(), I) != DRS.Roots.end())
   1092       return true;
   1093   }
   1094   return false;
   1095 }
   1096 
   1097 /// Return true if instruction I depends on any instruction between
   1098 /// Start and End.
   1099 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I,
   1100                                                 UsesTy::iterator Start,
   1101                                                 UsesTy::iterator End) {
   1102   for (auto *U : I->users()) {
   1103     for (auto It = Start; It != End; ++It)
   1104       if (U == It->first)
   1105         return true;
   1106   }
   1107   return false;
   1108 }
   1109 
   1110 static bool isIgnorableInst(const Instruction *I) {
   1111   if (isa<DbgInfoIntrinsic>(I))
   1112     return true;
   1113   const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I);
   1114   if (!II)
   1115     return false;
   1116   switch (II->getIntrinsicID()) {
   1117     default:
   1118       return false;
   1119     case llvm::Intrinsic::annotation:
   1120     case Intrinsic::ptr_annotation:
   1121     case Intrinsic::var_annotation:
   1122     // TODO: the following intrinsics may also be whitelisted:
   1123     //   lifetime_start, lifetime_end, invariant_start, invariant_end
   1124       return true;
   1125   }
   1126   return false;
   1127 }
   1128 
   1129 bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) {
   1130   // We now need to check for equivalence of the use graph of each root with
   1131   // that of the primary induction variable (excluding the roots). Our goal
   1132   // here is not to solve the full graph isomorphism problem, but rather to
   1133   // catch common cases without a lot of work. As a result, we will assume
   1134   // that the relative order of the instructions in each unrolled iteration
   1135   // is the same (although we will not make an assumption about how the
   1136   // different iterations are intermixed). Note that while the order must be
   1137   // the same, the instructions may not be in the same basic block.
   1138 
   1139   // An array of just the possible reductions for this scale factor. When we
   1140   // collect the set of all users of some root instructions, these reduction
   1141   // instructions are treated as 'final' (their uses are not considered).
   1142   // This is important because we don't want the root use set to search down
   1143   // the reduction chain.
   1144   SmallInstructionSet PossibleRedSet;
   1145   SmallInstructionSet PossibleRedLastSet;
   1146   SmallInstructionSet PossibleRedPHISet;
   1147   Reductions.restrictToScale(Scale, PossibleRedSet,
   1148                              PossibleRedPHISet, PossibleRedLastSet);
   1149 
   1150   // Populate "Uses" with where each instruction is used.
   1151   if (!collectUsedInstructions(PossibleRedSet))
   1152     return false;
   1153 
   1154   // Make sure we mark the reduction PHIs as used in all iterations.
   1155   for (auto *I : PossibleRedPHISet) {
   1156     Uses[I].set(IL_All);
   1157   }
   1158 
   1159   // Make sure we mark loop-control-only PHIs as used in all iterations. See
   1160   // comment above LoopReroll::isLoopControlIV for more information.
   1161   BasicBlock *Header = L->getHeader();
   1162   if (LoopControlIV && LoopControlIV != IV) {
   1163     for (auto *U : LoopControlIV->users()) {
   1164       Instruction *IVUser = dyn_cast<Instruction>(U);
   1165       // IVUser could be loop increment or compare
   1166       Uses[IVUser].set(IL_All);
   1167       for (auto *UU : IVUser->users()) {
   1168         Instruction *UUser = dyn_cast<Instruction>(UU);
   1169         // UUser could be compare, PHI or branch
   1170         Uses[UUser].set(IL_All);
   1171         // Skip SExt
   1172         if (isa<SExtInst>(UUser)) {
   1173           UUser = dyn_cast<Instruction>(*(UUser->user_begin()));
   1174           Uses[UUser].set(IL_All);
   1175         }
   1176         // Is UUser a compare instruction?
   1177         if (UU->hasOneUse()) {
   1178           Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin());
   1179           if (BI == cast<BranchInst>(Header->getTerminator()))
   1180             Uses[BI].set(IL_All);
   1181         }
   1182       }
   1183     }
   1184   }
   1185 
   1186   // Make sure all instructions in the loop are in one and only one
   1187   // set.
   1188   for (auto &KV : Uses) {
   1189     if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) {
   1190       DEBUG(dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
   1191             << *KV.first << " (#uses=" << KV.second.count() << ")\n");
   1192       return false;
   1193     }
   1194   }
   1195 
   1196   DEBUG(
   1197     for (auto &KV : Uses) {
   1198       dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n";
   1199     }
   1200     );
   1201 
   1202   for (unsigned Iter = 1; Iter < Scale; ++Iter) {
   1203     // In addition to regular aliasing information, we need to look for
   1204     // instructions from later (future) iterations that have side effects
   1205     // preventing us from reordering them past other instructions with side
   1206     // effects.
   1207     bool FutureSideEffects = false;
   1208     AliasSetTracker AST(*AA);
   1209     // The map between instructions in f(%iv.(i+1)) and f(%iv).
   1210     DenseMap<Value *, Value *> BaseMap;
   1211 
   1212     // Compare iteration Iter to the base.
   1213     SmallInstructionSet Visited;
   1214     auto BaseIt = nextInstr(0, Uses, Visited);
   1215     auto RootIt = nextInstr(Iter, Uses, Visited);
   1216     auto LastRootIt = Uses.begin();
   1217 
   1218     while (BaseIt != Uses.end() && RootIt != Uses.end()) {
   1219       Instruction *BaseInst = BaseIt->first;
   1220       Instruction *RootInst = RootIt->first;
   1221 
   1222       // Skip over the IV or root instructions; only match their users.
   1223       bool Continue = false;
   1224       if (isBaseInst(BaseInst)) {
   1225         Visited.insert(BaseInst);
   1226         BaseIt = nextInstr(0, Uses, Visited);
   1227         Continue = true;
   1228       }
   1229       if (isRootInst(RootInst)) {
   1230         LastRootIt = RootIt;
   1231         Visited.insert(RootInst);
   1232         RootIt = nextInstr(Iter, Uses, Visited);
   1233         Continue = true;
   1234       }
   1235       if (Continue) continue;
   1236 
   1237       if (!BaseInst->isSameOperationAs(RootInst)) {
   1238         // Last chance saloon. We don't try and solve the full isomorphism
   1239         // problem, but try and at least catch the case where two instructions
   1240         // *of different types* are round the wrong way. We won't be able to
   1241         // efficiently tell, given two ADD instructions, which way around we
   1242         // should match them, but given an ADD and a SUB, we can at least infer
   1243         // which one is which.
   1244         //
   1245         // This should allow us to deal with a greater subset of the isomorphism
   1246         // problem. It does however change a linear algorithm into a quadratic
   1247         // one, so limit the number of probes we do.
   1248         auto TryIt = RootIt;
   1249         unsigned N = NumToleratedFailedMatches;
   1250         while (TryIt != Uses.end() &&
   1251                !BaseInst->isSameOperationAs(TryIt->first) &&
   1252                N--) {
   1253           ++TryIt;
   1254           TryIt = nextInstr(Iter, Uses, Visited, &TryIt);
   1255         }
   1256 
   1257         if (TryIt == Uses.end() || TryIt == RootIt ||
   1258             instrDependsOn(TryIt->first, RootIt, TryIt)) {
   1259           DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1260                 " vs. " << *RootInst << "\n");
   1261           return false;
   1262         }
   1263 
   1264         RootIt = TryIt;
   1265         RootInst = TryIt->first;
   1266       }
   1267 
   1268       // All instructions between the last root and this root
   1269       // may belong to some other iteration. If they belong to a
   1270       // future iteration, then they're dangerous to alias with.
   1271       //
   1272       // Note that because we allow a limited amount of flexibility in the order
   1273       // that we visit nodes, LastRootIt might be *before* RootIt, in which
   1274       // case we've already checked this set of instructions so we shouldn't
   1275       // do anything.
   1276       for (; LastRootIt < RootIt; ++LastRootIt) {
   1277         Instruction *I = LastRootIt->first;
   1278         if (LastRootIt->second.find_first() < (int)Iter)
   1279           continue;
   1280         if (I->mayWriteToMemory())
   1281           AST.add(I);
   1282         // Note: This is specifically guarded by a check on isa<PHINode>,
   1283         // which while a valid (somewhat arbitrary) micro-optimization, is
   1284         // needed because otherwise isSafeToSpeculativelyExecute returns
   1285         // false on PHI nodes.
   1286         if (!isa<PHINode>(I) && !isSimpleLoadStore(I) &&
   1287             !isSafeToSpeculativelyExecute(I))
   1288           // Intervening instructions cause side effects.
   1289           FutureSideEffects = true;
   1290       }
   1291 
   1292       // Make sure that this instruction, which is in the use set of this
   1293       // root instruction, does not also belong to the base set or the set of
   1294       // some other root instruction.
   1295       if (RootIt->second.count() > 1) {
   1296         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1297                         " vs. " << *RootInst << " (prev. case overlap)\n");
   1298         return false;
   1299       }
   1300 
   1301       // Make sure that we don't alias with any instruction in the alias set
   1302       // tracker. If we do, then we depend on a future iteration, and we
   1303       // can't reroll.
   1304       if (RootInst->mayReadFromMemory())
   1305         for (auto &K : AST) {
   1306           if (K.aliasesUnknownInst(RootInst, *AA)) {
   1307             DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1308                             " vs. " << *RootInst << " (depends on future store)\n");
   1309             return false;
   1310           }
   1311         }
   1312 
   1313       // If we've past an instruction from a future iteration that may have
   1314       // side effects, and this instruction might also, then we can't reorder
   1315       // them, and this matching fails. As an exception, we allow the alias
   1316       // set tracker to handle regular (simple) load/store dependencies.
   1317       if (FutureSideEffects && ((!isSimpleLoadStore(BaseInst) &&
   1318                                  !isSafeToSpeculativelyExecute(BaseInst)) ||
   1319                                 (!isSimpleLoadStore(RootInst) &&
   1320                                  !isSafeToSpeculativelyExecute(RootInst)))) {
   1321         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1322                         " vs. " << *RootInst <<
   1323                         " (side effects prevent reordering)\n");
   1324         return false;
   1325       }
   1326 
   1327       // For instructions that are part of a reduction, if the operation is
   1328       // associative, then don't bother matching the operands (because we
   1329       // already know that the instructions are isomorphic, and the order
   1330       // within the iteration does not matter). For non-associative reductions,
   1331       // we do need to match the operands, because we need to reject
   1332       // out-of-order instructions within an iteration!
   1333       // For example (assume floating-point addition), we need to reject this:
   1334       //   x += a[i]; x += b[i];
   1335       //   x += a[i+1]; x += b[i+1];
   1336       //   x += b[i+2]; x += a[i+2];
   1337       bool InReduction = Reductions.isPairInSame(BaseInst, RootInst);
   1338 
   1339       if (!(InReduction && BaseInst->isAssociative())) {
   1340         bool Swapped = false, SomeOpMatched = false;
   1341         for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) {
   1342           Value *Op2 = RootInst->getOperand(j);
   1343 
   1344           // If this is part of a reduction (and the operation is not
   1345           // associatve), then we match all operands, but not those that are
   1346           // part of the reduction.
   1347           if (InReduction)
   1348             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
   1349               if (Reductions.isPairInSame(RootInst, Op2I))
   1350                 continue;
   1351 
   1352           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
   1353           if (BMI != BaseMap.end()) {
   1354             Op2 = BMI->second;
   1355           } else {
   1356             for (auto &DRS : RootSets) {
   1357               if (DRS.Roots[Iter-1] == (Instruction*) Op2) {
   1358                 Op2 = DRS.BaseInst;
   1359                 break;
   1360               }
   1361             }
   1362           }
   1363 
   1364           if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
   1365             // If we've not already decided to swap the matched operands, and
   1366             // we've not already matched our first operand (note that we could
   1367             // have skipped matching the first operand because it is part of a
   1368             // reduction above), and the instruction is commutative, then try
   1369             // the swapped match.
   1370             if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched &&
   1371                 BaseInst->getOperand(!j) == Op2) {
   1372               Swapped = true;
   1373             } else {
   1374               DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
   1375                     << " vs. " << *RootInst << " (operand " << j << ")\n");
   1376               return false;
   1377             }
   1378           }
   1379 
   1380           SomeOpMatched = true;
   1381         }
   1382       }
   1383 
   1384       if ((!PossibleRedLastSet.count(BaseInst) &&
   1385            hasUsesOutsideLoop(BaseInst, L)) ||
   1386           (!PossibleRedLastSet.count(RootInst) &&
   1387            hasUsesOutsideLoop(RootInst, L))) {
   1388         DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst <<
   1389                         " vs. " << *RootInst << " (uses outside loop)\n");
   1390         return false;
   1391       }
   1392 
   1393       Reductions.recordPair(BaseInst, RootInst, Iter);
   1394       BaseMap.insert(std::make_pair(RootInst, BaseInst));
   1395 
   1396       LastRootIt = RootIt;
   1397       Visited.insert(BaseInst);
   1398       Visited.insert(RootInst);
   1399       BaseIt = nextInstr(0, Uses, Visited);
   1400       RootIt = nextInstr(Iter, Uses, Visited);
   1401     }
   1402     assert (BaseIt == Uses.end() && RootIt == Uses.end() &&
   1403             "Mismatched set sizes!");
   1404   }
   1405 
   1406   DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
   1407                   *IV << "\n");
   1408 
   1409   return true;
   1410 }
   1411 
   1412 void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
   1413   BasicBlock *Header = L->getHeader();
   1414   // Remove instructions associated with non-base iterations.
   1415   for (BasicBlock::reverse_iterator J = Header->rbegin();
   1416        J != Header->rend();) {
   1417     unsigned I = Uses[&*J].find_first();
   1418     if (I > 0 && I < IL_All) {
   1419       Instruction *D = &*J;
   1420       DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
   1421       D->eraseFromParent();
   1422       continue;
   1423     }
   1424 
   1425     ++J;
   1426   }
   1427 
   1428   bool HasTwoIVs = LoopControlIV && LoopControlIV != IV;
   1429 
   1430   if (HasTwoIVs) {
   1431     updateNonLoopCtrlIncr();
   1432     replaceIV(LoopControlIV, LoopControlIV, IterCount);
   1433   } else
   1434     // We need to create a new induction variable for each different BaseInst.
   1435     for (auto &DRS : RootSets)
   1436       // Insert the new induction variable.
   1437       replaceIV(DRS.BaseInst, IV, IterCount);
   1438 
   1439   SimplifyInstructionsInBlock(Header, TLI);
   1440   DeleteDeadPHIs(Header, TLI);
   1441 }
   1442 
   1443 // For non-loop-control IVs, we only need to update the last increment
   1444 // with right amount, then we are done.
   1445 void LoopReroll::DAGRootTracker::updateNonLoopCtrlIncr() {
   1446   const SCEV *NewInc = nullptr;
   1447   for (auto *LoopInc : LoopIncs) {
   1448     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LoopInc);
   1449     const SCEVConstant *COp = nullptr;
   1450     if (GEP && LoopInc->getOperand(0)->getType()->isPointerTy()) {
   1451       COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
   1452     } else {
   1453       COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(0)));
   1454       if (!COp)
   1455         COp = dyn_cast<SCEVConstant>(SE->getSCEV(LoopInc->getOperand(1)));
   1456     }
   1457 
   1458     assert(COp && "Didn't find constant operand of LoopInc!\n");
   1459 
   1460     const APInt &AInt = COp->getValue()->getValue();
   1461     const SCEV *ScaleSCEV = SE->getConstant(COp->getType(), Scale);
   1462     if (AInt.isNegative()) {
   1463       NewInc = SE->getNegativeSCEV(COp);
   1464       NewInc = SE->getUDivExpr(NewInc, ScaleSCEV);
   1465       NewInc = SE->getNegativeSCEV(NewInc);
   1466     } else
   1467       NewInc = SE->getUDivExpr(COp, ScaleSCEV);
   1468 
   1469     LoopInc->setOperand(1, dyn_cast<SCEVConstant>(NewInc)->getValue());
   1470   }
   1471 }
   1472 
   1473 void LoopReroll::DAGRootTracker::replaceIV(Instruction *Inst,
   1474                                            Instruction *InstIV,
   1475                                            const SCEV *IterCount) {
   1476   BasicBlock *Header = L->getHeader();
   1477   int64_t Inc = IVToIncMap[InstIV];
   1478   bool NeedNewIV = InstIV == LoopControlIV;
   1479   bool Negative = !NeedNewIV && Inc < 0;
   1480 
   1481   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Inst));
   1482   const SCEV *Start = RealIVSCEV->getStart();
   1483 
   1484   if (NeedNewIV)
   1485     Start = SE->getConstant(Start->getType(), 0);
   1486 
   1487   const SCEV *SizeOfExpr = nullptr;
   1488   const SCEV *IncrExpr =
   1489       SE->getConstant(RealIVSCEV->getType(), Negative ? -1 : 1);
   1490   if (auto *PTy = dyn_cast<PointerType>(Inst->getType())) {
   1491     Type *ElTy = PTy->getElementType();
   1492     SizeOfExpr =
   1493         SE->getSizeOfExpr(SE->getEffectiveSCEVType(Inst->getType()), ElTy);
   1494     IncrExpr = SE->getMulExpr(IncrExpr, SizeOfExpr);
   1495   }
   1496   const SCEV *NewIVSCEV =
   1497       SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap);
   1498 
   1499   { // Limit the lifetime of SCEVExpander.
   1500     const DataLayout &DL = Header->getModule()->getDataLayout();
   1501     SCEVExpander Expander(*SE, DL, "reroll");
   1502     Value *NewIV =
   1503         Expander.expandCodeFor(NewIVSCEV, InstIV->getType(), &Header->front());
   1504 
   1505     for (auto &KV : Uses)
   1506       if (KV.second.find_first() == 0)
   1507         KV.first->replaceUsesOfWith(Inst, NewIV);
   1508 
   1509     if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
   1510       // FIXME: Why do we need this check?
   1511       if (Uses[BI].find_first() == IL_All) {
   1512         const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
   1513 
   1514         if (NeedNewIV)
   1515           ICSCEV = SE->getMulExpr(IterCount,
   1516                                   SE->getConstant(IterCount->getType(), Scale));
   1517 
   1518         // Iteration count SCEV minus or plus 1
   1519         const SCEV *MinusPlus1SCEV =
   1520             SE->getConstant(ICSCEV->getType(), Negative ? -1 : 1);
   1521         if (Inst->getType()->isPointerTy()) {
   1522           assert(SizeOfExpr && "SizeOfExpr is not initialized");
   1523           MinusPlus1SCEV = SE->getMulExpr(MinusPlus1SCEV, SizeOfExpr);
   1524         }
   1525 
   1526         const SCEV *ICMinusPlus1SCEV = SE->getMinusSCEV(ICSCEV, MinusPlus1SCEV);
   1527         // Iteration count minus 1
   1528         Instruction *InsertPtr = nullptr;
   1529         if (isa<SCEVConstant>(ICMinusPlus1SCEV)) {
   1530           InsertPtr = BI;
   1531         } else {
   1532           BasicBlock *Preheader = L->getLoopPreheader();
   1533           if (!Preheader)
   1534             Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
   1535           InsertPtr = Preheader->getTerminator();
   1536         }
   1537 
   1538         if (!isa<PointerType>(NewIV->getType()) && NeedNewIV &&
   1539             (SE->getTypeSizeInBits(NewIV->getType()) <
   1540              SE->getTypeSizeInBits(ICMinusPlus1SCEV->getType()))) {
   1541           IRBuilder<> Builder(BI);
   1542           Builder.SetCurrentDebugLocation(BI->getDebugLoc());
   1543           NewIV = Builder.CreateSExt(NewIV, ICMinusPlus1SCEV->getType());
   1544         }
   1545         Value *ICMinusPlus1 = Expander.expandCodeFor(
   1546             ICMinusPlus1SCEV, NewIV->getType(), InsertPtr);
   1547 
   1548         Value *Cond =
   1549             new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinusPlus1, "exitcond");
   1550         BI->setCondition(Cond);
   1551 
   1552         if (BI->getSuccessor(1) != Header)
   1553           BI->swapSuccessors();
   1554       }
   1555     }
   1556   }
   1557 }
   1558 
   1559 // Validate the selected reductions. All iterations must have an isomorphic
   1560 // part of the reduction chain and, for non-associative reductions, the chain
   1561 // entries must appear in order.
   1562 bool LoopReroll::ReductionTracker::validateSelected() {
   1563   // For a non-associative reduction, the chain entries must appear in order.
   1564   for (int i : Reds) {
   1565     int PrevIter = 0, BaseCount = 0, Count = 0;
   1566     for (Instruction *J : PossibleReds[i]) {
   1567       // Note that all instructions in the chain must have been found because
   1568       // all instructions in the function must have been assigned to some
   1569       // iteration.
   1570       int Iter = PossibleRedIter[J];
   1571       if (Iter != PrevIter && Iter != PrevIter + 1 &&
   1572           !PossibleReds[i].getReducedValue()->isAssociative()) {
   1573         DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
   1574                         J << "\n");
   1575         return false;
   1576       }
   1577 
   1578       if (Iter != PrevIter) {
   1579         if (Count != BaseCount) {
   1580           DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
   1581                 " reduction use count " << Count <<
   1582                 " is not equal to the base use count " <<
   1583                 BaseCount << "\n");
   1584           return false;
   1585         }
   1586 
   1587         Count = 0;
   1588       }
   1589 
   1590       ++Count;
   1591       if (Iter == 0)
   1592         ++BaseCount;
   1593 
   1594       PrevIter = Iter;
   1595     }
   1596   }
   1597 
   1598   return true;
   1599 }
   1600 
   1601 // For all selected reductions, remove all parts except those in the first
   1602 // iteration (and the PHI). Replace outside uses of the reduced value with uses
   1603 // of the first-iteration reduced value (in other words, reroll the selected
   1604 // reductions).
   1605 void LoopReroll::ReductionTracker::replaceSelected() {
   1606   // Fixup reductions to refer to the last instruction associated with the
   1607   // first iteration (not the last).
   1608   for (int i : Reds) {
   1609     int j = 0;
   1610     for (int e = PossibleReds[i].size(); j != e; ++j)
   1611       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
   1612         --j;
   1613         break;
   1614       }
   1615 
   1616     // Replace users with the new end-of-chain value.
   1617     SmallInstructionVector Users;
   1618     for (User *U : PossibleReds[i].getReducedValue()->users()) {
   1619       Users.push_back(cast<Instruction>(U));
   1620     }
   1621 
   1622     for (Instruction *User : Users)
   1623       User->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
   1624                               PossibleReds[i][j]);
   1625   }
   1626 }
   1627 
   1628 // Reroll the provided loop with respect to the provided induction variable.
   1629 // Generally, we're looking for a loop like this:
   1630 //
   1631 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
   1632 // f(%iv)
   1633 // %iv.1 = add %iv, 1                <-- a root increment
   1634 // f(%iv.1)
   1635 // %iv.2 = add %iv, 2                <-- a root increment
   1636 // f(%iv.2)
   1637 // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
   1638 // f(%iv.scale_m_1)
   1639 // ...
   1640 // %iv.next = add %iv, scale
   1641 // %cmp = icmp(%iv, ...)
   1642 // br %cmp, header, exit
   1643 //
   1644 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
   1645 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
   1646 // be intermixed with eachother. The restriction imposed by this algorithm is
   1647 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
   1648 // etc. be the same.
   1649 //
   1650 // First, we collect the use set of %iv, excluding the other increment roots.
   1651 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
   1652 // times, having collected the use set of f(%iv.(i+1)), during which we:
   1653 //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
   1654 //     the next unmatched instruction in f(%iv.(i+1)).
   1655 //   - Ensure that both matched instructions don't have any external users
   1656 //     (with the exception of last-in-chain reduction instructions).
   1657 //   - Track the (aliasing) write set, and other side effects, of all
   1658 //     instructions that belong to future iterations that come before the matched
   1659 //     instructions. If the matched instructions read from that write set, then
   1660 //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
   1661 //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
   1662 //     if any of these future instructions had side effects (could not be
   1663 //     speculatively executed), and so do the matched instructions, when we
   1664 //     cannot reorder those side-effect-producing instructions, and rerolling
   1665 //     fails.
   1666 //
   1667 // Finally, we make sure that all loop instructions are either loop increment
   1668 // roots, belong to simple latch code, parts of validated reductions, part of
   1669 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
   1670 // have been validated), then we reroll the loop.
   1671 bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
   1672                         const SCEV *IterCount,
   1673                         ReductionTracker &Reductions) {
   1674   DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
   1675                           IVToIncMap, LoopControlIV);
   1676 
   1677   if (!DAGRoots.findRoots())
   1678     return false;
   1679   DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
   1680                   *IV << "\n");
   1681 
   1682   if (!DAGRoots.validate(Reductions))
   1683     return false;
   1684   if (!Reductions.validateSelected())
   1685     return false;
   1686   // At this point, we've validated the rerolling, and we're committed to
   1687   // making changes!
   1688 
   1689   Reductions.replaceSelected();
   1690   DAGRoots.replace(IterCount);
   1691 
   1692   ++NumRerolledLoops;
   1693   return true;
   1694 }
   1695 
   1696 bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
   1697   if (skipLoop(L))
   1698     return false;
   1699 
   1700   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   1701   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1702   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   1703   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   1704   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1705   PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
   1706 
   1707   BasicBlock *Header = L->getHeader();
   1708   DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
   1709         "] Loop %" << Header->getName() << " (" <<
   1710         L->getNumBlocks() << " block(s))\n");
   1711 
   1712   // For now, we'll handle only single BB loops.
   1713   if (L->getNumBlocks() > 1)
   1714     return false;
   1715 
   1716   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
   1717     return false;
   1718 
   1719   const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
   1720   const SCEV *IterCount = SE->getAddExpr(LIBETC, SE->getOne(LIBETC->getType()));
   1721   DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n");
   1722   DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
   1723 
   1724   // First, we need to find the induction variable with respect to which we can
   1725   // reroll (there may be several possible options).
   1726   SmallInstructionVector PossibleIVs;
   1727   IVToIncMap.clear();
   1728   LoopControlIV = nullptr;
   1729   collectPossibleIVs(L, PossibleIVs);
   1730 
   1731   if (PossibleIVs.empty()) {
   1732     DEBUG(dbgs() << "LRR: No possible IVs found\n");
   1733     return false;
   1734   }
   1735 
   1736   ReductionTracker Reductions;
   1737   collectPossibleReductions(L, Reductions);
   1738   bool Changed = false;
   1739 
   1740   // For each possible IV, collect the associated possible set of 'root' nodes
   1741   // (i+1, i+2, etc.).
   1742   for (Instruction *PossibleIV : PossibleIVs)
   1743     if (reroll(PossibleIV, L, Header, IterCount, Reductions)) {
   1744       Changed = true;
   1745       break;
   1746     }
   1747   DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n");
   1748 
   1749   // Trip count of L has changed so SE must be re-evaluated.
   1750   if (Changed)
   1751     SE->forgetLoop(L);
   1752 
   1753   return Changed;
   1754 }
   1755