1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com) 2 * All rights reserved. 3 * 4 * This package is an SSL implementation written 5 * by Eric Young (eay (at) cryptsoft.com). 6 * The implementation was written so as to conform with Netscapes SSL. 7 * 8 * This library is free for commercial and non-commercial use as long as 9 * the following conditions are aheared to. The following conditions 10 * apply to all code found in this distribution, be it the RC4, RSA, 11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 12 * included with this distribution is covered by the same copyright terms 13 * except that the holder is Tim Hudson (tjh (at) cryptsoft.com). 14 * 15 * Copyright remains Eric Young's, and as such any Copyright notices in 16 * the code are not to be removed. 17 * If this package is used in a product, Eric Young should be given attribution 18 * as the author of the parts of the library used. 19 * This can be in the form of a textual message at program startup or 20 * in documentation (online or textual) provided with the package. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 1. Redistributions of source code must retain the copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. All advertising materials mentioning features or use of this software 31 * must display the following acknowledgement: 32 * "This product includes cryptographic software written by 33 * Eric Young (eay (at) cryptsoft.com)" 34 * The word 'cryptographic' can be left out if the rouines from the library 35 * being used are not cryptographic related :-). 36 * 4. If you include any Windows specific code (or a derivative thereof) from 37 * the apps directory (application code) you must include an acknowledgement: 38 * "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)" 39 * 40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * The licence and distribution terms for any publically available version or 53 * derivative of this code cannot be changed. i.e. this code cannot simply be 54 * copied and put under another distribution licence 55 * [including the GNU Public Licence.] 56 */ 57 /* ==================================================================== 58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 59 * 60 * Redistribution and use in source and binary forms, with or without 61 * modification, are permitted provided that the following conditions 62 * are met: 63 * 64 * 1. Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * 67 * 2. Redistributions in binary form must reproduce the above copyright 68 * notice, this list of conditions and the following disclaimer in 69 * the documentation and/or other materials provided with the 70 * distribution. 71 * 72 * 3. All advertising materials mentioning features or use of this 73 * software must display the following acknowledgment: 74 * "This product includes software developed by the OpenSSL Project 75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 76 * 77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 78 * endorse or promote products derived from this software without 79 * prior written permission. For written permission, please contact 80 * openssl-core (at) openssl.org. 81 * 82 * 5. Products derived from this software may not be called "OpenSSL" 83 * nor may "OpenSSL" appear in their names without prior written 84 * permission of the OpenSSL Project. 85 * 86 * 6. Redistributions of any form whatsoever must retain the following 87 * acknowledgment: 88 * "This product includes software developed by the OpenSSL Project 89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 102 * OF THE POSSIBILITY OF SUCH DAMAGE. 103 * ==================================================================== 104 * 105 * This product includes cryptographic software written by Eric Young 106 * (eay (at) cryptsoft.com). This product includes software written by Tim 107 * Hudson (tjh (at) cryptsoft.com). 108 * 109 */ 110 /* ==================================================================== 111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 112 * ECC cipher suite support in OpenSSL originally developed by 113 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. 114 */ 115 /* ==================================================================== 116 * Copyright 2005 Nokia. All rights reserved. 117 * 118 * The portions of the attached software ("Contribution") is developed by 119 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 120 * license. 121 * 122 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 123 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 124 * support (see RFC 4279) to OpenSSL. 125 * 126 * No patent licenses or other rights except those expressly stated in 127 * the OpenSSL open source license shall be deemed granted or received 128 * expressly, by implication, estoppel, or otherwise. 129 * 130 * No assurances are provided by Nokia that the Contribution does not 131 * infringe the patent or other intellectual property rights of any third 132 * party or that the license provides you with all the necessary rights 133 * to make use of the Contribution. 134 * 135 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 136 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 137 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 138 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 139 * OTHERWISE. 140 */ 141 142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H 143 #define OPENSSL_HEADER_SSL_INTERNAL_H 144 145 #include <openssl/base.h> 146 147 #include <stdlib.h> 148 149 #include <limits> 150 #include <new> 151 #include <type_traits> 152 #include <utility> 153 154 #include <openssl/aead.h> 155 #include <openssl/err.h> 156 #include <openssl/lhash.h> 157 #include <openssl/mem.h> 158 #include <openssl/ssl.h> 159 #include <openssl/span.h> 160 #include <openssl/stack.h> 161 162 #include "../crypto/err/internal.h" 163 #include "../crypto/internal.h" 164 165 166 #if defined(OPENSSL_WINDOWS) 167 // Windows defines struct timeval in winsock2.h. 168 OPENSSL_MSVC_PRAGMA(warning(push, 3)) 169 #include <winsock2.h> 170 OPENSSL_MSVC_PRAGMA(warning(pop)) 171 #else 172 #include <sys/time.h> 173 #endif 174 175 176 namespace bssl { 177 178 struct SSL_HANDSHAKE; 179 struct SSL_PROTOCOL_METHOD; 180 181 // C++ utilities. 182 183 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It 184 // returns nullptr on allocation error. It only implements single-object 185 // allocation and not new T[n]. 186 // 187 // Note: unlike |new|, this does not support non-public constructors. 188 template <typename T, typename... Args> 189 T *New(Args &&... args) { 190 void *t = OPENSSL_malloc(sizeof(T)); 191 if (t == nullptr) { 192 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 193 return nullptr; 194 } 195 return new (t) T(std::forward<Args>(args)...); 196 } 197 198 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory. 199 // 200 // Note: unlike |delete| this does not support non-public destructors. 201 template <typename T> 202 void Delete(T *t) { 203 if (t != nullptr) { 204 t->~T(); 205 OPENSSL_free(t); 206 } 207 } 208 209 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types 210 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration. 211 namespace internal { 212 template <typename T> 213 struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> { 214 static void Free(T *t) { Delete(t); } 215 }; 216 } 217 218 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation 219 // error. 220 template <typename T, typename... Args> 221 UniquePtr<T> MakeUnique(Args &&... args) { 222 return UniquePtr<T>(New<T>(std::forward<Args>(args)...)); 223 } 224 225 #if defined(BORINGSSL_ALLOW_CXX_RUNTIME) 226 #define HAS_VIRTUAL_DESTRUCTOR 227 #define PURE_VIRTUAL = 0 228 #else 229 // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a 230 // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the 231 // class from being used with |delete|. 232 #define HAS_VIRTUAL_DESTRUCTOR \ 233 void operator delete(void *) { abort(); } 234 235 // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual 236 // functions. This avoids a dependency on |__cxa_pure_virtual| but loses 237 // compile-time checking. 238 #define PURE_VIRTUAL { abort(); } 239 #endif 240 241 // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work 242 // on constexpr arrays. 243 #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910 244 #define CONSTEXPR_ARRAY const 245 #else 246 #define CONSTEXPR_ARRAY constexpr 247 #endif 248 249 // Array<T> is an owning array of elements of |T|. 250 template <typename T> 251 class Array { 252 public: 253 // Array's default constructor creates an empty array. 254 Array() {} 255 Array(const Array &) = delete; 256 Array(Array &&other) { *this = std::move(other); } 257 258 ~Array() { Reset(); } 259 260 Array &operator=(const Array &) = delete; 261 Array &operator=(Array &&other) { 262 Reset(); 263 other.Release(&data_, &size_); 264 return *this; 265 } 266 267 const T *data() const { return data_; } 268 T *data() { return data_; } 269 size_t size() const { return size_; } 270 bool empty() const { return size_ == 0; } 271 272 const T &operator[](size_t i) const { return data_[i]; } 273 T &operator[](size_t i) { return data_[i]; } 274 275 T *begin() { return data_; } 276 const T *cbegin() const { return data_; } 277 T *end() { return data_ + size_; } 278 const T *cend() const { return data_ + size_; } 279 280 void Reset() { Reset(nullptr, 0); } 281 282 // Reset releases the current contents of the array and takes ownership of the 283 // raw pointer supplied by the caller. 284 void Reset(T *new_data, size_t new_size) { 285 for (size_t i = 0; i < size_; i++) { 286 data_[i].~T(); 287 } 288 OPENSSL_free(data_); 289 data_ = new_data; 290 size_ = new_size; 291 } 292 293 // Release releases ownership of the array to a raw pointer supplied by the 294 // caller. 295 void Release(T **out, size_t *out_size) { 296 *out = data_; 297 *out_size = size_; 298 data_ = nullptr; 299 size_ = 0; 300 } 301 302 // Init replaces the array with a newly-allocated array of |new_size| 303 // default-constructed copies of |T|. It returns true on success and false on 304 // error. 305 // 306 // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized. 307 bool Init(size_t new_size) { 308 Reset(); 309 if (new_size == 0) { 310 return true; 311 } 312 313 if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) { 314 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); 315 return false; 316 } 317 data_ = reinterpret_cast<T*>(OPENSSL_malloc(new_size * sizeof(T))); 318 if (data_ == nullptr) { 319 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 320 return false; 321 } 322 size_ = new_size; 323 for (size_t i = 0; i < size_; i++) { 324 new (&data_[i]) T; 325 } 326 return true; 327 } 328 329 // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns 330 // true on success and false on error. 331 bool CopyFrom(Span<const uint8_t> in) { 332 if (!Init(in.size())) { 333 return false; 334 } 335 OPENSSL_memcpy(data_, in.data(), in.size()); 336 return true; 337 } 338 339 private: 340 T *data_ = nullptr; 341 size_t size_ = 0; 342 }; 343 344 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array. 345 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out); 346 347 348 // Protocol versions. 349 // 350 // Due to DTLS's historical wire version differences and to support multiple 351 // variants of the same protocol during development, we maintain two notions of 352 // version. 353 // 354 // The "version" or "wire version" is the actual 16-bit value that appears on 355 // the wire. It uniquely identifies a version and is also used at API 356 // boundaries. The set of supported versions differs between TLS and DTLS. Wire 357 // versions are opaque values and may not be compared numerically. 358 // 359 // The "protocol version" identifies the high-level handshake variant being 360 // used. DTLS versions map to the corresponding TLS versions. Draft TLS 1.3 361 // variants all map to TLS 1.3. Protocol versions are sequential and may be 362 // compared numerically. 363 364 // ssl_protocol_version_from_wire sets |*out| to the protocol version 365 // corresponding to wire version |version| and returns true. If |version| is not 366 // a valid TLS or DTLS version, it returns false. 367 // 368 // Note this simultaneously handles both DTLS and TLS. Use one of the 369 // higher-level functions below for most operations. 370 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version); 371 372 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the 373 // minimum and maximum enabled protocol versions, respectively. 374 bool ssl_get_version_range(const SSL *ssl, uint16_t *out_min_version, 375 uint16_t *out_max_version); 376 377 // ssl_supports_version returns whether |hs| supports |version|. 378 bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version); 379 380 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in 381 // decreasing preference order. 382 bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb); 383 384 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences 385 // and the peer preference list in |peer_versions|. On success, it returns true 386 // and sets |*out_version| to the selected version. Otherwise, it returns false 387 // and sets |*out_alert| to an alert to send. 388 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, 389 uint16_t *out_version, const CBS *peer_versions); 390 391 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to 392 // call this function before the version is determined. 393 uint16_t ssl_protocol_version(const SSL *ssl); 394 395 // Cipher suites. 396 397 } // namespace bssl 398 399 struct ssl_cipher_st { 400 // name is the OpenSSL name for the cipher. 401 const char *name; 402 // standard_name is the IETF name for the cipher. 403 const char *standard_name; 404 // id is the cipher suite value bitwise OR-d with 0x03000000. 405 uint32_t id; 406 407 // algorithm_* determine the cipher suite. See constants below for the values. 408 uint32_t algorithm_mkey; 409 uint32_t algorithm_auth; 410 uint32_t algorithm_enc; 411 uint32_t algorithm_mac; 412 uint32_t algorithm_prf; 413 }; 414 415 namespace bssl { 416 417 // Bits for |algorithm_mkey| (key exchange algorithm). 418 #define SSL_kRSA 0x00000001u 419 #define SSL_kECDHE 0x00000002u 420 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK. 421 #define SSL_kPSK 0x00000004u 422 #define SSL_kGENERIC 0x00000008u 423 424 // Bits for |algorithm_auth| (server authentication). 425 #define SSL_aRSA 0x00000001u 426 #define SSL_aECDSA 0x00000002u 427 // SSL_aPSK is set for both PSK and ECDHE_PSK. 428 #define SSL_aPSK 0x00000004u 429 #define SSL_aGENERIC 0x00000008u 430 431 #define SSL_aCERT (SSL_aRSA | SSL_aECDSA) 432 433 // Bits for |algorithm_enc| (symmetric encryption). 434 #define SSL_3DES 0x00000001u 435 #define SSL_AES128 0x00000002u 436 #define SSL_AES256 0x00000004u 437 #define SSL_AES128GCM 0x00000008u 438 #define SSL_AES256GCM 0x00000010u 439 #define SSL_eNULL 0x00000020u 440 #define SSL_CHACHA20POLY1305 0x00000040u 441 442 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM) 443 444 // Bits for |algorithm_mac| (symmetric authentication). 445 #define SSL_SHA1 0x00000001u 446 #define SSL_SHA256 0x00000002u 447 #define SSL_SHA384 0x00000004u 448 // SSL_AEAD is set for all AEADs. 449 #define SSL_AEAD 0x00000008u 450 451 // Bits for |algorithm_prf| (handshake digest). 452 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1 453 #define SSL_HANDSHAKE_MAC_SHA256 0x2 454 #define SSL_HANDSHAKE_MAC_SHA384 0x4 455 456 // SSL_MAX_DIGEST is the number of digest types which exist. When adding a new 457 // one, update the table in ssl_cipher.c. 458 #define SSL_MAX_DIGEST 4 459 460 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD 461 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len| 462 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length, 463 // respectively. The MAC key length is zero except for legacy block and stream 464 // ciphers. It returns true on success and false on error. 465 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, 466 size_t *out_mac_secret_len, 467 size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, 468 uint16_t version, int is_dtls); 469 470 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and 471 // |cipher|. 472 const EVP_MD *ssl_get_handshake_digest(uint16_t version, 473 const SSL_CIPHER *cipher); 474 475 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a 476 // newly-allocated |ssl_cipher_preference_list_st| containing the result. It 477 // returns true on success and false on failure. If |strict| is true, nonsense 478 // will be rejected. If false, nonsense will be silently ignored. An empty 479 // result is considered an error regardless of |strict|. 480 bool ssl_create_cipher_list( 481 struct ssl_cipher_preference_list_st **out_cipher_list, 482 const char *rule_str, bool strict); 483 484 // ssl_cipher_get_value returns the cipher suite id of |cipher|. 485 uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher); 486 487 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth| 488 // values suitable for use with |key| in TLS 1.2 and below. 489 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key); 490 491 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the 492 // server and, optionally, the client with a certificate. 493 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher); 494 495 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a 496 // ServerKeyExchange message. 497 // 498 // This function may return false while still allowing |cipher| an optional 499 // ServerKeyExchange. This is the case for plain PSK ciphers. 500 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher); 501 502 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the 503 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise 504 // it returns zero. 505 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher); 506 507 508 // Transcript layer. 509 510 // SSLTranscript maintains the handshake transcript as a combination of a 511 // buffer and running hash. 512 class SSLTranscript { 513 public: 514 SSLTranscript(); 515 ~SSLTranscript(); 516 517 // Init initializes the handshake transcript. If called on an existing 518 // transcript, it resets the transcript and hash. It returns true on success 519 // and false on failure. 520 bool Init(); 521 522 // InitHash initializes the handshake hash based on the PRF and contents of 523 // the handshake transcript. Subsequent calls to |Update| will update the 524 // rolling hash. It returns one on success and zero on failure. It is an error 525 // to call this function after the handshake buffer is released. 526 bool InitHash(uint16_t version, const SSL_CIPHER *cipher); 527 528 // UpdateForHelloRetryRequest resets the rolling hash with the 529 // HelloRetryRequest construction. It returns true on success and false on 530 // failure. It is an error to call this function before the handshake buffer 531 // is released. 532 bool UpdateForHelloRetryRequest(); 533 534 // CopyHashContext copies the hash context into |ctx| and returns true on 535 // success. 536 bool CopyHashContext(EVP_MD_CTX *ctx); 537 538 Span<const uint8_t> buffer() { 539 return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data), 540 buffer_->length); 541 } 542 543 // FreeBuffer releases the handshake buffer. Subsequent calls to 544 // |Update| will not update the handshake buffer. 545 void FreeBuffer(); 546 547 // DigestLen returns the length of the PRF hash. 548 size_t DigestLen() const; 549 550 // Digest returns the PRF hash. For TLS 1.1 and below, this is 551 // |EVP_md5_sha1|. 552 const EVP_MD *Digest() const; 553 554 // Update adds |in| to the handshake buffer and handshake hash, whichever is 555 // enabled. It returns true on success and false on failure. 556 bool Update(Span<const uint8_t> in); 557 558 // GetHash writes the handshake hash to |out| which must have room for at 559 // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to 560 // the number of bytes written. Otherwise, it returns false. 561 bool GetHash(uint8_t *out, size_t *out_len); 562 563 // GetSSL3CertVerifyHash writes the SSL 3.0 CertificateVerify hash into the 564 // bytes pointed to by |out| and writes the number of bytes to 565 // |*out_len|. |out| must have room for |EVP_MAX_MD_SIZE| bytes. It returns 566 // one on success and zero on failure. 567 bool GetSSL3CertVerifyHash(uint8_t *out, size_t *out_len, 568 const SSL_SESSION *session, 569 uint16_t signature_algorithm); 570 571 // GetFinishedMAC computes the MAC for the Finished message into the bytes 572 // pointed by |out| and writes the number of bytes to |*out_len|. |out| must 573 // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false 574 // on failure. 575 bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session, 576 bool from_server); 577 578 private: 579 // buffer_, if non-null, contains the handshake transcript. 580 UniquePtr<BUF_MEM> buffer_; 581 // hash, if initialized with an |EVP_MD|, maintains the handshake hash. For 582 // TLS 1.1 and below, it is the SHA-1 half. 583 ScopedEVP_MD_CTX hash_; 584 // md5, if initialized with an |EVP_MD|, maintains the MD5 half of the 585 // handshake hash for TLS 1.1 and below. 586 ScopedEVP_MD_CTX md5_; 587 }; 588 589 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret| 590 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated 591 // to form the seed parameter. It returns true on success and false on failure. 592 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out, 593 Span<const uint8_t> secret, Span<const char> label, 594 Span<const uint8_t> seed1, Span<const uint8_t> seed2); 595 596 597 // Encryption layer. 598 599 // SSLAEADContext contains information about an AEAD that is being used to 600 // encrypt an SSL connection. 601 class SSLAEADContext { 602 public: 603 SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher); 604 ~SSLAEADContext(); 605 static constexpr bool kAllowUniquePtr = true; 606 607 SSLAEADContext(const SSLAEADContext &&) = delete; 608 SSLAEADContext &operator=(const SSLAEADContext &&) = delete; 609 610 // CreateNullCipher creates an |SSLAEADContext| for the null cipher. 611 static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls); 612 613 // Create creates an |SSLAEADContext| using the supplied key material. It 614 // returns nullptr on error. Only one of |Open| or |Seal| may be used with the 615 // resulting object, depending on |direction|. |version| is the normalized 616 // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef. 617 static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction, 618 uint16_t version, int is_dtls, 619 const SSL_CIPHER *cipher, 620 Span<const uint8_t> enc_key, 621 Span<const uint8_t> mac_key, 622 Span<const uint8_t> fixed_iv); 623 624 // SetVersionIfNullCipher sets the version the SSLAEADContext for the null 625 // cipher, to make version-specific determinations in the record layer prior 626 // to a cipher being selected. 627 void SetVersionIfNullCipher(uint16_t version); 628 629 // ProtocolVersion returns the protocol version associated with this 630 // SSLAEADContext. It can only be called once |version_| has been set to a 631 // valid value. 632 uint16_t ProtocolVersion() const; 633 634 // RecordVersion returns the record version that should be used with this 635 // SSLAEADContext for record construction and crypto. 636 uint16_t RecordVersion() const; 637 638 const SSL_CIPHER *cipher() const { return cipher_; } 639 640 // is_null_cipher returns true if this is the null cipher. 641 bool is_null_cipher() const { return !cipher_; } 642 643 // ExplicitNonceLen returns the length of the explicit nonce. 644 size_t ExplicitNonceLen() const; 645 646 // MaxOverhead returns the maximum overhead of calling |Seal|. 647 size_t MaxOverhead() const; 648 649 // SuffixLen calculates the suffix length written by |SealScatter| and writes 650 // it to |*out_suffix_len|. It returns true on success and false on error. 651 // |in_len| and |extra_in_len| should equal the argument of the same names 652 // passed to |SealScatter|. 653 bool SuffixLen(size_t *out_suffix_len, size_t in_len, 654 size_t extra_in_len) const; 655 656 // Open authenticates and decrypts |in| in-place. On success, it sets |*out| 657 // to the plaintext in |in| and returns true. Otherwise, it returns 658 // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|. 659 bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version, 660 const uint8_t seqnum[8], Span<uint8_t> in); 661 662 // Seal encrypts and authenticates |in_len| bytes from |in| and writes the 663 // result to |out|. It returns true on success and false on error. 664 // 665 // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|. 666 bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, 667 uint16_t record_version, const uint8_t seqnum[8], const uint8_t *in, 668 size_t in_len); 669 670 // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits 671 // the result between |out_prefix|, |out| and |out_suffix|. It returns one on 672 // success and zero on error. 673 // 674 // On successful return, exactly |ExplicitNonceLen| bytes are written to 675 // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to 676 // |out_suffix|. 677 // 678 // |extra_in| may point to an additional plaintext buffer. If present, 679 // |extra_in_len| additional bytes are encrypted and authenticated, and the 680 // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should 681 // be used to size |out_suffix| accordingly. 682 // 683 // If |in| and |out| alias then |out| must be == |in|. Other arguments may not 684 // alias anything. 685 bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, 686 uint8_t type, uint16_t record_version, 687 const uint8_t seqnum[8], const uint8_t *in, size_t in_len, 688 const uint8_t *extra_in, size_t extra_in_len); 689 690 bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const; 691 692 private: 693 // GetAdditionalData writes the additional data into |out| and returns the 694 // number of bytes written. 695 size_t GetAdditionalData(uint8_t out[13], uint8_t type, 696 uint16_t record_version, const uint8_t seqnum[8], 697 size_t plaintext_len); 698 699 const SSL_CIPHER *cipher_; 700 ScopedEVP_AEAD_CTX ctx_; 701 // fixed_nonce_ contains any bytes of the nonce that are fixed for all 702 // records. 703 uint8_t fixed_nonce_[12]; 704 uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0; 705 // version_ is the wire version that should be used with this AEAD. 706 uint16_t version_; 707 // is_dtls_ is whether DTLS is being used with this AEAD. 708 bool is_dtls_; 709 // variable_nonce_included_in_record_ is true if the variable nonce 710 // for a record is included as a prefix before the ciphertext. 711 bool variable_nonce_included_in_record_ : 1; 712 // random_variable_nonce_ is true if the variable nonce is 713 // randomly generated, rather than derived from the sequence 714 // number. 715 bool random_variable_nonce_ : 1; 716 // omit_length_in_ad_ is true if the length should be omitted in the 717 // AEAD's ad parameter. 718 bool omit_length_in_ad_ : 1; 719 // omit_version_in_ad_ is true if the version should be omitted 720 // in the AEAD's ad parameter. 721 bool omit_version_in_ad_ : 1; 722 // omit_ad_ is true if the AEAD's ad parameter should be omitted. 723 bool omit_ad_ : 1; 724 // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the 725 // variable nonce rather than prepended. 726 bool xor_fixed_nonce_ : 1; 727 }; 728 729 730 // DTLS replay bitmap. 731 732 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect 733 // replayed packets. It should be initialized by zeroing every field. 734 struct DTLS1_BITMAP { 735 // map is a bit mask of the last 64 sequence numbers. Bit 736 // |1<<i| corresponds to |max_seq_num - i|. 737 uint64_t map = 0; 738 // max_seq_num is the largest sequence number seen so far as a 64-bit 739 // integer. 740 uint64_t max_seq_num = 0; 741 }; 742 743 744 // Record layer. 745 746 // ssl_record_sequence_update increments the sequence number in |seq|. It 747 // returns one on success and zero on wraparound. 748 int ssl_record_sequence_update(uint8_t *seq, size_t seq_len); 749 750 // ssl_record_prefix_len returns the length of the prefix before the ciphertext 751 // of a record for |ssl|. 752 // 753 // TODO(davidben): Expose this as part of public API once the high-level 754 // buffer-free APIs are available. 755 size_t ssl_record_prefix_len(const SSL *ssl); 756 757 enum ssl_open_record_t { 758 ssl_open_record_success, 759 ssl_open_record_discard, 760 ssl_open_record_partial, 761 ssl_open_record_close_notify, 762 ssl_open_record_error, 763 }; 764 765 // tls_open_record decrypts a record from |in| in-place. 766 // 767 // If the input did not contain a complete record, it returns 768 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of 769 // bytes necessary. It is guaranteed that a successful call to |tls_open_record| 770 // will consume at least that many bytes. 771 // 772 // Otherwise, it sets |*out_consumed| to the number of bytes of input 773 // consumed. Note that input may be consumed on all return codes if a record was 774 // decrypted. 775 // 776 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the 777 // record type and |*out| to the record body in |in|. Note that |*out| may be 778 // empty. 779 // 780 // If a record was successfully processed but should be discarded, it returns 781 // |ssl_open_record_discard|. 782 // 783 // If a record was successfully processed but is a close_notify, it returns 784 // |ssl_open_record_close_notify|. 785 // 786 // On failure or fatal alert, it returns |ssl_open_record_error| and sets 787 // |*out_alert| to an alert to emit, or zero if no alert should be emitted. 788 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, 789 Span<uint8_t> *out, size_t *out_consumed, 790 uint8_t *out_alert, Span<uint8_t> in); 791 792 // dtls_open_record implements |tls_open_record| for DTLS. It only returns 793 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to 794 // zero. The caller should read one packet and try again. 795 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, 796 Span<uint8_t> *out, 797 size_t *out_consumed, 798 uint8_t *out_alert, Span<uint8_t> in); 799 800 // ssl_seal_align_prefix_len returns the length of the prefix before the start 801 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may 802 // use this to align buffers. 803 // 804 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte 805 // record and is the offset into second record's ciphertext. Thus sealing a 806 // small record may result in a smaller output than this value. 807 // 808 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a 809 // mess. 810 size_t ssl_seal_align_prefix_len(const SSL *ssl); 811 812 // tls_seal_record seals a new record of type |type| and body |in| and writes it 813 // to |out|. At most |max_out| bytes will be written. It returns one on success 814 // and zero on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC 1/n-1 815 // record splitting and may write two records concatenated. 816 // 817 // For a large record, the bulk of the ciphertext will begin 818 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may 819 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead| 820 // bytes to |out|. 821 // 822 // |in| and |out| may not alias. 823 int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, 824 uint8_t type, const uint8_t *in, size_t in_len); 825 826 enum dtls1_use_epoch_t { 827 dtls1_use_previous_epoch, 828 dtls1_use_current_epoch, 829 }; 830 831 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a 832 // record. 833 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); 834 835 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in 836 // front of the plaintext when sealing a record in-place. 837 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); 838 839 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects 840 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out| 841 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes 842 // ahead of |out|. 843 int dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, 844 uint8_t type, const uint8_t *in, size_t in_len, 845 enum dtls1_use_epoch_t use_epoch); 846 847 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown 848 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|, 849 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as 850 // appropriate. 851 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, 852 Span<const uint8_t> in); 853 854 855 // Private key operations. 856 857 // ssl_has_private_key returns one if |ssl| has a private key 858 // configured and zero otherwise. 859 int ssl_has_private_key(const SSL *ssl); 860 861 // ssl_private_key_* perform the corresponding operation on 862 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they 863 // call the corresponding function or |complete| depending on whether there is a 864 // pending operation. Otherwise, they implement the operation with 865 // |EVP_PKEY|. 866 867 enum ssl_private_key_result_t ssl_private_key_sign( 868 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, 869 uint16_t sigalg, Span<const uint8_t> in); 870 871 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, 872 uint8_t *out, 873 size_t *out_len, 874 size_t max_out, 875 Span<const uint8_t> in); 876 877 // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private 878 // key supports |sigalg|. 879 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, 880 uint16_t sigalg); 881 882 // ssl_public_key_verify verifies that the |signature| is valid for the public 883 // key |pkey| and input |in|, using the signature algorithm |sigalg|. 884 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, 885 uint16_t sigalg, EVP_PKEY *pkey, 886 Span<const uint8_t> in); 887 888 889 // Custom extensions 890 891 } // namespace bssl 892 893 // |SSL_CUSTOM_EXTENSION| is a structure that contains information about 894 // custom-extension callbacks. It is defined unnamespaced for compatibility with 895 // |STACK_OF(SSL_CUSTOM_EXTENSION)|. 896 typedef struct ssl_custom_extension { 897 SSL_custom_ext_add_cb add_callback; 898 void *add_arg; 899 SSL_custom_ext_free_cb free_callback; 900 SSL_custom_ext_parse_cb parse_callback; 901 void *parse_arg; 902 uint16_t value; 903 } SSL_CUSTOM_EXTENSION; 904 905 DEFINE_STACK_OF(SSL_CUSTOM_EXTENSION) 906 907 namespace bssl { 908 909 void SSL_CUSTOM_EXTENSION_free(SSL_CUSTOM_EXTENSION *custom_extension); 910 911 int custom_ext_add_clienthello(SSL_HANDSHAKE *hs, CBB *extensions); 912 int custom_ext_parse_serverhello(SSL_HANDSHAKE *hs, int *out_alert, 913 uint16_t value, const CBS *extension); 914 int custom_ext_parse_clienthello(SSL_HANDSHAKE *hs, int *out_alert, 915 uint16_t value, const CBS *extension); 916 int custom_ext_add_serverhello(SSL_HANDSHAKE *hs, CBB *extensions); 917 918 919 // Key shares. 920 921 // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges. 922 class SSLKeyShare { 923 public: 924 virtual ~SSLKeyShare() {} 925 static constexpr bool kAllowUniquePtr = true; 926 HAS_VIRTUAL_DESTRUCTOR 927 928 // Create returns a SSLKeyShare instance for use with group |group_id| or 929 // nullptr on error. 930 static UniquePtr<SSLKeyShare> Create(uint16_t group_id); 931 932 // GroupID returns the group ID. 933 virtual uint16_t GroupID() const PURE_VIRTUAL; 934 935 // Offer generates a keypair and writes the public value to 936 // |out_public_key|. It returns true on success and false on error. 937 virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL; 938 939 // Accept performs a key exchange against the |peer_key| generated by |offer|. 940 // On success, it returns true, writes the public value to |out_public_key|, 941 // and sets |*out_secret| the shared secret. On failure, it returns false and 942 // sets |*out_alert| to an alert to send to the peer. 943 // 944 // The default implementation calls |Offer| and then |Finish|, assuming a key 945 // exchange protocol where the peers are symmetric. 946 virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret, 947 uint8_t *out_alert, Span<const uint8_t> peer_key); 948 949 // Finish performs a key exchange against the |peer_key| generated by 950 // |Accept|. On success, it returns true and sets |*out_secret| to the shared 951 // secret. On failure, it returns zero and sets |*out_alert| to an alert to 952 // send to the peer. 953 virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert, 954 Span<const uint8_t> peer_key) PURE_VIRTUAL; 955 }; 956 957 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it 958 // sets |*out_group_id| to the group ID and returns one. Otherwise, it returns 959 // zero. 960 int ssl_nid_to_group_id(uint16_t *out_group_id, int nid); 961 962 // ssl_name_to_group_id looks up the group corresponding to the |name| string 963 // of length |len|. On success, it sets |*out_group_id| to the group ID and 964 // returns one. Otherwise, it returns zero. 965 int ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len); 966 967 968 // Handshake messages. 969 970 struct SSLMessage { 971 bool is_v2_hello; 972 uint8_t type; 973 CBS body; 974 // raw is the entire serialized handshake message, including the TLS or DTLS 975 // message header. 976 CBS raw; 977 }; 978 979 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including 980 // ChangeCipherSpec, in the longest handshake flight. Currently this is the 981 // client's second leg in a full handshake when client certificates, NPN, and 982 // Channel ID, are all enabled. 983 #define SSL_MAX_HANDSHAKE_FLIGHT 7 984 985 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE]; 986 extern const uint8_t kDraftDowngradeRandom[8]; 987 988 // ssl_max_handshake_message_len returns the maximum number of bytes permitted 989 // in a handshake message for |ssl|. 990 size_t ssl_max_handshake_message_len(const SSL *ssl); 991 992 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more 993 // data into handshake buffer. 994 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert); 995 996 // tls_has_unprocessed_handshake_data returns whether there is buffered 997 // handshake data that has not been consumed by |get_message|. 998 bool tls_has_unprocessed_handshake_data(const SSL *ssl); 999 1000 // dtls_has_unprocessed_handshake_data behaves like 1001 // |tls_has_unprocessed_handshake_data| for DTLS. 1002 bool dtls_has_unprocessed_handshake_data(const SSL *ssl); 1003 1004 struct DTLS_OUTGOING_MESSAGE { 1005 DTLS_OUTGOING_MESSAGE() {} 1006 DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete; 1007 DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete; 1008 ~DTLS_OUTGOING_MESSAGE() { Clear(); } 1009 1010 void Clear(); 1011 1012 uint8_t *data = nullptr; 1013 uint32_t len = 0; 1014 uint16_t epoch = 0; 1015 bool is_ccs = false; 1016 }; 1017 1018 // dtls_clear_outgoing_messages releases all buffered outgoing messages. 1019 void dtls_clear_outgoing_messages(SSL *ssl); 1020 1021 1022 // Callbacks. 1023 1024 // ssl_do_info_callback calls |ssl|'s info callback, if set. 1025 void ssl_do_info_callback(const SSL *ssl, int type, int value); 1026 1027 // ssl_do_msg_callback calls |ssl|'s message callback, if set. 1028 void ssl_do_msg_callback(SSL *ssl, int is_write, int content_type, 1029 Span<const uint8_t> in); 1030 1031 1032 // Transport buffers. 1033 1034 class SSLBuffer { 1035 public: 1036 SSLBuffer() {} 1037 ~SSLBuffer() { Clear(); } 1038 1039 SSLBuffer(const SSLBuffer &) = delete; 1040 SSLBuffer &operator=(const SSLBuffer &) = delete; 1041 1042 uint8_t *data() { return buf_ + offset_; } 1043 size_t size() const { return size_; } 1044 bool empty() const { return size_ == 0; } 1045 size_t cap() const { return cap_; } 1046 1047 Span<uint8_t> span() { return MakeSpan(data(), size()); } 1048 1049 Span<uint8_t> remaining() { 1050 return MakeSpan(data() + size(), cap() - size()); 1051 } 1052 1053 // Clear releases the buffer. 1054 void Clear(); 1055 1056 // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such 1057 // that data written after |header_len| is aligned to a 1058 // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false 1059 // on error. 1060 bool EnsureCap(size_t header_len, size_t new_cap); 1061 1062 // DidWrite extends the buffer by |len|. The caller must have filled in to 1063 // this point. 1064 void DidWrite(size_t len); 1065 1066 // Consume consumes |len| bytes from the front of the buffer. The memory 1067 // consumed will remain valid until the next call to |DiscardConsumed| or 1068 // |Clear|. 1069 void Consume(size_t len); 1070 1071 // DiscardConsumed discards the consumed bytes from the buffer. If the buffer 1072 // is now empty, it releases memory used by it. 1073 void DiscardConsumed(); 1074 1075 private: 1076 // buf_ is the memory allocated for this buffer. 1077 uint8_t *buf_ = nullptr; 1078 // offset_ is the offset into |buf_| which the buffer contents start at. 1079 uint16_t offset_ = 0; 1080 // size_ is the size of the buffer contents from |buf_| + |offset_|. 1081 uint16_t size_ = 0; 1082 // cap_ is how much memory beyond |buf_| + |offset_| is available. 1083 uint16_t cap_ = 0; 1084 }; 1085 1086 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For 1087 // TLS, it reads to the end of the buffer until the buffer is |len| bytes 1088 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on 1089 // success, zero on EOF, and a negative number on error. 1090 // 1091 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is 1092 // non-empty. 1093 int ssl_read_buffer_extend_to(SSL *ssl, size_t len); 1094 1095 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer| 1096 // to a record-processing function. If |ret| is a success or if the caller 1097 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <= 1098 // 0. 1099 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret, 1100 size_t consumed, uint8_t alert); 1101 1102 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns 1103 // one on success and <= 0 on error. For DTLS, whether or not the write 1104 // succeeds, the write buffer will be cleared. 1105 int ssl_write_buffer_flush(SSL *ssl); 1106 1107 1108 // Certificate functions. 1109 1110 // ssl_has_certificate returns one if a certificate and private key are 1111 // configured and zero otherwise. 1112 int ssl_has_certificate(const SSL *ssl); 1113 1114 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used 1115 // by a TLS Certificate message. On success, it advances |cbs| and returns 1116 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send 1117 // to the peer. 1118 // 1119 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to 1120 // the certificate chain and the leaf certificate's public key 1121 // respectively. Otherwise, both will be set to nullptr. 1122 // 1123 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the 1124 // SHA-256 hash of the leaf to |out_leaf_sha256|. 1125 bool ssl_parse_cert_chain(uint8_t *out_alert, 1126 UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain, 1127 UniquePtr<EVP_PKEY> *out_pubkey, 1128 uint8_t *out_leaf_sha256, CBS *cbs, 1129 CRYPTO_BUFFER_POOL *pool); 1130 1131 // ssl_add_cert_chain adds |ssl|'s certificate chain to |cbb| in the format used 1132 // by a TLS Certificate message. If there is no certificate chain, it emits an 1133 // empty certificate list. It returns one on success and zero on error. 1134 int ssl_add_cert_chain(SSL *ssl, CBB *cbb); 1135 1136 // ssl_cert_check_digital_signature_key_usage parses the DER-encoded, X.509 1137 // certificate in |in| and returns one if doesn't specify a key usage or, if it 1138 // does, if it includes digitalSignature. Otherwise it pushes to the error 1139 // queue and returns zero. 1140 int ssl_cert_check_digital_signature_key_usage(const CBS *in); 1141 1142 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509 1143 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns 1144 // nullptr and pushes to the error queue. 1145 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in); 1146 1147 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a 1148 // TLS CertificateRequest message. On success, it returns a newly-allocated 1149 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and 1150 // sets |*out_alert| to an alert to send to the peer. 1151 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl, 1152 uint8_t *out_alert, 1153 CBS *cbs); 1154 1155 // ssl_has_client_CAs returns there are configured CAs. 1156 bool ssl_has_client_CAs(SSL *ssl); 1157 1158 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format 1159 // used by a TLS CertificateRequest message. It returns one on success and zero 1160 // on error. 1161 int ssl_add_client_CA_list(SSL *ssl, CBB *cbb); 1162 1163 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as 1164 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes 1165 // an error on the error queue. 1166 int ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, 1167 const CRYPTO_BUFFER *leaf); 1168 1169 // ssl_on_certificate_selected is called once the certificate has been selected. 1170 // It finalizes the certificate and initializes |hs->local_pubkey|. It returns 1171 // one on success and zero on error. 1172 int ssl_on_certificate_selected(SSL_HANDSHAKE *hs); 1173 1174 1175 // TLS 1.3 key derivation. 1176 1177 // tls13_init_key_schedule initializes the handshake hash and key derivation 1178 // state, and incorporates the PSK. The cipher suite and PRF hash must have been 1179 // selected at this point. It returns one on success and zero on error. 1180 int tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, 1181 size_t psk_len); 1182 1183 // tls13_init_early_key_schedule initializes the handshake hash and key 1184 // derivation state from the resumption secret and incorporates the PSK to 1185 // derive the early secrets. It returns one on success and zero on error. 1186 int tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, 1187 size_t psk_len); 1188 1189 // tls13_advance_key_schedule incorporates |in| into the key schedule with 1190 // HKDF-Extract. It returns one on success and zero on error. 1191 int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in, 1192 size_t len); 1193 1194 // tls13_set_traffic_key sets the read or write traffic keys to 1195 // |traffic_secret|. It returns one on success and zero on error. 1196 int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction, 1197 const uint8_t *traffic_secret, 1198 size_t traffic_secret_len); 1199 1200 // tls13_derive_early_secrets derives the early traffic secret. It returns one 1201 // on success and zero on error. 1202 int tls13_derive_early_secrets(SSL_HANDSHAKE *hs); 1203 1204 // tls13_derive_handshake_secrets derives the handshake traffic secret. It 1205 // returns one on success and zero on error. 1206 int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs); 1207 1208 // tls13_rotate_traffic_key derives the next read or write traffic secret. It 1209 // returns one on success and zero on error. 1210 int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction); 1211 1212 // tls13_derive_application_secrets derives the initial application data traffic 1213 // and exporter secrets based on the handshake transcripts and |master_secret|. 1214 // It returns one on success and zero on error. 1215 int tls13_derive_application_secrets(SSL_HANDSHAKE *hs); 1216 1217 // tls13_derive_resumption_secret derives the |resumption_secret|. 1218 int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs); 1219 1220 // tls13_export_keying_material provides an exporter interface to use the 1221 // |exporter_secret|. 1222 int tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, 1223 Span<const uint8_t> secret, 1224 Span<const char> label, 1225 Span<const uint8_t> context); 1226 1227 // tls13_finished_mac calculates the MAC of the handshake transcript to verify 1228 // the integrity of the Finished message, and stores the result in |out| and 1229 // length in |out_len|. |is_server| is 1 if this is for the Server Finished and 1230 // 0 for the Client Finished. 1231 int tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, 1232 size_t *out_len, int is_server); 1233 1234 // tls13_derive_session_psk calculates the PSK for this session based on the 1235 // resumption master secret and |nonce|. It returns true on success, and false 1236 // on failure. 1237 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce); 1238 1239 // tls13_write_psk_binder calculates the PSK binder value and replaces the last 1240 // bytes of |msg| with the resulting value. It returns 1 on success, and 0 on 1241 // failure. 1242 int tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len); 1243 1244 // tls13_verify_psk_binder verifies that the handshake transcript, truncated 1245 // up to the binders has a valid signature using the value of |session|'s 1246 // resumption secret. It returns 1 on success, and 0 on failure. 1247 int tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session, 1248 const SSLMessage &msg, CBS *binders); 1249 1250 1251 // Handshake functions. 1252 1253 enum ssl_hs_wait_t { 1254 ssl_hs_error, 1255 ssl_hs_ok, 1256 ssl_hs_read_server_hello, 1257 ssl_hs_read_message, 1258 ssl_hs_flush, 1259 ssl_hs_certificate_selection_pending, 1260 ssl_hs_handoff, 1261 ssl_hs_x509_lookup, 1262 ssl_hs_channel_id_lookup, 1263 ssl_hs_private_key_operation, 1264 ssl_hs_pending_session, 1265 ssl_hs_pending_ticket, 1266 ssl_hs_early_return, 1267 ssl_hs_early_data_rejected, 1268 ssl_hs_read_end_of_early_data, 1269 ssl_hs_read_change_cipher_spec, 1270 ssl_hs_certificate_verify, 1271 }; 1272 1273 enum ssl_grease_index_t { 1274 ssl_grease_cipher = 0, 1275 ssl_grease_group, 1276 ssl_grease_extension1, 1277 ssl_grease_extension2, 1278 ssl_grease_version, 1279 ssl_grease_ticket_extension, 1280 ssl_grease_last_index = ssl_grease_ticket_extension, 1281 }; 1282 1283 struct SSL_HANDSHAKE { 1284 explicit SSL_HANDSHAKE(SSL *ssl); 1285 ~SSL_HANDSHAKE(); 1286 static constexpr bool kAllowUniquePtr = true; 1287 1288 // ssl is a non-owning pointer to the parent |SSL| object. 1289 SSL *ssl; 1290 1291 // wait contains the operation the handshake is currently blocking on or 1292 // |ssl_hs_ok| if none. 1293 enum ssl_hs_wait_t wait = ssl_hs_ok; 1294 1295 // state is the internal state for the TLS 1.2 and below handshake. Its 1296 // values depend on |do_handshake| but the starting state is always zero. 1297 int state = 0; 1298 1299 // tls13_state is the internal state for the TLS 1.3 handshake. Its values 1300 // depend on |do_handshake| but the starting state is always zero. 1301 int tls13_state = 0; 1302 1303 // min_version is the minimum accepted protocol version, taking account both 1304 // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs. 1305 uint16_t min_version = 0; 1306 1307 // max_version is the maximum accepted protocol version, taking account both 1308 // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs. 1309 uint16_t max_version = 0; 1310 1311 size_t hash_len = 0; 1312 uint8_t secret[EVP_MAX_MD_SIZE] = {0}; 1313 uint8_t early_traffic_secret[EVP_MAX_MD_SIZE] = {0}; 1314 uint8_t client_handshake_secret[EVP_MAX_MD_SIZE] = {0}; 1315 uint8_t server_handshake_secret[EVP_MAX_MD_SIZE] = {0}; 1316 uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE] = {0}; 1317 uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE] = {0}; 1318 uint8_t expected_client_finished[EVP_MAX_MD_SIZE] = {0}; 1319 1320 union { 1321 // sent is a bitset where the bits correspond to elements of kExtensions 1322 // in t1_lib.c. Each bit is set if that extension was sent in a 1323 // ClientHello. It's not used by servers. 1324 uint32_t sent = 0; 1325 // received is a bitset, like |sent|, but is used by servers to record 1326 // which extensions were received from a client. 1327 uint32_t received; 1328 } extensions; 1329 1330 union { 1331 // sent is a bitset where the bits correspond to elements of 1332 // |client_custom_extensions| in the |SSL_CTX|. Each bit is set if that 1333 // extension was sent in a ClientHello. It's not used by servers. 1334 uint16_t sent = 0; 1335 // received is a bitset, like |sent|, but is used by servers to record 1336 // which custom extensions were received from a client. The bits here 1337 // correspond to |server_custom_extensions|. 1338 uint16_t received; 1339 } custom_extensions; 1340 1341 // retry_group is the group ID selected by the server in HelloRetryRequest in 1342 // TLS 1.3. 1343 uint16_t retry_group = 0; 1344 1345 // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on. 1346 UniquePtr<ERR_SAVE_STATE> error; 1347 1348 // key_share is the current key exchange instance. 1349 UniquePtr<SSLKeyShare> key_share; 1350 1351 // transcript is the current handshake transcript. 1352 SSLTranscript transcript; 1353 1354 // cookie is the value of the cookie received from the server, if any. 1355 Array<uint8_t> cookie; 1356 1357 // key_share_bytes is the value of the previously sent KeyShare extension by 1358 // the client in TLS 1.3. 1359 Array<uint8_t> key_share_bytes; 1360 1361 // ecdh_public_key, for servers, is the key share to be sent to the client in 1362 // TLS 1.3. 1363 Array<uint8_t> ecdh_public_key; 1364 1365 // peer_sigalgs are the signature algorithms that the peer supports. These are 1366 // taken from the contents of the signature algorithms extension for a server 1367 // or from the CertificateRequest for a client. 1368 Array<uint16_t> peer_sigalgs; 1369 1370 // peer_supported_group_list contains the supported group IDs advertised by 1371 // the peer. This is only set on the server's end. The server does not 1372 // advertise this extension to the client. 1373 Array<uint16_t> peer_supported_group_list; 1374 1375 // peer_key is the peer's ECDH key for a TLS 1.2 client. 1376 Array<uint8_t> peer_key; 1377 1378 // negotiated_token_binding_version is used by a server to store the 1379 // on-the-wire encoding of the Token Binding protocol version to advertise in 1380 // the ServerHello/EncryptedExtensions if the Token Binding extension is to be 1381 // sent. 1382 uint16_t negotiated_token_binding_version; 1383 1384 // server_params, in a TLS 1.2 server, stores the ServerKeyExchange 1385 // parameters. It has client and server randoms prepended for signing 1386 // convenience. 1387 Array<uint8_t> server_params; 1388 1389 // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the 1390 // server when using a TLS 1.2 PSK key exchange. 1391 UniquePtr<char> peer_psk_identity_hint; 1392 1393 // ca_names, on the client, contains the list of CAs received in a 1394 // CertificateRequest message. 1395 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names; 1396 1397 // cached_x509_ca_names contains a cache of parsed versions of the elements of 1398 // |ca_names|. This pointer is left non-owning so only 1399 // |ssl_crypto_x509_method| needs to link against crypto/x509. 1400 STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr; 1401 1402 // certificate_types, on the client, contains the set of certificate types 1403 // received in a CertificateRequest message. 1404 Array<uint8_t> certificate_types; 1405 1406 // local_pubkey is the public key we are authenticating as. 1407 UniquePtr<EVP_PKEY> local_pubkey; 1408 1409 // peer_pubkey is the public key parsed from the peer's leaf certificate. 1410 UniquePtr<EVP_PKEY> peer_pubkey; 1411 1412 // new_session is the new mutable session being established by the current 1413 // handshake. It should not be cached. 1414 UniquePtr<SSL_SESSION> new_session; 1415 1416 // early_session is the session corresponding to the current 0-RTT state on 1417 // the client if |in_early_data| is true. 1418 UniquePtr<SSL_SESSION> early_session; 1419 1420 // new_cipher is the cipher being negotiated in this handshake. 1421 const SSL_CIPHER *new_cipher = nullptr; 1422 1423 // key_block is the record-layer key block for TLS 1.2 and earlier. 1424 Array<uint8_t> key_block; 1425 1426 // scts_requested is true if the SCT extension is in the ClientHello. 1427 bool scts_requested:1; 1428 1429 // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to 1430 // be filled in. 1431 bool needs_psk_binder:1; 1432 1433 bool received_hello_retry_request:1; 1434 bool sent_hello_retry_request:1; 1435 1436 bool received_custom_extension:1; 1437 1438 // handshake_finalized is true once the handshake has completed, at which 1439 // point accessors should use the established state. 1440 bool handshake_finalized:1; 1441 1442 // accept_psk_mode stores whether the client's PSK mode is compatible with our 1443 // preferences. 1444 bool accept_psk_mode:1; 1445 1446 // cert_request is true if a client certificate was requested. 1447 bool cert_request:1; 1448 1449 // certificate_status_expected is true if OCSP stapling was negotiated and the 1450 // server is expected to send a CertificateStatus message. (This is used on 1451 // both the client and server sides.) 1452 bool certificate_status_expected:1; 1453 1454 // ocsp_stapling_requested is true if a client requested OCSP stapling. 1455 bool ocsp_stapling_requested:1; 1456 1457 // should_ack_sni is used by a server and indicates that the SNI extension 1458 // should be echoed in the ServerHello. 1459 bool should_ack_sni:1; 1460 1461 // in_false_start is true if there is a pending client handshake in False 1462 // Start. The client may write data at this point. 1463 bool in_false_start:1; 1464 1465 // in_early_data is true if there is a pending handshake that has progressed 1466 // enough to send and receive early data. 1467 bool in_early_data:1; 1468 1469 // early_data_offered is true if the client sent the early_data extension. 1470 bool early_data_offered:1; 1471 1472 // can_early_read is true if application data may be read at this point in the 1473 // handshake. 1474 bool can_early_read:1; 1475 1476 // can_early_write is true if application data may be written at this point in 1477 // the handshake. 1478 bool can_early_write:1; 1479 1480 // next_proto_neg_seen is one of NPN was negotiated. 1481 bool next_proto_neg_seen:1; 1482 1483 // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent 1484 // or received. 1485 bool ticket_expected:1; 1486 1487 // extended_master_secret is true if the extended master secret extension is 1488 // negotiated in this handshake. 1489 bool extended_master_secret:1; 1490 1491 // pending_private_key_op is true if there is a pending private key operation 1492 // in progress. 1493 bool pending_private_key_op:1; 1494 1495 // grease_seeded is true if |grease_seed| has been initialized. 1496 bool grease_seeded:1; 1497 1498 // client_version is the value sent or received in the ClientHello version. 1499 uint16_t client_version = 0; 1500 1501 // early_data_read is the amount of early data that has been read by the 1502 // record layer. 1503 uint16_t early_data_read = 0; 1504 1505 // early_data_written is the amount of early data that has been written by the 1506 // record layer. 1507 uint16_t early_data_written = 0; 1508 1509 // session_id is the session ID in the ClientHello, used for the experimental 1510 // TLS 1.3 variant. 1511 uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0}; 1512 uint8_t session_id_len = 0; 1513 1514 // grease_seed is the entropy for GREASE values. It is valid if 1515 // |grease_seeded| is true. 1516 uint8_t grease_seed[ssl_grease_last_index + 1] = {0}; 1517 }; 1518 1519 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl); 1520 1521 // ssl_check_message_type checks if |msg| has type |type|. If so it returns 1522 // one. Otherwise, it sends an alert and returns zero. 1523 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type); 1524 1525 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0 1526 // on error. It sets |out_early_return| to one if we've completed the handshake 1527 // early. 1528 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return); 1529 1530 // The following are implementations of |do_handshake| for the client and 1531 // server. 1532 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs); 1533 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs); 1534 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs); 1535 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs); 1536 1537 // The following functions return human-readable representations of the TLS 1538 // handshake states for debugging. 1539 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs); 1540 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs); 1541 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs); 1542 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs); 1543 1544 // tls13_post_handshake processes a post-handshake message. It returns one on 1545 // success and zero on failure. 1546 int tls13_post_handshake(SSL *ssl, const SSLMessage &msg); 1547 1548 int tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg, 1549 int allow_anonymous); 1550 int tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg); 1551 1552 // tls13_process_finished processes |msg| as a Finished message from the 1553 // peer. If |use_saved_value| is one, the verify_data is compared against 1554 // |hs->expected_client_finished| rather than computed fresh. 1555 int tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg, 1556 int use_saved_value); 1557 1558 int tls13_add_certificate(SSL_HANDSHAKE *hs); 1559 1560 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the 1561 // handshake. If it returns |ssl_private_key_retry|, it should be called again 1562 // to retry when the signing operation is completed. 1563 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs); 1564 1565 int tls13_add_finished(SSL_HANDSHAKE *hs); 1566 int tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg); 1567 1568 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, 1569 Array<uint8_t> *out_secret, 1570 uint8_t *out_alert, CBS *contents); 1571 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, 1572 Array<uint8_t> *out_secret, 1573 uint8_t *out_alert, CBS *contents); 1574 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); 1575 1576 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, 1577 uint8_t *out_alert, 1578 CBS *contents); 1579 bool ssl_ext_pre_shared_key_parse_clienthello( 1580 SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, 1581 uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents); 1582 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); 1583 1584 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and 1585 // returns one iff it's valid. 1586 int ssl_is_sct_list_valid(const CBS *contents); 1587 1588 int ssl_write_client_hello(SSL_HANDSHAKE *hs); 1589 1590 enum ssl_cert_verify_context_t { 1591 ssl_cert_verify_server, 1592 ssl_cert_verify_client, 1593 ssl_cert_verify_channel_id, 1594 }; 1595 1596 // tls13_get_cert_verify_signature_input generates the message to be signed for 1597 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the 1598 // type of signature. It sets |*out| to a newly allocated buffer containing the 1599 // result. This function returns true on success and false on failure. 1600 bool tls13_get_cert_verify_signature_input( 1601 SSL_HANDSHAKE *hs, Array<uint8_t> *out, 1602 enum ssl_cert_verify_context_t cert_verify_context); 1603 1604 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server 1605 // selection for |ssl|'s client preferences. 1606 bool ssl_is_alpn_protocol_allowed(const SSL *ssl, Span<const uint8_t> protocol); 1607 1608 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns 1609 // true on successful negotiation or if nothing was negotiated. It returns false 1610 // and sets |*out_alert| to an alert on error. 1611 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, 1612 const SSL_CLIENT_HELLO *client_hello); 1613 1614 struct SSL_EXTENSION_TYPE { 1615 uint16_t type; 1616 bool *out_present; 1617 CBS *out_data; 1618 }; 1619 1620 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances 1621 // it. It writes the parsed extensions to pointers denoted by |ext_types|. On 1622 // success, it fills in the |out_present| and |out_data| fields and returns one. 1623 // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown 1624 // extensions are rejected unless |ignore_unknown| is 1. 1625 int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, 1626 const SSL_EXTENSION_TYPE *ext_types, 1627 size_t num_ext_types, int ignore_unknown); 1628 1629 // ssl_verify_peer_cert verifies the peer certificate for |hs|. 1630 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs); 1631 1632 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs); 1633 bool ssl_send_finished(SSL_HANDSHAKE *hs); 1634 bool ssl_output_cert_chain(SSL *ssl); 1635 1636 1637 // SSLKEYLOGFILE functions. 1638 1639 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for 1640 // |ssl|. It returns one on success and zero on failure. 1641 int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret, 1642 size_t secret_len); 1643 1644 1645 // ClientHello functions. 1646 1647 int ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out, 1648 const SSLMessage &msg); 1649 1650 int ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, 1651 CBS *out, uint16_t extension_type); 1652 1653 int ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO *client_hello, 1654 uint16_t id); 1655 1656 1657 // GREASE. 1658 1659 // ssl_get_grease_value returns a GREASE value for |hs|. For a given 1660 // connection, the values for each index will be deterministic. This allows the 1661 // same ClientHello be sent twice for a HelloRetryRequest or the same group be 1662 // advertised in both supported_groups and key_shares. 1663 uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index); 1664 1665 1666 // Signature algorithms. 1667 1668 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature 1669 // algorithms and saves them on |hs|. It returns true on success and false on 1670 // error. 1671 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs); 1672 1673 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm 1674 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on 1675 // success and false if |pkey| may not be used at those versions. 1676 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey); 1677 1678 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use 1679 // with |hs|'s private key based on the peer's preferences and the algorithms 1680 // supported. It returns true on success and false on error. 1681 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out); 1682 1683 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the 1684 // peer signature to |out|. It returns true on success and false on error. 1685 bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out); 1686 1687 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer 1688 // signature. It returns true on success and false on error, setting 1689 // |*out_alert| to an alert to send. 1690 bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert, 1691 uint16_t sigalg); 1692 1693 1694 // Underdocumented functions. 1695 // 1696 // Functions below here haven't been touched up and may be underdocumented. 1697 1698 #define TLSEXT_CHANNEL_ID_SIZE 128 1699 1700 // From RFC4492, used in encoding the curve type in ECParameters 1701 #define NAMED_CURVE_TYPE 3 1702 1703 struct CERT { 1704 EVP_PKEY *privatekey; 1705 1706 // chain contains the certificate chain, with the leaf at the beginning. The 1707 // first element of |chain| may be NULL to indicate that the leaf certificate 1708 // has not yet been set. 1709 // If |chain| != NULL -> len(chain) >= 1 1710 // If |chain[0]| == NULL -> len(chain) >= 2. 1711 // |chain[1..]| != NULL 1712 STACK_OF(CRYPTO_BUFFER) *chain; 1713 1714 // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as 1715 // a cache in order to implement get0 functions that return a non-owning 1716 // pointer to the certificate chain. 1717 STACK_OF(X509) *x509_chain; 1718 1719 // x509_leaf may contain a parsed copy of the first element of |chain|. This 1720 // is only used as a cache in order to implement get0 functions that return 1721 // a non-owning pointer to the certificate chain. 1722 X509 *x509_leaf; 1723 1724 // x509_stash contains the last |X509| object append to the chain. This is a 1725 // workaround for some third-party code that continue to use an |X509| object 1726 // even after passing ownership with an add0 function. 1727 X509 *x509_stash; 1728 1729 // key_method, if non-NULL, is a set of callbacks to call for private key 1730 // operations. 1731 const SSL_PRIVATE_KEY_METHOD *key_method; 1732 1733 // x509_method contains pointers to functions that might deal with |X509| 1734 // compatibility, or might be a no-op, depending on the application. 1735 const SSL_X509_METHOD *x509_method; 1736 1737 // sigalgs, if non-NULL, is the set of signature algorithms supported by 1738 // |privatekey| in decreasing order of preference. 1739 uint16_t *sigalgs; 1740 size_t num_sigalgs; 1741 1742 // Certificate setup callback: if set is called whenever a 1743 // certificate may be required (client or server). the callback 1744 // can then examine any appropriate parameters and setup any 1745 // certificates required. This allows advanced applications 1746 // to select certificates on the fly: for example based on 1747 // supported signature algorithms or curves. 1748 int (*cert_cb)(SSL *ssl, void *arg); 1749 void *cert_cb_arg; 1750 1751 // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX 1752 // store is used instead. 1753 X509_STORE *verify_store; 1754 1755 // Signed certificate timestamp list to be sent to the client, if requested 1756 CRYPTO_BUFFER *signed_cert_timestamp_list; 1757 1758 // OCSP response to be sent to the client, if requested. 1759 CRYPTO_BUFFER *ocsp_response; 1760 1761 // sid_ctx partitions the session space within a shared session cache or 1762 // ticket key. Only sessions with a matching value will be accepted. 1763 uint8_t sid_ctx_length; 1764 uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH]; 1765 1766 // If enable_early_data is true, early data can be sent and accepted. 1767 bool enable_early_data:1; 1768 }; 1769 1770 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS. 1771 struct SSL_PROTOCOL_METHOD { 1772 bool is_dtls; 1773 bool (*ssl_new)(SSL *ssl); 1774 void (*ssl_free)(SSL *ssl); 1775 // get_message sets |*out| to the current handshake message and returns true 1776 // if one has been received. It returns false if more input is needed. 1777 bool (*get_message)(SSL *ssl, SSLMessage *out); 1778 // next_message is called to release the current handshake message. 1779 void (*next_message)(SSL *ssl); 1780 // Use the |ssl_open_handshake| wrapper. 1781 ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed, 1782 uint8_t *out_alert, Span<uint8_t> in); 1783 // Use the |ssl_open_change_cipher_spec| wrapper. 1784 ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed, 1785 uint8_t *out_alert, 1786 Span<uint8_t> in); 1787 // Use the |ssl_open_app_data| wrapper. 1788 ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out, 1789 size_t *out_consumed, uint8_t *out_alert, 1790 Span<uint8_t> in); 1791 int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, 1792 int len); 1793 int (*dispatch_alert)(SSL *ssl); 1794 // init_message begins a new handshake message of type |type|. |cbb| is the 1795 // root CBB to be passed into |finish_message|. |*body| is set to a child CBB 1796 // the caller should write to. It returns true on success and false on error. 1797 bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); 1798 // finish_message finishes a handshake message. It sets |*out_msg| to the 1799 // serialized message. It returns true on success and false on error. 1800 bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg); 1801 // add_message adds a handshake message to the pending flight. It returns 1802 // true on success and false on error. 1803 bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg); 1804 // add_change_cipher_spec adds a ChangeCipherSpec record to the pending 1805 // flight. It returns true on success and false on error. 1806 bool (*add_change_cipher_spec)(SSL *ssl); 1807 // add_alert adds an alert to the pending flight. It returns true on success 1808 // and false on error. 1809 bool (*add_alert)(SSL *ssl, uint8_t level, uint8_t desc); 1810 // flush_flight flushes the pending flight to the transport. It returns one on 1811 // success and <= 0 on error. 1812 int (*flush_flight)(SSL *ssl); 1813 // on_handshake_complete is called when the handshake is complete. 1814 void (*on_handshake_complete)(SSL *ssl); 1815 // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns 1816 // true on success and false if changing the read state is forbidden at this 1817 // point. 1818 bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx); 1819 // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns 1820 // true on success and false if changing the write state is forbidden at this 1821 // point. 1822 bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx); 1823 }; 1824 1825 // The following wrappers call |open_*| but handle |read_shutdown| correctly. 1826 1827 // ssl_open_handshake processes a record from |in| for reading a handshake 1828 // message. 1829 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, 1830 uint8_t *out_alert, Span<uint8_t> in); 1831 1832 // ssl_open_change_cipher_spec processes a record from |in| for reading a 1833 // ChangeCipherSpec. 1834 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, 1835 uint8_t *out_alert, 1836 Span<uint8_t> in); 1837 1838 // ssl_open_app_data processes a record from |in| for reading application data. 1839 // On success, it returns |ssl_open_record_success| and sets |*out| to the 1840 // input. If it encounters a post-handshake message, it returns 1841 // |ssl_open_record_discard|. The caller should then retry, after processing any 1842 // messages received with |get_message|. 1843 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, 1844 size_t *out_consumed, uint8_t *out_alert, 1845 Span<uint8_t> in); 1846 1847 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using 1848 // crypto/x509. 1849 extern const SSL_X509_METHOD ssl_crypto_x509_method; 1850 1851 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid 1852 // crypto/x509. 1853 extern const SSL_X509_METHOD ssl_noop_x509_method; 1854 1855 // ssl_cipher_preference_list_st contains a list of SSL_CIPHERs with 1856 // equal-preference groups. For TLS clients, the groups are moot because the 1857 // server picks the cipher and groups cannot be expressed on the wire. However, 1858 // for servers, the equal-preference groups allow the client's preferences to 1859 // be partially respected. (This only has an effect with 1860 // SSL_OP_CIPHER_SERVER_PREFERENCE). 1861 // 1862 // The equal-preference groups are expressed by grouping SSL_CIPHERs together. 1863 // All elements of a group have the same priority: no ordering is expressed 1864 // within a group. 1865 // 1866 // The values in |ciphers| are in one-to-one correspondence with 1867 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of 1868 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to 1869 // indicate that the corresponding SSL_CIPHER is not the last element of a 1870 // group, or 0 to indicate that it is. 1871 // 1872 // For example, if |in_group_flags| contains all zeros then that indicates a 1873 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element 1874 // of the group (i.e. they are all in a one-element group). 1875 // 1876 // For a more complex example, consider: 1877 // ciphers: A B C D E F 1878 // in_group_flags: 1 1 0 0 1 0 1879 // 1880 // That would express the following, order: 1881 // 1882 // A E 1883 // B -> D -> F 1884 // C 1885 struct ssl_cipher_preference_list_st { 1886 STACK_OF(SSL_CIPHER) *ciphers; 1887 uint8_t *in_group_flags; 1888 }; 1889 1890 struct tlsext_ticket_key { 1891 static constexpr bool kAllowUniquePtr = true; 1892 1893 uint8_t name[SSL_TICKET_KEY_NAME_LEN]; 1894 uint8_t hmac_key[16]; 1895 uint8_t aes_key[16]; 1896 // next_rotation_tv_sec is the time (in seconds from the epoch) when the 1897 // current key should be superseded by a new key, or the time when a previous 1898 // key should be dropped. If zero, then the key should not be automatically 1899 // rotated. 1900 uint64_t next_rotation_tv_sec; 1901 }; 1902 1903 } // namespace bssl 1904 1905 DECLARE_LHASH_OF(SSL_SESSION) 1906 1907 namespace bssl { 1908 1909 // SSLContext backs the public |SSL_CTX| type. Due to compatibility constraints, 1910 // it is a base class for |ssl_ctx_st|. 1911 struct SSLContext { 1912 const SSL_PROTOCOL_METHOD *method; 1913 const SSL_X509_METHOD *x509_method; 1914 1915 // lock is used to protect various operations on this object. 1916 CRYPTO_MUTEX lock; 1917 1918 // conf_max_version is the maximum acceptable protocol version configured by 1919 // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS 1920 // and is further constrainted by |SSL_OP_NO_*|. 1921 uint16_t conf_max_version; 1922 1923 // conf_min_version is the minimum acceptable protocol version configured by 1924 // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS 1925 // and is further constrainted by |SSL_OP_NO_*|. 1926 uint16_t conf_min_version; 1927 1928 // tls13_variant is the variant of TLS 1.3 we are using for this 1929 // configuration. 1930 enum tls13_variant_t tls13_variant; 1931 1932 struct ssl_cipher_preference_list_st *cipher_list; 1933 1934 X509_STORE *cert_store; 1935 LHASH_OF(SSL_SESSION) *sessions; 1936 // Most session-ids that will be cached, default is 1937 // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. 1938 unsigned long session_cache_size; 1939 SSL_SESSION *session_cache_head; 1940 SSL_SESSION *session_cache_tail; 1941 1942 // handshakes_since_cache_flush is the number of successful handshakes since 1943 // the last cache flush. 1944 int handshakes_since_cache_flush; 1945 1946 // This can have one of 2 values, ored together, 1947 // SSL_SESS_CACHE_CLIENT, 1948 // SSL_SESS_CACHE_SERVER, 1949 // Default is SSL_SESSION_CACHE_SERVER, which means only 1950 // SSL_accept which cache SSL_SESSIONS. 1951 int session_cache_mode; 1952 1953 // session_timeout is the default lifetime for new sessions in TLS 1.2 and 1954 // earlier, in seconds. 1955 uint32_t session_timeout; 1956 1957 // session_psk_dhe_timeout is the default lifetime for new sessions in TLS 1958 // 1.3, in seconds. 1959 uint32_t session_psk_dhe_timeout; 1960 1961 // If this callback is not null, it will be called each time a session id is 1962 // added to the cache. If this function returns 1, it means that the 1963 // callback will do a SSL_SESSION_free() when it has finished using it. 1964 // Otherwise, on 0, it means the callback has finished with it. If 1965 // remove_session_cb is not null, it will be called when a session-id is 1966 // removed from the cache. After the call, OpenSSL will SSL_SESSION_free() 1967 // it. 1968 int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess); 1969 void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess); 1970 SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len, 1971 int *copy); 1972 SSL_SESSION *(*get_session_cb_legacy)(SSL *ssl, uint8_t *data, int len, 1973 int *copy); 1974 1975 CRYPTO_refcount_t references; 1976 1977 // if defined, these override the X509_verify_cert() calls 1978 int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg); 1979 void *app_verify_arg; 1980 1981 enum ssl_verify_result_t (*custom_verify_callback)(SSL *ssl, 1982 uint8_t *out_alert); 1983 1984 // Default password callback. 1985 pem_password_cb *default_passwd_callback; 1986 1987 // Default password callback user data. 1988 void *default_passwd_callback_userdata; 1989 1990 // get client cert callback 1991 int (*client_cert_cb)(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey); 1992 1993 // get channel id callback 1994 void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey); 1995 1996 CRYPTO_EX_DATA ex_data; 1997 1998 // custom_*_extensions stores any callback sets for custom extensions. Note 1999 // that these pointers will be NULL if the stack would otherwise be empty. 2000 STACK_OF(SSL_CUSTOM_EXTENSION) *client_custom_extensions; 2001 STACK_OF(SSL_CUSTOM_EXTENSION) *server_custom_extensions; 2002 2003 // Default values used when no per-SSL value is defined follow 2004 2005 void (*info_callback)(const SSL *ssl, int type, int value); 2006 2007 // what we put in client cert requests 2008 STACK_OF(CRYPTO_BUFFER) *client_CA; 2009 2010 // cached_x509_client_CA is a cache of parsed versions of the elements of 2011 // |client_CA|. 2012 STACK_OF(X509_NAME) *cached_x509_client_CA; 2013 2014 2015 // Default values to use in SSL structures follow (these are copied by 2016 // SSL_new) 2017 2018 uint32_t options; 2019 uint32_t mode; 2020 uint32_t max_cert_list; 2021 2022 CERT *cert; 2023 2024 // callback that allows applications to peek at protocol messages 2025 void (*msg_callback)(int write_p, int version, int content_type, 2026 const void *buf, size_t len, SSL *ssl, void *arg); 2027 void *msg_callback_arg; 2028 2029 int verify_mode; 2030 int (*default_verify_callback)( 2031 int ok, X509_STORE_CTX *ctx); // called 'verify_callback' in the SSL 2032 2033 X509_VERIFY_PARAM *param; 2034 2035 // select_certificate_cb is called before most ClientHello processing and 2036 // before the decision whether to resume a session is made. See 2037 // |ssl_select_cert_result_t| for details of the return values. 2038 enum ssl_select_cert_result_t (*select_certificate_cb)( 2039 const SSL_CLIENT_HELLO *); 2040 2041 // dos_protection_cb is called once the resumption decision for a ClientHello 2042 // has been made. It returns one to continue the handshake or zero to 2043 // abort. 2044 int (*dos_protection_cb) (const SSL_CLIENT_HELLO *); 2045 2046 // Maximum amount of data to send in one fragment. actual record size can be 2047 // more than this due to padding and MAC overheads. 2048 uint16_t max_send_fragment; 2049 2050 // TLS extensions servername callback 2051 int (*tlsext_servername_callback)(SSL *, int *, void *); 2052 void *tlsext_servername_arg; 2053 2054 // RFC 4507 session ticket keys. |tlsext_ticket_key_current| may be NULL 2055 // before the first handshake and |tlsext_ticket_key_prev| may be NULL at any 2056 // time. Automatically generated ticket keys are rotated as needed at 2057 // handshake time. Hence, all access must be synchronized through |lock|. 2058 struct tlsext_ticket_key *tlsext_ticket_key_current; 2059 struct tlsext_ticket_key *tlsext_ticket_key_prev; 2060 2061 // Callback to support customisation of ticket key setting 2062 int (*tlsext_ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv, 2063 EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc); 2064 2065 // Server-only: psk_identity_hint is the default identity hint to send in 2066 // PSK-based key exchanges. 2067 char *psk_identity_hint; 2068 2069 unsigned int (*psk_client_callback)(SSL *ssl, const char *hint, 2070 char *identity, 2071 unsigned int max_identity_len, 2072 uint8_t *psk, unsigned int max_psk_len); 2073 unsigned int (*psk_server_callback)(SSL *ssl, const char *identity, 2074 uint8_t *psk, unsigned int max_psk_len); 2075 2076 2077 // Next protocol negotiation information 2078 // (for experimental NPN extension). 2079 2080 // For a server, this contains a callback function by which the set of 2081 // advertised protocols can be provided. 2082 int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out, 2083 unsigned *out_len, void *arg); 2084 void *next_protos_advertised_cb_arg; 2085 // For a client, this contains a callback function that selects the 2086 // next protocol from the list provided by the server. 2087 int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, 2088 const uint8_t *in, unsigned in_len, void *arg); 2089 void *next_proto_select_cb_arg; 2090 2091 // ALPN information 2092 // (we are in the process of transitioning from NPN to ALPN.) 2093 2094 // For a server, this contains a callback function that allows the 2095 // server to select the protocol for the connection. 2096 // out: on successful return, this must point to the raw protocol 2097 // name (without the length prefix). 2098 // outlen: on successful return, this contains the length of |*out|. 2099 // in: points to the client's list of supported protocols in 2100 // wire-format. 2101 // inlen: the length of |in|. 2102 int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, 2103 const uint8_t *in, unsigned in_len, void *arg); 2104 void *alpn_select_cb_arg; 2105 2106 // For a client, this contains the list of supported protocols in wire 2107 // format. 2108 uint8_t *alpn_client_proto_list; 2109 unsigned alpn_client_proto_list_len; 2110 2111 // SRTP profiles we are willing to do from RFC 5764 2112 STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles; 2113 2114 // Supported group values inherited by SSL structure 2115 size_t supported_group_list_len; 2116 uint16_t *supported_group_list; 2117 2118 // The client's Channel ID private key. 2119 EVP_PKEY *tlsext_channel_id_private; 2120 2121 // keylog_callback, if not NULL, is the key logging callback. See 2122 // |SSL_CTX_set_keylog_callback|. 2123 void (*keylog_callback)(const SSL *ssl, const char *line); 2124 2125 // current_time_cb, if not NULL, is the function to use to get the current 2126 // time. It sets |*out_clock| to the current time. The |ssl| argument is 2127 // always NULL. See |SSL_CTX_set_current_time_cb|. 2128 void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock); 2129 2130 // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate 2131 // memory. 2132 CRYPTO_BUFFER_POOL *pool; 2133 2134 // ticket_aead_method contains function pointers for opening and sealing 2135 // session tickets. 2136 const SSL_TICKET_AEAD_METHOD *ticket_aead_method; 2137 2138 // verify_sigalgs, if not empty, is the set of signature algorithms 2139 // accepted from the peer in decreasing order of preference. 2140 uint16_t *verify_sigalgs; 2141 size_t num_verify_sigalgs; 2142 2143 // retain_only_sha256_of_client_certs is true if we should compute the SHA256 2144 // hash of the peer's certificate and then discard it to save memory and 2145 // session space. Only effective on the server side. 2146 bool retain_only_sha256_of_client_certs:1; 2147 2148 // quiet_shutdown is true if the connection should not send a close_notify on 2149 // shutdown. 2150 bool quiet_shutdown:1; 2151 2152 // ocsp_stapling_enabled is only used by client connections and indicates 2153 // whether OCSP stapling will be requested. 2154 bool ocsp_stapling_enabled:1; 2155 2156 // If true, a client will request certificate timestamps. 2157 bool signed_cert_timestamps_enabled:1; 2158 2159 // tlsext_channel_id_enabled is whether Channel ID is enabled. For a server, 2160 // means that we'll accept Channel IDs from clients. For a client, means that 2161 // we'll advertise support. 2162 bool tlsext_channel_id_enabled:1; 2163 2164 // grease_enabled is whether draft-davidben-tls-grease-01 is enabled. 2165 bool grease_enabled:1; 2166 2167 // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN 2168 // protocols from the peer. 2169 bool allow_unknown_alpn_protos:1; 2170 2171 // ed25519_enabled is whether Ed25519 is advertised in the handshake. 2172 bool ed25519_enabled:1; 2173 2174 // false_start_allowed_without_alpn is whether False Start (if 2175 // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN. 2176 bool false_start_allowed_without_alpn:1; 2177 2178 // handoff indicates that a server should stop after receiving the 2179 // ClientHello and pause the handshake in such a way that |SSL_get_error| 2180 // returns |SSL_HANDOFF|. 2181 bool handoff:1; 2182 }; 2183 2184 // An ssl_shutdown_t describes the shutdown state of one end of the connection, 2185 // whether it is alive or has been shutdown via close_notify or fatal alert. 2186 enum ssl_shutdown_t { 2187 ssl_shutdown_none = 0, 2188 ssl_shutdown_close_notify = 1, 2189 ssl_shutdown_error = 2, 2190 }; 2191 2192 struct SSL3_STATE { 2193 static constexpr bool kAllowUniquePtr = true; 2194 2195 SSL3_STATE(); 2196 ~SSL3_STATE(); 2197 2198 uint8_t read_sequence[8] = {0}; 2199 uint8_t write_sequence[8] = {0}; 2200 2201 uint8_t server_random[SSL3_RANDOM_SIZE] = {0}; 2202 uint8_t client_random[SSL3_RANDOM_SIZE] = {0}; 2203 2204 // read_buffer holds data from the transport to be processed. 2205 SSLBuffer read_buffer; 2206 // write_buffer holds data to be written to the transport. 2207 SSLBuffer write_buffer; 2208 2209 // pending_app_data is the unconsumed application data. It points into 2210 // |read_buffer|. 2211 Span<uint8_t> pending_app_data; 2212 2213 // partial write - check the numbers match 2214 unsigned int wnum = 0; // number of bytes sent so far 2215 int wpend_tot = 0; // number bytes written 2216 int wpend_type = 0; 2217 int wpend_ret = 0; // number of bytes submitted 2218 const uint8_t *wpend_buf = nullptr; 2219 2220 // read_shutdown is the shutdown state for the read half of the connection. 2221 enum ssl_shutdown_t read_shutdown = ssl_shutdown_none; 2222 2223 // write_shutdown is the shutdown state for the write half of the connection. 2224 enum ssl_shutdown_t write_shutdown = ssl_shutdown_none; 2225 2226 // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for 2227 // the receive half of the connection. 2228 UniquePtr<ERR_SAVE_STATE> read_error; 2229 2230 int alert_dispatch = 0; 2231 2232 int total_renegotiations = 0; 2233 2234 // This holds a variable that indicates what we were doing when a 0 or -1 is 2235 // returned. This is needed for non-blocking IO so we know what request 2236 // needs re-doing when in SSL_accept or SSL_connect 2237 int rwstate = SSL_NOTHING; 2238 2239 // early_data_skipped is the amount of early data that has been skipped by the 2240 // record layer. 2241 uint16_t early_data_skipped = 0; 2242 2243 // empty_record_count is the number of consecutive empty records received. 2244 uint8_t empty_record_count = 0; 2245 2246 // warning_alert_count is the number of consecutive warning alerts 2247 // received. 2248 uint8_t warning_alert_count = 0; 2249 2250 // key_update_count is the number of consecutive KeyUpdates received. 2251 uint8_t key_update_count = 0; 2252 2253 // skip_early_data instructs the record layer to skip unexpected early data 2254 // messages when 0RTT is rejected. 2255 bool skip_early_data:1; 2256 2257 // have_version is true if the connection's final version is known. Otherwise 2258 // the version has not been negotiated yet. 2259 bool have_version:1; 2260 2261 // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled 2262 // and future messages should use the record layer. 2263 bool v2_hello_done:1; 2264 2265 // is_v2_hello is true if the current handshake message was derived from a 2266 // V2ClientHello rather than received from the peer directly. 2267 bool is_v2_hello:1; 2268 2269 // has_message is true if the current handshake message has been returned 2270 // at least once by |get_message| and false otherwise. 2271 bool has_message:1; 2272 2273 // initial_handshake_complete is true if the initial handshake has 2274 // completed. 2275 bool initial_handshake_complete:1; 2276 2277 // session_reused indicates whether a session was resumed. 2278 bool session_reused:1; 2279 2280 bool send_connection_binding:1; 2281 2282 // In a client, this means that the server supported Channel ID and that a 2283 // Channel ID was sent. In a server it means that we echoed support for 2284 // Channel IDs and that tlsext_channel_id will be valid after the 2285 // handshake. 2286 bool tlsext_channel_id_valid:1; 2287 2288 // key_update_pending is true if we have a KeyUpdate acknowledgment 2289 // outstanding. 2290 bool key_update_pending:1; 2291 2292 // wpend_pending is true if we have a pending write outstanding. 2293 bool wpend_pending:1; 2294 2295 // early_data_accepted is true if early data was accepted by the server. 2296 bool early_data_accepted:1; 2297 2298 // draft_downgrade is whether the TLS 1.3 anti-downgrade logic would have 2299 // fired, were it not a draft. 2300 bool draft_downgrade:1; 2301 2302 // hs_buf is the buffer of handshake data to process. 2303 UniquePtr<BUF_MEM> hs_buf; 2304 2305 // pending_flight is the pending outgoing flight. This is used to flush each 2306 // handshake flight in a single write. |write_buffer| must be written out 2307 // before this data. 2308 UniquePtr<BUF_MEM> pending_flight; 2309 2310 // pending_flight_offset is the number of bytes of |pending_flight| which have 2311 // been successfully written. 2312 uint32_t pending_flight_offset = 0; 2313 2314 // ticket_age_skew is the difference, in seconds, between the client-sent 2315 // ticket age and the server-computed value in TLS 1.3 server connections 2316 // which resumed a session. 2317 int32_t ticket_age_skew = 0; 2318 2319 // aead_read_ctx is the current read cipher state. 2320 UniquePtr<SSLAEADContext> aead_read_ctx; 2321 2322 // aead_write_ctx is the current write cipher state. 2323 UniquePtr<SSLAEADContext> aead_write_ctx; 2324 2325 // hs is the handshake state for the current handshake or NULL if there isn't 2326 // one. 2327 UniquePtr<SSL_HANDSHAKE> hs; 2328 2329 uint8_t write_traffic_secret[EVP_MAX_MD_SIZE] = {0}; 2330 uint8_t read_traffic_secret[EVP_MAX_MD_SIZE] = {0}; 2331 uint8_t exporter_secret[EVP_MAX_MD_SIZE] = {0}; 2332 uint8_t early_exporter_secret[EVP_MAX_MD_SIZE] = {0}; 2333 uint8_t write_traffic_secret_len = 0; 2334 uint8_t read_traffic_secret_len = 0; 2335 uint8_t exporter_secret_len = 0; 2336 uint8_t early_exporter_secret_len = 0; 2337 2338 // Connection binding to prevent renegotiation attacks 2339 uint8_t previous_client_finished[12] = {0}; 2340 uint8_t previous_client_finished_len = 0; 2341 uint8_t previous_server_finished_len = 0; 2342 uint8_t previous_server_finished[12] = {0}; 2343 2344 uint8_t send_alert[2] = {0}; 2345 2346 // established_session is the session established by the connection. This 2347 // session is only filled upon the completion of the handshake and is 2348 // immutable. 2349 UniquePtr<SSL_SESSION> established_session; 2350 2351 // Next protocol negotiation. For the client, this is the protocol that we 2352 // sent in NextProtocol and is set when handling ServerHello extensions. 2353 // 2354 // For a server, this is the client's selected_protocol from NextProtocol and 2355 // is set when handling the NextProtocol message, before the Finished 2356 // message. 2357 Array<uint8_t> next_proto_negotiated; 2358 2359 // ALPN information 2360 // (we are in the process of transitioning from NPN to ALPN.) 2361 2362 // In a server these point to the selected ALPN protocol after the 2363 // ClientHello has been processed. In a client these contain the protocol 2364 // that the server selected once the ServerHello has been processed. 2365 Array<uint8_t> alpn_selected; 2366 2367 // hostname, on the server, is the value of the SNI extension. 2368 UniquePtr<char> hostname; 2369 2370 // For a server: 2371 // If |tlsext_channel_id_valid| is true, then this contains the 2372 // verified Channel ID from the client: a P256 point, (x,y), where 2373 // each are big-endian values. 2374 uint8_t tlsext_channel_id[64] = {0}; 2375 2376 // Contains the QUIC transport params received by the peer. 2377 Array<uint8_t> peer_quic_transport_params; 2378 }; 2379 2380 // lengths of messages 2381 #define DTLS1_COOKIE_LENGTH 256 2382 2383 #define DTLS1_RT_HEADER_LENGTH 13 2384 2385 #define DTLS1_HM_HEADER_LENGTH 12 2386 2387 #define DTLS1_CCS_HEADER_LENGTH 1 2388 2389 #define DTLS1_AL_HEADER_LENGTH 2 2390 2391 struct hm_header_st { 2392 uint8_t type; 2393 uint32_t msg_len; 2394 uint16_t seq; 2395 uint32_t frag_off; 2396 uint32_t frag_len; 2397 }; 2398 2399 // An hm_fragment is an incoming DTLS message, possibly not yet assembled. 2400 struct hm_fragment { 2401 static constexpr bool kAllowUniquePtr = true; 2402 2403 hm_fragment() {} 2404 hm_fragment(const hm_fragment &) = delete; 2405 hm_fragment &operator=(const hm_fragment &) = delete; 2406 2407 ~hm_fragment(); 2408 2409 // type is the type of the message. 2410 uint8_t type = 0; 2411 // seq is the sequence number of this message. 2412 uint16_t seq = 0; 2413 // msg_len is the length of the message body. 2414 uint32_t msg_len = 0; 2415 // data is a pointer to the message, including message header. It has length 2416 // |DTLS1_HM_HEADER_LENGTH| + |msg_len|. 2417 uint8_t *data = nullptr; 2418 // reassembly is a bitmask of |msg_len| bits corresponding to which parts of 2419 // the message have been received. It is NULL if the message is complete. 2420 uint8_t *reassembly = nullptr; 2421 }; 2422 2423 struct OPENSSL_timeval { 2424 uint64_t tv_sec; 2425 uint32_t tv_usec; 2426 }; 2427 2428 struct DTLS1_STATE { 2429 static constexpr bool kAllowUniquePtr = true; 2430 2431 DTLS1_STATE(); 2432 ~DTLS1_STATE(); 2433 2434 // has_change_cipher_spec is true if we have received a ChangeCipherSpec from 2435 // the peer in this epoch. 2436 bool has_change_cipher_spec:1; 2437 2438 // outgoing_messages_complete is true if |outgoing_messages| has been 2439 // completed by an attempt to flush it. Future calls to |add_message| and 2440 // |add_change_cipher_spec| will start a new flight. 2441 bool outgoing_messages_complete:1; 2442 2443 // flight_has_reply is true if the current outgoing flight is complete and has 2444 // processed at least one message. This is used to detect whether we or the 2445 // peer sent the final flight. 2446 bool flight_has_reply:1; 2447 2448 uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0}; 2449 size_t cookie_len = 0; 2450 2451 // The current data and handshake epoch. This is initially undefined, and 2452 // starts at zero once the initial handshake is completed. 2453 uint16_t r_epoch = 0; 2454 uint16_t w_epoch = 0; 2455 2456 // records being received in the current epoch 2457 DTLS1_BITMAP bitmap; 2458 2459 uint16_t handshake_write_seq = 0; 2460 uint16_t handshake_read_seq = 0; 2461 2462 // save last sequence number for retransmissions 2463 uint8_t last_write_sequence[8] = {0}; 2464 UniquePtr<SSLAEADContext> last_aead_write_ctx; 2465 2466 // incoming_messages is a ring buffer of incoming handshake messages that have 2467 // yet to be processed. The front of the ring buffer is message number 2468 // |handshake_read_seq|, at position |handshake_read_seq| % 2469 // |SSL_MAX_HANDSHAKE_FLIGHT|. 2470 UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT]; 2471 2472 // outgoing_messages is the queue of outgoing messages from the last handshake 2473 // flight. 2474 DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT]; 2475 uint8_t outgoing_messages_len = 0; 2476 2477 // outgoing_written is the number of outgoing messages that have been 2478 // written. 2479 uint8_t outgoing_written = 0; 2480 // outgoing_offset is the number of bytes of the next outgoing message have 2481 // been written. 2482 uint32_t outgoing_offset = 0; 2483 2484 unsigned mtu = 0; // max DTLS packet size 2485 2486 // num_timeouts is the number of times the retransmit timer has fired since 2487 // the last time it was reset. 2488 unsigned num_timeouts = 0; 2489 2490 // Indicates when the last handshake msg or heartbeat sent will 2491 // timeout. 2492 struct OPENSSL_timeval next_timeout = {0, 0}; 2493 2494 // timeout_duration_ms is the timeout duration in milliseconds. 2495 unsigned timeout_duration_ms = 0; 2496 }; 2497 2498 // SSLConnection backs the public |SSL| type. Due to compatibility constraints, 2499 // it is a base class for |ssl_st|. 2500 struct SSLConnection { 2501 // method is the method table corresponding to the current protocol (DTLS or 2502 // TLS). 2503 const SSL_PROTOCOL_METHOD *method; 2504 2505 // version is the protocol version. 2506 uint16_t version; 2507 2508 // conf_max_version is the maximum acceptable protocol version configured by 2509 // |SSL_set_max_proto_version|. Note this version is normalized in DTLS and is 2510 // further constrainted by |SSL_OP_NO_*|. 2511 uint16_t conf_max_version; 2512 2513 // conf_min_version is the minimum acceptable protocol version configured by 2514 // |SSL_set_min_proto_version|. Note this version is normalized in DTLS and is 2515 // further constrainted by |SSL_OP_NO_*|. 2516 uint16_t conf_min_version; 2517 2518 uint16_t max_send_fragment; 2519 2520 // There are 2 BIO's even though they are normally both the same. This is so 2521 // data can be read and written to different handlers 2522 2523 BIO *rbio; // used by SSL_read 2524 BIO *wbio; // used by SSL_write 2525 2526 // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|. 2527 // Otherwise, it returns a value corresponding to what operation is needed to 2528 // progress. 2529 enum ssl_hs_wait_t (*do_handshake)(SSL_HANDSHAKE *hs); 2530 2531 SSL3_STATE *s3; // SSLv3 variables 2532 DTLS1_STATE *d1; // DTLSv1 variables 2533 2534 // callback that allows applications to peek at protocol messages 2535 void (*msg_callback)(int write_p, int version, int content_type, 2536 const void *buf, size_t len, SSL *ssl, void *arg); 2537 void *msg_callback_arg; 2538 2539 X509_VERIFY_PARAM *param; 2540 2541 // crypto 2542 struct ssl_cipher_preference_list_st *cipher_list; 2543 2544 // session info 2545 2546 // This is used to hold the local certificate used (i.e. the server 2547 // certificate for a server or the client certificate for a client). 2548 CERT *cert; 2549 2550 // initial_timeout_duration_ms is the default DTLS timeout duration in 2551 // milliseconds. It's used to initialize the timer any time it's restarted. 2552 unsigned initial_timeout_duration_ms; 2553 2554 // tls13_variant is the variant of TLS 1.3 we are using for this 2555 // configuration. 2556 enum tls13_variant_t tls13_variant; 2557 2558 // session is the configured session to be offered by the client. This session 2559 // is immutable. 2560 SSL_SESSION *session; 2561 2562 int (*verify_callback)(int ok, 2563 X509_STORE_CTX *ctx); // fail if callback returns 0 2564 2565 enum ssl_verify_result_t (*custom_verify_callback)(SSL *ssl, 2566 uint8_t *out_alert); 2567 2568 void (*info_callback)(const SSL *ssl, int type, int value); 2569 2570 // Server-only: psk_identity_hint is the identity hint to send in 2571 // PSK-based key exchanges. 2572 char *psk_identity_hint; 2573 2574 unsigned int (*psk_client_callback)(SSL *ssl, const char *hint, 2575 char *identity, 2576 unsigned int max_identity_len, 2577 uint8_t *psk, unsigned int max_psk_len); 2578 unsigned int (*psk_server_callback)(SSL *ssl, const char *identity, 2579 uint8_t *psk, unsigned int max_psk_len); 2580 2581 SSL_CTX *ctx; 2582 2583 // extra application data 2584 CRYPTO_EX_DATA ex_data; 2585 2586 // for server side, keep the list of CA_dn we can use 2587 STACK_OF(CRYPTO_BUFFER) *client_CA; 2588 2589 // cached_x509_client_CA is a cache of parsed versions of the elements of 2590 // |client_CA|. 2591 STACK_OF(X509_NAME) *cached_x509_client_CA; 2592 2593 uint32_t options; // protocol behaviour 2594 uint32_t mode; // API behaviour 2595 uint32_t max_cert_list; 2596 uint16_t dummy_pq_padding_len; 2597 char *tlsext_hostname; 2598 size_t supported_group_list_len; 2599 uint16_t *supported_group_list; // our list 2600 2601 // session_ctx is the |SSL_CTX| used for the session cache and related 2602 // settings. 2603 SSL_CTX *session_ctx; 2604 2605 // srtp_profiles is the list of configured SRTP protection profiles for 2606 // DTLS-SRTP. 2607 STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles; 2608 2609 // srtp_profile is the selected SRTP protection profile for 2610 // DTLS-SRTP. 2611 const SRTP_PROTECTION_PROFILE *srtp_profile; 2612 2613 // The client's Channel ID private key. 2614 EVP_PKEY *tlsext_channel_id_private; 2615 2616 // For a client, this contains the list of supported protocols in wire 2617 // format. 2618 uint8_t *alpn_client_proto_list; 2619 unsigned alpn_client_proto_list_len; 2620 2621 // Contains a list of supported Token Binding key parameters. 2622 uint8_t *token_binding_params; 2623 size_t token_binding_params_len; 2624 2625 // The negotiated Token Binding key parameter. Only valid if 2626 // |token_binding_negotiated| is set. 2627 uint8_t negotiated_token_binding_param; 2628 2629 // Contains the QUIC transport params that this endpoint will send. 2630 uint8_t *quic_transport_params; 2631 size_t quic_transport_params_len; 2632 2633 // renegotiate_mode controls how peer renegotiation attempts are handled. 2634 enum ssl_renegotiate_mode_t renegotiate_mode; 2635 2636 // verify_mode is a bitmask of |SSL_VERIFY_*| values. 2637 uint8_t verify_mode; 2638 2639 // server is true iff the this SSL* is the server half. Note: before the SSL* 2640 // is initialized by either SSL_set_accept_state or SSL_set_connect_state, 2641 // the side is not determined. In this state, server is always false. 2642 bool server:1; 2643 2644 // quiet_shutdown is true if the connection should not send a close_notify on 2645 // shutdown. 2646 bool quiet_shutdown:1; 2647 2648 // Enable signed certificate time stamps. Currently client only. 2649 bool signed_cert_timestamps_enabled:1; 2650 2651 // ocsp_stapling_enabled is only used by client connections and indicates 2652 // whether OCSP stapling will be requested. 2653 bool ocsp_stapling_enabled:1; 2654 2655 // tlsext_channel_id_enabled is copied from the |SSL_CTX|. For a server, 2656 // means that we'll accept Channel IDs from clients. For a client, means that 2657 // we'll advertise support. 2658 bool tlsext_channel_id_enabled:1; 2659 2660 // token_binding_negotiated is set if Token Binding was negotiated. 2661 bool token_binding_negotiated:1; 2662 2663 // retain_only_sha256_of_client_certs is true if we should compute the SHA256 2664 // hash of the peer's certificate and then discard it to save memory and 2665 // session space. Only effective on the server side. 2666 bool retain_only_sha256_of_client_certs:1; 2667 2668 // handoff indicates that a server should stop after receiving the 2669 // ClientHello and pause the handshake in such a way that |SSL_get_error| 2670 // returns |SSL_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX| 2671 // element of the same name and may be cleared if the handoff is declined. 2672 bool handoff:1; 2673 }; 2674 2675 // From draft-ietf-tls-tls13-18, used in determining PSK modes. 2676 #define SSL_PSK_DHE_KE 0x1 2677 2678 // From draft-ietf-tls-tls13-16, used in determining whether to respond with a 2679 // KeyUpdate. 2680 #define SSL_KEY_UPDATE_NOT_REQUESTED 0 2681 #define SSL_KEY_UPDATE_REQUESTED 1 2682 2683 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early 2684 // data that will be accepted. This value should be slightly below 2685 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext. 2686 static const size_t kMaxEarlyDataAccepted = 14336; 2687 2688 CERT *ssl_cert_new(const SSL_X509_METHOD *x509_method); 2689 CERT *ssl_cert_dup(CERT *cert); 2690 void ssl_cert_clear_certs(CERT *cert); 2691 void ssl_cert_free(CERT *cert); 2692 int ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer); 2693 int ssl_is_key_type_supported(int key_type); 2694 // ssl_compare_public_and_private_key returns one if |pubkey| is the public 2695 // counterpart to |privkey|. Otherwise it returns zero and pushes a helpful 2696 // message on the error queue. 2697 int ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, 2698 const EVP_PKEY *privkey); 2699 int ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey); 2700 int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server); 2701 int ssl_encrypt_ticket(SSL *ssl, CBB *out, const SSL_SESSION *session); 2702 int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx); 2703 2704 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on 2705 // error. 2706 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method); 2707 2708 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over 2709 // the parsed data. 2710 UniquePtr<SSL_SESSION> SSL_SESSION_parse(CBS *cbs, 2711 const SSL_X509_METHOD *x509_method, 2712 CRYPTO_BUFFER_POOL *pool); 2713 2714 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a 2715 // session for Session-ID resumption. It returns one on success and zero on 2716 // error. 2717 int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb); 2718 2719 // ssl_session_is_context_valid returns one if |session|'s session ID context 2720 // matches the one set on |ssl| and zero otherwise. 2721 int ssl_session_is_context_valid(const SSL *ssl, const SSL_SESSION *session); 2722 2723 // ssl_session_is_time_valid returns one if |session| is still valid and zero if 2724 // it has expired. 2725 int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session); 2726 2727 // ssl_session_is_resumable returns one if |session| is resumable for |hs| and 2728 // zero otherwise. 2729 int ssl_session_is_resumable(const SSL_HANDSHAKE *hs, 2730 const SSL_SESSION *session); 2731 2732 // ssl_session_protocol_version returns the protocol version associated with 2733 // |session|. Note that despite the name, this is not the same as 2734 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name. 2735 uint16_t ssl_session_protocol_version(const SSL_SESSION *session); 2736 2737 // ssl_session_get_digest returns the digest used in |session|. 2738 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session); 2739 2740 void ssl_set_session(SSL *ssl, SSL_SESSION *session); 2741 2742 // ssl_get_prev_session looks up the previous session based on |client_hello|. 2743 // On success, it sets |*out_session| to the session or nullptr if none was 2744 // found. If the session could not be looked up synchronously, it returns 2745 // |ssl_hs_pending_session| and should be called again. If a ticket could not be 2746 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also 2747 // be called again. Otherwise, it returns |ssl_hs_error|. 2748 enum ssl_hs_wait_t ssl_get_prev_session(SSL *ssl, 2749 UniquePtr<SSL_SESSION> *out_session, 2750 bool *out_tickets_supported, 2751 bool *out_renew_ticket, 2752 const SSL_CLIENT_HELLO *client_hello); 2753 2754 // The following flags determine which parts of the session are duplicated. 2755 #define SSL_SESSION_DUP_AUTH_ONLY 0x0 2756 #define SSL_SESSION_INCLUDE_TICKET 0x1 2757 #define SSL_SESSION_INCLUDE_NONAUTH 0x2 2758 #define SSL_SESSION_DUP_ALL \ 2759 (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH) 2760 2761 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the 2762 // fields in |session| or nullptr on error. The new session is non-resumable and 2763 // must be explicitly marked resumable once it has been filled in. 2764 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session, 2765 int dup_flags); 2766 2767 // ssl_session_rebase_time updates |session|'s start time to the current time, 2768 // adjusting the timeout so the expiration time is unchanged. 2769 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session); 2770 2771 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews 2772 // |session|'s timeout to |timeout| (measured from the current time). The 2773 // renewal is clamped to the session's auth_timeout. 2774 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, 2775 uint32_t timeout); 2776 2777 void ssl_cipher_preference_list_free( 2778 struct ssl_cipher_preference_list_st *cipher_list); 2779 2780 // ssl_get_cipher_preferences returns the cipher preference list for TLS 1.2 and 2781 // below. 2782 const struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences( 2783 const SSL *ssl); 2784 2785 void ssl_update_cache(SSL_HANDSHAKE *hs, int mode); 2786 2787 int ssl_send_alert(SSL *ssl, int level, int desc); 2788 bool ssl3_get_message(SSL *ssl, SSLMessage *out); 2789 ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed, 2790 uint8_t *out_alert, Span<uint8_t> in); 2791 void ssl3_next_message(SSL *ssl); 2792 2793 int ssl3_dispatch_alert(SSL *ssl); 2794 ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out, 2795 size_t *out_consumed, uint8_t *out_alert, 2796 Span<uint8_t> in); 2797 ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, 2798 uint8_t *out_alert, 2799 Span<uint8_t> in); 2800 int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, 2801 int len); 2802 2803 bool ssl3_new(SSL *ssl); 2804 void ssl3_free(SSL *ssl); 2805 2806 bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); 2807 bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); 2808 bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg); 2809 bool ssl3_add_change_cipher_spec(SSL *ssl); 2810 bool ssl3_add_alert(SSL *ssl, uint8_t level, uint8_t desc); 2811 int ssl3_flush_flight(SSL *ssl); 2812 2813 bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); 2814 bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); 2815 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg); 2816 bool dtls1_add_change_cipher_spec(SSL *ssl); 2817 bool dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc); 2818 int dtls1_flush_flight(SSL *ssl); 2819 2820 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to 2821 // the pending flight. It returns true on success and false on error. 2822 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb); 2823 2824 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true 2825 // on success and false on allocation failure. 2826 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg); 2827 2828 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out, 2829 size_t *out_consumed, uint8_t *out_alert, 2830 Span<uint8_t> in); 2831 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, 2832 uint8_t *out_alert, 2833 Span<uint8_t> in); 2834 2835 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake, 2836 const uint8_t *buf, int len); 2837 2838 // dtls1_write_record sends a record. It returns one on success and <= 0 on 2839 // error. 2840 int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len, 2841 enum dtls1_use_epoch_t use_epoch); 2842 2843 int dtls1_retransmit_outgoing_messages(SSL *ssl); 2844 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, 2845 CBS *out_body); 2846 bool dtls1_check_timeout_num(SSL *ssl); 2847 2848 void dtls1_start_timer(SSL *ssl); 2849 void dtls1_stop_timer(SSL *ssl); 2850 bool dtls1_is_timer_expired(SSL *ssl); 2851 unsigned int dtls1_min_mtu(void); 2852 2853 bool dtls1_new(SSL *ssl); 2854 void dtls1_free(SSL *ssl); 2855 2856 bool dtls1_get_message(SSL *ssl, SSLMessage *out); 2857 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, 2858 uint8_t *out_alert, Span<uint8_t> in); 2859 void dtls1_next_message(SSL *ssl); 2860 int dtls1_dispatch_alert(SSL *ssl); 2861 2862 // tls1_configure_aead configures either the read or write direction AEAD (as 2863 // determined by |direction|) using the keys generated by the TLS KDF. The 2864 // |key_block_cache| argument is used to store the generated key block, if 2865 // empty. Otherwise it's assumed that the key block is already contained within 2866 // it. Returns one on success or zero on error. 2867 int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction, 2868 Array<uint8_t> *key_block_cache, 2869 const SSL_CIPHER *cipher, 2870 Span<const uint8_t> iv_override); 2871 2872 int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction); 2873 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out, 2874 Span<const uint8_t> premaster); 2875 2876 // tls1_get_grouplist returns the locally-configured group preference list. 2877 Span<const uint16_t> tls1_get_grouplist(const SSL *ssl); 2878 2879 // tls1_check_group_id returns one if |group_id| is consistent with 2880 // locally-configured group preferences. 2881 int tls1_check_group_id(const SSL *ssl, uint16_t group_id); 2882 2883 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared 2884 // group between client and server preferences and returns one. If none may be 2885 // found, it returns zero. 2886 int tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id); 2887 2888 // tls1_set_curves converts the array of |ncurves| NIDs pointed to by |curves| 2889 // into a newly allocated array of TLS group IDs. On success, the function 2890 // returns one and writes the array to |*out_group_ids| and its size to 2891 // |*out_group_ids_len|. Otherwise, it returns zero. 2892 int tls1_set_curves(uint16_t **out_group_ids, size_t *out_group_ids_len, 2893 const int *curves, size_t ncurves); 2894 2895 // tls1_set_curves_list converts the string of curves pointed to by |curves| 2896 // into a newly allocated array of TLS group IDs. On success, the function 2897 // returns one and writes the array to |*out_group_ids| and its size to 2898 // |*out_group_ids_len|. Otherwise, it returns zero. 2899 int tls1_set_curves_list(uint16_t **out_group_ids, size_t *out_group_ids_len, 2900 const char *curves); 2901 2902 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It 2903 // returns one on success and zero on failure. The |header_len| argument is the 2904 // length of the ClientHello written so far and is used to compute the padding 2905 // length. (It does not include the record header.) 2906 int ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len); 2907 2908 int ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out); 2909 int ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, 2910 const SSL_CLIENT_HELLO *client_hello); 2911 int ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs); 2912 2913 #define tlsext_tick_md EVP_sha256 2914 2915 // ssl_process_ticket processes a session ticket from the client. It returns 2916 // one of: 2917 // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and 2918 // |*out_renew_ticket| is set to whether the ticket should be renewed. 2919 // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a 2920 // fresh ticket should be sent, but the given ticket cannot be used. 2921 // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted. 2922 // Retry later. 2923 // |ssl_ticket_aead_error|: an error occured that is fatal to the connection. 2924 enum ssl_ticket_aead_result_t ssl_process_ticket( 2925 SSL *ssl, UniquePtr<SSL_SESSION> *out_session, bool *out_renew_ticket, 2926 const uint8_t *ticket, size_t ticket_len, const uint8_t *session_id, 2927 size_t session_id_len); 2928 2929 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies 2930 // the signature. If the key is valid, it saves the Channel ID and returns 2931 // one. Otherwise, it returns zero. 2932 int tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg); 2933 2934 // tls1_write_channel_id generates a Channel ID message and puts the output in 2935 // |cbb|. |ssl->tlsext_channel_id_private| must already be set before calling. 2936 // This function returns true on success and false on error. 2937 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb); 2938 2939 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes 2940 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns 2941 // one on success and zero on failure. 2942 int tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len); 2943 2944 int tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs); 2945 2946 // ssl_do_channel_id_callback checks runs |ssl->ctx->channel_id_cb| if 2947 // necessary. It returns one on success and zero on fatal error. Note that, on 2948 // success, |ssl->tlsext_channel_id_private| may be unset, in which case the 2949 // operation should be retried later. 2950 int ssl_do_channel_id_callback(SSL *ssl); 2951 2952 // ssl_can_write returns one if |ssl| is allowed to write and zero otherwise. 2953 int ssl_can_write(const SSL *ssl); 2954 2955 // ssl_can_read returns one if |ssl| is allowed to read and zero otherwise. 2956 int ssl_can_read(const SSL *ssl); 2957 2958 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock); 2959 void ssl_ctx_get_current_time(const SSL_CTX *ctx, 2960 struct OPENSSL_timeval *out_clock); 2961 2962 // ssl_reset_error_state resets state for |SSL_get_error|. 2963 void ssl_reset_error_state(SSL *ssl); 2964 2965 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the 2966 // current state of the error queue. 2967 void ssl_set_read_error(SSL* ssl); 2968 2969 } // namespace bssl 2970 2971 2972 // Opaque C types. 2973 // 2974 // The following types are exported to C code as public typedefs, so they must 2975 // be defined outside of the namespace. 2976 2977 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility 2978 // structure to support the legacy version-locked methods. 2979 struct ssl_method_st { 2980 // version, if non-zero, is the only protocol version acceptable to an 2981 // SSL_CTX initialized from this method. 2982 uint16_t version; 2983 // method is the underlying SSL_PROTOCOL_METHOD that initializes the 2984 // SSL_CTX. 2985 const bssl::SSL_PROTOCOL_METHOD *method; 2986 // x509_method contains pointers to functions that might deal with |X509| 2987 // compatibility, or might be a no-op, depending on the application. 2988 const SSL_X509_METHOD *x509_method; 2989 }; 2990 2991 struct ssl_x509_method_st { 2992 // check_client_CA_list returns one if |names| is a good list of X.509 2993 // distinguished names and zero otherwise. This is used to ensure that we can 2994 // reject unparsable values at handshake time when using crypto/x509. 2995 int (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names); 2996 2997 // cert_clear frees and NULLs all X509 certificate-related state. 2998 void (*cert_clear)(bssl::CERT *cert); 2999 // cert_free frees all X509-related state. 3000 void (*cert_free)(bssl::CERT *cert); 3001 // cert_flush_cached_chain drops any cached |X509|-based certificate chain 3002 // from |cert|. 3003 // cert_dup duplicates any needed fields from |cert| to |new_cert|. 3004 void (*cert_dup)(bssl::CERT *new_cert, const bssl::CERT *cert); 3005 void (*cert_flush_cached_chain)(bssl::CERT *cert); 3006 // cert_flush_cached_chain drops any cached |X509|-based leaf certificate 3007 // from |cert|. 3008 void (*cert_flush_cached_leaf)(bssl::CERT *cert); 3009 3010 // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain| 3011 // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns 3012 // one on success or zero on error. 3013 int (*session_cache_objects)(SSL_SESSION *session); 3014 // session_dup duplicates any needed fields from |session| to |new_session|. 3015 // It returns one on success or zero on error. 3016 int (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session); 3017 // session_clear frees any X509-related state from |session|. 3018 void (*session_clear)(SSL_SESSION *session); 3019 // session_verify_cert_chain verifies the certificate chain in |session|, 3020 // sets |session->verify_result| and returns one on success or zero on 3021 // error. 3022 int (*session_verify_cert_chain)(SSL_SESSION *session, SSL *ssl, 3023 uint8_t *out_alert); 3024 3025 // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|. 3026 void (*hs_flush_cached_ca_names)(bssl::SSL_HANDSHAKE *hs); 3027 // ssl_new does any neccessary initialisation of |ssl|. It returns one on 3028 // success or zero on error. 3029 int (*ssl_new)(SSL *ssl); 3030 // ssl_free frees anything created by |ssl_new|. 3031 void (*ssl_free)(SSL *ssl); 3032 // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|. 3033 void (*ssl_flush_cached_client_CA)(SSL *ssl); 3034 // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if 3035 // necessary. On success, it updates |ssl|'s certificate configuration as 3036 // needed and returns one. Otherwise, it returns zero. 3037 int (*ssl_auto_chain_if_needed)(SSL *ssl); 3038 // ssl_ctx_new does any neccessary initialisation of |ctx|. It returns one on 3039 // success or zero on error. 3040 int (*ssl_ctx_new)(SSL_CTX *ctx); 3041 // ssl_ctx_free frees anything created by |ssl_ctx_new|. 3042 void (*ssl_ctx_free)(SSL_CTX *ctx); 3043 // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|. 3044 void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl); 3045 }; 3046 3047 // The following types back public C-exposed types which must live in the global 3048 // namespace. We use subclassing so the implementations may be C++ types with 3049 // methods and destructor without polluting the global namespace. 3050 struct ssl_ctx_st : public bssl::SSLContext {}; 3051 struct ssl_st : public bssl::SSLConnection {}; 3052 3053 3054 #endif // OPENSSL_HEADER_SSL_INTERNAL_H 3055