Home | History | Annotate | Download | only in ssl
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com).
    108  *
    109  */
    110 /* ====================================================================
    111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
    112  * ECC cipher suite support in OpenSSL originally developed by
    113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
    114  */
    115 /* ====================================================================
    116  * Copyright 2005 Nokia. All rights reserved.
    117  *
    118  * The portions of the attached software ("Contribution") is developed by
    119  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
    120  * license.
    121  *
    122  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
    123  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
    124  * support (see RFC 4279) to OpenSSL.
    125  *
    126  * No patent licenses or other rights except those expressly stated in
    127  * the OpenSSL open source license shall be deemed granted or received
    128  * expressly, by implication, estoppel, or otherwise.
    129  *
    130  * No assurances are provided by Nokia that the Contribution does not
    131  * infringe the patent or other intellectual property rights of any third
    132  * party or that the license provides you with all the necessary rights
    133  * to make use of the Contribution.
    134  *
    135  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
    136  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
    137  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
    138  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
    139  * OTHERWISE.
    140  */
    141 
    142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
    143 #define OPENSSL_HEADER_SSL_INTERNAL_H
    144 
    145 #include <openssl/base.h>
    146 
    147 #include <stdlib.h>
    148 
    149 #include <limits>
    150 #include <new>
    151 #include <type_traits>
    152 #include <utility>
    153 
    154 #include <openssl/aead.h>
    155 #include <openssl/err.h>
    156 #include <openssl/lhash.h>
    157 #include <openssl/mem.h>
    158 #include <openssl/ssl.h>
    159 #include <openssl/span.h>
    160 #include <openssl/stack.h>
    161 
    162 #include "../crypto/err/internal.h"
    163 #include "../crypto/internal.h"
    164 
    165 
    166 #if defined(OPENSSL_WINDOWS)
    167 // Windows defines struct timeval in winsock2.h.
    168 OPENSSL_MSVC_PRAGMA(warning(push, 3))
    169 #include <winsock2.h>
    170 OPENSSL_MSVC_PRAGMA(warning(pop))
    171 #else
    172 #include <sys/time.h>
    173 #endif
    174 
    175 
    176 namespace bssl {
    177 
    178 struct SSL_HANDSHAKE;
    179 struct SSL_PROTOCOL_METHOD;
    180 
    181 // C++ utilities.
    182 
    183 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
    184 // returns nullptr on allocation error. It only implements single-object
    185 // allocation and not new T[n].
    186 //
    187 // Note: unlike |new|, this does not support non-public constructors.
    188 template <typename T, typename... Args>
    189 T *New(Args &&... args) {
    190   void *t = OPENSSL_malloc(sizeof(T));
    191   if (t == nullptr) {
    192     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    193     return nullptr;
    194   }
    195   return new (t) T(std::forward<Args>(args)...);
    196 }
    197 
    198 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
    199 //
    200 // Note: unlike |delete| this does not support non-public destructors.
    201 template <typename T>
    202 void Delete(T *t) {
    203   if (t != nullptr) {
    204     t->~T();
    205     OPENSSL_free(t);
    206   }
    207 }
    208 
    209 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
    210 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
    211 namespace internal {
    212 template <typename T>
    213 struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> {
    214   static void Free(T *t) { Delete(t); }
    215 };
    216 }
    217 
    218 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
    219 // error.
    220 template <typename T, typename... Args>
    221 UniquePtr<T> MakeUnique(Args &&... args) {
    222   return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
    223 }
    224 
    225 #if defined(BORINGSSL_ALLOW_CXX_RUNTIME)
    226 #define HAS_VIRTUAL_DESTRUCTOR
    227 #define PURE_VIRTUAL = 0
    228 #else
    229 // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a
    230 // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the
    231 // class from being used with |delete|.
    232 #define HAS_VIRTUAL_DESTRUCTOR \
    233   void operator delete(void *) { abort(); }
    234 
    235 // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual
    236 // functions. This avoids a dependency on |__cxa_pure_virtual| but loses
    237 // compile-time checking.
    238 #define PURE_VIRTUAL { abort(); }
    239 #endif
    240 
    241 // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work
    242 // on constexpr arrays.
    243 #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910
    244 #define CONSTEXPR_ARRAY const
    245 #else
    246 #define CONSTEXPR_ARRAY constexpr
    247 #endif
    248 
    249 // Array<T> is an owning array of elements of |T|.
    250 template <typename T>
    251 class Array {
    252  public:
    253   // Array's default constructor creates an empty array.
    254   Array() {}
    255   Array(const Array &) = delete;
    256   Array(Array &&other) { *this = std::move(other); }
    257 
    258   ~Array() { Reset(); }
    259 
    260   Array &operator=(const Array &) = delete;
    261   Array &operator=(Array &&other) {
    262     Reset();
    263     other.Release(&data_, &size_);
    264     return *this;
    265   }
    266 
    267   const T *data() const { return data_; }
    268   T *data() { return data_; }
    269   size_t size() const { return size_; }
    270   bool empty() const { return size_ == 0; }
    271 
    272   const T &operator[](size_t i) const { return data_[i]; }
    273   T &operator[](size_t i) { return data_[i]; }
    274 
    275   T *begin() { return data_; }
    276   const T *cbegin() const { return data_; }
    277   T *end() { return data_ + size_; }
    278   const T *cend() const { return data_ + size_; }
    279 
    280   void Reset() { Reset(nullptr, 0); }
    281 
    282   // Reset releases the current contents of the array and takes ownership of the
    283   // raw pointer supplied by the caller.
    284   void Reset(T *new_data, size_t new_size) {
    285     for (size_t i = 0; i < size_; i++) {
    286       data_[i].~T();
    287     }
    288     OPENSSL_free(data_);
    289     data_ = new_data;
    290     size_ = new_size;
    291   }
    292 
    293   // Release releases ownership of the array to a raw pointer supplied by the
    294   // caller.
    295   void Release(T **out, size_t *out_size) {
    296     *out = data_;
    297     *out_size = size_;
    298     data_ = nullptr;
    299     size_ = 0;
    300   }
    301 
    302   // Init replaces the array with a newly-allocated array of |new_size|
    303   // default-constructed copies of |T|. It returns true on success and false on
    304   // error.
    305   //
    306   // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
    307   bool Init(size_t new_size) {
    308     Reset();
    309     if (new_size == 0) {
    310       return true;
    311     }
    312 
    313     if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
    314       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
    315       return false;
    316     }
    317     data_ = reinterpret_cast<T*>(OPENSSL_malloc(new_size * sizeof(T)));
    318     if (data_ == nullptr) {
    319       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
    320       return false;
    321     }
    322     size_ = new_size;
    323     for (size_t i = 0; i < size_; i++) {
    324       new (&data_[i]) T;
    325     }
    326     return true;
    327   }
    328 
    329   // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
    330   // true on success and false on error.
    331   bool CopyFrom(Span<const uint8_t> in) {
    332     if (!Init(in.size())) {
    333       return false;
    334     }
    335     OPENSSL_memcpy(data_, in.data(), in.size());
    336     return true;
    337   }
    338 
    339  private:
    340   T *data_ = nullptr;
    341   size_t size_ = 0;
    342 };
    343 
    344 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
    345 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
    346 
    347 
    348 // Protocol versions.
    349 //
    350 // Due to DTLS's historical wire version differences and to support multiple
    351 // variants of the same protocol during development, we maintain two notions of
    352 // version.
    353 //
    354 // The "version" or "wire version" is the actual 16-bit value that appears on
    355 // the wire. It uniquely identifies a version and is also used at API
    356 // boundaries. The set of supported versions differs between TLS and DTLS. Wire
    357 // versions are opaque values and may not be compared numerically.
    358 //
    359 // The "protocol version" identifies the high-level handshake variant being
    360 // used. DTLS versions map to the corresponding TLS versions. Draft TLS 1.3
    361 // variants all map to TLS 1.3. Protocol versions are sequential and may be
    362 // compared numerically.
    363 
    364 // ssl_protocol_version_from_wire sets |*out| to the protocol version
    365 // corresponding to wire version |version| and returns true. If |version| is not
    366 // a valid TLS or DTLS version, it returns false.
    367 //
    368 // Note this simultaneously handles both DTLS and TLS. Use one of the
    369 // higher-level functions below for most operations.
    370 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
    371 
    372 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
    373 // minimum and maximum enabled protocol versions, respectively.
    374 bool ssl_get_version_range(const SSL *ssl, uint16_t *out_min_version,
    375                            uint16_t *out_max_version);
    376 
    377 // ssl_supports_version returns whether |hs| supports |version|.
    378 bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version);
    379 
    380 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
    381 // decreasing preference order.
    382 bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb);
    383 
    384 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
    385 // and the peer preference list in |peer_versions|. On success, it returns true
    386 // and sets |*out_version| to the selected version. Otherwise, it returns false
    387 // and sets |*out_alert| to an alert to send.
    388 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
    389                            uint16_t *out_version, const CBS *peer_versions);
    390 
    391 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
    392 // call this function before the version is determined.
    393 uint16_t ssl_protocol_version(const SSL *ssl);
    394 
    395 // Cipher suites.
    396 
    397 }  // namespace bssl
    398 
    399 struct ssl_cipher_st {
    400   // name is the OpenSSL name for the cipher.
    401   const char *name;
    402   // standard_name is the IETF name for the cipher.
    403   const char *standard_name;
    404   // id is the cipher suite value bitwise OR-d with 0x03000000.
    405   uint32_t id;
    406 
    407   // algorithm_* determine the cipher suite. See constants below for the values.
    408   uint32_t algorithm_mkey;
    409   uint32_t algorithm_auth;
    410   uint32_t algorithm_enc;
    411   uint32_t algorithm_mac;
    412   uint32_t algorithm_prf;
    413 };
    414 
    415 namespace bssl {
    416 
    417 // Bits for |algorithm_mkey| (key exchange algorithm).
    418 #define SSL_kRSA 0x00000001u
    419 #define SSL_kECDHE 0x00000002u
    420 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
    421 #define SSL_kPSK 0x00000004u
    422 #define SSL_kGENERIC 0x00000008u
    423 
    424 // Bits for |algorithm_auth| (server authentication).
    425 #define SSL_aRSA 0x00000001u
    426 #define SSL_aECDSA 0x00000002u
    427 // SSL_aPSK is set for both PSK and ECDHE_PSK.
    428 #define SSL_aPSK 0x00000004u
    429 #define SSL_aGENERIC 0x00000008u
    430 
    431 #define SSL_aCERT (SSL_aRSA | SSL_aECDSA)
    432 
    433 // Bits for |algorithm_enc| (symmetric encryption).
    434 #define SSL_3DES                 0x00000001u
    435 #define SSL_AES128               0x00000002u
    436 #define SSL_AES256               0x00000004u
    437 #define SSL_AES128GCM            0x00000008u
    438 #define SSL_AES256GCM            0x00000010u
    439 #define SSL_eNULL                0x00000020u
    440 #define SSL_CHACHA20POLY1305     0x00000040u
    441 
    442 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
    443 
    444 // Bits for |algorithm_mac| (symmetric authentication).
    445 #define SSL_SHA1 0x00000001u
    446 #define SSL_SHA256 0x00000002u
    447 #define SSL_SHA384 0x00000004u
    448 // SSL_AEAD is set for all AEADs.
    449 #define SSL_AEAD 0x00000008u
    450 
    451 // Bits for |algorithm_prf| (handshake digest).
    452 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
    453 #define SSL_HANDSHAKE_MAC_SHA256 0x2
    454 #define SSL_HANDSHAKE_MAC_SHA384 0x4
    455 
    456 // SSL_MAX_DIGEST is the number of digest types which exist. When adding a new
    457 // one, update the table in ssl_cipher.c.
    458 #define SSL_MAX_DIGEST 4
    459 
    460 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
    461 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
    462 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
    463 // respectively. The MAC key length is zero except for legacy block and stream
    464 // ciphers. It returns true on success and false on error.
    465 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
    466                              size_t *out_mac_secret_len,
    467                              size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
    468                              uint16_t version, int is_dtls);
    469 
    470 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
    471 // |cipher|.
    472 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
    473                                        const SSL_CIPHER *cipher);
    474 
    475 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
    476 // newly-allocated |ssl_cipher_preference_list_st| containing the result. It
    477 // returns true on success and false on failure. If |strict| is true, nonsense
    478 // will be rejected. If false, nonsense will be silently ignored. An empty
    479 // result is considered an error regardless of |strict|.
    480 bool ssl_create_cipher_list(
    481     struct ssl_cipher_preference_list_st **out_cipher_list,
    482     const char *rule_str, bool strict);
    483 
    484 // ssl_cipher_get_value returns the cipher suite id of |cipher|.
    485 uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
    486 
    487 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
    488 // values suitable for use with |key| in TLS 1.2 and below.
    489 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key);
    490 
    491 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
    492 // server and, optionally, the client with a certificate.
    493 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
    494 
    495 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
    496 // ServerKeyExchange message.
    497 //
    498 // This function may return false while still allowing |cipher| an optional
    499 // ServerKeyExchange. This is the case for plain PSK ciphers.
    500 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
    501 
    502 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
    503 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
    504 // it returns zero.
    505 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
    506 
    507 
    508 // Transcript layer.
    509 
    510 // SSLTranscript maintains the handshake transcript as a combination of a
    511 // buffer and running hash.
    512 class SSLTranscript {
    513  public:
    514   SSLTranscript();
    515   ~SSLTranscript();
    516 
    517   // Init initializes the handshake transcript. If called on an existing
    518   // transcript, it resets the transcript and hash. It returns true on success
    519   // and false on failure.
    520   bool Init();
    521 
    522   // InitHash initializes the handshake hash based on the PRF and contents of
    523   // the handshake transcript. Subsequent calls to |Update| will update the
    524   // rolling hash. It returns one on success and zero on failure. It is an error
    525   // to call this function after the handshake buffer is released.
    526   bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
    527 
    528   // UpdateForHelloRetryRequest resets the rolling hash with the
    529   // HelloRetryRequest construction. It returns true on success and false on
    530   // failure. It is an error to call this function before the handshake buffer
    531   // is released.
    532   bool UpdateForHelloRetryRequest();
    533 
    534   // CopyHashContext copies the hash context into |ctx| and returns true on
    535   // success.
    536   bool CopyHashContext(EVP_MD_CTX *ctx);
    537 
    538   Span<const uint8_t> buffer() {
    539     return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
    540                          buffer_->length);
    541   }
    542 
    543   // FreeBuffer releases the handshake buffer. Subsequent calls to
    544   // |Update| will not update the handshake buffer.
    545   void FreeBuffer();
    546 
    547   // DigestLen returns the length of the PRF hash.
    548   size_t DigestLen() const;
    549 
    550   // Digest returns the PRF hash. For TLS 1.1 and below, this is
    551   // |EVP_md5_sha1|.
    552   const EVP_MD *Digest() const;
    553 
    554   // Update adds |in| to the handshake buffer and handshake hash, whichever is
    555   // enabled. It returns true on success and false on failure.
    556   bool Update(Span<const uint8_t> in);
    557 
    558   // GetHash writes the handshake hash to |out| which must have room for at
    559   // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
    560   // the number of bytes written. Otherwise, it returns false.
    561   bool GetHash(uint8_t *out, size_t *out_len);
    562 
    563   // GetSSL3CertVerifyHash writes the SSL 3.0 CertificateVerify hash into the
    564   // bytes pointed to by |out| and writes the number of bytes to
    565   // |*out_len|. |out| must have room for |EVP_MAX_MD_SIZE| bytes. It returns
    566   // one on success and zero on failure.
    567   bool GetSSL3CertVerifyHash(uint8_t *out, size_t *out_len,
    568                              const SSL_SESSION *session,
    569                              uint16_t signature_algorithm);
    570 
    571   // GetFinishedMAC computes the MAC for the Finished message into the bytes
    572   // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
    573   // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
    574   // on failure.
    575   bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
    576                       bool from_server);
    577 
    578  private:
    579   // buffer_, if non-null, contains the handshake transcript.
    580   UniquePtr<BUF_MEM> buffer_;
    581   // hash, if initialized with an |EVP_MD|, maintains the handshake hash. For
    582   // TLS 1.1 and below, it is the SHA-1 half.
    583   ScopedEVP_MD_CTX hash_;
    584   // md5, if initialized with an |EVP_MD|, maintains the MD5 half of the
    585   // handshake hash for TLS 1.1 and below.
    586   ScopedEVP_MD_CTX md5_;
    587 };
    588 
    589 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
    590 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
    591 // to form the seed parameter. It returns true on success and false on failure.
    592 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
    593               Span<const uint8_t> secret, Span<const char> label,
    594               Span<const uint8_t> seed1, Span<const uint8_t> seed2);
    595 
    596 
    597 // Encryption layer.
    598 
    599 // SSLAEADContext contains information about an AEAD that is being used to
    600 // encrypt an SSL connection.
    601 class SSLAEADContext {
    602  public:
    603   SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
    604   ~SSLAEADContext();
    605   static constexpr bool kAllowUniquePtr = true;
    606 
    607   SSLAEADContext(const SSLAEADContext &&) = delete;
    608   SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
    609 
    610   // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
    611   static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
    612 
    613   // Create creates an |SSLAEADContext| using the supplied key material. It
    614   // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
    615   // resulting object, depending on |direction|. |version| is the normalized
    616   // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
    617   static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
    618                                           uint16_t version, int is_dtls,
    619                                           const SSL_CIPHER *cipher,
    620                                           Span<const uint8_t> enc_key,
    621                                           Span<const uint8_t> mac_key,
    622                                           Span<const uint8_t> fixed_iv);
    623 
    624   // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
    625   // cipher, to make version-specific determinations in the record layer prior
    626   // to a cipher being selected.
    627   void SetVersionIfNullCipher(uint16_t version);
    628 
    629   // ProtocolVersion returns the protocol version associated with this
    630   // SSLAEADContext. It can only be called once |version_| has been set to a
    631   // valid value.
    632   uint16_t ProtocolVersion() const;
    633 
    634   // RecordVersion returns the record version that should be used with this
    635   // SSLAEADContext for record construction and crypto.
    636   uint16_t RecordVersion() const;
    637 
    638   const SSL_CIPHER *cipher() const { return cipher_; }
    639 
    640   // is_null_cipher returns true if this is the null cipher.
    641   bool is_null_cipher() const { return !cipher_; }
    642 
    643   // ExplicitNonceLen returns the length of the explicit nonce.
    644   size_t ExplicitNonceLen() const;
    645 
    646   // MaxOverhead returns the maximum overhead of calling |Seal|.
    647   size_t MaxOverhead() const;
    648 
    649   // SuffixLen calculates the suffix length written by |SealScatter| and writes
    650   // it to |*out_suffix_len|. It returns true on success and false on error.
    651   // |in_len| and |extra_in_len| should equal the argument of the same names
    652   // passed to |SealScatter|.
    653   bool SuffixLen(size_t *out_suffix_len, size_t in_len,
    654                  size_t extra_in_len) const;
    655 
    656   // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
    657   // to the plaintext in |in| and returns true.  Otherwise, it returns
    658   // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
    659   bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
    660             const uint8_t seqnum[8], Span<uint8_t> in);
    661 
    662   // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
    663   // result to |out|. It returns true on success and false on error.
    664   //
    665   // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
    666   bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
    667             uint16_t record_version, const uint8_t seqnum[8], const uint8_t *in,
    668             size_t in_len);
    669 
    670   // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
    671   // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
    672   // success and zero on error.
    673   //
    674   // On successful return, exactly |ExplicitNonceLen| bytes are written to
    675   // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
    676   // |out_suffix|.
    677   //
    678   // |extra_in| may point to an additional plaintext buffer. If present,
    679   // |extra_in_len| additional bytes are encrypted and authenticated, and the
    680   // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
    681   // be used to size |out_suffix| accordingly.
    682   //
    683   // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
    684   // alias anything.
    685   bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
    686                    uint8_t type, uint16_t record_version,
    687                    const uint8_t seqnum[8], const uint8_t *in, size_t in_len,
    688                    const uint8_t *extra_in, size_t extra_in_len);
    689 
    690   bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
    691 
    692  private:
    693   // GetAdditionalData writes the additional data into |out| and returns the
    694   // number of bytes written.
    695   size_t GetAdditionalData(uint8_t out[13], uint8_t type,
    696                            uint16_t record_version, const uint8_t seqnum[8],
    697                            size_t plaintext_len);
    698 
    699   const SSL_CIPHER *cipher_;
    700   ScopedEVP_AEAD_CTX ctx_;
    701   // fixed_nonce_ contains any bytes of the nonce that are fixed for all
    702   // records.
    703   uint8_t fixed_nonce_[12];
    704   uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
    705   // version_ is the wire version that should be used with this AEAD.
    706   uint16_t version_;
    707   // is_dtls_ is whether DTLS is being used with this AEAD.
    708   bool is_dtls_;
    709   // variable_nonce_included_in_record_ is true if the variable nonce
    710   // for a record is included as a prefix before the ciphertext.
    711   bool variable_nonce_included_in_record_ : 1;
    712   // random_variable_nonce_ is true if the variable nonce is
    713   // randomly generated, rather than derived from the sequence
    714   // number.
    715   bool random_variable_nonce_ : 1;
    716   // omit_length_in_ad_ is true if the length should be omitted in the
    717   // AEAD's ad parameter.
    718   bool omit_length_in_ad_ : 1;
    719   // omit_version_in_ad_ is true if the version should be omitted
    720   // in the AEAD's ad parameter.
    721   bool omit_version_in_ad_ : 1;
    722   // omit_ad_ is true if the AEAD's ad parameter should be omitted.
    723   bool omit_ad_ : 1;
    724   // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
    725   // variable nonce rather than prepended.
    726   bool xor_fixed_nonce_ : 1;
    727 };
    728 
    729 
    730 // DTLS replay bitmap.
    731 
    732 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
    733 // replayed packets. It should be initialized by zeroing every field.
    734 struct DTLS1_BITMAP {
    735   // map is a bit mask of the last 64 sequence numbers. Bit
    736   // |1<<i| corresponds to |max_seq_num - i|.
    737   uint64_t map = 0;
    738   // max_seq_num is the largest sequence number seen so far as a 64-bit
    739   // integer.
    740   uint64_t max_seq_num = 0;
    741 };
    742 
    743 
    744 // Record layer.
    745 
    746 // ssl_record_sequence_update increments the sequence number in |seq|. It
    747 // returns one on success and zero on wraparound.
    748 int ssl_record_sequence_update(uint8_t *seq, size_t seq_len);
    749 
    750 // ssl_record_prefix_len returns the length of the prefix before the ciphertext
    751 // of a record for |ssl|.
    752 //
    753 // TODO(davidben): Expose this as part of public API once the high-level
    754 // buffer-free APIs are available.
    755 size_t ssl_record_prefix_len(const SSL *ssl);
    756 
    757 enum ssl_open_record_t {
    758   ssl_open_record_success,
    759   ssl_open_record_discard,
    760   ssl_open_record_partial,
    761   ssl_open_record_close_notify,
    762   ssl_open_record_error,
    763 };
    764 
    765 // tls_open_record decrypts a record from |in| in-place.
    766 //
    767 // If the input did not contain a complete record, it returns
    768 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
    769 // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
    770 // will consume at least that many bytes.
    771 //
    772 // Otherwise, it sets |*out_consumed| to the number of bytes of input
    773 // consumed. Note that input may be consumed on all return codes if a record was
    774 // decrypted.
    775 //
    776 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
    777 // record type and |*out| to the record body in |in|. Note that |*out| may be
    778 // empty.
    779 //
    780 // If a record was successfully processed but should be discarded, it returns
    781 // |ssl_open_record_discard|.
    782 //
    783 // If a record was successfully processed but is a close_notify, it returns
    784 // |ssl_open_record_close_notify|.
    785 //
    786 // On failure or fatal alert, it returns |ssl_open_record_error| and sets
    787 // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
    788 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
    789                                        Span<uint8_t> *out, size_t *out_consumed,
    790                                        uint8_t *out_alert, Span<uint8_t> in);
    791 
    792 // dtls_open_record implements |tls_open_record| for DTLS. It only returns
    793 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
    794 // zero. The caller should read one packet and try again.
    795 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
    796                                         Span<uint8_t> *out,
    797                                         size_t *out_consumed,
    798                                         uint8_t *out_alert, Span<uint8_t> in);
    799 
    800 // ssl_seal_align_prefix_len returns the length of the prefix before the start
    801 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
    802 // use this to align buffers.
    803 //
    804 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
    805 // record and is the offset into second record's ciphertext. Thus sealing a
    806 // small record may result in a smaller output than this value.
    807 //
    808 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a
    809 // mess.
    810 size_t ssl_seal_align_prefix_len(const SSL *ssl);
    811 
    812 // tls_seal_record seals a new record of type |type| and body |in| and writes it
    813 // to |out|. At most |max_out| bytes will be written. It returns one on success
    814 // and zero on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC 1/n-1
    815 // record splitting and may write two records concatenated.
    816 //
    817 // For a large record, the bulk of the ciphertext will begin
    818 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
    819 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
    820 // bytes to |out|.
    821 //
    822 // |in| and |out| may not alias.
    823 int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
    824                     uint8_t type, const uint8_t *in, size_t in_len);
    825 
    826 enum dtls1_use_epoch_t {
    827   dtls1_use_previous_epoch,
    828   dtls1_use_current_epoch,
    829 };
    830 
    831 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
    832 // record.
    833 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
    834 
    835 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
    836 // front of the plaintext when sealing a record in-place.
    837 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
    838 
    839 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
    840 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
    841 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
    842 // ahead of |out|.
    843 int dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
    844                      uint8_t type, const uint8_t *in, size_t in_len,
    845                      enum dtls1_use_epoch_t use_epoch);
    846 
    847 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
    848 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
    849 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
    850 // appropriate.
    851 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
    852                                          Span<const uint8_t> in);
    853 
    854 
    855 // Private key operations.
    856 
    857 // ssl_has_private_key returns one if |ssl| has a private key
    858 // configured and zero otherwise.
    859 int ssl_has_private_key(const SSL *ssl);
    860 
    861 // ssl_private_key_* perform the corresponding operation on
    862 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
    863 // call the corresponding function or |complete| depending on whether there is a
    864 // pending operation. Otherwise, they implement the operation with
    865 // |EVP_PKEY|.
    866 
    867 enum ssl_private_key_result_t ssl_private_key_sign(
    868     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
    869     uint16_t sigalg, Span<const uint8_t> in);
    870 
    871 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
    872                                                       uint8_t *out,
    873                                                       size_t *out_len,
    874                                                       size_t max_out,
    875                                                       Span<const uint8_t> in);
    876 
    877 // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private
    878 // key supports |sigalg|.
    879 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
    880                                                  uint16_t sigalg);
    881 
    882 // ssl_public_key_verify verifies that the |signature| is valid for the public
    883 // key |pkey| and input |in|, using the signature algorithm |sigalg|.
    884 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
    885                            uint16_t sigalg, EVP_PKEY *pkey,
    886                            Span<const uint8_t> in);
    887 
    888 
    889 // Custom extensions
    890 
    891 }  // namespace bssl
    892 
    893 // |SSL_CUSTOM_EXTENSION| is a structure that contains information about
    894 // custom-extension callbacks. It is defined unnamespaced for compatibility with
    895 // |STACK_OF(SSL_CUSTOM_EXTENSION)|.
    896 typedef struct ssl_custom_extension {
    897   SSL_custom_ext_add_cb add_callback;
    898   void *add_arg;
    899   SSL_custom_ext_free_cb free_callback;
    900   SSL_custom_ext_parse_cb parse_callback;
    901   void *parse_arg;
    902   uint16_t value;
    903 } SSL_CUSTOM_EXTENSION;
    904 
    905 DEFINE_STACK_OF(SSL_CUSTOM_EXTENSION)
    906 
    907 namespace bssl {
    908 
    909 void SSL_CUSTOM_EXTENSION_free(SSL_CUSTOM_EXTENSION *custom_extension);
    910 
    911 int custom_ext_add_clienthello(SSL_HANDSHAKE *hs, CBB *extensions);
    912 int custom_ext_parse_serverhello(SSL_HANDSHAKE *hs, int *out_alert,
    913                                  uint16_t value, const CBS *extension);
    914 int custom_ext_parse_clienthello(SSL_HANDSHAKE *hs, int *out_alert,
    915                                  uint16_t value, const CBS *extension);
    916 int custom_ext_add_serverhello(SSL_HANDSHAKE *hs, CBB *extensions);
    917 
    918 
    919 // Key shares.
    920 
    921 // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges.
    922 class SSLKeyShare {
    923  public:
    924   virtual ~SSLKeyShare() {}
    925   static constexpr bool kAllowUniquePtr = true;
    926   HAS_VIRTUAL_DESTRUCTOR
    927 
    928   // Create returns a SSLKeyShare instance for use with group |group_id| or
    929   // nullptr on error.
    930   static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
    931 
    932   // GroupID returns the group ID.
    933   virtual uint16_t GroupID() const PURE_VIRTUAL;
    934 
    935   // Offer generates a keypair and writes the public value to
    936   // |out_public_key|. It returns true on success and false on error.
    937   virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL;
    938 
    939   // Accept performs a key exchange against the |peer_key| generated by |offer|.
    940   // On success, it returns true, writes the public value to |out_public_key|,
    941   // and sets |*out_secret| the shared secret. On failure, it returns false and
    942   // sets |*out_alert| to an alert to send to the peer.
    943   //
    944   // The default implementation calls |Offer| and then |Finish|, assuming a key
    945   // exchange protocol where the peers are symmetric.
    946   virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
    947                       uint8_t *out_alert, Span<const uint8_t> peer_key);
    948 
    949   // Finish performs a key exchange against the |peer_key| generated by
    950   // |Accept|. On success, it returns true and sets |*out_secret| to the shared
    951   // secret. On failure, it returns zero and sets |*out_alert| to an alert to
    952   // send to the peer.
    953   virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
    954                       Span<const uint8_t> peer_key) PURE_VIRTUAL;
    955 };
    956 
    957 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
    958 // sets |*out_group_id| to the group ID and returns one. Otherwise, it returns
    959 // zero.
    960 int ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
    961 
    962 // ssl_name_to_group_id looks up the group corresponding to the |name| string
    963 // of length |len|. On success, it sets |*out_group_id| to the group ID and
    964 // returns one. Otherwise, it returns zero.
    965 int ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
    966 
    967 
    968 // Handshake messages.
    969 
    970 struct SSLMessage {
    971   bool is_v2_hello;
    972   uint8_t type;
    973   CBS body;
    974   // raw is the entire serialized handshake message, including the TLS or DTLS
    975   // message header.
    976   CBS raw;
    977 };
    978 
    979 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
    980 // ChangeCipherSpec, in the longest handshake flight. Currently this is the
    981 // client's second leg in a full handshake when client certificates, NPN, and
    982 // Channel ID, are all enabled.
    983 #define SSL_MAX_HANDSHAKE_FLIGHT 7
    984 
    985 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
    986 extern const uint8_t kDraftDowngradeRandom[8];
    987 
    988 // ssl_max_handshake_message_len returns the maximum number of bytes permitted
    989 // in a handshake message for |ssl|.
    990 size_t ssl_max_handshake_message_len(const SSL *ssl);
    991 
    992 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
    993 // data into handshake buffer.
    994 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
    995 
    996 // tls_has_unprocessed_handshake_data returns whether there is buffered
    997 // handshake data that has not been consumed by |get_message|.
    998 bool tls_has_unprocessed_handshake_data(const SSL *ssl);
    999 
   1000 // dtls_has_unprocessed_handshake_data behaves like
   1001 // |tls_has_unprocessed_handshake_data| for DTLS.
   1002 bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
   1003 
   1004 struct DTLS_OUTGOING_MESSAGE {
   1005   DTLS_OUTGOING_MESSAGE() {}
   1006   DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
   1007   DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
   1008   ~DTLS_OUTGOING_MESSAGE() { Clear(); }
   1009 
   1010   void Clear();
   1011 
   1012   uint8_t *data = nullptr;
   1013   uint32_t len = 0;
   1014   uint16_t epoch = 0;
   1015   bool is_ccs = false;
   1016 };
   1017 
   1018 // dtls_clear_outgoing_messages releases all buffered outgoing messages.
   1019 void dtls_clear_outgoing_messages(SSL *ssl);
   1020 
   1021 
   1022 // Callbacks.
   1023 
   1024 // ssl_do_info_callback calls |ssl|'s info callback, if set.
   1025 void ssl_do_info_callback(const SSL *ssl, int type, int value);
   1026 
   1027 // ssl_do_msg_callback calls |ssl|'s message callback, if set.
   1028 void ssl_do_msg_callback(SSL *ssl, int is_write, int content_type,
   1029                          Span<const uint8_t> in);
   1030 
   1031 
   1032 // Transport buffers.
   1033 
   1034 class SSLBuffer {
   1035  public:
   1036   SSLBuffer() {}
   1037   ~SSLBuffer() { Clear(); }
   1038 
   1039   SSLBuffer(const SSLBuffer &) = delete;
   1040   SSLBuffer &operator=(const SSLBuffer &) = delete;
   1041 
   1042   uint8_t *data() { return buf_ + offset_; }
   1043   size_t size() const { return size_; }
   1044   bool empty() const { return size_ == 0; }
   1045   size_t cap() const { return cap_; }
   1046 
   1047   Span<uint8_t> span() { return MakeSpan(data(), size()); }
   1048 
   1049   Span<uint8_t> remaining() {
   1050     return MakeSpan(data() + size(), cap() - size());
   1051   }
   1052 
   1053   // Clear releases the buffer.
   1054   void Clear();
   1055 
   1056   // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
   1057   // that data written after |header_len| is aligned to a
   1058   // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
   1059   // on error.
   1060   bool EnsureCap(size_t header_len, size_t new_cap);
   1061 
   1062   // DidWrite extends the buffer by |len|. The caller must have filled in to
   1063   // this point.
   1064   void DidWrite(size_t len);
   1065 
   1066   // Consume consumes |len| bytes from the front of the buffer.  The memory
   1067   // consumed will remain valid until the next call to |DiscardConsumed| or
   1068   // |Clear|.
   1069   void Consume(size_t len);
   1070 
   1071   // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
   1072   // is now empty, it releases memory used by it.
   1073   void DiscardConsumed();
   1074 
   1075  private:
   1076   // buf_ is the memory allocated for this buffer.
   1077   uint8_t *buf_ = nullptr;
   1078   // offset_ is the offset into |buf_| which the buffer contents start at.
   1079   uint16_t offset_ = 0;
   1080   // size_ is the size of the buffer contents from |buf_| + |offset_|.
   1081   uint16_t size_ = 0;
   1082   // cap_ is how much memory beyond |buf_| + |offset_| is available.
   1083   uint16_t cap_ = 0;
   1084 };
   1085 
   1086 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
   1087 // TLS, it reads to the end of the buffer until the buffer is |len| bytes
   1088 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
   1089 // success, zero on EOF, and a negative number on error.
   1090 //
   1091 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
   1092 // non-empty.
   1093 int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
   1094 
   1095 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
   1096 // to a record-processing function. If |ret| is a success or if the caller
   1097 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
   1098 // 0.
   1099 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
   1100                            size_t consumed, uint8_t alert);
   1101 
   1102 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
   1103 // one on success and <= 0 on error. For DTLS, whether or not the write
   1104 // succeeds, the write buffer will be cleared.
   1105 int ssl_write_buffer_flush(SSL *ssl);
   1106 
   1107 
   1108 // Certificate functions.
   1109 
   1110 // ssl_has_certificate returns one if a certificate and private key are
   1111 // configured and zero otherwise.
   1112 int ssl_has_certificate(const SSL *ssl);
   1113 
   1114 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
   1115 // by a TLS Certificate message. On success, it advances |cbs| and returns
   1116 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
   1117 // to the peer.
   1118 //
   1119 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
   1120 // the certificate chain and the leaf certificate's public key
   1121 // respectively. Otherwise, both will be set to nullptr.
   1122 //
   1123 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
   1124 // SHA-256 hash of the leaf to |out_leaf_sha256|.
   1125 bool ssl_parse_cert_chain(uint8_t *out_alert,
   1126                           UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
   1127                           UniquePtr<EVP_PKEY> *out_pubkey,
   1128                           uint8_t *out_leaf_sha256, CBS *cbs,
   1129                           CRYPTO_BUFFER_POOL *pool);
   1130 
   1131 // ssl_add_cert_chain adds |ssl|'s certificate chain to |cbb| in the format used
   1132 // by a TLS Certificate message. If there is no certificate chain, it emits an
   1133 // empty certificate list. It returns one on success and zero on error.
   1134 int ssl_add_cert_chain(SSL *ssl, CBB *cbb);
   1135 
   1136 // ssl_cert_check_digital_signature_key_usage parses the DER-encoded, X.509
   1137 // certificate in |in| and returns one if doesn't specify a key usage or, if it
   1138 // does, if it includes digitalSignature. Otherwise it pushes to the error
   1139 // queue and returns zero.
   1140 int ssl_cert_check_digital_signature_key_usage(const CBS *in);
   1141 
   1142 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
   1143 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
   1144 // nullptr and pushes to the error queue.
   1145 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
   1146 
   1147 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
   1148 // TLS CertificateRequest message. On success, it returns a newly-allocated
   1149 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
   1150 // sets |*out_alert| to an alert to send to the peer.
   1151 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
   1152                                                             uint8_t *out_alert,
   1153                                                             CBS *cbs);
   1154 
   1155 // ssl_has_client_CAs returns there are configured CAs.
   1156 bool ssl_has_client_CAs(SSL *ssl);
   1157 
   1158 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
   1159 // used by a TLS CertificateRequest message. It returns one on success and zero
   1160 // on error.
   1161 int ssl_add_client_CA_list(SSL *ssl, CBB *cbb);
   1162 
   1163 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
   1164 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
   1165 // an error on the error queue.
   1166 int ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
   1167                                const CRYPTO_BUFFER *leaf);
   1168 
   1169 // ssl_on_certificate_selected is called once the certificate has been selected.
   1170 // It finalizes the certificate and initializes |hs->local_pubkey|. It returns
   1171 // one on success and zero on error.
   1172 int ssl_on_certificate_selected(SSL_HANDSHAKE *hs);
   1173 
   1174 
   1175 // TLS 1.3 key derivation.
   1176 
   1177 // tls13_init_key_schedule initializes the handshake hash and key derivation
   1178 // state, and incorporates the PSK. The cipher suite and PRF hash must have been
   1179 // selected at this point. It returns one on success and zero on error.
   1180 int tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
   1181                             size_t psk_len);
   1182 
   1183 // tls13_init_early_key_schedule initializes the handshake hash and key
   1184 // derivation state from the resumption secret and incorporates the PSK to
   1185 // derive the early secrets. It returns one on success and zero on error.
   1186 int tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
   1187                                   size_t psk_len);
   1188 
   1189 // tls13_advance_key_schedule incorporates |in| into the key schedule with
   1190 // HKDF-Extract. It returns one on success and zero on error.
   1191 int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in,
   1192                                size_t len);
   1193 
   1194 // tls13_set_traffic_key sets the read or write traffic keys to
   1195 // |traffic_secret|. It returns one on success and zero on error.
   1196 int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction,
   1197                           const uint8_t *traffic_secret,
   1198                           size_t traffic_secret_len);
   1199 
   1200 // tls13_derive_early_secrets derives the early traffic secret. It returns one
   1201 // on success and zero on error.
   1202 int tls13_derive_early_secrets(SSL_HANDSHAKE *hs);
   1203 
   1204 // tls13_derive_handshake_secrets derives the handshake traffic secret. It
   1205 // returns one on success and zero on error.
   1206 int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
   1207 
   1208 // tls13_rotate_traffic_key derives the next read or write traffic secret. It
   1209 // returns one on success and zero on error.
   1210 int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
   1211 
   1212 // tls13_derive_application_secrets derives the initial application data traffic
   1213 // and exporter secrets based on the handshake transcripts and |master_secret|.
   1214 // It returns one on success and zero on error.
   1215 int tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
   1216 
   1217 // tls13_derive_resumption_secret derives the |resumption_secret|.
   1218 int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
   1219 
   1220 // tls13_export_keying_material provides an exporter interface to use the
   1221 // |exporter_secret|.
   1222 int tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
   1223                                  Span<const uint8_t> secret,
   1224                                  Span<const char> label,
   1225                                  Span<const uint8_t> context);
   1226 
   1227 // tls13_finished_mac calculates the MAC of the handshake transcript to verify
   1228 // the integrity of the Finished message, and stores the result in |out| and
   1229 // length in |out_len|. |is_server| is 1 if this is for the Server Finished and
   1230 // 0 for the Client Finished.
   1231 int tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out,
   1232                        size_t *out_len, int is_server);
   1233 
   1234 // tls13_derive_session_psk calculates the PSK for this session based on the
   1235 // resumption master secret and |nonce|. It returns true on success, and false
   1236 // on failure.
   1237 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
   1238 
   1239 // tls13_write_psk_binder calculates the PSK binder value and replaces the last
   1240 // bytes of |msg| with the resulting value. It returns 1 on success, and 0 on
   1241 // failure.
   1242 int tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len);
   1243 
   1244 // tls13_verify_psk_binder verifies that the handshake transcript, truncated
   1245 // up to the binders has a valid signature using the value of |session|'s
   1246 // resumption secret. It returns 1 on success, and 0 on failure.
   1247 int tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session,
   1248                             const SSLMessage &msg, CBS *binders);
   1249 
   1250 
   1251 // Handshake functions.
   1252 
   1253 enum ssl_hs_wait_t {
   1254   ssl_hs_error,
   1255   ssl_hs_ok,
   1256   ssl_hs_read_server_hello,
   1257   ssl_hs_read_message,
   1258   ssl_hs_flush,
   1259   ssl_hs_certificate_selection_pending,
   1260   ssl_hs_handoff,
   1261   ssl_hs_x509_lookup,
   1262   ssl_hs_channel_id_lookup,
   1263   ssl_hs_private_key_operation,
   1264   ssl_hs_pending_session,
   1265   ssl_hs_pending_ticket,
   1266   ssl_hs_early_return,
   1267   ssl_hs_early_data_rejected,
   1268   ssl_hs_read_end_of_early_data,
   1269   ssl_hs_read_change_cipher_spec,
   1270   ssl_hs_certificate_verify,
   1271 };
   1272 
   1273 enum ssl_grease_index_t {
   1274   ssl_grease_cipher = 0,
   1275   ssl_grease_group,
   1276   ssl_grease_extension1,
   1277   ssl_grease_extension2,
   1278   ssl_grease_version,
   1279   ssl_grease_ticket_extension,
   1280   ssl_grease_last_index = ssl_grease_ticket_extension,
   1281 };
   1282 
   1283 struct SSL_HANDSHAKE {
   1284   explicit SSL_HANDSHAKE(SSL *ssl);
   1285   ~SSL_HANDSHAKE();
   1286   static constexpr bool kAllowUniquePtr = true;
   1287 
   1288   // ssl is a non-owning pointer to the parent |SSL| object.
   1289   SSL *ssl;
   1290 
   1291   // wait contains the operation the handshake is currently blocking on or
   1292   // |ssl_hs_ok| if none.
   1293   enum ssl_hs_wait_t wait = ssl_hs_ok;
   1294 
   1295   // state is the internal state for the TLS 1.2 and below handshake. Its
   1296   // values depend on |do_handshake| but the starting state is always zero.
   1297   int state = 0;
   1298 
   1299   // tls13_state is the internal state for the TLS 1.3 handshake. Its values
   1300   // depend on |do_handshake| but the starting state is always zero.
   1301   int tls13_state = 0;
   1302 
   1303   // min_version is the minimum accepted protocol version, taking account both
   1304   // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
   1305   uint16_t min_version = 0;
   1306 
   1307   // max_version is the maximum accepted protocol version, taking account both
   1308   // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
   1309   uint16_t max_version = 0;
   1310 
   1311   size_t hash_len = 0;
   1312   uint8_t secret[EVP_MAX_MD_SIZE] = {0};
   1313   uint8_t early_traffic_secret[EVP_MAX_MD_SIZE] = {0};
   1314   uint8_t client_handshake_secret[EVP_MAX_MD_SIZE] = {0};
   1315   uint8_t server_handshake_secret[EVP_MAX_MD_SIZE] = {0};
   1316   uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
   1317   uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
   1318   uint8_t expected_client_finished[EVP_MAX_MD_SIZE] = {0};
   1319 
   1320   union {
   1321     // sent is a bitset where the bits correspond to elements of kExtensions
   1322     // in t1_lib.c. Each bit is set if that extension was sent in a
   1323     // ClientHello. It's not used by servers.
   1324     uint32_t sent = 0;
   1325     // received is a bitset, like |sent|, but is used by servers to record
   1326     // which extensions were received from a client.
   1327     uint32_t received;
   1328   } extensions;
   1329 
   1330   union {
   1331     // sent is a bitset where the bits correspond to elements of
   1332     // |client_custom_extensions| in the |SSL_CTX|. Each bit is set if that
   1333     // extension was sent in a ClientHello. It's not used by servers.
   1334     uint16_t sent = 0;
   1335     // received is a bitset, like |sent|, but is used by servers to record
   1336     // which custom extensions were received from a client. The bits here
   1337     // correspond to |server_custom_extensions|.
   1338     uint16_t received;
   1339   } custom_extensions;
   1340 
   1341   // retry_group is the group ID selected by the server in HelloRetryRequest in
   1342   // TLS 1.3.
   1343   uint16_t retry_group = 0;
   1344 
   1345   // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
   1346   UniquePtr<ERR_SAVE_STATE> error;
   1347 
   1348   // key_share is the current key exchange instance.
   1349   UniquePtr<SSLKeyShare> key_share;
   1350 
   1351   // transcript is the current handshake transcript.
   1352   SSLTranscript transcript;
   1353 
   1354   // cookie is the value of the cookie received from the server, if any.
   1355   Array<uint8_t> cookie;
   1356 
   1357   // key_share_bytes is the value of the previously sent KeyShare extension by
   1358   // the client in TLS 1.3.
   1359   Array<uint8_t> key_share_bytes;
   1360 
   1361   // ecdh_public_key, for servers, is the key share to be sent to the client in
   1362   // TLS 1.3.
   1363   Array<uint8_t> ecdh_public_key;
   1364 
   1365   // peer_sigalgs are the signature algorithms that the peer supports. These are
   1366   // taken from the contents of the signature algorithms extension for a server
   1367   // or from the CertificateRequest for a client.
   1368   Array<uint16_t> peer_sigalgs;
   1369 
   1370   // peer_supported_group_list contains the supported group IDs advertised by
   1371   // the peer. This is only set on the server's end. The server does not
   1372   // advertise this extension to the client.
   1373   Array<uint16_t> peer_supported_group_list;
   1374 
   1375   // peer_key is the peer's ECDH key for a TLS 1.2 client.
   1376   Array<uint8_t> peer_key;
   1377 
   1378   // negotiated_token_binding_version is used by a server to store the
   1379   // on-the-wire encoding of the Token Binding protocol version to advertise in
   1380   // the ServerHello/EncryptedExtensions if the Token Binding extension is to be
   1381   // sent.
   1382   uint16_t negotiated_token_binding_version;
   1383 
   1384   // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
   1385   // parameters. It has client and server randoms prepended for signing
   1386   // convenience.
   1387   Array<uint8_t> server_params;
   1388 
   1389   // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
   1390   // server when using a TLS 1.2 PSK key exchange.
   1391   UniquePtr<char> peer_psk_identity_hint;
   1392 
   1393   // ca_names, on the client, contains the list of CAs received in a
   1394   // CertificateRequest message.
   1395   UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
   1396 
   1397   // cached_x509_ca_names contains a cache of parsed versions of the elements of
   1398   // |ca_names|. This pointer is left non-owning so only
   1399   // |ssl_crypto_x509_method| needs to link against crypto/x509.
   1400   STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
   1401 
   1402   // certificate_types, on the client, contains the set of certificate types
   1403   // received in a CertificateRequest message.
   1404   Array<uint8_t> certificate_types;
   1405 
   1406   // local_pubkey is the public key we are authenticating as.
   1407   UniquePtr<EVP_PKEY> local_pubkey;
   1408 
   1409   // peer_pubkey is the public key parsed from the peer's leaf certificate.
   1410   UniquePtr<EVP_PKEY> peer_pubkey;
   1411 
   1412   // new_session is the new mutable session being established by the current
   1413   // handshake. It should not be cached.
   1414   UniquePtr<SSL_SESSION> new_session;
   1415 
   1416   // early_session is the session corresponding to the current 0-RTT state on
   1417   // the client if |in_early_data| is true.
   1418   UniquePtr<SSL_SESSION> early_session;
   1419 
   1420   // new_cipher is the cipher being negotiated in this handshake.
   1421   const SSL_CIPHER *new_cipher = nullptr;
   1422 
   1423   // key_block is the record-layer key block for TLS 1.2 and earlier.
   1424   Array<uint8_t> key_block;
   1425 
   1426   // scts_requested is true if the SCT extension is in the ClientHello.
   1427   bool scts_requested:1;
   1428 
   1429   // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to
   1430   // be filled in.
   1431   bool needs_psk_binder:1;
   1432 
   1433   bool received_hello_retry_request:1;
   1434   bool sent_hello_retry_request:1;
   1435 
   1436   bool received_custom_extension:1;
   1437 
   1438   // handshake_finalized is true once the handshake has completed, at which
   1439   // point accessors should use the established state.
   1440   bool handshake_finalized:1;
   1441 
   1442   // accept_psk_mode stores whether the client's PSK mode is compatible with our
   1443   // preferences.
   1444   bool accept_psk_mode:1;
   1445 
   1446   // cert_request is true if a client certificate was requested.
   1447   bool cert_request:1;
   1448 
   1449   // certificate_status_expected is true if OCSP stapling was negotiated and the
   1450   // server is expected to send a CertificateStatus message. (This is used on
   1451   // both the client and server sides.)
   1452   bool certificate_status_expected:1;
   1453 
   1454   // ocsp_stapling_requested is true if a client requested OCSP stapling.
   1455   bool ocsp_stapling_requested:1;
   1456 
   1457   // should_ack_sni is used by a server and indicates that the SNI extension
   1458   // should be echoed in the ServerHello.
   1459   bool should_ack_sni:1;
   1460 
   1461   // in_false_start is true if there is a pending client handshake in False
   1462   // Start. The client may write data at this point.
   1463   bool in_false_start:1;
   1464 
   1465   // in_early_data is true if there is a pending handshake that has progressed
   1466   // enough to send and receive early data.
   1467   bool in_early_data:1;
   1468 
   1469   // early_data_offered is true if the client sent the early_data extension.
   1470   bool early_data_offered:1;
   1471 
   1472   // can_early_read is true if application data may be read at this point in the
   1473   // handshake.
   1474   bool can_early_read:1;
   1475 
   1476   // can_early_write is true if application data may be written at this point in
   1477   // the handshake.
   1478   bool can_early_write:1;
   1479 
   1480   // next_proto_neg_seen is one of NPN was negotiated.
   1481   bool next_proto_neg_seen:1;
   1482 
   1483   // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
   1484   // or received.
   1485   bool ticket_expected:1;
   1486 
   1487   // extended_master_secret is true if the extended master secret extension is
   1488   // negotiated in this handshake.
   1489   bool extended_master_secret:1;
   1490 
   1491   // pending_private_key_op is true if there is a pending private key operation
   1492   // in progress.
   1493   bool pending_private_key_op:1;
   1494 
   1495   // grease_seeded is true if |grease_seed| has been initialized.
   1496   bool grease_seeded:1;
   1497 
   1498   // client_version is the value sent or received in the ClientHello version.
   1499   uint16_t client_version = 0;
   1500 
   1501   // early_data_read is the amount of early data that has been read by the
   1502   // record layer.
   1503   uint16_t early_data_read = 0;
   1504 
   1505   // early_data_written is the amount of early data that has been written by the
   1506   // record layer.
   1507   uint16_t early_data_written = 0;
   1508 
   1509   // session_id is the session ID in the ClientHello, used for the experimental
   1510   // TLS 1.3 variant.
   1511   uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
   1512   uint8_t session_id_len = 0;
   1513 
   1514   // grease_seed is the entropy for GREASE values. It is valid if
   1515   // |grease_seeded| is true.
   1516   uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
   1517 };
   1518 
   1519 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
   1520 
   1521 // ssl_check_message_type checks if |msg| has type |type|. If so it returns
   1522 // one. Otherwise, it sends an alert and returns zero.
   1523 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
   1524 
   1525 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
   1526 // on error. It sets |out_early_return| to one if we've completed the handshake
   1527 // early.
   1528 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
   1529 
   1530 // The following are implementations of |do_handshake| for the client and
   1531 // server.
   1532 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
   1533 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
   1534 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
   1535 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
   1536 
   1537 // The following functions return human-readable representations of the TLS
   1538 // handshake states for debugging.
   1539 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
   1540 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
   1541 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
   1542 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
   1543 
   1544 // tls13_post_handshake processes a post-handshake message. It returns one on
   1545 // success and zero on failure.
   1546 int tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
   1547 
   1548 int tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
   1549                               int allow_anonymous);
   1550 int tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
   1551 
   1552 // tls13_process_finished processes |msg| as a Finished message from the
   1553 // peer. If |use_saved_value| is one, the verify_data is compared against
   1554 // |hs->expected_client_finished| rather than computed fresh.
   1555 int tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
   1556                            int use_saved_value);
   1557 
   1558 int tls13_add_certificate(SSL_HANDSHAKE *hs);
   1559 
   1560 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
   1561 // handshake. If it returns |ssl_private_key_retry|, it should be called again
   1562 // to retry when the signing operation is completed.
   1563 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
   1564 
   1565 int tls13_add_finished(SSL_HANDSHAKE *hs);
   1566 int tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
   1567 
   1568 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
   1569                                          Array<uint8_t> *out_secret,
   1570                                          uint8_t *out_alert, CBS *contents);
   1571 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
   1572                                          Array<uint8_t> *out_secret,
   1573                                          uint8_t *out_alert, CBS *contents);
   1574 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
   1575 
   1576 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
   1577                                               uint8_t *out_alert,
   1578                                               CBS *contents);
   1579 bool ssl_ext_pre_shared_key_parse_clienthello(
   1580     SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
   1581     uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents);
   1582 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
   1583 
   1584 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
   1585 // returns one iff it's valid.
   1586 int ssl_is_sct_list_valid(const CBS *contents);
   1587 
   1588 int ssl_write_client_hello(SSL_HANDSHAKE *hs);
   1589 
   1590 enum ssl_cert_verify_context_t {
   1591   ssl_cert_verify_server,
   1592   ssl_cert_verify_client,
   1593   ssl_cert_verify_channel_id,
   1594 };
   1595 
   1596 // tls13_get_cert_verify_signature_input generates the message to be signed for
   1597 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
   1598 // type of signature. It sets |*out| to a newly allocated buffer containing the
   1599 // result. This function returns true on success and false on failure.
   1600 bool tls13_get_cert_verify_signature_input(
   1601     SSL_HANDSHAKE *hs, Array<uint8_t> *out,
   1602     enum ssl_cert_verify_context_t cert_verify_context);
   1603 
   1604 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
   1605 // selection for |ssl|'s client preferences.
   1606 bool ssl_is_alpn_protocol_allowed(const SSL *ssl, Span<const uint8_t> protocol);
   1607 
   1608 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
   1609 // true on successful negotiation or if nothing was negotiated. It returns false
   1610 // and sets |*out_alert| to an alert on error.
   1611 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
   1612                         const SSL_CLIENT_HELLO *client_hello);
   1613 
   1614 struct SSL_EXTENSION_TYPE {
   1615   uint16_t type;
   1616   bool *out_present;
   1617   CBS *out_data;
   1618 };
   1619 
   1620 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
   1621 // it. It writes the parsed extensions to pointers denoted by |ext_types|. On
   1622 // success, it fills in the |out_present| and |out_data| fields and returns one.
   1623 // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown
   1624 // extensions are rejected unless |ignore_unknown| is 1.
   1625 int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
   1626                          const SSL_EXTENSION_TYPE *ext_types,
   1627                          size_t num_ext_types, int ignore_unknown);
   1628 
   1629 // ssl_verify_peer_cert verifies the peer certificate for |hs|.
   1630 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
   1631 
   1632 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
   1633 bool ssl_send_finished(SSL_HANDSHAKE *hs);
   1634 bool ssl_output_cert_chain(SSL *ssl);
   1635 
   1636 
   1637 // SSLKEYLOGFILE functions.
   1638 
   1639 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
   1640 // |ssl|. It returns one on success and zero on failure.
   1641 int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret,
   1642                    size_t secret_len);
   1643 
   1644 
   1645 // ClientHello functions.
   1646 
   1647 int ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out,
   1648                           const SSLMessage &msg);
   1649 
   1650 int ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
   1651                                    CBS *out, uint16_t extension_type);
   1652 
   1653 int ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO *client_hello,
   1654                                            uint16_t id);
   1655 
   1656 
   1657 // GREASE.
   1658 
   1659 // ssl_get_grease_value returns a GREASE value for |hs|. For a given
   1660 // connection, the values for each index will be deterministic. This allows the
   1661 // same ClientHello be sent twice for a HelloRetryRequest or the same group be
   1662 // advertised in both supported_groups and key_shares.
   1663 uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index);
   1664 
   1665 
   1666 // Signature algorithms.
   1667 
   1668 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
   1669 // algorithms and saves them on |hs|. It returns true on success and false on
   1670 // error.
   1671 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
   1672 
   1673 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
   1674 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
   1675 // success and false if |pkey| may not be used at those versions.
   1676 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
   1677 
   1678 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
   1679 // with |hs|'s private key based on the peer's preferences and the algorithms
   1680 // supported. It returns true on success and false on error.
   1681 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out);
   1682 
   1683 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
   1684 // peer signature to |out|. It returns true on success and false on error.
   1685 bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out);
   1686 
   1687 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
   1688 // signature. It returns true on success and false on error, setting
   1689 // |*out_alert| to an alert to send.
   1690 bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert,
   1691                              uint16_t sigalg);
   1692 
   1693 
   1694 // Underdocumented functions.
   1695 //
   1696 // Functions below here haven't been touched up and may be underdocumented.
   1697 
   1698 #define TLSEXT_CHANNEL_ID_SIZE 128
   1699 
   1700 // From RFC4492, used in encoding the curve type in ECParameters
   1701 #define NAMED_CURVE_TYPE 3
   1702 
   1703 struct CERT {
   1704   EVP_PKEY *privatekey;
   1705 
   1706   // chain contains the certificate chain, with the leaf at the beginning. The
   1707   // first element of |chain| may be NULL to indicate that the leaf certificate
   1708   // has not yet been set.
   1709   //   If |chain| != NULL -> len(chain) >= 1
   1710   //   If |chain[0]| == NULL -> len(chain) >= 2.
   1711   //   |chain[1..]| != NULL
   1712   STACK_OF(CRYPTO_BUFFER) *chain;
   1713 
   1714   // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as
   1715   // a cache in order to implement get0 functions that return a non-owning
   1716   // pointer to the certificate chain.
   1717   STACK_OF(X509) *x509_chain;
   1718 
   1719   // x509_leaf may contain a parsed copy of the first element of |chain|. This
   1720   // is only used as a cache in order to implement get0 functions that return
   1721   // a non-owning pointer to the certificate chain.
   1722   X509 *x509_leaf;
   1723 
   1724   // x509_stash contains the last |X509| object append to the chain. This is a
   1725   // workaround for some third-party code that continue to use an |X509| object
   1726   // even after passing ownership with an add0 function.
   1727   X509 *x509_stash;
   1728 
   1729   // key_method, if non-NULL, is a set of callbacks to call for private key
   1730   // operations.
   1731   const SSL_PRIVATE_KEY_METHOD *key_method;
   1732 
   1733   // x509_method contains pointers to functions that might deal with |X509|
   1734   // compatibility, or might be a no-op, depending on the application.
   1735   const SSL_X509_METHOD *x509_method;
   1736 
   1737   // sigalgs, if non-NULL, is the set of signature algorithms supported by
   1738   // |privatekey| in decreasing order of preference.
   1739   uint16_t *sigalgs;
   1740   size_t num_sigalgs;
   1741 
   1742   // Certificate setup callback: if set is called whenever a
   1743   // certificate may be required (client or server). the callback
   1744   // can then examine any appropriate parameters and setup any
   1745   // certificates required. This allows advanced applications
   1746   // to select certificates on the fly: for example based on
   1747   // supported signature algorithms or curves.
   1748   int (*cert_cb)(SSL *ssl, void *arg);
   1749   void *cert_cb_arg;
   1750 
   1751   // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
   1752   // store is used instead.
   1753   X509_STORE *verify_store;
   1754 
   1755   // Signed certificate timestamp list to be sent to the client, if requested
   1756   CRYPTO_BUFFER *signed_cert_timestamp_list;
   1757 
   1758   // OCSP response to be sent to the client, if requested.
   1759   CRYPTO_BUFFER *ocsp_response;
   1760 
   1761   // sid_ctx partitions the session space within a shared session cache or
   1762   // ticket key. Only sessions with a matching value will be accepted.
   1763   uint8_t sid_ctx_length;
   1764   uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH];
   1765 
   1766   // If enable_early_data is true, early data can be sent and accepted.
   1767   bool enable_early_data:1;
   1768 };
   1769 
   1770 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
   1771 struct SSL_PROTOCOL_METHOD {
   1772   bool is_dtls;
   1773   bool (*ssl_new)(SSL *ssl);
   1774   void (*ssl_free)(SSL *ssl);
   1775   // get_message sets |*out| to the current handshake message and returns true
   1776   // if one has been received. It returns false if more input is needed.
   1777   bool (*get_message)(SSL *ssl, SSLMessage *out);
   1778   // next_message is called to release the current handshake message.
   1779   void (*next_message)(SSL *ssl);
   1780   // Use the |ssl_open_handshake| wrapper.
   1781   ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
   1782                                       uint8_t *out_alert, Span<uint8_t> in);
   1783   // Use the |ssl_open_change_cipher_spec| wrapper.
   1784   ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
   1785                                                uint8_t *out_alert,
   1786                                                Span<uint8_t> in);
   1787   // Use the |ssl_open_app_data| wrapper.
   1788   ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
   1789                                      size_t *out_consumed, uint8_t *out_alert,
   1790                                      Span<uint8_t> in);
   1791   int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
   1792                         int len);
   1793   int (*dispatch_alert)(SSL *ssl);
   1794   // init_message begins a new handshake message of type |type|. |cbb| is the
   1795   // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
   1796   // the caller should write to. It returns true on success and false on error.
   1797   bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
   1798   // finish_message finishes a handshake message. It sets |*out_msg| to the
   1799   // serialized message. It returns true on success and false on error.
   1800   bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg);
   1801   // add_message adds a handshake message to the pending flight. It returns
   1802   // true on success and false on error.
   1803   bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
   1804   // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
   1805   // flight. It returns true on success and false on error.
   1806   bool (*add_change_cipher_spec)(SSL *ssl);
   1807   // add_alert adds an alert to the pending flight. It returns true on success
   1808   // and false on error.
   1809   bool (*add_alert)(SSL *ssl, uint8_t level, uint8_t desc);
   1810   // flush_flight flushes the pending flight to the transport. It returns one on
   1811   // success and <= 0 on error.
   1812   int (*flush_flight)(SSL *ssl);
   1813   // on_handshake_complete is called when the handshake is complete.
   1814   void (*on_handshake_complete)(SSL *ssl);
   1815   // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns
   1816   // true on success and false if changing the read state is forbidden at this
   1817   // point.
   1818   bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
   1819   // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns
   1820   // true on success and false if changing the write state is forbidden at this
   1821   // point.
   1822   bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
   1823 };
   1824 
   1825 // The following wrappers call |open_*| but handle |read_shutdown| correctly.
   1826 
   1827 // ssl_open_handshake processes a record from |in| for reading a handshake
   1828 // message.
   1829 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
   1830                                      uint8_t *out_alert, Span<uint8_t> in);
   1831 
   1832 // ssl_open_change_cipher_spec processes a record from |in| for reading a
   1833 // ChangeCipherSpec.
   1834 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
   1835                                               uint8_t *out_alert,
   1836                                               Span<uint8_t> in);
   1837 
   1838 // ssl_open_app_data processes a record from |in| for reading application data.
   1839 // On success, it returns |ssl_open_record_success| and sets |*out| to the
   1840 // input. If it encounters a post-handshake message, it returns
   1841 // |ssl_open_record_discard|. The caller should then retry, after processing any
   1842 // messages received with |get_message|.
   1843 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
   1844                                     size_t *out_consumed, uint8_t *out_alert,
   1845                                     Span<uint8_t> in);
   1846 
   1847 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
   1848 // crypto/x509.
   1849 extern const SSL_X509_METHOD ssl_crypto_x509_method;
   1850 
   1851 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
   1852 // crypto/x509.
   1853 extern const SSL_X509_METHOD ssl_noop_x509_method;
   1854 
   1855 // ssl_cipher_preference_list_st contains a list of SSL_CIPHERs with
   1856 // equal-preference groups. For TLS clients, the groups are moot because the
   1857 // server picks the cipher and groups cannot be expressed on the wire. However,
   1858 // for servers, the equal-preference groups allow the client's preferences to
   1859 // be partially respected. (This only has an effect with
   1860 // SSL_OP_CIPHER_SERVER_PREFERENCE).
   1861 //
   1862 // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
   1863 // All elements of a group have the same priority: no ordering is expressed
   1864 // within a group.
   1865 //
   1866 // The values in |ciphers| are in one-to-one correspondence with
   1867 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
   1868 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
   1869 // indicate that the corresponding SSL_CIPHER is not the last element of a
   1870 // group, or 0 to indicate that it is.
   1871 //
   1872 // For example, if |in_group_flags| contains all zeros then that indicates a
   1873 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
   1874 // of the group (i.e. they are all in a one-element group).
   1875 //
   1876 // For a more complex example, consider:
   1877 //   ciphers:        A  B  C  D  E  F
   1878 //   in_group_flags: 1  1  0  0  1  0
   1879 //
   1880 // That would express the following, order:
   1881 //
   1882 //    A         E
   1883 //    B -> D -> F
   1884 //    C
   1885 struct ssl_cipher_preference_list_st {
   1886   STACK_OF(SSL_CIPHER) *ciphers;
   1887   uint8_t *in_group_flags;
   1888 };
   1889 
   1890 struct tlsext_ticket_key {
   1891   static constexpr bool kAllowUniquePtr = true;
   1892 
   1893   uint8_t name[SSL_TICKET_KEY_NAME_LEN];
   1894   uint8_t hmac_key[16];
   1895   uint8_t aes_key[16];
   1896   // next_rotation_tv_sec is the time (in seconds from the epoch) when the
   1897   // current key should be superseded by a new key, or the time when a previous
   1898   // key should be dropped. If zero, then the key should not be automatically
   1899   // rotated.
   1900   uint64_t next_rotation_tv_sec;
   1901 };
   1902 
   1903 }  // namespace bssl
   1904 
   1905 DECLARE_LHASH_OF(SSL_SESSION)
   1906 
   1907 namespace bssl {
   1908 
   1909 // SSLContext backs the public |SSL_CTX| type. Due to compatibility constraints,
   1910 // it is a base class for |ssl_ctx_st|.
   1911 struct SSLContext {
   1912   const SSL_PROTOCOL_METHOD *method;
   1913   const SSL_X509_METHOD *x509_method;
   1914 
   1915   // lock is used to protect various operations on this object.
   1916   CRYPTO_MUTEX lock;
   1917 
   1918   // conf_max_version is the maximum acceptable protocol version configured by
   1919   // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
   1920   // and is further constrainted by |SSL_OP_NO_*|.
   1921   uint16_t conf_max_version;
   1922 
   1923   // conf_min_version is the minimum acceptable protocol version configured by
   1924   // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
   1925   // and is further constrainted by |SSL_OP_NO_*|.
   1926   uint16_t conf_min_version;
   1927 
   1928   // tls13_variant is the variant of TLS 1.3 we are using for this
   1929   // configuration.
   1930   enum tls13_variant_t tls13_variant;
   1931 
   1932   struct ssl_cipher_preference_list_st *cipher_list;
   1933 
   1934   X509_STORE *cert_store;
   1935   LHASH_OF(SSL_SESSION) *sessions;
   1936   // Most session-ids that will be cached, default is
   1937   // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
   1938   unsigned long session_cache_size;
   1939   SSL_SESSION *session_cache_head;
   1940   SSL_SESSION *session_cache_tail;
   1941 
   1942   // handshakes_since_cache_flush is the number of successful handshakes since
   1943   // the last cache flush.
   1944   int handshakes_since_cache_flush;
   1945 
   1946   // This can have one of 2 values, ored together,
   1947   // SSL_SESS_CACHE_CLIENT,
   1948   // SSL_SESS_CACHE_SERVER,
   1949   // Default is SSL_SESSION_CACHE_SERVER, which means only
   1950   // SSL_accept which cache SSL_SESSIONS.
   1951   int session_cache_mode;
   1952 
   1953   // session_timeout is the default lifetime for new sessions in TLS 1.2 and
   1954   // earlier, in seconds.
   1955   uint32_t session_timeout;
   1956 
   1957   // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
   1958   // 1.3, in seconds.
   1959   uint32_t session_psk_dhe_timeout;
   1960 
   1961   // If this callback is not null, it will be called each time a session id is
   1962   // added to the cache.  If this function returns 1, it means that the
   1963   // callback will do a SSL_SESSION_free() when it has finished using it.
   1964   // Otherwise, on 0, it means the callback has finished with it. If
   1965   // remove_session_cb is not null, it will be called when a session-id is
   1966   // removed from the cache.  After the call, OpenSSL will SSL_SESSION_free()
   1967   // it.
   1968   int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess);
   1969   void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess);
   1970   SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
   1971                                  int *copy);
   1972   SSL_SESSION *(*get_session_cb_legacy)(SSL *ssl, uint8_t *data, int len,
   1973                                         int *copy);
   1974 
   1975   CRYPTO_refcount_t references;
   1976 
   1977   // if defined, these override the X509_verify_cert() calls
   1978   int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg);
   1979   void *app_verify_arg;
   1980 
   1981   enum ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
   1982                                                      uint8_t *out_alert);
   1983 
   1984   // Default password callback.
   1985   pem_password_cb *default_passwd_callback;
   1986 
   1987   // Default password callback user data.
   1988   void *default_passwd_callback_userdata;
   1989 
   1990   // get client cert callback
   1991   int (*client_cert_cb)(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey);
   1992 
   1993   // get channel id callback
   1994   void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey);
   1995 
   1996   CRYPTO_EX_DATA ex_data;
   1997 
   1998   // custom_*_extensions stores any callback sets for custom extensions. Note
   1999   // that these pointers will be NULL if the stack would otherwise be empty.
   2000   STACK_OF(SSL_CUSTOM_EXTENSION) *client_custom_extensions;
   2001   STACK_OF(SSL_CUSTOM_EXTENSION) *server_custom_extensions;
   2002 
   2003   // Default values used when no per-SSL value is defined follow
   2004 
   2005   void (*info_callback)(const SSL *ssl, int type, int value);
   2006 
   2007   // what we put in client cert requests
   2008   STACK_OF(CRYPTO_BUFFER) *client_CA;
   2009 
   2010   // cached_x509_client_CA is a cache of parsed versions of the elements of
   2011   // |client_CA|.
   2012   STACK_OF(X509_NAME) *cached_x509_client_CA;
   2013 
   2014 
   2015   // Default values to use in SSL structures follow (these are copied by
   2016   // SSL_new)
   2017 
   2018   uint32_t options;
   2019   uint32_t mode;
   2020   uint32_t max_cert_list;
   2021 
   2022   CERT *cert;
   2023 
   2024   // callback that allows applications to peek at protocol messages
   2025   void (*msg_callback)(int write_p, int version, int content_type,
   2026                        const void *buf, size_t len, SSL *ssl, void *arg);
   2027   void *msg_callback_arg;
   2028 
   2029   int verify_mode;
   2030   int (*default_verify_callback)(
   2031       int ok, X509_STORE_CTX *ctx);  // called 'verify_callback' in the SSL
   2032 
   2033   X509_VERIFY_PARAM *param;
   2034 
   2035   // select_certificate_cb is called before most ClientHello processing and
   2036   // before the decision whether to resume a session is made. See
   2037   // |ssl_select_cert_result_t| for details of the return values.
   2038   enum ssl_select_cert_result_t (*select_certificate_cb)(
   2039       const SSL_CLIENT_HELLO *);
   2040 
   2041   // dos_protection_cb is called once the resumption decision for a ClientHello
   2042   // has been made. It returns one to continue the handshake or zero to
   2043   // abort.
   2044   int (*dos_protection_cb) (const SSL_CLIENT_HELLO *);
   2045 
   2046   // Maximum amount of data to send in one fragment. actual record size can be
   2047   // more than this due to padding and MAC overheads.
   2048   uint16_t max_send_fragment;
   2049 
   2050   // TLS extensions servername callback
   2051   int (*tlsext_servername_callback)(SSL *, int *, void *);
   2052   void *tlsext_servername_arg;
   2053 
   2054   // RFC 4507 session ticket keys. |tlsext_ticket_key_current| may be NULL
   2055   // before the first handshake and |tlsext_ticket_key_prev| may be NULL at any
   2056   // time. Automatically generated ticket keys are rotated as needed at
   2057   // handshake time. Hence, all access must be synchronized through |lock|.
   2058   struct tlsext_ticket_key *tlsext_ticket_key_current;
   2059   struct tlsext_ticket_key *tlsext_ticket_key_prev;
   2060 
   2061   // Callback to support customisation of ticket key setting
   2062   int (*tlsext_ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
   2063                               EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc);
   2064 
   2065   // Server-only: psk_identity_hint is the default identity hint to send in
   2066   // PSK-based key exchanges.
   2067   char *psk_identity_hint;
   2068 
   2069   unsigned int (*psk_client_callback)(SSL *ssl, const char *hint,
   2070                                       char *identity,
   2071                                       unsigned int max_identity_len,
   2072                                       uint8_t *psk, unsigned int max_psk_len);
   2073   unsigned int (*psk_server_callback)(SSL *ssl, const char *identity,
   2074                                       uint8_t *psk, unsigned int max_psk_len);
   2075 
   2076 
   2077   // Next protocol negotiation information
   2078   // (for experimental NPN extension).
   2079 
   2080   // For a server, this contains a callback function by which the set of
   2081   // advertised protocols can be provided.
   2082   int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
   2083                                    unsigned *out_len, void *arg);
   2084   void *next_protos_advertised_cb_arg;
   2085   // For a client, this contains a callback function that selects the
   2086   // next protocol from the list provided by the server.
   2087   int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
   2088                               const uint8_t *in, unsigned in_len, void *arg);
   2089   void *next_proto_select_cb_arg;
   2090 
   2091   // ALPN information
   2092   // (we are in the process of transitioning from NPN to ALPN.)
   2093 
   2094   // For a server, this contains a callback function that allows the
   2095   // server to select the protocol for the connection.
   2096   //   out: on successful return, this must point to the raw protocol
   2097   //        name (without the length prefix).
   2098   //   outlen: on successful return, this contains the length of |*out|.
   2099   //   in: points to the client's list of supported protocols in
   2100   //       wire-format.
   2101   //   inlen: the length of |in|.
   2102   int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
   2103                         const uint8_t *in, unsigned in_len, void *arg);
   2104   void *alpn_select_cb_arg;
   2105 
   2106   // For a client, this contains the list of supported protocols in wire
   2107   // format.
   2108   uint8_t *alpn_client_proto_list;
   2109   unsigned alpn_client_proto_list_len;
   2110 
   2111   // SRTP profiles we are willing to do from RFC 5764
   2112   STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles;
   2113 
   2114   // Supported group values inherited by SSL structure
   2115   size_t supported_group_list_len;
   2116   uint16_t *supported_group_list;
   2117 
   2118   // The client's Channel ID private key.
   2119   EVP_PKEY *tlsext_channel_id_private;
   2120 
   2121   // keylog_callback, if not NULL, is the key logging callback. See
   2122   // |SSL_CTX_set_keylog_callback|.
   2123   void (*keylog_callback)(const SSL *ssl, const char *line);
   2124 
   2125   // current_time_cb, if not NULL, is the function to use to get the current
   2126   // time. It sets |*out_clock| to the current time. The |ssl| argument is
   2127   // always NULL. See |SSL_CTX_set_current_time_cb|.
   2128   void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock);
   2129 
   2130   // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
   2131   // memory.
   2132   CRYPTO_BUFFER_POOL *pool;
   2133 
   2134   // ticket_aead_method contains function pointers for opening and sealing
   2135   // session tickets.
   2136   const SSL_TICKET_AEAD_METHOD *ticket_aead_method;
   2137 
   2138   // verify_sigalgs, if not empty, is the set of signature algorithms
   2139   // accepted from the peer in decreasing order of preference.
   2140   uint16_t *verify_sigalgs;
   2141   size_t num_verify_sigalgs;
   2142 
   2143   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
   2144   // hash of the peer's certificate and then discard it to save memory and
   2145   // session space. Only effective on the server side.
   2146   bool retain_only_sha256_of_client_certs:1;
   2147 
   2148   // quiet_shutdown is true if the connection should not send a close_notify on
   2149   // shutdown.
   2150   bool quiet_shutdown:1;
   2151 
   2152   // ocsp_stapling_enabled is only used by client connections and indicates
   2153   // whether OCSP stapling will be requested.
   2154   bool ocsp_stapling_enabled:1;
   2155 
   2156   // If true, a client will request certificate timestamps.
   2157   bool signed_cert_timestamps_enabled:1;
   2158 
   2159   // tlsext_channel_id_enabled is whether Channel ID is enabled. For a server,
   2160   // means that we'll accept Channel IDs from clients.  For a client, means that
   2161   // we'll advertise support.
   2162   bool tlsext_channel_id_enabled:1;
   2163 
   2164   // grease_enabled is whether draft-davidben-tls-grease-01 is enabled.
   2165   bool grease_enabled:1;
   2166 
   2167   // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
   2168   // protocols from the peer.
   2169   bool allow_unknown_alpn_protos:1;
   2170 
   2171   // ed25519_enabled is whether Ed25519 is advertised in the handshake.
   2172   bool ed25519_enabled:1;
   2173 
   2174   // false_start_allowed_without_alpn is whether False Start (if
   2175   // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
   2176   bool false_start_allowed_without_alpn:1;
   2177 
   2178   // handoff indicates that a server should stop after receiving the
   2179   // ClientHello and pause the handshake in such a way that |SSL_get_error|
   2180   // returns |SSL_HANDOFF|.
   2181   bool handoff:1;
   2182 };
   2183 
   2184 // An ssl_shutdown_t describes the shutdown state of one end of the connection,
   2185 // whether it is alive or has been shutdown via close_notify or fatal alert.
   2186 enum ssl_shutdown_t {
   2187   ssl_shutdown_none = 0,
   2188   ssl_shutdown_close_notify = 1,
   2189   ssl_shutdown_error = 2,
   2190 };
   2191 
   2192 struct SSL3_STATE {
   2193   static constexpr bool kAllowUniquePtr = true;
   2194 
   2195   SSL3_STATE();
   2196   ~SSL3_STATE();
   2197 
   2198   uint8_t read_sequence[8] = {0};
   2199   uint8_t write_sequence[8] = {0};
   2200 
   2201   uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
   2202   uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
   2203 
   2204   // read_buffer holds data from the transport to be processed.
   2205   SSLBuffer read_buffer;
   2206   // write_buffer holds data to be written to the transport.
   2207   SSLBuffer write_buffer;
   2208 
   2209   // pending_app_data is the unconsumed application data. It points into
   2210   // |read_buffer|.
   2211   Span<uint8_t> pending_app_data;
   2212 
   2213   // partial write - check the numbers match
   2214   unsigned int wnum = 0;  // number of bytes sent so far
   2215   int wpend_tot = 0;      // number bytes written
   2216   int wpend_type = 0;
   2217   int wpend_ret = 0;  // number of bytes submitted
   2218   const uint8_t *wpend_buf = nullptr;
   2219 
   2220   // read_shutdown is the shutdown state for the read half of the connection.
   2221   enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
   2222 
   2223   // write_shutdown is the shutdown state for the write half of the connection.
   2224   enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
   2225 
   2226   // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
   2227   // the receive half of the connection.
   2228   UniquePtr<ERR_SAVE_STATE> read_error;
   2229 
   2230   int alert_dispatch = 0;
   2231 
   2232   int total_renegotiations = 0;
   2233 
   2234   // This holds a variable that indicates what we were doing when a 0 or -1 is
   2235   // returned.  This is needed for non-blocking IO so we know what request
   2236   // needs re-doing when in SSL_accept or SSL_connect
   2237   int rwstate = SSL_NOTHING;
   2238 
   2239   // early_data_skipped is the amount of early data that has been skipped by the
   2240   // record layer.
   2241   uint16_t early_data_skipped = 0;
   2242 
   2243   // empty_record_count is the number of consecutive empty records received.
   2244   uint8_t empty_record_count = 0;
   2245 
   2246   // warning_alert_count is the number of consecutive warning alerts
   2247   // received.
   2248   uint8_t warning_alert_count = 0;
   2249 
   2250   // key_update_count is the number of consecutive KeyUpdates received.
   2251   uint8_t key_update_count = 0;
   2252 
   2253   // skip_early_data instructs the record layer to skip unexpected early data
   2254   // messages when 0RTT is rejected.
   2255   bool skip_early_data:1;
   2256 
   2257   // have_version is true if the connection's final version is known. Otherwise
   2258   // the version has not been negotiated yet.
   2259   bool have_version:1;
   2260 
   2261   // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
   2262   // and future messages should use the record layer.
   2263   bool v2_hello_done:1;
   2264 
   2265   // is_v2_hello is true if the current handshake message was derived from a
   2266   // V2ClientHello rather than received from the peer directly.
   2267   bool is_v2_hello:1;
   2268 
   2269   // has_message is true if the current handshake message has been returned
   2270   // at least once by |get_message| and false otherwise.
   2271   bool has_message:1;
   2272 
   2273   // initial_handshake_complete is true if the initial handshake has
   2274   // completed.
   2275   bool initial_handshake_complete:1;
   2276 
   2277   // session_reused indicates whether a session was resumed.
   2278   bool session_reused:1;
   2279 
   2280   bool send_connection_binding:1;
   2281 
   2282   // In a client, this means that the server supported Channel ID and that a
   2283   // Channel ID was sent. In a server it means that we echoed support for
   2284   // Channel IDs and that tlsext_channel_id will be valid after the
   2285   // handshake.
   2286   bool tlsext_channel_id_valid:1;
   2287 
   2288   // key_update_pending is true if we have a KeyUpdate acknowledgment
   2289   // outstanding.
   2290   bool key_update_pending:1;
   2291 
   2292   // wpend_pending is true if we have a pending write outstanding.
   2293   bool wpend_pending:1;
   2294 
   2295   // early_data_accepted is true if early data was accepted by the server.
   2296   bool early_data_accepted:1;
   2297 
   2298   // draft_downgrade is whether the TLS 1.3 anti-downgrade logic would have
   2299   // fired, were it not a draft.
   2300   bool draft_downgrade:1;
   2301 
   2302   // hs_buf is the buffer of handshake data to process.
   2303   UniquePtr<BUF_MEM> hs_buf;
   2304 
   2305   // pending_flight is the pending outgoing flight. This is used to flush each
   2306   // handshake flight in a single write. |write_buffer| must be written out
   2307   // before this data.
   2308   UniquePtr<BUF_MEM> pending_flight;
   2309 
   2310   // pending_flight_offset is the number of bytes of |pending_flight| which have
   2311   // been successfully written.
   2312   uint32_t pending_flight_offset = 0;
   2313 
   2314   // ticket_age_skew is the difference, in seconds, between the client-sent
   2315   // ticket age and the server-computed value in TLS 1.3 server connections
   2316   // which resumed a session.
   2317   int32_t ticket_age_skew = 0;
   2318 
   2319   // aead_read_ctx is the current read cipher state.
   2320   UniquePtr<SSLAEADContext> aead_read_ctx;
   2321 
   2322   // aead_write_ctx is the current write cipher state.
   2323   UniquePtr<SSLAEADContext> aead_write_ctx;
   2324 
   2325   // hs is the handshake state for the current handshake or NULL if there isn't
   2326   // one.
   2327   UniquePtr<SSL_HANDSHAKE> hs;
   2328 
   2329   uint8_t write_traffic_secret[EVP_MAX_MD_SIZE] = {0};
   2330   uint8_t read_traffic_secret[EVP_MAX_MD_SIZE] = {0};
   2331   uint8_t exporter_secret[EVP_MAX_MD_SIZE] = {0};
   2332   uint8_t early_exporter_secret[EVP_MAX_MD_SIZE] = {0};
   2333   uint8_t write_traffic_secret_len = 0;
   2334   uint8_t read_traffic_secret_len = 0;
   2335   uint8_t exporter_secret_len = 0;
   2336   uint8_t early_exporter_secret_len = 0;
   2337 
   2338   // Connection binding to prevent renegotiation attacks
   2339   uint8_t previous_client_finished[12] = {0};
   2340   uint8_t previous_client_finished_len = 0;
   2341   uint8_t previous_server_finished_len = 0;
   2342   uint8_t previous_server_finished[12] = {0};
   2343 
   2344   uint8_t send_alert[2] = {0};
   2345 
   2346   // established_session is the session established by the connection. This
   2347   // session is only filled upon the completion of the handshake and is
   2348   // immutable.
   2349   UniquePtr<SSL_SESSION> established_session;
   2350 
   2351   // Next protocol negotiation. For the client, this is the protocol that we
   2352   // sent in NextProtocol and is set when handling ServerHello extensions.
   2353   //
   2354   // For a server, this is the client's selected_protocol from NextProtocol and
   2355   // is set when handling the NextProtocol message, before the Finished
   2356   // message.
   2357   Array<uint8_t> next_proto_negotiated;
   2358 
   2359   // ALPN information
   2360   // (we are in the process of transitioning from NPN to ALPN.)
   2361 
   2362   // In a server these point to the selected ALPN protocol after the
   2363   // ClientHello has been processed. In a client these contain the protocol
   2364   // that the server selected once the ServerHello has been processed.
   2365   Array<uint8_t> alpn_selected;
   2366 
   2367   // hostname, on the server, is the value of the SNI extension.
   2368   UniquePtr<char> hostname;
   2369 
   2370   // For a server:
   2371   //     If |tlsext_channel_id_valid| is true, then this contains the
   2372   //     verified Channel ID from the client: a P256 point, (x,y), where
   2373   //     each are big-endian values.
   2374   uint8_t tlsext_channel_id[64] = {0};
   2375 
   2376   // Contains the QUIC transport params received by the peer.
   2377   Array<uint8_t> peer_quic_transport_params;
   2378 };
   2379 
   2380 // lengths of messages
   2381 #define DTLS1_COOKIE_LENGTH 256
   2382 
   2383 #define DTLS1_RT_HEADER_LENGTH 13
   2384 
   2385 #define DTLS1_HM_HEADER_LENGTH 12
   2386 
   2387 #define DTLS1_CCS_HEADER_LENGTH 1
   2388 
   2389 #define DTLS1_AL_HEADER_LENGTH 2
   2390 
   2391 struct hm_header_st {
   2392   uint8_t type;
   2393   uint32_t msg_len;
   2394   uint16_t seq;
   2395   uint32_t frag_off;
   2396   uint32_t frag_len;
   2397 };
   2398 
   2399 // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
   2400 struct hm_fragment {
   2401   static constexpr bool kAllowUniquePtr = true;
   2402 
   2403   hm_fragment() {}
   2404   hm_fragment(const hm_fragment &) = delete;
   2405   hm_fragment &operator=(const hm_fragment &) = delete;
   2406 
   2407   ~hm_fragment();
   2408 
   2409   // type is the type of the message.
   2410   uint8_t type = 0;
   2411   // seq is the sequence number of this message.
   2412   uint16_t seq = 0;
   2413   // msg_len is the length of the message body.
   2414   uint32_t msg_len = 0;
   2415   // data is a pointer to the message, including message header. It has length
   2416   // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
   2417   uint8_t *data = nullptr;
   2418   // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
   2419   // the message have been received. It is NULL if the message is complete.
   2420   uint8_t *reassembly = nullptr;
   2421 };
   2422 
   2423 struct OPENSSL_timeval {
   2424   uint64_t tv_sec;
   2425   uint32_t tv_usec;
   2426 };
   2427 
   2428 struct DTLS1_STATE {
   2429   static constexpr bool kAllowUniquePtr = true;
   2430 
   2431   DTLS1_STATE();
   2432   ~DTLS1_STATE();
   2433 
   2434   // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
   2435   // the peer in this epoch.
   2436   bool has_change_cipher_spec:1;
   2437 
   2438   // outgoing_messages_complete is true if |outgoing_messages| has been
   2439   // completed by an attempt to flush it. Future calls to |add_message| and
   2440   // |add_change_cipher_spec| will start a new flight.
   2441   bool outgoing_messages_complete:1;
   2442 
   2443   // flight_has_reply is true if the current outgoing flight is complete and has
   2444   // processed at least one message. This is used to detect whether we or the
   2445   // peer sent the final flight.
   2446   bool flight_has_reply:1;
   2447 
   2448   uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0};
   2449   size_t cookie_len = 0;
   2450 
   2451   // The current data and handshake epoch.  This is initially undefined, and
   2452   // starts at zero once the initial handshake is completed.
   2453   uint16_t r_epoch = 0;
   2454   uint16_t w_epoch = 0;
   2455 
   2456   // records being received in the current epoch
   2457   DTLS1_BITMAP bitmap;
   2458 
   2459   uint16_t handshake_write_seq = 0;
   2460   uint16_t handshake_read_seq = 0;
   2461 
   2462   // save last sequence number for retransmissions
   2463   uint8_t last_write_sequence[8] = {0};
   2464   UniquePtr<SSLAEADContext> last_aead_write_ctx;
   2465 
   2466   // incoming_messages is a ring buffer of incoming handshake messages that have
   2467   // yet to be processed. The front of the ring buffer is message number
   2468   // |handshake_read_seq|, at position |handshake_read_seq| %
   2469   // |SSL_MAX_HANDSHAKE_FLIGHT|.
   2470   UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
   2471 
   2472   // outgoing_messages is the queue of outgoing messages from the last handshake
   2473   // flight.
   2474   DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
   2475   uint8_t outgoing_messages_len = 0;
   2476 
   2477   // outgoing_written is the number of outgoing messages that have been
   2478   // written.
   2479   uint8_t outgoing_written = 0;
   2480   // outgoing_offset is the number of bytes of the next outgoing message have
   2481   // been written.
   2482   uint32_t outgoing_offset = 0;
   2483 
   2484   unsigned mtu = 0;  // max DTLS packet size
   2485 
   2486   // num_timeouts is the number of times the retransmit timer has fired since
   2487   // the last time it was reset.
   2488   unsigned num_timeouts = 0;
   2489 
   2490   // Indicates when the last handshake msg or heartbeat sent will
   2491   // timeout.
   2492   struct OPENSSL_timeval next_timeout = {0, 0};
   2493 
   2494   // timeout_duration_ms is the timeout duration in milliseconds.
   2495   unsigned timeout_duration_ms = 0;
   2496 };
   2497 
   2498 // SSLConnection backs the public |SSL| type. Due to compatibility constraints,
   2499 // it is a base class for |ssl_st|.
   2500 struct SSLConnection {
   2501   // method is the method table corresponding to the current protocol (DTLS or
   2502   // TLS).
   2503   const SSL_PROTOCOL_METHOD *method;
   2504 
   2505   // version is the protocol version.
   2506   uint16_t version;
   2507 
   2508   // conf_max_version is the maximum acceptable protocol version configured by
   2509   // |SSL_set_max_proto_version|. Note this version is normalized in DTLS and is
   2510   // further constrainted by |SSL_OP_NO_*|.
   2511   uint16_t conf_max_version;
   2512 
   2513   // conf_min_version is the minimum acceptable protocol version configured by
   2514   // |SSL_set_min_proto_version|. Note this version is normalized in DTLS and is
   2515   // further constrainted by |SSL_OP_NO_*|.
   2516   uint16_t conf_min_version;
   2517 
   2518   uint16_t max_send_fragment;
   2519 
   2520   // There are 2 BIO's even though they are normally both the same. This is so
   2521   // data can be read and written to different handlers
   2522 
   2523   BIO *rbio;  // used by SSL_read
   2524   BIO *wbio;  // used by SSL_write
   2525 
   2526   // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
   2527   // Otherwise, it returns a value corresponding to what operation is needed to
   2528   // progress.
   2529   enum ssl_hs_wait_t (*do_handshake)(SSL_HANDSHAKE *hs);
   2530 
   2531   SSL3_STATE *s3;   // SSLv3 variables
   2532   DTLS1_STATE *d1;  // DTLSv1 variables
   2533 
   2534   // callback that allows applications to peek at protocol messages
   2535   void (*msg_callback)(int write_p, int version, int content_type,
   2536                        const void *buf, size_t len, SSL *ssl, void *arg);
   2537   void *msg_callback_arg;
   2538 
   2539   X509_VERIFY_PARAM *param;
   2540 
   2541   // crypto
   2542   struct ssl_cipher_preference_list_st *cipher_list;
   2543 
   2544   // session info
   2545 
   2546   // This is used to hold the local certificate used (i.e. the server
   2547   // certificate for a server or the client certificate for a client).
   2548   CERT *cert;
   2549 
   2550   // initial_timeout_duration_ms is the default DTLS timeout duration in
   2551   // milliseconds. It's used to initialize the timer any time it's restarted.
   2552   unsigned initial_timeout_duration_ms;
   2553 
   2554   // tls13_variant is the variant of TLS 1.3 we are using for this
   2555   // configuration.
   2556   enum tls13_variant_t tls13_variant;
   2557 
   2558   // session is the configured session to be offered by the client. This session
   2559   // is immutable.
   2560   SSL_SESSION *session;
   2561 
   2562   int (*verify_callback)(int ok,
   2563                          X509_STORE_CTX *ctx);  // fail if callback returns 0
   2564 
   2565   enum ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
   2566                                                      uint8_t *out_alert);
   2567 
   2568   void (*info_callback)(const SSL *ssl, int type, int value);
   2569 
   2570   // Server-only: psk_identity_hint is the identity hint to send in
   2571   // PSK-based key exchanges.
   2572   char *psk_identity_hint;
   2573 
   2574   unsigned int (*psk_client_callback)(SSL *ssl, const char *hint,
   2575                                       char *identity,
   2576                                       unsigned int max_identity_len,
   2577                                       uint8_t *psk, unsigned int max_psk_len);
   2578   unsigned int (*psk_server_callback)(SSL *ssl, const char *identity,
   2579                                       uint8_t *psk, unsigned int max_psk_len);
   2580 
   2581   SSL_CTX *ctx;
   2582 
   2583   // extra application data
   2584   CRYPTO_EX_DATA ex_data;
   2585 
   2586   // for server side, keep the list of CA_dn we can use
   2587   STACK_OF(CRYPTO_BUFFER) *client_CA;
   2588 
   2589   // cached_x509_client_CA is a cache of parsed versions of the elements of
   2590   // |client_CA|.
   2591   STACK_OF(X509_NAME) *cached_x509_client_CA;
   2592 
   2593   uint32_t options;  // protocol behaviour
   2594   uint32_t mode;     // API behaviour
   2595   uint32_t max_cert_list;
   2596   uint16_t dummy_pq_padding_len;
   2597   char *tlsext_hostname;
   2598   size_t supported_group_list_len;
   2599   uint16_t *supported_group_list;  // our list
   2600 
   2601   // session_ctx is the |SSL_CTX| used for the session cache and related
   2602   // settings.
   2603   SSL_CTX *session_ctx;
   2604 
   2605   // srtp_profiles is the list of configured SRTP protection profiles for
   2606   // DTLS-SRTP.
   2607   STACK_OF(SRTP_PROTECTION_PROFILE) *srtp_profiles;
   2608 
   2609   // srtp_profile is the selected SRTP protection profile for
   2610   // DTLS-SRTP.
   2611   const SRTP_PROTECTION_PROFILE *srtp_profile;
   2612 
   2613   // The client's Channel ID private key.
   2614   EVP_PKEY *tlsext_channel_id_private;
   2615 
   2616   // For a client, this contains the list of supported protocols in wire
   2617   // format.
   2618   uint8_t *alpn_client_proto_list;
   2619   unsigned alpn_client_proto_list_len;
   2620 
   2621   // Contains a list of supported Token Binding key parameters.
   2622   uint8_t *token_binding_params;
   2623   size_t token_binding_params_len;
   2624 
   2625   // The negotiated Token Binding key parameter. Only valid if
   2626   // |token_binding_negotiated| is set.
   2627   uint8_t negotiated_token_binding_param;
   2628 
   2629   // Contains the QUIC transport params that this endpoint will send.
   2630   uint8_t *quic_transport_params;
   2631   size_t quic_transport_params_len;
   2632 
   2633   // renegotiate_mode controls how peer renegotiation attempts are handled.
   2634   enum ssl_renegotiate_mode_t renegotiate_mode;
   2635 
   2636   // verify_mode is a bitmask of |SSL_VERIFY_*| values.
   2637   uint8_t verify_mode;
   2638 
   2639   // server is true iff the this SSL* is the server half. Note: before the SSL*
   2640   // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
   2641   // the side is not determined. In this state, server is always false.
   2642   bool server:1;
   2643 
   2644   // quiet_shutdown is true if the connection should not send a close_notify on
   2645   // shutdown.
   2646   bool quiet_shutdown:1;
   2647 
   2648   // Enable signed certificate time stamps. Currently client only.
   2649   bool signed_cert_timestamps_enabled:1;
   2650 
   2651   // ocsp_stapling_enabled is only used by client connections and indicates
   2652   // whether OCSP stapling will be requested.
   2653   bool ocsp_stapling_enabled:1;
   2654 
   2655   // tlsext_channel_id_enabled is copied from the |SSL_CTX|. For a server,
   2656   // means that we'll accept Channel IDs from clients. For a client, means that
   2657   // we'll advertise support.
   2658   bool tlsext_channel_id_enabled:1;
   2659 
   2660   // token_binding_negotiated is set if Token Binding was negotiated.
   2661   bool token_binding_negotiated:1;
   2662 
   2663   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
   2664   // hash of the peer's certificate and then discard it to save memory and
   2665   // session space. Only effective on the server side.
   2666   bool retain_only_sha256_of_client_certs:1;
   2667 
   2668   // handoff indicates that a server should stop after receiving the
   2669   // ClientHello and pause the handshake in such a way that |SSL_get_error|
   2670   // returns |SSL_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
   2671   // element of the same name and may be cleared if the handoff is declined.
   2672   bool handoff:1;
   2673 };
   2674 
   2675 // From draft-ietf-tls-tls13-18, used in determining PSK modes.
   2676 #define SSL_PSK_DHE_KE 0x1
   2677 
   2678 // From draft-ietf-tls-tls13-16, used in determining whether to respond with a
   2679 // KeyUpdate.
   2680 #define SSL_KEY_UPDATE_NOT_REQUESTED 0
   2681 #define SSL_KEY_UPDATE_REQUESTED 1
   2682 
   2683 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
   2684 // data that will be accepted. This value should be slightly below
   2685 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
   2686 static const size_t kMaxEarlyDataAccepted = 14336;
   2687 
   2688 CERT *ssl_cert_new(const SSL_X509_METHOD *x509_method);
   2689 CERT *ssl_cert_dup(CERT *cert);
   2690 void ssl_cert_clear_certs(CERT *cert);
   2691 void ssl_cert_free(CERT *cert);
   2692 int ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
   2693 int ssl_is_key_type_supported(int key_type);
   2694 // ssl_compare_public_and_private_key returns one if |pubkey| is the public
   2695 // counterpart to |privkey|. Otherwise it returns zero and pushes a helpful
   2696 // message on the error queue.
   2697 int ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
   2698                                        const EVP_PKEY *privkey);
   2699 int ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey);
   2700 int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server);
   2701 int ssl_encrypt_ticket(SSL *ssl, CBB *out, const SSL_SESSION *session);
   2702 int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
   2703 
   2704 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
   2705 // error.
   2706 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
   2707 
   2708 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
   2709 // the parsed data.
   2710 UniquePtr<SSL_SESSION> SSL_SESSION_parse(CBS *cbs,
   2711                                          const SSL_X509_METHOD *x509_method,
   2712                                          CRYPTO_BUFFER_POOL *pool);
   2713 
   2714 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
   2715 // session for Session-ID resumption. It returns one on success and zero on
   2716 // error.
   2717 int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
   2718 
   2719 // ssl_session_is_context_valid returns one if |session|'s session ID context
   2720 // matches the one set on |ssl| and zero otherwise.
   2721 int ssl_session_is_context_valid(const SSL *ssl, const SSL_SESSION *session);
   2722 
   2723 // ssl_session_is_time_valid returns one if |session| is still valid and zero if
   2724 // it has expired.
   2725 int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
   2726 
   2727 // ssl_session_is_resumable returns one if |session| is resumable for |hs| and
   2728 // zero otherwise.
   2729 int ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
   2730                              const SSL_SESSION *session);
   2731 
   2732 // ssl_session_protocol_version returns the protocol version associated with
   2733 // |session|. Note that despite the name, this is not the same as
   2734 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
   2735 uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
   2736 
   2737 // ssl_session_get_digest returns the digest used in |session|.
   2738 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
   2739 
   2740 void ssl_set_session(SSL *ssl, SSL_SESSION *session);
   2741 
   2742 // ssl_get_prev_session looks up the previous session based on |client_hello|.
   2743 // On success, it sets |*out_session| to the session or nullptr if none was
   2744 // found. If the session could not be looked up synchronously, it returns
   2745 // |ssl_hs_pending_session| and should be called again. If a ticket could not be
   2746 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
   2747 // be called again. Otherwise, it returns |ssl_hs_error|.
   2748 enum ssl_hs_wait_t ssl_get_prev_session(SSL *ssl,
   2749                                         UniquePtr<SSL_SESSION> *out_session,
   2750                                         bool *out_tickets_supported,
   2751                                         bool *out_renew_ticket,
   2752                                         const SSL_CLIENT_HELLO *client_hello);
   2753 
   2754 // The following flags determine which parts of the session are duplicated.
   2755 #define SSL_SESSION_DUP_AUTH_ONLY 0x0
   2756 #define SSL_SESSION_INCLUDE_TICKET 0x1
   2757 #define SSL_SESSION_INCLUDE_NONAUTH 0x2
   2758 #define SSL_SESSION_DUP_ALL \
   2759   (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
   2760 
   2761 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
   2762 // fields in |session| or nullptr on error. The new session is non-resumable and
   2763 // must be explicitly marked resumable once it has been filled in.
   2764 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
   2765                                                       int dup_flags);
   2766 
   2767 // ssl_session_rebase_time updates |session|'s start time to the current time,
   2768 // adjusting the timeout so the expiration time is unchanged.
   2769 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
   2770 
   2771 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
   2772 // |session|'s timeout to |timeout| (measured from the current time). The
   2773 // renewal is clamped to the session's auth_timeout.
   2774 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
   2775                                uint32_t timeout);
   2776 
   2777 void ssl_cipher_preference_list_free(
   2778     struct ssl_cipher_preference_list_st *cipher_list);
   2779 
   2780 // ssl_get_cipher_preferences returns the cipher preference list for TLS 1.2 and
   2781 // below.
   2782 const struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(
   2783     const SSL *ssl);
   2784 
   2785 void ssl_update_cache(SSL_HANDSHAKE *hs, int mode);
   2786 
   2787 int ssl_send_alert(SSL *ssl, int level, int desc);
   2788 bool ssl3_get_message(SSL *ssl, SSLMessage *out);
   2789 ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed,
   2790                                       uint8_t *out_alert, Span<uint8_t> in);
   2791 void ssl3_next_message(SSL *ssl);
   2792 
   2793 int ssl3_dispatch_alert(SSL *ssl);
   2794 ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out,
   2795                                      size_t *out_consumed, uint8_t *out_alert,
   2796                                      Span<uint8_t> in);
   2797 ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
   2798                                                uint8_t *out_alert,
   2799                                                Span<uint8_t> in);
   2800 int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
   2801                         int len);
   2802 
   2803 bool ssl3_new(SSL *ssl);
   2804 void ssl3_free(SSL *ssl);
   2805 
   2806 bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
   2807 bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
   2808 bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg);
   2809 bool ssl3_add_change_cipher_spec(SSL *ssl);
   2810 bool ssl3_add_alert(SSL *ssl, uint8_t level, uint8_t desc);
   2811 int ssl3_flush_flight(SSL *ssl);
   2812 
   2813 bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
   2814 bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
   2815 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
   2816 bool dtls1_add_change_cipher_spec(SSL *ssl);
   2817 bool dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc);
   2818 int dtls1_flush_flight(SSL *ssl);
   2819 
   2820 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
   2821 // the pending flight. It returns true on success and false on error.
   2822 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
   2823 
   2824 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
   2825 // on success and false on allocation failure.
   2826 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
   2827 
   2828 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
   2829                                       size_t *out_consumed, uint8_t *out_alert,
   2830                                       Span<uint8_t> in);
   2831 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
   2832                                                 uint8_t *out_alert,
   2833                                                 Span<uint8_t> in);
   2834 
   2835 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
   2836                          const uint8_t *buf, int len);
   2837 
   2838 // dtls1_write_record sends a record. It returns one on success and <= 0 on
   2839 // error.
   2840 int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len,
   2841                        enum dtls1_use_epoch_t use_epoch);
   2842 
   2843 int dtls1_retransmit_outgoing_messages(SSL *ssl);
   2844 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
   2845                          CBS *out_body);
   2846 bool dtls1_check_timeout_num(SSL *ssl);
   2847 
   2848 void dtls1_start_timer(SSL *ssl);
   2849 void dtls1_stop_timer(SSL *ssl);
   2850 bool dtls1_is_timer_expired(SSL *ssl);
   2851 unsigned int dtls1_min_mtu(void);
   2852 
   2853 bool dtls1_new(SSL *ssl);
   2854 void dtls1_free(SSL *ssl);
   2855 
   2856 bool dtls1_get_message(SSL *ssl, SSLMessage *out);
   2857 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
   2858                                        uint8_t *out_alert, Span<uint8_t> in);
   2859 void dtls1_next_message(SSL *ssl);
   2860 int dtls1_dispatch_alert(SSL *ssl);
   2861 
   2862 // tls1_configure_aead configures either the read or write direction AEAD (as
   2863 // determined by |direction|) using the keys generated by the TLS KDF. The
   2864 // |key_block_cache| argument is used to store the generated key block, if
   2865 // empty. Otherwise it's assumed that the key block is already contained within
   2866 // it. Returns one on success or zero on error.
   2867 int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
   2868                         Array<uint8_t> *key_block_cache,
   2869                         const SSL_CIPHER *cipher,
   2870                         Span<const uint8_t> iv_override);
   2871 
   2872 int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction);
   2873 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
   2874                                 Span<const uint8_t> premaster);
   2875 
   2876 // tls1_get_grouplist returns the locally-configured group preference list.
   2877 Span<const uint16_t> tls1_get_grouplist(const SSL *ssl);
   2878 
   2879 // tls1_check_group_id returns one if |group_id| is consistent with
   2880 // locally-configured group preferences.
   2881 int tls1_check_group_id(const SSL *ssl, uint16_t group_id);
   2882 
   2883 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
   2884 // group between client and server preferences and returns one. If none may be
   2885 // found, it returns zero.
   2886 int tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
   2887 
   2888 // tls1_set_curves converts the array of |ncurves| NIDs pointed to by |curves|
   2889 // into a newly allocated array of TLS group IDs. On success, the function
   2890 // returns one and writes the array to |*out_group_ids| and its size to
   2891 // |*out_group_ids_len|. Otherwise, it returns zero.
   2892 int tls1_set_curves(uint16_t **out_group_ids, size_t *out_group_ids_len,
   2893                     const int *curves, size_t ncurves);
   2894 
   2895 // tls1_set_curves_list converts the string of curves pointed to by |curves|
   2896 // into a newly allocated array of TLS group IDs. On success, the function
   2897 // returns one and writes the array to |*out_group_ids| and its size to
   2898 // |*out_group_ids_len|. Otherwise, it returns zero.
   2899 int tls1_set_curves_list(uint16_t **out_group_ids, size_t *out_group_ids_len,
   2900                          const char *curves);
   2901 
   2902 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It
   2903 // returns one on success and zero on failure. The |header_len| argument is the
   2904 // length of the ClientHello written so far and is used to compute the padding
   2905 // length. (It does not include the record header.)
   2906 int ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len);
   2907 
   2908 int ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
   2909 int ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
   2910                                  const SSL_CLIENT_HELLO *client_hello);
   2911 int ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs);
   2912 
   2913 #define tlsext_tick_md EVP_sha256
   2914 
   2915 // ssl_process_ticket processes a session ticket from the client. It returns
   2916 // one of:
   2917 //   |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
   2918 //       |*out_renew_ticket| is set to whether the ticket should be renewed.
   2919 //   |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
   2920 //       fresh ticket should be sent, but the given ticket cannot be used.
   2921 //   |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
   2922 //       Retry later.
   2923 //   |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
   2924 enum ssl_ticket_aead_result_t ssl_process_ticket(
   2925     SSL *ssl, UniquePtr<SSL_SESSION> *out_session, bool *out_renew_ticket,
   2926     const uint8_t *ticket, size_t ticket_len, const uint8_t *session_id,
   2927     size_t session_id_len);
   2928 
   2929 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
   2930 // the signature. If the key is valid, it saves the Channel ID and returns
   2931 // one. Otherwise, it returns zero.
   2932 int tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
   2933 
   2934 // tls1_write_channel_id generates a Channel ID message and puts the output in
   2935 // |cbb|. |ssl->tlsext_channel_id_private| must already be set before calling.
   2936 // This function returns true on success and false on error.
   2937 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
   2938 
   2939 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
   2940 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
   2941 // one on success and zero on failure.
   2942 int tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
   2943 
   2944 int tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
   2945 
   2946 // ssl_do_channel_id_callback checks runs |ssl->ctx->channel_id_cb| if
   2947 // necessary. It returns one on success and zero on fatal error. Note that, on
   2948 // success, |ssl->tlsext_channel_id_private| may be unset, in which case the
   2949 // operation should be retried later.
   2950 int ssl_do_channel_id_callback(SSL *ssl);
   2951 
   2952 // ssl_can_write returns one if |ssl| is allowed to write and zero otherwise.
   2953 int ssl_can_write(const SSL *ssl);
   2954 
   2955 // ssl_can_read returns one if |ssl| is allowed to read and zero otherwise.
   2956 int ssl_can_read(const SSL *ssl);
   2957 
   2958 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
   2959 void ssl_ctx_get_current_time(const SSL_CTX *ctx,
   2960                               struct OPENSSL_timeval *out_clock);
   2961 
   2962 // ssl_reset_error_state resets state for |SSL_get_error|.
   2963 void ssl_reset_error_state(SSL *ssl);
   2964 
   2965 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
   2966 // current state of the error queue.
   2967 void ssl_set_read_error(SSL* ssl);
   2968 
   2969 }  // namespace bssl
   2970 
   2971 
   2972 // Opaque C types.
   2973 //
   2974 // The following types are exported to C code as public typedefs, so they must
   2975 // be defined outside of the namespace.
   2976 
   2977 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
   2978 // structure to support the legacy version-locked methods.
   2979 struct ssl_method_st {
   2980   // version, if non-zero, is the only protocol version acceptable to an
   2981   // SSL_CTX initialized from this method.
   2982   uint16_t version;
   2983   // method is the underlying SSL_PROTOCOL_METHOD that initializes the
   2984   // SSL_CTX.
   2985   const bssl::SSL_PROTOCOL_METHOD *method;
   2986   // x509_method contains pointers to functions that might deal with |X509|
   2987   // compatibility, or might be a no-op, depending on the application.
   2988   const SSL_X509_METHOD *x509_method;
   2989 };
   2990 
   2991 struct ssl_x509_method_st {
   2992   // check_client_CA_list returns one if |names| is a good list of X.509
   2993   // distinguished names and zero otherwise. This is used to ensure that we can
   2994   // reject unparsable values at handshake time when using crypto/x509.
   2995   int (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
   2996 
   2997   // cert_clear frees and NULLs all X509 certificate-related state.
   2998   void (*cert_clear)(bssl::CERT *cert);
   2999   // cert_free frees all X509-related state.
   3000   void (*cert_free)(bssl::CERT *cert);
   3001   // cert_flush_cached_chain drops any cached |X509|-based certificate chain
   3002   // from |cert|.
   3003   // cert_dup duplicates any needed fields from |cert| to |new_cert|.
   3004   void (*cert_dup)(bssl::CERT *new_cert, const bssl::CERT *cert);
   3005   void (*cert_flush_cached_chain)(bssl::CERT *cert);
   3006   // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
   3007   // from |cert|.
   3008   void (*cert_flush_cached_leaf)(bssl::CERT *cert);
   3009 
   3010   // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
   3011   // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
   3012   // one on success or zero on error.
   3013   int (*session_cache_objects)(SSL_SESSION *session);
   3014   // session_dup duplicates any needed fields from |session| to |new_session|.
   3015   // It returns one on success or zero on error.
   3016   int (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
   3017   // session_clear frees any X509-related state from |session|.
   3018   void (*session_clear)(SSL_SESSION *session);
   3019   // session_verify_cert_chain verifies the certificate chain in |session|,
   3020   // sets |session->verify_result| and returns one on success or zero on
   3021   // error.
   3022   int (*session_verify_cert_chain)(SSL_SESSION *session, SSL *ssl,
   3023                                    uint8_t *out_alert);
   3024 
   3025   // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
   3026   void (*hs_flush_cached_ca_names)(bssl::SSL_HANDSHAKE *hs);
   3027   // ssl_new does any neccessary initialisation of |ssl|. It returns one on
   3028   // success or zero on error.
   3029   int (*ssl_new)(SSL *ssl);
   3030   // ssl_free frees anything created by |ssl_new|.
   3031   void (*ssl_free)(SSL *ssl);
   3032   // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
   3033   void (*ssl_flush_cached_client_CA)(SSL *ssl);
   3034   // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
   3035   // necessary. On success, it updates |ssl|'s certificate configuration as
   3036   // needed and returns one. Otherwise, it returns zero.
   3037   int (*ssl_auto_chain_if_needed)(SSL *ssl);
   3038   // ssl_ctx_new does any neccessary initialisation of |ctx|. It returns one on
   3039   // success or zero on error.
   3040   int (*ssl_ctx_new)(SSL_CTX *ctx);
   3041   // ssl_ctx_free frees anything created by |ssl_ctx_new|.
   3042   void (*ssl_ctx_free)(SSL_CTX *ctx);
   3043   // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
   3044   void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
   3045 };
   3046 
   3047 // The following types back public C-exposed types which must live in the global
   3048 // namespace. We use subclassing so the implementations may be C++ types with
   3049 // methods and destructor without polluting the global namespace.
   3050 struct ssl_ctx_st : public bssl::SSLContext {};
   3051 struct ssl_st : public bssl::SSLConnection {};
   3052 
   3053 
   3054 #endif  // OPENSSL_HEADER_SSL_INTERNAL_H
   3055