Home | History | Annotate | Download | only in Analysis
      1 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Loops should be simplified before this analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Constants.h"
     15 #include "llvm/Instructions.h"
     16 #include "llvm/LLVMContext.h"
     17 #include "llvm/Metadata.h"
     18 #include "llvm/Analysis/BranchProbabilityInfo.h"
     19 #include "llvm/Analysis/LoopInfo.h"
     20 #include "llvm/Support/Debug.h"
     21 
     22 using namespace llvm;
     23 
     24 INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
     25                       "Branch Probability Analysis", false, true)
     26 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     27 INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
     28                     "Branch Probability Analysis", false, true)
     29 
     30 char BranchProbabilityInfo::ID = 0;
     31 
     32 namespace {
     33 // Please note that BranchProbabilityAnalysis is not a FunctionPass.
     34 // It is created by BranchProbabilityInfo (which is a FunctionPass), which
     35 // provides a clear interface. Thanks to that, all heuristics and other
     36 // private methods are hidden in the .cpp file.
     37 class BranchProbabilityAnalysis {
     38 
     39   typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
     40 
     41   DenseMap<Edge, uint32_t> *Weights;
     42 
     43   BranchProbabilityInfo *BP;
     44 
     45   LoopInfo *LI;
     46 
     47 
     48   // Weights are for internal use only. They are used by heuristics to help to
     49   // estimate edges' probability. Example:
     50   //
     51   // Using "Loop Branch Heuristics" we predict weights of edges for the
     52   // block BB2.
     53   //         ...
     54   //          |
     55   //          V
     56   //         BB1<-+
     57   //          |   |
     58   //          |   | (Weight = 124)
     59   //          V   |
     60   //         BB2--+
     61   //          |
     62   //          | (Weight = 4)
     63   //          V
     64   //         BB3
     65   //
     66   // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
     67   // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
     68 
     69   static const uint32_t LBH_TAKEN_WEIGHT = 124;
     70   static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
     71 
     72   static const uint32_t RH_TAKEN_WEIGHT = 24;
     73   static const uint32_t RH_NONTAKEN_WEIGHT = 8;
     74 
     75   static const uint32_t PH_TAKEN_WEIGHT = 20;
     76   static const uint32_t PH_NONTAKEN_WEIGHT = 12;
     77 
     78   static const uint32_t ZH_TAKEN_WEIGHT = 20;
     79   static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
     80 
     81   // Standard weight value. Used when none of the heuristics set weight for
     82   // the edge.
     83   static const uint32_t NORMAL_WEIGHT = 16;
     84 
     85   // Minimum weight of an edge. Please note, that weight is NEVER 0.
     86   static const uint32_t MIN_WEIGHT = 1;
     87 
     88   // Return TRUE if BB leads directly to a Return Instruction.
     89   static bool isReturningBlock(BasicBlock *BB) {
     90     SmallPtrSet<BasicBlock *, 8> Visited;
     91 
     92     while (true) {
     93       TerminatorInst *TI = BB->getTerminator();
     94       if (isa<ReturnInst>(TI))
     95         return true;
     96 
     97       if (TI->getNumSuccessors() > 1)
     98         break;
     99 
    100       // It is unreachable block which we can consider as a return instruction.
    101       if (TI->getNumSuccessors() == 0)
    102         return true;
    103 
    104       Visited.insert(BB);
    105       BB = TI->getSuccessor(0);
    106 
    107       // Stop if cycle is detected.
    108       if (Visited.count(BB))
    109         return false;
    110     }
    111 
    112     return false;
    113   }
    114 
    115   uint32_t getMaxWeightFor(BasicBlock *BB) const {
    116     return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
    117   }
    118 
    119 public:
    120   BranchProbabilityAnalysis(DenseMap<Edge, uint32_t> *W,
    121                             BranchProbabilityInfo *BP, LoopInfo *LI)
    122     : Weights(W), BP(BP), LI(LI) {
    123   }
    124 
    125   // Metadata Weights
    126   bool calcMetadataWeights(BasicBlock *BB);
    127 
    128   // Return Heuristics
    129   bool calcReturnHeuristics(BasicBlock *BB);
    130 
    131   // Pointer Heuristics
    132   bool calcPointerHeuristics(BasicBlock *BB);
    133 
    134   // Loop Branch Heuristics
    135   bool calcLoopBranchHeuristics(BasicBlock *BB);
    136 
    137   // Zero Heurestics
    138   bool calcZeroHeuristics(BasicBlock *BB);
    139 
    140   bool runOnFunction(Function &F);
    141 };
    142 } // end anonymous namespace
    143 
    144 // Propagate existing explicit probabilities from either profile data or
    145 // 'expect' intrinsic processing.
    146 bool BranchProbabilityAnalysis::calcMetadataWeights(BasicBlock *BB) {
    147   TerminatorInst *TI = BB->getTerminator();
    148   if (TI->getNumSuccessors() == 1)
    149     return false;
    150   if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
    151     return false;
    152 
    153   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
    154   if (!WeightsNode)
    155     return false;
    156 
    157   // Ensure there are weights for all of the successors. Note that the first
    158   // operand to the metadata node is a name, not a weight.
    159   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
    160     return false;
    161 
    162   // Build up the final weights that will be used in a temporary buffer, but
    163   // don't add them until all weihts are present. Each weight value is clamped
    164   // to [1, getMaxWeightFor(BB)].
    165   uint32_t WeightLimit = getMaxWeightFor(BB);
    166   SmallVector<uint32_t, 2> Weights;
    167   Weights.reserve(TI->getNumSuccessors());
    168   for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
    169     ConstantInt *Weight = dyn_cast<ConstantInt>(WeightsNode->getOperand(i));
    170     if (!Weight)
    171       return false;
    172     Weights.push_back(
    173       std::max<uint32_t>(1, Weight->getLimitedValue(WeightLimit)));
    174   }
    175   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
    176   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    177     BP->setEdgeWeight(BB, TI->getSuccessor(i), Weights[i]);
    178 
    179   return true;
    180 }
    181 
    182 // Calculate Edge Weights using "Return Heuristics". Predict a successor which
    183 // leads directly to Return Instruction will not be taken.
    184 bool BranchProbabilityAnalysis::calcReturnHeuristics(BasicBlock *BB){
    185   if (BB->getTerminator()->getNumSuccessors() == 1)
    186     return false;
    187 
    188   SmallPtrSet<BasicBlock *, 4> ReturningEdges;
    189   SmallPtrSet<BasicBlock *, 4> StayEdges;
    190 
    191   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    192     BasicBlock *Succ = *I;
    193     if (isReturningBlock(Succ))
    194       ReturningEdges.insert(Succ);
    195     else
    196       StayEdges.insert(Succ);
    197   }
    198 
    199   if (uint32_t numStayEdges = StayEdges.size()) {
    200     uint32_t stayWeight = RH_TAKEN_WEIGHT / numStayEdges;
    201     if (stayWeight < NORMAL_WEIGHT)
    202       stayWeight = NORMAL_WEIGHT;
    203 
    204     for (SmallPtrSet<BasicBlock *, 4>::iterator I = StayEdges.begin(),
    205          E = StayEdges.end(); I != E; ++I)
    206       BP->setEdgeWeight(BB, *I, stayWeight);
    207   }
    208 
    209   if (uint32_t numRetEdges = ReturningEdges.size()) {
    210     uint32_t retWeight = RH_NONTAKEN_WEIGHT / numRetEdges;
    211     if (retWeight < MIN_WEIGHT)
    212       retWeight = MIN_WEIGHT;
    213     for (SmallPtrSet<BasicBlock *, 4>::iterator I = ReturningEdges.begin(),
    214          E = ReturningEdges.end(); I != E; ++I) {
    215       BP->setEdgeWeight(BB, *I, retWeight);
    216     }
    217   }
    218 
    219   return ReturningEdges.size() > 0;
    220 }
    221 
    222 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
    223 // between two pointer or pointer and NULL will fail.
    224 bool BranchProbabilityAnalysis::calcPointerHeuristics(BasicBlock *BB) {
    225   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
    226   if (!BI || !BI->isConditional())
    227     return false;
    228 
    229   Value *Cond = BI->getCondition();
    230   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
    231   if (!CI || !CI->isEquality())
    232     return false;
    233 
    234   Value *LHS = CI->getOperand(0);
    235 
    236   if (!LHS->getType()->isPointerTy())
    237     return false;
    238 
    239   assert(CI->getOperand(1)->getType()->isPointerTy());
    240 
    241   BasicBlock *Taken = BI->getSuccessor(0);
    242   BasicBlock *NonTaken = BI->getSuccessor(1);
    243 
    244   // p != 0   ->   isProb = true
    245   // p == 0   ->   isProb = false
    246   // p != q   ->   isProb = true
    247   // p == q   ->   isProb = false;
    248   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
    249   if (!isProb)
    250     std::swap(Taken, NonTaken);
    251 
    252   BP->setEdgeWeight(BB, Taken, PH_TAKEN_WEIGHT);
    253   BP->setEdgeWeight(BB, NonTaken, PH_NONTAKEN_WEIGHT);
    254   return true;
    255 }
    256 
    257 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
    258 // as taken, exiting edges as not-taken.
    259 bool BranchProbabilityAnalysis::calcLoopBranchHeuristics(BasicBlock *BB) {
    260   uint32_t numSuccs = BB->getTerminator()->getNumSuccessors();
    261 
    262   Loop *L = LI->getLoopFor(BB);
    263   if (!L)
    264     return false;
    265 
    266   SmallPtrSet<BasicBlock *, 8> BackEdges;
    267   SmallPtrSet<BasicBlock *, 8> ExitingEdges;
    268   SmallPtrSet<BasicBlock *, 8> InEdges; // Edges from header to the loop.
    269 
    270   bool isHeader = BB == L->getHeader();
    271 
    272   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    273     BasicBlock *Succ = *I;
    274     Loop *SuccL = LI->getLoopFor(Succ);
    275     if (SuccL != L)
    276       ExitingEdges.insert(Succ);
    277     else if (Succ == L->getHeader())
    278       BackEdges.insert(Succ);
    279     else if (isHeader)
    280       InEdges.insert(Succ);
    281   }
    282 
    283   if (uint32_t numBackEdges = BackEdges.size()) {
    284     uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
    285     if (backWeight < NORMAL_WEIGHT)
    286       backWeight = NORMAL_WEIGHT;
    287 
    288     for (SmallPtrSet<BasicBlock *, 8>::iterator EI = BackEdges.begin(),
    289          EE = BackEdges.end(); EI != EE; ++EI) {
    290       BasicBlock *Back = *EI;
    291       BP->setEdgeWeight(BB, Back, backWeight);
    292     }
    293   }
    294 
    295   if (uint32_t numInEdges = InEdges.size()) {
    296     uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
    297     if (inWeight < NORMAL_WEIGHT)
    298       inWeight = NORMAL_WEIGHT;
    299 
    300     for (SmallPtrSet<BasicBlock *, 8>::iterator EI = InEdges.begin(),
    301          EE = InEdges.end(); EI != EE; ++EI) {
    302       BasicBlock *Back = *EI;
    303       BP->setEdgeWeight(BB, Back, inWeight);
    304     }
    305   }
    306 
    307   uint32_t numExitingEdges = ExitingEdges.size();
    308   if (uint32_t numNonExitingEdges = numSuccs - numExitingEdges) {
    309     uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numNonExitingEdges;
    310     if (exitWeight < MIN_WEIGHT)
    311       exitWeight = MIN_WEIGHT;
    312 
    313     for (SmallPtrSet<BasicBlock *, 8>::iterator EI = ExitingEdges.begin(),
    314          EE = ExitingEdges.end(); EI != EE; ++EI) {
    315       BasicBlock *Exiting = *EI;
    316       BP->setEdgeWeight(BB, Exiting, exitWeight);
    317     }
    318   }
    319 
    320   return true;
    321 }
    322 
    323 bool BranchProbabilityAnalysis::calcZeroHeuristics(BasicBlock *BB) {
    324   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
    325   if (!BI || !BI->isConditional())
    326     return false;
    327 
    328   Value *Cond = BI->getCondition();
    329   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
    330   if (!CI)
    331     return false;
    332 
    333   Value *RHS = CI->getOperand(1);
    334   ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
    335   if (!CV)
    336     return false;
    337 
    338   bool isProb;
    339   if (CV->isZero()) {
    340     switch (CI->getPredicate()) {
    341     case CmpInst::ICMP_EQ:
    342       // X == 0   ->  Unlikely
    343       isProb = false;
    344       break;
    345     case CmpInst::ICMP_NE:
    346       // X != 0   ->  Likely
    347       isProb = true;
    348       break;
    349     case CmpInst::ICMP_SLT:
    350       // X < 0   ->  Unlikely
    351       isProb = false;
    352       break;
    353     case CmpInst::ICMP_SGT:
    354       // X > 0   ->  Likely
    355       isProb = true;
    356       break;
    357     default:
    358       return false;
    359     }
    360   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
    361     // InstCombine canonicalizes X <= 0 into X < 1.
    362     // X <= 0   ->  Unlikely
    363     isProb = false;
    364   } else if (CV->isAllOnesValue() && CI->getPredicate() == CmpInst::ICMP_SGT) {
    365     // InstCombine canonicalizes X >= 0 into X > -1.
    366     // X >= 0   ->  Likely
    367     isProb = true;
    368   } else {
    369     return false;
    370   }
    371 
    372   BasicBlock *Taken = BI->getSuccessor(0);
    373   BasicBlock *NonTaken = BI->getSuccessor(1);
    374 
    375   if (!isProb)
    376     std::swap(Taken, NonTaken);
    377 
    378   BP->setEdgeWeight(BB, Taken, ZH_TAKEN_WEIGHT);
    379   BP->setEdgeWeight(BB, NonTaken, ZH_NONTAKEN_WEIGHT);
    380 
    381   return true;
    382 }
    383 
    384 
    385 bool BranchProbabilityAnalysis::runOnFunction(Function &F) {
    386 
    387   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    388     BasicBlock *BB = I++;
    389 
    390     if (calcMetadataWeights(BB))
    391       continue;
    392 
    393     if (calcLoopBranchHeuristics(BB))
    394       continue;
    395 
    396     if (calcReturnHeuristics(BB))
    397       continue;
    398 
    399     if (calcPointerHeuristics(BB))
    400       continue;
    401 
    402     calcZeroHeuristics(BB);
    403   }
    404 
    405   return false;
    406 }
    407 
    408 void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
    409     AU.addRequired<LoopInfo>();
    410     AU.setPreservesAll();
    411 }
    412 
    413 bool BranchProbabilityInfo::runOnFunction(Function &F) {
    414   LoopInfo &LI = getAnalysis<LoopInfo>();
    415   BranchProbabilityAnalysis BPA(&Weights, this, &LI);
    416   return BPA.runOnFunction(F);
    417 }
    418 
    419 uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
    420   uint32_t Sum = 0;
    421 
    422   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    423     const BasicBlock *Succ = *I;
    424     uint32_t Weight = getEdgeWeight(BB, Succ);
    425     uint32_t PrevSum = Sum;
    426 
    427     Sum += Weight;
    428     assert(Sum > PrevSum); (void) PrevSum;
    429   }
    430 
    431   return Sum;
    432 }
    433 
    434 bool BranchProbabilityInfo::
    435 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
    436   // Hot probability is at least 4/5 = 80%
    437   uint32_t Weight = getEdgeWeight(Src, Dst);
    438   uint32_t Sum = getSumForBlock(Src);
    439 
    440   // FIXME: Implement BranchProbability::compare then change this code to
    441   // compare this BranchProbability against a static "hot" BranchProbability.
    442   return (uint64_t)Weight * 5 > (uint64_t)Sum * 4;
    443 }
    444 
    445 BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
    446   uint32_t Sum = 0;
    447   uint32_t MaxWeight = 0;
    448   BasicBlock *MaxSucc = 0;
    449 
    450   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    451     BasicBlock *Succ = *I;
    452     uint32_t Weight = getEdgeWeight(BB, Succ);
    453     uint32_t PrevSum = Sum;
    454 
    455     Sum += Weight;
    456     assert(Sum > PrevSum); (void) PrevSum;
    457 
    458     if (Weight > MaxWeight) {
    459       MaxWeight = Weight;
    460       MaxSucc = Succ;
    461     }
    462   }
    463 
    464   // FIXME: Use BranchProbability::compare.
    465   if ((uint64_t)MaxWeight * 5 > (uint64_t)Sum * 4)
    466     return MaxSucc;
    467 
    468   return 0;
    469 }
    470 
    471 // Return edge's weight. If can't find it, return DEFAULT_WEIGHT value.
    472 uint32_t BranchProbabilityInfo::
    473 getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const {
    474   Edge E(Src, Dst);
    475   DenseMap<Edge, uint32_t>::const_iterator I = Weights.find(E);
    476 
    477   if (I != Weights.end())
    478     return I->second;
    479 
    480   return DEFAULT_WEIGHT;
    481 }
    482 
    483 void BranchProbabilityInfo::
    484 setEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst, uint32_t Weight) {
    485   Weights[std::make_pair(Src, Dst)] = Weight;
    486   DEBUG(dbgs() << "set edge " << Src->getNameStr() << " -> "
    487                << Dst->getNameStr() << " weight to " << Weight
    488                << (isEdgeHot(Src, Dst) ? " [is HOT now]\n" : "\n"));
    489 }
    490 
    491 
    492 BranchProbability BranchProbabilityInfo::
    493 getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const {
    494 
    495   uint32_t N = getEdgeWeight(Src, Dst);
    496   uint32_t D = getSumForBlock(Src);
    497 
    498   return BranchProbability(N, D);
    499 }
    500 
    501 raw_ostream &
    502 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, BasicBlock *Src,
    503                                             BasicBlock *Dst) const {
    504 
    505   const BranchProbability Prob = getEdgeProbability(Src, Dst);
    506   OS << "edge " << Src->getNameStr() << " -> " << Dst->getNameStr()
    507      << " probability is " << Prob
    508      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
    509 
    510   return OS;
    511 }
    512