Home | History | Annotate | Download | only in Vectorize
      1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
     10 // stores that can be put together into vector-stores. Next, it attempts to
     11 // construct vectorizable tree using the use-def chains. If a profitable tree
     12 // was found, the SLP vectorizer performs vectorization on the tree.
     13 //
     14 // The pass is inspired by the work described in the paper:
     15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/PostOrderIterator.h"
     21 #include "llvm/ADT/SetVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/CodeMetrics.h"
     24 #include "llvm/Analysis/GlobalsModRef.h"
     25 #include "llvm/Analysis/LoopAccessAnalysis.h"
     26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/Analysis/VectorUtils.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Dominators.h"
     31 #include "llvm/IR/IRBuilder.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/IR/NoFolder.h"
     36 #include "llvm/IR/Type.h"
     37 #include "llvm/IR/Value.h"
     38 #include "llvm/IR/Verifier.h"
     39 #include "llvm/Pass.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include "llvm/Transforms/Vectorize.h"
     44 #include <algorithm>
     45 #include <memory>
     46 
     47 using namespace llvm;
     48 using namespace slpvectorizer;
     49 
     50 #define SV_NAME "slp-vectorizer"
     51 #define DEBUG_TYPE "SLP"
     52 
     53 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
     54 
     55 static cl::opt<int>
     56     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
     57                      cl::desc("Only vectorize if you gain more than this "
     58                               "number "));
     59 
     60 static cl::opt<bool>
     61 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
     62                    cl::desc("Attempt to vectorize horizontal reductions"));
     63 
     64 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
     65     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
     66     cl::desc(
     67         "Attempt to vectorize horizontal reductions feeding into a store"));
     68 
     69 static cl::opt<int>
     70 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
     71     cl::desc("Attempt to vectorize for this register size in bits"));
     72 
     73 /// Limits the size of scheduling regions in a block.
     74 /// It avoid long compile times for _very_ large blocks where vector
     75 /// instructions are spread over a wide range.
     76 /// This limit is way higher than needed by real-world functions.
     77 static cl::opt<int>
     78 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
     79     cl::desc("Limit the size of the SLP scheduling region per block"));
     80 
     81 static cl::opt<int> MinVectorRegSizeOption(
     82     "slp-min-reg-size", cl::init(128), cl::Hidden,
     83     cl::desc("Attempt to vectorize for this register size in bits"));
     84 
     85 // FIXME: Set this via cl::opt to allow overriding.
     86 static const unsigned RecursionMaxDepth = 12;
     87 
     88 // Limit the number of alias checks. The limit is chosen so that
     89 // it has no negative effect on the llvm benchmarks.
     90 static const unsigned AliasedCheckLimit = 10;
     91 
     92 // Another limit for the alias checks: The maximum distance between load/store
     93 // instructions where alias checks are done.
     94 // This limit is useful for very large basic blocks.
     95 static const unsigned MaxMemDepDistance = 160;
     96 
     97 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
     98 /// regions to be handled.
     99 static const int MinScheduleRegionSize = 16;
    100 
    101 /// \brief Predicate for the element types that the SLP vectorizer supports.
    102 ///
    103 /// The most important thing to filter here are types which are invalid in LLVM
    104 /// vectors. We also filter target specific types which have absolutely no
    105 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
    106 /// avoids spending time checking the cost model and realizing that they will
    107 /// be inevitably scalarized.
    108 static bool isValidElementType(Type *Ty) {
    109   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
    110          !Ty->isPPC_FP128Ty();
    111 }
    112 
    113 /// \returns the parent basic block if all of the instructions in \p VL
    114 /// are in the same block or null otherwise.
    115 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
    116   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    117   if (!I0)
    118     return nullptr;
    119   BasicBlock *BB = I0->getParent();
    120   for (int i = 1, e = VL.size(); i < e; i++) {
    121     Instruction *I = dyn_cast<Instruction>(VL[i]);
    122     if (!I)
    123       return nullptr;
    124 
    125     if (BB != I->getParent())
    126       return nullptr;
    127   }
    128   return BB;
    129 }
    130 
    131 /// \returns True if all of the values in \p VL are constants.
    132 static bool allConstant(ArrayRef<Value *> VL) {
    133   for (Value *i : VL)
    134     if (!isa<Constant>(i))
    135       return false;
    136   return true;
    137 }
    138 
    139 /// \returns True if all of the values in \p VL are identical.
    140 static bool isSplat(ArrayRef<Value *> VL) {
    141   for (unsigned i = 1, e = VL.size(); i < e; ++i)
    142     if (VL[i] != VL[0])
    143       return false;
    144   return true;
    145 }
    146 
    147 ///\returns Opcode that can be clubbed with \p Op to create an alternate
    148 /// sequence which can later be merged as a ShuffleVector instruction.
    149 static unsigned getAltOpcode(unsigned Op) {
    150   switch (Op) {
    151   case Instruction::FAdd:
    152     return Instruction::FSub;
    153   case Instruction::FSub:
    154     return Instruction::FAdd;
    155   case Instruction::Add:
    156     return Instruction::Sub;
    157   case Instruction::Sub:
    158     return Instruction::Add;
    159   default:
    160     return 0;
    161   }
    162 }
    163 
    164 ///\returns bool representing if Opcode \p Op can be part
    165 /// of an alternate sequence which can later be merged as
    166 /// a ShuffleVector instruction.
    167 static bool canCombineAsAltInst(unsigned Op) {
    168   return Op == Instruction::FAdd || Op == Instruction::FSub ||
    169          Op == Instruction::Sub || Op == Instruction::Add;
    170 }
    171 
    172 /// \returns ShuffleVector instruction if instructions in \p VL have
    173 ///  alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
    174 /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
    175 static unsigned isAltInst(ArrayRef<Value *> VL) {
    176   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    177   unsigned Opcode = I0->getOpcode();
    178   unsigned AltOpcode = getAltOpcode(Opcode);
    179   for (int i = 1, e = VL.size(); i < e; i++) {
    180     Instruction *I = dyn_cast<Instruction>(VL[i]);
    181     if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
    182       return 0;
    183   }
    184   return Instruction::ShuffleVector;
    185 }
    186 
    187 /// \returns The opcode if all of the Instructions in \p VL have the same
    188 /// opcode, or zero.
    189 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
    190   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    191   if (!I0)
    192     return 0;
    193   unsigned Opcode = I0->getOpcode();
    194   for (int i = 1, e = VL.size(); i < e; i++) {
    195     Instruction *I = dyn_cast<Instruction>(VL[i]);
    196     if (!I || Opcode != I->getOpcode()) {
    197       if (canCombineAsAltInst(Opcode) && i == 1)
    198         return isAltInst(VL);
    199       return 0;
    200     }
    201   }
    202   return Opcode;
    203 }
    204 
    205 /// Get the intersection (logical and) of all of the potential IR flags
    206 /// of each scalar operation (VL) that will be converted into a vector (I).
    207 /// Flag set: NSW, NUW, exact, and all of fast-math.
    208 static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
    209   if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
    210     if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
    211       // Intersection is initialized to the 0th scalar,
    212       // so start counting from index '1'.
    213       for (int i = 1, e = VL.size(); i < e; ++i) {
    214         if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
    215           Intersection->andIRFlags(Scalar);
    216       }
    217       VecOp->copyIRFlags(Intersection);
    218     }
    219   }
    220 }
    221 
    222 /// \returns The type that all of the values in \p VL have or null if there
    223 /// are different types.
    224 static Type* getSameType(ArrayRef<Value *> VL) {
    225   Type *Ty = VL[0]->getType();
    226   for (int i = 1, e = VL.size(); i < e; i++)
    227     if (VL[i]->getType() != Ty)
    228       return nullptr;
    229 
    230   return Ty;
    231 }
    232 
    233 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
    234 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
    235   assert(Opcode == Instruction::ExtractElement ||
    236          Opcode == Instruction::ExtractValue);
    237   if (Opcode == Instruction::ExtractElement) {
    238     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
    239     return CI && CI->getZExtValue() == Idx;
    240   } else {
    241     ExtractValueInst *EI = cast<ExtractValueInst>(E);
    242     return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
    243   }
    244 }
    245 
    246 /// \returns True if in-tree use also needs extract. This refers to
    247 /// possible scalar operand in vectorized instruction.
    248 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
    249                                     TargetLibraryInfo *TLI) {
    250 
    251   unsigned Opcode = UserInst->getOpcode();
    252   switch (Opcode) {
    253   case Instruction::Load: {
    254     LoadInst *LI = cast<LoadInst>(UserInst);
    255     return (LI->getPointerOperand() == Scalar);
    256   }
    257   case Instruction::Store: {
    258     StoreInst *SI = cast<StoreInst>(UserInst);
    259     return (SI->getPointerOperand() == Scalar);
    260   }
    261   case Instruction::Call: {
    262     CallInst *CI = cast<CallInst>(UserInst);
    263     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
    264     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
    265       return (CI->getArgOperand(1) == Scalar);
    266     }
    267   }
    268   default:
    269     return false;
    270   }
    271 }
    272 
    273 /// \returns the AA location that is being access by the instruction.
    274 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
    275   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    276     return MemoryLocation::get(SI);
    277   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    278     return MemoryLocation::get(LI);
    279   return MemoryLocation();
    280 }
    281 
    282 /// \returns True if the instruction is not a volatile or atomic load/store.
    283 static bool isSimple(Instruction *I) {
    284   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    285     return LI->isSimple();
    286   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    287     return SI->isSimple();
    288   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    289     return !MI->isVolatile();
    290   return true;
    291 }
    292 
    293 namespace llvm {
    294 namespace slpvectorizer {
    295 /// Bottom Up SLP Vectorizer.
    296 class BoUpSLP {
    297 public:
    298   typedef SmallVector<Value *, 8> ValueList;
    299   typedef SmallVector<Instruction *, 16> InstrList;
    300   typedef SmallPtrSet<Value *, 16> ValueSet;
    301   typedef SmallVector<StoreInst *, 8> StoreList;
    302 
    303   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
    304           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
    305           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
    306           const DataLayout *DL)
    307       : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
    308         SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB),
    309         DL(DL), Builder(Se->getContext()) {
    310     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
    311     // Use the vector register size specified by the target unless overridden
    312     // by a command-line option.
    313     // TODO: It would be better to limit the vectorization factor based on
    314     //       data type rather than just register size. For example, x86 AVX has
    315     //       256-bit registers, but it does not support integer operations
    316     //       at that width (that requires AVX2).
    317     if (MaxVectorRegSizeOption.getNumOccurrences())
    318       MaxVecRegSize = MaxVectorRegSizeOption;
    319     else
    320       MaxVecRegSize = TTI->getRegisterBitWidth(true);
    321 
    322     MinVecRegSize = MinVectorRegSizeOption;
    323   }
    324 
    325   /// \brief Vectorize the tree that starts with the elements in \p VL.
    326   /// Returns the vectorized root.
    327   Value *vectorizeTree();
    328 
    329   /// \returns the cost incurred by unwanted spills and fills, caused by
    330   /// holding live values over call sites.
    331   int getSpillCost();
    332 
    333   /// \returns the vectorization cost of the subtree that starts at \p VL.
    334   /// A negative number means that this is profitable.
    335   int getTreeCost();
    336 
    337   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
    338   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
    339   void buildTree(ArrayRef<Value *> Roots,
    340                  ArrayRef<Value *> UserIgnoreLst = None);
    341 
    342   /// Clear the internal data structures that are created by 'buildTree'.
    343   void deleteTree() {
    344     VectorizableTree.clear();
    345     ScalarToTreeEntry.clear();
    346     MustGather.clear();
    347     ExternalUses.clear();
    348     NumLoadsWantToKeepOrder = 0;
    349     NumLoadsWantToChangeOrder = 0;
    350     for (auto &Iter : BlocksSchedules) {
    351       BlockScheduling *BS = Iter.second.get();
    352       BS->clear();
    353     }
    354     MinBWs.clear();
    355   }
    356 
    357   /// \brief Perform LICM and CSE on the newly generated gather sequences.
    358   void optimizeGatherSequence();
    359 
    360   /// \returns true if it is beneficial to reverse the vector order.
    361   bool shouldReorder() const {
    362     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
    363   }
    364 
    365   /// \return The vector element size in bits to use when vectorizing the
    366   /// expression tree ending at \p V. If V is a store, the size is the width of
    367   /// the stored value. Otherwise, the size is the width of the largest loaded
    368   /// value reaching V. This method is used by the vectorizer to calculate
    369   /// vectorization factors.
    370   unsigned getVectorElementSize(Value *V);
    371 
    372   /// Compute the minimum type sizes required to represent the entries in a
    373   /// vectorizable tree.
    374   void computeMinimumValueSizes();
    375 
    376   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
    377   unsigned getMaxVecRegSize() const {
    378     return MaxVecRegSize;
    379   }
    380 
    381   // \returns minimum vector register size as set by cl::opt.
    382   unsigned getMinVecRegSize() const {
    383     return MinVecRegSize;
    384   }
    385 
    386   /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
    387   ///
    388   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
    389   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
    390 
    391 private:
    392   struct TreeEntry;
    393 
    394   /// \returns the cost of the vectorizable entry.
    395   int getEntryCost(TreeEntry *E);
    396 
    397   /// This is the recursive part of buildTree.
    398   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
    399 
    400   /// \returns True if the ExtractElement/ExtractValue instructions in VL can
    401   /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
    402   bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const;
    403 
    404   /// Vectorize a single entry in the tree.
    405   Value *vectorizeTree(TreeEntry *E);
    406 
    407   /// Vectorize a single entry in the tree, starting in \p VL.
    408   Value *vectorizeTree(ArrayRef<Value *> VL);
    409 
    410   /// \returns the pointer to the vectorized value if \p VL is already
    411   /// vectorized, or NULL. They may happen in cycles.
    412   Value *alreadyVectorized(ArrayRef<Value *> VL) const;
    413 
    414   /// \returns the scalarization cost for this type. Scalarization in this
    415   /// context means the creation of vectors from a group of scalars.
    416   int getGatherCost(Type *Ty);
    417 
    418   /// \returns the scalarization cost for this list of values. Assuming that
    419   /// this subtree gets vectorized, we may need to extract the values from the
    420   /// roots. This method calculates the cost of extracting the values.
    421   int getGatherCost(ArrayRef<Value *> VL);
    422 
    423   /// \brief Set the Builder insert point to one after the last instruction in
    424   /// the bundle
    425   void setInsertPointAfterBundle(ArrayRef<Value *> VL);
    426 
    427   /// \returns a vector from a collection of scalars in \p VL.
    428   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
    429 
    430   /// \returns whether the VectorizableTree is fully vectorizable and will
    431   /// be beneficial even the tree height is tiny.
    432   bool isFullyVectorizableTinyTree();
    433 
    434   /// \reorder commutative operands in alt shuffle if they result in
    435   ///  vectorized code.
    436   void reorderAltShuffleOperands(ArrayRef<Value *> VL,
    437                                  SmallVectorImpl<Value *> &Left,
    438                                  SmallVectorImpl<Value *> &Right);
    439   /// \reorder commutative operands to get better probability of
    440   /// generating vectorized code.
    441   void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
    442                                       SmallVectorImpl<Value *> &Left,
    443                                       SmallVectorImpl<Value *> &Right);
    444   struct TreeEntry {
    445     TreeEntry() : Scalars(), VectorizedValue(nullptr),
    446     NeedToGather(0) {}
    447 
    448     /// \returns true if the scalars in VL are equal to this entry.
    449     bool isSame(ArrayRef<Value *> VL) const {
    450       assert(VL.size() == Scalars.size() && "Invalid size");
    451       return std::equal(VL.begin(), VL.end(), Scalars.begin());
    452     }
    453 
    454     /// A vector of scalars.
    455     ValueList Scalars;
    456 
    457     /// The Scalars are vectorized into this value. It is initialized to Null.
    458     Value *VectorizedValue;
    459 
    460     /// Do we need to gather this sequence ?
    461     bool NeedToGather;
    462   };
    463 
    464   /// Create a new VectorizableTree entry.
    465   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
    466     VectorizableTree.emplace_back();
    467     int idx = VectorizableTree.size() - 1;
    468     TreeEntry *Last = &VectorizableTree[idx];
    469     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
    470     Last->NeedToGather = !Vectorized;
    471     if (Vectorized) {
    472       for (int i = 0, e = VL.size(); i != e; ++i) {
    473         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
    474         ScalarToTreeEntry[VL[i]] = idx;
    475       }
    476     } else {
    477       MustGather.insert(VL.begin(), VL.end());
    478     }
    479     return Last;
    480   }
    481 
    482   /// -- Vectorization State --
    483   /// Holds all of the tree entries.
    484   std::vector<TreeEntry> VectorizableTree;
    485 
    486   /// Maps a specific scalar to its tree entry.
    487   SmallDenseMap<Value*, int> ScalarToTreeEntry;
    488 
    489   /// A list of scalars that we found that we need to keep as scalars.
    490   ValueSet MustGather;
    491 
    492   /// This POD struct describes one external user in the vectorized tree.
    493   struct ExternalUser {
    494     ExternalUser (Value *S, llvm::User *U, int L) :
    495       Scalar(S), User(U), Lane(L){}
    496     // Which scalar in our function.
    497     Value *Scalar;
    498     // Which user that uses the scalar.
    499     llvm::User *User;
    500     // Which lane does the scalar belong to.
    501     int Lane;
    502   };
    503   typedef SmallVector<ExternalUser, 16> UserList;
    504 
    505   /// Checks if two instructions may access the same memory.
    506   ///
    507   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
    508   /// is invariant in the calling loop.
    509   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
    510                  Instruction *Inst2) {
    511 
    512     // First check if the result is already in the cache.
    513     AliasCacheKey key = std::make_pair(Inst1, Inst2);
    514     Optional<bool> &result = AliasCache[key];
    515     if (result.hasValue()) {
    516       return result.getValue();
    517     }
    518     MemoryLocation Loc2 = getLocation(Inst2, AA);
    519     bool aliased = true;
    520     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
    521       // Do the alias check.
    522       aliased = AA->alias(Loc1, Loc2);
    523     }
    524     // Store the result in the cache.
    525     result = aliased;
    526     return aliased;
    527   }
    528 
    529   typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
    530 
    531   /// Cache for alias results.
    532   /// TODO: consider moving this to the AliasAnalysis itself.
    533   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
    534 
    535   /// Removes an instruction from its block and eventually deletes it.
    536   /// It's like Instruction::eraseFromParent() except that the actual deletion
    537   /// is delayed until BoUpSLP is destructed.
    538   /// This is required to ensure that there are no incorrect collisions in the
    539   /// AliasCache, which can happen if a new instruction is allocated at the
    540   /// same address as a previously deleted instruction.
    541   void eraseInstruction(Instruction *I) {
    542     I->removeFromParent();
    543     I->dropAllReferences();
    544     DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
    545   }
    546 
    547   /// Temporary store for deleted instructions. Instructions will be deleted
    548   /// eventually when the BoUpSLP is destructed.
    549   SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
    550 
    551   /// A list of values that need to extracted out of the tree.
    552   /// This list holds pairs of (Internal Scalar : External User).
    553   UserList ExternalUses;
    554 
    555   /// Values used only by @llvm.assume calls.
    556   SmallPtrSet<const Value *, 32> EphValues;
    557 
    558   /// Holds all of the instructions that we gathered.
    559   SetVector<Instruction *> GatherSeq;
    560   /// A list of blocks that we are going to CSE.
    561   SetVector<BasicBlock *> CSEBlocks;
    562 
    563   /// Contains all scheduling relevant data for an instruction.
    564   /// A ScheduleData either represents a single instruction or a member of an
    565   /// instruction bundle (= a group of instructions which is combined into a
    566   /// vector instruction).
    567   struct ScheduleData {
    568 
    569     // The initial value for the dependency counters. It means that the
    570     // dependencies are not calculated yet.
    571     enum { InvalidDeps = -1 };
    572 
    573     ScheduleData()
    574         : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
    575           NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
    576           Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
    577           UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
    578 
    579     void init(int BlockSchedulingRegionID) {
    580       FirstInBundle = this;
    581       NextInBundle = nullptr;
    582       NextLoadStore = nullptr;
    583       IsScheduled = false;
    584       SchedulingRegionID = BlockSchedulingRegionID;
    585       UnscheduledDepsInBundle = UnscheduledDeps;
    586       clearDependencies();
    587     }
    588 
    589     /// Returns true if the dependency information has been calculated.
    590     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
    591 
    592     /// Returns true for single instructions and for bundle representatives
    593     /// (= the head of a bundle).
    594     bool isSchedulingEntity() const { return FirstInBundle == this; }
    595 
    596     /// Returns true if it represents an instruction bundle and not only a
    597     /// single instruction.
    598     bool isPartOfBundle() const {
    599       return NextInBundle != nullptr || FirstInBundle != this;
    600     }
    601 
    602     /// Returns true if it is ready for scheduling, i.e. it has no more
    603     /// unscheduled depending instructions/bundles.
    604     bool isReady() const {
    605       assert(isSchedulingEntity() &&
    606              "can't consider non-scheduling entity for ready list");
    607       return UnscheduledDepsInBundle == 0 && !IsScheduled;
    608     }
    609 
    610     /// Modifies the number of unscheduled dependencies, also updating it for
    611     /// the whole bundle.
    612     int incrementUnscheduledDeps(int Incr) {
    613       UnscheduledDeps += Incr;
    614       return FirstInBundle->UnscheduledDepsInBundle += Incr;
    615     }
    616 
    617     /// Sets the number of unscheduled dependencies to the number of
    618     /// dependencies.
    619     void resetUnscheduledDeps() {
    620       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
    621     }
    622 
    623     /// Clears all dependency information.
    624     void clearDependencies() {
    625       Dependencies = InvalidDeps;
    626       resetUnscheduledDeps();
    627       MemoryDependencies.clear();
    628     }
    629 
    630     void dump(raw_ostream &os) const {
    631       if (!isSchedulingEntity()) {
    632         os << "/ " << *Inst;
    633       } else if (NextInBundle) {
    634         os << '[' << *Inst;
    635         ScheduleData *SD = NextInBundle;
    636         while (SD) {
    637           os << ';' << *SD->Inst;
    638           SD = SD->NextInBundle;
    639         }
    640         os << ']';
    641       } else {
    642         os << *Inst;
    643       }
    644     }
    645 
    646     Instruction *Inst;
    647 
    648     /// Points to the head in an instruction bundle (and always to this for
    649     /// single instructions).
    650     ScheduleData *FirstInBundle;
    651 
    652     /// Single linked list of all instructions in a bundle. Null if it is a
    653     /// single instruction.
    654     ScheduleData *NextInBundle;
    655 
    656     /// Single linked list of all memory instructions (e.g. load, store, call)
    657     /// in the block - until the end of the scheduling region.
    658     ScheduleData *NextLoadStore;
    659 
    660     /// The dependent memory instructions.
    661     /// This list is derived on demand in calculateDependencies().
    662     SmallVector<ScheduleData *, 4> MemoryDependencies;
    663 
    664     /// This ScheduleData is in the current scheduling region if this matches
    665     /// the current SchedulingRegionID of BlockScheduling.
    666     int SchedulingRegionID;
    667 
    668     /// Used for getting a "good" final ordering of instructions.
    669     int SchedulingPriority;
    670 
    671     /// The number of dependencies. Constitutes of the number of users of the
    672     /// instruction plus the number of dependent memory instructions (if any).
    673     /// This value is calculated on demand.
    674     /// If InvalidDeps, the number of dependencies is not calculated yet.
    675     ///
    676     int Dependencies;
    677 
    678     /// The number of dependencies minus the number of dependencies of scheduled
    679     /// instructions. As soon as this is zero, the instruction/bundle gets ready
    680     /// for scheduling.
    681     /// Note that this is negative as long as Dependencies is not calculated.
    682     int UnscheduledDeps;
    683 
    684     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
    685     /// single instructions.
    686     int UnscheduledDepsInBundle;
    687 
    688     /// True if this instruction is scheduled (or considered as scheduled in the
    689     /// dry-run).
    690     bool IsScheduled;
    691   };
    692 
    693 #ifndef NDEBUG
    694   friend inline raw_ostream &operator<<(raw_ostream &os,
    695                                         const BoUpSLP::ScheduleData &SD) {
    696     SD.dump(os);
    697     return os;
    698   }
    699 #endif
    700 
    701   /// Contains all scheduling data for a basic block.
    702   ///
    703   struct BlockScheduling {
    704 
    705     BlockScheduling(BasicBlock *BB)
    706         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
    707           ScheduleStart(nullptr), ScheduleEnd(nullptr),
    708           FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
    709           ScheduleRegionSize(0),
    710           ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
    711           // Make sure that the initial SchedulingRegionID is greater than the
    712           // initial SchedulingRegionID in ScheduleData (which is 0).
    713           SchedulingRegionID(1) {}
    714 
    715     void clear() {
    716       ReadyInsts.clear();
    717       ScheduleStart = nullptr;
    718       ScheduleEnd = nullptr;
    719       FirstLoadStoreInRegion = nullptr;
    720       LastLoadStoreInRegion = nullptr;
    721 
    722       // Reduce the maximum schedule region size by the size of the
    723       // previous scheduling run.
    724       ScheduleRegionSizeLimit -= ScheduleRegionSize;
    725       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
    726         ScheduleRegionSizeLimit = MinScheduleRegionSize;
    727       ScheduleRegionSize = 0;
    728 
    729       // Make a new scheduling region, i.e. all existing ScheduleData is not
    730       // in the new region yet.
    731       ++SchedulingRegionID;
    732     }
    733 
    734     ScheduleData *getScheduleData(Value *V) {
    735       ScheduleData *SD = ScheduleDataMap[V];
    736       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
    737         return SD;
    738       return nullptr;
    739     }
    740 
    741     bool isInSchedulingRegion(ScheduleData *SD) {
    742       return SD->SchedulingRegionID == SchedulingRegionID;
    743     }
    744 
    745     /// Marks an instruction as scheduled and puts all dependent ready
    746     /// instructions into the ready-list.
    747     template <typename ReadyListType>
    748     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
    749       SD->IsScheduled = true;
    750       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
    751 
    752       ScheduleData *BundleMember = SD;
    753       while (BundleMember) {
    754         // Handle the def-use chain dependencies.
    755         for (Use &U : BundleMember->Inst->operands()) {
    756           ScheduleData *OpDef = getScheduleData(U.get());
    757           if (OpDef && OpDef->hasValidDependencies() &&
    758               OpDef->incrementUnscheduledDeps(-1) == 0) {
    759             // There are no more unscheduled dependencies after decrementing,
    760             // so we can put the dependent instruction into the ready list.
    761             ScheduleData *DepBundle = OpDef->FirstInBundle;
    762             assert(!DepBundle->IsScheduled &&
    763                    "already scheduled bundle gets ready");
    764             ReadyList.insert(DepBundle);
    765             DEBUG(dbgs() << "SLP:    gets ready (def): " << *DepBundle << "\n");
    766           }
    767         }
    768         // Handle the memory dependencies.
    769         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
    770           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
    771             // There are no more unscheduled dependencies after decrementing,
    772             // so we can put the dependent instruction into the ready list.
    773             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
    774             assert(!DepBundle->IsScheduled &&
    775                    "already scheduled bundle gets ready");
    776             ReadyList.insert(DepBundle);
    777             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle << "\n");
    778           }
    779         }
    780         BundleMember = BundleMember->NextInBundle;
    781       }
    782     }
    783 
    784     /// Put all instructions into the ReadyList which are ready for scheduling.
    785     template <typename ReadyListType>
    786     void initialFillReadyList(ReadyListType &ReadyList) {
    787       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
    788         ScheduleData *SD = getScheduleData(I);
    789         if (SD->isSchedulingEntity() && SD->isReady()) {
    790           ReadyList.insert(SD);
    791           DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
    792         }
    793       }
    794     }
    795 
    796     /// Checks if a bundle of instructions can be scheduled, i.e. has no
    797     /// cyclic dependencies. This is only a dry-run, no instructions are
    798     /// actually moved at this stage.
    799     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
    800 
    801     /// Un-bundles a group of instructions.
    802     void cancelScheduling(ArrayRef<Value *> VL);
    803 
    804     /// Extends the scheduling region so that V is inside the region.
    805     /// \returns true if the region size is within the limit.
    806     bool extendSchedulingRegion(Value *V);
    807 
    808     /// Initialize the ScheduleData structures for new instructions in the
    809     /// scheduling region.
    810     void initScheduleData(Instruction *FromI, Instruction *ToI,
    811                           ScheduleData *PrevLoadStore,
    812                           ScheduleData *NextLoadStore);
    813 
    814     /// Updates the dependency information of a bundle and of all instructions/
    815     /// bundles which depend on the original bundle.
    816     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
    817                                BoUpSLP *SLP);
    818 
    819     /// Sets all instruction in the scheduling region to un-scheduled.
    820     void resetSchedule();
    821 
    822     BasicBlock *BB;
    823 
    824     /// Simple memory allocation for ScheduleData.
    825     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
    826 
    827     /// The size of a ScheduleData array in ScheduleDataChunks.
    828     int ChunkSize;
    829 
    830     /// The allocator position in the current chunk, which is the last entry
    831     /// of ScheduleDataChunks.
    832     int ChunkPos;
    833 
    834     /// Attaches ScheduleData to Instruction.
    835     /// Note that the mapping survives during all vectorization iterations, i.e.
    836     /// ScheduleData structures are recycled.
    837     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
    838 
    839     struct ReadyList : SmallVector<ScheduleData *, 8> {
    840       void insert(ScheduleData *SD) { push_back(SD); }
    841     };
    842 
    843     /// The ready-list for scheduling (only used for the dry-run).
    844     ReadyList ReadyInsts;
    845 
    846     /// The first instruction of the scheduling region.
    847     Instruction *ScheduleStart;
    848 
    849     /// The first instruction _after_ the scheduling region.
    850     Instruction *ScheduleEnd;
    851 
    852     /// The first memory accessing instruction in the scheduling region
    853     /// (can be null).
    854     ScheduleData *FirstLoadStoreInRegion;
    855 
    856     /// The last memory accessing instruction in the scheduling region
    857     /// (can be null).
    858     ScheduleData *LastLoadStoreInRegion;
    859 
    860     /// The current size of the scheduling region.
    861     int ScheduleRegionSize;
    862 
    863     /// The maximum size allowed for the scheduling region.
    864     int ScheduleRegionSizeLimit;
    865 
    866     /// The ID of the scheduling region. For a new vectorization iteration this
    867     /// is incremented which "removes" all ScheduleData from the region.
    868     int SchedulingRegionID;
    869   };
    870 
    871   /// Attaches the BlockScheduling structures to basic blocks.
    872   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
    873 
    874   /// Performs the "real" scheduling. Done before vectorization is actually
    875   /// performed in a basic block.
    876   void scheduleBlock(BlockScheduling *BS);
    877 
    878   /// List of users to ignore during scheduling and that don't need extracting.
    879   ArrayRef<Value *> UserIgnoreList;
    880 
    881   // Number of load-bundles, which contain consecutive loads.
    882   int NumLoadsWantToKeepOrder;
    883 
    884   // Number of load-bundles of size 2, which are consecutive loads if reversed.
    885   int NumLoadsWantToChangeOrder;
    886 
    887   // Analysis and block reference.
    888   Function *F;
    889   ScalarEvolution *SE;
    890   TargetTransformInfo *TTI;
    891   TargetLibraryInfo *TLI;
    892   AliasAnalysis *AA;
    893   LoopInfo *LI;
    894   DominatorTree *DT;
    895   AssumptionCache *AC;
    896   DemandedBits *DB;
    897   const DataLayout *DL;
    898   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
    899   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
    900   /// Instruction builder to construct the vectorized tree.
    901   IRBuilder<> Builder;
    902 
    903   /// A map of scalar integer values to the smallest bit width with which they
    904   /// can legally be represented.
    905   MapVector<Value *, uint64_t> MinBWs;
    906 };
    907 
    908 } // end namespace llvm
    909 } // end namespace slpvectorizer
    910 
    911 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
    912                         ArrayRef<Value *> UserIgnoreLst) {
    913   deleteTree();
    914   UserIgnoreList = UserIgnoreLst;
    915   if (!getSameType(Roots))
    916     return;
    917   buildTree_rec(Roots, 0);
    918 
    919   // Collect the values that we need to extract from the tree.
    920   for (TreeEntry &EIdx : VectorizableTree) {
    921     TreeEntry *Entry = &EIdx;
    922 
    923     // For each lane:
    924     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
    925       Value *Scalar = Entry->Scalars[Lane];
    926 
    927       // No need to handle users of gathered values.
    928       if (Entry->NeedToGather)
    929         continue;
    930 
    931       for (User *U : Scalar->users()) {
    932         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
    933 
    934         Instruction *UserInst = dyn_cast<Instruction>(U);
    935         if (!UserInst)
    936           continue;
    937 
    938         // Skip in-tree scalars that become vectors
    939         if (ScalarToTreeEntry.count(U)) {
    940           int Idx = ScalarToTreeEntry[U];
    941           TreeEntry *UseEntry = &VectorizableTree[Idx];
    942           Value *UseScalar = UseEntry->Scalars[0];
    943           // Some in-tree scalars will remain as scalar in vectorized
    944           // instructions. If that is the case, the one in Lane 0 will
    945           // be used.
    946           if (UseScalar != U ||
    947               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
    948             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
    949                          << ".\n");
    950             assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
    951             continue;
    952           }
    953         }
    954 
    955         // Ignore users in the user ignore list.
    956         if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
    957             UserIgnoreList.end())
    958           continue;
    959 
    960         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
    961               Lane << " from " << *Scalar << ".\n");
    962         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
    963       }
    964     }
    965   }
    966 }
    967 
    968 
    969 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
    970   bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy;
    971   bool isAltShuffle = false;
    972   assert(SameTy && "Invalid types!");
    973 
    974   if (Depth == RecursionMaxDepth) {
    975     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
    976     newTreeEntry(VL, false);
    977     return;
    978   }
    979 
    980   // Don't handle vectors.
    981   if (VL[0]->getType()->isVectorTy()) {
    982     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
    983     newTreeEntry(VL, false);
    984     return;
    985   }
    986 
    987   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    988     if (SI->getValueOperand()->getType()->isVectorTy()) {
    989       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
    990       newTreeEntry(VL, false);
    991       return;
    992     }
    993   unsigned Opcode = getSameOpcode(VL);
    994 
    995   // Check that this shuffle vector refers to the alternate
    996   // sequence of opcodes.
    997   if (Opcode == Instruction::ShuffleVector) {
    998     Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    999     unsigned Op = I0->getOpcode();
   1000     if (Op != Instruction::ShuffleVector)
   1001       isAltShuffle = true;
   1002   }
   1003 
   1004   // If all of the operands are identical or constant we have a simple solution.
   1005   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
   1006     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
   1007     newTreeEntry(VL, false);
   1008     return;
   1009   }
   1010 
   1011   // We now know that this is a vector of instructions of the same type from
   1012   // the same block.
   1013 
   1014   // Don't vectorize ephemeral values.
   1015   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1016     if (EphValues.count(VL[i])) {
   1017       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
   1018             ") is ephemeral.\n");
   1019       newTreeEntry(VL, false);
   1020       return;
   1021     }
   1022   }
   1023 
   1024   // Check if this is a duplicate of another entry.
   1025   if (ScalarToTreeEntry.count(VL[0])) {
   1026     int Idx = ScalarToTreeEntry[VL[0]];
   1027     TreeEntry *E = &VectorizableTree[Idx];
   1028     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1029       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
   1030       if (E->Scalars[i] != VL[i]) {
   1031         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
   1032         newTreeEntry(VL, false);
   1033         return;
   1034       }
   1035     }
   1036     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
   1037     return;
   1038   }
   1039 
   1040   // Check that none of the instructions in the bundle are already in the tree.
   1041   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1042     if (ScalarToTreeEntry.count(VL[i])) {
   1043       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
   1044             ") is already in tree.\n");
   1045       newTreeEntry(VL, false);
   1046       return;
   1047     }
   1048   }
   1049 
   1050   // If any of the scalars is marked as a value that needs to stay scalar then
   1051   // we need to gather the scalars.
   1052   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
   1053     if (MustGather.count(VL[i])) {
   1054       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
   1055       newTreeEntry(VL, false);
   1056       return;
   1057     }
   1058   }
   1059 
   1060   // Check that all of the users of the scalars that we want to vectorize are
   1061   // schedulable.
   1062   Instruction *VL0 = cast<Instruction>(VL[0]);
   1063   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
   1064 
   1065   if (!DT->isReachableFromEntry(BB)) {
   1066     // Don't go into unreachable blocks. They may contain instructions with
   1067     // dependency cycles which confuse the final scheduling.
   1068     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
   1069     newTreeEntry(VL, false);
   1070     return;
   1071   }
   1072 
   1073   // Check that every instructions appears once in this bundle.
   1074   for (unsigned i = 0, e = VL.size(); i < e; ++i)
   1075     for (unsigned j = i+1; j < e; ++j)
   1076       if (VL[i] == VL[j]) {
   1077         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
   1078         newTreeEntry(VL, false);
   1079         return;
   1080       }
   1081 
   1082   auto &BSRef = BlocksSchedules[BB];
   1083   if (!BSRef) {
   1084     BSRef = llvm::make_unique<BlockScheduling>(BB);
   1085   }
   1086   BlockScheduling &BS = *BSRef.get();
   1087 
   1088   if (!BS.tryScheduleBundle(VL, this)) {
   1089     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
   1090     assert((!BS.getScheduleData(VL[0]) ||
   1091             !BS.getScheduleData(VL[0])->isPartOfBundle()) &&
   1092            "tryScheduleBundle should cancelScheduling on failure");
   1093     newTreeEntry(VL, false);
   1094     return;
   1095   }
   1096   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
   1097 
   1098   switch (Opcode) {
   1099     case Instruction::PHI: {
   1100       PHINode *PH = dyn_cast<PHINode>(VL0);
   1101 
   1102       // Check for terminator values (e.g. invoke).
   1103       for (unsigned j = 0; j < VL.size(); ++j)
   1104         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
   1105           TerminatorInst *Term = dyn_cast<TerminatorInst>(
   1106               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
   1107           if (Term) {
   1108             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
   1109             BS.cancelScheduling(VL);
   1110             newTreeEntry(VL, false);
   1111             return;
   1112           }
   1113         }
   1114 
   1115       newTreeEntry(VL, true);
   1116       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
   1117 
   1118       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
   1119         ValueList Operands;
   1120         // Prepare the operand vector.
   1121         for (Value *j : VL)
   1122           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
   1123               PH->getIncomingBlock(i)));
   1124 
   1125         buildTree_rec(Operands, Depth + 1);
   1126       }
   1127       return;
   1128     }
   1129     case Instruction::ExtractValue:
   1130     case Instruction::ExtractElement: {
   1131       bool Reuse = canReuseExtract(VL, Opcode);
   1132       if (Reuse) {
   1133         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
   1134       } else {
   1135         BS.cancelScheduling(VL);
   1136       }
   1137       newTreeEntry(VL, Reuse);
   1138       return;
   1139     }
   1140     case Instruction::Load: {
   1141       // Check that a vectorized load would load the same memory as a scalar
   1142       // load.
   1143       // For example we don't want vectorize loads that are smaller than 8 bit.
   1144       // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
   1145       // loading/storing it as an i8 struct. If we vectorize loads/stores from
   1146       // such a struct we read/write packed bits disagreeing with the
   1147       // unvectorized version.
   1148       Type *ScalarTy = VL[0]->getType();
   1149 
   1150       if (DL->getTypeSizeInBits(ScalarTy) !=
   1151           DL->getTypeAllocSizeInBits(ScalarTy)) {
   1152         BS.cancelScheduling(VL);
   1153         newTreeEntry(VL, false);
   1154         DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
   1155         return;
   1156       }
   1157       // Check if the loads are consecutive or of we need to swizzle them.
   1158       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
   1159         LoadInst *L = cast<LoadInst>(VL[i]);
   1160         if (!L->isSimple()) {
   1161           BS.cancelScheduling(VL);
   1162           newTreeEntry(VL, false);
   1163           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
   1164           return;
   1165         }
   1166 
   1167         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
   1168           if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) {
   1169             ++NumLoadsWantToChangeOrder;
   1170           }
   1171           BS.cancelScheduling(VL);
   1172           newTreeEntry(VL, false);
   1173           DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
   1174           return;
   1175         }
   1176       }
   1177       ++NumLoadsWantToKeepOrder;
   1178       newTreeEntry(VL, true);
   1179       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
   1180       return;
   1181     }
   1182     case Instruction::ZExt:
   1183     case Instruction::SExt:
   1184     case Instruction::FPToUI:
   1185     case Instruction::FPToSI:
   1186     case Instruction::FPExt:
   1187     case Instruction::PtrToInt:
   1188     case Instruction::IntToPtr:
   1189     case Instruction::SIToFP:
   1190     case Instruction::UIToFP:
   1191     case Instruction::Trunc:
   1192     case Instruction::FPTrunc:
   1193     case Instruction::BitCast: {
   1194       Type *SrcTy = VL0->getOperand(0)->getType();
   1195       for (unsigned i = 0; i < VL.size(); ++i) {
   1196         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
   1197         if (Ty != SrcTy || !isValidElementType(Ty)) {
   1198           BS.cancelScheduling(VL);
   1199           newTreeEntry(VL, false);
   1200           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
   1201           return;
   1202         }
   1203       }
   1204       newTreeEntry(VL, true);
   1205       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
   1206 
   1207       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1208         ValueList Operands;
   1209         // Prepare the operand vector.
   1210         for (Value *j : VL)
   1211           Operands.push_back(cast<Instruction>(j)->getOperand(i));
   1212 
   1213         buildTree_rec(Operands, Depth+1);
   1214       }
   1215       return;
   1216     }
   1217     case Instruction::ICmp:
   1218     case Instruction::FCmp: {
   1219       // Check that all of the compares have the same predicate.
   1220       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
   1221       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
   1222       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
   1223         CmpInst *Cmp = cast<CmpInst>(VL[i]);
   1224         if (Cmp->getPredicate() != P0 ||
   1225             Cmp->getOperand(0)->getType() != ComparedTy) {
   1226           BS.cancelScheduling(VL);
   1227           newTreeEntry(VL, false);
   1228           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
   1229           return;
   1230         }
   1231       }
   1232 
   1233       newTreeEntry(VL, true);
   1234       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
   1235 
   1236       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1237         ValueList Operands;
   1238         // Prepare the operand vector.
   1239         for (Value *j : VL)
   1240           Operands.push_back(cast<Instruction>(j)->getOperand(i));
   1241 
   1242         buildTree_rec(Operands, Depth+1);
   1243       }
   1244       return;
   1245     }
   1246     case Instruction::Select:
   1247     case Instruction::Add:
   1248     case Instruction::FAdd:
   1249     case Instruction::Sub:
   1250     case Instruction::FSub:
   1251     case Instruction::Mul:
   1252     case Instruction::FMul:
   1253     case Instruction::UDiv:
   1254     case Instruction::SDiv:
   1255     case Instruction::FDiv:
   1256     case Instruction::URem:
   1257     case Instruction::SRem:
   1258     case Instruction::FRem:
   1259     case Instruction::Shl:
   1260     case Instruction::LShr:
   1261     case Instruction::AShr:
   1262     case Instruction::And:
   1263     case Instruction::Or:
   1264     case Instruction::Xor: {
   1265       newTreeEntry(VL, true);
   1266       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
   1267 
   1268       // Sort operands of the instructions so that each side is more likely to
   1269       // have the same opcode.
   1270       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
   1271         ValueList Left, Right;
   1272         reorderInputsAccordingToOpcode(VL, Left, Right);
   1273         buildTree_rec(Left, Depth + 1);
   1274         buildTree_rec(Right, Depth + 1);
   1275         return;
   1276       }
   1277 
   1278       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1279         ValueList Operands;
   1280         // Prepare the operand vector.
   1281         for (Value *j : VL)
   1282           Operands.push_back(cast<Instruction>(j)->getOperand(i));
   1283 
   1284         buildTree_rec(Operands, Depth+1);
   1285       }
   1286       return;
   1287     }
   1288     case Instruction::GetElementPtr: {
   1289       // We don't combine GEPs with complicated (nested) indexing.
   1290       for (unsigned j = 0; j < VL.size(); ++j) {
   1291         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
   1292           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
   1293           BS.cancelScheduling(VL);
   1294           newTreeEntry(VL, false);
   1295           return;
   1296         }
   1297       }
   1298 
   1299       // We can't combine several GEPs into one vector if they operate on
   1300       // different types.
   1301       Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
   1302       for (unsigned j = 0; j < VL.size(); ++j) {
   1303         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
   1304         if (Ty0 != CurTy) {
   1305           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
   1306           BS.cancelScheduling(VL);
   1307           newTreeEntry(VL, false);
   1308           return;
   1309         }
   1310       }
   1311 
   1312       // We don't combine GEPs with non-constant indexes.
   1313       for (unsigned j = 0; j < VL.size(); ++j) {
   1314         auto Op = cast<Instruction>(VL[j])->getOperand(1);
   1315         if (!isa<ConstantInt>(Op)) {
   1316           DEBUG(
   1317               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
   1318           BS.cancelScheduling(VL);
   1319           newTreeEntry(VL, false);
   1320           return;
   1321         }
   1322       }
   1323 
   1324       newTreeEntry(VL, true);
   1325       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
   1326       for (unsigned i = 0, e = 2; i < e; ++i) {
   1327         ValueList Operands;
   1328         // Prepare the operand vector.
   1329         for (Value *j : VL)
   1330           Operands.push_back(cast<Instruction>(j)->getOperand(i));
   1331 
   1332         buildTree_rec(Operands, Depth + 1);
   1333       }
   1334       return;
   1335     }
   1336     case Instruction::Store: {
   1337       // Check if the stores are consecutive or of we need to swizzle them.
   1338       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
   1339         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
   1340           BS.cancelScheduling(VL);
   1341           newTreeEntry(VL, false);
   1342           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
   1343           return;
   1344         }
   1345 
   1346       newTreeEntry(VL, true);
   1347       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
   1348 
   1349       ValueList Operands;
   1350       for (Value *j : VL)
   1351         Operands.push_back(cast<Instruction>(j)->getOperand(0));
   1352 
   1353       buildTree_rec(Operands, Depth + 1);
   1354       return;
   1355     }
   1356     case Instruction::Call: {
   1357       // Check if the calls are all to the same vectorizable intrinsic.
   1358       CallInst *CI = cast<CallInst>(VL[0]);
   1359       // Check if this is an Intrinsic call or something that can be
   1360       // represented by an intrinsic call
   1361       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
   1362       if (!isTriviallyVectorizable(ID)) {
   1363         BS.cancelScheduling(VL);
   1364         newTreeEntry(VL, false);
   1365         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
   1366         return;
   1367       }
   1368       Function *Int = CI->getCalledFunction();
   1369       Value *A1I = nullptr;
   1370       if (hasVectorInstrinsicScalarOpd(ID, 1))
   1371         A1I = CI->getArgOperand(1);
   1372       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
   1373         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
   1374         if (!CI2 || CI2->getCalledFunction() != Int ||
   1375             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
   1376             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
   1377           BS.cancelScheduling(VL);
   1378           newTreeEntry(VL, false);
   1379           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
   1380                        << "\n");
   1381           return;
   1382         }
   1383         // ctlz,cttz and powi are special intrinsics whose second argument
   1384         // should be same in order for them to be vectorized.
   1385         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
   1386           Value *A1J = CI2->getArgOperand(1);
   1387           if (A1I != A1J) {
   1388             BS.cancelScheduling(VL);
   1389             newTreeEntry(VL, false);
   1390             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
   1391                          << " argument "<< A1I<<"!=" << A1J
   1392                          << "\n");
   1393             return;
   1394           }
   1395         }
   1396         // Verify that the bundle operands are identical between the two calls.
   1397         if (CI->hasOperandBundles() &&
   1398             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
   1399                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
   1400                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
   1401           BS.cancelScheduling(VL);
   1402           newTreeEntry(VL, false);
   1403           DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
   1404                        << *VL[i] << '\n');
   1405           return;
   1406         }
   1407       }
   1408 
   1409       newTreeEntry(VL, true);
   1410       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
   1411         ValueList Operands;
   1412         // Prepare the operand vector.
   1413         for (Value *j : VL) {
   1414           CallInst *CI2 = dyn_cast<CallInst>(j);
   1415           Operands.push_back(CI2->getArgOperand(i));
   1416         }
   1417         buildTree_rec(Operands, Depth + 1);
   1418       }
   1419       return;
   1420     }
   1421     case Instruction::ShuffleVector: {
   1422       // If this is not an alternate sequence of opcode like add-sub
   1423       // then do not vectorize this instruction.
   1424       if (!isAltShuffle) {
   1425         BS.cancelScheduling(VL);
   1426         newTreeEntry(VL, false);
   1427         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
   1428         return;
   1429       }
   1430       newTreeEntry(VL, true);
   1431       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
   1432 
   1433       // Reorder operands if reordering would enable vectorization.
   1434       if (isa<BinaryOperator>(VL0)) {
   1435         ValueList Left, Right;
   1436         reorderAltShuffleOperands(VL, Left, Right);
   1437         buildTree_rec(Left, Depth + 1);
   1438         buildTree_rec(Right, Depth + 1);
   1439         return;
   1440       }
   1441 
   1442       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
   1443         ValueList Operands;
   1444         // Prepare the operand vector.
   1445         for (Value *j : VL)
   1446           Operands.push_back(cast<Instruction>(j)->getOperand(i));
   1447 
   1448         buildTree_rec(Operands, Depth + 1);
   1449       }
   1450       return;
   1451     }
   1452     default:
   1453       BS.cancelScheduling(VL);
   1454       newTreeEntry(VL, false);
   1455       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
   1456       return;
   1457   }
   1458 }
   1459 
   1460 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
   1461   unsigned N;
   1462   Type *EltTy;
   1463   auto *ST = dyn_cast<StructType>(T);
   1464   if (ST) {
   1465     N = ST->getNumElements();
   1466     EltTy = *ST->element_begin();
   1467   } else {
   1468     N = cast<ArrayType>(T)->getNumElements();
   1469     EltTy = cast<ArrayType>(T)->getElementType();
   1470   }
   1471   if (!isValidElementType(EltTy))
   1472     return 0;
   1473   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
   1474   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
   1475     return 0;
   1476   if (ST) {
   1477     // Check that struct is homogeneous.
   1478     for (const auto *Ty : ST->elements())
   1479       if (Ty != EltTy)
   1480         return 0;
   1481   }
   1482   return N;
   1483 }
   1484 
   1485 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const {
   1486   assert(Opcode == Instruction::ExtractElement ||
   1487          Opcode == Instruction::ExtractValue);
   1488   assert(Opcode == getSameOpcode(VL) && "Invalid opcode");
   1489   // Check if all of the extracts come from the same vector and from the
   1490   // correct offset.
   1491   Value *VL0 = VL[0];
   1492   Instruction *E0 = cast<Instruction>(VL0);
   1493   Value *Vec = E0->getOperand(0);
   1494 
   1495   // We have to extract from a vector/aggregate with the same number of elements.
   1496   unsigned NElts;
   1497   if (Opcode == Instruction::ExtractValue) {
   1498     const DataLayout &DL = E0->getModule()->getDataLayout();
   1499     NElts = canMapToVector(Vec->getType(), DL);
   1500     if (!NElts)
   1501       return false;
   1502     // Check if load can be rewritten as load of vector.
   1503     LoadInst *LI = dyn_cast<LoadInst>(Vec);
   1504     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
   1505       return false;
   1506   } else {
   1507     NElts = Vec->getType()->getVectorNumElements();
   1508   }
   1509 
   1510   if (NElts != VL.size())
   1511     return false;
   1512 
   1513   // Check that all of the indices extract from the correct offset.
   1514   if (!matchExtractIndex(E0, 0, Opcode))
   1515     return false;
   1516 
   1517   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
   1518     Instruction *E = cast<Instruction>(VL[i]);
   1519     if (!matchExtractIndex(E, i, Opcode))
   1520       return false;
   1521     if (E->getOperand(0) != Vec)
   1522       return false;
   1523   }
   1524 
   1525   return true;
   1526 }
   1527 
   1528 int BoUpSLP::getEntryCost(TreeEntry *E) {
   1529   ArrayRef<Value*> VL = E->Scalars;
   1530 
   1531   Type *ScalarTy = VL[0]->getType();
   1532   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   1533     ScalarTy = SI->getValueOperand()->getType();
   1534   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
   1535 
   1536   // If we have computed a smaller type for the expression, update VecTy so
   1537   // that the costs will be accurate.
   1538   if (MinBWs.count(VL[0]))
   1539     VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]),
   1540                             VL.size());
   1541 
   1542   if (E->NeedToGather) {
   1543     if (allConstant(VL))
   1544       return 0;
   1545     if (isSplat(VL)) {
   1546       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
   1547     }
   1548     return getGatherCost(E->Scalars);
   1549   }
   1550   unsigned Opcode = getSameOpcode(VL);
   1551   assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL");
   1552   Instruction *VL0 = cast<Instruction>(VL[0]);
   1553   switch (Opcode) {
   1554     case Instruction::PHI: {
   1555       return 0;
   1556     }
   1557     case Instruction::ExtractValue:
   1558     case Instruction::ExtractElement: {
   1559       if (canReuseExtract(VL, Opcode)) {
   1560         int DeadCost = 0;
   1561         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
   1562           Instruction *E = cast<Instruction>(VL[i]);
   1563           if (E->hasOneUse())
   1564             // Take credit for instruction that will become dead.
   1565             DeadCost +=
   1566                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
   1567         }
   1568         return -DeadCost;
   1569       }
   1570       return getGatherCost(VecTy);
   1571     }
   1572     case Instruction::ZExt:
   1573     case Instruction::SExt:
   1574     case Instruction::FPToUI:
   1575     case Instruction::FPToSI:
   1576     case Instruction::FPExt:
   1577     case Instruction::PtrToInt:
   1578     case Instruction::IntToPtr:
   1579     case Instruction::SIToFP:
   1580     case Instruction::UIToFP:
   1581     case Instruction::Trunc:
   1582     case Instruction::FPTrunc:
   1583     case Instruction::BitCast: {
   1584       Type *SrcTy = VL0->getOperand(0)->getType();
   1585 
   1586       // Calculate the cost of this instruction.
   1587       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
   1588                                                          VL0->getType(), SrcTy);
   1589 
   1590       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
   1591       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
   1592       return VecCost - ScalarCost;
   1593     }
   1594     case Instruction::FCmp:
   1595     case Instruction::ICmp:
   1596     case Instruction::Select: {
   1597       // Calculate the cost of this instruction.
   1598       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
   1599       int ScalarCost = VecTy->getNumElements() *
   1600           TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
   1601       int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
   1602       return VecCost - ScalarCost;
   1603     }
   1604     case Instruction::Add:
   1605     case Instruction::FAdd:
   1606     case Instruction::Sub:
   1607     case Instruction::FSub:
   1608     case Instruction::Mul:
   1609     case Instruction::FMul:
   1610     case Instruction::UDiv:
   1611     case Instruction::SDiv:
   1612     case Instruction::FDiv:
   1613     case Instruction::URem:
   1614     case Instruction::SRem:
   1615     case Instruction::FRem:
   1616     case Instruction::Shl:
   1617     case Instruction::LShr:
   1618     case Instruction::AShr:
   1619     case Instruction::And:
   1620     case Instruction::Or:
   1621     case Instruction::Xor: {
   1622       // Certain instructions can be cheaper to vectorize if they have a
   1623       // constant second vector operand.
   1624       TargetTransformInfo::OperandValueKind Op1VK =
   1625           TargetTransformInfo::OK_AnyValue;
   1626       TargetTransformInfo::OperandValueKind Op2VK =
   1627           TargetTransformInfo::OK_UniformConstantValue;
   1628       TargetTransformInfo::OperandValueProperties Op1VP =
   1629           TargetTransformInfo::OP_None;
   1630       TargetTransformInfo::OperandValueProperties Op2VP =
   1631           TargetTransformInfo::OP_None;
   1632 
   1633       // If all operands are exactly the same ConstantInt then set the
   1634       // operand kind to OK_UniformConstantValue.
   1635       // If instead not all operands are constants, then set the operand kind
   1636       // to OK_AnyValue. If all operands are constants but not the same,
   1637       // then set the operand kind to OK_NonUniformConstantValue.
   1638       ConstantInt *CInt = nullptr;
   1639       for (unsigned i = 0; i < VL.size(); ++i) {
   1640         const Instruction *I = cast<Instruction>(VL[i]);
   1641         if (!isa<ConstantInt>(I->getOperand(1))) {
   1642           Op2VK = TargetTransformInfo::OK_AnyValue;
   1643           break;
   1644         }
   1645         if (i == 0) {
   1646           CInt = cast<ConstantInt>(I->getOperand(1));
   1647           continue;
   1648         }
   1649         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
   1650             CInt != cast<ConstantInt>(I->getOperand(1)))
   1651           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
   1652       }
   1653       // FIXME: Currently cost of model modification for division by power of
   1654       // 2 is handled for X86 and AArch64. Add support for other targets.
   1655       if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
   1656           CInt->getValue().isPowerOf2())
   1657         Op2VP = TargetTransformInfo::OP_PowerOf2;
   1658 
   1659       int ScalarCost = VecTy->getNumElements() *
   1660                        TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK,
   1661                                                    Op2VK, Op1VP, Op2VP);
   1662       int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
   1663                                                 Op1VP, Op2VP);
   1664       return VecCost - ScalarCost;
   1665     }
   1666     case Instruction::GetElementPtr: {
   1667       TargetTransformInfo::OperandValueKind Op1VK =
   1668           TargetTransformInfo::OK_AnyValue;
   1669       TargetTransformInfo::OperandValueKind Op2VK =
   1670           TargetTransformInfo::OK_UniformConstantValue;
   1671 
   1672       int ScalarCost =
   1673           VecTy->getNumElements() *
   1674           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
   1675       int VecCost =
   1676           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
   1677 
   1678       return VecCost - ScalarCost;
   1679     }
   1680     case Instruction::Load: {
   1681       // Cost of wide load - cost of scalar loads.
   1682       unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
   1683       int ScalarLdCost = VecTy->getNumElements() *
   1684             TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0);
   1685       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
   1686                                            VecTy, alignment, 0);
   1687       return VecLdCost - ScalarLdCost;
   1688     }
   1689     case Instruction::Store: {
   1690       // We know that we can merge the stores. Calculate the cost.
   1691       unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
   1692       int ScalarStCost = VecTy->getNumElements() *
   1693             TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0);
   1694       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
   1695                                            VecTy, alignment, 0);
   1696       return VecStCost - ScalarStCost;
   1697     }
   1698     case Instruction::Call: {
   1699       CallInst *CI = cast<CallInst>(VL0);
   1700       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
   1701 
   1702       // Calculate the cost of the scalar and vector calls.
   1703       SmallVector<Type*, 4> ScalarTys, VecTys;
   1704       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
   1705         ScalarTys.push_back(CI->getArgOperand(op)->getType());
   1706         VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
   1707                                          VecTy->getNumElements()));
   1708       }
   1709 
   1710       FastMathFlags FMF;
   1711       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
   1712         FMF = FPMO->getFastMathFlags();
   1713 
   1714       int ScalarCallCost = VecTy->getNumElements() *
   1715           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
   1716 
   1717       int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF);
   1718 
   1719       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
   1720             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
   1721             << " for " << *CI << "\n");
   1722 
   1723       return VecCallCost - ScalarCallCost;
   1724     }
   1725     case Instruction::ShuffleVector: {
   1726       TargetTransformInfo::OperandValueKind Op1VK =
   1727           TargetTransformInfo::OK_AnyValue;
   1728       TargetTransformInfo::OperandValueKind Op2VK =
   1729           TargetTransformInfo::OK_AnyValue;
   1730       int ScalarCost = 0;
   1731       int VecCost = 0;
   1732       for (Value *i : VL) {
   1733         Instruction *I = cast<Instruction>(i);
   1734         if (!I)
   1735           break;
   1736         ScalarCost +=
   1737             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
   1738       }
   1739       // VecCost is equal to sum of the cost of creating 2 vectors
   1740       // and the cost of creating shuffle.
   1741       Instruction *I0 = cast<Instruction>(VL[0]);
   1742       VecCost =
   1743           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
   1744       Instruction *I1 = cast<Instruction>(VL[1]);
   1745       VecCost +=
   1746           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
   1747       VecCost +=
   1748           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
   1749       return VecCost - ScalarCost;
   1750     }
   1751     default:
   1752       llvm_unreachable("Unknown instruction");
   1753   }
   1754 }
   1755 
   1756 bool BoUpSLP::isFullyVectorizableTinyTree() {
   1757   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
   1758         VectorizableTree.size() << " is fully vectorizable .\n");
   1759 
   1760   // We only handle trees of height 2.
   1761   if (VectorizableTree.size() != 2)
   1762     return false;
   1763 
   1764   // Handle splat and all-constants stores.
   1765   if (!VectorizableTree[0].NeedToGather &&
   1766       (allConstant(VectorizableTree[1].Scalars) ||
   1767        isSplat(VectorizableTree[1].Scalars)))
   1768     return true;
   1769 
   1770   // Gathering cost would be too much for tiny trees.
   1771   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
   1772     return false;
   1773 
   1774   return true;
   1775 }
   1776 
   1777 int BoUpSLP::getSpillCost() {
   1778   // Walk from the bottom of the tree to the top, tracking which values are
   1779   // live. When we see a call instruction that is not part of our tree,
   1780   // query TTI to see if there is a cost to keeping values live over it
   1781   // (for example, if spills and fills are required).
   1782   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
   1783   int Cost = 0;
   1784 
   1785   SmallPtrSet<Instruction*, 4> LiveValues;
   1786   Instruction *PrevInst = nullptr;
   1787 
   1788   for (const auto &N : VectorizableTree) {
   1789     Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
   1790     if (!Inst)
   1791       continue;
   1792 
   1793     if (!PrevInst) {
   1794       PrevInst = Inst;
   1795       continue;
   1796     }
   1797 
   1798     // Update LiveValues.
   1799     LiveValues.erase(PrevInst);
   1800     for (auto &J : PrevInst->operands()) {
   1801       if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
   1802         LiveValues.insert(cast<Instruction>(&*J));
   1803     }
   1804 
   1805     DEBUG(
   1806       dbgs() << "SLP: #LV: " << LiveValues.size();
   1807       for (auto *X : LiveValues)
   1808         dbgs() << " " << X->getName();
   1809       dbgs() << ", Looking at ";
   1810       Inst->dump();
   1811       );
   1812 
   1813     // Now find the sequence of instructions between PrevInst and Inst.
   1814     BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
   1815         PrevInstIt(PrevInst->getIterator());
   1816     --PrevInstIt;
   1817     while (InstIt != PrevInstIt) {
   1818       if (PrevInstIt == PrevInst->getParent()->rend()) {
   1819         PrevInstIt = Inst->getParent()->rbegin();
   1820         continue;
   1821       }
   1822 
   1823       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
   1824         SmallVector<Type*, 4> V;
   1825         for (auto *II : LiveValues)
   1826           V.push_back(VectorType::get(II->getType(), BundleWidth));
   1827         Cost += TTI->getCostOfKeepingLiveOverCall(V);
   1828       }
   1829 
   1830       ++PrevInstIt;
   1831     }
   1832 
   1833     PrevInst = Inst;
   1834   }
   1835 
   1836   return Cost;
   1837 }
   1838 
   1839 int BoUpSLP::getTreeCost() {
   1840   int Cost = 0;
   1841   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
   1842         VectorizableTree.size() << ".\n");
   1843 
   1844   // We only vectorize tiny trees if it is fully vectorizable.
   1845   if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
   1846     if (VectorizableTree.empty()) {
   1847       assert(!ExternalUses.size() && "We should not have any external users");
   1848     }
   1849     return INT_MAX;
   1850   }
   1851 
   1852   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
   1853 
   1854   for (TreeEntry &TE : VectorizableTree) {
   1855     int C = getEntryCost(&TE);
   1856     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
   1857                  << *TE.Scalars[0] << ".\n");
   1858     Cost += C;
   1859   }
   1860 
   1861   SmallSet<Value *, 16> ExtractCostCalculated;
   1862   int ExtractCost = 0;
   1863   for (ExternalUser &EU : ExternalUses) {
   1864     // We only add extract cost once for the same scalar.
   1865     if (!ExtractCostCalculated.insert(EU.Scalar).second)
   1866       continue;
   1867 
   1868     // Uses by ephemeral values are free (because the ephemeral value will be
   1869     // removed prior to code generation, and so the extraction will be
   1870     // removed as well).
   1871     if (EphValues.count(EU.User))
   1872       continue;
   1873 
   1874     // If we plan to rewrite the tree in a smaller type, we will need to sign
   1875     // extend the extracted value back to the original type. Here, we account
   1876     // for the extract and the added cost of the sign extend if needed.
   1877     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
   1878     auto *ScalarRoot = VectorizableTree[0].Scalars[0];
   1879     if (MinBWs.count(ScalarRoot)) {
   1880       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
   1881       VecTy = VectorType::get(MinTy, BundleWidth);
   1882       ExtractCost += TTI->getExtractWithExtendCost(
   1883           Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane);
   1884     } else {
   1885       ExtractCost +=
   1886           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
   1887     }
   1888   }
   1889 
   1890   int SpillCost = getSpillCost();
   1891   Cost += SpillCost + ExtractCost;
   1892 
   1893   DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n"
   1894                << "SLP: Extract Cost = " << ExtractCost << ".\n"
   1895                << "SLP: Total Cost = " << Cost << ".\n");
   1896   return Cost;
   1897 }
   1898 
   1899 int BoUpSLP::getGatherCost(Type *Ty) {
   1900   int Cost = 0;
   1901   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
   1902     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
   1903   return Cost;
   1904 }
   1905 
   1906 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
   1907   // Find the type of the operands in VL.
   1908   Type *ScalarTy = VL[0]->getType();
   1909   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   1910     ScalarTy = SI->getValueOperand()->getType();
   1911   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
   1912   // Find the cost of inserting/extracting values from the vector.
   1913   return getGatherCost(VecTy);
   1914 }
   1915 
   1916 // Reorder commutative operations in alternate shuffle if the resulting vectors
   1917 // are consecutive loads. This would allow us to vectorize the tree.
   1918 // If we have something like-
   1919 // load a[0] - load b[0]
   1920 // load b[1] + load a[1]
   1921 // load a[2] - load b[2]
   1922 // load a[3] + load b[3]
   1923 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
   1924 // code.
   1925 void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
   1926                                         SmallVectorImpl<Value *> &Left,
   1927                                         SmallVectorImpl<Value *> &Right) {
   1928   // Push left and right operands of binary operation into Left and Right
   1929   for (Value *i : VL) {
   1930     Left.push_back(cast<Instruction>(i)->getOperand(0));
   1931     Right.push_back(cast<Instruction>(i)->getOperand(1));
   1932   }
   1933 
   1934   // Reorder if we have a commutative operation and consecutive access
   1935   // are on either side of the alternate instructions.
   1936   for (unsigned j = 0; j < VL.size() - 1; ++j) {
   1937     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
   1938       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
   1939         Instruction *VL1 = cast<Instruction>(VL[j]);
   1940         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
   1941         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
   1942           std::swap(Left[j], Right[j]);
   1943           continue;
   1944         } else if (VL2->isCommutative() &&
   1945                    isConsecutiveAccess(L, L1, *DL, *SE)) {
   1946           std::swap(Left[j + 1], Right[j + 1]);
   1947           continue;
   1948         }
   1949         // else unchanged
   1950       }
   1951     }
   1952     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
   1953       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
   1954         Instruction *VL1 = cast<Instruction>(VL[j]);
   1955         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
   1956         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
   1957           std::swap(Left[j], Right[j]);
   1958           continue;
   1959         } else if (VL2->isCommutative() &&
   1960                    isConsecutiveAccess(L, L1, *DL, *SE)) {
   1961           std::swap(Left[j + 1], Right[j + 1]);
   1962           continue;
   1963         }
   1964         // else unchanged
   1965       }
   1966     }
   1967   }
   1968 }
   1969 
   1970 // Return true if I should be commuted before adding it's left and right
   1971 // operands to the arrays Left and Right.
   1972 //
   1973 // The vectorizer is trying to either have all elements one side being
   1974 // instruction with the same opcode to enable further vectorization, or having
   1975 // a splat to lower the vectorizing cost.
   1976 static bool shouldReorderOperands(int i, Instruction &I,
   1977                                   SmallVectorImpl<Value *> &Left,
   1978                                   SmallVectorImpl<Value *> &Right,
   1979                                   bool AllSameOpcodeLeft,
   1980                                   bool AllSameOpcodeRight, bool SplatLeft,
   1981                                   bool SplatRight) {
   1982   Value *VLeft = I.getOperand(0);
   1983   Value *VRight = I.getOperand(1);
   1984   // If we have "SplatRight", try to see if commuting is needed to preserve it.
   1985   if (SplatRight) {
   1986     if (VRight == Right[i - 1])
   1987       // Preserve SplatRight
   1988       return false;
   1989     if (VLeft == Right[i - 1]) {
   1990       // Commuting would preserve SplatRight, but we don't want to break
   1991       // SplatLeft either, i.e. preserve the original order if possible.
   1992       // (FIXME: why do we care?)
   1993       if (SplatLeft && VLeft == Left[i - 1])
   1994         return false;
   1995       return true;
   1996     }
   1997   }
   1998   // Symmetrically handle Right side.
   1999   if (SplatLeft) {
   2000     if (VLeft == Left[i - 1])
   2001       // Preserve SplatLeft
   2002       return false;
   2003     if (VRight == Left[i - 1])
   2004       return true;
   2005   }
   2006 
   2007   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
   2008   Instruction *IRight = dyn_cast<Instruction>(VRight);
   2009 
   2010   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
   2011   // it and not the right, in this case we want to commute.
   2012   if (AllSameOpcodeRight) {
   2013     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
   2014     if (IRight && RightPrevOpcode == IRight->getOpcode())
   2015       // Do not commute, a match on the right preserves AllSameOpcodeRight
   2016       return false;
   2017     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
   2018       // We have a match and may want to commute, but first check if there is
   2019       // not also a match on the existing operands on the Left to preserve
   2020       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
   2021       // (FIXME: why do we care?)
   2022       if (AllSameOpcodeLeft && ILeft &&
   2023           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
   2024         return false;
   2025       return true;
   2026     }
   2027   }
   2028   // Symmetrically handle Left side.
   2029   if (AllSameOpcodeLeft) {
   2030     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
   2031     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
   2032       return false;
   2033     if (IRight && LeftPrevOpcode == IRight->getOpcode())
   2034       return true;
   2035   }
   2036   return false;
   2037 }
   2038 
   2039 void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
   2040                                              SmallVectorImpl<Value *> &Left,
   2041                                              SmallVectorImpl<Value *> &Right) {
   2042 
   2043   if (VL.size()) {
   2044     // Peel the first iteration out of the loop since there's nothing
   2045     // interesting to do anyway and it simplifies the checks in the loop.
   2046     auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
   2047     auto VRight = cast<Instruction>(VL[0])->getOperand(1);
   2048     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
   2049       // Favor having instruction to the right. FIXME: why?
   2050       std::swap(VLeft, VRight);
   2051     Left.push_back(VLeft);
   2052     Right.push_back(VRight);
   2053   }
   2054 
   2055   // Keep track if we have instructions with all the same opcode on one side.
   2056   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
   2057   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
   2058   // Keep track if we have one side with all the same value (broadcast).
   2059   bool SplatLeft = true;
   2060   bool SplatRight = true;
   2061 
   2062   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
   2063     Instruction *I = cast<Instruction>(VL[i]);
   2064     assert(I->isCommutative() && "Can only process commutative instruction");
   2065     // Commute to favor either a splat or maximizing having the same opcodes on
   2066     // one side.
   2067     if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
   2068                               AllSameOpcodeRight, SplatLeft, SplatRight)) {
   2069       Left.push_back(I->getOperand(1));
   2070       Right.push_back(I->getOperand(0));
   2071     } else {
   2072       Left.push_back(I->getOperand(0));
   2073       Right.push_back(I->getOperand(1));
   2074     }
   2075     // Update Splat* and AllSameOpcode* after the insertion.
   2076     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
   2077     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
   2078     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
   2079                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
   2080                          cast<Instruction>(Left[i])->getOpcode());
   2081     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
   2082                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
   2083                           cast<Instruction>(Right[i])->getOpcode());
   2084   }
   2085 
   2086   // If one operand end up being broadcast, return this operand order.
   2087   if (SplatRight || SplatLeft)
   2088     return;
   2089 
   2090   // Finally check if we can get longer vectorizable chain by reordering
   2091   // without breaking the good operand order detected above.
   2092   // E.g. If we have something like-
   2093   // load a[0]  load b[0]
   2094   // load b[1]  load a[1]
   2095   // load a[2]  load b[2]
   2096   // load a[3]  load b[3]
   2097   // Reordering the second load b[1]  load a[1] would allow us to vectorize
   2098   // this code and we still retain AllSameOpcode property.
   2099   // FIXME: This load reordering might break AllSameOpcode in some rare cases
   2100   // such as-
   2101   // add a[0],c[0]  load b[0]
   2102   // add a[1],c[2]  load b[1]
   2103   // b[2]           load b[2]
   2104   // add a[3],c[3]  load b[3]
   2105   for (unsigned j = 0; j < VL.size() - 1; ++j) {
   2106     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
   2107       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
   2108         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
   2109           std::swap(Left[j + 1], Right[j + 1]);
   2110           continue;
   2111         }
   2112       }
   2113     }
   2114     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
   2115       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
   2116         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
   2117           std::swap(Left[j + 1], Right[j + 1]);
   2118           continue;
   2119         }
   2120       }
   2121     }
   2122     // else unchanged
   2123   }
   2124 }
   2125 
   2126 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
   2127   Instruction *VL0 = cast<Instruction>(VL[0]);
   2128   BasicBlock::iterator NextInst(VL0);
   2129   ++NextInst;
   2130   Builder.SetInsertPoint(VL0->getParent(), NextInst);
   2131   Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   2132 }
   2133 
   2134 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
   2135   Value *Vec = UndefValue::get(Ty);
   2136   // Generate the 'InsertElement' instruction.
   2137   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
   2138     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
   2139     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
   2140       GatherSeq.insert(Insrt);
   2141       CSEBlocks.insert(Insrt->getParent());
   2142 
   2143       // Add to our 'need-to-extract' list.
   2144       if (ScalarToTreeEntry.count(VL[i])) {
   2145         int Idx = ScalarToTreeEntry[VL[i]];
   2146         TreeEntry *E = &VectorizableTree[Idx];
   2147         // Find which lane we need to extract.
   2148         int FoundLane = -1;
   2149         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
   2150           // Is this the lane of the scalar that we are looking for ?
   2151           if (E->Scalars[Lane] == VL[i]) {
   2152             FoundLane = Lane;
   2153             break;
   2154           }
   2155         }
   2156         assert(FoundLane >= 0 && "Could not find the correct lane");
   2157         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
   2158       }
   2159     }
   2160   }
   2161 
   2162   return Vec;
   2163 }
   2164 
   2165 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
   2166   SmallDenseMap<Value*, int>::const_iterator Entry
   2167     = ScalarToTreeEntry.find(VL[0]);
   2168   if (Entry != ScalarToTreeEntry.end()) {
   2169     int Idx = Entry->second;
   2170     const TreeEntry *En = &VectorizableTree[Idx];
   2171     if (En->isSame(VL) && En->VectorizedValue)
   2172       return En->VectorizedValue;
   2173   }
   2174   return nullptr;
   2175 }
   2176 
   2177 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
   2178   if (ScalarToTreeEntry.count(VL[0])) {
   2179     int Idx = ScalarToTreeEntry[VL[0]];
   2180     TreeEntry *E = &VectorizableTree[Idx];
   2181     if (E->isSame(VL))
   2182       return vectorizeTree(E);
   2183   }
   2184 
   2185   Type *ScalarTy = VL[0]->getType();
   2186   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   2187     ScalarTy = SI->getValueOperand()->getType();
   2188   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
   2189 
   2190   return Gather(VL, VecTy);
   2191 }
   2192 
   2193 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
   2194   IRBuilder<>::InsertPointGuard Guard(Builder);
   2195 
   2196   if (E->VectorizedValue) {
   2197     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
   2198     return E->VectorizedValue;
   2199   }
   2200 
   2201   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
   2202   Type *ScalarTy = VL0->getType();
   2203   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
   2204     ScalarTy = SI->getValueOperand()->getType();
   2205   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
   2206 
   2207   if (E->NeedToGather) {
   2208     setInsertPointAfterBundle(E->Scalars);
   2209     return Gather(E->Scalars, VecTy);
   2210   }
   2211 
   2212   unsigned Opcode = getSameOpcode(E->Scalars);
   2213 
   2214   switch (Opcode) {
   2215     case Instruction::PHI: {
   2216       PHINode *PH = dyn_cast<PHINode>(VL0);
   2217       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
   2218       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
   2219       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
   2220       E->VectorizedValue = NewPhi;
   2221 
   2222       // PHINodes may have multiple entries from the same block. We want to
   2223       // visit every block once.
   2224       SmallSet<BasicBlock*, 4> VisitedBBs;
   2225 
   2226       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
   2227         ValueList Operands;
   2228         BasicBlock *IBB = PH->getIncomingBlock(i);
   2229 
   2230         if (!VisitedBBs.insert(IBB).second) {
   2231           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
   2232           continue;
   2233         }
   2234 
   2235         // Prepare the operand vector.
   2236         for (Value *V : E->Scalars)
   2237           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
   2238 
   2239         Builder.SetInsertPoint(IBB->getTerminator());
   2240         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
   2241         Value *Vec = vectorizeTree(Operands);
   2242         NewPhi->addIncoming(Vec, IBB);
   2243       }
   2244 
   2245       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
   2246              "Invalid number of incoming values");
   2247       return NewPhi;
   2248     }
   2249 
   2250     case Instruction::ExtractElement: {
   2251       if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) {
   2252         Value *V = VL0->getOperand(0);
   2253         E->VectorizedValue = V;
   2254         return V;
   2255       }
   2256       return Gather(E->Scalars, VecTy);
   2257     }
   2258     case Instruction::ExtractValue: {
   2259       if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) {
   2260         LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
   2261         Builder.SetInsertPoint(LI);
   2262         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
   2263         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
   2264         LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
   2265         E->VectorizedValue = V;
   2266         return propagateMetadata(V, E->Scalars);
   2267       }
   2268       return Gather(E->Scalars, VecTy);
   2269     }
   2270     case Instruction::ZExt:
   2271     case Instruction::SExt:
   2272     case Instruction::FPToUI:
   2273     case Instruction::FPToSI:
   2274     case Instruction::FPExt:
   2275     case Instruction::PtrToInt:
   2276     case Instruction::IntToPtr:
   2277     case Instruction::SIToFP:
   2278     case Instruction::UIToFP:
   2279     case Instruction::Trunc:
   2280     case Instruction::FPTrunc:
   2281     case Instruction::BitCast: {
   2282       ValueList INVL;
   2283       for (Value *V : E->Scalars)
   2284         INVL.push_back(cast<Instruction>(V)->getOperand(0));
   2285 
   2286       setInsertPointAfterBundle(E->Scalars);
   2287 
   2288       Value *InVec = vectorizeTree(INVL);
   2289 
   2290       if (Value *V = alreadyVectorized(E->Scalars))
   2291         return V;
   2292 
   2293       CastInst *CI = dyn_cast<CastInst>(VL0);
   2294       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
   2295       E->VectorizedValue = V;
   2296       ++NumVectorInstructions;
   2297       return V;
   2298     }
   2299     case Instruction::FCmp:
   2300     case Instruction::ICmp: {
   2301       ValueList LHSV, RHSV;
   2302       for (Value *V : E->Scalars) {
   2303         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
   2304         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
   2305       }
   2306 
   2307       setInsertPointAfterBundle(E->Scalars);
   2308 
   2309       Value *L = vectorizeTree(LHSV);
   2310       Value *R = vectorizeTree(RHSV);
   2311 
   2312       if (Value *V = alreadyVectorized(E->Scalars))
   2313         return V;
   2314 
   2315       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
   2316       Value *V;
   2317       if (Opcode == Instruction::FCmp)
   2318         V = Builder.CreateFCmp(P0, L, R);
   2319       else
   2320         V = Builder.CreateICmp(P0, L, R);
   2321 
   2322       E->VectorizedValue = V;
   2323       ++NumVectorInstructions;
   2324       return V;
   2325     }
   2326     case Instruction::Select: {
   2327       ValueList TrueVec, FalseVec, CondVec;
   2328       for (Value *V : E->Scalars) {
   2329         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
   2330         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
   2331         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
   2332       }
   2333 
   2334       setInsertPointAfterBundle(E->Scalars);
   2335 
   2336       Value *Cond = vectorizeTree(CondVec);
   2337       Value *True = vectorizeTree(TrueVec);
   2338       Value *False = vectorizeTree(FalseVec);
   2339 
   2340       if (Value *V = alreadyVectorized(E->Scalars))
   2341         return V;
   2342 
   2343       Value *V = Builder.CreateSelect(Cond, True, False);
   2344       E->VectorizedValue = V;
   2345       ++NumVectorInstructions;
   2346       return V;
   2347     }
   2348     case Instruction::Add:
   2349     case Instruction::FAdd:
   2350     case Instruction::Sub:
   2351     case Instruction::FSub:
   2352     case Instruction::Mul:
   2353     case Instruction::FMul:
   2354     case Instruction::UDiv:
   2355     case Instruction::SDiv:
   2356     case Instruction::FDiv:
   2357     case Instruction::URem:
   2358     case Instruction::SRem:
   2359     case Instruction::FRem:
   2360     case Instruction::Shl:
   2361     case Instruction::LShr:
   2362     case Instruction::AShr:
   2363     case Instruction::And:
   2364     case Instruction::Or:
   2365     case Instruction::Xor: {
   2366       ValueList LHSVL, RHSVL;
   2367       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
   2368         reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
   2369       else
   2370         for (Value *V : E->Scalars) {
   2371           LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
   2372           RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
   2373         }
   2374 
   2375       setInsertPointAfterBundle(E->Scalars);
   2376 
   2377       Value *LHS = vectorizeTree(LHSVL);
   2378       Value *RHS = vectorizeTree(RHSVL);
   2379 
   2380       if (LHS == RHS && isa<Instruction>(LHS)) {
   2381         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
   2382       }
   2383 
   2384       if (Value *V = alreadyVectorized(E->Scalars))
   2385         return V;
   2386 
   2387       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
   2388       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
   2389       E->VectorizedValue = V;
   2390       propagateIRFlags(E->VectorizedValue, E->Scalars);
   2391       ++NumVectorInstructions;
   2392 
   2393       if (Instruction *I = dyn_cast<Instruction>(V))
   2394         return propagateMetadata(I, E->Scalars);
   2395 
   2396       return V;
   2397     }
   2398     case Instruction::Load: {
   2399       // Loads are inserted at the head of the tree because we don't want to
   2400       // sink them all the way down past store instructions.
   2401       setInsertPointAfterBundle(E->Scalars);
   2402 
   2403       LoadInst *LI = cast<LoadInst>(VL0);
   2404       Type *ScalarLoadTy = LI->getType();
   2405       unsigned AS = LI->getPointerAddressSpace();
   2406 
   2407       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
   2408                                             VecTy->getPointerTo(AS));
   2409 
   2410       // The pointer operand uses an in-tree scalar so we add the new BitCast to
   2411       // ExternalUses list to make sure that an extract will be generated in the
   2412       // future.
   2413       if (ScalarToTreeEntry.count(LI->getPointerOperand()))
   2414         ExternalUses.push_back(
   2415             ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
   2416 
   2417       unsigned Alignment = LI->getAlignment();
   2418       LI = Builder.CreateLoad(VecPtr);
   2419       if (!Alignment) {
   2420         Alignment = DL->getABITypeAlignment(ScalarLoadTy);
   2421       }
   2422       LI->setAlignment(Alignment);
   2423       E->VectorizedValue = LI;
   2424       ++NumVectorInstructions;
   2425       return propagateMetadata(LI, E->Scalars);
   2426     }
   2427     case Instruction::Store: {
   2428       StoreInst *SI = cast<StoreInst>(VL0);
   2429       unsigned Alignment = SI->getAlignment();
   2430       unsigned AS = SI->getPointerAddressSpace();
   2431 
   2432       ValueList ValueOp;
   2433       for (Value *V : E->Scalars)
   2434         ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
   2435 
   2436       setInsertPointAfterBundle(E->Scalars);
   2437 
   2438       Value *VecValue = vectorizeTree(ValueOp);
   2439       Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
   2440                                             VecTy->getPointerTo(AS));
   2441       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
   2442 
   2443       // The pointer operand uses an in-tree scalar so we add the new BitCast to
   2444       // ExternalUses list to make sure that an extract will be generated in the
   2445       // future.
   2446       if (ScalarToTreeEntry.count(SI->getPointerOperand()))
   2447         ExternalUses.push_back(
   2448             ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
   2449 
   2450       if (!Alignment) {
   2451         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
   2452       }
   2453       S->setAlignment(Alignment);
   2454       E->VectorizedValue = S;
   2455       ++NumVectorInstructions;
   2456       return propagateMetadata(S, E->Scalars);
   2457     }
   2458     case Instruction::GetElementPtr: {
   2459       setInsertPointAfterBundle(E->Scalars);
   2460 
   2461       ValueList Op0VL;
   2462       for (Value *V : E->Scalars)
   2463         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
   2464 
   2465       Value *Op0 = vectorizeTree(Op0VL);
   2466 
   2467       std::vector<Value *> OpVecs;
   2468       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
   2469            ++j) {
   2470         ValueList OpVL;
   2471         for (Value *V : E->Scalars)
   2472           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
   2473 
   2474         Value *OpVec = vectorizeTree(OpVL);
   2475         OpVecs.push_back(OpVec);
   2476       }
   2477 
   2478       Value *V = Builder.CreateGEP(
   2479           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
   2480       E->VectorizedValue = V;
   2481       ++NumVectorInstructions;
   2482 
   2483       if (Instruction *I = dyn_cast<Instruction>(V))
   2484         return propagateMetadata(I, E->Scalars);
   2485 
   2486       return V;
   2487     }
   2488     case Instruction::Call: {
   2489       CallInst *CI = cast<CallInst>(VL0);
   2490       setInsertPointAfterBundle(E->Scalars);
   2491       Function *FI;
   2492       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
   2493       Value *ScalarArg = nullptr;
   2494       if (CI && (FI = CI->getCalledFunction())) {
   2495         IID = FI->getIntrinsicID();
   2496       }
   2497       std::vector<Value *> OpVecs;
   2498       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
   2499         ValueList OpVL;
   2500         // ctlz,cttz and powi are special intrinsics whose second argument is
   2501         // a scalar. This argument should not be vectorized.
   2502         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
   2503           CallInst *CEI = cast<CallInst>(E->Scalars[0]);
   2504           ScalarArg = CEI->getArgOperand(j);
   2505           OpVecs.push_back(CEI->getArgOperand(j));
   2506           continue;
   2507         }
   2508         for (Value *V : E->Scalars) {
   2509           CallInst *CEI = cast<CallInst>(V);
   2510           OpVL.push_back(CEI->getArgOperand(j));
   2511         }
   2512 
   2513         Value *OpVec = vectorizeTree(OpVL);
   2514         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
   2515         OpVecs.push_back(OpVec);
   2516       }
   2517 
   2518       Module *M = F->getParent();
   2519       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
   2520       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
   2521       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
   2522       SmallVector<OperandBundleDef, 1> OpBundles;
   2523       CI->getOperandBundlesAsDefs(OpBundles);
   2524       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
   2525 
   2526       // The scalar argument uses an in-tree scalar so we add the new vectorized
   2527       // call to ExternalUses list to make sure that an extract will be
   2528       // generated in the future.
   2529       if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
   2530         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
   2531 
   2532       E->VectorizedValue = V;
   2533       ++NumVectorInstructions;
   2534       return V;
   2535     }
   2536     case Instruction::ShuffleVector: {
   2537       ValueList LHSVL, RHSVL;
   2538       assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand");
   2539       reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
   2540       setInsertPointAfterBundle(E->Scalars);
   2541 
   2542       Value *LHS = vectorizeTree(LHSVL);
   2543       Value *RHS = vectorizeTree(RHSVL);
   2544 
   2545       if (Value *V = alreadyVectorized(E->Scalars))
   2546         return V;
   2547 
   2548       // Create a vector of LHS op1 RHS
   2549       BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
   2550       Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
   2551 
   2552       // Create a vector of LHS op2 RHS
   2553       Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
   2554       BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
   2555       Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
   2556 
   2557       // Create shuffle to take alternate operations from the vector.
   2558       // Also, gather up odd and even scalar ops to propagate IR flags to
   2559       // each vector operation.
   2560       ValueList OddScalars, EvenScalars;
   2561       unsigned e = E->Scalars.size();
   2562       SmallVector<Constant *, 8> Mask(e);
   2563       for (unsigned i = 0; i < e; ++i) {
   2564         if (i & 1) {
   2565           Mask[i] = Builder.getInt32(e + i);
   2566           OddScalars.push_back(E->Scalars[i]);
   2567         } else {
   2568           Mask[i] = Builder.getInt32(i);
   2569           EvenScalars.push_back(E->Scalars[i]);
   2570         }
   2571       }
   2572 
   2573       Value *ShuffleMask = ConstantVector::get(Mask);
   2574       propagateIRFlags(V0, EvenScalars);
   2575       propagateIRFlags(V1, OddScalars);
   2576 
   2577       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
   2578       E->VectorizedValue = V;
   2579       ++NumVectorInstructions;
   2580       if (Instruction *I = dyn_cast<Instruction>(V))
   2581         return propagateMetadata(I, E->Scalars);
   2582 
   2583       return V;
   2584     }
   2585     default:
   2586     llvm_unreachable("unknown inst");
   2587   }
   2588   return nullptr;
   2589 }
   2590 
   2591 Value *BoUpSLP::vectorizeTree() {
   2592 
   2593   // All blocks must be scheduled before any instructions are inserted.
   2594   for (auto &BSIter : BlocksSchedules) {
   2595     scheduleBlock(BSIter.second.get());
   2596   }
   2597 
   2598   Builder.SetInsertPoint(&F->getEntryBlock().front());
   2599   auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
   2600 
   2601   // If the vectorized tree can be rewritten in a smaller type, we truncate the
   2602   // vectorized root. InstCombine will then rewrite the entire expression. We
   2603   // sign extend the extracted values below.
   2604   auto *ScalarRoot = VectorizableTree[0].Scalars[0];
   2605   if (MinBWs.count(ScalarRoot)) {
   2606     if (auto *I = dyn_cast<Instruction>(VectorRoot))
   2607       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
   2608     auto BundleWidth = VectorizableTree[0].Scalars.size();
   2609     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]);
   2610     auto *VecTy = VectorType::get(MinTy, BundleWidth);
   2611     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
   2612     VectorizableTree[0].VectorizedValue = Trunc;
   2613   }
   2614 
   2615   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
   2616 
   2617   // Extract all of the elements with the external uses.
   2618   for (const auto &ExternalUse : ExternalUses) {
   2619     Value *Scalar = ExternalUse.Scalar;
   2620     llvm::User *User = ExternalUse.User;
   2621 
   2622     // Skip users that we already RAUW. This happens when one instruction
   2623     // has multiple uses of the same value.
   2624     if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
   2625         Scalar->user_end())
   2626       continue;
   2627     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
   2628 
   2629     int Idx = ScalarToTreeEntry[Scalar];
   2630     TreeEntry *E = &VectorizableTree[Idx];
   2631     assert(!E->NeedToGather && "Extracting from a gather list");
   2632 
   2633     Value *Vec = E->VectorizedValue;
   2634     assert(Vec && "Can't find vectorizable value");
   2635 
   2636     Value *Lane = Builder.getInt32(ExternalUse.Lane);
   2637     // Generate extracts for out-of-tree users.
   2638     // Find the insertion point for the extractelement lane.
   2639     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
   2640       if (PHINode *PH = dyn_cast<PHINode>(User)) {
   2641         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
   2642           if (PH->getIncomingValue(i) == Scalar) {
   2643             TerminatorInst *IncomingTerminator =
   2644                 PH->getIncomingBlock(i)->getTerminator();
   2645             if (isa<CatchSwitchInst>(IncomingTerminator)) {
   2646               Builder.SetInsertPoint(VecI->getParent(),
   2647                                      std::next(VecI->getIterator()));
   2648             } else {
   2649               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
   2650             }
   2651             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   2652             if (MinBWs.count(ScalarRoot))
   2653               Ex = Builder.CreateSExt(Ex, Scalar->getType());
   2654             CSEBlocks.insert(PH->getIncomingBlock(i));
   2655             PH->setOperand(i, Ex);
   2656           }
   2657         }
   2658       } else {
   2659         Builder.SetInsertPoint(cast<Instruction>(User));
   2660         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   2661         if (MinBWs.count(ScalarRoot))
   2662           Ex = Builder.CreateSExt(Ex, Scalar->getType());
   2663         CSEBlocks.insert(cast<Instruction>(User)->getParent());
   2664         User->replaceUsesOfWith(Scalar, Ex);
   2665      }
   2666     } else {
   2667       Builder.SetInsertPoint(&F->getEntryBlock().front());
   2668       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   2669       if (MinBWs.count(ScalarRoot))
   2670         Ex = Builder.CreateSExt(Ex, Scalar->getType());
   2671       CSEBlocks.insert(&F->getEntryBlock());
   2672       User->replaceUsesOfWith(Scalar, Ex);
   2673     }
   2674 
   2675     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
   2676   }
   2677 
   2678   // For each vectorized value:
   2679   for (TreeEntry &EIdx : VectorizableTree) {
   2680     TreeEntry *Entry = &EIdx;
   2681 
   2682     // For each lane:
   2683     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
   2684       Value *Scalar = Entry->Scalars[Lane];
   2685       // No need to handle users of gathered values.
   2686       if (Entry->NeedToGather)
   2687         continue;
   2688 
   2689       assert(Entry->VectorizedValue && "Can't find vectorizable value");
   2690 
   2691       Type *Ty = Scalar->getType();
   2692       if (!Ty->isVoidTy()) {
   2693 #ifndef NDEBUG
   2694         for (User *U : Scalar->users()) {
   2695           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
   2696 
   2697           assert((ScalarToTreeEntry.count(U) ||
   2698                   // It is legal to replace users in the ignorelist by undef.
   2699                   (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
   2700                    UserIgnoreList.end())) &&
   2701                  "Replacing out-of-tree value with undef");
   2702         }
   2703 #endif
   2704         Value *Undef = UndefValue::get(Ty);
   2705         Scalar->replaceAllUsesWith(Undef);
   2706       }
   2707       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
   2708       eraseInstruction(cast<Instruction>(Scalar));
   2709     }
   2710   }
   2711 
   2712   Builder.ClearInsertionPoint();
   2713 
   2714   return VectorizableTree[0].VectorizedValue;
   2715 }
   2716 
   2717 void BoUpSLP::optimizeGatherSequence() {
   2718   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
   2719         << " gather sequences instructions.\n");
   2720   // LICM InsertElementInst sequences.
   2721   for (Instruction *it : GatherSeq) {
   2722     InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
   2723 
   2724     if (!Insert)
   2725       continue;
   2726 
   2727     // Check if this block is inside a loop.
   2728     Loop *L = LI->getLoopFor(Insert->getParent());
   2729     if (!L)
   2730       continue;
   2731 
   2732     // Check if it has a preheader.
   2733     BasicBlock *PreHeader = L->getLoopPreheader();
   2734     if (!PreHeader)
   2735       continue;
   2736 
   2737     // If the vector or the element that we insert into it are
   2738     // instructions that are defined in this basic block then we can't
   2739     // hoist this instruction.
   2740     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
   2741     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
   2742     if (CurrVec && L->contains(CurrVec))
   2743       continue;
   2744     if (NewElem && L->contains(NewElem))
   2745       continue;
   2746 
   2747     // We can hoist this instruction. Move it to the pre-header.
   2748     Insert->moveBefore(PreHeader->getTerminator());
   2749   }
   2750 
   2751   // Make a list of all reachable blocks in our CSE queue.
   2752   SmallVector<const DomTreeNode *, 8> CSEWorkList;
   2753   CSEWorkList.reserve(CSEBlocks.size());
   2754   for (BasicBlock *BB : CSEBlocks)
   2755     if (DomTreeNode *N = DT->getNode(BB)) {
   2756       assert(DT->isReachableFromEntry(N));
   2757       CSEWorkList.push_back(N);
   2758     }
   2759 
   2760   // Sort blocks by domination. This ensures we visit a block after all blocks
   2761   // dominating it are visited.
   2762   std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
   2763                    [this](const DomTreeNode *A, const DomTreeNode *B) {
   2764     return DT->properlyDominates(A, B);
   2765   });
   2766 
   2767   // Perform O(N^2) search over the gather sequences and merge identical
   2768   // instructions. TODO: We can further optimize this scan if we split the
   2769   // instructions into different buckets based on the insert lane.
   2770   SmallVector<Instruction *, 16> Visited;
   2771   for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
   2772     assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
   2773            "Worklist not sorted properly!");
   2774     BasicBlock *BB = (*I)->getBlock();
   2775     // For all instructions in blocks containing gather sequences:
   2776     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
   2777       Instruction *In = &*it++;
   2778       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
   2779         continue;
   2780 
   2781       // Check if we can replace this instruction with any of the
   2782       // visited instructions.
   2783       for (Instruction *v : Visited) {
   2784         if (In->isIdenticalTo(v) &&
   2785             DT->dominates(v->getParent(), In->getParent())) {
   2786           In->replaceAllUsesWith(v);
   2787           eraseInstruction(In);
   2788           In = nullptr;
   2789           break;
   2790         }
   2791       }
   2792       if (In) {
   2793         assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end());
   2794         Visited.push_back(In);
   2795       }
   2796     }
   2797   }
   2798   CSEBlocks.clear();
   2799   GatherSeq.clear();
   2800 }
   2801 
   2802 // Groups the instructions to a bundle (which is then a single scheduling entity)
   2803 // and schedules instructions until the bundle gets ready.
   2804 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
   2805                                                  BoUpSLP *SLP) {
   2806   if (isa<PHINode>(VL[0]))
   2807     return true;
   2808 
   2809   // Initialize the instruction bundle.
   2810   Instruction *OldScheduleEnd = ScheduleEnd;
   2811   ScheduleData *PrevInBundle = nullptr;
   2812   ScheduleData *Bundle = nullptr;
   2813   bool ReSchedule = false;
   2814   DEBUG(dbgs() << "SLP:  bundle: " << *VL[0] << "\n");
   2815 
   2816   // Make sure that the scheduling region contains all
   2817   // instructions of the bundle.
   2818   for (Value *V : VL) {
   2819     if (!extendSchedulingRegion(V))
   2820       return false;
   2821   }
   2822 
   2823   for (Value *V : VL) {
   2824     ScheduleData *BundleMember = getScheduleData(V);
   2825     assert(BundleMember &&
   2826            "no ScheduleData for bundle member (maybe not in same basic block)");
   2827     if (BundleMember->IsScheduled) {
   2828       // A bundle member was scheduled as single instruction before and now
   2829       // needs to be scheduled as part of the bundle. We just get rid of the
   2830       // existing schedule.
   2831       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
   2832                    << " was already scheduled\n");
   2833       ReSchedule = true;
   2834     }
   2835     assert(BundleMember->isSchedulingEntity() &&
   2836            "bundle member already part of other bundle");
   2837     if (PrevInBundle) {
   2838       PrevInBundle->NextInBundle = BundleMember;
   2839     } else {
   2840       Bundle = BundleMember;
   2841     }
   2842     BundleMember->UnscheduledDepsInBundle = 0;
   2843     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
   2844 
   2845     // Group the instructions to a bundle.
   2846     BundleMember->FirstInBundle = Bundle;
   2847     PrevInBundle = BundleMember;
   2848   }
   2849   if (ScheduleEnd != OldScheduleEnd) {
   2850     // The scheduling region got new instructions at the lower end (or it is a
   2851     // new region for the first bundle). This makes it necessary to
   2852     // recalculate all dependencies.
   2853     // It is seldom that this needs to be done a second time after adding the
   2854     // initial bundle to the region.
   2855     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
   2856       ScheduleData *SD = getScheduleData(I);
   2857       SD->clearDependencies();
   2858     }
   2859     ReSchedule = true;
   2860   }
   2861   if (ReSchedule) {
   2862     resetSchedule();
   2863     initialFillReadyList(ReadyInsts);
   2864   }
   2865 
   2866   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
   2867                << BB->getName() << "\n");
   2868 
   2869   calculateDependencies(Bundle, true, SLP);
   2870 
   2871   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
   2872   // means that there are no cyclic dependencies and we can schedule it.
   2873   // Note that's important that we don't "schedule" the bundle yet (see
   2874   // cancelScheduling).
   2875   while (!Bundle->isReady() && !ReadyInsts.empty()) {
   2876 
   2877     ScheduleData *pickedSD = ReadyInsts.back();
   2878     ReadyInsts.pop_back();
   2879 
   2880     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
   2881       schedule(pickedSD, ReadyInsts);
   2882     }
   2883   }
   2884   if (!Bundle->isReady()) {
   2885     cancelScheduling(VL);
   2886     return false;
   2887   }
   2888   return true;
   2889 }
   2890 
   2891 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
   2892   if (isa<PHINode>(VL[0]))
   2893     return;
   2894 
   2895   ScheduleData *Bundle = getScheduleData(VL[0]);
   2896   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
   2897   assert(!Bundle->IsScheduled &&
   2898          "Can't cancel bundle which is already scheduled");
   2899   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
   2900          "tried to unbundle something which is not a bundle");
   2901 
   2902   // Un-bundle: make single instructions out of the bundle.
   2903   ScheduleData *BundleMember = Bundle;
   2904   while (BundleMember) {
   2905     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
   2906     BundleMember->FirstInBundle = BundleMember;
   2907     ScheduleData *Next = BundleMember->NextInBundle;
   2908     BundleMember->NextInBundle = nullptr;
   2909     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
   2910     if (BundleMember->UnscheduledDepsInBundle == 0) {
   2911       ReadyInsts.insert(BundleMember);
   2912     }
   2913     BundleMember = Next;
   2914   }
   2915 }
   2916 
   2917 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
   2918   if (getScheduleData(V))
   2919     return true;
   2920   Instruction *I = dyn_cast<Instruction>(V);
   2921   assert(I && "bundle member must be an instruction");
   2922   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
   2923   if (!ScheduleStart) {
   2924     // It's the first instruction in the new region.
   2925     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
   2926     ScheduleStart = I;
   2927     ScheduleEnd = I->getNextNode();
   2928     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
   2929     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
   2930     return true;
   2931   }
   2932   // Search up and down at the same time, because we don't know if the new
   2933   // instruction is above or below the existing scheduling region.
   2934   BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
   2935   BasicBlock::reverse_iterator UpperEnd = BB->rend();
   2936   BasicBlock::iterator DownIter(ScheduleEnd);
   2937   BasicBlock::iterator LowerEnd = BB->end();
   2938   for (;;) {
   2939     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
   2940       DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
   2941       return false;
   2942     }
   2943 
   2944     if (UpIter != UpperEnd) {
   2945       if (&*UpIter == I) {
   2946         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
   2947         ScheduleStart = I;
   2948         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
   2949         return true;
   2950       }
   2951       UpIter++;
   2952     }
   2953     if (DownIter != LowerEnd) {
   2954       if (&*DownIter == I) {
   2955         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
   2956                          nullptr);
   2957         ScheduleEnd = I->getNextNode();
   2958         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
   2959         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
   2960         return true;
   2961       }
   2962       DownIter++;
   2963     }
   2964     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
   2965            "instruction not found in block");
   2966   }
   2967   return true;
   2968 }
   2969 
   2970 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
   2971                                                 Instruction *ToI,
   2972                                                 ScheduleData *PrevLoadStore,
   2973                                                 ScheduleData *NextLoadStore) {
   2974   ScheduleData *CurrentLoadStore = PrevLoadStore;
   2975   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
   2976     ScheduleData *SD = ScheduleDataMap[I];
   2977     if (!SD) {
   2978       // Allocate a new ScheduleData for the instruction.
   2979       if (ChunkPos >= ChunkSize) {
   2980         ScheduleDataChunks.push_back(
   2981             llvm::make_unique<ScheduleData[]>(ChunkSize));
   2982         ChunkPos = 0;
   2983       }
   2984       SD = &(ScheduleDataChunks.back()[ChunkPos++]);
   2985       ScheduleDataMap[I] = SD;
   2986       SD->Inst = I;
   2987     }
   2988     assert(!isInSchedulingRegion(SD) &&
   2989            "new ScheduleData already in scheduling region");
   2990     SD->init(SchedulingRegionID);
   2991 
   2992     if (I->mayReadOrWriteMemory()) {
   2993       // Update the linked list of memory accessing instructions.
   2994       if (CurrentLoadStore) {
   2995         CurrentLoadStore->NextLoadStore = SD;
   2996       } else {
   2997         FirstLoadStoreInRegion = SD;
   2998       }
   2999       CurrentLoadStore = SD;
   3000     }
   3001   }
   3002   if (NextLoadStore) {
   3003     if (CurrentLoadStore)
   3004       CurrentLoadStore->NextLoadStore = NextLoadStore;
   3005   } else {
   3006     LastLoadStoreInRegion = CurrentLoadStore;
   3007   }
   3008 }
   3009 
   3010 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
   3011                                                      bool InsertInReadyList,
   3012                                                      BoUpSLP *SLP) {
   3013   assert(SD->isSchedulingEntity());
   3014 
   3015   SmallVector<ScheduleData *, 10> WorkList;
   3016   WorkList.push_back(SD);
   3017 
   3018   while (!WorkList.empty()) {
   3019     ScheduleData *SD = WorkList.back();
   3020     WorkList.pop_back();
   3021 
   3022     ScheduleData *BundleMember = SD;
   3023     while (BundleMember) {
   3024       assert(isInSchedulingRegion(BundleMember));
   3025       if (!BundleMember->hasValidDependencies()) {
   3026 
   3027         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
   3028         BundleMember->Dependencies = 0;
   3029         BundleMember->resetUnscheduledDeps();
   3030 
   3031         // Handle def-use chain dependencies.
   3032         for (User *U : BundleMember->Inst->users()) {
   3033           if (isa<Instruction>(U)) {
   3034             ScheduleData *UseSD = getScheduleData(U);
   3035             if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
   3036               BundleMember->Dependencies++;
   3037               ScheduleData *DestBundle = UseSD->FirstInBundle;
   3038               if (!DestBundle->IsScheduled) {
   3039                 BundleMember->incrementUnscheduledDeps(1);
   3040               }
   3041               if (!DestBundle->hasValidDependencies()) {
   3042                 WorkList.push_back(DestBundle);
   3043               }
   3044             }
   3045           } else {
   3046             // I'm not sure if this can ever happen. But we need to be safe.
   3047             // This lets the instruction/bundle never be scheduled and
   3048             // eventually disable vectorization.
   3049             BundleMember->Dependencies++;
   3050             BundleMember->incrementUnscheduledDeps(1);
   3051           }
   3052         }
   3053 
   3054         // Handle the memory dependencies.
   3055         ScheduleData *DepDest = BundleMember->NextLoadStore;
   3056         if (DepDest) {
   3057           Instruction *SrcInst = BundleMember->Inst;
   3058           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
   3059           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
   3060           unsigned numAliased = 0;
   3061           unsigned DistToSrc = 1;
   3062 
   3063           while (DepDest) {
   3064             assert(isInSchedulingRegion(DepDest));
   3065 
   3066             // We have two limits to reduce the complexity:
   3067             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
   3068             //    SLP->isAliased (which is the expensive part in this loop).
   3069             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
   3070             //    the whole loop (even if the loop is fast, it's quadratic).
   3071             //    It's important for the loop break condition (see below) to
   3072             //    check this limit even between two read-only instructions.
   3073             if (DistToSrc >= MaxMemDepDistance ||
   3074                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
   3075                      (numAliased >= AliasedCheckLimit ||
   3076                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
   3077 
   3078               // We increment the counter only if the locations are aliased
   3079               // (instead of counting all alias checks). This gives a better
   3080               // balance between reduced runtime and accurate dependencies.
   3081               numAliased++;
   3082 
   3083               DepDest->MemoryDependencies.push_back(BundleMember);
   3084               BundleMember->Dependencies++;
   3085               ScheduleData *DestBundle = DepDest->FirstInBundle;
   3086               if (!DestBundle->IsScheduled) {
   3087                 BundleMember->incrementUnscheduledDeps(1);
   3088               }
   3089               if (!DestBundle->hasValidDependencies()) {
   3090                 WorkList.push_back(DestBundle);
   3091               }
   3092             }
   3093             DepDest = DepDest->NextLoadStore;
   3094 
   3095             // Example, explaining the loop break condition: Let's assume our
   3096             // starting instruction is i0 and MaxMemDepDistance = 3.
   3097             //
   3098             //                      +--------v--v--v
   3099             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
   3100             //             +--------^--^--^
   3101             //
   3102             // MaxMemDepDistance let us stop alias-checking at i3 and we add
   3103             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
   3104             // Previously we already added dependencies from i3 to i6,i7,i8
   3105             // (because of MaxMemDepDistance). As we added a dependency from
   3106             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
   3107             // and we can abort this loop at i6.
   3108             if (DistToSrc >= 2 * MaxMemDepDistance)
   3109                 break;
   3110             DistToSrc++;
   3111           }
   3112         }
   3113       }
   3114       BundleMember = BundleMember->NextInBundle;
   3115     }
   3116     if (InsertInReadyList && SD->isReady()) {
   3117       ReadyInsts.push_back(SD);
   3118       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
   3119     }
   3120   }
   3121 }
   3122 
   3123 void BoUpSLP::BlockScheduling::resetSchedule() {
   3124   assert(ScheduleStart &&
   3125          "tried to reset schedule on block which has not been scheduled");
   3126   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
   3127     ScheduleData *SD = getScheduleData(I);
   3128     assert(isInSchedulingRegion(SD));
   3129     SD->IsScheduled = false;
   3130     SD->resetUnscheduledDeps();
   3131   }
   3132   ReadyInsts.clear();
   3133 }
   3134 
   3135 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
   3136 
   3137   if (!BS->ScheduleStart)
   3138     return;
   3139 
   3140   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
   3141 
   3142   BS->resetSchedule();
   3143 
   3144   // For the real scheduling we use a more sophisticated ready-list: it is
   3145   // sorted by the original instruction location. This lets the final schedule
   3146   // be as  close as possible to the original instruction order.
   3147   struct ScheduleDataCompare {
   3148     bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
   3149       return SD2->SchedulingPriority < SD1->SchedulingPriority;
   3150     }
   3151   };
   3152   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
   3153 
   3154   // Ensure that all dependency data is updated and fill the ready-list with
   3155   // initial instructions.
   3156   int Idx = 0;
   3157   int NumToSchedule = 0;
   3158   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
   3159        I = I->getNextNode()) {
   3160     ScheduleData *SD = BS->getScheduleData(I);
   3161     assert(
   3162         SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&
   3163         "scheduler and vectorizer have different opinion on what is a bundle");
   3164     SD->FirstInBundle->SchedulingPriority = Idx++;
   3165     if (SD->isSchedulingEntity()) {
   3166       BS->calculateDependencies(SD, false, this);
   3167       NumToSchedule++;
   3168     }
   3169   }
   3170   BS->initialFillReadyList(ReadyInsts);
   3171 
   3172   Instruction *LastScheduledInst = BS->ScheduleEnd;
   3173 
   3174   // Do the "real" scheduling.
   3175   while (!ReadyInsts.empty()) {
   3176     ScheduleData *picked = *ReadyInsts.begin();
   3177     ReadyInsts.erase(ReadyInsts.begin());
   3178 
   3179     // Move the scheduled instruction(s) to their dedicated places, if not
   3180     // there yet.
   3181     ScheduleData *BundleMember = picked;
   3182     while (BundleMember) {
   3183       Instruction *pickedInst = BundleMember->Inst;
   3184       if (LastScheduledInst->getNextNode() != pickedInst) {
   3185         BS->BB->getInstList().remove(pickedInst);
   3186         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
   3187                                      pickedInst);
   3188       }
   3189       LastScheduledInst = pickedInst;
   3190       BundleMember = BundleMember->NextInBundle;
   3191     }
   3192 
   3193     BS->schedule(picked, ReadyInsts);
   3194     NumToSchedule--;
   3195   }
   3196   assert(NumToSchedule == 0 && "could not schedule all instructions");
   3197 
   3198   // Avoid duplicate scheduling of the block.
   3199   BS->ScheduleStart = nullptr;
   3200 }
   3201 
   3202 unsigned BoUpSLP::getVectorElementSize(Value *V) {
   3203   // If V is a store, just return the width of the stored value without
   3204   // traversing the expression tree. This is the common case.
   3205   if (auto *Store = dyn_cast<StoreInst>(V))
   3206     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
   3207 
   3208   // If V is not a store, we can traverse the expression tree to find loads
   3209   // that feed it. The type of the loaded value may indicate a more suitable
   3210   // width than V's type. We want to base the vector element size on the width
   3211   // of memory operations where possible.
   3212   SmallVector<Instruction *, 16> Worklist;
   3213   SmallPtrSet<Instruction *, 16> Visited;
   3214   if (auto *I = dyn_cast<Instruction>(V))
   3215     Worklist.push_back(I);
   3216 
   3217   // Traverse the expression tree in bottom-up order looking for loads. If we
   3218   // encounter an instruciton we don't yet handle, we give up.
   3219   auto MaxWidth = 0u;
   3220   auto FoundUnknownInst = false;
   3221   while (!Worklist.empty() && !FoundUnknownInst) {
   3222     auto *I = Worklist.pop_back_val();
   3223     Visited.insert(I);
   3224 
   3225     // We should only be looking at scalar instructions here. If the current
   3226     // instruction has a vector type, give up.
   3227     auto *Ty = I->getType();
   3228     if (isa<VectorType>(Ty))
   3229       FoundUnknownInst = true;
   3230 
   3231     // If the current instruction is a load, update MaxWidth to reflect the
   3232     // width of the loaded value.
   3233     else if (isa<LoadInst>(I))
   3234       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
   3235 
   3236     // Otherwise, we need to visit the operands of the instruction. We only
   3237     // handle the interesting cases from buildTree here. If an operand is an
   3238     // instruction we haven't yet visited, we add it to the worklist.
   3239     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
   3240              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
   3241       for (Use &U : I->operands())
   3242         if (auto *J = dyn_cast<Instruction>(U.get()))
   3243           if (!Visited.count(J))
   3244             Worklist.push_back(J);
   3245     }
   3246 
   3247     // If we don't yet handle the instruction, give up.
   3248     else
   3249       FoundUnknownInst = true;
   3250   }
   3251 
   3252   // If we didn't encounter a memory access in the expression tree, or if we
   3253   // gave up for some reason, just return the width of V.
   3254   if (!MaxWidth || FoundUnknownInst)
   3255     return DL->getTypeSizeInBits(V->getType());
   3256 
   3257   // Otherwise, return the maximum width we found.
   3258   return MaxWidth;
   3259 }
   3260 
   3261 // Determine if a value V in a vectorizable expression Expr can be demoted to a
   3262 // smaller type with a truncation. We collect the values that will be demoted
   3263 // in ToDemote and additional roots that require investigating in Roots.
   3264 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
   3265                                   SmallVectorImpl<Value *> &ToDemote,
   3266                                   SmallVectorImpl<Value *> &Roots) {
   3267 
   3268   // We can always demote constants.
   3269   if (isa<Constant>(V)) {
   3270     ToDemote.push_back(V);
   3271     return true;
   3272   }
   3273 
   3274   // If the value is not an instruction in the expression with only one use, it
   3275   // cannot be demoted.
   3276   auto *I = dyn_cast<Instruction>(V);
   3277   if (!I || !I->hasOneUse() || !Expr.count(I))
   3278     return false;
   3279 
   3280   switch (I->getOpcode()) {
   3281 
   3282   // We can always demote truncations and extensions. Since truncations can
   3283   // seed additional demotion, we save the truncated value.
   3284   case Instruction::Trunc:
   3285     Roots.push_back(I->getOperand(0));
   3286   case Instruction::ZExt:
   3287   case Instruction::SExt:
   3288     break;
   3289 
   3290   // We can demote certain binary operations if we can demote both of their
   3291   // operands.
   3292   case Instruction::Add:
   3293   case Instruction::Sub:
   3294   case Instruction::Mul:
   3295   case Instruction::And:
   3296   case Instruction::Or:
   3297   case Instruction::Xor:
   3298     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
   3299         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
   3300       return false;
   3301     break;
   3302 
   3303   // We can demote selects if we can demote their true and false values.
   3304   case Instruction::Select: {
   3305     SelectInst *SI = cast<SelectInst>(I);
   3306     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
   3307         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
   3308       return false;
   3309     break;
   3310   }
   3311 
   3312   // We can demote phis if we can demote all their incoming operands. Note that
   3313   // we don't need to worry about cycles since we ensure single use above.
   3314   case Instruction::PHI: {
   3315     PHINode *PN = cast<PHINode>(I);
   3316     for (Value *IncValue : PN->incoming_values())
   3317       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
   3318         return false;
   3319     break;
   3320   }
   3321 
   3322   // Otherwise, conservatively give up.
   3323   default:
   3324     return false;
   3325   }
   3326 
   3327   // Record the value that we can demote.
   3328   ToDemote.push_back(V);
   3329   return true;
   3330 }
   3331 
   3332 void BoUpSLP::computeMinimumValueSizes() {
   3333   // If there are no external uses, the expression tree must be rooted by a
   3334   // store. We can't demote in-memory values, so there is nothing to do here.
   3335   if (ExternalUses.empty())
   3336     return;
   3337 
   3338   // We only attempt to truncate integer expressions.
   3339   auto &TreeRoot = VectorizableTree[0].Scalars;
   3340   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
   3341   if (!TreeRootIT)
   3342     return;
   3343 
   3344   // If the expression is not rooted by a store, these roots should have
   3345   // external uses. We will rely on InstCombine to rewrite the expression in
   3346   // the narrower type. However, InstCombine only rewrites single-use values.
   3347   // This means that if a tree entry other than a root is used externally, it
   3348   // must have multiple uses and InstCombine will not rewrite it. The code
   3349   // below ensures that only the roots are used externally.
   3350   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
   3351   for (auto &EU : ExternalUses)
   3352     if (!Expr.erase(EU.Scalar))
   3353       return;
   3354   if (!Expr.empty())
   3355     return;
   3356 
   3357   // Collect the scalar values of the vectorizable expression. We will use this
   3358   // context to determine which values can be demoted. If we see a truncation,
   3359   // we mark it as seeding another demotion.
   3360   for (auto &Entry : VectorizableTree)
   3361     Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
   3362 
   3363   // Ensure the roots of the vectorizable tree don't form a cycle. They must
   3364   // have a single external user that is not in the vectorizable tree.
   3365   for (auto *Root : TreeRoot)
   3366     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
   3367       return;
   3368 
   3369   // Conservatively determine if we can actually truncate the roots of the
   3370   // expression. Collect the values that can be demoted in ToDemote and
   3371   // additional roots that require investigating in Roots.
   3372   SmallVector<Value *, 32> ToDemote;
   3373   SmallVector<Value *, 4> Roots;
   3374   for (auto *Root : TreeRoot)
   3375     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
   3376       return;
   3377 
   3378   // The maximum bit width required to represent all the values that can be
   3379   // demoted without loss of precision. It would be safe to truncate the roots
   3380   // of the expression to this width.
   3381   auto MaxBitWidth = 8u;
   3382 
   3383   // We first check if all the bits of the roots are demanded. If they're not,
   3384   // we can truncate the roots to this narrower type.
   3385   for (auto *Root : TreeRoot) {
   3386     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
   3387     MaxBitWidth = std::max<unsigned>(
   3388         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
   3389   }
   3390 
   3391   // If all the bits of the roots are demanded, we can try a little harder to
   3392   // compute a narrower type. This can happen, for example, if the roots are
   3393   // getelementptr indices. InstCombine promotes these indices to the pointer
   3394   // width. Thus, all their bits are technically demanded even though the
   3395   // address computation might be vectorized in a smaller type.
   3396   //
   3397   // We start by looking at each entry that can be demoted. We compute the
   3398   // maximum bit width required to store the scalar by using ValueTracking to
   3399   // compute the number of high-order bits we can truncate.
   3400   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
   3401     MaxBitWidth = 8u;
   3402     for (auto *Scalar : ToDemote) {
   3403       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT);
   3404       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
   3405       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
   3406     }
   3407   }
   3408 
   3409   // Round MaxBitWidth up to the next power-of-two.
   3410   if (!isPowerOf2_64(MaxBitWidth))
   3411     MaxBitWidth = NextPowerOf2(MaxBitWidth);
   3412 
   3413   // If the maximum bit width we compute is less than the with of the roots'
   3414   // type, we can proceed with the narrowing. Otherwise, do nothing.
   3415   if (MaxBitWidth >= TreeRootIT->getBitWidth())
   3416     return;
   3417 
   3418   // If we can truncate the root, we must collect additional values that might
   3419   // be demoted as a result. That is, those seeded by truncations we will
   3420   // modify.
   3421   while (!Roots.empty())
   3422     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
   3423 
   3424   // Finally, map the values we can demote to the maximum bit with we computed.
   3425   for (auto *Scalar : ToDemote)
   3426     MinBWs[Scalar] = MaxBitWidth;
   3427 }
   3428 
   3429 namespace {
   3430 /// The SLPVectorizer Pass.
   3431 struct SLPVectorizer : public FunctionPass {
   3432   SLPVectorizerPass Impl;
   3433 
   3434   /// Pass identification, replacement for typeid
   3435   static char ID;
   3436 
   3437   explicit SLPVectorizer() : FunctionPass(ID) {
   3438     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
   3439   }
   3440 
   3441 
   3442   bool doInitialization(Module &M) override {
   3443     return false;
   3444   }
   3445 
   3446   bool runOnFunction(Function &F) override {
   3447     if (skipFunction(F))
   3448       return false;
   3449 
   3450     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
   3451     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
   3452     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
   3453     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
   3454     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
   3455     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   3456     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   3457     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   3458     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
   3459 
   3460     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
   3461   }
   3462 
   3463   void getAnalysisUsage(AnalysisUsage &AU) const override {
   3464     FunctionPass::getAnalysisUsage(AU);
   3465     AU.addRequired<AssumptionCacheTracker>();
   3466     AU.addRequired<ScalarEvolutionWrapperPass>();
   3467     AU.addRequired<AAResultsWrapperPass>();
   3468     AU.addRequired<TargetTransformInfoWrapperPass>();
   3469     AU.addRequired<LoopInfoWrapperPass>();
   3470     AU.addRequired<DominatorTreeWrapperPass>();
   3471     AU.addRequired<DemandedBitsWrapperPass>();
   3472     AU.addPreserved<LoopInfoWrapperPass>();
   3473     AU.addPreserved<DominatorTreeWrapperPass>();
   3474     AU.addPreserved<AAResultsWrapperPass>();
   3475     AU.addPreserved<GlobalsAAWrapperPass>();
   3476     AU.setPreservesCFG();
   3477   }
   3478 };
   3479 } // end anonymous namespace
   3480 
   3481 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
   3482   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
   3483   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
   3484   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
   3485   auto *AA = &AM.getResult<AAManager>(F);
   3486   auto *LI = &AM.getResult<LoopAnalysis>(F);
   3487   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
   3488   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
   3489   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
   3490 
   3491   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB);
   3492   if (!Changed)
   3493     return PreservedAnalyses::all();
   3494   PreservedAnalyses PA;
   3495   PA.preserve<LoopAnalysis>();
   3496   PA.preserve<DominatorTreeAnalysis>();
   3497   PA.preserve<AAManager>();
   3498   PA.preserve<GlobalsAA>();
   3499   return PA;
   3500 }
   3501 
   3502 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
   3503                                 TargetTransformInfo *TTI_,
   3504                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
   3505                                 LoopInfo *LI_, DominatorTree *DT_,
   3506                                 AssumptionCache *AC_, DemandedBits *DB_) {
   3507   SE = SE_;
   3508   TTI = TTI_;
   3509   TLI = TLI_;
   3510   AA = AA_;
   3511   LI = LI_;
   3512   DT = DT_;
   3513   AC = AC_;
   3514   DB = DB_;
   3515   DL = &F.getParent()->getDataLayout();
   3516 
   3517   Stores.clear();
   3518   GEPs.clear();
   3519   bool Changed = false;
   3520 
   3521   // If the target claims to have no vector registers don't attempt
   3522   // vectorization.
   3523   if (!TTI->getNumberOfRegisters(true))
   3524     return false;
   3525 
   3526   // Don't vectorize when the attribute NoImplicitFloat is used.
   3527   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
   3528     return false;
   3529 
   3530   DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
   3531 
   3532   // Use the bottom up slp vectorizer to construct chains that start with
   3533   // store instructions.
   3534   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL);
   3535 
   3536   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
   3537   // delete instructions.
   3538 
   3539   // Scan the blocks in the function in post order.
   3540   for (auto BB : post_order(&F.getEntryBlock())) {
   3541     collectSeedInstructions(BB);
   3542 
   3543     // Vectorize trees that end at stores.
   3544     if (!Stores.empty()) {
   3545       DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
   3546                    << " underlying objects.\n");
   3547       Changed |= vectorizeStoreChains(R);
   3548     }
   3549 
   3550     // Vectorize trees that end at reductions.
   3551     Changed |= vectorizeChainsInBlock(BB, R);
   3552 
   3553     // Vectorize the index computations of getelementptr instructions. This
   3554     // is primarily intended to catch gather-like idioms ending at
   3555     // non-consecutive loads.
   3556     if (!GEPs.empty()) {
   3557       DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
   3558                    << " underlying objects.\n");
   3559       Changed |= vectorizeGEPIndices(BB, R);
   3560     }
   3561   }
   3562 
   3563   if (Changed) {
   3564     R.optimizeGatherSequence();
   3565     DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
   3566     DEBUG(verifyFunction(F));
   3567   }
   3568   return Changed;
   3569 }
   3570 
   3571 /// \brief Check that the Values in the slice in VL array are still existent in
   3572 /// the WeakVH array.
   3573 /// Vectorization of part of the VL array may cause later values in the VL array
   3574 /// to become invalid. We track when this has happened in the WeakVH array.
   3575 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
   3576                                unsigned SliceBegin, unsigned SliceSize) {
   3577   VL = VL.slice(SliceBegin, SliceSize);
   3578   VH = VH.slice(SliceBegin, SliceSize);
   3579   return !std::equal(VL.begin(), VL.end(), VH.begin());
   3580 }
   3581 
   3582 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain,
   3583                                             int CostThreshold, BoUpSLP &R,
   3584                                             unsigned VecRegSize) {
   3585   unsigned ChainLen = Chain.size();
   3586   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
   3587         << "\n");
   3588   unsigned Sz = R.getVectorElementSize(Chain[0]);
   3589   unsigned VF = VecRegSize / Sz;
   3590 
   3591   if (!isPowerOf2_32(Sz) || VF < 2)
   3592     return false;
   3593 
   3594   // Keep track of values that were deleted by vectorizing in the loop below.
   3595   SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
   3596 
   3597   bool Changed = false;
   3598   // Look for profitable vectorizable trees at all offsets, starting at zero.
   3599   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
   3600     if (i + VF > e)
   3601       break;
   3602 
   3603     // Check that a previous iteration of this loop did not delete the Value.
   3604     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
   3605       continue;
   3606 
   3607     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
   3608           << "\n");
   3609     ArrayRef<Value *> Operands = Chain.slice(i, VF);
   3610 
   3611     R.buildTree(Operands);
   3612     R.computeMinimumValueSizes();
   3613 
   3614     int Cost = R.getTreeCost();
   3615 
   3616     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
   3617     if (Cost < CostThreshold) {
   3618       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
   3619       R.vectorizeTree();
   3620 
   3621       // Move to the next bundle.
   3622       i += VF - 1;
   3623       Changed = true;
   3624     }
   3625   }
   3626 
   3627   return Changed;
   3628 }
   3629 
   3630 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
   3631                                         int costThreshold, BoUpSLP &R) {
   3632   SetVector<StoreInst *> Heads, Tails;
   3633   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
   3634 
   3635   // We may run into multiple chains that merge into a single chain. We mark the
   3636   // stores that we vectorized so that we don't visit the same store twice.
   3637   BoUpSLP::ValueSet VectorizedStores;
   3638   bool Changed = false;
   3639 
   3640   // Do a quadratic search on all of the given stores and find
   3641   // all of the pairs of stores that follow each other.
   3642   SmallVector<unsigned, 16> IndexQueue;
   3643   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
   3644     IndexQueue.clear();
   3645     // If a store has multiple consecutive store candidates, search Stores
   3646     // array according to the sequence: from i+1 to e, then from i-1 to 0.
   3647     // This is because usually pairing with immediate succeeding or preceding
   3648     // candidate create the best chance to find slp vectorization opportunity.
   3649     unsigned j = 0;
   3650     for (j = i + 1; j < e; ++j)
   3651       IndexQueue.push_back(j);
   3652     for (j = i; j > 0; --j)
   3653       IndexQueue.push_back(j - 1);
   3654 
   3655     for (auto &k : IndexQueue) {
   3656       if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) {
   3657         Tails.insert(Stores[k]);
   3658         Heads.insert(Stores[i]);
   3659         ConsecutiveChain[Stores[i]] = Stores[k];
   3660         break;
   3661       }
   3662     }
   3663   }
   3664 
   3665   // For stores that start but don't end a link in the chain:
   3666   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
   3667        it != e; ++it) {
   3668     if (Tails.count(*it))
   3669       continue;
   3670 
   3671     // We found a store instr that starts a chain. Now follow the chain and try
   3672     // to vectorize it.
   3673     BoUpSLP::ValueList Operands;
   3674     StoreInst *I = *it;
   3675     // Collect the chain into a list.
   3676     while (Tails.count(I) || Heads.count(I)) {
   3677       if (VectorizedStores.count(I))
   3678         break;
   3679       Operands.push_back(I);
   3680       // Move to the next value in the chain.
   3681       I = ConsecutiveChain[I];
   3682     }
   3683 
   3684     // FIXME: Is division-by-2 the correct step? Should we assert that the
   3685     // register size is a power-of-2?
   3686     for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) {
   3687       if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
   3688         // Mark the vectorized stores so that we don't vectorize them again.
   3689         VectorizedStores.insert(Operands.begin(), Operands.end());
   3690         Changed = true;
   3691         break;
   3692       }
   3693     }
   3694   }
   3695 
   3696   return Changed;
   3697 }
   3698 
   3699 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
   3700 
   3701   // Initialize the collections. We will make a single pass over the block.
   3702   Stores.clear();
   3703   GEPs.clear();
   3704 
   3705   // Visit the store and getelementptr instructions in BB and organize them in
   3706   // Stores and GEPs according to the underlying objects of their pointer
   3707   // operands.
   3708   for (Instruction &I : *BB) {
   3709 
   3710     // Ignore store instructions that are volatile or have a pointer operand
   3711     // that doesn't point to a scalar type.
   3712     if (auto *SI = dyn_cast<StoreInst>(&I)) {
   3713       if (!SI->isSimple())
   3714         continue;
   3715       if (!isValidElementType(SI->getValueOperand()->getType()))
   3716         continue;
   3717       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
   3718     }
   3719 
   3720     // Ignore getelementptr instructions that have more than one index, a
   3721     // constant index, or a pointer operand that doesn't point to a scalar
   3722     // type.
   3723     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
   3724       auto Idx = GEP->idx_begin()->get();
   3725       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
   3726         continue;
   3727       if (!isValidElementType(Idx->getType()))
   3728         continue;
   3729       if (GEP->getType()->isVectorTy())
   3730         continue;
   3731       GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
   3732     }
   3733   }
   3734 }
   3735 
   3736 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
   3737   if (!A || !B)
   3738     return false;
   3739   Value *VL[] = { A, B };
   3740   return tryToVectorizeList(VL, R, None, true);
   3741 }
   3742 
   3743 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
   3744                                            ArrayRef<Value *> BuildVector,
   3745                                            bool allowReorder) {
   3746   if (VL.size() < 2)
   3747     return false;
   3748 
   3749   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
   3750 
   3751   // Check that all of the parts are scalar instructions of the same type.
   3752   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
   3753   if (!I0)
   3754     return false;
   3755 
   3756   unsigned Opcode0 = I0->getOpcode();
   3757 
   3758   // FIXME: Register size should be a parameter to this function, so we can
   3759   // try different vectorization factors.
   3760   unsigned Sz = R.getVectorElementSize(I0);
   3761   unsigned VF = R.getMinVecRegSize() / Sz;
   3762 
   3763   for (Value *V : VL) {
   3764     Type *Ty = V->getType();
   3765     if (!isValidElementType(Ty))
   3766       return false;
   3767     Instruction *Inst = dyn_cast<Instruction>(V);
   3768     if (!Inst || Inst->getOpcode() != Opcode0)
   3769       return false;
   3770   }
   3771 
   3772   bool Changed = false;
   3773 
   3774   // Keep track of values that were deleted by vectorizing in the loop below.
   3775   SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
   3776 
   3777   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
   3778     unsigned OpsWidth = 0;
   3779 
   3780     if (i + VF > e)
   3781       OpsWidth = e - i;
   3782     else
   3783       OpsWidth = VF;
   3784 
   3785     if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
   3786       break;
   3787 
   3788     // Check that a previous iteration of this loop did not delete the Value.
   3789     if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
   3790       continue;
   3791 
   3792     DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
   3793                  << "\n");
   3794     ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
   3795 
   3796     ArrayRef<Value *> BuildVectorSlice;
   3797     if (!BuildVector.empty())
   3798       BuildVectorSlice = BuildVector.slice(i, OpsWidth);
   3799 
   3800     R.buildTree(Ops, BuildVectorSlice);
   3801     // TODO: check if we can allow reordering also for other cases than
   3802     // tryToVectorizePair()
   3803     if (allowReorder && R.shouldReorder()) {
   3804       assert(Ops.size() == 2);
   3805       assert(BuildVectorSlice.empty());
   3806       Value *ReorderedOps[] = { Ops[1], Ops[0] };
   3807       R.buildTree(ReorderedOps, None);
   3808     }
   3809     R.computeMinimumValueSizes();
   3810     int Cost = R.getTreeCost();
   3811 
   3812     if (Cost < -SLPCostThreshold) {
   3813       DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
   3814       Value *VectorizedRoot = R.vectorizeTree();
   3815 
   3816       // Reconstruct the build vector by extracting the vectorized root. This
   3817       // way we handle the case where some elements of the vector are undefined.
   3818       //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
   3819       if (!BuildVectorSlice.empty()) {
   3820         // The insert point is the last build vector instruction. The vectorized
   3821         // root will precede it. This guarantees that we get an instruction. The
   3822         // vectorized tree could have been constant folded.
   3823         Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
   3824         unsigned VecIdx = 0;
   3825         for (auto &V : BuildVectorSlice) {
   3826           IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
   3827                                       ++BasicBlock::iterator(InsertAfter));
   3828           Instruction *I = cast<Instruction>(V);
   3829           assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
   3830           Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
   3831               VectorizedRoot, Builder.getInt32(VecIdx++)));
   3832           I->setOperand(1, Extract);
   3833           I->removeFromParent();
   3834           I->insertAfter(Extract);
   3835           InsertAfter = I;
   3836         }
   3837       }
   3838       // Move to the next bundle.
   3839       i += VF - 1;
   3840       Changed = true;
   3841     }
   3842   }
   3843 
   3844   return Changed;
   3845 }
   3846 
   3847 bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
   3848   if (!V)
   3849     return false;
   3850 
   3851   // Try to vectorize V.
   3852   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
   3853     return true;
   3854 
   3855   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
   3856   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
   3857   // Try to skip B.
   3858   if (B && B->hasOneUse()) {
   3859     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
   3860     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
   3861     if (tryToVectorizePair(A, B0, R)) {
   3862       return true;
   3863     }
   3864     if (tryToVectorizePair(A, B1, R)) {
   3865       return true;
   3866     }
   3867   }
   3868 
   3869   // Try to skip A.
   3870   if (A && A->hasOneUse()) {
   3871     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
   3872     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
   3873     if (tryToVectorizePair(A0, B, R)) {
   3874       return true;
   3875     }
   3876     if (tryToVectorizePair(A1, B, R)) {
   3877       return true;
   3878     }
   3879   }
   3880   return 0;
   3881 }
   3882 
   3883 /// \brief Generate a shuffle mask to be used in a reduction tree.
   3884 ///
   3885 /// \param VecLen The length of the vector to be reduced.
   3886 /// \param NumEltsToRdx The number of elements that should be reduced in the
   3887 ///        vector.
   3888 /// \param IsPairwise Whether the reduction is a pairwise or splitting
   3889 ///        reduction. A pairwise reduction will generate a mask of
   3890 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
   3891 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
   3892 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
   3893 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
   3894                                    bool IsPairwise, bool IsLeft,
   3895                                    IRBuilder<> &Builder) {
   3896   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
   3897 
   3898   SmallVector<Constant *, 32> ShuffleMask(
   3899       VecLen, UndefValue::get(Builder.getInt32Ty()));
   3900 
   3901   if (IsPairwise)
   3902     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
   3903     for (unsigned i = 0; i != NumEltsToRdx; ++i)
   3904       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
   3905   else
   3906     // Move the upper half of the vector to the lower half.
   3907     for (unsigned i = 0; i != NumEltsToRdx; ++i)
   3908       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
   3909 
   3910   return ConstantVector::get(ShuffleMask);
   3911 }
   3912 
   3913 
   3914 /// Model horizontal reductions.
   3915 ///
   3916 /// A horizontal reduction is a tree of reduction operations (currently add and
   3917 /// fadd) that has operations that can be put into a vector as its leaf.
   3918 /// For example, this tree:
   3919 ///
   3920 /// mul mul mul mul
   3921 ///  \  /    \  /
   3922 ///   +       +
   3923 ///    \     /
   3924 ///       +
   3925 /// This tree has "mul" as its reduced values and "+" as its reduction
   3926 /// operations. A reduction might be feeding into a store or a binary operation
   3927 /// feeding a phi.
   3928 ///    ...
   3929 ///    \  /
   3930 ///     +
   3931 ///     |
   3932 ///  phi +=
   3933 ///
   3934 ///  Or:
   3935 ///    ...
   3936 ///    \  /
   3937 ///     +
   3938 ///     |
   3939 ///   *p =
   3940 ///
   3941 class HorizontalReduction {
   3942   SmallVector<Value *, 16> ReductionOps;
   3943   SmallVector<Value *, 32> ReducedVals;
   3944 
   3945   BinaryOperator *ReductionRoot;
   3946   PHINode *ReductionPHI;
   3947 
   3948   /// The opcode of the reduction.
   3949   unsigned ReductionOpcode;
   3950   /// The opcode of the values we perform a reduction on.
   3951   unsigned ReducedValueOpcode;
   3952   /// Should we model this reduction as a pairwise reduction tree or a tree that
   3953   /// splits the vector in halves and adds those halves.
   3954   bool IsPairwiseReduction;
   3955 
   3956 public:
   3957   /// The width of one full horizontal reduction operation.
   3958   unsigned ReduxWidth;
   3959 
   3960   /// Minimal width of available vector registers. It's used to determine
   3961   /// ReduxWidth.
   3962   unsigned MinVecRegSize;
   3963 
   3964   HorizontalReduction(unsigned MinVecRegSize)
   3965       : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
   3966         ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0),
   3967         MinVecRegSize(MinVecRegSize) {}
   3968 
   3969   /// \brief Try to find a reduction tree.
   3970   bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
   3971     assert((!Phi ||
   3972             std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
   3973            "Thi phi needs to use the binary operator");
   3974 
   3975     // We could have a initial reductions that is not an add.
   3976     //  r *= v1 + v2 + v3 + v4
   3977     // In such a case start looking for a tree rooted in the first '+'.
   3978     if (Phi) {
   3979       if (B->getOperand(0) == Phi) {
   3980         Phi = nullptr;
   3981         B = dyn_cast<BinaryOperator>(B->getOperand(1));
   3982       } else if (B->getOperand(1) == Phi) {
   3983         Phi = nullptr;
   3984         B = dyn_cast<BinaryOperator>(B->getOperand(0));
   3985       }
   3986     }
   3987 
   3988     if (!B)
   3989       return false;
   3990 
   3991     Type *Ty = B->getType();
   3992     if (!isValidElementType(Ty))
   3993       return false;
   3994 
   3995     const DataLayout &DL = B->getModule()->getDataLayout();
   3996     ReductionOpcode = B->getOpcode();
   3997     ReducedValueOpcode = 0;
   3998     // FIXME: Register size should be a parameter to this function, so we can
   3999     // try different vectorization factors.
   4000     ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
   4001     ReductionRoot = B;
   4002     ReductionPHI = Phi;
   4003 
   4004     if (ReduxWidth < 4)
   4005       return false;
   4006 
   4007     // We currently only support adds.
   4008     if (ReductionOpcode != Instruction::Add &&
   4009         ReductionOpcode != Instruction::FAdd)
   4010       return false;
   4011 
   4012     // Post order traverse the reduction tree starting at B. We only handle true
   4013     // trees containing only binary operators or selects.
   4014     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
   4015     Stack.push_back(std::make_pair(B, 0));
   4016     while (!Stack.empty()) {
   4017       Instruction *TreeN = Stack.back().first;
   4018       unsigned EdgeToVist = Stack.back().second++;
   4019       bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
   4020 
   4021       // Only handle trees in the current basic block.
   4022       if (TreeN->getParent() != B->getParent())
   4023         return false;
   4024 
   4025       // Each tree node needs to have one user except for the ultimate
   4026       // reduction.
   4027       if (!TreeN->hasOneUse() && TreeN != B)
   4028         return false;
   4029 
   4030       // Postorder vist.
   4031       if (EdgeToVist == 2 || IsReducedValue) {
   4032         if (IsReducedValue) {
   4033           // Make sure that the opcodes of the operations that we are going to
   4034           // reduce match.
   4035           if (!ReducedValueOpcode)
   4036             ReducedValueOpcode = TreeN->getOpcode();
   4037           else if (ReducedValueOpcode != TreeN->getOpcode())
   4038             return false;
   4039           ReducedVals.push_back(TreeN);
   4040         } else {
   4041           // We need to be able to reassociate the adds.
   4042           if (!TreeN->isAssociative())
   4043             return false;
   4044           ReductionOps.push_back(TreeN);
   4045         }
   4046         // Retract.
   4047         Stack.pop_back();
   4048         continue;
   4049       }
   4050 
   4051       // Visit left or right.
   4052       Value *NextV = TreeN->getOperand(EdgeToVist);
   4053       // We currently only allow BinaryOperator's and SelectInst's as reduction
   4054       // values in our tree.
   4055       if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV))
   4056         Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0));
   4057       else if (NextV != Phi)
   4058         return false;
   4059     }
   4060     return true;
   4061   }
   4062 
   4063   /// \brief Attempt to vectorize the tree found by
   4064   /// matchAssociativeReduction.
   4065   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
   4066     if (ReducedVals.empty())
   4067       return false;
   4068 
   4069     unsigned NumReducedVals = ReducedVals.size();
   4070     if (NumReducedVals < ReduxWidth)
   4071       return false;
   4072 
   4073     Value *VectorizedTree = nullptr;
   4074     IRBuilder<> Builder(ReductionRoot);
   4075     FastMathFlags Unsafe;
   4076     Unsafe.setUnsafeAlgebra();
   4077     Builder.setFastMathFlags(Unsafe);
   4078     unsigned i = 0;
   4079 
   4080     for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
   4081       V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
   4082       V.computeMinimumValueSizes();
   4083 
   4084       // Estimate cost.
   4085       int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
   4086       if (Cost >= -SLPCostThreshold)
   4087         break;
   4088 
   4089       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
   4090                    << ". (HorRdx)\n");
   4091 
   4092       // Vectorize a tree.
   4093       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
   4094       Value *VectorizedRoot = V.vectorizeTree();
   4095 
   4096       // Emit a reduction.
   4097       Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
   4098       if (VectorizedTree) {
   4099         Builder.SetCurrentDebugLocation(Loc);
   4100         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
   4101                                      ReducedSubTree, "bin.rdx");
   4102       } else
   4103         VectorizedTree = ReducedSubTree;
   4104     }
   4105 
   4106     if (VectorizedTree) {
   4107       // Finish the reduction.
   4108       for (; i < NumReducedVals; ++i) {
   4109         Builder.SetCurrentDebugLocation(
   4110           cast<Instruction>(ReducedVals[i])->getDebugLoc());
   4111         VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
   4112                                      ReducedVals[i]);
   4113       }
   4114       // Update users.
   4115       if (ReductionPHI) {
   4116         assert(ReductionRoot && "Need a reduction operation");
   4117         ReductionRoot->setOperand(0, VectorizedTree);
   4118         ReductionRoot->setOperand(1, ReductionPHI);
   4119       } else
   4120         ReductionRoot->replaceAllUsesWith(VectorizedTree);
   4121     }
   4122     return VectorizedTree != nullptr;
   4123   }
   4124 
   4125   unsigned numReductionValues() const {
   4126     return ReducedVals.size();
   4127   }
   4128 
   4129 private:
   4130   /// \brief Calculate the cost of a reduction.
   4131   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
   4132     Type *ScalarTy = FirstReducedVal->getType();
   4133     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
   4134 
   4135     int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
   4136     int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
   4137 
   4138     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
   4139     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
   4140 
   4141     int ScalarReduxCost =
   4142         ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
   4143 
   4144     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
   4145                  << " for reduction that starts with " << *FirstReducedVal
   4146                  << " (It is a "
   4147                  << (IsPairwiseReduction ? "pairwise" : "splitting")
   4148                  << " reduction)\n");
   4149 
   4150     return VecReduxCost - ScalarReduxCost;
   4151   }
   4152 
   4153   static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
   4154                             Value *R, const Twine &Name = "") {
   4155     if (Opcode == Instruction::FAdd)
   4156       return Builder.CreateFAdd(L, R, Name);
   4157     return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
   4158   }
   4159 
   4160   /// \brief Emit a horizontal reduction of the vectorized value.
   4161   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
   4162     assert(VectorizedValue && "Need to have a vectorized tree node");
   4163     assert(isPowerOf2_32(ReduxWidth) &&
   4164            "We only handle power-of-two reductions for now");
   4165 
   4166     Value *TmpVec = VectorizedValue;
   4167     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
   4168       if (IsPairwiseReduction) {
   4169         Value *LeftMask =
   4170           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
   4171         Value *RightMask =
   4172           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
   4173 
   4174         Value *LeftShuf = Builder.CreateShuffleVector(
   4175           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
   4176         Value *RightShuf = Builder.CreateShuffleVector(
   4177           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
   4178           "rdx.shuf.r");
   4179         TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
   4180                              "bin.rdx");
   4181       } else {
   4182         Value *UpperHalf =
   4183           createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
   4184         Value *Shuf = Builder.CreateShuffleVector(
   4185           TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
   4186         TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
   4187       }
   4188     }
   4189 
   4190     // The result is in the first element of the vector.
   4191     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
   4192   }
   4193 };
   4194 
   4195 /// \brief Recognize construction of vectors like
   4196 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
   4197 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
   4198 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
   4199 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
   4200 ///
   4201 /// Returns true if it matches
   4202 ///
   4203 static bool findBuildVector(InsertElementInst *FirstInsertElem,
   4204                             SmallVectorImpl<Value *> &BuildVector,
   4205                             SmallVectorImpl<Value *> &BuildVectorOpds) {
   4206   if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
   4207     return false;
   4208 
   4209   InsertElementInst *IE = FirstInsertElem;
   4210   while (true) {
   4211     BuildVector.push_back(IE);
   4212     BuildVectorOpds.push_back(IE->getOperand(1));
   4213 
   4214     if (IE->use_empty())
   4215       return false;
   4216 
   4217     InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
   4218     if (!NextUse)
   4219       return true;
   4220 
   4221     // If this isn't the final use, make sure the next insertelement is the only
   4222     // use. It's OK if the final constructed vector is used multiple times
   4223     if (!IE->hasOneUse())
   4224       return false;
   4225 
   4226     IE = NextUse;
   4227   }
   4228 
   4229   return false;
   4230 }
   4231 
   4232 /// \brief Like findBuildVector, but looks backwards for construction of aggregate.
   4233 ///
   4234 /// \return true if it matches.
   4235 static bool findBuildAggregate(InsertValueInst *IV,
   4236                                SmallVectorImpl<Value *> &BuildVector,
   4237                                SmallVectorImpl<Value *> &BuildVectorOpds) {
   4238   if (!IV->hasOneUse())
   4239     return false;
   4240   Value *V = IV->getAggregateOperand();
   4241   if (!isa<UndefValue>(V)) {
   4242     InsertValueInst *I = dyn_cast<InsertValueInst>(V);
   4243     if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds))
   4244       return false;
   4245   }
   4246   BuildVector.push_back(IV);
   4247   BuildVectorOpds.push_back(IV->getInsertedValueOperand());
   4248   return true;
   4249 }
   4250 
   4251 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
   4252   return V->getType() < V2->getType();
   4253 }
   4254 
   4255 /// \brief Try and get a reduction value from a phi node.
   4256 ///
   4257 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
   4258 /// if they come from either \p ParentBB or a containing loop latch.
   4259 ///
   4260 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
   4261 /// if not possible.
   4262 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
   4263                                 BasicBlock *ParentBB, LoopInfo *LI) {
   4264   // There are situations where the reduction value is not dominated by the
   4265   // reduction phi. Vectorizing such cases has been reported to cause
   4266   // miscompiles. See PR25787.
   4267   auto DominatedReduxValue = [&](Value *R) {
   4268     return (
   4269         dyn_cast<Instruction>(R) &&
   4270         DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
   4271   };
   4272 
   4273   Value *Rdx = nullptr;
   4274 
   4275   // Return the incoming value if it comes from the same BB as the phi node.
   4276   if (P->getIncomingBlock(0) == ParentBB) {
   4277     Rdx = P->getIncomingValue(0);
   4278   } else if (P->getIncomingBlock(1) == ParentBB) {
   4279     Rdx = P->getIncomingValue(1);
   4280   }
   4281 
   4282   if (Rdx && DominatedReduxValue(Rdx))
   4283     return Rdx;
   4284 
   4285   // Otherwise, check whether we have a loop latch to look at.
   4286   Loop *BBL = LI->getLoopFor(ParentBB);
   4287   if (!BBL)
   4288     return nullptr;
   4289   BasicBlock *BBLatch = BBL->getLoopLatch();
   4290   if (!BBLatch)
   4291     return nullptr;
   4292 
   4293   // There is a loop latch, return the incoming value if it comes from
   4294   // that. This reduction pattern occassionaly turns up.
   4295   if (P->getIncomingBlock(0) == BBLatch) {
   4296     Rdx = P->getIncomingValue(0);
   4297   } else if (P->getIncomingBlock(1) == BBLatch) {
   4298     Rdx = P->getIncomingValue(1);
   4299   }
   4300 
   4301   if (Rdx && DominatedReduxValue(Rdx))
   4302     return Rdx;
   4303 
   4304   return nullptr;
   4305 }
   4306 
   4307 /// \brief Attempt to reduce a horizontal reduction.
   4308 /// If it is legal to match a horizontal reduction feeding
   4309 /// the phi node P with reduction operators BI, then check if it
   4310 /// can be done.
   4311 /// \returns true if a horizontal reduction was matched and reduced.
   4312 /// \returns false if a horizontal reduction was not matched.
   4313 static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI,
   4314                                         BoUpSLP &R, TargetTransformInfo *TTI,
   4315                                         unsigned MinRegSize) {
   4316   if (!ShouldVectorizeHor)
   4317     return false;
   4318 
   4319   HorizontalReduction HorRdx(MinRegSize);
   4320   if (!HorRdx.matchAssociativeReduction(P, BI))
   4321     return false;
   4322 
   4323   // If there is a sufficient number of reduction values, reduce
   4324   // to a nearby power-of-2. Can safely generate oversized
   4325   // vectors and rely on the backend to split them to legal sizes.
   4326   HorRdx.ReduxWidth =
   4327     std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues()));
   4328 
   4329   return HorRdx.tryToReduce(R, TTI);
   4330 }
   4331 
   4332 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
   4333   bool Changed = false;
   4334   SmallVector<Value *, 4> Incoming;
   4335   SmallSet<Value *, 16> VisitedInstrs;
   4336 
   4337   bool HaveVectorizedPhiNodes = true;
   4338   while (HaveVectorizedPhiNodes) {
   4339     HaveVectorizedPhiNodes = false;
   4340 
   4341     // Collect the incoming values from the PHIs.
   4342     Incoming.clear();
   4343     for (Instruction &I : *BB) {
   4344       PHINode *P = dyn_cast<PHINode>(&I);
   4345       if (!P)
   4346         break;
   4347 
   4348       if (!VisitedInstrs.count(P))
   4349         Incoming.push_back(P);
   4350     }
   4351 
   4352     // Sort by type.
   4353     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
   4354 
   4355     // Try to vectorize elements base on their type.
   4356     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
   4357                                            E = Incoming.end();
   4358          IncIt != E;) {
   4359 
   4360       // Look for the next elements with the same type.
   4361       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
   4362       while (SameTypeIt != E &&
   4363              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
   4364         VisitedInstrs.insert(*SameTypeIt);
   4365         ++SameTypeIt;
   4366       }
   4367 
   4368       // Try to vectorize them.
   4369       unsigned NumElts = (SameTypeIt - IncIt);
   4370       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
   4371       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
   4372         // Success start over because instructions might have been changed.
   4373         HaveVectorizedPhiNodes = true;
   4374         Changed = true;
   4375         break;
   4376       }
   4377 
   4378       // Start over at the next instruction of a different type (or the end).
   4379       IncIt = SameTypeIt;
   4380     }
   4381   }
   4382 
   4383   VisitedInstrs.clear();
   4384 
   4385   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
   4386     // We may go through BB multiple times so skip the one we have checked.
   4387     if (!VisitedInstrs.insert(&*it).second)
   4388       continue;
   4389 
   4390     if (isa<DbgInfoIntrinsic>(it))
   4391       continue;
   4392 
   4393     // Try to vectorize reductions that use PHINodes.
   4394     if (PHINode *P = dyn_cast<PHINode>(it)) {
   4395       // Check that the PHI is a reduction PHI.
   4396       if (P->getNumIncomingValues() != 2)
   4397         return Changed;
   4398 
   4399       Value *Rdx = getReductionValue(DT, P, BB, LI);
   4400 
   4401       // Check if this is a Binary Operator.
   4402       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
   4403       if (!BI)
   4404         continue;
   4405 
   4406       // Try to match and vectorize a horizontal reduction.
   4407       if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) {
   4408         Changed = true;
   4409         it = BB->begin();
   4410         e = BB->end();
   4411         continue;
   4412       }
   4413 
   4414      Value *Inst = BI->getOperand(0);
   4415       if (Inst == P)
   4416         Inst = BI->getOperand(1);
   4417 
   4418       if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
   4419         // We would like to start over since some instructions are deleted
   4420         // and the iterator may become invalid value.
   4421         Changed = true;
   4422         it = BB->begin();
   4423         e = BB->end();
   4424         continue;
   4425       }
   4426 
   4427       continue;
   4428     }
   4429 
   4430     if (ShouldStartVectorizeHorAtStore)
   4431       if (StoreInst *SI = dyn_cast<StoreInst>(it))
   4432         if (BinaryOperator *BinOp =
   4433                 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
   4434           if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI,
   4435                                           R.getMinVecRegSize()) ||
   4436               tryToVectorize(BinOp, R)) {
   4437             Changed = true;
   4438             it = BB->begin();
   4439             e = BB->end();
   4440             continue;
   4441           }
   4442         }
   4443 
   4444     // Try to vectorize horizontal reductions feeding into a return.
   4445     if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
   4446       if (RI->getNumOperands() != 0)
   4447         if (BinaryOperator *BinOp =
   4448                 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
   4449           DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");
   4450           if (tryToVectorizePair(BinOp->getOperand(0),
   4451                                  BinOp->getOperand(1), R)) {
   4452             Changed = true;
   4453             it = BB->begin();
   4454             e = BB->end();
   4455             continue;
   4456           }
   4457         }
   4458 
   4459     // Try to vectorize trees that start at compare instructions.
   4460     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
   4461       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
   4462         Changed = true;
   4463         // We would like to start over since some instructions are deleted
   4464         // and the iterator may become invalid value.
   4465         it = BB->begin();
   4466         e = BB->end();
   4467         continue;
   4468       }
   4469 
   4470       for (int i = 0; i < 2; ++i) {
   4471         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
   4472           if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
   4473             Changed = true;
   4474             // We would like to start over since some instructions are deleted
   4475             // and the iterator may become invalid value.
   4476             it = BB->begin();
   4477             e = BB->end();
   4478             break;
   4479           }
   4480         }
   4481       }
   4482       continue;
   4483     }
   4484 
   4485     // Try to vectorize trees that start at insertelement instructions.
   4486     if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
   4487       SmallVector<Value *, 16> BuildVector;
   4488       SmallVector<Value *, 16> BuildVectorOpds;
   4489       if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
   4490         continue;
   4491 
   4492       // Vectorize starting with the build vector operands ignoring the
   4493       // BuildVector instructions for the purpose of scheduling and user
   4494       // extraction.
   4495       if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
   4496         Changed = true;
   4497         it = BB->begin();
   4498         e = BB->end();
   4499       }
   4500 
   4501       continue;
   4502     }
   4503 
   4504     // Try to vectorize trees that start at insertvalue instructions feeding into
   4505     // a store.
   4506     if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
   4507       if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) {
   4508         const DataLayout &DL = BB->getModule()->getDataLayout();
   4509         if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) {
   4510           SmallVector<Value *, 16> BuildVector;
   4511           SmallVector<Value *, 16> BuildVectorOpds;
   4512           if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds))
   4513             continue;
   4514 
   4515           DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n");
   4516           if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) {
   4517             Changed = true;
   4518             it = BB->begin();
   4519             e = BB->end();
   4520           }
   4521           continue;
   4522         }
   4523       }
   4524     }
   4525   }
   4526 
   4527   return Changed;
   4528 }
   4529 
   4530 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
   4531   auto Changed = false;
   4532   for (auto &Entry : GEPs) {
   4533 
   4534     // If the getelementptr list has fewer than two elements, there's nothing
   4535     // to do.
   4536     if (Entry.second.size() < 2)
   4537       continue;
   4538 
   4539     DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
   4540                  << Entry.second.size() << ".\n");
   4541 
   4542     // We process the getelementptr list in chunks of 16 (like we do for
   4543     // stores) to minimize compile-time.
   4544     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
   4545       auto Len = std::min<unsigned>(BE - BI, 16);
   4546       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
   4547 
   4548       // Initialize a set a candidate getelementptrs. Note that we use a
   4549       // SetVector here to preserve program order. If the index computations
   4550       // are vectorizable and begin with loads, we want to minimize the chance
   4551       // of having to reorder them later.
   4552       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
   4553 
   4554       // Some of the candidates may have already been vectorized after we
   4555       // initially collected them. If so, the WeakVHs will have nullified the
   4556       // values, so remove them from the set of candidates.
   4557       Candidates.remove(nullptr);
   4558 
   4559       // Remove from the set of candidates all pairs of getelementptrs with
   4560       // constant differences. Such getelementptrs are likely not good
   4561       // candidates for vectorization in a bottom-up phase since one can be
   4562       // computed from the other. We also ensure all candidate getelementptr
   4563       // indices are unique.
   4564       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
   4565         auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
   4566         if (!Candidates.count(GEPI))
   4567           continue;
   4568         auto *SCEVI = SE->getSCEV(GEPList[I]);
   4569         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
   4570           auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
   4571           auto *SCEVJ = SE->getSCEV(GEPList[J]);
   4572           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
   4573             Candidates.remove(GEPList[I]);
   4574             Candidates.remove(GEPList[J]);
   4575           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
   4576             Candidates.remove(GEPList[J]);
   4577           }
   4578         }
   4579       }
   4580 
   4581       // We break out of the above computation as soon as we know there are
   4582       // fewer than two candidates remaining.
   4583       if (Candidates.size() < 2)
   4584         continue;
   4585 
   4586       // Add the single, non-constant index of each candidate to the bundle. We
   4587       // ensured the indices met these constraints when we originally collected
   4588       // the getelementptrs.
   4589       SmallVector<Value *, 16> Bundle(Candidates.size());
   4590       auto BundleIndex = 0u;
   4591       for (auto *V : Candidates) {
   4592         auto *GEP = cast<GetElementPtrInst>(V);
   4593         auto *GEPIdx = GEP->idx_begin()->get();
   4594         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
   4595         Bundle[BundleIndex++] = GEPIdx;
   4596       }
   4597 
   4598       // Try and vectorize the indices. We are currently only interested in
   4599       // gather-like cases of the form:
   4600       //
   4601       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
   4602       //
   4603       // where the loads of "a", the loads of "b", and the subtractions can be
   4604       // performed in parallel. It's likely that detecting this pattern in a
   4605       // bottom-up phase will be simpler and less costly than building a
   4606       // full-blown top-down phase beginning at the consecutive loads.
   4607       Changed |= tryToVectorizeList(Bundle, R);
   4608     }
   4609   }
   4610   return Changed;
   4611 }
   4612 
   4613 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
   4614   bool Changed = false;
   4615   // Attempt to sort and vectorize each of the store-groups.
   4616   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
   4617        ++it) {
   4618     if (it->second.size() < 2)
   4619       continue;
   4620 
   4621     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
   4622           << it->second.size() << ".\n");
   4623 
   4624     // Process the stores in chunks of 16.
   4625     // TODO: The limit of 16 inhibits greater vectorization factors.
   4626     //       For example, AVX2 supports v32i8. Increasing this limit, however,
   4627     //       may cause a significant compile-time increase.
   4628     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
   4629       unsigned Len = std::min<unsigned>(CE - CI, 16);
   4630       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
   4631                                  -SLPCostThreshold, R);
   4632     }
   4633   }
   4634   return Changed;
   4635 }
   4636 
   4637 char SLPVectorizer::ID = 0;
   4638 static const char lv_name[] = "SLP Vectorizer";
   4639 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
   4640 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   4641 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   4642 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   4643 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
   4644 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   4645 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
   4646 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
   4647 
   4648 namespace llvm {
   4649 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
   4650 }
   4651