1 /* MIPS-specific support for ELF 2 Copyright (C) 1993-2016 Free Software Foundation, Inc. 3 4 Most of the information added by Ian Lance Taylor, Cygnus Support, 5 <ian (at) cygnus.com>. 6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. 7 <mark (at) codesourcery.com> 8 Traditional MIPS targets support added by Koundinya.K, Dansk Data 9 Elektronik & Operations Research Group. <kk (at) ddeorg.soft.net> 10 11 This file is part of BFD, the Binary File Descriptor library. 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 3 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 26 MA 02110-1301, USA. */ 27 28 29 /* This file handles functionality common to the different MIPS ABI's. */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "libiberty.h" 35 #include "elf-bfd.h" 36 #include "elfxx-mips.h" 37 #include "elf/mips.h" 38 #include "elf-vxworks.h" 39 #include "dwarf2.h" 40 41 /* Get the ECOFF swapping routines. */ 42 #include "coff/sym.h" 43 #include "coff/symconst.h" 44 #include "coff/ecoff.h" 45 #include "coff/mips.h" 46 47 #include "hashtab.h" 48 49 /* Types of TLS GOT entry. */ 50 enum mips_got_tls_type { 51 GOT_TLS_NONE, 52 GOT_TLS_GD, 53 GOT_TLS_LDM, 54 GOT_TLS_IE 55 }; 56 57 /* This structure is used to hold information about one GOT entry. 58 There are four types of entry: 59 60 (1) an absolute address 61 requires: abfd == NULL 62 fields: d.address 63 64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd 65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM 66 fields: abfd, symndx, d.addend, tls_type 67 68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd 69 requires: abfd != NULL, symndx == -1 70 fields: d.h, tls_type 71 72 (4) a TLS LDM slot 73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM 74 fields: none; there's only one of these per GOT. */ 75 struct mips_got_entry 76 { 77 /* One input bfd that needs the GOT entry. */ 78 bfd *abfd; 79 /* The index of the symbol, as stored in the relocation r_info, if 80 we have a local symbol; -1 otherwise. */ 81 long symndx; 82 union 83 { 84 /* If abfd == NULL, an address that must be stored in the got. */ 85 bfd_vma address; 86 /* If abfd != NULL && symndx != -1, the addend of the relocation 87 that should be added to the symbol value. */ 88 bfd_vma addend; 89 /* If abfd != NULL && symndx == -1, the hash table entry 90 corresponding to a symbol in the GOT. The symbol's entry 91 is in the local area if h->global_got_area is GGA_NONE, 92 otherwise it is in the global area. */ 93 struct mips_elf_link_hash_entry *h; 94 } d; 95 96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local 97 symbol entry with r_symndx == 0. */ 98 unsigned char tls_type; 99 100 /* True if we have filled in the GOT contents for a TLS entry, 101 and created the associated relocations. */ 102 unsigned char tls_initialized; 103 104 /* The offset from the beginning of the .got section to the entry 105 corresponding to this symbol+addend. If it's a global symbol 106 whose offset is yet to be decided, it's going to be -1. */ 107 long gotidx; 108 }; 109 110 /* This structure represents a GOT page reference from an input bfd. 111 Each instance represents a symbol + ADDEND, where the representation 112 of the symbol depends on whether it is local to the input bfd. 113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. 114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. 115 116 Page references with SYMNDX >= 0 always become page references 117 in the output. Page references with SYMNDX < 0 only become page 118 references if the symbol binds locally; in other cases, the page 119 reference decays to a global GOT reference. */ 120 struct mips_got_page_ref 121 { 122 long symndx; 123 union 124 { 125 struct mips_elf_link_hash_entry *h; 126 bfd *abfd; 127 } u; 128 bfd_vma addend; 129 }; 130 131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. 132 The structures form a non-overlapping list that is sorted by increasing 133 MIN_ADDEND. */ 134 struct mips_got_page_range 135 { 136 struct mips_got_page_range *next; 137 bfd_signed_vma min_addend; 138 bfd_signed_vma max_addend; 139 }; 140 141 /* This structure describes the range of addends that are applied to page 142 relocations against a given section. */ 143 struct mips_got_page_entry 144 { 145 /* The section that these entries are based on. */ 146 asection *sec; 147 /* The ranges for this page entry. */ 148 struct mips_got_page_range *ranges; 149 /* The maximum number of page entries needed for RANGES. */ 150 bfd_vma num_pages; 151 }; 152 153 /* This structure is used to hold .got information when linking. */ 154 155 struct mips_got_info 156 { 157 /* The number of global .got entries. */ 158 unsigned int global_gotno; 159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ 160 unsigned int reloc_only_gotno; 161 /* The number of .got slots used for TLS. */ 162 unsigned int tls_gotno; 163 /* The first unused TLS .got entry. Used only during 164 mips_elf_initialize_tls_index. */ 165 unsigned int tls_assigned_gotno; 166 /* The number of local .got entries, eventually including page entries. */ 167 unsigned int local_gotno; 168 /* The maximum number of page entries needed. */ 169 unsigned int page_gotno; 170 /* The number of relocations needed for the GOT entries. */ 171 unsigned int relocs; 172 /* The first unused local .got entry. */ 173 unsigned int assigned_low_gotno; 174 /* The last unused local .got entry. */ 175 unsigned int assigned_high_gotno; 176 /* A hash table holding members of the got. */ 177 struct htab *got_entries; 178 /* A hash table holding mips_got_page_ref structures. */ 179 struct htab *got_page_refs; 180 /* A hash table of mips_got_page_entry structures. */ 181 struct htab *got_page_entries; 182 /* In multi-got links, a pointer to the next got (err, rather, most 183 of the time, it points to the previous got). */ 184 struct mips_got_info *next; 185 }; 186 187 /* Structure passed when merging bfds' gots. */ 188 189 struct mips_elf_got_per_bfd_arg 190 { 191 /* The output bfd. */ 192 bfd *obfd; 193 /* The link information. */ 194 struct bfd_link_info *info; 195 /* A pointer to the primary got, i.e., the one that's going to get 196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and 197 DT_MIPS_GOTSYM. */ 198 struct mips_got_info *primary; 199 /* A non-primary got we're trying to merge with other input bfd's 200 gots. */ 201 struct mips_got_info *current; 202 /* The maximum number of got entries that can be addressed with a 203 16-bit offset. */ 204 unsigned int max_count; 205 /* The maximum number of page entries needed by each got. */ 206 unsigned int max_pages; 207 /* The total number of global entries which will live in the 208 primary got and be automatically relocated. This includes 209 those not referenced by the primary GOT but included in 210 the "master" GOT. */ 211 unsigned int global_count; 212 }; 213 214 /* A structure used to pass information to htab_traverse callbacks 215 when laying out the GOT. */ 216 217 struct mips_elf_traverse_got_arg 218 { 219 struct bfd_link_info *info; 220 struct mips_got_info *g; 221 int value; 222 }; 223 224 struct _mips_elf_section_data 225 { 226 struct bfd_elf_section_data elf; 227 union 228 { 229 bfd_byte *tdata; 230 } u; 231 }; 232 233 #define mips_elf_section_data(sec) \ 234 ((struct _mips_elf_section_data *) elf_section_data (sec)) 235 236 #define is_mips_elf(bfd) \ 237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 238 && elf_tdata (bfd) != NULL \ 239 && elf_object_id (bfd) == MIPS_ELF_DATA) 240 241 /* The ABI says that every symbol used by dynamic relocations must have 242 a global GOT entry. Among other things, this provides the dynamic 243 linker with a free, directly-indexed cache. The GOT can therefore 244 contain symbols that are not referenced by GOT relocations themselves 245 (in other words, it may have symbols that are not referenced by things 246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). 247 248 GOT relocations are less likely to overflow if we put the associated 249 GOT entries towards the beginning. We therefore divide the global 250 GOT entries into two areas: "normal" and "reloc-only". Entries in 251 the first area can be used for both dynamic relocations and GP-relative 252 accesses, while those in the "reloc-only" area are for dynamic 253 relocations only. 254 255 These GGA_* ("Global GOT Area") values are organised so that lower 256 values are more general than higher values. Also, non-GGA_NONE 257 values are ordered by the position of the area in the GOT. */ 258 #define GGA_NORMAL 0 259 #define GGA_RELOC_ONLY 1 260 #define GGA_NONE 2 261 262 /* Information about a non-PIC interface to a PIC function. There are 263 two ways of creating these interfaces. The first is to add: 264 265 lui $25,%hi(func) 266 addiu $25,$25,%lo(func) 267 268 immediately before a PIC function "func". The second is to add: 269 270 lui $25,%hi(func) 271 j func 272 addiu $25,$25,%lo(func) 273 274 to a separate trampoline section. 275 276 Stubs of the first kind go in a new section immediately before the 277 target function. Stubs of the second kind go in a single section 278 pointed to by the hash table's "strampoline" field. */ 279 struct mips_elf_la25_stub { 280 /* The generated section that contains this stub. */ 281 asection *stub_section; 282 283 /* The offset of the stub from the start of STUB_SECTION. */ 284 bfd_vma offset; 285 286 /* One symbol for the original function. Its location is available 287 in H->root.root.u.def. */ 288 struct mips_elf_link_hash_entry *h; 289 }; 290 291 /* Macros for populating a mips_elf_la25_stub. */ 292 293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ 294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ 295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ 296 #define LA25_LUI_MICROMIPS(VAL) \ 297 (0x41b90000 | (VAL)) /* lui t9,VAL */ 298 #define LA25_J_MICROMIPS(VAL) \ 299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ 300 #define LA25_ADDIU_MICROMIPS(VAL) \ 301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ 302 303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting 304 the dynamic symbols. */ 305 306 struct mips_elf_hash_sort_data 307 { 308 /* The symbol in the global GOT with the lowest dynamic symbol table 309 index. */ 310 struct elf_link_hash_entry *low; 311 /* The least dynamic symbol table index corresponding to a non-TLS 312 symbol with a GOT entry. */ 313 long min_got_dynindx; 314 /* The greatest dynamic symbol table index corresponding to a symbol 315 with a GOT entry that is not referenced (e.g., a dynamic symbol 316 with dynamic relocations pointing to it from non-primary GOTs). */ 317 long max_unref_got_dynindx; 318 /* The greatest dynamic symbol table index not corresponding to a 319 symbol without a GOT entry. */ 320 long max_non_got_dynindx; 321 }; 322 323 /* We make up to two PLT entries if needed, one for standard MIPS code 324 and one for compressed code, either a MIPS16 or microMIPS one. We 325 keep a separate record of traditional lazy-binding stubs, for easier 326 processing. */ 327 328 struct plt_entry 329 { 330 /* Traditional SVR4 stub offset, or -1 if none. */ 331 bfd_vma stub_offset; 332 333 /* Standard PLT entry offset, or -1 if none. */ 334 bfd_vma mips_offset; 335 336 /* Compressed PLT entry offset, or -1 if none. */ 337 bfd_vma comp_offset; 338 339 /* The corresponding .got.plt index, or -1 if none. */ 340 bfd_vma gotplt_index; 341 342 /* Whether we need a standard PLT entry. */ 343 unsigned int need_mips : 1; 344 345 /* Whether we need a compressed PLT entry. */ 346 unsigned int need_comp : 1; 347 }; 348 349 /* The MIPS ELF linker needs additional information for each symbol in 350 the global hash table. */ 351 352 struct mips_elf_link_hash_entry 353 { 354 struct elf_link_hash_entry root; 355 356 /* External symbol information. */ 357 EXTR esym; 358 359 /* The la25 stub we have created for ths symbol, if any. */ 360 struct mips_elf_la25_stub *la25_stub; 361 362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against 363 this symbol. */ 364 unsigned int possibly_dynamic_relocs; 365 366 /* If there is a stub that 32 bit functions should use to call this 367 16 bit function, this points to the section containing the stub. */ 368 asection *fn_stub; 369 370 /* If there is a stub that 16 bit functions should use to call this 371 32 bit function, this points to the section containing the stub. */ 372 asection *call_stub; 373 374 /* This is like the call_stub field, but it is used if the function 375 being called returns a floating point value. */ 376 asection *call_fp_stub; 377 378 /* The highest GGA_* value that satisfies all references to this symbol. */ 379 unsigned int global_got_area : 2; 380 381 /* True if all GOT relocations against this symbol are for calls. This is 382 a looser condition than no_fn_stub below, because there may be other 383 non-call non-GOT relocations against the symbol. */ 384 unsigned int got_only_for_calls : 1; 385 386 /* True if one of the relocations described by possibly_dynamic_relocs 387 is against a readonly section. */ 388 unsigned int readonly_reloc : 1; 389 390 /* True if there is a relocation against this symbol that must be 391 resolved by the static linker (in other words, if the relocation 392 cannot possibly be made dynamic). */ 393 unsigned int has_static_relocs : 1; 394 395 /* True if we must not create a .MIPS.stubs entry for this symbol. 396 This is set, for example, if there are relocations related to 397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones. 398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ 399 unsigned int no_fn_stub : 1; 400 401 /* Whether we need the fn_stub; this is true if this symbol appears 402 in any relocs other than a 16 bit call. */ 403 unsigned int need_fn_stub : 1; 404 405 /* True if this symbol is referenced by branch relocations from 406 any non-PIC input file. This is used to determine whether an 407 la25 stub is required. */ 408 unsigned int has_nonpic_branches : 1; 409 410 /* Does this symbol need a traditional MIPS lazy-binding stub 411 (as opposed to a PLT entry)? */ 412 unsigned int needs_lazy_stub : 1; 413 414 /* Does this symbol resolve to a PLT entry? */ 415 unsigned int use_plt_entry : 1; 416 }; 417 418 /* MIPS ELF linker hash table. */ 419 420 struct mips_elf_link_hash_table 421 { 422 struct elf_link_hash_table root; 423 424 /* The number of .rtproc entries. */ 425 bfd_size_type procedure_count; 426 427 /* The size of the .compact_rel section (if SGI_COMPAT). */ 428 bfd_size_type compact_rel_size; 429 430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry 431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ 432 bfd_boolean use_rld_obj_head; 433 434 /* The __rld_map or __rld_obj_head symbol. */ 435 struct elf_link_hash_entry *rld_symbol; 436 437 /* This is set if we see any mips16 stub sections. */ 438 bfd_boolean mips16_stubs_seen; 439 440 /* True if we can generate copy relocs and PLTs. */ 441 bfd_boolean use_plts_and_copy_relocs; 442 443 /* True if we can only use 32-bit microMIPS instructions. */ 444 bfd_boolean insn32; 445 446 /* True if we're generating code for VxWorks. */ 447 bfd_boolean is_vxworks; 448 449 /* True if we already reported the small-data section overflow. */ 450 bfd_boolean small_data_overflow_reported; 451 452 /* Shortcuts to some dynamic sections, or NULL if they are not 453 being used. */ 454 asection *srelbss; 455 asection *sdynbss; 456 asection *srelplt; 457 asection *srelplt2; 458 asection *sgotplt; 459 asection *splt; 460 asection *sstubs; 461 asection *sgot; 462 463 /* The master GOT information. */ 464 struct mips_got_info *got_info; 465 466 /* The global symbol in the GOT with the lowest index in the dynamic 467 symbol table. */ 468 struct elf_link_hash_entry *global_gotsym; 469 470 /* The size of the PLT header in bytes. */ 471 bfd_vma plt_header_size; 472 473 /* The size of a standard PLT entry in bytes. */ 474 bfd_vma plt_mips_entry_size; 475 476 /* The size of a compressed PLT entry in bytes. */ 477 bfd_vma plt_comp_entry_size; 478 479 /* The offset of the next standard PLT entry to create. */ 480 bfd_vma plt_mips_offset; 481 482 /* The offset of the next compressed PLT entry to create. */ 483 bfd_vma plt_comp_offset; 484 485 /* The index of the next .got.plt entry to create. */ 486 bfd_vma plt_got_index; 487 488 /* The number of functions that need a lazy-binding stub. */ 489 bfd_vma lazy_stub_count; 490 491 /* The size of a function stub entry in bytes. */ 492 bfd_vma function_stub_size; 493 494 /* The number of reserved entries at the beginning of the GOT. */ 495 unsigned int reserved_gotno; 496 497 /* The section used for mips_elf_la25_stub trampolines. 498 See the comment above that structure for details. */ 499 asection *strampoline; 500 501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) 502 pairs. */ 503 htab_t la25_stubs; 504 505 /* A function FN (NAME, IS, OS) that creates a new input section 506 called NAME and links it to output section OS. If IS is nonnull, 507 the new section should go immediately before it, otherwise it 508 should go at the (current) beginning of OS. 509 510 The function returns the new section on success, otherwise it 511 returns null. */ 512 asection *(*add_stub_section) (const char *, asection *, asection *); 513 514 /* Small local sym cache. */ 515 struct sym_cache sym_cache; 516 517 /* Is the PLT header compressed? */ 518 unsigned int plt_header_is_comp : 1; 519 }; 520 521 /* Get the MIPS ELF linker hash table from a link_info structure. */ 522 523 #define mips_elf_hash_table(p) \ 524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) 526 527 /* A structure used to communicate with htab_traverse callbacks. */ 528 struct mips_htab_traverse_info 529 { 530 /* The usual link-wide information. */ 531 struct bfd_link_info *info; 532 bfd *output_bfd; 533 534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */ 535 bfd_boolean error; 536 }; 537 538 /* MIPS ELF private object data. */ 539 540 struct mips_elf_obj_tdata 541 { 542 /* Generic ELF private object data. */ 543 struct elf_obj_tdata root; 544 545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ 546 bfd *abi_fp_bfd; 547 548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ 549 bfd *abi_msa_bfd; 550 551 /* The abiflags for this object. */ 552 Elf_Internal_ABIFlags_v0 abiflags; 553 bfd_boolean abiflags_valid; 554 555 /* The GOT requirements of input bfds. */ 556 struct mips_got_info *got; 557 558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be 559 included directly in this one, but there's no point to wasting 560 the memory just for the infrequently called find_nearest_line. */ 561 struct mips_elf_find_line *find_line_info; 562 563 /* An array of stub sections indexed by symbol number. */ 564 asection **local_stubs; 565 asection **local_call_stubs; 566 567 /* The Irix 5 support uses two virtual sections, which represent 568 text/data symbols defined in dynamic objects. */ 569 asymbol *elf_data_symbol; 570 asymbol *elf_text_symbol; 571 asection *elf_data_section; 572 asection *elf_text_section; 573 }; 574 575 /* Get MIPS ELF private object data from BFD's tdata. */ 576 577 #define mips_elf_tdata(bfd) \ 578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) 579 580 #define TLS_RELOC_P(r_type) \ 581 (r_type == R_MIPS_TLS_DTPMOD32 \ 582 || r_type == R_MIPS_TLS_DTPMOD64 \ 583 || r_type == R_MIPS_TLS_DTPREL32 \ 584 || r_type == R_MIPS_TLS_DTPREL64 \ 585 || r_type == R_MIPS_TLS_GD \ 586 || r_type == R_MIPS_TLS_LDM \ 587 || r_type == R_MIPS_TLS_DTPREL_HI16 \ 588 || r_type == R_MIPS_TLS_DTPREL_LO16 \ 589 || r_type == R_MIPS_TLS_GOTTPREL \ 590 || r_type == R_MIPS_TLS_TPREL32 \ 591 || r_type == R_MIPS_TLS_TPREL64 \ 592 || r_type == R_MIPS_TLS_TPREL_HI16 \ 593 || r_type == R_MIPS_TLS_TPREL_LO16 \ 594 || r_type == R_MIPS16_TLS_GD \ 595 || r_type == R_MIPS16_TLS_LDM \ 596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \ 597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \ 598 || r_type == R_MIPS16_TLS_GOTTPREL \ 599 || r_type == R_MIPS16_TLS_TPREL_HI16 \ 600 || r_type == R_MIPS16_TLS_TPREL_LO16 \ 601 || r_type == R_MICROMIPS_TLS_GD \ 602 || r_type == R_MICROMIPS_TLS_LDM \ 603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ 604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ 605 || r_type == R_MICROMIPS_TLS_GOTTPREL \ 606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ 607 || r_type == R_MICROMIPS_TLS_TPREL_LO16) 608 609 /* Structure used to pass information to mips_elf_output_extsym. */ 610 611 struct extsym_info 612 { 613 bfd *abfd; 614 struct bfd_link_info *info; 615 struct ecoff_debug_info *debug; 616 const struct ecoff_debug_swap *swap; 617 bfd_boolean failed; 618 }; 619 620 /* The names of the runtime procedure table symbols used on IRIX5. */ 621 622 static const char * const mips_elf_dynsym_rtproc_names[] = 623 { 624 "_procedure_table", 625 "_procedure_string_table", 626 "_procedure_table_size", 627 NULL 628 }; 629 630 /* These structures are used to generate the .compact_rel section on 631 IRIX5. */ 632 633 typedef struct 634 { 635 unsigned long id1; /* Always one? */ 636 unsigned long num; /* Number of compact relocation entries. */ 637 unsigned long id2; /* Always two? */ 638 unsigned long offset; /* The file offset of the first relocation. */ 639 unsigned long reserved0; /* Zero? */ 640 unsigned long reserved1; /* Zero? */ 641 } Elf32_compact_rel; 642 643 typedef struct 644 { 645 bfd_byte id1[4]; 646 bfd_byte num[4]; 647 bfd_byte id2[4]; 648 bfd_byte offset[4]; 649 bfd_byte reserved0[4]; 650 bfd_byte reserved1[4]; 651 } Elf32_External_compact_rel; 652 653 typedef struct 654 { 655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 656 unsigned int rtype : 4; /* Relocation types. See below. */ 657 unsigned int dist2to : 8; 658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 659 unsigned long konst; /* KONST field. See below. */ 660 unsigned long vaddr; /* VADDR to be relocated. */ 661 } Elf32_crinfo; 662 663 typedef struct 664 { 665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 666 unsigned int rtype : 4; /* Relocation types. See below. */ 667 unsigned int dist2to : 8; 668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 669 unsigned long konst; /* KONST field. See below. */ 670 } Elf32_crinfo2; 671 672 typedef struct 673 { 674 bfd_byte info[4]; 675 bfd_byte konst[4]; 676 bfd_byte vaddr[4]; 677 } Elf32_External_crinfo; 678 679 typedef struct 680 { 681 bfd_byte info[4]; 682 bfd_byte konst[4]; 683 } Elf32_External_crinfo2; 684 685 /* These are the constants used to swap the bitfields in a crinfo. */ 686 687 #define CRINFO_CTYPE (0x1) 688 #define CRINFO_CTYPE_SH (31) 689 #define CRINFO_RTYPE (0xf) 690 #define CRINFO_RTYPE_SH (27) 691 #define CRINFO_DIST2TO (0xff) 692 #define CRINFO_DIST2TO_SH (19) 693 #define CRINFO_RELVADDR (0x7ffff) 694 #define CRINFO_RELVADDR_SH (0) 695 696 /* A compact relocation info has long (3 words) or short (2 words) 697 formats. A short format doesn't have VADDR field and relvaddr 698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */ 699 #define CRF_MIPS_LONG 1 700 #define CRF_MIPS_SHORT 0 701 702 /* There are 4 types of compact relocation at least. The value KONST 703 has different meaning for each type: 704 705 (type) (konst) 706 CT_MIPS_REL32 Address in data 707 CT_MIPS_WORD Address in word (XXX) 708 CT_MIPS_GPHI_LO GP - vaddr 709 CT_MIPS_JMPAD Address to jump 710 */ 711 712 #define CRT_MIPS_REL32 0xa 713 #define CRT_MIPS_WORD 0xb 714 #define CRT_MIPS_GPHI_LO 0xc 715 #define CRT_MIPS_JMPAD 0xd 716 717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) 718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) 719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) 720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) 721 722 /* The structure of the runtime procedure descriptor created by the 724 loader for use by the static exception system. */ 725 726 typedef struct runtime_pdr { 727 bfd_vma adr; /* Memory address of start of procedure. */ 728 long regmask; /* Save register mask. */ 729 long regoffset; /* Save register offset. */ 730 long fregmask; /* Save floating point register mask. */ 731 long fregoffset; /* Save floating point register offset. */ 732 long frameoffset; /* Frame size. */ 733 short framereg; /* Frame pointer register. */ 734 short pcreg; /* Offset or reg of return pc. */ 735 long irpss; /* Index into the runtime string table. */ 736 long reserved; 737 struct exception_info *exception_info;/* Pointer to exception array. */ 738 } RPDR, *pRPDR; 739 #define cbRPDR sizeof (RPDR) 740 #define rpdNil ((pRPDR) 0) 741 742 static struct mips_got_entry *mips_elf_create_local_got_entry 744 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, 745 struct mips_elf_link_hash_entry *, int); 746 static bfd_boolean mips_elf_sort_hash_table_f 747 (struct mips_elf_link_hash_entry *, void *); 748 static bfd_vma mips_elf_high 749 (bfd_vma); 750 static bfd_boolean mips_elf_create_dynamic_relocation 751 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, 752 struct mips_elf_link_hash_entry *, asection *, bfd_vma, 753 bfd_vma *, asection *); 754 static bfd_vma mips_elf_adjust_gp 755 (bfd *, struct mips_got_info *, bfd *); 756 757 /* This will be used when we sort the dynamic relocation records. */ 758 static bfd *reldyn_sorting_bfd; 759 760 /* True if ABFD is for CPUs with load interlocking that include 761 non-MIPS1 CPUs and R3900. */ 762 #define LOAD_INTERLOCKS_P(abfd) \ 763 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ 764 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) 765 766 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. 767 This should be safe for all architectures. We enable this predicate 768 for RM9000 for now. */ 769 #define JAL_TO_BAL_P(abfd) \ 770 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) 771 772 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. 773 This should be safe for all architectures. We enable this predicate for 774 all CPUs. */ 775 #define JALR_TO_BAL_P(abfd) 1 776 777 /* True if ABFD is for CPUs that are faster if JR is converted to B. 778 This should be safe for all architectures. We enable this predicate for 779 all CPUs. */ 780 #define JR_TO_B_P(abfd) 1 781 782 /* True if ABFD is a PIC object. */ 783 #define PIC_OBJECT_P(abfd) \ 784 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) 785 786 /* Nonzero if ABFD is using the O32 ABI. */ 787 #define ABI_O32_P(abfd) \ 788 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 789 790 /* Nonzero if ABFD is using the N32 ABI. */ 791 #define ABI_N32_P(abfd) \ 792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) 793 794 /* Nonzero if ABFD is using the N64 ABI. */ 795 #define ABI_64_P(abfd) \ 796 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 797 798 /* Nonzero if ABFD is using NewABI conventions. */ 799 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) 800 801 /* Nonzero if ABFD has microMIPS code. */ 802 #define MICROMIPS_P(abfd) \ 803 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) 804 805 /* Nonzero if ABFD is MIPS R6. */ 806 #define MIPSR6_P(abfd) \ 807 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ 808 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 809 810 /* The IRIX compatibility level we are striving for. */ 811 #define IRIX_COMPAT(abfd) \ 812 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) 813 814 /* Whether we are trying to be compatible with IRIX at all. */ 815 #define SGI_COMPAT(abfd) \ 816 (IRIX_COMPAT (abfd) != ict_none) 817 818 /* The name of the options section. */ 819 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ 820 (NEWABI_P (abfd) ? ".MIPS.options" : ".options") 821 822 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. 823 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ 824 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ 825 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) 826 827 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ 828 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ 829 (strcmp (NAME, ".MIPS.abiflags") == 0) 830 831 /* Whether the section is readonly. */ 832 #define MIPS_ELF_READONLY_SECTION(sec) \ 833 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ 834 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 835 836 /* The name of the stub section. */ 837 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" 838 839 /* The size of an external REL relocation. */ 840 #define MIPS_ELF_REL_SIZE(abfd) \ 841 (get_elf_backend_data (abfd)->s->sizeof_rel) 842 843 /* The size of an external RELA relocation. */ 844 #define MIPS_ELF_RELA_SIZE(abfd) \ 845 (get_elf_backend_data (abfd)->s->sizeof_rela) 846 847 /* The size of an external dynamic table entry. */ 848 #define MIPS_ELF_DYN_SIZE(abfd) \ 849 (get_elf_backend_data (abfd)->s->sizeof_dyn) 850 851 /* The size of a GOT entry. */ 852 #define MIPS_ELF_GOT_SIZE(abfd) \ 853 (get_elf_backend_data (abfd)->s->arch_size / 8) 854 855 /* The size of the .rld_map section. */ 856 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ 857 (get_elf_backend_data (abfd)->s->arch_size / 8) 858 859 /* The size of a symbol-table entry. */ 860 #define MIPS_ELF_SYM_SIZE(abfd) \ 861 (get_elf_backend_data (abfd)->s->sizeof_sym) 862 863 /* The default alignment for sections, as a power of two. */ 864 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ 865 (get_elf_backend_data (abfd)->s->log_file_align) 866 867 /* Get word-sized data. */ 868 #define MIPS_ELF_GET_WORD(abfd, ptr) \ 869 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) 870 871 /* Put out word-sized data. */ 872 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ 873 (ABI_64_P (abfd) \ 874 ? bfd_put_64 (abfd, val, ptr) \ 875 : bfd_put_32 (abfd, val, ptr)) 876 877 /* The opcode for word-sized loads (LW or LD). */ 878 #define MIPS_ELF_LOAD_WORD(abfd) \ 879 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) 880 881 /* Add a dynamic symbol table-entry. */ 882 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ 883 _bfd_elf_add_dynamic_entry (info, tag, val) 884 885 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ 886 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) 887 888 /* The name of the dynamic relocation section. */ 889 #define MIPS_ELF_REL_DYN_NAME(INFO) \ 890 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") 891 892 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 893 from smaller values. Start with zero, widen, *then* decrement. */ 894 #define MINUS_ONE (((bfd_vma)0) - 1) 895 #define MINUS_TWO (((bfd_vma)0) - 2) 896 897 /* The value to write into got[1] for SVR4 targets, to identify it is 898 a GNU object. The dynamic linker can then use got[1] to store the 899 module pointer. */ 900 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ 901 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) 902 903 /* The offset of $gp from the beginning of the .got section. */ 904 #define ELF_MIPS_GP_OFFSET(INFO) \ 905 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) 906 907 /* The maximum size of the GOT for it to be addressable using 16-bit 908 offsets from $gp. */ 909 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) 910 911 /* Instructions which appear in a stub. */ 912 #define STUB_LW(abfd) \ 913 ((ABI_64_P (abfd) \ 914 ? 0xdf998010 /* ld t9,0x8010(gp) */ \ 915 : 0x8f998010)) /* lw t9,0x8010(gp) */ 916 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */ 917 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ 918 #define STUB_JALR 0x0320f809 /* jalr t9,ra */ 919 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ 920 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ 921 #define STUB_LI16S(abfd, VAL) \ 922 ((ABI_64_P (abfd) \ 923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ 924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ 925 926 /* Likewise for the microMIPS ASE. */ 927 #define STUB_LW_MICROMIPS(abfd) \ 928 (ABI_64_P (abfd) \ 929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ 930 : 0xff3c8010) /* lw t9,0x8010(gp) */ 931 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ 932 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */ 933 #define STUB_LUI_MICROMIPS(VAL) \ 934 (0x41b80000 + (VAL)) /* lui t8,VAL */ 935 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ 936 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ 937 #define STUB_ORI_MICROMIPS(VAL) \ 938 (0x53180000 + (VAL)) /* ori t8,t8,VAL */ 939 #define STUB_LI16U_MICROMIPS(VAL) \ 940 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ 941 #define STUB_LI16S_MICROMIPS(abfd, VAL) \ 942 (ABI_64_P (abfd) \ 943 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ 944 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ 945 946 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 947 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 948 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 949 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 950 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 951 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 952 953 /* The name of the dynamic interpreter. This is put in the .interp 954 section. */ 955 956 #define ELF_DYNAMIC_INTERPRETER(abfd) \ 957 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ 958 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ 959 : "/usr/lib/libc.so.1") 960 961 #ifdef BFD64 962 #define MNAME(bfd,pre,pos) \ 963 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) 964 #define ELF_R_SYM(bfd, i) \ 965 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) 966 #define ELF_R_TYPE(bfd, i) \ 967 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) 968 #define ELF_R_INFO(bfd, s, t) \ 969 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) 970 #else 971 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) 972 #define ELF_R_SYM(bfd, i) \ 973 (ELF32_R_SYM (i)) 974 #define ELF_R_TYPE(bfd, i) \ 975 (ELF32_R_TYPE (i)) 976 #define ELF_R_INFO(bfd, s, t) \ 977 (ELF32_R_INFO (s, t)) 978 #endif 979 980 /* The mips16 compiler uses a couple of special sections to handle 982 floating point arguments. 983 984 Section names that look like .mips16.fn.FNNAME contain stubs that 985 copy floating point arguments from the fp regs to the gp regs and 986 then jump to FNNAME. If any 32 bit function calls FNNAME, the 987 call should be redirected to the stub instead. If no 32 bit 988 function calls FNNAME, the stub should be discarded. We need to 989 consider any reference to the function, not just a call, because 990 if the address of the function is taken we will need the stub, 991 since the address might be passed to a 32 bit function. 992 993 Section names that look like .mips16.call.FNNAME contain stubs 994 that copy floating point arguments from the gp regs to the fp 995 regs and then jump to FNNAME. If FNNAME is a 32 bit function, 996 then any 16 bit function that calls FNNAME should be redirected 997 to the stub instead. If FNNAME is not a 32 bit function, the 998 stub should be discarded. 999 1000 .mips16.call.fp.FNNAME sections are similar, but contain stubs 1001 which call FNNAME and then copy the return value from the fp regs 1002 to the gp regs. These stubs store the return value in $18 while 1003 calling FNNAME; any function which might call one of these stubs 1004 must arrange to save $18 around the call. (This case is not 1005 needed for 32 bit functions that call 16 bit functions, because 1006 16 bit functions always return floating point values in both 1007 $f0/$f1 and $2/$3.) 1008 1009 Note that in all cases FNNAME might be defined statically. 1010 Therefore, FNNAME is not used literally. Instead, the relocation 1011 information will indicate which symbol the section is for. 1012 1013 We record any stubs that we find in the symbol table. */ 1014 1015 #define FN_STUB ".mips16.fn." 1016 #define CALL_STUB ".mips16.call." 1017 #define CALL_FP_STUB ".mips16.call.fp." 1018 1019 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) 1020 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) 1021 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) 1022 1023 /* The format of the first PLT entry in an O32 executable. */ 1025 static const bfd_vma mips_o32_exec_plt0_entry[] = 1026 { 1027 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 1028 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1029 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1030 0x031cc023, /* subu $24, $24, $28 */ 1031 0x03e07825, /* or t7, ra, zero */ 1032 0x0018c082, /* srl $24, $24, 2 */ 1033 0x0320f809, /* jalr $25 */ 1034 0x2718fffe /* subu $24, $24, 2 */ 1035 }; 1036 1037 /* The format of the first PLT entry in an N32 executable. Different 1038 because gp ($28) is not available; we use t2 ($14) instead. */ 1039 static const bfd_vma mips_n32_exec_plt0_entry[] = 1040 { 1041 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1042 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 1043 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1044 0x030ec023, /* subu $24, $24, $14 */ 1045 0x03e07825, /* or t7, ra, zero */ 1046 0x0018c082, /* srl $24, $24, 2 */ 1047 0x0320f809, /* jalr $25 */ 1048 0x2718fffe /* subu $24, $24, 2 */ 1049 }; 1050 1051 /* The format of the first PLT entry in an N64 executable. Different 1052 from N32 because of the increased size of GOT entries. */ 1053 static const bfd_vma mips_n64_exec_plt0_entry[] = 1054 { 1055 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1056 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 1057 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1058 0x030ec023, /* subu $24, $24, $14 */ 1059 0x03e07825, /* or t7, ra, zero */ 1060 0x0018c0c2, /* srl $24, $24, 3 */ 1061 0x0320f809, /* jalr $25 */ 1062 0x2718fffe /* subu $24, $24, 2 */ 1063 }; 1064 1065 /* The format of the microMIPS first PLT entry in an O32 executable. 1066 We rely on v0 ($2) rather than t8 ($24) to contain the address 1067 of the GOTPLT entry handled, so this stub may only be used when 1068 all the subsequent PLT entries are microMIPS code too. 1069 1070 The trailing NOP is for alignment and correct disassembly only. */ 1071 static const bfd_vma micromips_o32_exec_plt0_entry[] = 1072 { 1073 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ 1074 0xff23, 0x0000, /* lw $25, 0($3) */ 1075 0x0535, /* subu $2, $2, $3 */ 1076 0x2525, /* srl $2, $2, 2 */ 1077 0x3302, 0xfffe, /* subu $24, $2, 2 */ 1078 0x0dff, /* move $15, $31 */ 1079 0x45f9, /* jalrs $25 */ 1080 0x0f83, /* move $28, $3 */ 1081 0x0c00 /* nop */ 1082 }; 1083 1084 /* The format of the microMIPS first PLT entry in an O32 executable 1085 in the insn32 mode. */ 1086 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = 1087 { 1088 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ 1089 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1090 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1091 0x0398, 0xc1d0, /* subu $24, $24, $28 */ 1092 0x001f, 0x7a90, /* or $15, $31, zero */ 1093 0x0318, 0x1040, /* srl $24, $24, 2 */ 1094 0x03f9, 0x0f3c, /* jalr $25 */ 1095 0x3318, 0xfffe /* subu $24, $24, 2 */ 1096 }; 1097 1098 /* The format of subsequent standard PLT entries. */ 1099 static const bfd_vma mips_exec_plt_entry[] = 1100 { 1101 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1102 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1103 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1104 0x03200008 /* jr $25 */ 1105 }; 1106 1107 /* In the following PLT entry the JR and ADDIU instructions will 1108 be swapped in _bfd_mips_elf_finish_dynamic_symbol because 1109 LOAD_INTERLOCKS_P will be true for MIPS R6. */ 1110 static const bfd_vma mipsr6_exec_plt_entry[] = 1111 { 1112 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1113 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1114 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1115 0x03200009 /* jr $25 */ 1116 }; 1117 1118 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) 1119 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not 1120 directly addressable. */ 1121 static const bfd_vma mips16_o32_exec_plt_entry[] = 1122 { 1123 0xb203, /* lw $2, 12($pc) */ 1124 0x9a60, /* lw $3, 0($2) */ 1125 0x651a, /* move $24, $2 */ 1126 0xeb00, /* jr $3 */ 1127 0x653b, /* move $25, $3 */ 1128 0x6500, /* nop */ 1129 0x0000, 0x0000 /* .word (.got.plt entry) */ 1130 }; 1131 1132 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) 1133 as a temporary because t8 ($24) is not addressable with ADDIUPC. */ 1134 static const bfd_vma micromips_o32_exec_plt_entry[] = 1135 { 1136 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ 1137 0xff22, 0x0000, /* lw $25, 0($2) */ 1138 0x4599, /* jr $25 */ 1139 0x0f02 /* move $24, $2 */ 1140 }; 1141 1142 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ 1143 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = 1144 { 1145 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ 1146 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ 1147 0x0019, 0x0f3c, /* jr $25 */ 1148 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ 1149 }; 1150 1151 /* The format of the first PLT entry in a VxWorks executable. */ 1152 static const bfd_vma mips_vxworks_exec_plt0_entry[] = 1153 { 1154 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 1155 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 1156 0x8f390008, /* lw t9, 8(t9) */ 1157 0x00000000, /* nop */ 1158 0x03200008, /* jr t9 */ 1159 0x00000000 /* nop */ 1160 }; 1161 1162 /* The format of subsequent PLT entries. */ 1163 static const bfd_vma mips_vxworks_exec_plt_entry[] = 1164 { 1165 0x10000000, /* b .PLT_resolver */ 1166 0x24180000, /* li t8, <pltindex> */ 1167 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 1168 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 1169 0x8f390000, /* lw t9, 0(t9) */ 1170 0x00000000, /* nop */ 1171 0x03200008, /* jr t9 */ 1172 0x00000000 /* nop */ 1173 }; 1174 1175 /* The format of the first PLT entry in a VxWorks shared object. */ 1176 static const bfd_vma mips_vxworks_shared_plt0_entry[] = 1177 { 1178 0x8f990008, /* lw t9, 8(gp) */ 1179 0x00000000, /* nop */ 1180 0x03200008, /* jr t9 */ 1181 0x00000000, /* nop */ 1182 0x00000000, /* nop */ 1183 0x00000000 /* nop */ 1184 }; 1185 1186 /* The format of subsequent PLT entries. */ 1187 static const bfd_vma mips_vxworks_shared_plt_entry[] = 1188 { 1189 0x10000000, /* b .PLT_resolver */ 1190 0x24180000 /* li t8, <pltindex> */ 1191 }; 1192 1193 /* microMIPS 32-bit opcode helper installer. */ 1195 1196 static void 1197 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) 1198 { 1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); 1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); 1201 } 1202 1203 /* microMIPS 32-bit opcode helper retriever. */ 1204 1205 static bfd_vma 1206 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) 1207 { 1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); 1209 } 1210 1211 /* Look up an entry in a MIPS ELF linker hash table. */ 1213 1214 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ 1215 ((struct mips_elf_link_hash_entry *) \ 1216 elf_link_hash_lookup (&(table)->root, (string), (create), \ 1217 (copy), (follow))) 1218 1219 /* Traverse a MIPS ELF linker hash table. */ 1220 1221 #define mips_elf_link_hash_traverse(table, func, info) \ 1222 (elf_link_hash_traverse \ 1223 (&(table)->root, \ 1224 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 1225 (info))) 1226 1227 /* Find the base offsets for thread-local storage in this object, 1228 for GD/LD and IE/LE respectively. */ 1229 1230 #define TP_OFFSET 0x7000 1231 #define DTP_OFFSET 0x8000 1232 1233 static bfd_vma 1234 dtprel_base (struct bfd_link_info *info) 1235 { 1236 /* If tls_sec is NULL, we should have signalled an error already. */ 1237 if (elf_hash_table (info)->tls_sec == NULL) 1238 return 0; 1239 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 1240 } 1241 1242 static bfd_vma 1243 tprel_base (struct bfd_link_info *info) 1244 { 1245 /* If tls_sec is NULL, we should have signalled an error already. */ 1246 if (elf_hash_table (info)->tls_sec == NULL) 1247 return 0; 1248 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 1249 } 1250 1251 /* Create an entry in a MIPS ELF linker hash table. */ 1252 1253 static struct bfd_hash_entry * 1254 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 1255 struct bfd_hash_table *table, const char *string) 1256 { 1257 struct mips_elf_link_hash_entry *ret = 1258 (struct mips_elf_link_hash_entry *) entry; 1259 1260 /* Allocate the structure if it has not already been allocated by a 1261 subclass. */ 1262 if (ret == NULL) 1263 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); 1264 if (ret == NULL) 1265 return (struct bfd_hash_entry *) ret; 1266 1267 /* Call the allocation method of the superclass. */ 1268 ret = ((struct mips_elf_link_hash_entry *) 1269 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1270 table, string)); 1271 if (ret != NULL) 1272 { 1273 /* Set local fields. */ 1274 memset (&ret->esym, 0, sizeof (EXTR)); 1275 /* We use -2 as a marker to indicate that the information has 1276 not been set. -1 means there is no associated ifd. */ 1277 ret->esym.ifd = -2; 1278 ret->la25_stub = 0; 1279 ret->possibly_dynamic_relocs = 0; 1280 ret->fn_stub = NULL; 1281 ret->call_stub = NULL; 1282 ret->call_fp_stub = NULL; 1283 ret->global_got_area = GGA_NONE; 1284 ret->got_only_for_calls = TRUE; 1285 ret->readonly_reloc = FALSE; 1286 ret->has_static_relocs = FALSE; 1287 ret->no_fn_stub = FALSE; 1288 ret->need_fn_stub = FALSE; 1289 ret->has_nonpic_branches = FALSE; 1290 ret->needs_lazy_stub = FALSE; 1291 ret->use_plt_entry = FALSE; 1292 } 1293 1294 return (struct bfd_hash_entry *) ret; 1295 } 1296 1297 /* Allocate MIPS ELF private object data. */ 1298 1299 bfd_boolean 1300 _bfd_mips_elf_mkobject (bfd *abfd) 1301 { 1302 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), 1303 MIPS_ELF_DATA); 1304 } 1305 1306 bfd_boolean 1307 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) 1308 { 1309 if (!sec->used_by_bfd) 1310 { 1311 struct _mips_elf_section_data *sdata; 1312 bfd_size_type amt = sizeof (*sdata); 1313 1314 sdata = bfd_zalloc (abfd, amt); 1315 if (sdata == NULL) 1316 return FALSE; 1317 sec->used_by_bfd = sdata; 1318 } 1319 1320 return _bfd_elf_new_section_hook (abfd, sec); 1321 } 1322 1323 /* Read ECOFF debugging information from a .mdebug section into a 1325 ecoff_debug_info structure. */ 1326 1327 bfd_boolean 1328 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, 1329 struct ecoff_debug_info *debug) 1330 { 1331 HDRR *symhdr; 1332 const struct ecoff_debug_swap *swap; 1333 char *ext_hdr; 1334 1335 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1336 memset (debug, 0, sizeof (*debug)); 1337 1338 ext_hdr = bfd_malloc (swap->external_hdr_size); 1339 if (ext_hdr == NULL && swap->external_hdr_size != 0) 1340 goto error_return; 1341 1342 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, 1343 swap->external_hdr_size)) 1344 goto error_return; 1345 1346 symhdr = &debug->symbolic_header; 1347 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); 1348 1349 /* The symbolic header contains absolute file offsets and sizes to 1350 read. */ 1351 #define READ(ptr, offset, count, size, type) \ 1352 if (symhdr->count == 0) \ 1353 debug->ptr = NULL; \ 1354 else \ 1355 { \ 1356 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ 1357 debug->ptr = bfd_malloc (amt); \ 1358 if (debug->ptr == NULL) \ 1359 goto error_return; \ 1360 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ 1361 || bfd_bread (debug->ptr, amt, abfd) != amt) \ 1362 goto error_return; \ 1363 } 1364 1365 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); 1366 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); 1367 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); 1368 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); 1369 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); 1370 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), 1371 union aux_ext *); 1372 READ (ss, cbSsOffset, issMax, sizeof (char), char *); 1373 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); 1374 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); 1375 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); 1376 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); 1377 #undef READ 1378 1379 debug->fdr = NULL; 1380 1381 return TRUE; 1382 1383 error_return: 1384 if (ext_hdr != NULL) 1385 free (ext_hdr); 1386 if (debug->line != NULL) 1387 free (debug->line); 1388 if (debug->external_dnr != NULL) 1389 free (debug->external_dnr); 1390 if (debug->external_pdr != NULL) 1391 free (debug->external_pdr); 1392 if (debug->external_sym != NULL) 1393 free (debug->external_sym); 1394 if (debug->external_opt != NULL) 1395 free (debug->external_opt); 1396 if (debug->external_aux != NULL) 1397 free (debug->external_aux); 1398 if (debug->ss != NULL) 1399 free (debug->ss); 1400 if (debug->ssext != NULL) 1401 free (debug->ssext); 1402 if (debug->external_fdr != NULL) 1403 free (debug->external_fdr); 1404 if (debug->external_rfd != NULL) 1405 free (debug->external_rfd); 1406 if (debug->external_ext != NULL) 1407 free (debug->external_ext); 1408 return FALSE; 1409 } 1410 1411 /* Swap RPDR (runtime procedure table entry) for output. */ 1413 1414 static void 1415 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) 1416 { 1417 H_PUT_S32 (abfd, in->adr, ex->p_adr); 1418 H_PUT_32 (abfd, in->regmask, ex->p_regmask); 1419 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); 1420 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); 1421 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); 1422 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); 1423 1424 H_PUT_16 (abfd, in->framereg, ex->p_framereg); 1425 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); 1426 1427 H_PUT_32 (abfd, in->irpss, ex->p_irpss); 1428 } 1429 1430 /* Create a runtime procedure table from the .mdebug section. */ 1431 1432 static bfd_boolean 1433 mips_elf_create_procedure_table (void *handle, bfd *abfd, 1434 struct bfd_link_info *info, asection *s, 1435 struct ecoff_debug_info *debug) 1436 { 1437 const struct ecoff_debug_swap *swap; 1438 HDRR *hdr = &debug->symbolic_header; 1439 RPDR *rpdr, *rp; 1440 struct rpdr_ext *erp; 1441 void *rtproc; 1442 struct pdr_ext *epdr; 1443 struct sym_ext *esym; 1444 char *ss, **sv; 1445 char *str; 1446 bfd_size_type size; 1447 bfd_size_type count; 1448 unsigned long sindex; 1449 unsigned long i; 1450 PDR pdr; 1451 SYMR sym; 1452 const char *no_name_func = _("static procedure (no name)"); 1453 1454 epdr = NULL; 1455 rpdr = NULL; 1456 esym = NULL; 1457 ss = NULL; 1458 sv = NULL; 1459 1460 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1461 1462 sindex = strlen (no_name_func) + 1; 1463 count = hdr->ipdMax; 1464 if (count > 0) 1465 { 1466 size = swap->external_pdr_size; 1467 1468 epdr = bfd_malloc (size * count); 1469 if (epdr == NULL) 1470 goto error_return; 1471 1472 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) 1473 goto error_return; 1474 1475 size = sizeof (RPDR); 1476 rp = rpdr = bfd_malloc (size * count); 1477 if (rpdr == NULL) 1478 goto error_return; 1479 1480 size = sizeof (char *); 1481 sv = bfd_malloc (size * count); 1482 if (sv == NULL) 1483 goto error_return; 1484 1485 count = hdr->isymMax; 1486 size = swap->external_sym_size; 1487 esym = bfd_malloc (size * count); 1488 if (esym == NULL) 1489 goto error_return; 1490 1491 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) 1492 goto error_return; 1493 1494 count = hdr->issMax; 1495 ss = bfd_malloc (count); 1496 if (ss == NULL) 1497 goto error_return; 1498 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) 1499 goto error_return; 1500 1501 count = hdr->ipdMax; 1502 for (i = 0; i < (unsigned long) count; i++, rp++) 1503 { 1504 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); 1505 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); 1506 rp->adr = sym.value; 1507 rp->regmask = pdr.regmask; 1508 rp->regoffset = pdr.regoffset; 1509 rp->fregmask = pdr.fregmask; 1510 rp->fregoffset = pdr.fregoffset; 1511 rp->frameoffset = pdr.frameoffset; 1512 rp->framereg = pdr.framereg; 1513 rp->pcreg = pdr.pcreg; 1514 rp->irpss = sindex; 1515 sv[i] = ss + sym.iss; 1516 sindex += strlen (sv[i]) + 1; 1517 } 1518 } 1519 1520 size = sizeof (struct rpdr_ext) * (count + 2) + sindex; 1521 size = BFD_ALIGN (size, 16); 1522 rtproc = bfd_alloc (abfd, size); 1523 if (rtproc == NULL) 1524 { 1525 mips_elf_hash_table (info)->procedure_count = 0; 1526 goto error_return; 1527 } 1528 1529 mips_elf_hash_table (info)->procedure_count = count + 2; 1530 1531 erp = rtproc; 1532 memset (erp, 0, sizeof (struct rpdr_ext)); 1533 erp++; 1534 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); 1535 strcpy (str, no_name_func); 1536 str += strlen (no_name_func) + 1; 1537 for (i = 0; i < count; i++) 1538 { 1539 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); 1540 strcpy (str, sv[i]); 1541 str += strlen (sv[i]) + 1; 1542 } 1543 H_PUT_S32 (abfd, -1, (erp + count)->p_adr); 1544 1545 /* Set the size and contents of .rtproc section. */ 1546 s->size = size; 1547 s->contents = rtproc; 1548 1549 /* Skip this section later on (I don't think this currently 1550 matters, but someday it might). */ 1551 s->map_head.link_order = NULL; 1552 1553 if (epdr != NULL) 1554 free (epdr); 1555 if (rpdr != NULL) 1556 free (rpdr); 1557 if (esym != NULL) 1558 free (esym); 1559 if (ss != NULL) 1560 free (ss); 1561 if (sv != NULL) 1562 free (sv); 1563 1564 return TRUE; 1565 1566 error_return: 1567 if (epdr != NULL) 1568 free (epdr); 1569 if (rpdr != NULL) 1570 free (rpdr); 1571 if (esym != NULL) 1572 free (esym); 1573 if (ss != NULL) 1574 free (ss); 1575 if (sv != NULL) 1576 free (sv); 1577 return FALSE; 1578 } 1579 1580 /* We're going to create a stub for H. Create a symbol for the stub's 1582 value and size, to help make the disassembly easier to read. */ 1583 1584 static bfd_boolean 1585 mips_elf_create_stub_symbol (struct bfd_link_info *info, 1586 struct mips_elf_link_hash_entry *h, 1587 const char *prefix, asection *s, bfd_vma value, 1588 bfd_vma size) 1589 { 1590 struct bfd_link_hash_entry *bh; 1591 struct elf_link_hash_entry *elfh; 1592 char *name; 1593 bfd_boolean res; 1594 1595 if (ELF_ST_IS_MICROMIPS (h->root.other)) 1596 value |= 1; 1597 1598 /* Create a new symbol. */ 1599 name = concat (prefix, h->root.root.root.string, NULL); 1600 bh = NULL; 1601 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1602 BSF_LOCAL, s, value, NULL, 1603 TRUE, FALSE, &bh); 1604 free (name); 1605 if (! res) 1606 return FALSE; 1607 1608 /* Make it a local function. */ 1609 elfh = (struct elf_link_hash_entry *) bh; 1610 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 1611 elfh->size = size; 1612 elfh->forced_local = 1; 1613 return TRUE; 1614 } 1615 1616 /* We're about to redefine H. Create a symbol to represent H's 1617 current value and size, to help make the disassembly easier 1618 to read. */ 1619 1620 static bfd_boolean 1621 mips_elf_create_shadow_symbol (struct bfd_link_info *info, 1622 struct mips_elf_link_hash_entry *h, 1623 const char *prefix) 1624 { 1625 struct bfd_link_hash_entry *bh; 1626 struct elf_link_hash_entry *elfh; 1627 char *name; 1628 asection *s; 1629 bfd_vma value; 1630 bfd_boolean res; 1631 1632 /* Read the symbol's value. */ 1633 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined 1634 || h->root.root.type == bfd_link_hash_defweak); 1635 s = h->root.root.u.def.section; 1636 value = h->root.root.u.def.value; 1637 1638 /* Create a new symbol. */ 1639 name = concat (prefix, h->root.root.root.string, NULL); 1640 bh = NULL; 1641 res = _bfd_generic_link_add_one_symbol (info, s->owner, name, 1642 BSF_LOCAL, s, value, NULL, 1643 TRUE, FALSE, &bh); 1644 free (name); 1645 if (! res) 1646 return FALSE; 1647 1648 /* Make it local and copy the other attributes from H. */ 1649 elfh = (struct elf_link_hash_entry *) bh; 1650 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); 1651 elfh->other = h->root.other; 1652 elfh->size = h->root.size; 1653 elfh->forced_local = 1; 1654 return TRUE; 1655 } 1656 1657 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 1658 function rather than to a hard-float stub. */ 1659 1660 static bfd_boolean 1661 section_allows_mips16_refs_p (asection *section) 1662 { 1663 const char *name; 1664 1665 name = bfd_get_section_name (section->owner, section); 1666 return (FN_STUB_P (name) 1667 || CALL_STUB_P (name) 1668 || CALL_FP_STUB_P (name) 1669 || strcmp (name, ".pdr") == 0); 1670 } 1671 1672 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 1673 stub section of some kind. Return the R_SYMNDX of the target 1674 function, or 0 if we can't decide which function that is. */ 1675 1676 static unsigned long 1677 mips16_stub_symndx (const struct elf_backend_data *bed, 1678 asection *sec ATTRIBUTE_UNUSED, 1679 const Elf_Internal_Rela *relocs, 1680 const Elf_Internal_Rela *relend) 1681 { 1682 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; 1683 const Elf_Internal_Rela *rel; 1684 1685 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent 1686 one in a compound relocation. */ 1687 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) 1688 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) 1689 return ELF_R_SYM (sec->owner, rel->r_info); 1690 1691 /* Otherwise trust the first relocation, whatever its kind. This is 1692 the traditional behavior. */ 1693 if (relocs < relend) 1694 return ELF_R_SYM (sec->owner, relocs->r_info); 1695 1696 return 0; 1697 } 1698 1699 /* Check the mips16 stubs for a particular symbol, and see if we can 1700 discard them. */ 1701 1702 static void 1703 mips_elf_check_mips16_stubs (struct bfd_link_info *info, 1704 struct mips_elf_link_hash_entry *h) 1705 { 1706 /* Dynamic symbols must use the standard call interface, in case other 1707 objects try to call them. */ 1708 if (h->fn_stub != NULL 1709 && h->root.dynindx != -1) 1710 { 1711 mips_elf_create_shadow_symbol (info, h, ".mips16."); 1712 h->need_fn_stub = TRUE; 1713 } 1714 1715 if (h->fn_stub != NULL 1716 && ! h->need_fn_stub) 1717 { 1718 /* We don't need the fn_stub; the only references to this symbol 1719 are 16 bit calls. Clobber the size to 0 to prevent it from 1720 being included in the link. */ 1721 h->fn_stub->size = 0; 1722 h->fn_stub->flags &= ~SEC_RELOC; 1723 h->fn_stub->reloc_count = 0; 1724 h->fn_stub->flags |= SEC_EXCLUDE; 1725 h->fn_stub->output_section = bfd_abs_section_ptr; 1726 } 1727 1728 if (h->call_stub != NULL 1729 && ELF_ST_IS_MIPS16 (h->root.other)) 1730 { 1731 /* We don't need the call_stub; this is a 16 bit function, so 1732 calls from other 16 bit functions are OK. Clobber the size 1733 to 0 to prevent it from being included in the link. */ 1734 h->call_stub->size = 0; 1735 h->call_stub->flags &= ~SEC_RELOC; 1736 h->call_stub->reloc_count = 0; 1737 h->call_stub->flags |= SEC_EXCLUDE; 1738 h->call_stub->output_section = bfd_abs_section_ptr; 1739 } 1740 1741 if (h->call_fp_stub != NULL 1742 && ELF_ST_IS_MIPS16 (h->root.other)) 1743 { 1744 /* We don't need the call_stub; this is a 16 bit function, so 1745 calls from other 16 bit functions are OK. Clobber the size 1746 to 0 to prevent it from being included in the link. */ 1747 h->call_fp_stub->size = 0; 1748 h->call_fp_stub->flags &= ~SEC_RELOC; 1749 h->call_fp_stub->reloc_count = 0; 1750 h->call_fp_stub->flags |= SEC_EXCLUDE; 1751 h->call_fp_stub->output_section = bfd_abs_section_ptr; 1752 } 1753 } 1754 1755 /* Hashtable callbacks for mips_elf_la25_stubs. */ 1756 1757 static hashval_t 1758 mips_elf_la25_stub_hash (const void *entry_) 1759 { 1760 const struct mips_elf_la25_stub *entry; 1761 1762 entry = (struct mips_elf_la25_stub *) entry_; 1763 return entry->h->root.root.u.def.section->id 1764 + entry->h->root.root.u.def.value; 1765 } 1766 1767 static int 1768 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) 1769 { 1770 const struct mips_elf_la25_stub *entry1, *entry2; 1771 1772 entry1 = (struct mips_elf_la25_stub *) entry1_; 1773 entry2 = (struct mips_elf_la25_stub *) entry2_; 1774 return ((entry1->h->root.root.u.def.section 1775 == entry2->h->root.root.u.def.section) 1776 && (entry1->h->root.root.u.def.value 1777 == entry2->h->root.root.u.def.value)); 1778 } 1779 1780 /* Called by the linker to set up the la25 stub-creation code. FN is 1781 the linker's implementation of add_stub_function. Return true on 1782 success. */ 1783 1784 bfd_boolean 1785 _bfd_mips_elf_init_stubs (struct bfd_link_info *info, 1786 asection *(*fn) (const char *, asection *, 1787 asection *)) 1788 { 1789 struct mips_elf_link_hash_table *htab; 1790 1791 htab = mips_elf_hash_table (info); 1792 if (htab == NULL) 1793 return FALSE; 1794 1795 htab->add_stub_section = fn; 1796 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, 1797 mips_elf_la25_stub_eq, NULL); 1798 if (htab->la25_stubs == NULL) 1799 return FALSE; 1800 1801 return TRUE; 1802 } 1803 1804 /* Return true if H is a locally-defined PIC function, in the sense 1805 that it or its fn_stub might need $25 to be valid on entry. 1806 Note that MIPS16 functions set up $gp using PC-relative instructions, 1807 so they themselves never need $25 to be valid. Only non-MIPS16 1808 entry points are of interest here. */ 1809 1810 static bfd_boolean 1811 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) 1812 { 1813 return ((h->root.root.type == bfd_link_hash_defined 1814 || h->root.root.type == bfd_link_hash_defweak) 1815 && h->root.def_regular 1816 && !bfd_is_abs_section (h->root.root.u.def.section) 1817 && (!ELF_ST_IS_MIPS16 (h->root.other) 1818 || (h->fn_stub && h->need_fn_stub)) 1819 && (PIC_OBJECT_P (h->root.root.u.def.section->owner) 1820 || ELF_ST_IS_MIPS_PIC (h->root.other))); 1821 } 1822 1823 /* Set *SEC to the input section that contains the target of STUB. 1824 Return the offset of the target from the start of that section. */ 1825 1826 static bfd_vma 1827 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, 1828 asection **sec) 1829 { 1830 if (ELF_ST_IS_MIPS16 (stub->h->root.other)) 1831 { 1832 BFD_ASSERT (stub->h->need_fn_stub); 1833 *sec = stub->h->fn_stub; 1834 return 0; 1835 } 1836 else 1837 { 1838 *sec = stub->h->root.root.u.def.section; 1839 return stub->h->root.root.u.def.value; 1840 } 1841 } 1842 1843 /* STUB describes an la25 stub that we have decided to implement 1844 by inserting an LUI/ADDIU pair before the target function. 1845 Create the section and redirect the function symbol to it. */ 1846 1847 static bfd_boolean 1848 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, 1849 struct bfd_link_info *info) 1850 { 1851 struct mips_elf_link_hash_table *htab; 1852 char *name; 1853 asection *s, *input_section; 1854 unsigned int align; 1855 1856 htab = mips_elf_hash_table (info); 1857 if (htab == NULL) 1858 return FALSE; 1859 1860 /* Create a unique name for the new section. */ 1861 name = bfd_malloc (11 + sizeof (".text.stub.")); 1862 if (name == NULL) 1863 return FALSE; 1864 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); 1865 1866 /* Create the section. */ 1867 mips_elf_get_la25_target (stub, &input_section); 1868 s = htab->add_stub_section (name, input_section, 1869 input_section->output_section); 1870 if (s == NULL) 1871 return FALSE; 1872 1873 /* Make sure that any padding goes before the stub. */ 1874 align = input_section->alignment_power; 1875 if (!bfd_set_section_alignment (s->owner, s, align)) 1876 return FALSE; 1877 if (align > 3) 1878 s->size = (1 << align) - 8; 1879 1880 /* Create a symbol for the stub. */ 1881 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); 1882 stub->stub_section = s; 1883 stub->offset = s->size; 1884 1885 /* Allocate room for it. */ 1886 s->size += 8; 1887 return TRUE; 1888 } 1889 1890 /* STUB describes an la25 stub that we have decided to implement 1891 with a separate trampoline. Allocate room for it and redirect 1892 the function symbol to it. */ 1893 1894 static bfd_boolean 1895 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, 1896 struct bfd_link_info *info) 1897 { 1898 struct mips_elf_link_hash_table *htab; 1899 asection *s; 1900 1901 htab = mips_elf_hash_table (info); 1902 if (htab == NULL) 1903 return FALSE; 1904 1905 /* Create a trampoline section, if we haven't already. */ 1906 s = htab->strampoline; 1907 if (s == NULL) 1908 { 1909 asection *input_section = stub->h->root.root.u.def.section; 1910 s = htab->add_stub_section (".text", NULL, 1911 input_section->output_section); 1912 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) 1913 return FALSE; 1914 htab->strampoline = s; 1915 } 1916 1917 /* Create a symbol for the stub. */ 1918 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); 1919 stub->stub_section = s; 1920 stub->offset = s->size; 1921 1922 /* Allocate room for it. */ 1923 s->size += 16; 1924 return TRUE; 1925 } 1926 1927 /* H describes a symbol that needs an la25 stub. Make sure that an 1928 appropriate stub exists and point H at it. */ 1929 1930 static bfd_boolean 1931 mips_elf_add_la25_stub (struct bfd_link_info *info, 1932 struct mips_elf_link_hash_entry *h) 1933 { 1934 struct mips_elf_link_hash_table *htab; 1935 struct mips_elf_la25_stub search, *stub; 1936 bfd_boolean use_trampoline_p; 1937 asection *s; 1938 bfd_vma value; 1939 void **slot; 1940 1941 /* Describe the stub we want. */ 1942 search.stub_section = NULL; 1943 search.offset = 0; 1944 search.h = h; 1945 1946 /* See if we've already created an equivalent stub. */ 1947 htab = mips_elf_hash_table (info); 1948 if (htab == NULL) 1949 return FALSE; 1950 1951 slot = htab_find_slot (htab->la25_stubs, &search, INSERT); 1952 if (slot == NULL) 1953 return FALSE; 1954 1955 stub = (struct mips_elf_la25_stub *) *slot; 1956 if (stub != NULL) 1957 { 1958 /* We can reuse the existing stub. */ 1959 h->la25_stub = stub; 1960 return TRUE; 1961 } 1962 1963 /* Create a permanent copy of ENTRY and add it to the hash table. */ 1964 stub = bfd_malloc (sizeof (search)); 1965 if (stub == NULL) 1966 return FALSE; 1967 *stub = search; 1968 *slot = stub; 1969 1970 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning 1971 of the section and if we would need no more than 2 nops. */ 1972 value = mips_elf_get_la25_target (stub, &s); 1973 use_trampoline_p = (value != 0 || s->alignment_power > 4); 1974 1975 h->la25_stub = stub; 1976 return (use_trampoline_p 1977 ? mips_elf_add_la25_trampoline (stub, info) 1978 : mips_elf_add_la25_intro (stub, info)); 1979 } 1980 1981 /* A mips_elf_link_hash_traverse callback that is called before sizing 1982 sections. DATA points to a mips_htab_traverse_info structure. */ 1983 1984 static bfd_boolean 1985 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) 1986 { 1987 struct mips_htab_traverse_info *hti; 1988 1989 hti = (struct mips_htab_traverse_info *) data; 1990 if (!bfd_link_relocatable (hti->info)) 1991 mips_elf_check_mips16_stubs (hti->info, h); 1992 1993 if (mips_elf_local_pic_function_p (h)) 1994 { 1995 /* PR 12845: If H is in a section that has been garbage 1996 collected it will have its output section set to *ABS*. */ 1997 if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) 1998 return TRUE; 1999 2000 /* H is a function that might need $25 to be valid on entry. 2001 If we're creating a non-PIC relocatable object, mark H as 2002 being PIC. If we're creating a non-relocatable object with 2003 non-PIC branches and jumps to H, make sure that H has an la25 2004 stub. */ 2005 if (bfd_link_relocatable (hti->info)) 2006 { 2007 if (!PIC_OBJECT_P (hti->output_bfd)) 2008 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); 2009 } 2010 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) 2011 { 2012 hti->error = TRUE; 2013 return FALSE; 2014 } 2015 } 2016 return TRUE; 2017 } 2018 2019 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. 2021 Most mips16 instructions are 16 bits, but these instructions 2022 are 32 bits. 2023 2024 The format of these instructions is: 2025 2026 +--------------+--------------------------------+ 2027 | JALX | X| Imm 20:16 | Imm 25:21 | 2028 +--------------+--------------------------------+ 2029 | Immediate 15:0 | 2030 +-----------------------------------------------+ 2031 2032 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. 2033 Note that the immediate value in the first word is swapped. 2034 2035 When producing a relocatable object file, R_MIPS16_26 is 2036 handled mostly like R_MIPS_26. In particular, the addend is 2037 stored as a straight 26-bit value in a 32-bit instruction. 2038 (gas makes life simpler for itself by never adjusting a 2039 R_MIPS16_26 reloc to be against a section, so the addend is 2040 always zero). However, the 32 bit instruction is stored as 2 2041 16-bit values, rather than a single 32-bit value. In a 2042 big-endian file, the result is the same; in a little-endian 2043 file, the two 16-bit halves of the 32 bit value are swapped. 2044 This is so that a disassembler can recognize the jal 2045 instruction. 2046 2047 When doing a final link, R_MIPS16_26 is treated as a 32 bit 2048 instruction stored as two 16-bit values. The addend A is the 2049 contents of the targ26 field. The calculation is the same as 2050 R_MIPS_26. When storing the calculated value, reorder the 2051 immediate value as shown above, and don't forget to store the 2052 value as two 16-bit values. 2053 2054 To put it in MIPS ABI terms, the relocation field is T-targ26-16, 2055 defined as 2056 2057 big-endian: 2058 +--------+----------------------+ 2059 | | | 2060 | | targ26-16 | 2061 |31 26|25 0| 2062 +--------+----------------------+ 2063 2064 little-endian: 2065 +----------+------+-------------+ 2066 | | | | 2067 | sub1 | | sub2 | 2068 |0 9|10 15|16 31| 2069 +----------+--------------------+ 2070 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is 2071 ((sub1 << 16) | sub2)). 2072 2073 When producing a relocatable object file, the calculation is 2074 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2075 When producing a fully linked file, the calculation is 2076 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2077 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) 2078 2079 The table below lists the other MIPS16 instruction relocations. 2080 Each one is calculated in the same way as the non-MIPS16 relocation 2081 given on the right, but using the extended MIPS16 layout of 16-bit 2082 immediate fields: 2083 2084 R_MIPS16_GPREL R_MIPS_GPREL16 2085 R_MIPS16_GOT16 R_MIPS_GOT16 2086 R_MIPS16_CALL16 R_MIPS_CALL16 2087 R_MIPS16_HI16 R_MIPS_HI16 2088 R_MIPS16_LO16 R_MIPS_LO16 2089 2090 A typical instruction will have a format like this: 2091 2092 +--------------+--------------------------------+ 2093 | EXTEND | Imm 10:5 | Imm 15:11 | 2094 +--------------+--------------------------------+ 2095 | Major | rx | ry | Imm 4:0 | 2096 +--------------+--------------------------------+ 2097 2098 EXTEND is the five bit value 11110. Major is the instruction 2099 opcode. 2100 2101 All we need to do here is shuffle the bits appropriately. 2102 As above, the two 16-bit halves must be swapped on a 2103 little-endian system. 2104 2105 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the 2106 relocatable field is shifted by 1 rather than 2 and the same bit 2107 shuffling is done as with the relocations above. */ 2108 2109 static inline bfd_boolean 2110 mips16_reloc_p (int r_type) 2111 { 2112 switch (r_type) 2113 { 2114 case R_MIPS16_26: 2115 case R_MIPS16_GPREL: 2116 case R_MIPS16_GOT16: 2117 case R_MIPS16_CALL16: 2118 case R_MIPS16_HI16: 2119 case R_MIPS16_LO16: 2120 case R_MIPS16_TLS_GD: 2121 case R_MIPS16_TLS_LDM: 2122 case R_MIPS16_TLS_DTPREL_HI16: 2123 case R_MIPS16_TLS_DTPREL_LO16: 2124 case R_MIPS16_TLS_GOTTPREL: 2125 case R_MIPS16_TLS_TPREL_HI16: 2126 case R_MIPS16_TLS_TPREL_LO16: 2127 case R_MIPS16_PC16_S1: 2128 return TRUE; 2129 2130 default: 2131 return FALSE; 2132 } 2133 } 2134 2135 /* Check if a microMIPS reloc. */ 2136 2137 static inline bfd_boolean 2138 micromips_reloc_p (unsigned int r_type) 2139 { 2140 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; 2141 } 2142 2143 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped 2144 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 2145 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ 2146 2147 static inline bfd_boolean 2148 micromips_reloc_shuffle_p (unsigned int r_type) 2149 { 2150 return (micromips_reloc_p (r_type) 2151 && r_type != R_MICROMIPS_PC7_S1 2152 && r_type != R_MICROMIPS_PC10_S1); 2153 } 2154 2155 static inline bfd_boolean 2156 got16_reloc_p (int r_type) 2157 { 2158 return (r_type == R_MIPS_GOT16 2159 || r_type == R_MIPS16_GOT16 2160 || r_type == R_MICROMIPS_GOT16); 2161 } 2162 2163 static inline bfd_boolean 2164 call16_reloc_p (int r_type) 2165 { 2166 return (r_type == R_MIPS_CALL16 2167 || r_type == R_MIPS16_CALL16 2168 || r_type == R_MICROMIPS_CALL16); 2169 } 2170 2171 static inline bfd_boolean 2172 got_disp_reloc_p (unsigned int r_type) 2173 { 2174 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; 2175 } 2176 2177 static inline bfd_boolean 2178 got_page_reloc_p (unsigned int r_type) 2179 { 2180 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; 2181 } 2182 2183 static inline bfd_boolean 2184 got_lo16_reloc_p (unsigned int r_type) 2185 { 2186 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; 2187 } 2188 2189 static inline bfd_boolean 2190 call_hi16_reloc_p (unsigned int r_type) 2191 { 2192 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; 2193 } 2194 2195 static inline bfd_boolean 2196 call_lo16_reloc_p (unsigned int r_type) 2197 { 2198 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; 2199 } 2200 2201 static inline bfd_boolean 2202 hi16_reloc_p (int r_type) 2203 { 2204 return (r_type == R_MIPS_HI16 2205 || r_type == R_MIPS16_HI16 2206 || r_type == R_MICROMIPS_HI16 2207 || r_type == R_MIPS_PCHI16); 2208 } 2209 2210 static inline bfd_boolean 2211 lo16_reloc_p (int r_type) 2212 { 2213 return (r_type == R_MIPS_LO16 2214 || r_type == R_MIPS16_LO16 2215 || r_type == R_MICROMIPS_LO16 2216 || r_type == R_MIPS_PCLO16); 2217 } 2218 2219 static inline bfd_boolean 2220 mips16_call_reloc_p (int r_type) 2221 { 2222 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; 2223 } 2224 2225 static inline bfd_boolean 2226 jal_reloc_p (int r_type) 2227 { 2228 return (r_type == R_MIPS_26 2229 || r_type == R_MIPS16_26 2230 || r_type == R_MICROMIPS_26_S1); 2231 } 2232 2233 static inline bfd_boolean 2234 b_reloc_p (int r_type) 2235 { 2236 return (r_type == R_MIPS_PC26_S2 2237 || r_type == R_MIPS_PC21_S2 2238 || r_type == R_MIPS_PC16 2239 || r_type == R_MIPS_GNU_REL16_S2 2240 || r_type == R_MIPS16_PC16_S1); 2241 } 2242 2243 static inline bfd_boolean 2244 aligned_pcrel_reloc_p (int r_type) 2245 { 2246 return (r_type == R_MIPS_PC18_S3 2247 || r_type == R_MIPS_PC19_S2); 2248 } 2249 2250 static inline bfd_boolean 2251 mips16_branch_reloc_p (int r_type) 2252 { 2253 return (r_type == R_MIPS16_26 2254 || r_type == R_MIPS16_PC16_S1); 2255 } 2256 2257 static inline bfd_boolean 2258 micromips_branch_reloc_p (int r_type) 2259 { 2260 return (r_type == R_MICROMIPS_26_S1 2261 || r_type == R_MICROMIPS_PC16_S1 2262 || r_type == R_MICROMIPS_PC10_S1 2263 || r_type == R_MICROMIPS_PC7_S1); 2264 } 2265 2266 static inline bfd_boolean 2267 tls_gd_reloc_p (unsigned int r_type) 2268 { 2269 return (r_type == R_MIPS_TLS_GD 2270 || r_type == R_MIPS16_TLS_GD 2271 || r_type == R_MICROMIPS_TLS_GD); 2272 } 2273 2274 static inline bfd_boolean 2275 tls_ldm_reloc_p (unsigned int r_type) 2276 { 2277 return (r_type == R_MIPS_TLS_LDM 2278 || r_type == R_MIPS16_TLS_LDM 2279 || r_type == R_MICROMIPS_TLS_LDM); 2280 } 2281 2282 static inline bfd_boolean 2283 tls_gottprel_reloc_p (unsigned int r_type) 2284 { 2285 return (r_type == R_MIPS_TLS_GOTTPREL 2286 || r_type == R_MIPS16_TLS_GOTTPREL 2287 || r_type == R_MICROMIPS_TLS_GOTTPREL); 2288 } 2289 2290 void 2291 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, 2292 bfd_boolean jal_shuffle, bfd_byte *data) 2293 { 2294 bfd_vma first, second, val; 2295 2296 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2297 return; 2298 2299 /* Pick up the first and second halfwords of the instruction. */ 2300 first = bfd_get_16 (abfd, data); 2301 second = bfd_get_16 (abfd, data + 2); 2302 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2303 val = first << 16 | second; 2304 else if (r_type != R_MIPS16_26) 2305 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) 2306 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); 2307 else 2308 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) 2309 | ((first & 0x1f) << 21) | second); 2310 bfd_put_32 (abfd, val, data); 2311 } 2312 2313 void 2314 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, 2315 bfd_boolean jal_shuffle, bfd_byte *data) 2316 { 2317 bfd_vma first, second, val; 2318 2319 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2320 return; 2321 2322 val = bfd_get_32 (abfd, data); 2323 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2324 { 2325 second = val & 0xffff; 2326 first = val >> 16; 2327 } 2328 else if (r_type != R_MIPS16_26) 2329 { 2330 second = ((val >> 11) & 0xffe0) | (val & 0x1f); 2331 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); 2332 } 2333 else 2334 { 2335 second = val & 0xffff; 2336 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) 2337 | ((val >> 21) & 0x1f); 2338 } 2339 bfd_put_16 (abfd, second, data + 2); 2340 bfd_put_16 (abfd, first, data); 2341 } 2342 2343 bfd_reloc_status_type 2344 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, 2345 arelent *reloc_entry, asection *input_section, 2346 bfd_boolean relocatable, void *data, bfd_vma gp) 2347 { 2348 bfd_vma relocation; 2349 bfd_signed_vma val; 2350 bfd_reloc_status_type status; 2351 2352 if (bfd_is_com_section (symbol->section)) 2353 relocation = 0; 2354 else 2355 relocation = symbol->value; 2356 2357 relocation += symbol->section->output_section->vma; 2358 relocation += symbol->section->output_offset; 2359 2360 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2361 return bfd_reloc_outofrange; 2362 2363 /* Set val to the offset into the section or symbol. */ 2364 val = reloc_entry->addend; 2365 2366 _bfd_mips_elf_sign_extend (val, 16); 2367 2368 /* Adjust val for the final section location and GP value. If we 2369 are producing relocatable output, we don't want to do this for 2370 an external symbol. */ 2371 if (! relocatable 2372 || (symbol->flags & BSF_SECTION_SYM) != 0) 2373 val += relocation - gp; 2374 2375 if (reloc_entry->howto->partial_inplace) 2376 { 2377 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2378 (bfd_byte *) data 2379 + reloc_entry->address); 2380 if (status != bfd_reloc_ok) 2381 return status; 2382 } 2383 else 2384 reloc_entry->addend = val; 2385 2386 if (relocatable) 2387 reloc_entry->address += input_section->output_offset; 2388 2389 return bfd_reloc_ok; 2390 } 2391 2392 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or 2393 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section 2394 that contains the relocation field and DATA points to the start of 2395 INPUT_SECTION. */ 2396 2397 struct mips_hi16 2398 { 2399 struct mips_hi16 *next; 2400 bfd_byte *data; 2401 asection *input_section; 2402 arelent rel; 2403 }; 2404 2405 /* FIXME: This should not be a static variable. */ 2406 2407 static struct mips_hi16 *mips_hi16_list; 2408 2409 /* A howto special_function for REL *HI16 relocations. We can only 2410 calculate the correct value once we've seen the partnering 2411 *LO16 relocation, so just save the information for later. 2412 2413 The ABI requires that the *LO16 immediately follow the *HI16. 2414 However, as a GNU extension, we permit an arbitrary number of 2415 *HI16s to be associated with a single *LO16. This significantly 2416 simplies the relocation handling in gcc. */ 2417 2418 bfd_reloc_status_type 2419 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2420 asymbol *symbol ATTRIBUTE_UNUSED, void *data, 2421 asection *input_section, bfd *output_bfd, 2422 char **error_message ATTRIBUTE_UNUSED) 2423 { 2424 struct mips_hi16 *n; 2425 2426 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2427 return bfd_reloc_outofrange; 2428 2429 n = bfd_malloc (sizeof *n); 2430 if (n == NULL) 2431 return bfd_reloc_outofrange; 2432 2433 n->next = mips_hi16_list; 2434 n->data = data; 2435 n->input_section = input_section; 2436 n->rel = *reloc_entry; 2437 mips_hi16_list = n; 2438 2439 if (output_bfd != NULL) 2440 reloc_entry->address += input_section->output_offset; 2441 2442 return bfd_reloc_ok; 2443 } 2444 2445 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just 2446 like any other 16-bit relocation when applied to global symbols, but is 2447 treated in the same as R_MIPS_HI16 when applied to local symbols. */ 2448 2449 bfd_reloc_status_type 2450 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2451 void *data, asection *input_section, 2452 bfd *output_bfd, char **error_message) 2453 { 2454 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 2455 || bfd_is_und_section (bfd_get_section (symbol)) 2456 || bfd_is_com_section (bfd_get_section (symbol))) 2457 /* The relocation is against a global symbol. */ 2458 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2459 input_section, output_bfd, 2460 error_message); 2461 2462 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, 2463 input_section, output_bfd, error_message); 2464 } 2465 2466 /* A howto special_function for REL *LO16 relocations. The *LO16 itself 2467 is a straightforward 16 bit inplace relocation, but we must deal with 2468 any partnering high-part relocations as well. */ 2469 2470 bfd_reloc_status_type 2471 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2472 void *data, asection *input_section, 2473 bfd *output_bfd, char **error_message) 2474 { 2475 bfd_vma vallo; 2476 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2477 2478 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2479 return bfd_reloc_outofrange; 2480 2481 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2482 location); 2483 vallo = bfd_get_32 (abfd, location); 2484 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2485 location); 2486 2487 while (mips_hi16_list != NULL) 2488 { 2489 bfd_reloc_status_type ret; 2490 struct mips_hi16 *hi; 2491 2492 hi = mips_hi16_list; 2493 2494 /* R_MIPS*_GOT16 relocations are something of a special case. We 2495 want to install the addend in the same way as for a R_MIPS*_HI16 2496 relocation (with a rightshift of 16). However, since GOT16 2497 relocations can also be used with global symbols, their howto 2498 has a rightshift of 0. */ 2499 if (hi->rel.howto->type == R_MIPS_GOT16) 2500 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); 2501 else if (hi->rel.howto->type == R_MIPS16_GOT16) 2502 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); 2503 else if (hi->rel.howto->type == R_MICROMIPS_GOT16) 2504 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); 2505 2506 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any 2507 carry or borrow will induce a change of +1 or -1 in the high part. */ 2508 hi->rel.addend += (vallo + 0x8000) & 0xffff; 2509 2510 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, 2511 hi->input_section, output_bfd, 2512 error_message); 2513 if (ret != bfd_reloc_ok) 2514 return ret; 2515 2516 mips_hi16_list = hi->next; 2517 free (hi); 2518 } 2519 2520 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2521 input_section, output_bfd, 2522 error_message); 2523 } 2524 2525 /* A generic howto special_function. This calculates and installs the 2526 relocation itself, thus avoiding the oft-discussed problems in 2527 bfd_perform_relocation and bfd_install_relocation. */ 2528 2529 bfd_reloc_status_type 2530 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2531 asymbol *symbol, void *data ATTRIBUTE_UNUSED, 2532 asection *input_section, bfd *output_bfd, 2533 char **error_message ATTRIBUTE_UNUSED) 2534 { 2535 bfd_signed_vma val; 2536 bfd_reloc_status_type status; 2537 bfd_boolean relocatable; 2538 2539 relocatable = (output_bfd != NULL); 2540 2541 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2542 return bfd_reloc_outofrange; 2543 2544 /* Build up the field adjustment in VAL. */ 2545 val = 0; 2546 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) 2547 { 2548 /* Either we're calculating the final field value or we have a 2549 relocation against a section symbol. Add in the section's 2550 offset or address. */ 2551 val += symbol->section->output_section->vma; 2552 val += symbol->section->output_offset; 2553 } 2554 2555 if (!relocatable) 2556 { 2557 /* We're calculating the final field value. Add in the symbol's value 2558 and, if pc-relative, subtract the address of the field itself. */ 2559 val += symbol->value; 2560 if (reloc_entry->howto->pc_relative) 2561 { 2562 val -= input_section->output_section->vma; 2563 val -= input_section->output_offset; 2564 val -= reloc_entry->address; 2565 } 2566 } 2567 2568 /* VAL is now the final adjustment. If we're keeping this relocation 2569 in the output file, and if the relocation uses a separate addend, 2570 we just need to add VAL to that addend. Otherwise we need to add 2571 VAL to the relocation field itself. */ 2572 if (relocatable && !reloc_entry->howto->partial_inplace) 2573 reloc_entry->addend += val; 2574 else 2575 { 2576 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2577 2578 /* Add in the separate addend, if any. */ 2579 val += reloc_entry->addend; 2580 2581 /* Add VAL to the relocation field. */ 2582 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2583 location); 2584 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2585 location); 2586 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2587 location); 2588 2589 if (status != bfd_reloc_ok) 2590 return status; 2591 } 2592 2593 if (relocatable) 2594 reloc_entry->address += input_section->output_offset; 2595 2596 return bfd_reloc_ok; 2597 } 2598 2599 /* Swap an entry in a .gptab section. Note that these routines rely 2601 on the equivalence of the two elements of the union. */ 2602 2603 static void 2604 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, 2605 Elf32_gptab *in) 2606 { 2607 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); 2608 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); 2609 } 2610 2611 static void 2612 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, 2613 Elf32_External_gptab *ex) 2614 { 2615 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); 2616 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); 2617 } 2618 2619 static void 2620 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, 2621 Elf32_External_compact_rel *ex) 2622 { 2623 H_PUT_32 (abfd, in->id1, ex->id1); 2624 H_PUT_32 (abfd, in->num, ex->num); 2625 H_PUT_32 (abfd, in->id2, ex->id2); 2626 H_PUT_32 (abfd, in->offset, ex->offset); 2627 H_PUT_32 (abfd, in->reserved0, ex->reserved0); 2628 H_PUT_32 (abfd, in->reserved1, ex->reserved1); 2629 } 2630 2631 static void 2632 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, 2633 Elf32_External_crinfo *ex) 2634 { 2635 unsigned long l; 2636 2637 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) 2638 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) 2639 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) 2640 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); 2641 H_PUT_32 (abfd, l, ex->info); 2642 H_PUT_32 (abfd, in->konst, ex->konst); 2643 H_PUT_32 (abfd, in->vaddr, ex->vaddr); 2644 } 2645 2646 /* A .reginfo section holds a single Elf32_RegInfo structure. These 2648 routines swap this structure in and out. They are used outside of 2649 BFD, so they are globally visible. */ 2650 2651 void 2652 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, 2653 Elf32_RegInfo *in) 2654 { 2655 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2656 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2657 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2658 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2659 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2660 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); 2661 } 2662 2663 void 2664 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, 2665 Elf32_External_RegInfo *ex) 2666 { 2667 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2668 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2669 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2670 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2671 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2672 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); 2673 } 2674 2675 /* In the 64 bit ABI, the .MIPS.options section holds register 2676 information in an Elf64_Reginfo structure. These routines swap 2677 them in and out. They are globally visible because they are used 2678 outside of BFD. These routines are here so that gas can call them 2679 without worrying about whether the 64 bit ABI has been included. */ 2680 2681 void 2682 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, 2683 Elf64_Internal_RegInfo *in) 2684 { 2685 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2686 in->ri_pad = H_GET_32 (abfd, ex->ri_pad); 2687 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2688 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2689 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2690 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2691 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); 2692 } 2693 2694 void 2695 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, 2696 Elf64_External_RegInfo *ex) 2697 { 2698 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2699 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); 2700 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2701 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2702 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2703 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2704 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); 2705 } 2706 2707 /* Swap in an options header. */ 2708 2709 void 2710 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, 2711 Elf_Internal_Options *in) 2712 { 2713 in->kind = H_GET_8 (abfd, ex->kind); 2714 in->size = H_GET_8 (abfd, ex->size); 2715 in->section = H_GET_16 (abfd, ex->section); 2716 in->info = H_GET_32 (abfd, ex->info); 2717 } 2718 2719 /* Swap out an options header. */ 2720 2721 void 2722 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, 2723 Elf_External_Options *ex) 2724 { 2725 H_PUT_8 (abfd, in->kind, ex->kind); 2726 H_PUT_8 (abfd, in->size, ex->size); 2727 H_PUT_16 (abfd, in->section, ex->section); 2728 H_PUT_32 (abfd, in->info, ex->info); 2729 } 2730 2731 /* Swap in an abiflags structure. */ 2732 2733 void 2734 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, 2735 const Elf_External_ABIFlags_v0 *ex, 2736 Elf_Internal_ABIFlags_v0 *in) 2737 { 2738 in->version = H_GET_16 (abfd, ex->version); 2739 in->isa_level = H_GET_8 (abfd, ex->isa_level); 2740 in->isa_rev = H_GET_8 (abfd, ex->isa_rev); 2741 in->gpr_size = H_GET_8 (abfd, ex->gpr_size); 2742 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); 2743 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); 2744 in->fp_abi = H_GET_8 (abfd, ex->fp_abi); 2745 in->isa_ext = H_GET_32 (abfd, ex->isa_ext); 2746 in->ases = H_GET_32 (abfd, ex->ases); 2747 in->flags1 = H_GET_32 (abfd, ex->flags1); 2748 in->flags2 = H_GET_32 (abfd, ex->flags2); 2749 } 2750 2751 /* Swap out an abiflags structure. */ 2752 2753 void 2754 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, 2755 const Elf_Internal_ABIFlags_v0 *in, 2756 Elf_External_ABIFlags_v0 *ex) 2757 { 2758 H_PUT_16 (abfd, in->version, ex->version); 2759 H_PUT_8 (abfd, in->isa_level, ex->isa_level); 2760 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); 2761 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); 2762 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); 2763 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); 2764 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); 2765 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); 2766 H_PUT_32 (abfd, in->ases, ex->ases); 2767 H_PUT_32 (abfd, in->flags1, ex->flags1); 2768 H_PUT_32 (abfd, in->flags2, ex->flags2); 2769 } 2770 2771 /* This function is called via qsort() to sort the dynamic relocation 2773 entries by increasing r_symndx value. */ 2774 2775 static int 2776 sort_dynamic_relocs (const void *arg1, const void *arg2) 2777 { 2778 Elf_Internal_Rela int_reloc1; 2779 Elf_Internal_Rela int_reloc2; 2780 int diff; 2781 2782 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); 2783 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); 2784 2785 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); 2786 if (diff != 0) 2787 return diff; 2788 2789 if (int_reloc1.r_offset < int_reloc2.r_offset) 2790 return -1; 2791 if (int_reloc1.r_offset > int_reloc2.r_offset) 2792 return 1; 2793 return 0; 2794 } 2795 2796 /* Like sort_dynamic_relocs, but used for elf64 relocations. */ 2797 2798 static int 2799 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, 2800 const void *arg2 ATTRIBUTE_UNUSED) 2801 { 2802 #ifdef BFD64 2803 Elf_Internal_Rela int_reloc1[3]; 2804 Elf_Internal_Rela int_reloc2[3]; 2805 2806 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2807 (reldyn_sorting_bfd, arg1, int_reloc1); 2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2809 (reldyn_sorting_bfd, arg2, int_reloc2); 2810 2811 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) 2812 return -1; 2813 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) 2814 return 1; 2815 2816 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) 2817 return -1; 2818 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) 2819 return 1; 2820 return 0; 2821 #else 2822 abort (); 2823 #endif 2824 } 2825 2826 2827 /* This routine is used to write out ECOFF debugging external symbol 2828 information. It is called via mips_elf_link_hash_traverse. The 2829 ECOFF external symbol information must match the ELF external 2830 symbol information. Unfortunately, at this point we don't know 2831 whether a symbol is required by reloc information, so the two 2832 tables may wind up being different. We must sort out the external 2833 symbol information before we can set the final size of the .mdebug 2834 section, and we must set the size of the .mdebug section before we 2835 can relocate any sections, and we can't know which symbols are 2836 required by relocation until we relocate the sections. 2837 Fortunately, it is relatively unlikely that any symbol will be 2838 stripped but required by a reloc. In particular, it can not happen 2839 when generating a final executable. */ 2840 2841 static bfd_boolean 2842 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) 2843 { 2844 struct extsym_info *einfo = data; 2845 bfd_boolean strip; 2846 asection *sec, *output_section; 2847 2848 if (h->root.indx == -2) 2849 strip = FALSE; 2850 else if ((h->root.def_dynamic 2851 || h->root.ref_dynamic 2852 || h->root.type == bfd_link_hash_new) 2853 && !h->root.def_regular 2854 && !h->root.ref_regular) 2855 strip = TRUE; 2856 else if (einfo->info->strip == strip_all 2857 || (einfo->info->strip == strip_some 2858 && bfd_hash_lookup (einfo->info->keep_hash, 2859 h->root.root.root.string, 2860 FALSE, FALSE) == NULL)) 2861 strip = TRUE; 2862 else 2863 strip = FALSE; 2864 2865 if (strip) 2866 return TRUE; 2867 2868 if (h->esym.ifd == -2) 2869 { 2870 h->esym.jmptbl = 0; 2871 h->esym.cobol_main = 0; 2872 h->esym.weakext = 0; 2873 h->esym.reserved = 0; 2874 h->esym.ifd = ifdNil; 2875 h->esym.asym.value = 0; 2876 h->esym.asym.st = stGlobal; 2877 2878 if (h->root.root.type == bfd_link_hash_undefined 2879 || h->root.root.type == bfd_link_hash_undefweak) 2880 { 2881 const char *name; 2882 2883 /* Use undefined class. Also, set class and type for some 2884 special symbols. */ 2885 name = h->root.root.root.string; 2886 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 2887 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 2888 { 2889 h->esym.asym.sc = scData; 2890 h->esym.asym.st = stLabel; 2891 h->esym.asym.value = 0; 2892 } 2893 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 2894 { 2895 h->esym.asym.sc = scAbs; 2896 h->esym.asym.st = stLabel; 2897 h->esym.asym.value = 2898 mips_elf_hash_table (einfo->info)->procedure_count; 2899 } 2900 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) 2901 { 2902 h->esym.asym.sc = scAbs; 2903 h->esym.asym.st = stLabel; 2904 h->esym.asym.value = elf_gp (einfo->abfd); 2905 } 2906 else 2907 h->esym.asym.sc = scUndefined; 2908 } 2909 else if (h->root.root.type != bfd_link_hash_defined 2910 && h->root.root.type != bfd_link_hash_defweak) 2911 h->esym.asym.sc = scAbs; 2912 else 2913 { 2914 const char *name; 2915 2916 sec = h->root.root.u.def.section; 2917 output_section = sec->output_section; 2918 2919 /* When making a shared library and symbol h is the one from 2920 the another shared library, OUTPUT_SECTION may be null. */ 2921 if (output_section == NULL) 2922 h->esym.asym.sc = scUndefined; 2923 else 2924 { 2925 name = bfd_section_name (output_section->owner, output_section); 2926 2927 if (strcmp (name, ".text") == 0) 2928 h->esym.asym.sc = scText; 2929 else if (strcmp (name, ".data") == 0) 2930 h->esym.asym.sc = scData; 2931 else if (strcmp (name, ".sdata") == 0) 2932 h->esym.asym.sc = scSData; 2933 else if (strcmp (name, ".rodata") == 0 2934 || strcmp (name, ".rdata") == 0) 2935 h->esym.asym.sc = scRData; 2936 else if (strcmp (name, ".bss") == 0) 2937 h->esym.asym.sc = scBss; 2938 else if (strcmp (name, ".sbss") == 0) 2939 h->esym.asym.sc = scSBss; 2940 else if (strcmp (name, ".init") == 0) 2941 h->esym.asym.sc = scInit; 2942 else if (strcmp (name, ".fini") == 0) 2943 h->esym.asym.sc = scFini; 2944 else 2945 h->esym.asym.sc = scAbs; 2946 } 2947 } 2948 2949 h->esym.asym.reserved = 0; 2950 h->esym.asym.index = indexNil; 2951 } 2952 2953 if (h->root.root.type == bfd_link_hash_common) 2954 h->esym.asym.value = h->root.root.u.c.size; 2955 else if (h->root.root.type == bfd_link_hash_defined 2956 || h->root.root.type == bfd_link_hash_defweak) 2957 { 2958 if (h->esym.asym.sc == scCommon) 2959 h->esym.asym.sc = scBss; 2960 else if (h->esym.asym.sc == scSCommon) 2961 h->esym.asym.sc = scSBss; 2962 2963 sec = h->root.root.u.def.section; 2964 output_section = sec->output_section; 2965 if (output_section != NULL) 2966 h->esym.asym.value = (h->root.root.u.def.value 2967 + sec->output_offset 2968 + output_section->vma); 2969 else 2970 h->esym.asym.value = 0; 2971 } 2972 else 2973 { 2974 struct mips_elf_link_hash_entry *hd = h; 2975 2976 while (hd->root.root.type == bfd_link_hash_indirect) 2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; 2978 2979 if (hd->needs_lazy_stub) 2980 { 2981 BFD_ASSERT (hd->root.plt.plist != NULL); 2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); 2983 /* Set type and value for a symbol with a function stub. */ 2984 h->esym.asym.st = stProc; 2985 sec = hd->root.root.u.def.section; 2986 if (sec == NULL) 2987 h->esym.asym.value = 0; 2988 else 2989 { 2990 output_section = sec->output_section; 2991 if (output_section != NULL) 2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset 2993 + sec->output_offset 2994 + output_section->vma); 2995 else 2996 h->esym.asym.value = 0; 2997 } 2998 } 2999 } 3000 3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, 3002 h->root.root.root.string, 3003 &h->esym)) 3004 { 3005 einfo->failed = TRUE; 3006 return FALSE; 3007 } 3008 3009 return TRUE; 3010 } 3011 3012 /* A comparison routine used to sort .gptab entries. */ 3013 3014 static int 3015 gptab_compare (const void *p1, const void *p2) 3016 { 3017 const Elf32_gptab *a1 = p1; 3018 const Elf32_gptab *a2 = p2; 3019 3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; 3021 } 3022 3023 /* Functions to manage the got entry hash table. */ 3025 3026 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit 3027 hash number. */ 3028 3029 static INLINE hashval_t 3030 mips_elf_hash_bfd_vma (bfd_vma addr) 3031 { 3032 #ifdef BFD64 3033 return addr + (addr >> 32); 3034 #else 3035 return addr; 3036 #endif 3037 } 3038 3039 static hashval_t 3040 mips_elf_got_entry_hash (const void *entry_) 3041 { 3042 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 3043 3044 return (entry->symndx 3045 + ((entry->tls_type == GOT_TLS_LDM) << 18) 3046 + (entry->tls_type == GOT_TLS_LDM ? 0 3047 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) 3048 : entry->symndx >= 0 ? (entry->abfd->id 3049 + mips_elf_hash_bfd_vma (entry->d.addend)) 3050 : entry->d.h->root.root.root.hash)); 3051 } 3052 3053 static int 3054 mips_elf_got_entry_eq (const void *entry1, const void *entry2) 3055 { 3056 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 3057 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 3058 3059 return (e1->symndx == e2->symndx 3060 && e1->tls_type == e2->tls_type 3061 && (e1->tls_type == GOT_TLS_LDM ? TRUE 3062 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address 3063 : e1->symndx >= 0 ? (e1->abfd == e2->abfd 3064 && e1->d.addend == e2->d.addend) 3065 : e2->abfd && e1->d.h == e2->d.h)); 3066 } 3067 3068 static hashval_t 3069 mips_got_page_ref_hash (const void *ref_) 3070 { 3071 const struct mips_got_page_ref *ref; 3072 3073 ref = (const struct mips_got_page_ref *) ref_; 3074 return ((ref->symndx >= 0 3075 ? (hashval_t) (ref->u.abfd->id + ref->symndx) 3076 : ref->u.h->root.root.root.hash) 3077 + mips_elf_hash_bfd_vma (ref->addend)); 3078 } 3079 3080 static int 3081 mips_got_page_ref_eq (const void *ref1_, const void *ref2_) 3082 { 3083 const struct mips_got_page_ref *ref1, *ref2; 3084 3085 ref1 = (const struct mips_got_page_ref *) ref1_; 3086 ref2 = (const struct mips_got_page_ref *) ref2_; 3087 return (ref1->symndx == ref2->symndx 3088 && (ref1->symndx < 0 3089 ? ref1->u.h == ref2->u.h 3090 : ref1->u.abfd == ref2->u.abfd) 3091 && ref1->addend == ref2->addend); 3092 } 3093 3094 static hashval_t 3095 mips_got_page_entry_hash (const void *entry_) 3096 { 3097 const struct mips_got_page_entry *entry; 3098 3099 entry = (const struct mips_got_page_entry *) entry_; 3100 return entry->sec->id; 3101 } 3102 3103 static int 3104 mips_got_page_entry_eq (const void *entry1_, const void *entry2_) 3105 { 3106 const struct mips_got_page_entry *entry1, *entry2; 3107 3108 entry1 = (const struct mips_got_page_entry *) entry1_; 3109 entry2 = (const struct mips_got_page_entry *) entry2_; 3110 return entry1->sec == entry2->sec; 3111 } 3112 3113 /* Create and return a new mips_got_info structure. */ 3115 3116 static struct mips_got_info * 3117 mips_elf_create_got_info (bfd *abfd) 3118 { 3119 struct mips_got_info *g; 3120 3121 g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); 3122 if (g == NULL) 3123 return NULL; 3124 3125 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, 3126 mips_elf_got_entry_eq, NULL); 3127 if (g->got_entries == NULL) 3128 return NULL; 3129 3130 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, 3131 mips_got_page_ref_eq, NULL); 3132 if (g->got_page_refs == NULL) 3133 return NULL; 3134 3135 return g; 3136 } 3137 3138 /* Return the GOT info for input bfd ABFD, trying to create a new one if 3139 CREATE_P and if ABFD doesn't already have a GOT. */ 3140 3141 static struct mips_got_info * 3142 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) 3143 { 3144 struct mips_elf_obj_tdata *tdata; 3145 3146 if (!is_mips_elf (abfd)) 3147 return NULL; 3148 3149 tdata = mips_elf_tdata (abfd); 3150 if (!tdata->got && create_p) 3151 tdata->got = mips_elf_create_got_info (abfd); 3152 return tdata->got; 3153 } 3154 3155 /* Record that ABFD should use output GOT G. */ 3156 3157 static void 3158 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) 3159 { 3160 struct mips_elf_obj_tdata *tdata; 3161 3162 BFD_ASSERT (is_mips_elf (abfd)); 3163 tdata = mips_elf_tdata (abfd); 3164 if (tdata->got) 3165 { 3166 /* The GOT structure itself and the hash table entries are 3167 allocated to a bfd, but the hash tables aren't. */ 3168 htab_delete (tdata->got->got_entries); 3169 htab_delete (tdata->got->got_page_refs); 3170 if (tdata->got->got_page_entries) 3171 htab_delete (tdata->got->got_page_entries); 3172 } 3173 tdata->got = g; 3174 } 3175 3176 /* Return the dynamic relocation section. If it doesn't exist, try to 3177 create a new it if CREATE_P, otherwise return NULL. Also return NULL 3178 if creation fails. */ 3179 3180 static asection * 3181 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) 3182 { 3183 const char *dname; 3184 asection *sreloc; 3185 bfd *dynobj; 3186 3187 dname = MIPS_ELF_REL_DYN_NAME (info); 3188 dynobj = elf_hash_table (info)->dynobj; 3189 sreloc = bfd_get_linker_section (dynobj, dname); 3190 if (sreloc == NULL && create_p) 3191 { 3192 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, 3193 (SEC_ALLOC 3194 | SEC_LOAD 3195 | SEC_HAS_CONTENTS 3196 | SEC_IN_MEMORY 3197 | SEC_LINKER_CREATED 3198 | SEC_READONLY)); 3199 if (sreloc == NULL 3200 || ! bfd_set_section_alignment (dynobj, sreloc, 3201 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 3202 return NULL; 3203 } 3204 return sreloc; 3205 } 3206 3207 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ 3208 3209 static int 3210 mips_elf_reloc_tls_type (unsigned int r_type) 3211 { 3212 if (tls_gd_reloc_p (r_type)) 3213 return GOT_TLS_GD; 3214 3215 if (tls_ldm_reloc_p (r_type)) 3216 return GOT_TLS_LDM; 3217 3218 if (tls_gottprel_reloc_p (r_type)) 3219 return GOT_TLS_IE; 3220 3221 return GOT_TLS_NONE; 3222 } 3223 3224 /* Return the number of GOT slots needed for GOT TLS type TYPE. */ 3225 3226 static int 3227 mips_tls_got_entries (unsigned int type) 3228 { 3229 switch (type) 3230 { 3231 case GOT_TLS_GD: 3232 case GOT_TLS_LDM: 3233 return 2; 3234 3235 case GOT_TLS_IE: 3236 return 1; 3237 3238 case GOT_TLS_NONE: 3239 return 0; 3240 } 3241 abort (); 3242 } 3243 3244 /* Count the number of relocations needed for a TLS GOT entry, with 3245 access types from TLS_TYPE, and symbol H (or a local symbol if H 3246 is NULL). */ 3247 3248 static int 3249 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, 3250 struct elf_link_hash_entry *h) 3251 { 3252 int indx = 0; 3253 bfd_boolean need_relocs = FALSE; 3254 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3255 3256 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) 3257 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h))) 3258 indx = h->dynindx; 3259 3260 if ((bfd_link_pic (info) || indx != 0) 3261 && (h == NULL 3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3263 || h->root.type != bfd_link_hash_undefweak)) 3264 need_relocs = TRUE; 3265 3266 if (!need_relocs) 3267 return 0; 3268 3269 switch (tls_type) 3270 { 3271 case GOT_TLS_GD: 3272 return indx != 0 ? 2 : 1; 3273 3274 case GOT_TLS_IE: 3275 return 1; 3276 3277 case GOT_TLS_LDM: 3278 return bfd_link_pic (info) ? 1 : 0; 3279 3280 default: 3281 return 0; 3282 } 3283 } 3284 3285 /* Add the number of GOT entries and TLS relocations required by ENTRY 3286 to G. */ 3287 3288 static void 3289 mips_elf_count_got_entry (struct bfd_link_info *info, 3290 struct mips_got_info *g, 3291 struct mips_got_entry *entry) 3292 { 3293 if (entry->tls_type) 3294 { 3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type); 3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type, 3297 entry->symndx < 0 3298 ? &entry->d.h->root : NULL); 3299 } 3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) 3301 g->local_gotno += 1; 3302 else 3303 g->global_gotno += 1; 3304 } 3305 3306 /* Output a simple dynamic relocation into SRELOC. */ 3307 3308 static void 3309 mips_elf_output_dynamic_relocation (bfd *output_bfd, 3310 asection *sreloc, 3311 unsigned long reloc_index, 3312 unsigned long indx, 3313 int r_type, 3314 bfd_vma offset) 3315 { 3316 Elf_Internal_Rela rel[3]; 3317 3318 memset (rel, 0, sizeof (rel)); 3319 3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); 3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 3322 3323 if (ABI_64_P (output_bfd)) 3324 { 3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 3326 (output_bfd, &rel[0], 3327 (sreloc->contents 3328 + reloc_index * sizeof (Elf64_Mips_External_Rel))); 3329 } 3330 else 3331 bfd_elf32_swap_reloc_out 3332 (output_bfd, &rel[0], 3333 (sreloc->contents 3334 + reloc_index * sizeof (Elf32_External_Rel))); 3335 } 3336 3337 /* Initialize a set of TLS GOT entries for one symbol. */ 3338 3339 static void 3340 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, 3341 struct mips_got_entry *entry, 3342 struct mips_elf_link_hash_entry *h, 3343 bfd_vma value) 3344 { 3345 struct mips_elf_link_hash_table *htab; 3346 int indx; 3347 asection *sreloc, *sgot; 3348 bfd_vma got_offset, got_offset2; 3349 bfd_boolean need_relocs = FALSE; 3350 3351 htab = mips_elf_hash_table (info); 3352 if (htab == NULL) 3353 return; 3354 3355 sgot = htab->sgot; 3356 3357 indx = 0; 3358 if (h != NULL) 3359 { 3360 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3361 3362 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), 3363 &h->root) 3364 && (!bfd_link_pic (info) 3365 || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) 3366 indx = h->root.dynindx; 3367 } 3368 3369 if (entry->tls_initialized) 3370 return; 3371 3372 if ((bfd_link_pic (info) || indx != 0) 3373 && (h == NULL 3374 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 3375 || h->root.type != bfd_link_hash_undefweak)) 3376 need_relocs = TRUE; 3377 3378 /* MINUS_ONE means the symbol is not defined in this object. It may not 3379 be defined at all; assume that the value doesn't matter in that 3380 case. Otherwise complain if we would use the value. */ 3381 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) 3382 || h->root.root.type == bfd_link_hash_undefweak); 3383 3384 /* Emit necessary relocations. */ 3385 sreloc = mips_elf_rel_dyn_section (info, FALSE); 3386 got_offset = entry->gotidx; 3387 3388 switch (entry->tls_type) 3389 { 3390 case GOT_TLS_GD: 3391 /* General Dynamic. */ 3392 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); 3393 3394 if (need_relocs) 3395 { 3396 mips_elf_output_dynamic_relocation 3397 (abfd, sreloc, sreloc->reloc_count++, indx, 3398 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3399 sgot->output_offset + sgot->output_section->vma + got_offset); 3400 3401 if (indx) 3402 mips_elf_output_dynamic_relocation 3403 (abfd, sreloc, sreloc->reloc_count++, indx, 3404 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, 3405 sgot->output_offset + sgot->output_section->vma + got_offset2); 3406 else 3407 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3408 sgot->contents + got_offset2); 3409 } 3410 else 3411 { 3412 MIPS_ELF_PUT_WORD (abfd, 1, 3413 sgot->contents + got_offset); 3414 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3415 sgot->contents + got_offset2); 3416 } 3417 break; 3418 3419 case GOT_TLS_IE: 3420 /* Initial Exec model. */ 3421 if (need_relocs) 3422 { 3423 if (indx == 0) 3424 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, 3425 sgot->contents + got_offset); 3426 else 3427 MIPS_ELF_PUT_WORD (abfd, 0, 3428 sgot->contents + got_offset); 3429 3430 mips_elf_output_dynamic_relocation 3431 (abfd, sreloc, sreloc->reloc_count++, indx, 3432 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, 3433 sgot->output_offset + sgot->output_section->vma + got_offset); 3434 } 3435 else 3436 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), 3437 sgot->contents + got_offset); 3438 break; 3439 3440 case GOT_TLS_LDM: 3441 /* The initial offset is zero, and the LD offsets will include the 3442 bias by DTP_OFFSET. */ 3443 MIPS_ELF_PUT_WORD (abfd, 0, 3444 sgot->contents + got_offset 3445 + MIPS_ELF_GOT_SIZE (abfd)); 3446 3447 if (!bfd_link_pic (info)) 3448 MIPS_ELF_PUT_WORD (abfd, 1, 3449 sgot->contents + got_offset); 3450 else 3451 mips_elf_output_dynamic_relocation 3452 (abfd, sreloc, sreloc->reloc_count++, indx, 3453 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3454 sgot->output_offset + sgot->output_section->vma + got_offset); 3455 break; 3456 3457 default: 3458 abort (); 3459 } 3460 3461 entry->tls_initialized = TRUE; 3462 } 3463 3464 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry 3465 for global symbol H. .got.plt comes before the GOT, so the offset 3466 will be negative. */ 3467 3468 static bfd_vma 3469 mips_elf_gotplt_index (struct bfd_link_info *info, 3470 struct elf_link_hash_entry *h) 3471 { 3472 bfd_vma got_address, got_value; 3473 struct mips_elf_link_hash_table *htab; 3474 3475 htab = mips_elf_hash_table (info); 3476 BFD_ASSERT (htab != NULL); 3477 3478 BFD_ASSERT (h->plt.plist != NULL); 3479 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); 3480 3481 /* Calculate the address of the associated .got.plt entry. */ 3482 got_address = (htab->sgotplt->output_section->vma 3483 + htab->sgotplt->output_offset 3484 + (h->plt.plist->gotplt_index 3485 * MIPS_ELF_GOT_SIZE (info->output_bfd))); 3486 3487 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 3488 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 3489 + htab->root.hgot->root.u.def.section->output_offset 3490 + htab->root.hgot->root.u.def.value); 3491 3492 return got_address - got_value; 3493 } 3494 3495 /* Return the GOT offset for address VALUE. If there is not yet a GOT 3496 entry for this value, create one. If R_SYMNDX refers to a TLS symbol, 3497 create a TLS GOT entry instead. Return -1 if no satisfactory GOT 3498 offset can be found. */ 3499 3500 static bfd_vma 3501 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3502 bfd_vma value, unsigned long r_symndx, 3503 struct mips_elf_link_hash_entry *h, int r_type) 3504 { 3505 struct mips_elf_link_hash_table *htab; 3506 struct mips_got_entry *entry; 3507 3508 htab = mips_elf_hash_table (info); 3509 BFD_ASSERT (htab != NULL); 3510 3511 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 3512 r_symndx, h, r_type); 3513 if (!entry) 3514 return MINUS_ONE; 3515 3516 if (entry->tls_type) 3517 mips_elf_initialize_tls_slots (abfd, info, entry, h, value); 3518 return entry->gotidx; 3519 } 3520 3521 /* Return the GOT index of global symbol H in the primary GOT. */ 3522 3523 static bfd_vma 3524 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, 3525 struct elf_link_hash_entry *h) 3526 { 3527 struct mips_elf_link_hash_table *htab; 3528 long global_got_dynindx; 3529 struct mips_got_info *g; 3530 bfd_vma got_index; 3531 3532 htab = mips_elf_hash_table (info); 3533 BFD_ASSERT (htab != NULL); 3534 3535 global_got_dynindx = 0; 3536 if (htab->global_gotsym != NULL) 3537 global_got_dynindx = htab->global_gotsym->dynindx; 3538 3539 /* Once we determine the global GOT entry with the lowest dynamic 3540 symbol table index, we must put all dynamic symbols with greater 3541 indices into the primary GOT. That makes it easy to calculate the 3542 GOT offset. */ 3543 BFD_ASSERT (h->dynindx >= global_got_dynindx); 3544 g = mips_elf_bfd_got (obfd, FALSE); 3545 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) 3546 * MIPS_ELF_GOT_SIZE (obfd)); 3547 BFD_ASSERT (got_index < htab->sgot->size); 3548 3549 return got_index; 3550 } 3551 3552 /* Return the GOT index for the global symbol indicated by H, which is 3553 referenced by a relocation of type R_TYPE in IBFD. */ 3554 3555 static bfd_vma 3556 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, 3557 struct elf_link_hash_entry *h, int r_type) 3558 { 3559 struct mips_elf_link_hash_table *htab; 3560 struct mips_got_info *g; 3561 struct mips_got_entry lookup, *entry; 3562 bfd_vma gotidx; 3563 3564 htab = mips_elf_hash_table (info); 3565 BFD_ASSERT (htab != NULL); 3566 3567 g = mips_elf_bfd_got (ibfd, FALSE); 3568 BFD_ASSERT (g); 3569 3570 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3571 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) 3572 return mips_elf_primary_global_got_index (obfd, info, h); 3573 3574 lookup.abfd = ibfd; 3575 lookup.symndx = -1; 3576 lookup.d.h = (struct mips_elf_link_hash_entry *) h; 3577 entry = htab_find (g->got_entries, &lookup); 3578 BFD_ASSERT (entry); 3579 3580 gotidx = entry->gotidx; 3581 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3582 3583 if (lookup.tls_type) 3584 { 3585 bfd_vma value = MINUS_ONE; 3586 3587 if ((h->root.type == bfd_link_hash_defined 3588 || h->root.type == bfd_link_hash_defweak) 3589 && h->root.u.def.section->output_section) 3590 value = (h->root.u.def.value 3591 + h->root.u.def.section->output_offset 3592 + h->root.u.def.section->output_section->vma); 3593 3594 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); 3595 } 3596 return gotidx; 3597 } 3598 3599 /* Find a GOT page entry that points to within 32KB of VALUE. These 3600 entries are supposed to be placed at small offsets in the GOT, i.e., 3601 within 32KB of GP. Return the index of the GOT entry, or -1 if no 3602 entry could be created. If OFFSETP is nonnull, use it to return the 3603 offset of the GOT entry from VALUE. */ 3604 3605 static bfd_vma 3606 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3607 bfd_vma value, bfd_vma *offsetp) 3608 { 3609 bfd_vma page, got_index; 3610 struct mips_got_entry *entry; 3611 3612 page = (value + 0x8000) & ~(bfd_vma) 0xffff; 3613 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, 3614 NULL, R_MIPS_GOT_PAGE); 3615 3616 if (!entry) 3617 return MINUS_ONE; 3618 3619 got_index = entry->gotidx; 3620 3621 if (offsetp) 3622 *offsetp = value - entry->d.address; 3623 3624 return got_index; 3625 } 3626 3627 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. 3628 EXTERNAL is true if the relocation was originally against a global 3629 symbol that binds locally. */ 3630 3631 static bfd_vma 3632 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3633 bfd_vma value, bfd_boolean external) 3634 { 3635 struct mips_got_entry *entry; 3636 3637 /* GOT16 relocations against local symbols are followed by a LO16 3638 relocation; those against global symbols are not. Thus if the 3639 symbol was originally local, the GOT16 relocation should load the 3640 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ 3641 if (! external) 3642 value = mips_elf_high (value) << 16; 3643 3644 /* It doesn't matter whether the original relocation was R_MIPS_GOT16, 3645 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the 3646 same in all cases. */ 3647 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, 3648 NULL, R_MIPS_GOT16); 3649 if (entry) 3650 return entry->gotidx; 3651 else 3652 return MINUS_ONE; 3653 } 3654 3655 /* Returns the offset for the entry at the INDEXth position 3656 in the GOT. */ 3657 3658 static bfd_vma 3659 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, 3660 bfd *input_bfd, bfd_vma got_index) 3661 { 3662 struct mips_elf_link_hash_table *htab; 3663 asection *sgot; 3664 bfd_vma gp; 3665 3666 htab = mips_elf_hash_table (info); 3667 BFD_ASSERT (htab != NULL); 3668 3669 sgot = htab->sgot; 3670 gp = _bfd_get_gp_value (output_bfd) 3671 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); 3672 3673 return sgot->output_section->vma + sgot->output_offset + got_index - gp; 3674 } 3675 3676 /* Create and return a local GOT entry for VALUE, which was calculated 3677 from a symbol belonging to INPUT_SECTON. Return NULL if it could not 3678 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry 3679 instead. */ 3680 3681 static struct mips_got_entry * 3682 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, 3683 bfd *ibfd, bfd_vma value, 3684 unsigned long r_symndx, 3685 struct mips_elf_link_hash_entry *h, 3686 int r_type) 3687 { 3688 struct mips_got_entry lookup, *entry; 3689 void **loc; 3690 struct mips_got_info *g; 3691 struct mips_elf_link_hash_table *htab; 3692 bfd_vma gotidx; 3693 3694 htab = mips_elf_hash_table (info); 3695 BFD_ASSERT (htab != NULL); 3696 3697 g = mips_elf_bfd_got (ibfd, FALSE); 3698 if (g == NULL) 3699 { 3700 g = mips_elf_bfd_got (abfd, FALSE); 3701 BFD_ASSERT (g != NULL); 3702 } 3703 3704 /* This function shouldn't be called for symbols that live in the global 3705 area of the GOT. */ 3706 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); 3707 3708 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3709 if (lookup.tls_type) 3710 { 3711 lookup.abfd = ibfd; 3712 if (tls_ldm_reloc_p (r_type)) 3713 { 3714 lookup.symndx = 0; 3715 lookup.d.addend = 0; 3716 } 3717 else if (h == NULL) 3718 { 3719 lookup.symndx = r_symndx; 3720 lookup.d.addend = 0; 3721 } 3722 else 3723 { 3724 lookup.symndx = -1; 3725 lookup.d.h = h; 3726 } 3727 3728 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); 3729 BFD_ASSERT (entry); 3730 3731 gotidx = entry->gotidx; 3732 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3733 3734 return entry; 3735 } 3736 3737 lookup.abfd = NULL; 3738 lookup.symndx = -1; 3739 lookup.d.address = value; 3740 loc = htab_find_slot (g->got_entries, &lookup, INSERT); 3741 if (!loc) 3742 return NULL; 3743 3744 entry = (struct mips_got_entry *) *loc; 3745 if (entry) 3746 return entry; 3747 3748 if (g->assigned_low_gotno > g->assigned_high_gotno) 3749 { 3750 /* We didn't allocate enough space in the GOT. */ 3751 (*_bfd_error_handler) 3752 (_("not enough GOT space for local GOT entries")); 3753 bfd_set_error (bfd_error_bad_value); 3754 return NULL; 3755 } 3756 3757 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3758 if (!entry) 3759 return NULL; 3760 3761 if (got16_reloc_p (r_type) 3762 || call16_reloc_p (r_type) 3763 || got_page_reloc_p (r_type) 3764 || got_disp_reloc_p (r_type)) 3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; 3766 else 3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; 3768 3769 *entry = lookup; 3770 *loc = entry; 3771 3772 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); 3773 3774 /* These GOT entries need a dynamic relocation on VxWorks. */ 3775 if (htab->is_vxworks) 3776 { 3777 Elf_Internal_Rela outrel; 3778 asection *s; 3779 bfd_byte *rloc; 3780 bfd_vma got_address; 3781 3782 s = mips_elf_rel_dyn_section (info, FALSE); 3783 got_address = (htab->sgot->output_section->vma 3784 + htab->sgot->output_offset 3785 + entry->gotidx); 3786 3787 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 3788 outrel.r_offset = got_address; 3789 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); 3790 outrel.r_addend = value; 3791 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); 3792 } 3793 3794 return entry; 3795 } 3796 3797 /* Return the number of dynamic section symbols required by OUTPUT_BFD. 3798 The number might be exact or a worst-case estimate, depending on how 3799 much information is available to elf_backend_omit_section_dynsym at 3800 the current linking stage. */ 3801 3802 static bfd_size_type 3803 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 3804 { 3805 bfd_size_type count; 3806 3807 count = 0; 3808 if (bfd_link_pic (info) 3809 || elf_hash_table (info)->is_relocatable_executable) 3810 { 3811 asection *p; 3812 const struct elf_backend_data *bed; 3813 3814 bed = get_elf_backend_data (output_bfd); 3815 for (p = output_bfd->sections; p ; p = p->next) 3816 if ((p->flags & SEC_EXCLUDE) == 0 3817 && (p->flags & SEC_ALLOC) != 0 3818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 3819 ++count; 3820 } 3821 return count; 3822 } 3823 3824 /* Sort the dynamic symbol table so that symbols that need GOT entries 3825 appear towards the end. */ 3826 3827 static bfd_boolean 3828 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) 3829 { 3830 struct mips_elf_link_hash_table *htab; 3831 struct mips_elf_hash_sort_data hsd; 3832 struct mips_got_info *g; 3833 3834 if (elf_hash_table (info)->dynsymcount == 0) 3835 return TRUE; 3836 3837 htab = mips_elf_hash_table (info); 3838 BFD_ASSERT (htab != NULL); 3839 3840 g = htab->got_info; 3841 if (g == NULL) 3842 return TRUE; 3843 3844 hsd.low = NULL; 3845 hsd.max_unref_got_dynindx 3846 = hsd.min_got_dynindx 3847 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); 3848 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; 3849 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) 3850 elf_hash_table (info)), 3851 mips_elf_sort_hash_table_f, 3852 &hsd); 3853 3854 /* There should have been enough room in the symbol table to 3855 accommodate both the GOT and non-GOT symbols. */ 3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); 3857 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx 3858 == elf_hash_table (info)->dynsymcount); 3859 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx 3860 == g->global_gotno); 3861 3862 /* Now we know which dynamic symbol has the lowest dynamic symbol 3863 table index in the GOT. */ 3864 htab->global_gotsym = hsd.low; 3865 3866 return TRUE; 3867 } 3868 3869 /* If H needs a GOT entry, assign it the highest available dynamic 3870 index. Otherwise, assign it the lowest available dynamic 3871 index. */ 3872 3873 static bfd_boolean 3874 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) 3875 { 3876 struct mips_elf_hash_sort_data *hsd = data; 3877 3878 /* Symbols without dynamic symbol table entries aren't interesting 3879 at all. */ 3880 if (h->root.dynindx == -1) 3881 return TRUE; 3882 3883 switch (h->global_got_area) 3884 { 3885 case GGA_NONE: 3886 h->root.dynindx = hsd->max_non_got_dynindx++; 3887 break; 3888 3889 case GGA_NORMAL: 3890 h->root.dynindx = --hsd->min_got_dynindx; 3891 hsd->low = (struct elf_link_hash_entry *) h; 3892 break; 3893 3894 case GGA_RELOC_ONLY: 3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) 3896 hsd->low = (struct elf_link_hash_entry *) h; 3897 h->root.dynindx = hsd->max_unref_got_dynindx++; 3898 break; 3899 } 3900 3901 return TRUE; 3902 } 3903 3904 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP 3905 (which is owned by the caller and shouldn't be added to the 3906 hash table directly). */ 3907 3908 static bfd_boolean 3909 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, 3910 struct mips_got_entry *lookup) 3911 { 3912 struct mips_elf_link_hash_table *htab; 3913 struct mips_got_entry *entry; 3914 struct mips_got_info *g; 3915 void **loc, **bfd_loc; 3916 3917 /* Make sure there's a slot for this entry in the master GOT. */ 3918 htab = mips_elf_hash_table (info); 3919 g = htab->got_info; 3920 loc = htab_find_slot (g->got_entries, lookup, INSERT); 3921 if (!loc) 3922 return FALSE; 3923 3924 /* Populate the entry if it isn't already. */ 3925 entry = (struct mips_got_entry *) *loc; 3926 if (!entry) 3927 { 3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3929 if (!entry) 3930 return FALSE; 3931 3932 lookup->tls_initialized = FALSE; 3933 lookup->gotidx = -1; 3934 *entry = *lookup; 3935 *loc = entry; 3936 } 3937 3938 /* Reuse the same GOT entry for the BFD's GOT. */ 3939 g = mips_elf_bfd_got (abfd, TRUE); 3940 if (!g) 3941 return FALSE; 3942 3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); 3944 if (!bfd_loc) 3945 return FALSE; 3946 3947 if (!*bfd_loc) 3948 *bfd_loc = entry; 3949 return TRUE; 3950 } 3951 3952 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT 3953 entry for it. FOR_CALL is true if the caller is only interested in 3954 using the GOT entry for calls. */ 3955 3956 static bfd_boolean 3957 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, 3958 bfd *abfd, struct bfd_link_info *info, 3959 bfd_boolean for_call, int r_type) 3960 { 3961 struct mips_elf_link_hash_table *htab; 3962 struct mips_elf_link_hash_entry *hmips; 3963 struct mips_got_entry entry; 3964 unsigned char tls_type; 3965 3966 htab = mips_elf_hash_table (info); 3967 BFD_ASSERT (htab != NULL); 3968 3969 hmips = (struct mips_elf_link_hash_entry *) h; 3970 if (!for_call) 3971 hmips->got_only_for_calls = FALSE; 3972 3973 /* A global symbol in the GOT must also be in the dynamic symbol 3974 table. */ 3975 if (h->dynindx == -1) 3976 { 3977 switch (ELF_ST_VISIBILITY (h->other)) 3978 { 3979 case STV_INTERNAL: 3980 case STV_HIDDEN: 3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE); 3982 break; 3983 } 3984 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 3985 return FALSE; 3986 } 3987 3988 tls_type = mips_elf_reloc_tls_type (r_type); 3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) 3990 hmips->global_got_area = GGA_NORMAL; 3991 3992 entry.abfd = abfd; 3993 entry.symndx = -1; 3994 entry.d.h = (struct mips_elf_link_hash_entry *) h; 3995 entry.tls_type = tls_type; 3996 return mips_elf_record_got_entry (info, abfd, &entry); 3997 } 3998 3999 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, 4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */ 4001 4002 static bfd_boolean 4003 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, 4004 struct bfd_link_info *info, int r_type) 4005 { 4006 struct mips_elf_link_hash_table *htab; 4007 struct mips_got_info *g; 4008 struct mips_got_entry entry; 4009 4010 htab = mips_elf_hash_table (info); 4011 BFD_ASSERT (htab != NULL); 4012 4013 g = htab->got_info; 4014 BFD_ASSERT (g != NULL); 4015 4016 entry.abfd = abfd; 4017 entry.symndx = symndx; 4018 entry.d.addend = addend; 4019 entry.tls_type = mips_elf_reloc_tls_type (r_type); 4020 return mips_elf_record_got_entry (info, abfd, &entry); 4021 } 4022 4023 /* Record that ABFD has a page relocation against SYMNDX + ADDEND. 4024 H is the symbol's hash table entry, or null if SYMNDX is local 4025 to ABFD. */ 4026 4027 static bfd_boolean 4028 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, 4029 long symndx, struct elf_link_hash_entry *h, 4030 bfd_signed_vma addend) 4031 { 4032 struct mips_elf_link_hash_table *htab; 4033 struct mips_got_info *g1, *g2; 4034 struct mips_got_page_ref lookup, *entry; 4035 void **loc, **bfd_loc; 4036 4037 htab = mips_elf_hash_table (info); 4038 BFD_ASSERT (htab != NULL); 4039 4040 g1 = htab->got_info; 4041 BFD_ASSERT (g1 != NULL); 4042 4043 if (h) 4044 { 4045 lookup.symndx = -1; 4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h; 4047 } 4048 else 4049 { 4050 lookup.symndx = symndx; 4051 lookup.u.abfd = abfd; 4052 } 4053 lookup.addend = addend; 4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); 4055 if (loc == NULL) 4056 return FALSE; 4057 4058 entry = (struct mips_got_page_ref *) *loc; 4059 if (!entry) 4060 { 4061 entry = bfd_alloc (abfd, sizeof (*entry)); 4062 if (!entry) 4063 return FALSE; 4064 4065 *entry = lookup; 4066 *loc = entry; 4067 } 4068 4069 /* Add the same entry to the BFD's GOT. */ 4070 g2 = mips_elf_bfd_got (abfd, TRUE); 4071 if (!g2) 4072 return FALSE; 4073 4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); 4075 if (!bfd_loc) 4076 return FALSE; 4077 4078 if (!*bfd_loc) 4079 *bfd_loc = entry; 4080 4081 return TRUE; 4082 } 4083 4084 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ 4085 4086 static void 4087 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, 4088 unsigned int n) 4089 { 4090 asection *s; 4091 struct mips_elf_link_hash_table *htab; 4092 4093 htab = mips_elf_hash_table (info); 4094 BFD_ASSERT (htab != NULL); 4095 4096 s = mips_elf_rel_dyn_section (info, FALSE); 4097 BFD_ASSERT (s != NULL); 4098 4099 if (htab->is_vxworks) 4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd); 4101 else 4102 { 4103 if (s->size == 0) 4104 { 4105 /* Make room for a null element. */ 4106 s->size += MIPS_ELF_REL_SIZE (abfd); 4107 ++s->reloc_count; 4108 } 4109 s->size += n * MIPS_ELF_REL_SIZE (abfd); 4110 } 4111 } 4112 4113 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4115 mips_elf_traverse_got_arg structure. Count the number of GOT 4116 entries and TLS relocs. Set DATA->value to true if we need 4117 to resolve indirect or warning symbols and then recreate the GOT. */ 4118 4119 static int 4120 mips_elf_check_recreate_got (void **entryp, void *data) 4121 { 4122 struct mips_got_entry *entry; 4123 struct mips_elf_traverse_got_arg *arg; 4124 4125 entry = (struct mips_got_entry *) *entryp; 4126 arg = (struct mips_elf_traverse_got_arg *) data; 4127 if (entry->abfd != NULL && entry->symndx == -1) 4128 { 4129 struct mips_elf_link_hash_entry *h; 4130 4131 h = entry->d.h; 4132 if (h->root.root.type == bfd_link_hash_indirect 4133 || h->root.root.type == bfd_link_hash_warning) 4134 { 4135 arg->value = TRUE; 4136 return 0; 4137 } 4138 } 4139 mips_elf_count_got_entry (arg->info, arg->g, entry); 4140 return 1; 4141 } 4142 4143 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g, 4145 converting entries for indirect and warning symbols into entries 4146 for the target symbol. Set DATA->g to null on error. */ 4147 4148 static int 4149 mips_elf_recreate_got (void **entryp, void *data) 4150 { 4151 struct mips_got_entry new_entry, *entry; 4152 struct mips_elf_traverse_got_arg *arg; 4153 void **slot; 4154 4155 entry = (struct mips_got_entry *) *entryp; 4156 arg = (struct mips_elf_traverse_got_arg *) data; 4157 if (entry->abfd != NULL 4158 && entry->symndx == -1 4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect 4160 || entry->d.h->root.root.type == bfd_link_hash_warning)) 4161 { 4162 struct mips_elf_link_hash_entry *h; 4163 4164 new_entry = *entry; 4165 entry = &new_entry; 4166 h = entry->d.h; 4167 do 4168 { 4169 BFD_ASSERT (h->global_got_area == GGA_NONE); 4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 4171 } 4172 while (h->root.root.type == bfd_link_hash_indirect 4173 || h->root.root.type == bfd_link_hash_warning); 4174 entry->d.h = h; 4175 } 4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4177 if (slot == NULL) 4178 { 4179 arg->g = NULL; 4180 return 0; 4181 } 4182 if (*slot == NULL) 4183 { 4184 if (entry == &new_entry) 4185 { 4186 entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4187 if (!entry) 4188 { 4189 arg->g = NULL; 4190 return 0; 4191 } 4192 *entry = new_entry; 4193 } 4194 *slot = entry; 4195 mips_elf_count_got_entry (arg->info, arg->g, entry); 4196 } 4197 return 1; 4198 } 4199 4200 /* Return the maximum number of GOT page entries required for RANGE. */ 4201 4202 static bfd_vma 4203 mips_elf_pages_for_range (const struct mips_got_page_range *range) 4204 { 4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16; 4206 } 4207 4208 /* Record that G requires a page entry that can reach SEC + ADDEND. */ 4209 4210 static bfd_boolean 4211 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, 4212 asection *sec, bfd_signed_vma addend) 4213 { 4214 struct mips_got_info *g = arg->g; 4215 struct mips_got_page_entry lookup, *entry; 4216 struct mips_got_page_range **range_ptr, *range; 4217 bfd_vma old_pages, new_pages; 4218 void **loc; 4219 4220 /* Find the mips_got_page_entry hash table entry for this section. */ 4221 lookup.sec = sec; 4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); 4223 if (loc == NULL) 4224 return FALSE; 4225 4226 /* Create a mips_got_page_entry if this is the first time we've 4227 seen the section. */ 4228 entry = (struct mips_got_page_entry *) *loc; 4229 if (!entry) 4230 { 4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); 4232 if (!entry) 4233 return FALSE; 4234 4235 entry->sec = sec; 4236 *loc = entry; 4237 } 4238 4239 /* Skip over ranges whose maximum extent cannot share a page entry 4240 with ADDEND. */ 4241 range_ptr = &entry->ranges; 4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) 4243 range_ptr = &(*range_ptr)->next; 4244 4245 /* If we scanned to the end of the list, or found a range whose 4246 minimum extent cannot share a page entry with ADDEND, create 4247 a new singleton range. */ 4248 range = *range_ptr; 4249 if (!range || addend < range->min_addend - 0xffff) 4250 { 4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); 4252 if (!range) 4253 return FALSE; 4254 4255 range->next = *range_ptr; 4256 range->min_addend = addend; 4257 range->max_addend = addend; 4258 4259 *range_ptr = range; 4260 entry->num_pages++; 4261 g->page_gotno++; 4262 return TRUE; 4263 } 4264 4265 /* Remember how many pages the old range contributed. */ 4266 old_pages = mips_elf_pages_for_range (range); 4267 4268 /* Update the ranges. */ 4269 if (addend < range->min_addend) 4270 range->min_addend = addend; 4271 else if (addend > range->max_addend) 4272 { 4273 if (range->next && addend >= range->next->min_addend - 0xffff) 4274 { 4275 old_pages += mips_elf_pages_for_range (range->next); 4276 range->max_addend = range->next->max_addend; 4277 range->next = range->next->next; 4278 } 4279 else 4280 range->max_addend = addend; 4281 } 4282 4283 /* Record any change in the total estimate. */ 4284 new_pages = mips_elf_pages_for_range (range); 4285 if (old_pages != new_pages) 4286 { 4287 entry->num_pages += new_pages - old_pages; 4288 g->page_gotno += new_pages - old_pages; 4289 } 4290 4291 return TRUE; 4292 } 4293 4294 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref 4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out 4296 whether the page reference described by *REFP needs a GOT page entry, 4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */ 4298 4299 static bfd_boolean 4300 mips_elf_resolve_got_page_ref (void **refp, void *data) 4301 { 4302 struct mips_got_page_ref *ref; 4303 struct mips_elf_traverse_got_arg *arg; 4304 struct mips_elf_link_hash_table *htab; 4305 asection *sec; 4306 bfd_vma addend; 4307 4308 ref = (struct mips_got_page_ref *) *refp; 4309 arg = (struct mips_elf_traverse_got_arg *) data; 4310 htab = mips_elf_hash_table (arg->info); 4311 4312 if (ref->symndx < 0) 4313 { 4314 struct mips_elf_link_hash_entry *h; 4315 4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ 4317 h = ref->u.h; 4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) 4319 return 1; 4320 4321 /* Ignore undefined symbols; we'll issue an error later if 4322 appropriate. */ 4323 if (!((h->root.root.type == bfd_link_hash_defined 4324 || h->root.root.type == bfd_link_hash_defweak) 4325 && h->root.root.u.def.section)) 4326 return 1; 4327 4328 sec = h->root.root.u.def.section; 4329 addend = h->root.root.u.def.value + ref->addend; 4330 } 4331 else 4332 { 4333 Elf_Internal_Sym *isym; 4334 4335 /* Read in the symbol. */ 4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, 4337 ref->symndx); 4338 if (isym == NULL) 4339 { 4340 arg->g = NULL; 4341 return 0; 4342 } 4343 4344 /* Get the associated input section. */ 4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); 4346 if (sec == NULL) 4347 { 4348 arg->g = NULL; 4349 return 0; 4350 } 4351 4352 /* If this is a mergable section, work out the section and offset 4353 of the merged data. For section symbols, the addend specifies 4354 of the offset _of_ the first byte in the data, otherwise it 4355 specifies the offset _from_ the first byte. */ 4356 if (sec->flags & SEC_MERGE) 4357 { 4358 void *secinfo; 4359 4360 secinfo = elf_section_data (sec)->sec_info; 4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4363 isym->st_value + ref->addend); 4364 else 4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4366 isym->st_value) + ref->addend; 4367 } 4368 else 4369 addend = isym->st_value + ref->addend; 4370 } 4371 if (!mips_elf_record_got_page_entry (arg, sec, addend)) 4372 { 4373 arg->g = NULL; 4374 return 0; 4375 } 4376 return 1; 4377 } 4378 4379 /* If any entries in G->got_entries are for indirect or warning symbols, 4380 replace them with entries for the target symbol. Convert g->got_page_refs 4381 into got_page_entry structures and estimate the number of page entries 4382 that they require. */ 4383 4384 static bfd_boolean 4385 mips_elf_resolve_final_got_entries (struct bfd_link_info *info, 4386 struct mips_got_info *g) 4387 { 4388 struct mips_elf_traverse_got_arg tga; 4389 struct mips_got_info oldg; 4390 4391 oldg = *g; 4392 4393 tga.info = info; 4394 tga.g = g; 4395 tga.value = FALSE; 4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); 4397 if (tga.value) 4398 { 4399 *g = oldg; 4400 g->got_entries = htab_create (htab_size (oldg.got_entries), 4401 mips_elf_got_entry_hash, 4402 mips_elf_got_entry_eq, NULL); 4403 if (!g->got_entries) 4404 return FALSE; 4405 4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); 4407 if (!tga.g) 4408 return FALSE; 4409 4410 htab_delete (oldg.got_entries); 4411 } 4412 4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4414 mips_got_page_entry_eq, NULL); 4415 if (g->got_page_entries == NULL) 4416 return FALSE; 4417 4418 tga.info = info; 4419 tga.g = g; 4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); 4421 4422 return TRUE; 4423 } 4424 4425 /* Return true if a GOT entry for H should live in the local rather than 4426 global GOT area. */ 4427 4428 static bfd_boolean 4429 mips_use_local_got_p (struct bfd_link_info *info, 4430 struct mips_elf_link_hash_entry *h) 4431 { 4432 /* Symbols that aren't in the dynamic symbol table must live in the 4433 local GOT. This includes symbols that are completely undefined 4434 and which therefore don't bind locally. We'll report undefined 4435 symbols later if appropriate. */ 4436 if (h->root.dynindx == -1) 4437 return TRUE; 4438 4439 /* Symbols that bind locally can (and in the case of forced-local 4440 symbols, must) live in the local GOT. */ 4441 if (h->got_only_for_calls 4442 ? SYMBOL_CALLS_LOCAL (info, &h->root) 4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root)) 4444 return TRUE; 4445 4446 /* If this is an executable that must provide a definition of the symbol, 4447 either though PLTs or copy relocations, then that address should go in 4448 the local rather than global GOT. */ 4449 if (bfd_link_executable (info) && h->has_static_relocs) 4450 return TRUE; 4451 4452 return FALSE; 4453 } 4454 4455 /* A mips_elf_link_hash_traverse callback for which DATA points to the 4456 link_info structure. Decide whether the hash entry needs an entry in 4457 the global part of the primary GOT, setting global_got_area accordingly. 4458 Count the number of global symbols that are in the primary GOT only 4459 because they have relocations against them (reloc_only_gotno). */ 4460 4461 static int 4462 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) 4463 { 4464 struct bfd_link_info *info; 4465 struct mips_elf_link_hash_table *htab; 4466 struct mips_got_info *g; 4467 4468 info = (struct bfd_link_info *) data; 4469 htab = mips_elf_hash_table (info); 4470 g = htab->got_info; 4471 if (h->global_got_area != GGA_NONE) 4472 { 4473 /* Make a final decision about whether the symbol belongs in the 4474 local or global GOT. */ 4475 if (mips_use_local_got_p (info, h)) 4476 /* The symbol belongs in the local GOT. We no longer need this 4477 entry if it was only used for relocations; those relocations 4478 will be against the null or section symbol instead of H. */ 4479 h->global_got_area = GGA_NONE; 4480 else if (htab->is_vxworks 4481 && h->got_only_for_calls 4482 && h->root.plt.plist->mips_offset != MINUS_ONE) 4483 /* On VxWorks, calls can refer directly to the .got.plt entry; 4484 they don't need entries in the regular GOT. .got.plt entries 4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ 4486 h->global_got_area = GGA_NONE; 4487 else if (h->global_got_area == GGA_RELOC_ONLY) 4488 { 4489 g->reloc_only_gotno++; 4490 g->global_gotno++; 4491 } 4492 } 4493 return 1; 4494 } 4495 4496 /* A htab_traverse callback for GOT entries. Add each one to the GOT 4498 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4499 4500 static int 4501 mips_elf_add_got_entry (void **entryp, void *data) 4502 { 4503 struct mips_got_entry *entry; 4504 struct mips_elf_traverse_got_arg *arg; 4505 void **slot; 4506 4507 entry = (struct mips_got_entry *) *entryp; 4508 arg = (struct mips_elf_traverse_got_arg *) data; 4509 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4510 if (!slot) 4511 { 4512 arg->g = NULL; 4513 return 0; 4514 } 4515 if (!*slot) 4516 { 4517 *slot = entry; 4518 mips_elf_count_got_entry (arg->info, arg->g, entry); 4519 } 4520 return 1; 4521 } 4522 4523 /* A htab_traverse callback for GOT page entries. Add each one to the GOT 4524 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4525 4526 static int 4527 mips_elf_add_got_page_entry (void **entryp, void *data) 4528 { 4529 struct mips_got_page_entry *entry; 4530 struct mips_elf_traverse_got_arg *arg; 4531 void **slot; 4532 4533 entry = (struct mips_got_page_entry *) *entryp; 4534 arg = (struct mips_elf_traverse_got_arg *) data; 4535 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); 4536 if (!slot) 4537 { 4538 arg->g = NULL; 4539 return 0; 4540 } 4541 if (!*slot) 4542 { 4543 *slot = entry; 4544 arg->g->page_gotno += entry->num_pages; 4545 } 4546 return 1; 4547 } 4548 4549 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if 4550 this would lead to overflow, 1 if they were merged successfully, 4551 and 0 if a merge failed due to lack of memory. (These values are chosen 4552 so that nonnegative return values can be returned by a htab_traverse 4553 callback.) */ 4554 4555 static int 4556 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, 4557 struct mips_got_info *to, 4558 struct mips_elf_got_per_bfd_arg *arg) 4559 { 4560 struct mips_elf_traverse_got_arg tga; 4561 unsigned int estimate; 4562 4563 /* Work out how many page entries we would need for the combined GOT. */ 4564 estimate = arg->max_pages; 4565 if (estimate >= from->page_gotno + to->page_gotno) 4566 estimate = from->page_gotno + to->page_gotno; 4567 4568 /* And conservatively estimate how many local and TLS entries 4569 would be needed. */ 4570 estimate += from->local_gotno + to->local_gotno; 4571 estimate += from->tls_gotno + to->tls_gotno; 4572 4573 /* If we're merging with the primary got, any TLS relocations will 4574 come after the full set of global entries. Otherwise estimate those 4575 conservatively as well. */ 4576 if (to == arg->primary && from->tls_gotno + to->tls_gotno) 4577 estimate += arg->global_count; 4578 else 4579 estimate += from->global_gotno + to->global_gotno; 4580 4581 /* Bail out if the combined GOT might be too big. */ 4582 if (estimate > arg->max_count) 4583 return -1; 4584 4585 /* Transfer the bfd's got information from FROM to TO. */ 4586 tga.info = arg->info; 4587 tga.g = to; 4588 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); 4589 if (!tga.g) 4590 return 0; 4591 4592 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); 4593 if (!tga.g) 4594 return 0; 4595 4596 mips_elf_replace_bfd_got (abfd, to); 4597 return 1; 4598 } 4599 4600 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much 4601 as possible of the primary got, since it doesn't require explicit 4602 dynamic relocations, but don't use bfds that would reference global 4603 symbols out of the addressable range. Failing the primary got, 4604 attempt to merge with the current got, or finish the current got 4605 and then make make the new got current. */ 4606 4607 static bfd_boolean 4608 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, 4609 struct mips_elf_got_per_bfd_arg *arg) 4610 { 4611 unsigned int estimate; 4612 int result; 4613 4614 if (!mips_elf_resolve_final_got_entries (arg->info, g)) 4615 return FALSE; 4616 4617 /* Work out the number of page, local and TLS entries. */ 4618 estimate = arg->max_pages; 4619 if (estimate > g->page_gotno) 4620 estimate = g->page_gotno; 4621 estimate += g->local_gotno + g->tls_gotno; 4622 4623 /* We place TLS GOT entries after both locals and globals. The globals 4624 for the primary GOT may overflow the normal GOT size limit, so be 4625 sure not to merge a GOT which requires TLS with the primary GOT in that 4626 case. This doesn't affect non-primary GOTs. */ 4627 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); 4628 4629 if (estimate <= arg->max_count) 4630 { 4631 /* If we don't have a primary GOT, use it as 4632 a starting point for the primary GOT. */ 4633 if (!arg->primary) 4634 { 4635 arg->primary = g; 4636 return TRUE; 4637 } 4638 4639 /* Try merging with the primary GOT. */ 4640 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); 4641 if (result >= 0) 4642 return result; 4643 } 4644 4645 /* If we can merge with the last-created got, do it. */ 4646 if (arg->current) 4647 { 4648 result = mips_elf_merge_got_with (abfd, g, arg->current, arg); 4649 if (result >= 0) 4650 return result; 4651 } 4652 4653 /* Well, we couldn't merge, so create a new GOT. Don't check if it 4654 fits; if it turns out that it doesn't, we'll get relocation 4655 overflows anyway. */ 4656 g->next = arg->current; 4657 arg->current = g; 4658 4659 return TRUE; 4660 } 4661 4662 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx 4663 to GOTIDX, duplicating the entry if it has already been assigned 4664 an index in a different GOT. */ 4665 4666 static bfd_boolean 4667 mips_elf_set_gotidx (void **entryp, long gotidx) 4668 { 4669 struct mips_got_entry *entry; 4670 4671 entry = (struct mips_got_entry *) *entryp; 4672 if (entry->gotidx > 0) 4673 { 4674 struct mips_got_entry *new_entry; 4675 4676 new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4677 if (!new_entry) 4678 return FALSE; 4679 4680 *new_entry = *entry; 4681 *entryp = new_entry; 4682 entry = new_entry; 4683 } 4684 entry->gotidx = gotidx; 4685 return TRUE; 4686 } 4687 4688 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a 4689 mips_elf_traverse_got_arg in which DATA->value is the size of one 4690 GOT entry. Set DATA->g to null on failure. */ 4691 4692 static int 4693 mips_elf_initialize_tls_index (void **entryp, void *data) 4694 { 4695 struct mips_got_entry *entry; 4696 struct mips_elf_traverse_got_arg *arg; 4697 4698 /* We're only interested in TLS symbols. */ 4699 entry = (struct mips_got_entry *) *entryp; 4700 if (entry->tls_type == GOT_TLS_NONE) 4701 return 1; 4702 4703 arg = (struct mips_elf_traverse_got_arg *) data; 4704 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) 4705 { 4706 arg->g = NULL; 4707 return 0; 4708 } 4709 4710 /* Account for the entries we've just allocated. */ 4711 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); 4712 return 1; 4713 } 4714 4715 /* A htab_traverse callback for GOT entries, where DATA points to a 4716 mips_elf_traverse_got_arg. Set the global_got_area of each global 4717 symbol to DATA->value. */ 4718 4719 static int 4720 mips_elf_set_global_got_area (void **entryp, void *data) 4721 { 4722 struct mips_got_entry *entry; 4723 struct mips_elf_traverse_got_arg *arg; 4724 4725 entry = (struct mips_got_entry *) *entryp; 4726 arg = (struct mips_elf_traverse_got_arg *) data; 4727 if (entry->abfd != NULL 4728 && entry->symndx == -1 4729 && entry->d.h->global_got_area != GGA_NONE) 4730 entry->d.h->global_got_area = arg->value; 4731 return 1; 4732 } 4733 4734 /* A htab_traverse callback for secondary GOT entries, where DATA points 4735 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries 4736 and record the number of relocations they require. DATA->value is 4737 the size of one GOT entry. Set DATA->g to null on failure. */ 4738 4739 static int 4740 mips_elf_set_global_gotidx (void **entryp, void *data) 4741 { 4742 struct mips_got_entry *entry; 4743 struct mips_elf_traverse_got_arg *arg; 4744 4745 entry = (struct mips_got_entry *) *entryp; 4746 arg = (struct mips_elf_traverse_got_arg *) data; 4747 if (entry->abfd != NULL 4748 && entry->symndx == -1 4749 && entry->d.h->global_got_area != GGA_NONE) 4750 { 4751 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) 4752 { 4753 arg->g = NULL; 4754 return 0; 4755 } 4756 arg->g->assigned_low_gotno += 1; 4757 4758 if (bfd_link_pic (arg->info) 4759 || (elf_hash_table (arg->info)->dynamic_sections_created 4760 && entry->d.h->root.def_dynamic 4761 && !entry->d.h->root.def_regular)) 4762 arg->g->relocs += 1; 4763 } 4764 4765 return 1; 4766 } 4767 4768 /* A htab_traverse callback for GOT entries for which DATA is the 4769 bfd_link_info. Forbid any global symbols from having traditional 4770 lazy-binding stubs. */ 4771 4772 static int 4773 mips_elf_forbid_lazy_stubs (void **entryp, void *data) 4774 { 4775 struct bfd_link_info *info; 4776 struct mips_elf_link_hash_table *htab; 4777 struct mips_got_entry *entry; 4778 4779 entry = (struct mips_got_entry *) *entryp; 4780 info = (struct bfd_link_info *) data; 4781 htab = mips_elf_hash_table (info); 4782 BFD_ASSERT (htab != NULL); 4783 4784 if (entry->abfd != NULL 4785 && entry->symndx == -1 4786 && entry->d.h->needs_lazy_stub) 4787 { 4788 entry->d.h->needs_lazy_stub = FALSE; 4789 htab->lazy_stub_count--; 4790 } 4791 4792 return 1; 4793 } 4794 4795 /* Return the offset of an input bfd IBFD's GOT from the beginning of 4796 the primary GOT. */ 4797 static bfd_vma 4798 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) 4799 { 4800 if (!g->next) 4801 return 0; 4802 4803 g = mips_elf_bfd_got (ibfd, FALSE); 4804 if (! g) 4805 return 0; 4806 4807 BFD_ASSERT (g->next); 4808 4809 g = g->next; 4810 4811 return (g->local_gotno + g->global_gotno + g->tls_gotno) 4812 * MIPS_ELF_GOT_SIZE (abfd); 4813 } 4814 4815 /* Turn a single GOT that is too big for 16-bit addressing into 4816 a sequence of GOTs, each one 16-bit addressable. */ 4817 4818 static bfd_boolean 4819 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, 4820 asection *got, bfd_size_type pages) 4821 { 4822 struct mips_elf_link_hash_table *htab; 4823 struct mips_elf_got_per_bfd_arg got_per_bfd_arg; 4824 struct mips_elf_traverse_got_arg tga; 4825 struct mips_got_info *g, *gg; 4826 unsigned int assign, needed_relocs; 4827 bfd *dynobj, *ibfd; 4828 4829 dynobj = elf_hash_table (info)->dynobj; 4830 htab = mips_elf_hash_table (info); 4831 BFD_ASSERT (htab != NULL); 4832 4833 g = htab->got_info; 4834 4835 got_per_bfd_arg.obfd = abfd; 4836 got_per_bfd_arg.info = info; 4837 got_per_bfd_arg.current = NULL; 4838 got_per_bfd_arg.primary = NULL; 4839 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) 4840 / MIPS_ELF_GOT_SIZE (abfd)) 4841 - htab->reserved_gotno); 4842 got_per_bfd_arg.max_pages = pages; 4843 /* The number of globals that will be included in the primary GOT. 4844 See the calls to mips_elf_set_global_got_area below for more 4845 information. */ 4846 got_per_bfd_arg.global_count = g->global_gotno; 4847 4848 /* Try to merge the GOTs of input bfds together, as long as they 4849 don't seem to exceed the maximum GOT size, choosing one of them 4850 to be the primary GOT. */ 4851 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 4852 { 4853 gg = mips_elf_bfd_got (ibfd, FALSE); 4854 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) 4855 return FALSE; 4856 } 4857 4858 /* If we do not find any suitable primary GOT, create an empty one. */ 4859 if (got_per_bfd_arg.primary == NULL) 4860 g->next = mips_elf_create_got_info (abfd); 4861 else 4862 g->next = got_per_bfd_arg.primary; 4863 g->next->next = got_per_bfd_arg.current; 4864 4865 /* GG is now the master GOT, and G is the primary GOT. */ 4866 gg = g; 4867 g = g->next; 4868 4869 /* Map the output bfd to the primary got. That's what we're going 4870 to use for bfds that use GOT16 or GOT_PAGE relocations that we 4871 didn't mark in check_relocs, and we want a quick way to find it. 4872 We can't just use gg->next because we're going to reverse the 4873 list. */ 4874 mips_elf_replace_bfd_got (abfd, g); 4875 4876 /* Every symbol that is referenced in a dynamic relocation must be 4877 present in the primary GOT, so arrange for them to appear after 4878 those that are actually referenced. */ 4879 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; 4880 g->global_gotno = gg->global_gotno; 4881 4882 tga.info = info; 4883 tga.value = GGA_RELOC_ONLY; 4884 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); 4885 tga.value = GGA_NORMAL; 4886 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); 4887 4888 /* Now go through the GOTs assigning them offset ranges. 4889 [assigned_low_gotno, local_gotno[ will be set to the range of local 4890 entries in each GOT. We can then compute the end of a GOT by 4891 adding local_gotno to global_gotno. We reverse the list and make 4892 it circular since then we'll be able to quickly compute the 4893 beginning of a GOT, by computing the end of its predecessor. To 4894 avoid special cases for the primary GOT, while still preserving 4895 assertions that are valid for both single- and multi-got links, 4896 we arrange for the main got struct to have the right number of 4897 global entries, but set its local_gotno such that the initial 4898 offset of the primary GOT is zero. Remember that the primary GOT 4899 will become the last item in the circular linked list, so it 4900 points back to the master GOT. */ 4901 gg->local_gotno = -g->global_gotno; 4902 gg->global_gotno = g->global_gotno; 4903 gg->tls_gotno = 0; 4904 assign = 0; 4905 gg->next = gg; 4906 4907 do 4908 { 4909 struct mips_got_info *gn; 4910 4911 assign += htab->reserved_gotno; 4912 g->assigned_low_gotno = assign; 4913 g->local_gotno += assign; 4914 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); 4915 g->assigned_high_gotno = g->local_gotno - 1; 4916 assign = g->local_gotno + g->global_gotno + g->tls_gotno; 4917 4918 /* Take g out of the direct list, and push it onto the reversed 4919 list that gg points to. g->next is guaranteed to be nonnull after 4920 this operation, as required by mips_elf_initialize_tls_index. */ 4921 gn = g->next; 4922 g->next = gg->next; 4923 gg->next = g; 4924 4925 /* Set up any TLS entries. We always place the TLS entries after 4926 all non-TLS entries. */ 4927 g->tls_assigned_gotno = g->local_gotno + g->global_gotno; 4928 tga.g = g; 4929 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4930 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 4931 if (!tga.g) 4932 return FALSE; 4933 BFD_ASSERT (g->tls_assigned_gotno == assign); 4934 4935 /* Move onto the next GOT. It will be a secondary GOT if nonull. */ 4936 g = gn; 4937 4938 /* Forbid global symbols in every non-primary GOT from having 4939 lazy-binding stubs. */ 4940 if (g) 4941 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); 4942 } 4943 while (g); 4944 4945 got->size = assign * MIPS_ELF_GOT_SIZE (abfd); 4946 4947 needed_relocs = 0; 4948 for (g = gg->next; g && g->next != gg; g = g->next) 4949 { 4950 unsigned int save_assign; 4951 4952 /* Assign offsets to global GOT entries and count how many 4953 relocations they need. */ 4954 save_assign = g->assigned_low_gotno; 4955 g->assigned_low_gotno = g->local_gotno; 4956 tga.info = info; 4957 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4958 tga.g = g; 4959 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); 4960 if (!tga.g) 4961 return FALSE; 4962 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); 4963 g->assigned_low_gotno = save_assign; 4964 4965 if (bfd_link_pic (info)) 4966 { 4967 g->relocs += g->local_gotno - g->assigned_low_gotno; 4968 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno 4969 + g->next->global_gotno 4970 + g->next->tls_gotno 4971 + htab->reserved_gotno); 4972 } 4973 needed_relocs += g->relocs; 4974 } 4975 needed_relocs += g->relocs; 4976 4977 if (needed_relocs) 4978 mips_elf_allocate_dynamic_relocations (dynobj, info, 4979 needed_relocs); 4980 4981 return TRUE; 4982 } 4983 4984 4985 /* Returns the first relocation of type r_type found, beginning with 4987 RELOCATION. RELEND is one-past-the-end of the relocation table. */ 4988 4989 static const Elf_Internal_Rela * 4990 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, 4991 const Elf_Internal_Rela *relocation, 4992 const Elf_Internal_Rela *relend) 4993 { 4994 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); 4995 4996 while (relocation < relend) 4997 { 4998 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type 4999 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) 5000 return relocation; 5001 5002 ++relocation; 5003 } 5004 5005 /* We didn't find it. */ 5006 return NULL; 5007 } 5008 5009 /* Return whether an input relocation is against a local symbol. */ 5010 5011 static bfd_boolean 5012 mips_elf_local_relocation_p (bfd *input_bfd, 5013 const Elf_Internal_Rela *relocation, 5014 asection **local_sections) 5015 { 5016 unsigned long r_symndx; 5017 Elf_Internal_Shdr *symtab_hdr; 5018 size_t extsymoff; 5019 5020 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5021 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5022 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; 5023 5024 if (r_symndx < extsymoff) 5025 return TRUE; 5026 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) 5027 return TRUE; 5028 5029 return FALSE; 5030 } 5031 5032 /* Sign-extend VALUE, which has the indicated number of BITS. */ 5034 5035 bfd_vma 5036 _bfd_mips_elf_sign_extend (bfd_vma value, int bits) 5037 { 5038 if (value & ((bfd_vma) 1 << (bits - 1))) 5039 /* VALUE is negative. */ 5040 value |= ((bfd_vma) - 1) << bits; 5041 5042 return value; 5043 } 5044 5045 /* Return non-zero if the indicated VALUE has overflowed the maximum 5046 range expressible by a signed number with the indicated number of 5047 BITS. */ 5048 5049 static bfd_boolean 5050 mips_elf_overflow_p (bfd_vma value, int bits) 5051 { 5052 bfd_signed_vma svalue = (bfd_signed_vma) value; 5053 5054 if (svalue > (1 << (bits - 1)) - 1) 5055 /* The value is too big. */ 5056 return TRUE; 5057 else if (svalue < -(1 << (bits - 1))) 5058 /* The value is too small. */ 5059 return TRUE; 5060 5061 /* All is well. */ 5062 return FALSE; 5063 } 5064 5065 /* Calculate the %high function. */ 5066 5067 static bfd_vma 5068 mips_elf_high (bfd_vma value) 5069 { 5070 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; 5071 } 5072 5073 /* Calculate the %higher function. */ 5074 5075 static bfd_vma 5076 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) 5077 { 5078 #ifdef BFD64 5079 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; 5080 #else 5081 abort (); 5082 return MINUS_ONE; 5083 #endif 5084 } 5085 5086 /* Calculate the %highest function. */ 5087 5088 static bfd_vma 5089 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) 5090 { 5091 #ifdef BFD64 5092 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; 5093 #else 5094 abort (); 5095 return MINUS_ONE; 5096 #endif 5097 } 5098 5099 /* Create the .compact_rel section. */ 5101 5102 static bfd_boolean 5103 mips_elf_create_compact_rel_section 5104 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) 5105 { 5106 flagword flags; 5107 register asection *s; 5108 5109 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) 5110 { 5111 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED 5112 | SEC_READONLY); 5113 5114 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); 5115 if (s == NULL 5116 || ! bfd_set_section_alignment (abfd, s, 5117 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 5118 return FALSE; 5119 5120 s->size = sizeof (Elf32_External_compact_rel); 5121 } 5122 5123 return TRUE; 5124 } 5125 5126 /* Create the .got section to hold the global offset table. */ 5127 5128 static bfd_boolean 5129 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 5130 { 5131 flagword flags; 5132 register asection *s; 5133 struct elf_link_hash_entry *h; 5134 struct bfd_link_hash_entry *bh; 5135 struct mips_elf_link_hash_table *htab; 5136 5137 htab = mips_elf_hash_table (info); 5138 BFD_ASSERT (htab != NULL); 5139 5140 /* This function may be called more than once. */ 5141 if (htab->sgot) 5142 return TRUE; 5143 5144 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 5145 | SEC_LINKER_CREATED); 5146 5147 /* We have to use an alignment of 2**4 here because this is hardcoded 5148 in the function stub generation and in the linker script. */ 5149 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 5150 if (s == NULL 5151 || ! bfd_set_section_alignment (abfd, s, 4)) 5152 return FALSE; 5153 htab->sgot = s; 5154 5155 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the 5156 linker script because we don't want to define the symbol if we 5157 are not creating a global offset table. */ 5158 bh = NULL; 5159 if (! (_bfd_generic_link_add_one_symbol 5160 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 5161 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 5162 return FALSE; 5163 5164 h = (struct elf_link_hash_entry *) bh; 5165 h->non_elf = 0; 5166 h->def_regular = 1; 5167 h->type = STT_OBJECT; 5168 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 5169 elf_hash_table (info)->hgot = h; 5170 5171 if (bfd_link_pic (info) 5172 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 5173 return FALSE; 5174 5175 htab->got_info = mips_elf_create_got_info (abfd); 5176 mips_elf_section_data (s)->elf.this_hdr.sh_flags 5177 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 5178 5179 /* We also need a .got.plt section when generating PLTs. */ 5180 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", 5181 SEC_ALLOC | SEC_LOAD 5182 | SEC_HAS_CONTENTS 5183 | SEC_IN_MEMORY 5184 | SEC_LINKER_CREATED); 5185 if (s == NULL) 5186 return FALSE; 5187 htab->sgotplt = s; 5188 5189 return TRUE; 5190 } 5191 5192 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or 5194 __GOTT_INDEX__ symbols. These symbols are only special for 5195 shared objects; they are not used in executables. */ 5196 5197 static bfd_boolean 5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) 5199 { 5200 return (mips_elf_hash_table (info)->is_vxworks 5201 && bfd_link_pic (info) 5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); 5204 } 5205 5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might 5207 require an la25 stub. See also mips_elf_local_pic_function_p, 5208 which determines whether the destination function ever requires a 5209 stub. */ 5210 5211 static bfd_boolean 5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, 5213 bfd_boolean target_is_16_bit_code_p) 5214 { 5215 /* We specifically ignore branches and jumps from EF_PIC objects, 5216 where the onus is on the compiler or programmer to perform any 5217 necessary initialization of $25. Sometimes such initialization 5218 is unnecessary; for example, -mno-shared functions do not use 5219 the incoming value of $25, and may therefore be called directly. */ 5220 if (PIC_OBJECT_P (input_bfd)) 5221 return FALSE; 5222 5223 switch (r_type) 5224 { 5225 case R_MIPS_26: 5226 case R_MIPS_PC16: 5227 case R_MIPS_PC21_S2: 5228 case R_MIPS_PC26_S2: 5229 case R_MICROMIPS_26_S1: 5230 case R_MICROMIPS_PC7_S1: 5231 case R_MICROMIPS_PC10_S1: 5232 case R_MICROMIPS_PC16_S1: 5233 case R_MICROMIPS_PC23_S2: 5234 return TRUE; 5235 5236 case R_MIPS16_26: 5237 return !target_is_16_bit_code_p; 5238 5239 default: 5240 return FALSE; 5241 } 5242 } 5243 5244 /* Calculate the value produced by the RELOCATION (which comes from 5246 the INPUT_BFD). The ADDEND is the addend to use for this 5247 RELOCATION; RELOCATION->R_ADDEND is ignored. 5248 5249 The result of the relocation calculation is stored in VALUEP. 5250 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field 5251 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 5252 5253 This function returns bfd_reloc_continue if the caller need take no 5254 further action regarding this relocation, bfd_reloc_notsupported if 5255 something goes dramatically wrong, bfd_reloc_overflow if an 5256 overflow occurs, and bfd_reloc_ok to indicate success. */ 5257 5258 static bfd_reloc_status_type 5259 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, 5260 asection *input_section, 5261 struct bfd_link_info *info, 5262 const Elf_Internal_Rela *relocation, 5263 bfd_vma addend, reloc_howto_type *howto, 5264 Elf_Internal_Sym *local_syms, 5265 asection **local_sections, bfd_vma *valuep, 5266 const char **namep, 5267 bfd_boolean *cross_mode_jump_p, 5268 bfd_boolean save_addend) 5269 { 5270 /* The eventual value we will return. */ 5271 bfd_vma value; 5272 /* The address of the symbol against which the relocation is 5273 occurring. */ 5274 bfd_vma symbol = 0; 5275 /* The final GP value to be used for the relocatable, executable, or 5276 shared object file being produced. */ 5277 bfd_vma gp; 5278 /* The place (section offset or address) of the storage unit being 5279 relocated. */ 5280 bfd_vma p; 5281 /* The value of GP used to create the relocatable object. */ 5282 bfd_vma gp0; 5283 /* The offset into the global offset table at which the address of 5284 the relocation entry symbol, adjusted by the addend, resides 5285 during execution. */ 5286 bfd_vma g = MINUS_ONE; 5287 /* The section in which the symbol referenced by the relocation is 5288 located. */ 5289 asection *sec = NULL; 5290 struct mips_elf_link_hash_entry *h = NULL; 5291 /* TRUE if the symbol referred to by this relocation is a local 5292 symbol. */ 5293 bfd_boolean local_p, was_local_p; 5294 /* TRUE if the symbol referred to by this relocation is a section 5295 symbol. */ 5296 bfd_boolean section_p = FALSE; 5297 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ 5298 bfd_boolean gp_disp_p = FALSE; 5299 /* TRUE if the symbol referred to by this relocation is 5300 "__gnu_local_gp". */ 5301 bfd_boolean gnu_local_gp_p = FALSE; 5302 Elf_Internal_Shdr *symtab_hdr; 5303 size_t extsymoff; 5304 unsigned long r_symndx; 5305 int r_type; 5306 /* TRUE if overflow occurred during the calculation of the 5307 relocation value. */ 5308 bfd_boolean overflowed_p; 5309 /* TRUE if this relocation refers to a MIPS16 function. */ 5310 bfd_boolean target_is_16_bit_code_p = FALSE; 5311 bfd_boolean target_is_micromips_code_p = FALSE; 5312 struct mips_elf_link_hash_table *htab; 5313 bfd *dynobj; 5314 5315 dynobj = elf_hash_table (info)->dynobj; 5316 htab = mips_elf_hash_table (info); 5317 BFD_ASSERT (htab != NULL); 5318 5319 /* Parse the relocation. */ 5320 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5321 r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5322 p = (input_section->output_section->vma 5323 + input_section->output_offset 5324 + relocation->r_offset); 5325 5326 /* Assume that there will be no overflow. */ 5327 overflowed_p = FALSE; 5328 5329 /* Figure out whether or not the symbol is local, and get the offset 5330 used in the array of hash table entries. */ 5331 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5332 local_p = mips_elf_local_relocation_p (input_bfd, relocation, 5333 local_sections); 5334 was_local_p = local_p; 5335 if (! elf_bad_symtab (input_bfd)) 5336 extsymoff = symtab_hdr->sh_info; 5337 else 5338 { 5339 /* The symbol table does not follow the rule that local symbols 5340 must come before globals. */ 5341 extsymoff = 0; 5342 } 5343 5344 /* Figure out the value of the symbol. */ 5345 if (local_p) 5346 { 5347 Elf_Internal_Sym *sym; 5348 5349 sym = local_syms + r_symndx; 5350 sec = local_sections[r_symndx]; 5351 5352 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION; 5353 5354 symbol = sec->output_section->vma + sec->output_offset; 5355 if (!section_p || (sec->flags & SEC_MERGE)) 5356 symbol += sym->st_value; 5357 if ((sec->flags & SEC_MERGE) && section_p) 5358 { 5359 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); 5360 addend -= symbol; 5361 addend += sec->output_section->vma + sec->output_offset; 5362 } 5363 5364 /* MIPS16/microMIPS text labels should be treated as odd. */ 5365 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 5366 ++symbol; 5367 5368 /* Record the name of this symbol, for our caller. */ 5369 *namep = bfd_elf_string_from_elf_section (input_bfd, 5370 symtab_hdr->sh_link, 5371 sym->st_name); 5372 if (*namep == NULL || **namep == '\0') 5373 *namep = bfd_section_name (input_bfd, sec); 5374 5375 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); 5376 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); 5377 } 5378 else 5379 { 5380 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ 5381 5382 /* For global symbols we look up the symbol in the hash-table. */ 5383 h = ((struct mips_elf_link_hash_entry *) 5384 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); 5385 /* Find the real hash-table entry for this symbol. */ 5386 while (h->root.root.type == bfd_link_hash_indirect 5387 || h->root.root.type == bfd_link_hash_warning) 5388 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 5389 5390 /* Record the name of this symbol, for our caller. */ 5391 *namep = h->root.root.root.string; 5392 5393 /* See if this is the special _gp_disp symbol. Note that such a 5394 symbol must always be a global symbol. */ 5395 if (strcmp (*namep, "_gp_disp") == 0 5396 && ! NEWABI_P (input_bfd)) 5397 { 5398 /* Relocations against _gp_disp are permitted only with 5399 R_MIPS_HI16 and R_MIPS_LO16 relocations. */ 5400 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) 5401 return bfd_reloc_notsupported; 5402 5403 gp_disp_p = TRUE; 5404 } 5405 /* See if this is the special _gp symbol. Note that such a 5406 symbol must always be a global symbol. */ 5407 else if (strcmp (*namep, "__gnu_local_gp") == 0) 5408 gnu_local_gp_p = TRUE; 5409 5410 5411 /* If this symbol is defined, calculate its address. Note that 5412 _gp_disp is a magic symbol, always implicitly defined by the 5413 linker, so it's inappropriate to check to see whether or not 5414 its defined. */ 5415 else if ((h->root.root.type == bfd_link_hash_defined 5416 || h->root.root.type == bfd_link_hash_defweak) 5417 && h->root.root.u.def.section) 5418 { 5419 sec = h->root.root.u.def.section; 5420 if (sec->output_section) 5421 symbol = (h->root.root.u.def.value 5422 + sec->output_section->vma 5423 + sec->output_offset); 5424 else 5425 symbol = h->root.root.u.def.value; 5426 } 5427 else if (h->root.root.type == bfd_link_hash_undefweak) 5428 /* We allow relocations against undefined weak symbols, giving 5429 it the value zero, so that you can undefined weak functions 5430 and check to see if they exist by looking at their 5431 addresses. */ 5432 symbol = 0; 5433 else if (info->unresolved_syms_in_objects == RM_IGNORE 5434 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5435 symbol = 0; 5436 else if (strcmp (*namep, SGI_COMPAT (input_bfd) 5437 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) 5438 { 5439 /* If this is a dynamic link, we should have created a 5440 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol 5441 in in _bfd_mips_elf_create_dynamic_sections. 5442 Otherwise, we should define the symbol with a value of 0. 5443 FIXME: It should probably get into the symbol table 5444 somehow as well. */ 5445 BFD_ASSERT (! bfd_link_pic (info)); 5446 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); 5447 symbol = 0; 5448 } 5449 else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) 5450 { 5451 /* This is an optional symbol - an Irix specific extension to the 5452 ELF spec. Ignore it for now. 5453 XXX - FIXME - there is more to the spec for OPTIONAL symbols 5454 than simply ignoring them, but we do not handle this for now. 5455 For information see the "64-bit ELF Object File Specification" 5456 which is available from here: 5457 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ 5458 symbol = 0; 5459 } 5460 else 5461 { 5462 (*info->callbacks->undefined_symbol) 5463 (info, h->root.root.root.string, input_bfd, 5464 input_section, relocation->r_offset, 5465 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) 5466 || ELF_ST_VISIBILITY (h->root.other)); 5467 return bfd_reloc_undefined; 5468 } 5469 5470 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); 5471 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); 5472 } 5473 5474 /* If this is a reference to a 16-bit function with a stub, we need 5475 to redirect the relocation to the stub unless: 5476 5477 (a) the relocation is for a MIPS16 JAL; 5478 5479 (b) the relocation is for a MIPS16 PIC call, and there are no 5480 non-MIPS16 uses of the GOT slot; or 5481 5482 (c) the section allows direct references to MIPS16 functions. */ 5483 if (r_type != R_MIPS16_26 5484 && !bfd_link_relocatable (info) 5485 && ((h != NULL 5486 && h->fn_stub != NULL 5487 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) 5488 || (local_p 5489 && mips_elf_tdata (input_bfd)->local_stubs != NULL 5490 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) 5491 && !section_allows_mips16_refs_p (input_section)) 5492 { 5493 /* This is a 32- or 64-bit call to a 16-bit function. We should 5494 have already noticed that we were going to need the 5495 stub. */ 5496 if (local_p) 5497 { 5498 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; 5499 value = 0; 5500 } 5501 else 5502 { 5503 BFD_ASSERT (h->need_fn_stub); 5504 if (h->la25_stub) 5505 { 5506 /* If a LA25 header for the stub itself exists, point to the 5507 prepended LUI/ADDIU sequence. */ 5508 sec = h->la25_stub->stub_section; 5509 value = h->la25_stub->offset; 5510 } 5511 else 5512 { 5513 sec = h->fn_stub; 5514 value = 0; 5515 } 5516 } 5517 5518 symbol = sec->output_section->vma + sec->output_offset + value; 5519 /* The target is 16-bit, but the stub isn't. */ 5520 target_is_16_bit_code_p = FALSE; 5521 } 5522 /* If this is a MIPS16 call with a stub, that is made through the PLT or 5523 to a standard MIPS function, we need to redirect the call to the stub. 5524 Note that we specifically exclude R_MIPS16_CALL16 from this behavior; 5525 indirect calls should use an indirect stub instead. */ 5526 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info) 5527 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) 5528 || (local_p 5529 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL 5530 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) 5531 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) 5532 { 5533 if (local_p) 5534 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; 5535 else 5536 { 5537 /* If both call_stub and call_fp_stub are defined, we can figure 5538 out which one to use by checking which one appears in the input 5539 file. */ 5540 if (h->call_stub != NULL && h->call_fp_stub != NULL) 5541 { 5542 asection *o; 5543 5544 sec = NULL; 5545 for (o = input_bfd->sections; o != NULL; o = o->next) 5546 { 5547 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) 5548 { 5549 sec = h->call_fp_stub; 5550 break; 5551 } 5552 } 5553 if (sec == NULL) 5554 sec = h->call_stub; 5555 } 5556 else if (h->call_stub != NULL) 5557 sec = h->call_stub; 5558 else 5559 sec = h->call_fp_stub; 5560 } 5561 5562 BFD_ASSERT (sec->size > 0); 5563 symbol = sec->output_section->vma + sec->output_offset; 5564 } 5565 /* If this is a direct call to a PIC function, redirect to the 5566 non-PIC stub. */ 5567 else if (h != NULL && h->la25_stub 5568 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, 5569 target_is_16_bit_code_p)) 5570 symbol = (h->la25_stub->stub_section->output_section->vma 5571 + h->la25_stub->stub_section->output_offset 5572 + h->la25_stub->offset); 5573 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT 5574 entry is used if a standard PLT entry has also been made. In this 5575 case the symbol will have been set by mips_elf_set_plt_sym_value 5576 to point to the standard PLT entry, so redirect to the compressed 5577 one. */ 5578 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) 5579 && !bfd_link_relocatable (info) 5580 && h != NULL 5581 && h->use_plt_entry 5582 && h->root.plt.plist->comp_offset != MINUS_ONE 5583 && h->root.plt.plist->mips_offset != MINUS_ONE) 5584 { 5585 bfd_boolean micromips_p = MICROMIPS_P (abfd); 5586 5587 sec = htab->splt; 5588 symbol = (sec->output_section->vma 5589 + sec->output_offset 5590 + htab->plt_header_size 5591 + htab->plt_mips_offset 5592 + h->root.plt.plist->comp_offset 5593 + 1); 5594 5595 target_is_16_bit_code_p = !micromips_p; 5596 target_is_micromips_code_p = micromips_p; 5597 } 5598 5599 /* Make sure MIPS16 and microMIPS are not used together. */ 5600 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p) 5601 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) 5602 { 5603 (*_bfd_error_handler) 5604 (_("MIPS16 and microMIPS functions cannot call each other")); 5605 return bfd_reloc_notsupported; 5606 } 5607 5608 /* Calls from 16-bit code to 32-bit code and vice versa require the 5609 mode change. However, we can ignore calls to undefined weak symbols, 5610 which should never be executed at runtime. This exception is important 5611 because the assembly writer may have "known" that any definition of the 5612 symbol would be 16-bit code, and that direct jumps were therefore 5613 acceptable. */ 5614 *cross_mode_jump_p = (!bfd_link_relocatable (info) 5615 && !(h && h->root.root.type == bfd_link_hash_undefweak) 5616 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) 5617 || (r_type == R_MICROMIPS_26_S1 5618 && !target_is_micromips_code_p) 5619 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) 5620 && (target_is_16_bit_code_p 5621 || target_is_micromips_code_p)))); 5622 5623 local_p = (h == NULL || mips_use_local_got_p (info, h)); 5624 5625 gp0 = _bfd_get_gp_value (input_bfd); 5626 gp = _bfd_get_gp_value (abfd); 5627 if (htab->got_info) 5628 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); 5629 5630 if (gnu_local_gp_p) 5631 symbol = gp; 5632 5633 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent 5634 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the 5635 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ 5636 if (got_page_reloc_p (r_type) && !local_p) 5637 { 5638 r_type = (micromips_reloc_p (r_type) 5639 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); 5640 addend = 0; 5641 } 5642 5643 /* If we haven't already determined the GOT offset, and we're going 5644 to need it, get it now. */ 5645 switch (r_type) 5646 { 5647 case R_MIPS16_CALL16: 5648 case R_MIPS16_GOT16: 5649 case R_MIPS_CALL16: 5650 case R_MIPS_GOT16: 5651 case R_MIPS_GOT_DISP: 5652 case R_MIPS_GOT_HI16: 5653 case R_MIPS_CALL_HI16: 5654 case R_MIPS_GOT_LO16: 5655 case R_MIPS_CALL_LO16: 5656 case R_MICROMIPS_CALL16: 5657 case R_MICROMIPS_GOT16: 5658 case R_MICROMIPS_GOT_DISP: 5659 case R_MICROMIPS_GOT_HI16: 5660 case R_MICROMIPS_CALL_HI16: 5661 case R_MICROMIPS_GOT_LO16: 5662 case R_MICROMIPS_CALL_LO16: 5663 case R_MIPS_TLS_GD: 5664 case R_MIPS_TLS_GOTTPREL: 5665 case R_MIPS_TLS_LDM: 5666 case R_MIPS16_TLS_GD: 5667 case R_MIPS16_TLS_GOTTPREL: 5668 case R_MIPS16_TLS_LDM: 5669 case R_MICROMIPS_TLS_GD: 5670 case R_MICROMIPS_TLS_GOTTPREL: 5671 case R_MICROMIPS_TLS_LDM: 5672 /* Find the index into the GOT where this value is located. */ 5673 if (tls_ldm_reloc_p (r_type)) 5674 { 5675 g = mips_elf_local_got_index (abfd, input_bfd, info, 5676 0, 0, NULL, r_type); 5677 if (g == MINUS_ONE) 5678 return bfd_reloc_outofrange; 5679 } 5680 else if (!local_p) 5681 { 5682 /* On VxWorks, CALL relocations should refer to the .got.plt 5683 entry, which is initialized to point at the PLT stub. */ 5684 if (htab->is_vxworks 5685 && (call_hi16_reloc_p (r_type) 5686 || call_lo16_reloc_p (r_type) 5687 || call16_reloc_p (r_type))) 5688 { 5689 BFD_ASSERT (addend == 0); 5690 BFD_ASSERT (h->root.needs_plt); 5691 g = mips_elf_gotplt_index (info, &h->root); 5692 } 5693 else 5694 { 5695 BFD_ASSERT (addend == 0); 5696 g = mips_elf_global_got_index (abfd, info, input_bfd, 5697 &h->root, r_type); 5698 if (!TLS_RELOC_P (r_type) 5699 && !elf_hash_table (info)->dynamic_sections_created) 5700 /* This is a static link. We must initialize the GOT entry. */ 5701 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); 5702 } 5703 } 5704 else if (!htab->is_vxworks 5705 && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) 5706 /* The calculation below does not involve "g". */ 5707 break; 5708 else 5709 { 5710 g = mips_elf_local_got_index (abfd, input_bfd, info, 5711 symbol + addend, r_symndx, h, r_type); 5712 if (g == MINUS_ONE) 5713 return bfd_reloc_outofrange; 5714 } 5715 5716 /* Convert GOT indices to actual offsets. */ 5717 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); 5718 break; 5719 } 5720 5721 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ 5722 symbols are resolved by the loader. Add them to .rela.dyn. */ 5723 if (h != NULL && is_gott_symbol (info, &h->root)) 5724 { 5725 Elf_Internal_Rela outrel; 5726 bfd_byte *loc; 5727 asection *s; 5728 5729 s = mips_elf_rel_dyn_section (info, FALSE); 5730 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 5731 5732 outrel.r_offset = (input_section->output_section->vma 5733 + input_section->output_offset 5734 + relocation->r_offset); 5735 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); 5736 outrel.r_addend = addend; 5737 bfd_elf32_swap_reloca_out (abfd, &outrel, loc); 5738 5739 /* If we've written this relocation for a readonly section, 5740 we need to set DF_TEXTREL again, so that we do not delete the 5741 DT_TEXTREL tag. */ 5742 if (MIPS_ELF_READONLY_SECTION (input_section)) 5743 info->flags |= DF_TEXTREL; 5744 5745 *valuep = 0; 5746 return bfd_reloc_ok; 5747 } 5748 5749 /* Figure out what kind of relocation is being performed. */ 5750 switch (r_type) 5751 { 5752 case R_MIPS_NONE: 5753 return bfd_reloc_continue; 5754 5755 case R_MIPS_16: 5756 if (howto->partial_inplace) 5757 addend = _bfd_mips_elf_sign_extend (addend, 16); 5758 value = symbol + addend; 5759 overflowed_p = mips_elf_overflow_p (value, 16); 5760 break; 5761 5762 case R_MIPS_32: 5763 case R_MIPS_REL32: 5764 case R_MIPS_64: 5765 if ((bfd_link_pic (info) 5766 || (htab->root.dynamic_sections_created 5767 && h != NULL 5768 && h->root.def_dynamic 5769 && !h->root.def_regular 5770 && !h->has_static_relocs)) 5771 && r_symndx != STN_UNDEF 5772 && (h == NULL 5773 || h->root.root.type != bfd_link_hash_undefweak 5774 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5775 && (input_section->flags & SEC_ALLOC) != 0) 5776 { 5777 /* If we're creating a shared library, then we can't know 5778 where the symbol will end up. So, we create a relocation 5779 record in the output, and leave the job up to the dynamic 5780 linker. We must do the same for executable references to 5781 shared library symbols, unless we've decided to use copy 5782 relocs or PLTs instead. */ 5783 value = addend; 5784 if (!mips_elf_create_dynamic_relocation (abfd, 5785 info, 5786 relocation, 5787 h, 5788 sec, 5789 symbol, 5790 &value, 5791 input_section)) 5792 return bfd_reloc_undefined; 5793 } 5794 else 5795 { 5796 if (r_type != R_MIPS_REL32) 5797 value = symbol + addend; 5798 else 5799 value = addend; 5800 } 5801 value &= howto->dst_mask; 5802 break; 5803 5804 case R_MIPS_PC32: 5805 value = symbol + addend - p; 5806 value &= howto->dst_mask; 5807 break; 5808 5809 case R_MIPS16_26: 5810 /* The calculation for R_MIPS16_26 is just the same as for an 5811 R_MIPS_26. It's only the storage of the relocated field into 5812 the output file that's different. That's handled in 5813 mips_elf_perform_relocation. So, we just fall through to the 5814 R_MIPS_26 case here. */ 5815 case R_MIPS_26: 5816 case R_MICROMIPS_26_S1: 5817 { 5818 unsigned int shift; 5819 5820 /* Shift is 2, unusually, for microMIPS JALX. */ 5821 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; 5822 5823 if (howto->partial_inplace && !section_p) 5824 value = _bfd_mips_elf_sign_extend (addend, 26 + shift); 5825 else 5826 value = addend; 5827 value += symbol; 5828 5829 /* Make sure the target of JALX is word-aligned. Bit 0 must be 5830 the correct ISA mode selector and bit 1 must be 0. */ 5831 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26)) 5832 return bfd_reloc_outofrange; 5833 5834 value >>= shift; 5835 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5836 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); 5837 value &= howto->dst_mask; 5838 } 5839 break; 5840 5841 case R_MIPS_TLS_DTPREL_HI16: 5842 case R_MIPS16_TLS_DTPREL_HI16: 5843 case R_MICROMIPS_TLS_DTPREL_HI16: 5844 value = (mips_elf_high (addend + symbol - dtprel_base (info)) 5845 & howto->dst_mask); 5846 break; 5847 5848 case R_MIPS_TLS_DTPREL_LO16: 5849 case R_MIPS_TLS_DTPREL32: 5850 case R_MIPS_TLS_DTPREL64: 5851 case R_MIPS16_TLS_DTPREL_LO16: 5852 case R_MICROMIPS_TLS_DTPREL_LO16: 5853 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; 5854 break; 5855 5856 case R_MIPS_TLS_TPREL_HI16: 5857 case R_MIPS16_TLS_TPREL_HI16: 5858 case R_MICROMIPS_TLS_TPREL_HI16: 5859 value = (mips_elf_high (addend + symbol - tprel_base (info)) 5860 & howto->dst_mask); 5861 break; 5862 5863 case R_MIPS_TLS_TPREL_LO16: 5864 case R_MIPS_TLS_TPREL32: 5865 case R_MIPS_TLS_TPREL64: 5866 case R_MIPS16_TLS_TPREL_LO16: 5867 case R_MICROMIPS_TLS_TPREL_LO16: 5868 value = (symbol + addend - tprel_base (info)) & howto->dst_mask; 5869 break; 5870 5871 case R_MIPS_HI16: 5872 case R_MIPS16_HI16: 5873 case R_MICROMIPS_HI16: 5874 if (!gp_disp_p) 5875 { 5876 value = mips_elf_high (addend + symbol); 5877 value &= howto->dst_mask; 5878 } 5879 else 5880 { 5881 /* For MIPS16 ABI code we generate this sequence 5882 0: li $v0,%hi(_gp_disp) 5883 4: addiupc $v1,%lo(_gp_disp) 5884 8: sll $v0,16 5885 12: addu $v0,$v1 5886 14: move $gp,$v0 5887 So the offsets of hi and lo relocs are the same, but the 5888 base $pc is that used by the ADDIUPC instruction at $t9 + 4. 5889 ADDIUPC clears the low two bits of the instruction address, 5890 so the base is ($t9 + 4) & ~3. */ 5891 if (r_type == R_MIPS16_HI16) 5892 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); 5893 /* The microMIPS .cpload sequence uses the same assembly 5894 instructions as the traditional psABI version, but the 5895 incoming $t9 has the low bit set. */ 5896 else if (r_type == R_MICROMIPS_HI16) 5897 value = mips_elf_high (addend + gp - p - 1); 5898 else 5899 value = mips_elf_high (addend + gp - p); 5900 overflowed_p = mips_elf_overflow_p (value, 16); 5901 } 5902 break; 5903 5904 case R_MIPS_LO16: 5905 case R_MIPS16_LO16: 5906 case R_MICROMIPS_LO16: 5907 case R_MICROMIPS_HI0_LO16: 5908 if (!gp_disp_p) 5909 value = (symbol + addend) & howto->dst_mask; 5910 else 5911 { 5912 /* See the comment for R_MIPS16_HI16 above for the reason 5913 for this conditional. */ 5914 if (r_type == R_MIPS16_LO16) 5915 value = addend + gp - (p & ~(bfd_vma) 0x3); 5916 else if (r_type == R_MICROMIPS_LO16 5917 || r_type == R_MICROMIPS_HI0_LO16) 5918 value = addend + gp - p + 3; 5919 else 5920 value = addend + gp - p + 4; 5921 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation 5922 for overflow. But, on, say, IRIX5, relocations against 5923 _gp_disp are normally generated from the .cpload 5924 pseudo-op. It generates code that normally looks like 5925 this: 5926 5927 lui $gp,%hi(_gp_disp) 5928 addiu $gp,$gp,%lo(_gp_disp) 5929 addu $gp,$gp,$t9 5930 5931 Here $t9 holds the address of the function being called, 5932 as required by the MIPS ELF ABI. The R_MIPS_LO16 5933 relocation can easily overflow in this situation, but the 5934 R_MIPS_HI16 relocation will handle the overflow. 5935 Therefore, we consider this a bug in the MIPS ABI, and do 5936 not check for overflow here. */ 5937 } 5938 break; 5939 5940 case R_MIPS_LITERAL: 5941 case R_MICROMIPS_LITERAL: 5942 /* Because we don't merge literal sections, we can handle this 5943 just like R_MIPS_GPREL16. In the long run, we should merge 5944 shared literals, and then we will need to additional work 5945 here. */ 5946 5947 /* Fall through. */ 5948 5949 case R_MIPS16_GPREL: 5950 /* The R_MIPS16_GPREL performs the same calculation as 5951 R_MIPS_GPREL16, but stores the relocated bits in a different 5952 order. We don't need to do anything special here; the 5953 differences are handled in mips_elf_perform_relocation. */ 5954 case R_MIPS_GPREL16: 5955 case R_MICROMIPS_GPREL7_S2: 5956 case R_MICROMIPS_GPREL16: 5957 /* Only sign-extend the addend if it was extracted from the 5958 instruction. If the addend was separate, leave it alone, 5959 otherwise we may lose significant bits. */ 5960 if (howto->partial_inplace) 5961 addend = _bfd_mips_elf_sign_extend (addend, 16); 5962 value = symbol + addend - gp; 5963 /* If the symbol was local, any earlier relocatable links will 5964 have adjusted its addend with the gp offset, so compensate 5965 for that now. Don't do it for symbols forced local in this 5966 link, though, since they won't have had the gp offset applied 5967 to them before. */ 5968 if (was_local_p) 5969 value += gp0; 5970 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5971 overflowed_p = mips_elf_overflow_p (value, 16); 5972 break; 5973 5974 case R_MIPS16_GOT16: 5975 case R_MIPS16_CALL16: 5976 case R_MIPS_GOT16: 5977 case R_MIPS_CALL16: 5978 case R_MICROMIPS_GOT16: 5979 case R_MICROMIPS_CALL16: 5980 /* VxWorks does not have separate local and global semantics for 5981 R_MIPS*_GOT16; every relocation evaluates to "G". */ 5982 if (!htab->is_vxworks && local_p) 5983 { 5984 value = mips_elf_got16_entry (abfd, input_bfd, info, 5985 symbol + addend, !was_local_p); 5986 if (value == MINUS_ONE) 5987 return bfd_reloc_outofrange; 5988 value 5989 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 5990 overflowed_p = mips_elf_overflow_p (value, 16); 5991 break; 5992 } 5993 5994 /* Fall through. */ 5995 5996 case R_MIPS_TLS_GD: 5997 case R_MIPS_TLS_GOTTPREL: 5998 case R_MIPS_TLS_LDM: 5999 case R_MIPS_GOT_DISP: 6000 case R_MIPS16_TLS_GD: 6001 case R_MIPS16_TLS_GOTTPREL: 6002 case R_MIPS16_TLS_LDM: 6003 case R_MICROMIPS_TLS_GD: 6004 case R_MICROMIPS_TLS_GOTTPREL: 6005 case R_MICROMIPS_TLS_LDM: 6006 case R_MICROMIPS_GOT_DISP: 6007 value = g; 6008 overflowed_p = mips_elf_overflow_p (value, 16); 6009 break; 6010 6011 case R_MIPS_GPREL32: 6012 value = (addend + symbol + gp0 - gp); 6013 if (!save_addend) 6014 value &= howto->dst_mask; 6015 break; 6016 6017 case R_MIPS_PC16: 6018 case R_MIPS_GNU_REL16_S2: 6019 if (howto->partial_inplace) 6020 addend = _bfd_mips_elf_sign_extend (addend, 18); 6021 6022 if ((symbol + addend) & 3) 6023 return bfd_reloc_outofrange; 6024 6025 value = symbol + addend - p; 6026 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6027 overflowed_p = mips_elf_overflow_p (value, 18); 6028 value >>= howto->rightshift; 6029 value &= howto->dst_mask; 6030 break; 6031 6032 case R_MIPS16_PC16_S1: 6033 if (howto->partial_inplace) 6034 addend = _bfd_mips_elf_sign_extend (addend, 17); 6035 6036 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6037 && ((symbol + addend) & 1) == 0) 6038 return bfd_reloc_outofrange; 6039 6040 value = symbol + addend - p; 6041 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6042 overflowed_p = mips_elf_overflow_p (value, 17); 6043 value >>= howto->rightshift; 6044 value &= howto->dst_mask; 6045 break; 6046 6047 case R_MIPS_PC21_S2: 6048 if (howto->partial_inplace) 6049 addend = _bfd_mips_elf_sign_extend (addend, 23); 6050 6051 if ((symbol + addend) & 3) 6052 return bfd_reloc_outofrange; 6053 6054 value = symbol + addend - p; 6055 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6056 overflowed_p = mips_elf_overflow_p (value, 23); 6057 value >>= howto->rightshift; 6058 value &= howto->dst_mask; 6059 break; 6060 6061 case R_MIPS_PC26_S2: 6062 if (howto->partial_inplace) 6063 addend = _bfd_mips_elf_sign_extend (addend, 28); 6064 6065 if ((symbol + addend) & 3) 6066 return bfd_reloc_outofrange; 6067 6068 value = symbol + addend - p; 6069 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6070 overflowed_p = mips_elf_overflow_p (value, 28); 6071 value >>= howto->rightshift; 6072 value &= howto->dst_mask; 6073 break; 6074 6075 case R_MIPS_PC18_S3: 6076 if (howto->partial_inplace) 6077 addend = _bfd_mips_elf_sign_extend (addend, 21); 6078 6079 if ((symbol + addend) & 7) 6080 return bfd_reloc_outofrange; 6081 6082 value = symbol + addend - ((p | 7) ^ 7); 6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6084 overflowed_p = mips_elf_overflow_p (value, 21); 6085 value >>= howto->rightshift; 6086 value &= howto->dst_mask; 6087 break; 6088 6089 case R_MIPS_PC19_S2: 6090 if (howto->partial_inplace) 6091 addend = _bfd_mips_elf_sign_extend (addend, 21); 6092 6093 if ((symbol + addend) & 3) 6094 return bfd_reloc_outofrange; 6095 6096 value = symbol + addend - p; 6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6098 overflowed_p = mips_elf_overflow_p (value, 21); 6099 value >>= howto->rightshift; 6100 value &= howto->dst_mask; 6101 break; 6102 6103 case R_MIPS_PCHI16: 6104 value = mips_elf_high (symbol + addend - p); 6105 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6106 overflowed_p = mips_elf_overflow_p (value, 16); 6107 value &= howto->dst_mask; 6108 break; 6109 6110 case R_MIPS_PCLO16: 6111 if (howto->partial_inplace) 6112 addend = _bfd_mips_elf_sign_extend (addend, 16); 6113 value = symbol + addend - p; 6114 value &= howto->dst_mask; 6115 break; 6116 6117 case R_MICROMIPS_PC7_S1: 6118 if (howto->partial_inplace) 6119 addend = _bfd_mips_elf_sign_extend (addend, 8); 6120 value = symbol + addend - p; 6121 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6122 overflowed_p = mips_elf_overflow_p (value, 8); 6123 value >>= howto->rightshift; 6124 value &= howto->dst_mask; 6125 break; 6126 6127 case R_MICROMIPS_PC10_S1: 6128 if (howto->partial_inplace) 6129 addend = _bfd_mips_elf_sign_extend (addend, 11); 6130 value = symbol + addend - p; 6131 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6132 overflowed_p = mips_elf_overflow_p (value, 11); 6133 value >>= howto->rightshift; 6134 value &= howto->dst_mask; 6135 break; 6136 6137 case R_MICROMIPS_PC16_S1: 6138 if (howto->partial_inplace) 6139 addend = _bfd_mips_elf_sign_extend (addend, 17); 6140 value = symbol + addend - p; 6141 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6142 overflowed_p = mips_elf_overflow_p (value, 17); 6143 value >>= howto->rightshift; 6144 value &= howto->dst_mask; 6145 break; 6146 6147 case R_MICROMIPS_PC23_S2: 6148 if (howto->partial_inplace) 6149 addend = _bfd_mips_elf_sign_extend (addend, 25); 6150 value = symbol + addend - ((p | 3) ^ 3); 6151 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6152 overflowed_p = mips_elf_overflow_p (value, 25); 6153 value >>= howto->rightshift; 6154 value &= howto->dst_mask; 6155 break; 6156 6157 case R_MIPS_GOT_HI16: 6158 case R_MIPS_CALL_HI16: 6159 case R_MICROMIPS_GOT_HI16: 6160 case R_MICROMIPS_CALL_HI16: 6161 /* We're allowed to handle these two relocations identically. 6162 The dynamic linker is allowed to handle the CALL relocations 6163 differently by creating a lazy evaluation stub. */ 6164 value = g; 6165 value = mips_elf_high (value); 6166 value &= howto->dst_mask; 6167 break; 6168 6169 case R_MIPS_GOT_LO16: 6170 case R_MIPS_CALL_LO16: 6171 case R_MICROMIPS_GOT_LO16: 6172 case R_MICROMIPS_CALL_LO16: 6173 value = g & howto->dst_mask; 6174 break; 6175 6176 case R_MIPS_GOT_PAGE: 6177 case R_MICROMIPS_GOT_PAGE: 6178 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); 6179 if (value == MINUS_ONE) 6180 return bfd_reloc_outofrange; 6181 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 6182 overflowed_p = mips_elf_overflow_p (value, 16); 6183 break; 6184 6185 case R_MIPS_GOT_OFST: 6186 case R_MICROMIPS_GOT_OFST: 6187 if (local_p) 6188 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); 6189 else 6190 value = addend; 6191 overflowed_p = mips_elf_overflow_p (value, 16); 6192 break; 6193 6194 case R_MIPS_SUB: 6195 case R_MICROMIPS_SUB: 6196 value = symbol - addend; 6197 value &= howto->dst_mask; 6198 break; 6199 6200 case R_MIPS_HIGHER: 6201 case R_MICROMIPS_HIGHER: 6202 value = mips_elf_higher (addend + symbol); 6203 value &= howto->dst_mask; 6204 break; 6205 6206 case R_MIPS_HIGHEST: 6207 case R_MICROMIPS_HIGHEST: 6208 value = mips_elf_highest (addend + symbol); 6209 value &= howto->dst_mask; 6210 break; 6211 6212 case R_MIPS_SCN_DISP: 6213 case R_MICROMIPS_SCN_DISP: 6214 value = symbol + addend - sec->output_offset; 6215 value &= howto->dst_mask; 6216 break; 6217 6218 case R_MIPS_JALR: 6219 case R_MICROMIPS_JALR: 6220 /* This relocation is only a hint. In some cases, we optimize 6221 it into a bal instruction. But we don't try to optimize 6222 when the symbol does not resolve locally. */ 6223 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) 6224 return bfd_reloc_continue; 6225 value = symbol + addend; 6226 break; 6227 6228 case R_MIPS_PJUMP: 6229 case R_MIPS_GNU_VTINHERIT: 6230 case R_MIPS_GNU_VTENTRY: 6231 /* We don't do anything with these at present. */ 6232 return bfd_reloc_continue; 6233 6234 default: 6235 /* An unrecognized relocation type. */ 6236 return bfd_reloc_notsupported; 6237 } 6238 6239 /* Store the VALUE for our caller. */ 6240 *valuep = value; 6241 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; 6242 } 6243 6244 /* Obtain the field relocated by RELOCATION. */ 6245 6246 static bfd_vma 6247 mips_elf_obtain_contents (reloc_howto_type *howto, 6248 const Elf_Internal_Rela *relocation, 6249 bfd *input_bfd, bfd_byte *contents) 6250 { 6251 bfd_vma x = 0; 6252 bfd_byte *location = contents + relocation->r_offset; 6253 unsigned int size = bfd_get_reloc_size (howto); 6254 6255 /* Obtain the bytes. */ 6256 if (size != 0) 6257 x = bfd_get (8 * size, input_bfd, location); 6258 6259 return x; 6260 } 6261 6262 /* It has been determined that the result of the RELOCATION is the 6263 VALUE. Use HOWTO to place VALUE into the output file at the 6264 appropriate position. The SECTION is the section to which the 6265 relocation applies. 6266 CROSS_MODE_JUMP_P is true if the relocation field 6267 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 6268 6269 Returns FALSE if anything goes wrong. */ 6270 6271 static bfd_boolean 6272 mips_elf_perform_relocation (struct bfd_link_info *info, 6273 reloc_howto_type *howto, 6274 const Elf_Internal_Rela *relocation, 6275 bfd_vma value, bfd *input_bfd, 6276 asection *input_section, bfd_byte *contents, 6277 bfd_boolean cross_mode_jump_p) 6278 { 6279 bfd_vma x; 6280 bfd_byte *location; 6281 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 6282 unsigned int size; 6283 6284 /* Figure out where the relocation is occurring. */ 6285 location = contents + relocation->r_offset; 6286 6287 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); 6288 6289 /* Obtain the current value. */ 6290 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 6291 6292 /* Clear the field we are setting. */ 6293 x &= ~howto->dst_mask; 6294 6295 /* Set the field. */ 6296 x |= (value & howto->dst_mask); 6297 6298 /* If required, turn JAL into JALX. */ 6299 if (cross_mode_jump_p && jal_reloc_p (r_type)) 6300 { 6301 bfd_boolean ok; 6302 bfd_vma opcode = x >> 26; 6303 bfd_vma jalx_opcode; 6304 6305 /* Check to see if the opcode is already JAL or JALX. */ 6306 if (r_type == R_MIPS16_26) 6307 { 6308 ok = ((opcode == 0x6) || (opcode == 0x7)); 6309 jalx_opcode = 0x7; 6310 } 6311 else if (r_type == R_MICROMIPS_26_S1) 6312 { 6313 ok = ((opcode == 0x3d) || (opcode == 0x3c)); 6314 jalx_opcode = 0x3c; 6315 } 6316 else 6317 { 6318 ok = ((opcode == 0x3) || (opcode == 0x1d)); 6319 jalx_opcode = 0x1d; 6320 } 6321 6322 /* If the opcode is not JAL or JALX, there's a problem. We cannot 6323 convert J or JALS to JALX. */ 6324 if (!ok) 6325 { 6326 info->callbacks->einfo 6327 (_("%X%H: Unsupported jump between ISA modes; " 6328 "consider recompiling with interlinking enabled\n"), 6329 input_bfd, input_section, relocation->r_offset); 6330 return TRUE; 6331 } 6332 6333 /* Make this the JALX opcode. */ 6334 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); 6335 } 6336 6337 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in 6338 range. */ 6339 if (!bfd_link_relocatable (info) 6340 && !cross_mode_jump_p 6341 && ((JAL_TO_BAL_P (input_bfd) 6342 && r_type == R_MIPS_26 6343 && (x >> 26) == 0x3) /* jal addr */ 6344 || (JALR_TO_BAL_P (input_bfd) 6345 && r_type == R_MIPS_JALR 6346 && x == 0x0320f809) /* jalr t9 */ 6347 || (JR_TO_B_P (input_bfd) 6348 && r_type == R_MIPS_JALR 6349 && x == 0x03200008))) /* jr t9 */ 6350 { 6351 bfd_vma addr; 6352 bfd_vma dest; 6353 bfd_signed_vma off; 6354 6355 addr = (input_section->output_section->vma 6356 + input_section->output_offset 6357 + relocation->r_offset 6358 + 4); 6359 if (r_type == R_MIPS_26) 6360 dest = (value << 2) | ((addr >> 28) << 28); 6361 else 6362 dest = value; 6363 off = dest - addr; 6364 if (off <= 0x1ffff && off >= -0x20000) 6365 { 6366 if (x == 0x03200008) /* jr t9 */ 6367 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ 6368 else 6369 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ 6370 } 6371 } 6372 6373 /* Put the value into the output. */ 6374 size = bfd_get_reloc_size (howto); 6375 if (size != 0) 6376 bfd_put (8 * size, input_bfd, x, location); 6377 6378 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info), 6379 location); 6380 6381 return TRUE; 6382 } 6383 6384 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL 6386 is the original relocation, which is now being transformed into a 6387 dynamic relocation. The ADDENDP is adjusted if necessary; the 6388 caller should store the result in place of the original addend. */ 6389 6390 static bfd_boolean 6391 mips_elf_create_dynamic_relocation (bfd *output_bfd, 6392 struct bfd_link_info *info, 6393 const Elf_Internal_Rela *rel, 6394 struct mips_elf_link_hash_entry *h, 6395 asection *sec, bfd_vma symbol, 6396 bfd_vma *addendp, asection *input_section) 6397 { 6398 Elf_Internal_Rela outrel[3]; 6399 asection *sreloc; 6400 bfd *dynobj; 6401 int r_type; 6402 long indx; 6403 bfd_boolean defined_p; 6404 struct mips_elf_link_hash_table *htab; 6405 6406 htab = mips_elf_hash_table (info); 6407 BFD_ASSERT (htab != NULL); 6408 6409 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 6410 dynobj = elf_hash_table (info)->dynobj; 6411 sreloc = mips_elf_rel_dyn_section (info, FALSE); 6412 BFD_ASSERT (sreloc != NULL); 6413 BFD_ASSERT (sreloc->contents != NULL); 6414 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) 6415 < sreloc->size); 6416 6417 outrel[0].r_offset = 6418 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); 6419 if (ABI_64_P (output_bfd)) 6420 { 6421 outrel[1].r_offset = 6422 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); 6423 outrel[2].r_offset = 6424 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); 6425 } 6426 6427 if (outrel[0].r_offset == MINUS_ONE) 6428 /* The relocation field has been deleted. */ 6429 return TRUE; 6430 6431 if (outrel[0].r_offset == MINUS_TWO) 6432 { 6433 /* The relocation field has been converted into a relative value of 6434 some sort. Functions like _bfd_elf_write_section_eh_frame expect 6435 the field to be fully relocated, so add in the symbol's value. */ 6436 *addendp += symbol; 6437 return TRUE; 6438 } 6439 6440 /* We must now calculate the dynamic symbol table index to use 6441 in the relocation. */ 6442 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) 6443 { 6444 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); 6445 indx = h->root.dynindx; 6446 if (SGI_COMPAT (output_bfd)) 6447 defined_p = h->root.def_regular; 6448 else 6449 /* ??? glibc's ld.so just adds the final GOT entry to the 6450 relocation field. It therefore treats relocs against 6451 defined symbols in the same way as relocs against 6452 undefined symbols. */ 6453 defined_p = FALSE; 6454 } 6455 else 6456 { 6457 if (sec != NULL && bfd_is_abs_section (sec)) 6458 indx = 0; 6459 else if (sec == NULL || sec->owner == NULL) 6460 { 6461 bfd_set_error (bfd_error_bad_value); 6462 return FALSE; 6463 } 6464 else 6465 { 6466 indx = elf_section_data (sec->output_section)->dynindx; 6467 if (indx == 0) 6468 { 6469 asection *osec = htab->root.text_index_section; 6470 indx = elf_section_data (osec)->dynindx; 6471 } 6472 if (indx == 0) 6473 abort (); 6474 } 6475 6476 /* Instead of generating a relocation using the section 6477 symbol, we may as well make it a fully relative 6478 relocation. We want to avoid generating relocations to 6479 local symbols because we used to generate them 6480 incorrectly, without adding the original symbol value, 6481 which is mandated by the ABI for section symbols. In 6482 order to give dynamic loaders and applications time to 6483 phase out the incorrect use, we refrain from emitting 6484 section-relative relocations. It's not like they're 6485 useful, after all. This should be a bit more efficient 6486 as well. */ 6487 /* ??? Although this behavior is compatible with glibc's ld.so, 6488 the ABI says that relocations against STN_UNDEF should have 6489 a symbol value of 0. Irix rld honors this, so relocations 6490 against STN_UNDEF have no effect. */ 6491 if (!SGI_COMPAT (output_bfd)) 6492 indx = 0; 6493 defined_p = TRUE; 6494 } 6495 6496 /* If the relocation was previously an absolute relocation and 6497 this symbol will not be referred to by the relocation, we must 6498 adjust it by the value we give it in the dynamic symbol table. 6499 Otherwise leave the job up to the dynamic linker. */ 6500 if (defined_p && r_type != R_MIPS_REL32) 6501 *addendp += symbol; 6502 6503 if (htab->is_vxworks) 6504 /* VxWorks uses non-relative relocations for this. */ 6505 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); 6506 else 6507 /* The relocation is always an REL32 relocation because we don't 6508 know where the shared library will wind up at load-time. */ 6509 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, 6510 R_MIPS_REL32); 6511 6512 /* For strict adherence to the ABI specification, we should 6513 generate a R_MIPS_64 relocation record by itself before the 6514 _REL32/_64 record as well, such that the addend is read in as 6515 a 64-bit value (REL32 is a 32-bit relocation, after all). 6516 However, since none of the existing ELF64 MIPS dynamic 6517 loaders seems to care, we don't waste space with these 6518 artificial relocations. If this turns out to not be true, 6519 mips_elf_allocate_dynamic_relocation() should be tweaked so 6520 as to make room for a pair of dynamic relocations per 6521 invocation if ABI_64_P, and here we should generate an 6522 additional relocation record with R_MIPS_64 by itself for a 6523 NULL symbol before this relocation record. */ 6524 outrel[1].r_info = ELF_R_INFO (output_bfd, 0, 6525 ABI_64_P (output_bfd) 6526 ? R_MIPS_64 6527 : R_MIPS_NONE); 6528 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); 6529 6530 /* Adjust the output offset of the relocation to reference the 6531 correct location in the output file. */ 6532 outrel[0].r_offset += (input_section->output_section->vma 6533 + input_section->output_offset); 6534 outrel[1].r_offset += (input_section->output_section->vma 6535 + input_section->output_offset); 6536 outrel[2].r_offset += (input_section->output_section->vma 6537 + input_section->output_offset); 6538 6539 /* Put the relocation back out. We have to use the special 6540 relocation outputter in the 64-bit case since the 64-bit 6541 relocation format is non-standard. */ 6542 if (ABI_64_P (output_bfd)) 6543 { 6544 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 6545 (output_bfd, &outrel[0], 6546 (sreloc->contents 6547 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); 6548 } 6549 else if (htab->is_vxworks) 6550 { 6551 /* VxWorks uses RELA rather than REL dynamic relocations. */ 6552 outrel[0].r_addend = *addendp; 6553 bfd_elf32_swap_reloca_out 6554 (output_bfd, &outrel[0], 6555 (sreloc->contents 6556 + sreloc->reloc_count * sizeof (Elf32_External_Rela))); 6557 } 6558 else 6559 bfd_elf32_swap_reloc_out 6560 (output_bfd, &outrel[0], 6561 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); 6562 6563 /* We've now added another relocation. */ 6564 ++sreloc->reloc_count; 6565 6566 /* Make sure the output section is writable. The dynamic linker 6567 will be writing to it. */ 6568 elf_section_data (input_section->output_section)->this_hdr.sh_flags 6569 |= SHF_WRITE; 6570 6571 /* On IRIX5, make an entry of compact relocation info. */ 6572 if (IRIX_COMPAT (output_bfd) == ict_irix5) 6573 { 6574 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); 6575 bfd_byte *cr; 6576 6577 if (scpt) 6578 { 6579 Elf32_crinfo cptrel; 6580 6581 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); 6582 cptrel.vaddr = (rel->r_offset 6583 + input_section->output_section->vma 6584 + input_section->output_offset); 6585 if (r_type == R_MIPS_REL32) 6586 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); 6587 else 6588 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); 6589 mips_elf_set_cr_dist2to (cptrel, 0); 6590 cptrel.konst = *addendp; 6591 6592 cr = (scpt->contents 6593 + sizeof (Elf32_External_compact_rel)); 6594 mips_elf_set_cr_relvaddr (cptrel, 0); 6595 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, 6596 ((Elf32_External_crinfo *) cr 6597 + scpt->reloc_count)); 6598 ++scpt->reloc_count; 6599 } 6600 } 6601 6602 /* If we've written this relocation for a readonly section, 6603 we need to set DF_TEXTREL again, so that we do not delete the 6604 DT_TEXTREL tag. */ 6605 if (MIPS_ELF_READONLY_SECTION (input_section)) 6606 info->flags |= DF_TEXTREL; 6607 6608 return TRUE; 6609 } 6610 6611 /* Return the MACH for a MIPS e_flags value. */ 6613 6614 unsigned long 6615 _bfd_elf_mips_mach (flagword flags) 6616 { 6617 switch (flags & EF_MIPS_MACH) 6618 { 6619 case E_MIPS_MACH_3900: 6620 return bfd_mach_mips3900; 6621 6622 case E_MIPS_MACH_4010: 6623 return bfd_mach_mips4010; 6624 6625 case E_MIPS_MACH_4100: 6626 return bfd_mach_mips4100; 6627 6628 case E_MIPS_MACH_4111: 6629 return bfd_mach_mips4111; 6630 6631 case E_MIPS_MACH_4120: 6632 return bfd_mach_mips4120; 6633 6634 case E_MIPS_MACH_4650: 6635 return bfd_mach_mips4650; 6636 6637 case E_MIPS_MACH_5400: 6638 return bfd_mach_mips5400; 6639 6640 case E_MIPS_MACH_5500: 6641 return bfd_mach_mips5500; 6642 6643 case E_MIPS_MACH_5900: 6644 return bfd_mach_mips5900; 6645 6646 case E_MIPS_MACH_9000: 6647 return bfd_mach_mips9000; 6648 6649 case E_MIPS_MACH_SB1: 6650 return bfd_mach_mips_sb1; 6651 6652 case E_MIPS_MACH_LS2E: 6653 return bfd_mach_mips_loongson_2e; 6654 6655 case E_MIPS_MACH_LS2F: 6656 return bfd_mach_mips_loongson_2f; 6657 6658 case E_MIPS_MACH_LS3A: 6659 return bfd_mach_mips_loongson_3a; 6660 6661 case E_MIPS_MACH_OCTEON3: 6662 return bfd_mach_mips_octeon3; 6663 6664 case E_MIPS_MACH_OCTEON2: 6665 return bfd_mach_mips_octeon2; 6666 6667 case E_MIPS_MACH_OCTEON: 6668 return bfd_mach_mips_octeon; 6669 6670 case E_MIPS_MACH_XLR: 6671 return bfd_mach_mips_xlr; 6672 6673 default: 6674 switch (flags & EF_MIPS_ARCH) 6675 { 6676 default: 6677 case E_MIPS_ARCH_1: 6678 return bfd_mach_mips3000; 6679 6680 case E_MIPS_ARCH_2: 6681 return bfd_mach_mips6000; 6682 6683 case E_MIPS_ARCH_3: 6684 return bfd_mach_mips4000; 6685 6686 case E_MIPS_ARCH_4: 6687 return bfd_mach_mips8000; 6688 6689 case E_MIPS_ARCH_5: 6690 return bfd_mach_mips5; 6691 6692 case E_MIPS_ARCH_32: 6693 return bfd_mach_mipsisa32; 6694 6695 case E_MIPS_ARCH_64: 6696 return bfd_mach_mipsisa64; 6697 6698 case E_MIPS_ARCH_32R2: 6699 return bfd_mach_mipsisa32r2; 6700 6701 case E_MIPS_ARCH_64R2: 6702 return bfd_mach_mipsisa64r2; 6703 6704 case E_MIPS_ARCH_32R6: 6705 return bfd_mach_mipsisa32r6; 6706 6707 case E_MIPS_ARCH_64R6: 6708 return bfd_mach_mipsisa64r6; 6709 } 6710 } 6711 6712 return 0; 6713 } 6714 6715 /* Return printable name for ABI. */ 6716 6717 static INLINE char * 6718 elf_mips_abi_name (bfd *abfd) 6719 { 6720 flagword flags; 6721 6722 flags = elf_elfheader (abfd)->e_flags; 6723 switch (flags & EF_MIPS_ABI) 6724 { 6725 case 0: 6726 if (ABI_N32_P (abfd)) 6727 return "N32"; 6728 else if (ABI_64_P (abfd)) 6729 return "64"; 6730 else 6731 return "none"; 6732 case E_MIPS_ABI_O32: 6733 return "O32"; 6734 case E_MIPS_ABI_O64: 6735 return "O64"; 6736 case E_MIPS_ABI_EABI32: 6737 return "EABI32"; 6738 case E_MIPS_ABI_EABI64: 6739 return "EABI64"; 6740 default: 6741 return "unknown abi"; 6742 } 6743 } 6744 6745 /* MIPS ELF uses two common sections. One is the usual one, and the 6747 other is for small objects. All the small objects are kept 6748 together, and then referenced via the gp pointer, which yields 6749 faster assembler code. This is what we use for the small common 6750 section. This approach is copied from ecoff.c. */ 6751 static asection mips_elf_scom_section; 6752 static asymbol mips_elf_scom_symbol; 6753 static asymbol *mips_elf_scom_symbol_ptr; 6754 6755 /* MIPS ELF also uses an acommon section, which represents an 6756 allocated common symbol which may be overridden by a 6757 definition in a shared library. */ 6758 static asection mips_elf_acom_section; 6759 static asymbol mips_elf_acom_symbol; 6760 static asymbol *mips_elf_acom_symbol_ptr; 6761 6762 /* This is used for both the 32-bit and the 64-bit ABI. */ 6763 6764 void 6765 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) 6766 { 6767 elf_symbol_type *elfsym; 6768 6769 /* Handle the special MIPS section numbers that a symbol may use. */ 6770 elfsym = (elf_symbol_type *) asym; 6771 switch (elfsym->internal_elf_sym.st_shndx) 6772 { 6773 case SHN_MIPS_ACOMMON: 6774 /* This section is used in a dynamically linked executable file. 6775 It is an allocated common section. The dynamic linker can 6776 either resolve these symbols to something in a shared 6777 library, or it can just leave them here. For our purposes, 6778 we can consider these symbols to be in a new section. */ 6779 if (mips_elf_acom_section.name == NULL) 6780 { 6781 /* Initialize the acommon section. */ 6782 mips_elf_acom_section.name = ".acommon"; 6783 mips_elf_acom_section.flags = SEC_ALLOC; 6784 mips_elf_acom_section.output_section = &mips_elf_acom_section; 6785 mips_elf_acom_section.symbol = &mips_elf_acom_symbol; 6786 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; 6787 mips_elf_acom_symbol.name = ".acommon"; 6788 mips_elf_acom_symbol.flags = BSF_SECTION_SYM; 6789 mips_elf_acom_symbol.section = &mips_elf_acom_section; 6790 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; 6791 } 6792 asym->section = &mips_elf_acom_section; 6793 break; 6794 6795 case SHN_COMMON: 6796 /* Common symbols less than the GP size are automatically 6797 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ 6798 if (asym->value > elf_gp_size (abfd) 6799 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS 6800 || IRIX_COMPAT (abfd) == ict_irix6) 6801 break; 6802 /* Fall through. */ 6803 case SHN_MIPS_SCOMMON: 6804 if (mips_elf_scom_section.name == NULL) 6805 { 6806 /* Initialize the small common section. */ 6807 mips_elf_scom_section.name = ".scommon"; 6808 mips_elf_scom_section.flags = SEC_IS_COMMON; 6809 mips_elf_scom_section.output_section = &mips_elf_scom_section; 6810 mips_elf_scom_section.symbol = &mips_elf_scom_symbol; 6811 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; 6812 mips_elf_scom_symbol.name = ".scommon"; 6813 mips_elf_scom_symbol.flags = BSF_SECTION_SYM; 6814 mips_elf_scom_symbol.section = &mips_elf_scom_section; 6815 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; 6816 } 6817 asym->section = &mips_elf_scom_section; 6818 asym->value = elfsym->internal_elf_sym.st_size; 6819 break; 6820 6821 case SHN_MIPS_SUNDEFINED: 6822 asym->section = bfd_und_section_ptr; 6823 break; 6824 6825 case SHN_MIPS_TEXT: 6826 { 6827 asection *section = bfd_get_section_by_name (abfd, ".text"); 6828 6829 if (section != NULL) 6830 { 6831 asym->section = section; 6832 /* MIPS_TEXT is a bit special, the address is not an offset 6833 to the base of the .text section. So substract the section 6834 base address to make it an offset. */ 6835 asym->value -= section->vma; 6836 } 6837 } 6838 break; 6839 6840 case SHN_MIPS_DATA: 6841 { 6842 asection *section = bfd_get_section_by_name (abfd, ".data"); 6843 6844 if (section != NULL) 6845 { 6846 asym->section = section; 6847 /* MIPS_DATA is a bit special, the address is not an offset 6848 to the base of the .data section. So substract the section 6849 base address to make it an offset. */ 6850 asym->value -= section->vma; 6851 } 6852 } 6853 break; 6854 } 6855 6856 /* If this is an odd-valued function symbol, assume it's a MIPS16 6857 or microMIPS one. */ 6858 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC 6859 && (asym->value & 1) != 0) 6860 { 6861 asym->value--; 6862 if (MICROMIPS_P (abfd)) 6863 elfsym->internal_elf_sym.st_other 6864 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); 6865 else 6866 elfsym->internal_elf_sym.st_other 6867 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); 6868 } 6869 } 6870 6871 /* Implement elf_backend_eh_frame_address_size. This differs from 6873 the default in the way it handles EABI64. 6874 6875 EABI64 was originally specified as an LP64 ABI, and that is what 6876 -mabi=eabi normally gives on a 64-bit target. However, gcc has 6877 historically accepted the combination of -mabi=eabi and -mlong32, 6878 and this ILP32 variation has become semi-official over time. 6879 Both forms use elf32 and have pointer-sized FDE addresses. 6880 6881 If an EABI object was generated by GCC 4.0 or above, it will have 6882 an empty .gcc_compiled_longXX section, where XX is the size of longs 6883 in bits. Unfortunately, ILP32 objects generated by earlier compilers 6884 have no special marking to distinguish them from LP64 objects. 6885 6886 We don't want users of the official LP64 ABI to be punished for the 6887 existence of the ILP32 variant, but at the same time, we don't want 6888 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. 6889 We therefore take the following approach: 6890 6891 - If ABFD contains a .gcc_compiled_longXX section, use it to 6892 determine the pointer size. 6893 6894 - Otherwise check the type of the first relocation. Assume that 6895 the LP64 ABI is being used if the relocation is of type R_MIPS_64. 6896 6897 - Otherwise punt. 6898 6899 The second check is enough to detect LP64 objects generated by pre-4.0 6900 compilers because, in the kind of output generated by those compilers, 6901 the first relocation will be associated with either a CIE personality 6902 routine or an FDE start address. Furthermore, the compilers never 6903 used a special (non-pointer) encoding for this ABI. 6904 6905 Checking the relocation type should also be safe because there is no 6906 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never 6907 did so. */ 6908 6909 unsigned int 6910 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) 6911 { 6912 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 6913 return 8; 6914 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 6915 { 6916 bfd_boolean long32_p, long64_p; 6917 6918 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; 6919 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; 6920 if (long32_p && long64_p) 6921 return 0; 6922 if (long32_p) 6923 return 4; 6924 if (long64_p) 6925 return 8; 6926 6927 if (sec->reloc_count > 0 6928 && elf_section_data (sec)->relocs != NULL 6929 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) 6930 == R_MIPS_64)) 6931 return 8; 6932 6933 return 0; 6934 } 6935 return 4; 6936 } 6937 6938 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP 6940 relocations against two unnamed section symbols to resolve to the 6941 same address. For example, if we have code like: 6942 6943 lw $4,%got_disp(.data)($gp) 6944 lw $25,%got_disp(.text)($gp) 6945 jalr $25 6946 6947 then the linker will resolve both relocations to .data and the program 6948 will jump there rather than to .text. 6949 6950 We can work around this problem by giving names to local section symbols. 6951 This is also what the MIPSpro tools do. */ 6952 6953 bfd_boolean 6954 _bfd_mips_elf_name_local_section_symbols (bfd *abfd) 6955 { 6956 return SGI_COMPAT (abfd); 6957 } 6958 6959 /* Work over a section just before writing it out. This routine is 6961 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize 6962 sections that need the SHF_MIPS_GPREL flag by name; there has to be 6963 a better way. */ 6964 6965 bfd_boolean 6966 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) 6967 { 6968 if (hdr->sh_type == SHT_MIPS_REGINFO 6969 && hdr->sh_size > 0) 6970 { 6971 bfd_byte buf[4]; 6972 6973 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); 6974 BFD_ASSERT (hdr->contents == NULL); 6975 6976 if (bfd_seek (abfd, 6977 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, 6978 SEEK_SET) != 0) 6979 return FALSE; 6980 H_PUT_32 (abfd, elf_gp (abfd), buf); 6981 if (bfd_bwrite (buf, 4, abfd) != 4) 6982 return FALSE; 6983 } 6984 6985 if (hdr->sh_type == SHT_MIPS_OPTIONS 6986 && hdr->bfd_section != NULL 6987 && mips_elf_section_data (hdr->bfd_section) != NULL 6988 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) 6989 { 6990 bfd_byte *contents, *l, *lend; 6991 6992 /* We stored the section contents in the tdata field in the 6993 set_section_contents routine. We save the section contents 6994 so that we don't have to read them again. 6995 At this point we know that elf_gp is set, so we can look 6996 through the section contents to see if there is an 6997 ODK_REGINFO structure. */ 6998 6999 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; 7000 l = contents; 7001 lend = contents + hdr->sh_size; 7002 while (l + sizeof (Elf_External_Options) <= lend) 7003 { 7004 Elf_Internal_Options intopt; 7005 7006 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7007 &intopt); 7008 if (intopt.size < sizeof (Elf_External_Options)) 7009 { 7010 (*_bfd_error_handler) 7011 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 7012 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 7013 break; 7014 } 7015 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 7016 { 7017 bfd_byte buf[8]; 7018 7019 if (bfd_seek (abfd, 7020 (hdr->sh_offset 7021 + (l - contents) 7022 + sizeof (Elf_External_Options) 7023 + (sizeof (Elf64_External_RegInfo) - 8)), 7024 SEEK_SET) != 0) 7025 return FALSE; 7026 H_PUT_64 (abfd, elf_gp (abfd), buf); 7027 if (bfd_bwrite (buf, 8, abfd) != 8) 7028 return FALSE; 7029 } 7030 else if (intopt.kind == ODK_REGINFO) 7031 { 7032 bfd_byte buf[4]; 7033 7034 if (bfd_seek (abfd, 7035 (hdr->sh_offset 7036 + (l - contents) 7037 + sizeof (Elf_External_Options) 7038 + (sizeof (Elf32_External_RegInfo) - 4)), 7039 SEEK_SET) != 0) 7040 return FALSE; 7041 H_PUT_32 (abfd, elf_gp (abfd), buf); 7042 if (bfd_bwrite (buf, 4, abfd) != 4) 7043 return FALSE; 7044 } 7045 l += intopt.size; 7046 } 7047 } 7048 7049 if (hdr->bfd_section != NULL) 7050 { 7051 const char *name = bfd_get_section_name (abfd, hdr->bfd_section); 7052 7053 /* .sbss is not handled specially here because the GNU/Linux 7054 prelinker can convert .sbss from NOBITS to PROGBITS and 7055 changing it back to NOBITS breaks the binary. The entry in 7056 _bfd_mips_elf_special_sections will ensure the correct flags 7057 are set on .sbss if BFD creates it without reading it from an 7058 input file, and without special handling here the flags set 7059 on it in an input file will be followed. */ 7060 if (strcmp (name, ".sdata") == 0 7061 || strcmp (name, ".lit8") == 0 7062 || strcmp (name, ".lit4") == 0) 7063 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 7064 else if (strcmp (name, ".srdata") == 0) 7065 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; 7066 else if (strcmp (name, ".compact_rel") == 0) 7067 hdr->sh_flags = 0; 7068 else if (strcmp (name, ".rtproc") == 0) 7069 { 7070 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) 7071 { 7072 unsigned int adjust; 7073 7074 adjust = hdr->sh_size % hdr->sh_addralign; 7075 if (adjust != 0) 7076 hdr->sh_size += hdr->sh_addralign - adjust; 7077 } 7078 } 7079 } 7080 7081 return TRUE; 7082 } 7083 7084 /* Handle a MIPS specific section when reading an object file. This 7085 is called when elfcode.h finds a section with an unknown type. 7086 This routine supports both the 32-bit and 64-bit ELF ABI. 7087 7088 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure 7089 how to. */ 7090 7091 bfd_boolean 7092 _bfd_mips_elf_section_from_shdr (bfd *abfd, 7093 Elf_Internal_Shdr *hdr, 7094 const char *name, 7095 int shindex) 7096 { 7097 flagword flags = 0; 7098 7099 /* There ought to be a place to keep ELF backend specific flags, but 7100 at the moment there isn't one. We just keep track of the 7101 sections by their name, instead. Fortunately, the ABI gives 7102 suggested names for all the MIPS specific sections, so we will 7103 probably get away with this. */ 7104 switch (hdr->sh_type) 7105 { 7106 case SHT_MIPS_LIBLIST: 7107 if (strcmp (name, ".liblist") != 0) 7108 return FALSE; 7109 break; 7110 case SHT_MIPS_MSYM: 7111 if (strcmp (name, ".msym") != 0) 7112 return FALSE; 7113 break; 7114 case SHT_MIPS_CONFLICT: 7115 if (strcmp (name, ".conflict") != 0) 7116 return FALSE; 7117 break; 7118 case SHT_MIPS_GPTAB: 7119 if (! CONST_STRNEQ (name, ".gptab.")) 7120 return FALSE; 7121 break; 7122 case SHT_MIPS_UCODE: 7123 if (strcmp (name, ".ucode") != 0) 7124 return FALSE; 7125 break; 7126 case SHT_MIPS_DEBUG: 7127 if (strcmp (name, ".mdebug") != 0) 7128 return FALSE; 7129 flags = SEC_DEBUGGING; 7130 break; 7131 case SHT_MIPS_REGINFO: 7132 if (strcmp (name, ".reginfo") != 0 7133 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) 7134 return FALSE; 7135 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7136 break; 7137 case SHT_MIPS_IFACE: 7138 if (strcmp (name, ".MIPS.interfaces") != 0) 7139 return FALSE; 7140 break; 7141 case SHT_MIPS_CONTENT: 7142 if (! CONST_STRNEQ (name, ".MIPS.content")) 7143 return FALSE; 7144 break; 7145 case SHT_MIPS_OPTIONS: 7146 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7147 return FALSE; 7148 break; 7149 case SHT_MIPS_ABIFLAGS: 7150 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) 7151 return FALSE; 7152 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7153 break; 7154 case SHT_MIPS_DWARF: 7155 if (! CONST_STRNEQ (name, ".debug_") 7156 && ! CONST_STRNEQ (name, ".zdebug_")) 7157 return FALSE; 7158 break; 7159 case SHT_MIPS_SYMBOL_LIB: 7160 if (strcmp (name, ".MIPS.symlib") != 0) 7161 return FALSE; 7162 break; 7163 case SHT_MIPS_EVENTS: 7164 if (! CONST_STRNEQ (name, ".MIPS.events") 7165 && ! CONST_STRNEQ (name, ".MIPS.post_rel")) 7166 return FALSE; 7167 break; 7168 default: 7169 break; 7170 } 7171 7172 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 7173 return FALSE; 7174 7175 if (flags) 7176 { 7177 if (! bfd_set_section_flags (abfd, hdr->bfd_section, 7178 (bfd_get_section_flags (abfd, 7179 hdr->bfd_section) 7180 | flags))) 7181 return FALSE; 7182 } 7183 7184 if (hdr->sh_type == SHT_MIPS_ABIFLAGS) 7185 { 7186 Elf_External_ABIFlags_v0 ext; 7187 7188 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7189 &ext, 0, sizeof ext)) 7190 return FALSE; 7191 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, 7192 &mips_elf_tdata (abfd)->abiflags); 7193 if (mips_elf_tdata (abfd)->abiflags.version != 0) 7194 return FALSE; 7195 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 7196 } 7197 7198 /* FIXME: We should record sh_info for a .gptab section. */ 7199 7200 /* For a .reginfo section, set the gp value in the tdata information 7201 from the contents of this section. We need the gp value while 7202 processing relocs, so we just get it now. The .reginfo section 7203 is not used in the 64-bit MIPS ELF ABI. */ 7204 if (hdr->sh_type == SHT_MIPS_REGINFO) 7205 { 7206 Elf32_External_RegInfo ext; 7207 Elf32_RegInfo s; 7208 7209 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7210 &ext, 0, sizeof ext)) 7211 return FALSE; 7212 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); 7213 elf_gp (abfd) = s.ri_gp_value; 7214 } 7215 7216 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and 7217 set the gp value based on what we find. We may see both 7218 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, 7219 they should agree. */ 7220 if (hdr->sh_type == SHT_MIPS_OPTIONS) 7221 { 7222 bfd_byte *contents, *l, *lend; 7223 7224 contents = bfd_malloc (hdr->sh_size); 7225 if (contents == NULL) 7226 return FALSE; 7227 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 7228 0, hdr->sh_size)) 7229 { 7230 free (contents); 7231 return FALSE; 7232 } 7233 l = contents; 7234 lend = contents + hdr->sh_size; 7235 while (l + sizeof (Elf_External_Options) <= lend) 7236 { 7237 Elf_Internal_Options intopt; 7238 7239 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7240 &intopt); 7241 if (intopt.size < sizeof (Elf_External_Options)) 7242 { 7243 (*_bfd_error_handler) 7244 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 7245 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 7246 break; 7247 } 7248 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 7249 { 7250 Elf64_Internal_RegInfo intreg; 7251 7252 bfd_mips_elf64_swap_reginfo_in 7253 (abfd, 7254 ((Elf64_External_RegInfo *) 7255 (l + sizeof (Elf_External_Options))), 7256 &intreg); 7257 elf_gp (abfd) = intreg.ri_gp_value; 7258 } 7259 else if (intopt.kind == ODK_REGINFO) 7260 { 7261 Elf32_RegInfo intreg; 7262 7263 bfd_mips_elf32_swap_reginfo_in 7264 (abfd, 7265 ((Elf32_External_RegInfo *) 7266 (l + sizeof (Elf_External_Options))), 7267 &intreg); 7268 elf_gp (abfd) = intreg.ri_gp_value; 7269 } 7270 l += intopt.size; 7271 } 7272 free (contents); 7273 } 7274 7275 return TRUE; 7276 } 7277 7278 /* Set the correct type for a MIPS ELF section. We do this by the 7279 section name, which is a hack, but ought to work. This routine is 7280 used by both the 32-bit and the 64-bit ABI. */ 7281 7282 bfd_boolean 7283 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) 7284 { 7285 const char *name = bfd_get_section_name (abfd, sec); 7286 7287 if (strcmp (name, ".liblist") == 0) 7288 { 7289 hdr->sh_type = SHT_MIPS_LIBLIST; 7290 hdr->sh_info = sec->size / sizeof (Elf32_Lib); 7291 /* The sh_link field is set in final_write_processing. */ 7292 } 7293 else if (strcmp (name, ".conflict") == 0) 7294 hdr->sh_type = SHT_MIPS_CONFLICT; 7295 else if (CONST_STRNEQ (name, ".gptab.")) 7296 { 7297 hdr->sh_type = SHT_MIPS_GPTAB; 7298 hdr->sh_entsize = sizeof (Elf32_External_gptab); 7299 /* The sh_info field is set in final_write_processing. */ 7300 } 7301 else if (strcmp (name, ".ucode") == 0) 7302 hdr->sh_type = SHT_MIPS_UCODE; 7303 else if (strcmp (name, ".mdebug") == 0) 7304 { 7305 hdr->sh_type = SHT_MIPS_DEBUG; 7306 /* In a shared object on IRIX 5.3, the .mdebug section has an 7307 entsize of 0. FIXME: Does this matter? */ 7308 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) 7309 hdr->sh_entsize = 0; 7310 else 7311 hdr->sh_entsize = 1; 7312 } 7313 else if (strcmp (name, ".reginfo") == 0) 7314 { 7315 hdr->sh_type = SHT_MIPS_REGINFO; 7316 /* In a shared object on IRIX 5.3, the .reginfo section has an 7317 entsize of 0x18. FIXME: Does this matter? */ 7318 if (SGI_COMPAT (abfd)) 7319 { 7320 if ((abfd->flags & DYNAMIC) != 0) 7321 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7322 else 7323 hdr->sh_entsize = 1; 7324 } 7325 else 7326 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7327 } 7328 else if (SGI_COMPAT (abfd) 7329 && (strcmp (name, ".hash") == 0 7330 || strcmp (name, ".dynamic") == 0 7331 || strcmp (name, ".dynstr") == 0)) 7332 { 7333 if (SGI_COMPAT (abfd)) 7334 hdr->sh_entsize = 0; 7335 #if 0 7336 /* This isn't how the IRIX6 linker behaves. */ 7337 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; 7338 #endif 7339 } 7340 else if (strcmp (name, ".got") == 0 7341 || strcmp (name, ".srdata") == 0 7342 || strcmp (name, ".sdata") == 0 7343 || strcmp (name, ".sbss") == 0 7344 || strcmp (name, ".lit4") == 0 7345 || strcmp (name, ".lit8") == 0) 7346 hdr->sh_flags |= SHF_MIPS_GPREL; 7347 else if (strcmp (name, ".MIPS.interfaces") == 0) 7348 { 7349 hdr->sh_type = SHT_MIPS_IFACE; 7350 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7351 } 7352 else if (CONST_STRNEQ (name, ".MIPS.content")) 7353 { 7354 hdr->sh_type = SHT_MIPS_CONTENT; 7355 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7356 /* The sh_info field is set in final_write_processing. */ 7357 } 7358 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7359 { 7360 hdr->sh_type = SHT_MIPS_OPTIONS; 7361 hdr->sh_entsize = 1; 7362 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7363 } 7364 else if (CONST_STRNEQ (name, ".MIPS.abiflags")) 7365 { 7366 hdr->sh_type = SHT_MIPS_ABIFLAGS; 7367 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); 7368 } 7369 else if (CONST_STRNEQ (name, ".debug_") 7370 || CONST_STRNEQ (name, ".zdebug_")) 7371 { 7372 hdr->sh_type = SHT_MIPS_DWARF; 7373 7374 /* Irix facilities such as libexc expect a single .debug_frame 7375 per executable, the system ones have NOSTRIP set and the linker 7376 doesn't merge sections with different flags so ... */ 7377 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) 7378 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7379 } 7380 else if (strcmp (name, ".MIPS.symlib") == 0) 7381 { 7382 hdr->sh_type = SHT_MIPS_SYMBOL_LIB; 7383 /* The sh_link and sh_info fields are set in 7384 final_write_processing. */ 7385 } 7386 else if (CONST_STRNEQ (name, ".MIPS.events") 7387 || CONST_STRNEQ (name, ".MIPS.post_rel")) 7388 { 7389 hdr->sh_type = SHT_MIPS_EVENTS; 7390 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7391 /* The sh_link field is set in final_write_processing. */ 7392 } 7393 else if (strcmp (name, ".msym") == 0) 7394 { 7395 hdr->sh_type = SHT_MIPS_MSYM; 7396 hdr->sh_flags |= SHF_ALLOC; 7397 hdr->sh_entsize = 8; 7398 } 7399 7400 /* The generic elf_fake_sections will set up REL_HDR using the default 7401 kind of relocations. We used to set up a second header for the 7402 non-default kind of relocations here, but only NewABI would use 7403 these, and the IRIX ld doesn't like resulting empty RELA sections. 7404 Thus we create those header only on demand now. */ 7405 7406 return TRUE; 7407 } 7408 7409 /* Given a BFD section, try to locate the corresponding ELF section 7410 index. This is used by both the 32-bit and the 64-bit ABI. 7411 Actually, it's not clear to me that the 64-bit ABI supports these, 7412 but for non-PIC objects we will certainly want support for at least 7413 the .scommon section. */ 7414 7415 bfd_boolean 7416 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 7417 asection *sec, int *retval) 7418 { 7419 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) 7420 { 7421 *retval = SHN_MIPS_SCOMMON; 7422 return TRUE; 7423 } 7424 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) 7425 { 7426 *retval = SHN_MIPS_ACOMMON; 7427 return TRUE; 7428 } 7429 return FALSE; 7430 } 7431 7432 /* Hook called by the linker routine which adds symbols from an object 7434 file. We must handle the special MIPS section numbers here. */ 7435 7436 bfd_boolean 7437 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 7438 Elf_Internal_Sym *sym, const char **namep, 7439 flagword *flagsp ATTRIBUTE_UNUSED, 7440 asection **secp, bfd_vma *valp) 7441 { 7442 if (SGI_COMPAT (abfd) 7443 && (abfd->flags & DYNAMIC) != 0 7444 && strcmp (*namep, "_rld_new_interface") == 0) 7445 { 7446 /* Skip IRIX5 rld entry name. */ 7447 *namep = NULL; 7448 return TRUE; 7449 } 7450 7451 /* Shared objects may have a dynamic symbol '_gp_disp' defined as 7452 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp 7453 by setting a DT_NEEDED for the shared object. Since _gp_disp is 7454 a magic symbol resolved by the linker, we ignore this bogus definition 7455 of _gp_disp. New ABI objects do not suffer from this problem so this 7456 is not done for them. */ 7457 if (!NEWABI_P(abfd) 7458 && (sym->st_shndx == SHN_ABS) 7459 && (strcmp (*namep, "_gp_disp") == 0)) 7460 { 7461 *namep = NULL; 7462 return TRUE; 7463 } 7464 7465 switch (sym->st_shndx) 7466 { 7467 case SHN_COMMON: 7468 /* Common symbols less than the GP size are automatically 7469 treated as SHN_MIPS_SCOMMON symbols. */ 7470 if (sym->st_size > elf_gp_size (abfd) 7471 || ELF_ST_TYPE (sym->st_info) == STT_TLS 7472 || IRIX_COMPAT (abfd) == ict_irix6) 7473 break; 7474 /* Fall through. */ 7475 case SHN_MIPS_SCOMMON: 7476 *secp = bfd_make_section_old_way (abfd, ".scommon"); 7477 (*secp)->flags |= SEC_IS_COMMON; 7478 *valp = sym->st_size; 7479 break; 7480 7481 case SHN_MIPS_TEXT: 7482 /* This section is used in a shared object. */ 7483 if (mips_elf_tdata (abfd)->elf_text_section == NULL) 7484 { 7485 asymbol *elf_text_symbol; 7486 asection *elf_text_section; 7487 bfd_size_type amt = sizeof (asection); 7488 7489 elf_text_section = bfd_zalloc (abfd, amt); 7490 if (elf_text_section == NULL) 7491 return FALSE; 7492 7493 amt = sizeof (asymbol); 7494 elf_text_symbol = bfd_zalloc (abfd, amt); 7495 if (elf_text_symbol == NULL) 7496 return FALSE; 7497 7498 /* Initialize the section. */ 7499 7500 mips_elf_tdata (abfd)->elf_text_section = elf_text_section; 7501 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; 7502 7503 elf_text_section->symbol = elf_text_symbol; 7504 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; 7505 7506 elf_text_section->name = ".text"; 7507 elf_text_section->flags = SEC_NO_FLAGS; 7508 elf_text_section->output_section = NULL; 7509 elf_text_section->owner = abfd; 7510 elf_text_symbol->name = ".text"; 7511 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7512 elf_text_symbol->section = elf_text_section; 7513 } 7514 /* This code used to do *secp = bfd_und_section_ptr if 7515 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7516 so I took it out. */ 7517 *secp = mips_elf_tdata (abfd)->elf_text_section; 7518 break; 7519 7520 case SHN_MIPS_ACOMMON: 7521 /* Fall through. XXX Can we treat this as allocated data? */ 7522 case SHN_MIPS_DATA: 7523 /* This section is used in a shared object. */ 7524 if (mips_elf_tdata (abfd)->elf_data_section == NULL) 7525 { 7526 asymbol *elf_data_symbol; 7527 asection *elf_data_section; 7528 bfd_size_type amt = sizeof (asection); 7529 7530 elf_data_section = bfd_zalloc (abfd, amt); 7531 if (elf_data_section == NULL) 7532 return FALSE; 7533 7534 amt = sizeof (asymbol); 7535 elf_data_symbol = bfd_zalloc (abfd, amt); 7536 if (elf_data_symbol == NULL) 7537 return FALSE; 7538 7539 /* Initialize the section. */ 7540 7541 mips_elf_tdata (abfd)->elf_data_section = elf_data_section; 7542 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; 7543 7544 elf_data_section->symbol = elf_data_symbol; 7545 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; 7546 7547 elf_data_section->name = ".data"; 7548 elf_data_section->flags = SEC_NO_FLAGS; 7549 elf_data_section->output_section = NULL; 7550 elf_data_section->owner = abfd; 7551 elf_data_symbol->name = ".data"; 7552 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7553 elf_data_symbol->section = elf_data_section; 7554 } 7555 /* This code used to do *secp = bfd_und_section_ptr if 7556 bfd_link_pic (info). I don't know why, and that doesn't make sense, 7557 so I took it out. */ 7558 *secp = mips_elf_tdata (abfd)->elf_data_section; 7559 break; 7560 7561 case SHN_MIPS_SUNDEFINED: 7562 *secp = bfd_und_section_ptr; 7563 break; 7564 } 7565 7566 if (SGI_COMPAT (abfd) 7567 && ! bfd_link_pic (info) 7568 && info->output_bfd->xvec == abfd->xvec 7569 && strcmp (*namep, "__rld_obj_head") == 0) 7570 { 7571 struct elf_link_hash_entry *h; 7572 struct bfd_link_hash_entry *bh; 7573 7574 /* Mark __rld_obj_head as dynamic. */ 7575 bh = NULL; 7576 if (! (_bfd_generic_link_add_one_symbol 7577 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, 7578 get_elf_backend_data (abfd)->collect, &bh))) 7579 return FALSE; 7580 7581 h = (struct elf_link_hash_entry *) bh; 7582 h->non_elf = 0; 7583 h->def_regular = 1; 7584 h->type = STT_OBJECT; 7585 7586 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7587 return FALSE; 7588 7589 mips_elf_hash_table (info)->use_rld_obj_head = TRUE; 7590 mips_elf_hash_table (info)->rld_symbol = h; 7591 } 7592 7593 /* If this is a mips16 text symbol, add 1 to the value to make it 7594 odd. This will cause something like .word SYM to come up with 7595 the right value when it is loaded into the PC. */ 7596 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7597 ++*valp; 7598 7599 return TRUE; 7600 } 7601 7602 /* This hook function is called before the linker writes out a global 7603 symbol. We mark symbols as small common if appropriate. This is 7604 also where we undo the increment of the value for a mips16 symbol. */ 7605 7606 int 7607 _bfd_mips_elf_link_output_symbol_hook 7608 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 7609 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, 7610 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 7611 { 7612 /* If we see a common symbol, which implies a relocatable link, then 7613 if a symbol was small common in an input file, mark it as small 7614 common in the output file. */ 7615 if (sym->st_shndx == SHN_COMMON 7616 && strcmp (input_sec->name, ".scommon") == 0) 7617 sym->st_shndx = SHN_MIPS_SCOMMON; 7618 7619 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7620 sym->st_value &= ~1; 7621 7622 return 1; 7623 } 7624 7625 /* Functions for the dynamic linker. */ 7627 7628 /* Create dynamic sections when linking against a dynamic object. */ 7629 7630 bfd_boolean 7631 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 7632 { 7633 struct elf_link_hash_entry *h; 7634 struct bfd_link_hash_entry *bh; 7635 flagword flags; 7636 register asection *s; 7637 const char * const *namep; 7638 struct mips_elf_link_hash_table *htab; 7639 7640 htab = mips_elf_hash_table (info); 7641 BFD_ASSERT (htab != NULL); 7642 7643 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 7644 | SEC_LINKER_CREATED | SEC_READONLY); 7645 7646 /* The psABI requires a read-only .dynamic section, but the VxWorks 7647 EABI doesn't. */ 7648 if (!htab->is_vxworks) 7649 { 7650 s = bfd_get_linker_section (abfd, ".dynamic"); 7651 if (s != NULL) 7652 { 7653 if (! bfd_set_section_flags (abfd, s, flags)) 7654 return FALSE; 7655 } 7656 } 7657 7658 /* We need to create .got section. */ 7659 if (!mips_elf_create_got_section (abfd, info)) 7660 return FALSE; 7661 7662 if (! mips_elf_rel_dyn_section (info, TRUE)) 7663 return FALSE; 7664 7665 /* Create .stub section. */ 7666 s = bfd_make_section_anyway_with_flags (abfd, 7667 MIPS_ELF_STUB_SECTION_NAME (abfd), 7668 flags | SEC_CODE); 7669 if (s == NULL 7670 || ! bfd_set_section_alignment (abfd, s, 7671 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7672 return FALSE; 7673 htab->sstubs = s; 7674 7675 if (!mips_elf_hash_table (info)->use_rld_obj_head 7676 && bfd_link_executable (info) 7677 && bfd_get_linker_section (abfd, ".rld_map") == NULL) 7678 { 7679 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", 7680 flags &~ (flagword) SEC_READONLY); 7681 if (s == NULL 7682 || ! bfd_set_section_alignment (abfd, s, 7683 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7684 return FALSE; 7685 } 7686 7687 /* On IRIX5, we adjust add some additional symbols and change the 7688 alignments of several sections. There is no ABI documentation 7689 indicating that this is necessary on IRIX6, nor any evidence that 7690 the linker takes such action. */ 7691 if (IRIX_COMPAT (abfd) == ict_irix5) 7692 { 7693 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) 7694 { 7695 bh = NULL; 7696 if (! (_bfd_generic_link_add_one_symbol 7697 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, 7698 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7699 return FALSE; 7700 7701 h = (struct elf_link_hash_entry *) bh; 7702 h->non_elf = 0; 7703 h->def_regular = 1; 7704 h->type = STT_SECTION; 7705 7706 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7707 return FALSE; 7708 } 7709 7710 /* We need to create a .compact_rel section. */ 7711 if (SGI_COMPAT (abfd)) 7712 { 7713 if (!mips_elf_create_compact_rel_section (abfd, info)) 7714 return FALSE; 7715 } 7716 7717 /* Change alignments of some sections. */ 7718 s = bfd_get_linker_section (abfd, ".hash"); 7719 if (s != NULL) 7720 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7721 7722 s = bfd_get_linker_section (abfd, ".dynsym"); 7723 if (s != NULL) 7724 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7725 7726 s = bfd_get_linker_section (abfd, ".dynstr"); 7727 if (s != NULL) 7728 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7729 7730 /* ??? */ 7731 s = bfd_get_section_by_name (abfd, ".reginfo"); 7732 if (s != NULL) 7733 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7734 7735 s = bfd_get_linker_section (abfd, ".dynamic"); 7736 if (s != NULL) 7737 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7738 } 7739 7740 if (bfd_link_executable (info)) 7741 { 7742 const char *name; 7743 7744 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; 7745 bh = NULL; 7746 if (!(_bfd_generic_link_add_one_symbol 7747 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, 7748 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7749 return FALSE; 7750 7751 h = (struct elf_link_hash_entry *) bh; 7752 h->non_elf = 0; 7753 h->def_regular = 1; 7754 h->type = STT_SECTION; 7755 7756 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7757 return FALSE; 7758 7759 if (! mips_elf_hash_table (info)->use_rld_obj_head) 7760 { 7761 /* __rld_map is a four byte word located in the .data section 7762 and is filled in by the rtld to contain a pointer to 7763 the _r_debug structure. Its symbol value will be set in 7764 _bfd_mips_elf_finish_dynamic_symbol. */ 7765 s = bfd_get_linker_section (abfd, ".rld_map"); 7766 BFD_ASSERT (s != NULL); 7767 7768 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; 7769 bh = NULL; 7770 if (!(_bfd_generic_link_add_one_symbol 7771 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, 7772 get_elf_backend_data (abfd)->collect, &bh))) 7773 return FALSE; 7774 7775 h = (struct elf_link_hash_entry *) bh; 7776 h->non_elf = 0; 7777 h->def_regular = 1; 7778 h->type = STT_OBJECT; 7779 7780 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7781 return FALSE; 7782 mips_elf_hash_table (info)->rld_symbol = h; 7783 } 7784 } 7785 7786 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. 7787 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ 7788 if (!_bfd_elf_create_dynamic_sections (abfd, info)) 7789 return FALSE; 7790 7791 /* Cache the sections created above. */ 7792 htab->splt = bfd_get_linker_section (abfd, ".plt"); 7793 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); 7794 if (htab->is_vxworks) 7795 { 7796 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); 7797 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); 7798 } 7799 else 7800 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); 7801 if (!htab->sdynbss 7802 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info)) 7803 || !htab->srelplt 7804 || !htab->splt) 7805 abort (); 7806 7807 /* Do the usual VxWorks handling. */ 7808 if (htab->is_vxworks 7809 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) 7810 return FALSE; 7811 7812 return TRUE; 7813 } 7814 7815 /* Return true if relocation REL against section SEC is a REL rather than 7817 RELA relocation. RELOCS is the first relocation in the section and 7818 ABFD is the bfd that contains SEC. */ 7819 7820 static bfd_boolean 7821 mips_elf_rel_relocation_p (bfd *abfd, asection *sec, 7822 const Elf_Internal_Rela *relocs, 7823 const Elf_Internal_Rela *rel) 7824 { 7825 Elf_Internal_Shdr *rel_hdr; 7826 const struct elf_backend_data *bed; 7827 7828 /* To determine which flavor of relocation this is, we depend on the 7829 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ 7830 rel_hdr = elf_section_data (sec)->rel.hdr; 7831 if (rel_hdr == NULL) 7832 return FALSE; 7833 bed = get_elf_backend_data (abfd); 7834 return ((size_t) (rel - relocs) 7835 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); 7836 } 7837 7838 /* Read the addend for REL relocation REL, which belongs to bfd ABFD. 7839 HOWTO is the relocation's howto and CONTENTS points to the contents 7840 of the section that REL is against. */ 7841 7842 static bfd_vma 7843 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, 7844 reloc_howto_type *howto, bfd_byte *contents) 7845 { 7846 bfd_byte *location; 7847 unsigned int r_type; 7848 bfd_vma addend; 7849 bfd_vma bytes; 7850 7851 r_type = ELF_R_TYPE (abfd, rel->r_info); 7852 location = contents + rel->r_offset; 7853 7854 /* Get the addend, which is stored in the input file. */ 7855 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); 7856 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents); 7857 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); 7858 7859 addend = bytes & howto->src_mask; 7860 7861 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend 7862 accordingly. */ 7863 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c) 7864 addend <<= 1; 7865 7866 return addend; 7867 } 7868 7869 /* REL is a relocation in ABFD that needs a partnering LO16 relocation 7870 and *ADDEND is the addend for REL itself. Look for the LO16 relocation 7871 and update *ADDEND with the final addend. Return true on success 7872 or false if the LO16 could not be found. RELEND is the exclusive 7873 upper bound on the relocations for REL's section. */ 7874 7875 static bfd_boolean 7876 mips_elf_add_lo16_rel_addend (bfd *abfd, 7877 const Elf_Internal_Rela *rel, 7878 const Elf_Internal_Rela *relend, 7879 bfd_byte *contents, bfd_vma *addend) 7880 { 7881 unsigned int r_type, lo16_type; 7882 const Elf_Internal_Rela *lo16_relocation; 7883 reloc_howto_type *lo16_howto; 7884 bfd_vma l; 7885 7886 r_type = ELF_R_TYPE (abfd, rel->r_info); 7887 if (mips16_reloc_p (r_type)) 7888 lo16_type = R_MIPS16_LO16; 7889 else if (micromips_reloc_p (r_type)) 7890 lo16_type = R_MICROMIPS_LO16; 7891 else if (r_type == R_MIPS_PCHI16) 7892 lo16_type = R_MIPS_PCLO16; 7893 else 7894 lo16_type = R_MIPS_LO16; 7895 7896 /* The combined value is the sum of the HI16 addend, left-shifted by 7897 sixteen bits, and the LO16 addend, sign extended. (Usually, the 7898 code does a `lui' of the HI16 value, and then an `addiu' of the 7899 LO16 value.) 7900 7901 Scan ahead to find a matching LO16 relocation. 7902 7903 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must 7904 be immediately following. However, for the IRIX6 ABI, the next 7905 relocation may be a composed relocation consisting of several 7906 relocations for the same address. In that case, the R_MIPS_LO16 7907 relocation may occur as one of these. We permit a similar 7908 extension in general, as that is useful for GCC. 7909 7910 In some cases GCC dead code elimination removes the LO16 but keeps 7911 the corresponding HI16. This is strictly speaking a violation of 7912 the ABI but not immediately harmful. */ 7913 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); 7914 if (lo16_relocation == NULL) 7915 return FALSE; 7916 7917 /* Obtain the addend kept there. */ 7918 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); 7919 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); 7920 7921 l <<= lo16_howto->rightshift; 7922 l = _bfd_mips_elf_sign_extend (l, 16); 7923 7924 *addend <<= 16; 7925 *addend += l; 7926 return TRUE; 7927 } 7928 7929 /* Try to read the contents of section SEC in bfd ABFD. Return true and 7930 store the contents in *CONTENTS on success. Assume that *CONTENTS 7931 already holds the contents if it is nonull on entry. */ 7932 7933 static bfd_boolean 7934 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) 7935 { 7936 if (*contents) 7937 return TRUE; 7938 7939 /* Get cached copy if it exists. */ 7940 if (elf_section_data (sec)->this_hdr.contents != NULL) 7941 { 7942 *contents = elf_section_data (sec)->this_hdr.contents; 7943 return TRUE; 7944 } 7945 7946 return bfd_malloc_and_get_section (abfd, sec, contents); 7947 } 7948 7949 /* Make a new PLT record to keep internal data. */ 7950 7951 static struct plt_entry * 7952 mips_elf_make_plt_record (bfd *abfd) 7953 { 7954 struct plt_entry *entry; 7955 7956 entry = bfd_zalloc (abfd, sizeof (*entry)); 7957 if (entry == NULL) 7958 return NULL; 7959 7960 entry->stub_offset = MINUS_ONE; 7961 entry->mips_offset = MINUS_ONE; 7962 entry->comp_offset = MINUS_ONE; 7963 entry->gotplt_index = MINUS_ONE; 7964 return entry; 7965 } 7966 7967 /* Look through the relocs for a section during the first phase, and 7968 allocate space in the global offset table and record the need for 7969 standard MIPS and compressed procedure linkage table entries. */ 7970 7971 bfd_boolean 7972 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 7973 asection *sec, const Elf_Internal_Rela *relocs) 7974 { 7975 const char *name; 7976 bfd *dynobj; 7977 Elf_Internal_Shdr *symtab_hdr; 7978 struct elf_link_hash_entry **sym_hashes; 7979 size_t extsymoff; 7980 const Elf_Internal_Rela *rel; 7981 const Elf_Internal_Rela *rel_end; 7982 asection *sreloc; 7983 const struct elf_backend_data *bed; 7984 struct mips_elf_link_hash_table *htab; 7985 bfd_byte *contents; 7986 bfd_vma addend; 7987 reloc_howto_type *howto; 7988 7989 if (bfd_link_relocatable (info)) 7990 return TRUE; 7991 7992 htab = mips_elf_hash_table (info); 7993 BFD_ASSERT (htab != NULL); 7994 7995 dynobj = elf_hash_table (info)->dynobj; 7996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7997 sym_hashes = elf_sym_hashes (abfd); 7998 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 7999 8000 bed = get_elf_backend_data (abfd); 8001 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; 8002 8003 /* Check for the mips16 stub sections. */ 8004 8005 name = bfd_get_section_name (abfd, sec); 8006 if (FN_STUB_P (name)) 8007 { 8008 unsigned long r_symndx; 8009 8010 /* Look at the relocation information to figure out which symbol 8011 this is for. */ 8012 8013 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8014 if (r_symndx == 0) 8015 { 8016 (*_bfd_error_handler) 8017 (_("%B: Warning: cannot determine the target function for" 8018 " stub section `%s'"), 8019 abfd, name); 8020 bfd_set_error (bfd_error_bad_value); 8021 return FALSE; 8022 } 8023 8024 if (r_symndx < extsymoff 8025 || sym_hashes[r_symndx - extsymoff] == NULL) 8026 { 8027 asection *o; 8028 8029 /* This stub is for a local symbol. This stub will only be 8030 needed if there is some relocation in this BFD, other 8031 than a 16 bit function call, which refers to this symbol. */ 8032 for (o = abfd->sections; o != NULL; o = o->next) 8033 { 8034 Elf_Internal_Rela *sec_relocs; 8035 const Elf_Internal_Rela *r, *rend; 8036 8037 /* We can ignore stub sections when looking for relocs. */ 8038 if ((o->flags & SEC_RELOC) == 0 8039 || o->reloc_count == 0 8040 || section_allows_mips16_refs_p (o)) 8041 continue; 8042 8043 sec_relocs 8044 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8045 info->keep_memory); 8046 if (sec_relocs == NULL) 8047 return FALSE; 8048 8049 rend = sec_relocs + o->reloc_count; 8050 for (r = sec_relocs; r < rend; r++) 8051 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8052 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) 8053 break; 8054 8055 if (elf_section_data (o)->relocs != sec_relocs) 8056 free (sec_relocs); 8057 8058 if (r < rend) 8059 break; 8060 } 8061 8062 if (o == NULL) 8063 { 8064 /* There is no non-call reloc for this stub, so we do 8065 not need it. Since this function is called before 8066 the linker maps input sections to output sections, we 8067 can easily discard it by setting the SEC_EXCLUDE 8068 flag. */ 8069 sec->flags |= SEC_EXCLUDE; 8070 return TRUE; 8071 } 8072 8073 /* Record this stub in an array of local symbol stubs for 8074 this BFD. */ 8075 if (mips_elf_tdata (abfd)->local_stubs == NULL) 8076 { 8077 unsigned long symcount; 8078 asection **n; 8079 bfd_size_type amt; 8080 8081 if (elf_bad_symtab (abfd)) 8082 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8083 else 8084 symcount = symtab_hdr->sh_info; 8085 amt = symcount * sizeof (asection *); 8086 n = bfd_zalloc (abfd, amt); 8087 if (n == NULL) 8088 return FALSE; 8089 mips_elf_tdata (abfd)->local_stubs = n; 8090 } 8091 8092 sec->flags |= SEC_KEEP; 8093 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; 8094 8095 /* We don't need to set mips16_stubs_seen in this case. 8096 That flag is used to see whether we need to look through 8097 the global symbol table for stubs. We don't need to set 8098 it here, because we just have a local stub. */ 8099 } 8100 else 8101 { 8102 struct mips_elf_link_hash_entry *h; 8103 8104 h = ((struct mips_elf_link_hash_entry *) 8105 sym_hashes[r_symndx - extsymoff]); 8106 8107 while (h->root.root.type == bfd_link_hash_indirect 8108 || h->root.root.type == bfd_link_hash_warning) 8109 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8110 8111 /* H is the symbol this stub is for. */ 8112 8113 /* If we already have an appropriate stub for this function, we 8114 don't need another one, so we can discard this one. Since 8115 this function is called before the linker maps input sections 8116 to output sections, we can easily discard it by setting the 8117 SEC_EXCLUDE flag. */ 8118 if (h->fn_stub != NULL) 8119 { 8120 sec->flags |= SEC_EXCLUDE; 8121 return TRUE; 8122 } 8123 8124 sec->flags |= SEC_KEEP; 8125 h->fn_stub = sec; 8126 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8127 } 8128 } 8129 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) 8130 { 8131 unsigned long r_symndx; 8132 struct mips_elf_link_hash_entry *h; 8133 asection **loc; 8134 8135 /* Look at the relocation information to figure out which symbol 8136 this is for. */ 8137 8138 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8139 if (r_symndx == 0) 8140 { 8141 (*_bfd_error_handler) 8142 (_("%B: Warning: cannot determine the target function for" 8143 " stub section `%s'"), 8144 abfd, name); 8145 bfd_set_error (bfd_error_bad_value); 8146 return FALSE; 8147 } 8148 8149 if (r_symndx < extsymoff 8150 || sym_hashes[r_symndx - extsymoff] == NULL) 8151 { 8152 asection *o; 8153 8154 /* This stub is for a local symbol. This stub will only be 8155 needed if there is some relocation (R_MIPS16_26) in this BFD 8156 that refers to this symbol. */ 8157 for (o = abfd->sections; o != NULL; o = o->next) 8158 { 8159 Elf_Internal_Rela *sec_relocs; 8160 const Elf_Internal_Rela *r, *rend; 8161 8162 /* We can ignore stub sections when looking for relocs. */ 8163 if ((o->flags & SEC_RELOC) == 0 8164 || o->reloc_count == 0 8165 || section_allows_mips16_refs_p (o)) 8166 continue; 8167 8168 sec_relocs 8169 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8170 info->keep_memory); 8171 if (sec_relocs == NULL) 8172 return FALSE; 8173 8174 rend = sec_relocs + o->reloc_count; 8175 for (r = sec_relocs; r < rend; r++) 8176 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8177 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) 8178 break; 8179 8180 if (elf_section_data (o)->relocs != sec_relocs) 8181 free (sec_relocs); 8182 8183 if (r < rend) 8184 break; 8185 } 8186 8187 if (o == NULL) 8188 { 8189 /* There is no non-call reloc for this stub, so we do 8190 not need it. Since this function is called before 8191 the linker maps input sections to output sections, we 8192 can easily discard it by setting the SEC_EXCLUDE 8193 flag. */ 8194 sec->flags |= SEC_EXCLUDE; 8195 return TRUE; 8196 } 8197 8198 /* Record this stub in an array of local symbol call_stubs for 8199 this BFD. */ 8200 if (mips_elf_tdata (abfd)->local_call_stubs == NULL) 8201 { 8202 unsigned long symcount; 8203 asection **n; 8204 bfd_size_type amt; 8205 8206 if (elf_bad_symtab (abfd)) 8207 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8208 else 8209 symcount = symtab_hdr->sh_info; 8210 amt = symcount * sizeof (asection *); 8211 n = bfd_zalloc (abfd, amt); 8212 if (n == NULL) 8213 return FALSE; 8214 mips_elf_tdata (abfd)->local_call_stubs = n; 8215 } 8216 8217 sec->flags |= SEC_KEEP; 8218 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; 8219 8220 /* We don't need to set mips16_stubs_seen in this case. 8221 That flag is used to see whether we need to look through 8222 the global symbol table for stubs. We don't need to set 8223 it here, because we just have a local stub. */ 8224 } 8225 else 8226 { 8227 h = ((struct mips_elf_link_hash_entry *) 8228 sym_hashes[r_symndx - extsymoff]); 8229 8230 /* H is the symbol this stub is for. */ 8231 8232 if (CALL_FP_STUB_P (name)) 8233 loc = &h->call_fp_stub; 8234 else 8235 loc = &h->call_stub; 8236 8237 /* If we already have an appropriate stub for this function, we 8238 don't need another one, so we can discard this one. Since 8239 this function is called before the linker maps input sections 8240 to output sections, we can easily discard it by setting the 8241 SEC_EXCLUDE flag. */ 8242 if (*loc != NULL) 8243 { 8244 sec->flags |= SEC_EXCLUDE; 8245 return TRUE; 8246 } 8247 8248 sec->flags |= SEC_KEEP; 8249 *loc = sec; 8250 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8251 } 8252 } 8253 8254 sreloc = NULL; 8255 contents = NULL; 8256 for (rel = relocs; rel < rel_end; ++rel) 8257 { 8258 unsigned long r_symndx; 8259 unsigned int r_type; 8260 struct elf_link_hash_entry *h; 8261 bfd_boolean can_make_dynamic_p; 8262 bfd_boolean call_reloc_p; 8263 bfd_boolean constrain_symbol_p; 8264 8265 r_symndx = ELF_R_SYM (abfd, rel->r_info); 8266 r_type = ELF_R_TYPE (abfd, rel->r_info); 8267 8268 if (r_symndx < extsymoff) 8269 h = NULL; 8270 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) 8271 { 8272 (*_bfd_error_handler) 8273 (_("%B: Malformed reloc detected for section %s"), 8274 abfd, name); 8275 bfd_set_error (bfd_error_bad_value); 8276 return FALSE; 8277 } 8278 else 8279 { 8280 h = sym_hashes[r_symndx - extsymoff]; 8281 if (h != NULL) 8282 { 8283 while (h->root.type == bfd_link_hash_indirect 8284 || h->root.type == bfd_link_hash_warning) 8285 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8286 8287 /* PR15323, ref flags aren't set for references in the 8288 same object. */ 8289 h->root.non_ir_ref = 1; 8290 } 8291 } 8292 8293 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this 8294 relocation into a dynamic one. */ 8295 can_make_dynamic_p = FALSE; 8296 8297 /* Set CALL_RELOC_P to true if the relocation is for a call, 8298 and if pointer equality therefore doesn't matter. */ 8299 call_reloc_p = FALSE; 8300 8301 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation 8302 into account when deciding how to define the symbol. 8303 Relocations in nonallocatable sections such as .pdr and 8304 .debug* should have no effect. */ 8305 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0); 8306 8307 switch (r_type) 8308 { 8309 case R_MIPS_CALL16: 8310 case R_MIPS_CALL_HI16: 8311 case R_MIPS_CALL_LO16: 8312 case R_MIPS16_CALL16: 8313 case R_MICROMIPS_CALL16: 8314 case R_MICROMIPS_CALL_HI16: 8315 case R_MICROMIPS_CALL_LO16: 8316 call_reloc_p = TRUE; 8317 /* Fall through. */ 8318 8319 case R_MIPS_GOT16: 8320 case R_MIPS_GOT_HI16: 8321 case R_MIPS_GOT_LO16: 8322 case R_MIPS_GOT_PAGE: 8323 case R_MIPS_GOT_OFST: 8324 case R_MIPS_GOT_DISP: 8325 case R_MIPS_TLS_GOTTPREL: 8326 case R_MIPS_TLS_GD: 8327 case R_MIPS_TLS_LDM: 8328 case R_MIPS16_GOT16: 8329 case R_MIPS16_TLS_GOTTPREL: 8330 case R_MIPS16_TLS_GD: 8331 case R_MIPS16_TLS_LDM: 8332 case R_MICROMIPS_GOT16: 8333 case R_MICROMIPS_GOT_HI16: 8334 case R_MICROMIPS_GOT_LO16: 8335 case R_MICROMIPS_GOT_PAGE: 8336 case R_MICROMIPS_GOT_OFST: 8337 case R_MICROMIPS_GOT_DISP: 8338 case R_MICROMIPS_TLS_GOTTPREL: 8339 case R_MICROMIPS_TLS_GD: 8340 case R_MICROMIPS_TLS_LDM: 8341 if (dynobj == NULL) 8342 elf_hash_table (info)->dynobj = dynobj = abfd; 8343 if (!mips_elf_create_got_section (dynobj, info)) 8344 return FALSE; 8345 if (htab->is_vxworks && !bfd_link_pic (info)) 8346 { 8347 (*_bfd_error_handler) 8348 (_("%B: GOT reloc at 0x%lx not expected in executables"), 8349 abfd, (unsigned long) rel->r_offset); 8350 bfd_set_error (bfd_error_bad_value); 8351 return FALSE; 8352 } 8353 can_make_dynamic_p = TRUE; 8354 break; 8355 8356 case R_MIPS_NONE: 8357 case R_MIPS_JALR: 8358 case R_MICROMIPS_JALR: 8359 /* These relocations have empty fields and are purely there to 8360 provide link information. The symbol value doesn't matter. */ 8361 constrain_symbol_p = FALSE; 8362 break; 8363 8364 case R_MIPS_GPREL16: 8365 case R_MIPS_GPREL32: 8366 case R_MIPS16_GPREL: 8367 case R_MICROMIPS_GPREL16: 8368 /* GP-relative relocations always resolve to a definition in a 8369 regular input file, ignoring the one-definition rule. This is 8370 important for the GP setup sequence in NewABI code, which 8371 always resolves to a local function even if other relocations 8372 against the symbol wouldn't. */ 8373 constrain_symbol_p = FALSE; 8374 break; 8375 8376 case R_MIPS_32: 8377 case R_MIPS_REL32: 8378 case R_MIPS_64: 8379 /* In VxWorks executables, references to external symbols 8380 must be handled using copy relocs or PLT entries; it is not 8381 possible to convert this relocation into a dynamic one. 8382 8383 For executables that use PLTs and copy-relocs, we have a 8384 choice between converting the relocation into a dynamic 8385 one or using copy relocations or PLT entries. It is 8386 usually better to do the former, unless the relocation is 8387 against a read-only section. */ 8388 if ((bfd_link_pic (info) 8389 || (h != NULL 8390 && !htab->is_vxworks 8391 && strcmp (h->root.root.string, "__gnu_local_gp") != 0 8392 && !(!info->nocopyreloc 8393 && !PIC_OBJECT_P (abfd) 8394 && MIPS_ELF_READONLY_SECTION (sec)))) 8395 && (sec->flags & SEC_ALLOC) != 0) 8396 { 8397 can_make_dynamic_p = TRUE; 8398 if (dynobj == NULL) 8399 elf_hash_table (info)->dynobj = dynobj = abfd; 8400 } 8401 break; 8402 8403 case R_MIPS_26: 8404 case R_MIPS_PC16: 8405 case R_MIPS_PC21_S2: 8406 case R_MIPS_PC26_S2: 8407 case R_MIPS16_26: 8408 case R_MIPS16_PC16_S1: 8409 case R_MICROMIPS_26_S1: 8410 case R_MICROMIPS_PC7_S1: 8411 case R_MICROMIPS_PC10_S1: 8412 case R_MICROMIPS_PC16_S1: 8413 case R_MICROMIPS_PC23_S2: 8414 call_reloc_p = TRUE; 8415 break; 8416 } 8417 8418 if (h) 8419 { 8420 if (constrain_symbol_p) 8421 { 8422 if (!can_make_dynamic_p) 8423 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; 8424 8425 if (!call_reloc_p) 8426 h->pointer_equality_needed = 1; 8427 8428 /* We must not create a stub for a symbol that has 8429 relocations related to taking the function's address. 8430 This doesn't apply to VxWorks, where CALL relocs refer 8431 to a .got.plt entry instead of a normal .got entry. */ 8432 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p)) 8433 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; 8434 } 8435 8436 /* Relocations against the special VxWorks __GOTT_BASE__ and 8437 __GOTT_INDEX__ symbols must be left to the loader. Allocate 8438 room for them in .rela.dyn. */ 8439 if (is_gott_symbol (info, h)) 8440 { 8441 if (sreloc == NULL) 8442 { 8443 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8444 if (sreloc == NULL) 8445 return FALSE; 8446 } 8447 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8448 if (MIPS_ELF_READONLY_SECTION (sec)) 8449 /* We tell the dynamic linker that there are 8450 relocations against the text segment. */ 8451 info->flags |= DF_TEXTREL; 8452 } 8453 } 8454 else if (call_lo16_reloc_p (r_type) 8455 || got_lo16_reloc_p (r_type) 8456 || got_disp_reloc_p (r_type) 8457 || (got16_reloc_p (r_type) && htab->is_vxworks)) 8458 { 8459 /* We may need a local GOT entry for this relocation. We 8460 don't count R_MIPS_GOT_PAGE because we can estimate the 8461 maximum number of pages needed by looking at the size of 8462 the segment. Similar comments apply to R_MIPS*_GOT16 and 8463 R_MIPS*_CALL16, except on VxWorks, where GOT relocations 8464 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or 8465 R_MIPS_CALL_HI16 because these are always followed by an 8466 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ 8467 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8468 rel->r_addend, info, r_type)) 8469 return FALSE; 8470 } 8471 8472 if (h != NULL 8473 && mips_elf_relocation_needs_la25_stub (abfd, r_type, 8474 ELF_ST_IS_MIPS16 (h->other))) 8475 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; 8476 8477 switch (r_type) 8478 { 8479 case R_MIPS_CALL16: 8480 case R_MIPS16_CALL16: 8481 case R_MICROMIPS_CALL16: 8482 if (h == NULL) 8483 { 8484 (*_bfd_error_handler) 8485 (_("%B: CALL16 reloc at 0x%lx not against global symbol"), 8486 abfd, (unsigned long) rel->r_offset); 8487 bfd_set_error (bfd_error_bad_value); 8488 return FALSE; 8489 } 8490 /* Fall through. */ 8491 8492 case R_MIPS_CALL_HI16: 8493 case R_MIPS_CALL_LO16: 8494 case R_MICROMIPS_CALL_HI16: 8495 case R_MICROMIPS_CALL_LO16: 8496 if (h != NULL) 8497 { 8498 /* Make sure there is room in the regular GOT to hold the 8499 function's address. We may eliminate it in favour of 8500 a .got.plt entry later; see mips_elf_count_got_symbols. */ 8501 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 8502 r_type)) 8503 return FALSE; 8504 8505 /* We need a stub, not a plt entry for the undefined 8506 function. But we record it as if it needs plt. See 8507 _bfd_elf_adjust_dynamic_symbol. */ 8508 h->needs_plt = 1; 8509 h->type = STT_FUNC; 8510 } 8511 break; 8512 8513 case R_MIPS_GOT_PAGE: 8514 case R_MICROMIPS_GOT_PAGE: 8515 case R_MIPS16_GOT16: 8516 case R_MIPS_GOT16: 8517 case R_MIPS_GOT_HI16: 8518 case R_MIPS_GOT_LO16: 8519 case R_MICROMIPS_GOT16: 8520 case R_MICROMIPS_GOT_HI16: 8521 case R_MICROMIPS_GOT_LO16: 8522 if (!h || got_page_reloc_p (r_type)) 8523 { 8524 /* This relocation needs (or may need, if h != NULL) a 8525 page entry in the GOT. For R_MIPS_GOT_PAGE we do not 8526 know for sure until we know whether the symbol is 8527 preemptible. */ 8528 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) 8529 { 8530 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8531 return FALSE; 8532 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8533 addend = mips_elf_read_rel_addend (abfd, rel, 8534 howto, contents); 8535 if (got16_reloc_p (r_type)) 8536 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, 8537 contents, &addend); 8538 else 8539 addend <<= howto->rightshift; 8540 } 8541 else 8542 addend = rel->r_addend; 8543 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, 8544 h, addend)) 8545 return FALSE; 8546 8547 if (h) 8548 { 8549 struct mips_elf_link_hash_entry *hmips = 8550 (struct mips_elf_link_hash_entry *) h; 8551 8552 /* This symbol is definitely not overridable. */ 8553 if (hmips->root.def_regular 8554 && ! (bfd_link_pic (info) && ! info->symbolic 8555 && ! hmips->root.forced_local)) 8556 h = NULL; 8557 } 8558 } 8559 /* If this is a global, overridable symbol, GOT_PAGE will 8560 decay to GOT_DISP, so we'll need a GOT entry for it. */ 8561 /* Fall through. */ 8562 8563 case R_MIPS_GOT_DISP: 8564 case R_MICROMIPS_GOT_DISP: 8565 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 8566 FALSE, r_type)) 8567 return FALSE; 8568 break; 8569 8570 case R_MIPS_TLS_GOTTPREL: 8571 case R_MIPS16_TLS_GOTTPREL: 8572 case R_MICROMIPS_TLS_GOTTPREL: 8573 if (bfd_link_pic (info)) 8574 info->flags |= DF_STATIC_TLS; 8575 /* Fall through */ 8576 8577 case R_MIPS_TLS_LDM: 8578 case R_MIPS16_TLS_LDM: 8579 case R_MICROMIPS_TLS_LDM: 8580 if (tls_ldm_reloc_p (r_type)) 8581 { 8582 r_symndx = STN_UNDEF; 8583 h = NULL; 8584 } 8585 /* Fall through */ 8586 8587 case R_MIPS_TLS_GD: 8588 case R_MIPS16_TLS_GD: 8589 case R_MICROMIPS_TLS_GD: 8590 /* This symbol requires a global offset table entry, or two 8591 for TLS GD relocations. */ 8592 if (h != NULL) 8593 { 8594 if (!mips_elf_record_global_got_symbol (h, abfd, info, 8595 FALSE, r_type)) 8596 return FALSE; 8597 } 8598 else 8599 { 8600 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8601 rel->r_addend, 8602 info, r_type)) 8603 return FALSE; 8604 } 8605 break; 8606 8607 case R_MIPS_32: 8608 case R_MIPS_REL32: 8609 case R_MIPS_64: 8610 /* In VxWorks executables, references to external symbols 8611 are handled using copy relocs or PLT stubs, so there's 8612 no need to add a .rela.dyn entry for this relocation. */ 8613 if (can_make_dynamic_p) 8614 { 8615 if (sreloc == NULL) 8616 { 8617 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8618 if (sreloc == NULL) 8619 return FALSE; 8620 } 8621 if (bfd_link_pic (info) && h == NULL) 8622 { 8623 /* When creating a shared object, we must copy these 8624 reloc types into the output file as R_MIPS_REL32 8625 relocs. Make room for this reloc in .rel(a).dyn. */ 8626 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8627 if (MIPS_ELF_READONLY_SECTION (sec)) 8628 /* We tell the dynamic linker that there are 8629 relocations against the text segment. */ 8630 info->flags |= DF_TEXTREL; 8631 } 8632 else 8633 { 8634 struct mips_elf_link_hash_entry *hmips; 8635 8636 /* For a shared object, we must copy this relocation 8637 unless the symbol turns out to be undefined and 8638 weak with non-default visibility, in which case 8639 it will be left as zero. 8640 8641 We could elide R_MIPS_REL32 for locally binding symbols 8642 in shared libraries, but do not yet do so. 8643 8644 For an executable, we only need to copy this 8645 reloc if the symbol is defined in a dynamic 8646 object. */ 8647 hmips = (struct mips_elf_link_hash_entry *) h; 8648 ++hmips->possibly_dynamic_relocs; 8649 if (MIPS_ELF_READONLY_SECTION (sec)) 8650 /* We need it to tell the dynamic linker if there 8651 are relocations against the text segment. */ 8652 hmips->readonly_reloc = TRUE; 8653 } 8654 } 8655 8656 if (SGI_COMPAT (abfd)) 8657 mips_elf_hash_table (info)->compact_rel_size += 8658 sizeof (Elf32_External_crinfo); 8659 break; 8660 8661 case R_MIPS_26: 8662 case R_MIPS_GPREL16: 8663 case R_MIPS_LITERAL: 8664 case R_MIPS_GPREL32: 8665 case R_MICROMIPS_26_S1: 8666 case R_MICROMIPS_GPREL16: 8667 case R_MICROMIPS_LITERAL: 8668 case R_MICROMIPS_GPREL7_S2: 8669 if (SGI_COMPAT (abfd)) 8670 mips_elf_hash_table (info)->compact_rel_size += 8671 sizeof (Elf32_External_crinfo); 8672 break; 8673 8674 /* This relocation describes the C++ object vtable hierarchy. 8675 Reconstruct it for later use during GC. */ 8676 case R_MIPS_GNU_VTINHERIT: 8677 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 8678 return FALSE; 8679 break; 8680 8681 /* This relocation describes which C++ vtable entries are actually 8682 used. Record for later use during GC. */ 8683 case R_MIPS_GNU_VTENTRY: 8684 BFD_ASSERT (h != NULL); 8685 if (h != NULL 8686 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 8687 return FALSE; 8688 break; 8689 8690 default: 8691 break; 8692 } 8693 8694 /* Record the need for a PLT entry. At this point we don't know 8695 yet if we are going to create a PLT in the first place, but 8696 we only record whether the relocation requires a standard MIPS 8697 or a compressed code entry anyway. If we don't make a PLT after 8698 all, then we'll just ignore these arrangements. Likewise if 8699 a PLT entry is not created because the symbol is satisfied 8700 locally. */ 8701 if (h != NULL 8702 && jal_reloc_p (r_type) 8703 && !SYMBOL_CALLS_LOCAL (info, h)) 8704 { 8705 if (h->plt.plist == NULL) 8706 h->plt.plist = mips_elf_make_plt_record (abfd); 8707 if (h->plt.plist == NULL) 8708 return FALSE; 8709 8710 if (r_type == R_MIPS_26) 8711 h->plt.plist->need_mips = TRUE; 8712 else 8713 h->plt.plist->need_comp = TRUE; 8714 } 8715 8716 /* See if this reloc would need to refer to a MIPS16 hard-float stub, 8717 if there is one. We only need to handle global symbols here; 8718 we decide whether to keep or delete stubs for local symbols 8719 when processing the stub's relocations. */ 8720 if (h != NULL 8721 && !mips16_call_reloc_p (r_type) 8722 && !section_allows_mips16_refs_p (sec)) 8723 { 8724 struct mips_elf_link_hash_entry *mh; 8725 8726 mh = (struct mips_elf_link_hash_entry *) h; 8727 mh->need_fn_stub = TRUE; 8728 } 8729 8730 /* Refuse some position-dependent relocations when creating a 8731 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're 8732 not PIC, but we can create dynamic relocations and the result 8733 will be fine. Also do not refuse R_MIPS_LO16, which can be 8734 combined with R_MIPS_GOT16. */ 8735 if (bfd_link_pic (info)) 8736 { 8737 switch (r_type) 8738 { 8739 case R_MIPS16_HI16: 8740 case R_MIPS_HI16: 8741 case R_MIPS_HIGHER: 8742 case R_MIPS_HIGHEST: 8743 case R_MICROMIPS_HI16: 8744 case R_MICROMIPS_HIGHER: 8745 case R_MICROMIPS_HIGHEST: 8746 /* Don't refuse a high part relocation if it's against 8747 no symbol (e.g. part of a compound relocation). */ 8748 if (r_symndx == STN_UNDEF) 8749 break; 8750 8751 /* R_MIPS_HI16 against _gp_disp is used for $gp setup, 8752 and has a special meaning. */ 8753 if (!NEWABI_P (abfd) && h != NULL 8754 && strcmp (h->root.root.string, "_gp_disp") == 0) 8755 break; 8756 8757 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ 8758 if (is_gott_symbol (info, h)) 8759 break; 8760 8761 /* FALLTHROUGH */ 8762 8763 case R_MIPS16_26: 8764 case R_MIPS_26: 8765 case R_MICROMIPS_26_S1: 8766 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8767 (*_bfd_error_handler) 8768 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 8769 abfd, howto->name, 8770 (h) ? h->root.root.string : "a local symbol"); 8771 bfd_set_error (bfd_error_bad_value); 8772 return FALSE; 8773 default: 8774 break; 8775 } 8776 } 8777 } 8778 8779 return TRUE; 8780 } 8781 8782 bfd_boolean 8784 _bfd_mips_relax_section (bfd *abfd, asection *sec, 8785 struct bfd_link_info *link_info, 8786 bfd_boolean *again) 8787 { 8788 Elf_Internal_Rela *internal_relocs; 8789 Elf_Internal_Rela *irel, *irelend; 8790 Elf_Internal_Shdr *symtab_hdr; 8791 bfd_byte *contents = NULL; 8792 size_t extsymoff; 8793 bfd_boolean changed_contents = FALSE; 8794 bfd_vma sec_start = sec->output_section->vma + sec->output_offset; 8795 Elf_Internal_Sym *isymbuf = NULL; 8796 8797 /* We are not currently changing any sizes, so only one pass. */ 8798 *again = FALSE; 8799 8800 if (bfd_link_relocatable (link_info)) 8801 return TRUE; 8802 8803 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 8804 link_info->keep_memory); 8805 if (internal_relocs == NULL) 8806 return TRUE; 8807 8808 irelend = internal_relocs + sec->reloc_count 8809 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; 8810 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 8811 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 8812 8813 for (irel = internal_relocs; irel < irelend; irel++) 8814 { 8815 bfd_vma symval; 8816 bfd_signed_vma sym_offset; 8817 unsigned int r_type; 8818 unsigned long r_symndx; 8819 asection *sym_sec; 8820 unsigned long instruction; 8821 8822 /* Turn jalr into bgezal, and jr into beq, if they're marked 8823 with a JALR relocation, that indicate where they jump to. 8824 This saves some pipeline bubbles. */ 8825 r_type = ELF_R_TYPE (abfd, irel->r_info); 8826 if (r_type != R_MIPS_JALR) 8827 continue; 8828 8829 r_symndx = ELF_R_SYM (abfd, irel->r_info); 8830 /* Compute the address of the jump target. */ 8831 if (r_symndx >= extsymoff) 8832 { 8833 struct mips_elf_link_hash_entry *h 8834 = ((struct mips_elf_link_hash_entry *) 8835 elf_sym_hashes (abfd) [r_symndx - extsymoff]); 8836 8837 while (h->root.root.type == bfd_link_hash_indirect 8838 || h->root.root.type == bfd_link_hash_warning) 8839 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8840 8841 /* If a symbol is undefined, or if it may be overridden, 8842 skip it. */ 8843 if (! ((h->root.root.type == bfd_link_hash_defined 8844 || h->root.root.type == bfd_link_hash_defweak) 8845 && h->root.root.u.def.section) 8846 || (bfd_link_pic (link_info) && ! link_info->symbolic 8847 && !h->root.forced_local)) 8848 continue; 8849 8850 sym_sec = h->root.root.u.def.section; 8851 if (sym_sec->output_section) 8852 symval = (h->root.root.u.def.value 8853 + sym_sec->output_section->vma 8854 + sym_sec->output_offset); 8855 else 8856 symval = h->root.root.u.def.value; 8857 } 8858 else 8859 { 8860 Elf_Internal_Sym *isym; 8861 8862 /* Read this BFD's symbols if we haven't done so already. */ 8863 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 8864 { 8865 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 8866 if (isymbuf == NULL) 8867 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 8868 symtab_hdr->sh_info, 0, 8869 NULL, NULL, NULL); 8870 if (isymbuf == NULL) 8871 goto relax_return; 8872 } 8873 8874 isym = isymbuf + r_symndx; 8875 if (isym->st_shndx == SHN_UNDEF) 8876 continue; 8877 else if (isym->st_shndx == SHN_ABS) 8878 sym_sec = bfd_abs_section_ptr; 8879 else if (isym->st_shndx == SHN_COMMON) 8880 sym_sec = bfd_com_section_ptr; 8881 else 8882 sym_sec 8883 = bfd_section_from_elf_index (abfd, isym->st_shndx); 8884 symval = isym->st_value 8885 + sym_sec->output_section->vma 8886 + sym_sec->output_offset; 8887 } 8888 8889 /* Compute branch offset, from delay slot of the jump to the 8890 branch target. */ 8891 sym_offset = (symval + irel->r_addend) 8892 - (sec_start + irel->r_offset + 4); 8893 8894 /* Branch offset must be properly aligned. */ 8895 if ((sym_offset & 3) != 0) 8896 continue; 8897 8898 sym_offset >>= 2; 8899 8900 /* Check that it's in range. */ 8901 if (sym_offset < -0x8000 || sym_offset >= 0x8000) 8902 continue; 8903 8904 /* Get the section contents if we haven't done so already. */ 8905 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8906 goto relax_return; 8907 8908 instruction = bfd_get_32 (abfd, contents + irel->r_offset); 8909 8910 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ 8911 if ((instruction & 0xfc1fffff) == 0x0000f809) 8912 instruction = 0x04110000; 8913 /* If it was jr <reg>, turn it into b <target>. */ 8914 else if ((instruction & 0xfc1fffff) == 0x00000008) 8915 instruction = 0x10000000; 8916 else 8917 continue; 8918 8919 instruction |= (sym_offset & 0xffff); 8920 bfd_put_32 (abfd, instruction, contents + irel->r_offset); 8921 changed_contents = TRUE; 8922 } 8923 8924 if (contents != NULL 8925 && elf_section_data (sec)->this_hdr.contents != contents) 8926 { 8927 if (!changed_contents && !link_info->keep_memory) 8928 free (contents); 8929 else 8930 { 8931 /* Cache the section contents for elf_link_input_bfd. */ 8932 elf_section_data (sec)->this_hdr.contents = contents; 8933 } 8934 } 8935 return TRUE; 8936 8937 relax_return: 8938 if (contents != NULL 8939 && elf_section_data (sec)->this_hdr.contents != contents) 8940 free (contents); 8941 return FALSE; 8942 } 8943 8944 /* Allocate space for global sym dynamic relocs. */ 8946 8947 static bfd_boolean 8948 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8949 { 8950 struct bfd_link_info *info = inf; 8951 bfd *dynobj; 8952 struct mips_elf_link_hash_entry *hmips; 8953 struct mips_elf_link_hash_table *htab; 8954 8955 htab = mips_elf_hash_table (info); 8956 BFD_ASSERT (htab != NULL); 8957 8958 dynobj = elf_hash_table (info)->dynobj; 8959 hmips = (struct mips_elf_link_hash_entry *) h; 8960 8961 /* VxWorks executables are handled elsewhere; we only need to 8962 allocate relocations in shared objects. */ 8963 if (htab->is_vxworks && !bfd_link_pic (info)) 8964 return TRUE; 8965 8966 /* Ignore indirect symbols. All relocations against such symbols 8967 will be redirected to the target symbol. */ 8968 if (h->root.type == bfd_link_hash_indirect) 8969 return TRUE; 8970 8971 /* If this symbol is defined in a dynamic object, or we are creating 8972 a shared library, we will need to copy any R_MIPS_32 or 8973 R_MIPS_REL32 relocs against it into the output file. */ 8974 if (! bfd_link_relocatable (info) 8975 && hmips->possibly_dynamic_relocs != 0 8976 && (h->root.type == bfd_link_hash_defweak 8977 || (!h->def_regular && !ELF_COMMON_DEF_P (h)) 8978 || bfd_link_pic (info))) 8979 { 8980 bfd_boolean do_copy = TRUE; 8981 8982 if (h->root.type == bfd_link_hash_undefweak) 8983 { 8984 /* Do not copy relocations for undefined weak symbols with 8985 non-default visibility. */ 8986 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 8987 do_copy = FALSE; 8988 8989 /* Make sure undefined weak symbols are output as a dynamic 8990 symbol in PIEs. */ 8991 else if (h->dynindx == -1 && !h->forced_local) 8992 { 8993 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8994 return FALSE; 8995 } 8996 } 8997 8998 if (do_copy) 8999 { 9000 /* Even though we don't directly need a GOT entry for this symbol, 9001 the SVR4 psABI requires it to have a dynamic symbol table 9002 index greater that DT_MIPS_GOTSYM if there are dynamic 9003 relocations against it. 9004 9005 VxWorks does not enforce the same mapping between the GOT 9006 and the symbol table, so the same requirement does not 9007 apply there. */ 9008 if (!htab->is_vxworks) 9009 { 9010 if (hmips->global_got_area > GGA_RELOC_ONLY) 9011 hmips->global_got_area = GGA_RELOC_ONLY; 9012 hmips->got_only_for_calls = FALSE; 9013 } 9014 9015 mips_elf_allocate_dynamic_relocations 9016 (dynobj, info, hmips->possibly_dynamic_relocs); 9017 if (hmips->readonly_reloc) 9018 /* We tell the dynamic linker that there are relocations 9019 against the text segment. */ 9020 info->flags |= DF_TEXTREL; 9021 } 9022 } 9023 9024 return TRUE; 9025 } 9026 9027 /* Adjust a symbol defined by a dynamic object and referenced by a 9028 regular object. The current definition is in some section of the 9029 dynamic object, but we're not including those sections. We have to 9030 change the definition to something the rest of the link can 9031 understand. */ 9032 9033 bfd_boolean 9034 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 9035 struct elf_link_hash_entry *h) 9036 { 9037 bfd *dynobj; 9038 struct mips_elf_link_hash_entry *hmips; 9039 struct mips_elf_link_hash_table *htab; 9040 9041 htab = mips_elf_hash_table (info); 9042 BFD_ASSERT (htab != NULL); 9043 9044 dynobj = elf_hash_table (info)->dynobj; 9045 hmips = (struct mips_elf_link_hash_entry *) h; 9046 9047 /* Make sure we know what is going on here. */ 9048 BFD_ASSERT (dynobj != NULL 9049 && (h->needs_plt 9050 || h->u.weakdef != NULL 9051 || (h->def_dynamic 9052 && h->ref_regular 9053 && !h->def_regular))); 9054 9055 hmips = (struct mips_elf_link_hash_entry *) h; 9056 9057 /* If there are call relocations against an externally-defined symbol, 9058 see whether we can create a MIPS lazy-binding stub for it. We can 9059 only do this if all references to the function are through call 9060 relocations, and in that case, the traditional lazy-binding stubs 9061 are much more efficient than PLT entries. 9062 9063 Traditional stubs are only available on SVR4 psABI-based systems; 9064 VxWorks always uses PLTs instead. */ 9065 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) 9066 { 9067 if (! elf_hash_table (info)->dynamic_sections_created) 9068 return TRUE; 9069 9070 /* If this symbol is not defined in a regular file, then set 9071 the symbol to the stub location. This is required to make 9072 function pointers compare as equal between the normal 9073 executable and the shared library. */ 9074 if (!h->def_regular) 9075 { 9076 hmips->needs_lazy_stub = TRUE; 9077 htab->lazy_stub_count++; 9078 return TRUE; 9079 } 9080 } 9081 /* As above, VxWorks requires PLT entries for externally-defined 9082 functions that are only accessed through call relocations. 9083 9084 Both VxWorks and non-VxWorks targets also need PLT entries if there 9085 are static-only relocations against an externally-defined function. 9086 This can technically occur for shared libraries if there are 9087 branches to the symbol, although it is unlikely that this will be 9088 used in practice due to the short ranges involved. It can occur 9089 for any relative or absolute relocation in executables; in that 9090 case, the PLT entry becomes the function's canonical address. */ 9091 else if (((h->needs_plt && !hmips->no_fn_stub) 9092 || (h->type == STT_FUNC && hmips->has_static_relocs)) 9093 && htab->use_plts_and_copy_relocs 9094 && !SYMBOL_CALLS_LOCAL (info, h) 9095 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 9096 && h->root.type == bfd_link_hash_undefweak)) 9097 { 9098 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9099 bfd_boolean newabi_p = NEWABI_P (info->output_bfd); 9100 9101 /* If this is the first symbol to need a PLT entry, then make some 9102 basic setup. Also work out PLT entry sizes. We'll need them 9103 for PLT offset calculations. */ 9104 if (htab->plt_mips_offset + htab->plt_comp_offset == 0) 9105 { 9106 BFD_ASSERT (htab->sgotplt->size == 0); 9107 BFD_ASSERT (htab->plt_got_index == 0); 9108 9109 /* If we're using the PLT additions to the psABI, each PLT 9110 entry is 16 bytes and the PLT0 entry is 32 bytes. 9111 Encourage better cache usage by aligning. We do this 9112 lazily to avoid pessimizing traditional objects. */ 9113 if (!htab->is_vxworks 9114 && !bfd_set_section_alignment (dynobj, htab->splt, 5)) 9115 return FALSE; 9116 9117 /* Make sure that .got.plt is word-aligned. We do this lazily 9118 for the same reason as above. */ 9119 if (!bfd_set_section_alignment (dynobj, htab->sgotplt, 9120 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 9121 return FALSE; 9122 9123 /* On non-VxWorks targets, the first two entries in .got.plt 9124 are reserved. */ 9125 if (!htab->is_vxworks) 9126 htab->plt_got_index 9127 += (get_elf_backend_data (dynobj)->got_header_size 9128 / MIPS_ELF_GOT_SIZE (dynobj)); 9129 9130 /* On VxWorks, also allocate room for the header's 9131 .rela.plt.unloaded entries. */ 9132 if (htab->is_vxworks && !bfd_link_pic (info)) 9133 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); 9134 9135 /* Now work out the sizes of individual PLT entries. */ 9136 if (htab->is_vxworks && bfd_link_pic (info)) 9137 htab->plt_mips_entry_size 9138 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); 9139 else if (htab->is_vxworks) 9140 htab->plt_mips_entry_size 9141 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); 9142 else if (newabi_p) 9143 htab->plt_mips_entry_size 9144 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9145 else if (!micromips_p) 9146 { 9147 htab->plt_mips_entry_size 9148 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9149 htab->plt_comp_entry_size 9150 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 9151 } 9152 else if (htab->insn32) 9153 { 9154 htab->plt_mips_entry_size 9155 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9156 htab->plt_comp_entry_size 9157 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 9158 } 9159 else 9160 { 9161 htab->plt_mips_entry_size 9162 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9163 htab->plt_comp_entry_size 9164 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 9165 } 9166 } 9167 9168 if (h->plt.plist == NULL) 9169 h->plt.plist = mips_elf_make_plt_record (dynobj); 9170 if (h->plt.plist == NULL) 9171 return FALSE; 9172 9173 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, 9174 n32 or n64, so always use a standard entry there. 9175 9176 If the symbol has a MIPS16 call stub and gets a PLT entry, then 9177 all MIPS16 calls will go via that stub, and there is no benefit 9178 to having a MIPS16 entry. And in the case of call_stub a 9179 standard entry actually has to be used as the stub ends with a J 9180 instruction. */ 9181 if (newabi_p 9182 || htab->is_vxworks 9183 || hmips->call_stub 9184 || hmips->call_fp_stub) 9185 { 9186 h->plt.plist->need_mips = TRUE; 9187 h->plt.plist->need_comp = FALSE; 9188 } 9189 9190 /* Otherwise, if there are no direct calls to the function, we 9191 have a free choice of whether to use standard or compressed 9192 entries. Prefer microMIPS entries if the object is known to 9193 contain microMIPS code, so that it becomes possible to create 9194 pure microMIPS binaries. Prefer standard entries otherwise, 9195 because MIPS16 ones are no smaller and are usually slower. */ 9196 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) 9197 { 9198 if (micromips_p) 9199 h->plt.plist->need_comp = TRUE; 9200 else 9201 h->plt.plist->need_mips = TRUE; 9202 } 9203 9204 if (h->plt.plist->need_mips) 9205 { 9206 h->plt.plist->mips_offset = htab->plt_mips_offset; 9207 htab->plt_mips_offset += htab->plt_mips_entry_size; 9208 } 9209 if (h->plt.plist->need_comp) 9210 { 9211 h->plt.plist->comp_offset = htab->plt_comp_offset; 9212 htab->plt_comp_offset += htab->plt_comp_entry_size; 9213 } 9214 9215 /* Reserve the corresponding .got.plt entry now too. */ 9216 h->plt.plist->gotplt_index = htab->plt_got_index++; 9217 9218 /* If the output file has no definition of the symbol, set the 9219 symbol's value to the address of the stub. */ 9220 if (!bfd_link_pic (info) && !h->def_regular) 9221 hmips->use_plt_entry = TRUE; 9222 9223 /* Make room for the R_MIPS_JUMP_SLOT relocation. */ 9224 htab->srelplt->size += (htab->is_vxworks 9225 ? MIPS_ELF_RELA_SIZE (dynobj) 9226 : MIPS_ELF_REL_SIZE (dynobj)); 9227 9228 /* Make room for the .rela.plt.unloaded relocations. */ 9229 if (htab->is_vxworks && !bfd_link_pic (info)) 9230 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); 9231 9232 /* All relocations against this symbol that could have been made 9233 dynamic will now refer to the PLT entry instead. */ 9234 hmips->possibly_dynamic_relocs = 0; 9235 9236 return TRUE; 9237 } 9238 9239 /* If this is a weak symbol, and there is a real definition, the 9240 processor independent code will have arranged for us to see the 9241 real definition first, and we can just use the same value. */ 9242 if (h->u.weakdef != NULL) 9243 { 9244 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 9245 || h->u.weakdef->root.type == bfd_link_hash_defweak); 9246 h->root.u.def.section = h->u.weakdef->root.u.def.section; 9247 h->root.u.def.value = h->u.weakdef->root.u.def.value; 9248 return TRUE; 9249 } 9250 9251 /* Otherwise, there is nothing further to do for symbols defined 9252 in regular objects. */ 9253 if (h->def_regular) 9254 return TRUE; 9255 9256 /* There's also nothing more to do if we'll convert all relocations 9257 against this symbol into dynamic relocations. */ 9258 if (!hmips->has_static_relocs) 9259 return TRUE; 9260 9261 /* We're now relying on copy relocations. Complain if we have 9262 some that we can't convert. */ 9263 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info)) 9264 { 9265 (*_bfd_error_handler) (_("non-dynamic relocations refer to " 9266 "dynamic symbol %s"), 9267 h->root.root.string); 9268 bfd_set_error (bfd_error_bad_value); 9269 return FALSE; 9270 } 9271 9272 /* We must allocate the symbol in our .dynbss section, which will 9273 become part of the .bss section of the executable. There will be 9274 an entry for this symbol in the .dynsym section. The dynamic 9275 object will contain position independent code, so all references 9276 from the dynamic object to this symbol will go through the global 9277 offset table. The dynamic linker will use the .dynsym entry to 9278 determine the address it must put in the global offset table, so 9279 both the dynamic object and the regular object will refer to the 9280 same memory location for the variable. */ 9281 9282 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 9283 { 9284 if (htab->is_vxworks) 9285 htab->srelbss->size += sizeof (Elf32_External_Rela); 9286 else 9287 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 9288 h->needs_copy = 1; 9289 } 9290 9291 /* All relocations against this symbol that could have been made 9292 dynamic will now refer to the local copy instead. */ 9293 hmips->possibly_dynamic_relocs = 0; 9294 9295 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss); 9296 } 9297 9298 /* This function is called after all the input files have been read, 9300 and the input sections have been assigned to output sections. We 9301 check for any mips16 stub sections that we can discard. */ 9302 9303 bfd_boolean 9304 _bfd_mips_elf_always_size_sections (bfd *output_bfd, 9305 struct bfd_link_info *info) 9306 { 9307 asection *sect; 9308 struct mips_elf_link_hash_table *htab; 9309 struct mips_htab_traverse_info hti; 9310 9311 htab = mips_elf_hash_table (info); 9312 BFD_ASSERT (htab != NULL); 9313 9314 /* The .reginfo section has a fixed size. */ 9315 sect = bfd_get_section_by_name (output_bfd, ".reginfo"); 9316 if (sect != NULL) 9317 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo)); 9318 9319 /* The .MIPS.abiflags section has a fixed size. */ 9320 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); 9321 if (sect != NULL) 9322 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0)); 9323 9324 hti.info = info; 9325 hti.output_bfd = output_bfd; 9326 hti.error = FALSE; 9327 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 9328 mips_elf_check_symbols, &hti); 9329 if (hti.error) 9330 return FALSE; 9331 9332 return TRUE; 9333 } 9334 9335 /* If the link uses a GOT, lay it out and work out its size. */ 9336 9337 static bfd_boolean 9338 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) 9339 { 9340 bfd *dynobj; 9341 asection *s; 9342 struct mips_got_info *g; 9343 bfd_size_type loadable_size = 0; 9344 bfd_size_type page_gotno; 9345 bfd *ibfd; 9346 struct mips_elf_traverse_got_arg tga; 9347 struct mips_elf_link_hash_table *htab; 9348 9349 htab = mips_elf_hash_table (info); 9350 BFD_ASSERT (htab != NULL); 9351 9352 s = htab->sgot; 9353 if (s == NULL) 9354 return TRUE; 9355 9356 dynobj = elf_hash_table (info)->dynobj; 9357 g = htab->got_info; 9358 9359 /* Allocate room for the reserved entries. VxWorks always reserves 9360 3 entries; other objects only reserve 2 entries. */ 9361 BFD_ASSERT (g->assigned_low_gotno == 0); 9362 if (htab->is_vxworks) 9363 htab->reserved_gotno = 3; 9364 else 9365 htab->reserved_gotno = 2; 9366 g->local_gotno += htab->reserved_gotno; 9367 g->assigned_low_gotno = htab->reserved_gotno; 9368 9369 /* Decide which symbols need to go in the global part of the GOT and 9370 count the number of reloc-only GOT symbols. */ 9371 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); 9372 9373 if (!mips_elf_resolve_final_got_entries (info, g)) 9374 return FALSE; 9375 9376 /* Calculate the total loadable size of the output. That 9377 will give us the maximum number of GOT_PAGE entries 9378 required. */ 9379 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9380 { 9381 asection *subsection; 9382 9383 for (subsection = ibfd->sections; 9384 subsection; 9385 subsection = subsection->next) 9386 { 9387 if ((subsection->flags & SEC_ALLOC) == 0) 9388 continue; 9389 loadable_size += ((subsection->size + 0xf) 9390 &~ (bfd_size_type) 0xf); 9391 } 9392 } 9393 9394 if (htab->is_vxworks) 9395 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 9396 relocations against local symbols evaluate to "G", and the EABI does 9397 not include R_MIPS_GOT_PAGE. */ 9398 page_gotno = 0; 9399 else 9400 /* Assume there are two loadable segments consisting of contiguous 9401 sections. Is 5 enough? */ 9402 page_gotno = (loadable_size >> 16) + 5; 9403 9404 /* Choose the smaller of the two page estimates; both are intended to be 9405 conservative. */ 9406 if (page_gotno > g->page_gotno) 9407 page_gotno = g->page_gotno; 9408 9409 g->local_gotno += page_gotno; 9410 g->assigned_high_gotno = g->local_gotno - 1; 9411 9412 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9413 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9414 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9415 9416 /* VxWorks does not support multiple GOTs. It initializes $gp to 9417 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the 9418 dynamic loader. */ 9419 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) 9420 { 9421 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) 9422 return FALSE; 9423 } 9424 else 9425 { 9426 /* Record that all bfds use G. This also has the effect of freeing 9427 the per-bfd GOTs, which we no longer need. */ 9428 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9429 if (mips_elf_bfd_got (ibfd, FALSE)) 9430 mips_elf_replace_bfd_got (ibfd, g); 9431 mips_elf_replace_bfd_got (output_bfd, g); 9432 9433 /* Set up TLS entries. */ 9434 g->tls_assigned_gotno = g->global_gotno + g->local_gotno; 9435 tga.info = info; 9436 tga.g = g; 9437 tga.value = MIPS_ELF_GOT_SIZE (output_bfd); 9438 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 9439 if (!tga.g) 9440 return FALSE; 9441 BFD_ASSERT (g->tls_assigned_gotno 9442 == g->global_gotno + g->local_gotno + g->tls_gotno); 9443 9444 /* Each VxWorks GOT entry needs an explicit relocation. */ 9445 if (htab->is_vxworks && bfd_link_pic (info)) 9446 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; 9447 9448 /* Allocate room for the TLS relocations. */ 9449 if (g->relocs) 9450 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); 9451 } 9452 9453 return TRUE; 9454 } 9455 9456 /* Estimate the size of the .MIPS.stubs section. */ 9457 9458 static void 9459 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) 9460 { 9461 struct mips_elf_link_hash_table *htab; 9462 bfd_size_type dynsymcount; 9463 9464 htab = mips_elf_hash_table (info); 9465 BFD_ASSERT (htab != NULL); 9466 9467 if (htab->lazy_stub_count == 0) 9468 return; 9469 9470 /* IRIX rld assumes that a function stub isn't at the end of the .text 9471 section, so add a dummy entry to the end. */ 9472 htab->lazy_stub_count++; 9473 9474 /* Get a worst-case estimate of the number of dynamic symbols needed. 9475 At this point, dynsymcount does not account for section symbols 9476 and count_section_dynsyms may overestimate the number that will 9477 be needed. */ 9478 dynsymcount = (elf_hash_table (info)->dynsymcount 9479 + count_section_dynsyms (output_bfd, info)); 9480 9481 /* Determine the size of one stub entry. There's no disadvantage 9482 from using microMIPS code here, so for the sake of pure-microMIPS 9483 binaries we prefer it whenever there's any microMIPS code in 9484 output produced at all. This has a benefit of stubs being 9485 shorter by 4 bytes each too, unless in the insn32 mode. */ 9486 if (!MICROMIPS_P (output_bfd)) 9487 htab->function_stub_size = (dynsymcount > 0x10000 9488 ? MIPS_FUNCTION_STUB_BIG_SIZE 9489 : MIPS_FUNCTION_STUB_NORMAL_SIZE); 9490 else if (htab->insn32) 9491 htab->function_stub_size = (dynsymcount > 0x10000 9492 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 9493 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); 9494 else 9495 htab->function_stub_size = (dynsymcount > 0x10000 9496 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE 9497 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); 9498 9499 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; 9500 } 9501 9502 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9503 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding 9504 stub, allocate an entry in the stubs section. */ 9505 9506 static bfd_boolean 9507 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) 9508 { 9509 struct mips_htab_traverse_info *hti = data; 9510 struct mips_elf_link_hash_table *htab; 9511 struct bfd_link_info *info; 9512 bfd *output_bfd; 9513 9514 info = hti->info; 9515 output_bfd = hti->output_bfd; 9516 htab = mips_elf_hash_table (info); 9517 BFD_ASSERT (htab != NULL); 9518 9519 if (h->needs_lazy_stub) 9520 { 9521 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9522 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9523 bfd_vma isa_bit = micromips_p; 9524 9525 BFD_ASSERT (htab->root.dynobj != NULL); 9526 if (h->root.plt.plist == NULL) 9527 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); 9528 if (h->root.plt.plist == NULL) 9529 { 9530 hti->error = TRUE; 9531 return FALSE; 9532 } 9533 h->root.root.u.def.section = htab->sstubs; 9534 h->root.root.u.def.value = htab->sstubs->size + isa_bit; 9535 h->root.plt.plist->stub_offset = htab->sstubs->size; 9536 h->root.other = other; 9537 htab->sstubs->size += htab->function_stub_size; 9538 } 9539 return TRUE; 9540 } 9541 9542 /* Allocate offsets in the stubs section to each symbol that needs one. 9543 Set the final size of the .MIPS.stub section. */ 9544 9545 static bfd_boolean 9546 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) 9547 { 9548 bfd *output_bfd = info->output_bfd; 9549 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9550 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9551 bfd_vma isa_bit = micromips_p; 9552 struct mips_elf_link_hash_table *htab; 9553 struct mips_htab_traverse_info hti; 9554 struct elf_link_hash_entry *h; 9555 bfd *dynobj; 9556 9557 htab = mips_elf_hash_table (info); 9558 BFD_ASSERT (htab != NULL); 9559 9560 if (htab->lazy_stub_count == 0) 9561 return TRUE; 9562 9563 htab->sstubs->size = 0; 9564 hti.info = info; 9565 hti.output_bfd = output_bfd; 9566 hti.error = FALSE; 9567 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); 9568 if (hti.error) 9569 return FALSE; 9570 htab->sstubs->size += htab->function_stub_size; 9571 BFD_ASSERT (htab->sstubs->size 9572 == htab->lazy_stub_count * htab->function_stub_size); 9573 9574 dynobj = elf_hash_table (info)->dynobj; 9575 BFD_ASSERT (dynobj != NULL); 9576 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); 9577 if (h == NULL) 9578 return FALSE; 9579 h->root.u.def.value = isa_bit; 9580 h->other = other; 9581 h->type = STT_FUNC; 9582 9583 return TRUE; 9584 } 9585 9586 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9587 bfd_link_info. If H uses the address of a PLT entry as the value 9588 of the symbol, then set the entry in the symbol table now. Prefer 9589 a standard MIPS PLT entry. */ 9590 9591 static bfd_boolean 9592 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) 9593 { 9594 struct bfd_link_info *info = data; 9595 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9596 struct mips_elf_link_hash_table *htab; 9597 unsigned int other; 9598 bfd_vma isa_bit; 9599 bfd_vma val; 9600 9601 htab = mips_elf_hash_table (info); 9602 BFD_ASSERT (htab != NULL); 9603 9604 if (h->use_plt_entry) 9605 { 9606 BFD_ASSERT (h->root.plt.plist != NULL); 9607 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE 9608 || h->root.plt.plist->comp_offset != MINUS_ONE); 9609 9610 val = htab->plt_header_size; 9611 if (h->root.plt.plist->mips_offset != MINUS_ONE) 9612 { 9613 isa_bit = 0; 9614 val += h->root.plt.plist->mips_offset; 9615 other = 0; 9616 } 9617 else 9618 { 9619 isa_bit = 1; 9620 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; 9621 other = micromips_p ? STO_MICROMIPS : STO_MIPS16; 9622 } 9623 val += isa_bit; 9624 /* For VxWorks, point at the PLT load stub rather than the lazy 9625 resolution stub; this stub will become the canonical function 9626 address. */ 9627 if (htab->is_vxworks) 9628 val += 8; 9629 9630 h->root.root.u.def.section = htab->splt; 9631 h->root.root.u.def.value = val; 9632 h->root.other = other; 9633 } 9634 9635 return TRUE; 9636 } 9637 9638 /* Set the sizes of the dynamic sections. */ 9639 9640 bfd_boolean 9641 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, 9642 struct bfd_link_info *info) 9643 { 9644 bfd *dynobj; 9645 asection *s, *sreldyn; 9646 bfd_boolean reltext; 9647 struct mips_elf_link_hash_table *htab; 9648 9649 htab = mips_elf_hash_table (info); 9650 BFD_ASSERT (htab != NULL); 9651 dynobj = elf_hash_table (info)->dynobj; 9652 BFD_ASSERT (dynobj != NULL); 9653 9654 if (elf_hash_table (info)->dynamic_sections_created) 9655 { 9656 /* Set the contents of the .interp section to the interpreter. */ 9657 if (bfd_link_executable (info) && !info->nointerp) 9658 { 9659 s = bfd_get_linker_section (dynobj, ".interp"); 9660 BFD_ASSERT (s != NULL); 9661 s->size 9662 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; 9663 s->contents 9664 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); 9665 } 9666 9667 /* Figure out the size of the PLT header if we know that we 9668 are using it. For the sake of cache alignment always use 9669 a standard header whenever any standard entries are present 9670 even if microMIPS entries are present as well. This also 9671 lets the microMIPS header rely on the value of $v0 only set 9672 by microMIPS entries, for a small size reduction. 9673 9674 Set symbol table entry values for symbols that use the 9675 address of their PLT entry now that we can calculate it. 9676 9677 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we 9678 haven't already in _bfd_elf_create_dynamic_sections. */ 9679 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) 9680 { 9681 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) 9682 && !htab->plt_mips_offset); 9683 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9684 bfd_vma isa_bit = micromips_p; 9685 struct elf_link_hash_entry *h; 9686 bfd_vma size; 9687 9688 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9689 BFD_ASSERT (htab->sgotplt->size == 0); 9690 BFD_ASSERT (htab->splt->size == 0); 9691 9692 if (htab->is_vxworks && bfd_link_pic (info)) 9693 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); 9694 else if (htab->is_vxworks) 9695 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); 9696 else if (ABI_64_P (output_bfd)) 9697 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); 9698 else if (ABI_N32_P (output_bfd)) 9699 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); 9700 else if (!micromips_p) 9701 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 9702 else if (htab->insn32) 9703 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 9704 else 9705 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 9706 9707 htab->plt_header_is_comp = micromips_p; 9708 htab->plt_header_size = size; 9709 htab->splt->size = (size 9710 + htab->plt_mips_offset 9711 + htab->plt_comp_offset); 9712 htab->sgotplt->size = (htab->plt_got_index 9713 * MIPS_ELF_GOT_SIZE (dynobj)); 9714 9715 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); 9716 9717 if (htab->root.hplt == NULL) 9718 { 9719 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, 9720 "_PROCEDURE_LINKAGE_TABLE_"); 9721 htab->root.hplt = h; 9722 if (h == NULL) 9723 return FALSE; 9724 } 9725 9726 h = htab->root.hplt; 9727 h->root.u.def.value = isa_bit; 9728 h->other = other; 9729 h->type = STT_FUNC; 9730 } 9731 } 9732 9733 /* Allocate space for global sym dynamic relocs. */ 9734 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); 9735 9736 mips_elf_estimate_stub_size (output_bfd, info); 9737 9738 if (!mips_elf_lay_out_got (output_bfd, info)) 9739 return FALSE; 9740 9741 mips_elf_lay_out_lazy_stubs (info); 9742 9743 /* The check_relocs and adjust_dynamic_symbol entry points have 9744 determined the sizes of the various dynamic sections. Allocate 9745 memory for them. */ 9746 reltext = FALSE; 9747 for (s = dynobj->sections; s != NULL; s = s->next) 9748 { 9749 const char *name; 9750 9751 /* It's OK to base decisions on the section name, because none 9752 of the dynobj section names depend upon the input files. */ 9753 name = bfd_get_section_name (dynobj, s); 9754 9755 if ((s->flags & SEC_LINKER_CREATED) == 0) 9756 continue; 9757 9758 if (CONST_STRNEQ (name, ".rel")) 9759 { 9760 if (s->size != 0) 9761 { 9762 const char *outname; 9763 asection *target; 9764 9765 /* If this relocation section applies to a read only 9766 section, then we probably need a DT_TEXTREL entry. 9767 If the relocation section is .rel(a).dyn, we always 9768 assert a DT_TEXTREL entry rather than testing whether 9769 there exists a relocation to a read only section or 9770 not. */ 9771 outname = bfd_get_section_name (output_bfd, 9772 s->output_section); 9773 target = bfd_get_section_by_name (output_bfd, outname + 4); 9774 if ((target != NULL 9775 && (target->flags & SEC_READONLY) != 0 9776 && (target->flags & SEC_ALLOC) != 0) 9777 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) 9778 reltext = TRUE; 9779 9780 /* We use the reloc_count field as a counter if we need 9781 to copy relocs into the output file. */ 9782 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) 9783 s->reloc_count = 0; 9784 9785 /* If combreloc is enabled, elf_link_sort_relocs() will 9786 sort relocations, but in a different way than we do, 9787 and before we're done creating relocations. Also, it 9788 will move them around between input sections' 9789 relocation's contents, so our sorting would be 9790 broken, so don't let it run. */ 9791 info->combreloc = 0; 9792 } 9793 } 9794 else if (bfd_link_executable (info) 9795 && ! mips_elf_hash_table (info)->use_rld_obj_head 9796 && CONST_STRNEQ (name, ".rld_map")) 9797 { 9798 /* We add a room for __rld_map. It will be filled in by the 9799 rtld to contain a pointer to the _r_debug structure. */ 9800 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); 9801 } 9802 else if (SGI_COMPAT (output_bfd) 9803 && CONST_STRNEQ (name, ".compact_rel")) 9804 s->size += mips_elf_hash_table (info)->compact_rel_size; 9805 else if (s == htab->splt) 9806 { 9807 /* If the last PLT entry has a branch delay slot, allocate 9808 room for an extra nop to fill the delay slot. This is 9809 for CPUs without load interlocking. */ 9810 if (! LOAD_INTERLOCKS_P (output_bfd) 9811 && ! htab->is_vxworks && s->size > 0) 9812 s->size += 4; 9813 } 9814 else if (! CONST_STRNEQ (name, ".init") 9815 && s != htab->sgot 9816 && s != htab->sgotplt 9817 && s != htab->sstubs 9818 && s != htab->sdynbss) 9819 { 9820 /* It's not one of our sections, so don't allocate space. */ 9821 continue; 9822 } 9823 9824 if (s->size == 0) 9825 { 9826 s->flags |= SEC_EXCLUDE; 9827 continue; 9828 } 9829 9830 if ((s->flags & SEC_HAS_CONTENTS) == 0) 9831 continue; 9832 9833 /* Allocate memory for the section contents. */ 9834 s->contents = bfd_zalloc (dynobj, s->size); 9835 if (s->contents == NULL) 9836 { 9837 bfd_set_error (bfd_error_no_memory); 9838 return FALSE; 9839 } 9840 } 9841 9842 if (elf_hash_table (info)->dynamic_sections_created) 9843 { 9844 /* Add some entries to the .dynamic section. We fill in the 9845 values later, in _bfd_mips_elf_finish_dynamic_sections, but we 9846 must add the entries now so that we get the correct size for 9847 the .dynamic section. */ 9848 9849 /* SGI object has the equivalence of DT_DEBUG in the 9850 DT_MIPS_RLD_MAP entry. This must come first because glibc 9851 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools 9852 may only look at the first one they see. */ 9853 if (!bfd_link_pic (info) 9854 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) 9855 return FALSE; 9856 9857 if (bfd_link_executable (info) 9858 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0)) 9859 return FALSE; 9860 9861 /* The DT_DEBUG entry may be filled in by the dynamic linker and 9862 used by the debugger. */ 9863 if (bfd_link_executable (info) 9864 && !SGI_COMPAT (output_bfd) 9865 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) 9866 return FALSE; 9867 9868 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) 9869 info->flags |= DF_TEXTREL; 9870 9871 if ((info->flags & DF_TEXTREL) != 0) 9872 { 9873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) 9874 return FALSE; 9875 9876 /* Clear the DF_TEXTREL flag. It will be set again if we 9877 write out an actual text relocation; we may not, because 9878 at this point we do not know whether e.g. any .eh_frame 9879 absolute relocations have been converted to PC-relative. */ 9880 info->flags &= ~DF_TEXTREL; 9881 } 9882 9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) 9884 return FALSE; 9885 9886 sreldyn = mips_elf_rel_dyn_section (info, FALSE); 9887 if (htab->is_vxworks) 9888 { 9889 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not 9890 use any of the DT_MIPS_* tags. */ 9891 if (sreldyn && sreldyn->size > 0) 9892 { 9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) 9894 return FALSE; 9895 9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) 9897 return FALSE; 9898 9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) 9900 return FALSE; 9901 } 9902 } 9903 else 9904 { 9905 if (sreldyn && sreldyn->size > 0) 9906 { 9907 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) 9908 return FALSE; 9909 9910 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) 9911 return FALSE; 9912 9913 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) 9914 return FALSE; 9915 } 9916 9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) 9918 return FALSE; 9919 9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) 9921 return FALSE; 9922 9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) 9924 return FALSE; 9925 9926 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) 9927 return FALSE; 9928 9929 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) 9930 return FALSE; 9931 9932 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) 9933 return FALSE; 9934 9935 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) 9936 return FALSE; 9937 9938 if (IRIX_COMPAT (dynobj) == ict_irix5 9939 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) 9940 return FALSE; 9941 9942 if (IRIX_COMPAT (dynobj) == ict_irix6 9943 && (bfd_get_section_by_name 9944 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) 9945 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) 9946 return FALSE; 9947 } 9948 if (htab->splt->size > 0) 9949 { 9950 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) 9951 return FALSE; 9952 9953 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) 9954 return FALSE; 9955 9956 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) 9957 return FALSE; 9958 9959 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) 9960 return FALSE; 9961 } 9962 if (htab->is_vxworks 9963 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 9964 return FALSE; 9965 } 9966 9967 return TRUE; 9968 } 9969 9970 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. 9972 Adjust its R_ADDEND field so that it is correct for the output file. 9973 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols 9974 and sections respectively; both use symbol indexes. */ 9975 9976 static void 9977 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, 9978 bfd *input_bfd, Elf_Internal_Sym *local_syms, 9979 asection **local_sections, Elf_Internal_Rela *rel) 9980 { 9981 unsigned int r_type, r_symndx; 9982 Elf_Internal_Sym *sym; 9983 asection *sec; 9984 9985 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 9986 { 9987 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 9988 if (gprel16_reloc_p (r_type) 9989 || r_type == R_MIPS_GPREL32 9990 || literal_reloc_p (r_type)) 9991 { 9992 rel->r_addend += _bfd_get_gp_value (input_bfd); 9993 rel->r_addend -= _bfd_get_gp_value (output_bfd); 9994 } 9995 9996 r_symndx = ELF_R_SYM (output_bfd, rel->r_info); 9997 sym = local_syms + r_symndx; 9998 9999 /* Adjust REL's addend to account for section merging. */ 10000 if (!bfd_link_relocatable (info)) 10001 { 10002 sec = local_sections[r_symndx]; 10003 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 10004 } 10005 10006 /* This would normally be done by the rela_normal code in elflink.c. */ 10007 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 10008 rel->r_addend += local_sections[r_symndx]->output_offset; 10009 } 10010 } 10011 10012 /* Handle relocations against symbols from removed linkonce sections, 10013 or sections discarded by a linker script. We use this wrapper around 10014 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs 10015 on 64-bit ELF targets. In this case for any relocation handled, which 10016 always be the first in a triplet, the remaining two have to be processed 10017 together with the first, even if they are R_MIPS_NONE. It is the symbol 10018 index referred by the first reloc that applies to all the three and the 10019 remaining two never refer to an object symbol. And it is the final 10020 relocation (the last non-null one) that determines the output field of 10021 the whole relocation so retrieve the corresponding howto structure for 10022 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. 10023 10024 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" 10025 and therefore requires to be pasted in a loop. It also defines a block 10026 and does not protect any of its arguments, hence the extra brackets. */ 10027 10028 static void 10029 mips_reloc_against_discarded_section (bfd *output_bfd, 10030 struct bfd_link_info *info, 10031 bfd *input_bfd, asection *input_section, 10032 Elf_Internal_Rela **rel, 10033 const Elf_Internal_Rela **relend, 10034 bfd_boolean rel_reloc, 10035 reloc_howto_type *howto, 10036 bfd_byte *contents) 10037 { 10038 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 10039 int count = bed->s->int_rels_per_ext_rel; 10040 unsigned int r_type; 10041 int i; 10042 10043 for (i = count - 1; i > 0; i--) 10044 { 10045 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); 10046 if (r_type != R_MIPS_NONE) 10047 { 10048 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10049 break; 10050 } 10051 } 10052 do 10053 { 10054 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 10055 (*rel), count, (*relend), 10056 howto, i, contents); 10057 } 10058 while (0); 10059 } 10060 10061 /* Relocate a MIPS ELF section. */ 10062 10063 bfd_boolean 10064 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 10065 bfd *input_bfd, asection *input_section, 10066 bfd_byte *contents, Elf_Internal_Rela *relocs, 10067 Elf_Internal_Sym *local_syms, 10068 asection **local_sections) 10069 { 10070 Elf_Internal_Rela *rel; 10071 const Elf_Internal_Rela *relend; 10072 bfd_vma addend = 0; 10073 bfd_boolean use_saved_addend_p = FALSE; 10074 const struct elf_backend_data *bed; 10075 10076 bed = get_elf_backend_data (output_bfd); 10077 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; 10078 for (rel = relocs; rel < relend; ++rel) 10079 { 10080 const char *name; 10081 bfd_vma value = 0; 10082 reloc_howto_type *howto; 10083 bfd_boolean cross_mode_jump_p = FALSE; 10084 /* TRUE if the relocation is a RELA relocation, rather than a 10085 REL relocation. */ 10086 bfd_boolean rela_relocation_p = TRUE; 10087 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); 10088 const char *msg; 10089 unsigned long r_symndx; 10090 asection *sec; 10091 Elf_Internal_Shdr *symtab_hdr; 10092 struct elf_link_hash_entry *h; 10093 bfd_boolean rel_reloc; 10094 10095 rel_reloc = (NEWABI_P (input_bfd) 10096 && mips_elf_rel_relocation_p (input_bfd, input_section, 10097 relocs, rel)); 10098 /* Find the relocation howto for this relocation. */ 10099 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10100 10101 r_symndx = ELF_R_SYM (input_bfd, rel->r_info); 10102 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10103 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 10104 { 10105 sec = local_sections[r_symndx]; 10106 h = NULL; 10107 } 10108 else 10109 { 10110 unsigned long extsymoff; 10111 10112 extsymoff = 0; 10113 if (!elf_bad_symtab (input_bfd)) 10114 extsymoff = symtab_hdr->sh_info; 10115 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; 10116 while (h->root.type == bfd_link_hash_indirect 10117 || h->root.type == bfd_link_hash_warning) 10118 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10119 10120 sec = NULL; 10121 if (h->root.type == bfd_link_hash_defined 10122 || h->root.type == bfd_link_hash_defweak) 10123 sec = h->root.u.def.section; 10124 } 10125 10126 if (sec != NULL && discarded_section (sec)) 10127 { 10128 mips_reloc_against_discarded_section (output_bfd, info, input_bfd, 10129 input_section, &rel, &relend, 10130 rel_reloc, howto, contents); 10131 continue; 10132 } 10133 10134 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) 10135 { 10136 /* Some 32-bit code uses R_MIPS_64. In particular, people use 10137 64-bit code, but make sure all their addresses are in the 10138 lowermost or uppermost 32-bit section of the 64-bit address 10139 space. Thus, when they use an R_MIPS_64 they mean what is 10140 usually meant by R_MIPS_32, with the exception that the 10141 stored value is sign-extended to 64 bits. */ 10142 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); 10143 10144 /* On big-endian systems, we need to lie about the position 10145 of the reloc. */ 10146 if (bfd_big_endian (input_bfd)) 10147 rel->r_offset += 4; 10148 } 10149 10150 if (!use_saved_addend_p) 10151 { 10152 /* If these relocations were originally of the REL variety, 10153 we must pull the addend out of the field that will be 10154 relocated. Otherwise, we simply use the contents of the 10155 RELA relocation. */ 10156 if (mips_elf_rel_relocation_p (input_bfd, input_section, 10157 relocs, rel)) 10158 { 10159 rela_relocation_p = FALSE; 10160 addend = mips_elf_read_rel_addend (input_bfd, rel, 10161 howto, contents); 10162 if (hi16_reloc_p (r_type) 10163 || (got16_reloc_p (r_type) 10164 && mips_elf_local_relocation_p (input_bfd, rel, 10165 local_sections))) 10166 { 10167 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, 10168 contents, &addend)) 10169 { 10170 if (h) 10171 name = h->root.root.string; 10172 else 10173 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10174 local_syms + r_symndx, 10175 sec); 10176 (*_bfd_error_handler) 10177 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), 10178 input_bfd, input_section, name, howto->name, 10179 rel->r_offset); 10180 } 10181 } 10182 else 10183 addend <<= howto->rightshift; 10184 } 10185 else 10186 addend = rel->r_addend; 10187 mips_elf_adjust_addend (output_bfd, info, input_bfd, 10188 local_syms, local_sections, rel); 10189 } 10190 10191 if (bfd_link_relocatable (info)) 10192 { 10193 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) 10194 && bfd_big_endian (input_bfd)) 10195 rel->r_offset -= 4; 10196 10197 if (!rela_relocation_p && rel->r_addend) 10198 { 10199 addend += rel->r_addend; 10200 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) 10201 addend = mips_elf_high (addend); 10202 else if (r_type == R_MIPS_HIGHER) 10203 addend = mips_elf_higher (addend); 10204 else if (r_type == R_MIPS_HIGHEST) 10205 addend = mips_elf_highest (addend); 10206 else 10207 addend >>= howto->rightshift; 10208 10209 /* We use the source mask, rather than the destination 10210 mask because the place to which we are writing will be 10211 source of the addend in the final link. */ 10212 addend &= howto->src_mask; 10213 10214 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10215 /* See the comment above about using R_MIPS_64 in the 32-bit 10216 ABI. Here, we need to update the addend. It would be 10217 possible to get away with just using the R_MIPS_32 reloc 10218 but for endianness. */ 10219 { 10220 bfd_vma sign_bits; 10221 bfd_vma low_bits; 10222 bfd_vma high_bits; 10223 10224 if (addend & ((bfd_vma) 1 << 31)) 10225 #ifdef BFD64 10226 sign_bits = ((bfd_vma) 1 << 32) - 1; 10227 #else 10228 sign_bits = -1; 10229 #endif 10230 else 10231 sign_bits = 0; 10232 10233 /* If we don't know that we have a 64-bit type, 10234 do two separate stores. */ 10235 if (bfd_big_endian (input_bfd)) 10236 { 10237 /* Store the sign-bits (which are most significant) 10238 first. */ 10239 low_bits = sign_bits; 10240 high_bits = addend; 10241 } 10242 else 10243 { 10244 low_bits = addend; 10245 high_bits = sign_bits; 10246 } 10247 bfd_put_32 (input_bfd, low_bits, 10248 contents + rel->r_offset); 10249 bfd_put_32 (input_bfd, high_bits, 10250 contents + rel->r_offset + 4); 10251 continue; 10252 } 10253 10254 if (! mips_elf_perform_relocation (info, howto, rel, addend, 10255 input_bfd, input_section, 10256 contents, FALSE)) 10257 return FALSE; 10258 } 10259 10260 /* Go on to the next relocation. */ 10261 continue; 10262 } 10263 10264 /* In the N32 and 64-bit ABIs there may be multiple consecutive 10265 relocations for the same offset. In that case we are 10266 supposed to treat the output of each relocation as the addend 10267 for the next. */ 10268 if (rel + 1 < relend 10269 && rel->r_offset == rel[1].r_offset 10270 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) 10271 use_saved_addend_p = TRUE; 10272 else 10273 use_saved_addend_p = FALSE; 10274 10275 /* Figure out what value we are supposed to relocate. */ 10276 switch (mips_elf_calculate_relocation (output_bfd, input_bfd, 10277 input_section, info, rel, 10278 addend, howto, local_syms, 10279 local_sections, &value, 10280 &name, &cross_mode_jump_p, 10281 use_saved_addend_p)) 10282 { 10283 case bfd_reloc_continue: 10284 /* There's nothing to do. */ 10285 continue; 10286 10287 case bfd_reloc_undefined: 10288 /* mips_elf_calculate_relocation already called the 10289 undefined_symbol callback. There's no real point in 10290 trying to perform the relocation at this point, so we 10291 just skip ahead to the next relocation. */ 10292 continue; 10293 10294 case bfd_reloc_notsupported: 10295 msg = _("internal error: unsupported relocation error"); 10296 info->callbacks->warning 10297 (info, msg, name, input_bfd, input_section, rel->r_offset); 10298 return FALSE; 10299 10300 case bfd_reloc_overflow: 10301 if (use_saved_addend_p) 10302 /* Ignore overflow until we reach the last relocation for 10303 a given location. */ 10304 ; 10305 else 10306 { 10307 struct mips_elf_link_hash_table *htab; 10308 10309 htab = mips_elf_hash_table (info); 10310 BFD_ASSERT (htab != NULL); 10311 BFD_ASSERT (name != NULL); 10312 if (!htab->small_data_overflow_reported 10313 && (gprel16_reloc_p (howto->type) 10314 || literal_reloc_p (howto->type))) 10315 { 10316 msg = _("small-data section exceeds 64KB;" 10317 " lower small-data size limit (see option -G)"); 10318 10319 htab->small_data_overflow_reported = TRUE; 10320 (*info->callbacks->einfo) ("%P: %s\n", msg); 10321 } 10322 (*info->callbacks->reloc_overflow) 10323 (info, NULL, name, howto->name, (bfd_vma) 0, 10324 input_bfd, input_section, rel->r_offset); 10325 } 10326 break; 10327 10328 case bfd_reloc_ok: 10329 break; 10330 10331 case bfd_reloc_outofrange: 10332 msg = NULL; 10333 if (jal_reloc_p (howto->type)) 10334 msg = _("JALX to a non-word-aligned address"); 10335 else if (b_reloc_p (howto->type)) 10336 msg = _("Branch to a non-instruction-aligned address"); 10337 else if (aligned_pcrel_reloc_p (howto->type)) 10338 msg = _("PC-relative load from unaligned address"); 10339 if (msg) 10340 { 10341 info->callbacks->einfo 10342 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg); 10343 break; 10344 } 10345 /* Fall through. */ 10346 10347 default: 10348 abort (); 10349 break; 10350 } 10351 10352 /* If we've got another relocation for the address, keep going 10353 until we reach the last one. */ 10354 if (use_saved_addend_p) 10355 { 10356 addend = value; 10357 continue; 10358 } 10359 10360 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10361 /* See the comment above about using R_MIPS_64 in the 32-bit 10362 ABI. Until now, we've been using the HOWTO for R_MIPS_32; 10363 that calculated the right value. Now, however, we 10364 sign-extend the 32-bit result to 64-bits, and store it as a 10365 64-bit value. We are especially generous here in that we 10366 go to extreme lengths to support this usage on systems with 10367 only a 32-bit VMA. */ 10368 { 10369 bfd_vma sign_bits; 10370 bfd_vma low_bits; 10371 bfd_vma high_bits; 10372 10373 if (value & ((bfd_vma) 1 << 31)) 10374 #ifdef BFD64 10375 sign_bits = ((bfd_vma) 1 << 32) - 1; 10376 #else 10377 sign_bits = -1; 10378 #endif 10379 else 10380 sign_bits = 0; 10381 10382 /* If we don't know that we have a 64-bit type, 10383 do two separate stores. */ 10384 if (bfd_big_endian (input_bfd)) 10385 { 10386 /* Undo what we did above. */ 10387 rel->r_offset -= 4; 10388 /* Store the sign-bits (which are most significant) 10389 first. */ 10390 low_bits = sign_bits; 10391 high_bits = value; 10392 } 10393 else 10394 { 10395 low_bits = value; 10396 high_bits = sign_bits; 10397 } 10398 bfd_put_32 (input_bfd, low_bits, 10399 contents + rel->r_offset); 10400 bfd_put_32 (input_bfd, high_bits, 10401 contents + rel->r_offset + 4); 10402 continue; 10403 } 10404 10405 /* Actually perform the relocation. */ 10406 if (! mips_elf_perform_relocation (info, howto, rel, value, 10407 input_bfd, input_section, 10408 contents, cross_mode_jump_p)) 10409 return FALSE; 10410 } 10411 10412 return TRUE; 10413 } 10414 10415 /* A function that iterates over each entry in la25_stubs and fills 10417 in the code for each one. DATA points to a mips_htab_traverse_info. */ 10418 10419 static int 10420 mips_elf_create_la25_stub (void **slot, void *data) 10421 { 10422 struct mips_htab_traverse_info *hti; 10423 struct mips_elf_link_hash_table *htab; 10424 struct mips_elf_la25_stub *stub; 10425 asection *s; 10426 bfd_byte *loc; 10427 bfd_vma offset, target, target_high, target_low; 10428 10429 stub = (struct mips_elf_la25_stub *) *slot; 10430 hti = (struct mips_htab_traverse_info *) data; 10431 htab = mips_elf_hash_table (hti->info); 10432 BFD_ASSERT (htab != NULL); 10433 10434 /* Create the section contents, if we haven't already. */ 10435 s = stub->stub_section; 10436 loc = s->contents; 10437 if (loc == NULL) 10438 { 10439 loc = bfd_malloc (s->size); 10440 if (loc == NULL) 10441 { 10442 hti->error = TRUE; 10443 return FALSE; 10444 } 10445 s->contents = loc; 10446 } 10447 10448 /* Work out where in the section this stub should go. */ 10449 offset = stub->offset; 10450 10451 /* Work out the target address. */ 10452 target = mips_elf_get_la25_target (stub, &s); 10453 target += s->output_section->vma + s->output_offset; 10454 10455 target_high = ((target + 0x8000) >> 16) & 0xffff; 10456 target_low = (target & 0xffff); 10457 10458 if (stub->stub_section != htab->strampoline) 10459 { 10460 /* This is a simple LUI/ADDIU stub. Zero out the beginning 10461 of the section and write the two instructions at the end. */ 10462 memset (loc, 0, offset); 10463 loc += offset; 10464 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10465 { 10466 bfd_put_micromips_32 (hti->output_bfd, 10467 LA25_LUI_MICROMIPS (target_high), 10468 loc); 10469 bfd_put_micromips_32 (hti->output_bfd, 10470 LA25_ADDIU_MICROMIPS (target_low), 10471 loc + 4); 10472 } 10473 else 10474 { 10475 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10476 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 10477 } 10478 } 10479 else 10480 { 10481 /* This is trampoline. */ 10482 loc += offset; 10483 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10484 { 10485 bfd_put_micromips_32 (hti->output_bfd, 10486 LA25_LUI_MICROMIPS (target_high), loc); 10487 bfd_put_micromips_32 (hti->output_bfd, 10488 LA25_J_MICROMIPS (target), loc + 4); 10489 bfd_put_micromips_32 (hti->output_bfd, 10490 LA25_ADDIU_MICROMIPS (target_low), loc + 8); 10491 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10492 } 10493 else 10494 { 10495 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10496 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); 10497 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); 10498 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10499 } 10500 } 10501 return TRUE; 10502 } 10503 10504 /* If NAME is one of the special IRIX6 symbols defined by the linker, 10505 adjust it appropriately now. */ 10506 10507 static void 10508 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, 10509 const char *name, Elf_Internal_Sym *sym) 10510 { 10511 /* The linker script takes care of providing names and values for 10512 these, but we must place them into the right sections. */ 10513 static const char* const text_section_symbols[] = { 10514 "_ftext", 10515 "_etext", 10516 "__dso_displacement", 10517 "__elf_header", 10518 "__program_header_table", 10519 NULL 10520 }; 10521 10522 static const char* const data_section_symbols[] = { 10523 "_fdata", 10524 "_edata", 10525 "_end", 10526 "_fbss", 10527 NULL 10528 }; 10529 10530 const char* const *p; 10531 int i; 10532 10533 for (i = 0; i < 2; ++i) 10534 for (p = (i == 0) ? text_section_symbols : data_section_symbols; 10535 *p; 10536 ++p) 10537 if (strcmp (*p, name) == 0) 10538 { 10539 /* All of these symbols are given type STT_SECTION by the 10540 IRIX6 linker. */ 10541 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10542 sym->st_other = STO_PROTECTED; 10543 10544 /* The IRIX linker puts these symbols in special sections. */ 10545 if (i == 0) 10546 sym->st_shndx = SHN_MIPS_TEXT; 10547 else 10548 sym->st_shndx = SHN_MIPS_DATA; 10549 10550 break; 10551 } 10552 } 10553 10554 /* Finish up dynamic symbol handling. We set the contents of various 10555 dynamic sections here. */ 10556 10557 bfd_boolean 10558 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, 10559 struct bfd_link_info *info, 10560 struct elf_link_hash_entry *h, 10561 Elf_Internal_Sym *sym) 10562 { 10563 bfd *dynobj; 10564 asection *sgot; 10565 struct mips_got_info *g, *gg; 10566 const char *name; 10567 int idx; 10568 struct mips_elf_link_hash_table *htab; 10569 struct mips_elf_link_hash_entry *hmips; 10570 10571 htab = mips_elf_hash_table (info); 10572 BFD_ASSERT (htab != NULL); 10573 dynobj = elf_hash_table (info)->dynobj; 10574 hmips = (struct mips_elf_link_hash_entry *) h; 10575 10576 BFD_ASSERT (!htab->is_vxworks); 10577 10578 if (h->plt.plist != NULL 10579 && (h->plt.plist->mips_offset != MINUS_ONE 10580 || h->plt.plist->comp_offset != MINUS_ONE)) 10581 { 10582 /* We've decided to create a PLT entry for this symbol. */ 10583 bfd_byte *loc; 10584 bfd_vma header_address, got_address; 10585 bfd_vma got_address_high, got_address_low, load; 10586 bfd_vma got_index; 10587 bfd_vma isa_bit; 10588 10589 got_index = h->plt.plist->gotplt_index; 10590 10591 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10592 BFD_ASSERT (h->dynindx != -1); 10593 BFD_ASSERT (htab->splt != NULL); 10594 BFD_ASSERT (got_index != MINUS_ONE); 10595 BFD_ASSERT (!h->def_regular); 10596 10597 /* Calculate the address of the PLT header. */ 10598 isa_bit = htab->plt_header_is_comp; 10599 header_address = (htab->splt->output_section->vma 10600 + htab->splt->output_offset + isa_bit); 10601 10602 /* Calculate the address of the .got.plt entry. */ 10603 got_address = (htab->sgotplt->output_section->vma 10604 + htab->sgotplt->output_offset 10605 + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10606 10607 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 10608 got_address_low = got_address & 0xffff; 10609 10610 /* Initially point the .got.plt entry at the PLT header. */ 10611 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10612 if (ABI_64_P (output_bfd)) 10613 bfd_put_64 (output_bfd, header_address, loc); 10614 else 10615 bfd_put_32 (output_bfd, header_address, loc); 10616 10617 /* Now handle the PLT itself. First the standard entry (the order 10618 does not matter, we just have to pick one). */ 10619 if (h->plt.plist->mips_offset != MINUS_ONE) 10620 { 10621 const bfd_vma *plt_entry; 10622 bfd_vma plt_offset; 10623 10624 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 10625 10626 BFD_ASSERT (plt_offset <= htab->splt->size); 10627 10628 /* Find out where the .plt entry should go. */ 10629 loc = htab->splt->contents + plt_offset; 10630 10631 /* Pick the load opcode. */ 10632 load = MIPS_ELF_LOAD_WORD (output_bfd); 10633 10634 /* Fill in the PLT entry itself. */ 10635 10636 if (MIPSR6_P (output_bfd)) 10637 plt_entry = mipsr6_exec_plt_entry; 10638 else 10639 plt_entry = mips_exec_plt_entry; 10640 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); 10641 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, 10642 loc + 4); 10643 10644 if (! LOAD_INTERLOCKS_P (output_bfd)) 10645 { 10646 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); 10647 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 10648 } 10649 else 10650 { 10651 bfd_put_32 (output_bfd, plt_entry[3], loc + 8); 10652 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, 10653 loc + 12); 10654 } 10655 } 10656 10657 /* Now the compressed entry. They come after any standard ones. */ 10658 if (h->plt.plist->comp_offset != MINUS_ONE) 10659 { 10660 bfd_vma plt_offset; 10661 10662 plt_offset = (htab->plt_header_size + htab->plt_mips_offset 10663 + h->plt.plist->comp_offset); 10664 10665 BFD_ASSERT (plt_offset <= htab->splt->size); 10666 10667 /* Find out where the .plt entry should go. */ 10668 loc = htab->splt->contents + plt_offset; 10669 10670 /* Fill in the PLT entry itself. */ 10671 if (!MICROMIPS_P (output_bfd)) 10672 { 10673 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; 10674 10675 bfd_put_16 (output_bfd, plt_entry[0], loc); 10676 bfd_put_16 (output_bfd, plt_entry[1], loc + 2); 10677 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10678 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10679 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10680 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10681 bfd_put_32 (output_bfd, got_address, loc + 12); 10682 } 10683 else if (htab->insn32) 10684 { 10685 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; 10686 10687 bfd_put_16 (output_bfd, plt_entry[0], loc); 10688 bfd_put_16 (output_bfd, got_address_high, loc + 2); 10689 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10690 bfd_put_16 (output_bfd, got_address_low, loc + 6); 10691 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10692 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10693 bfd_put_16 (output_bfd, plt_entry[6], loc + 12); 10694 bfd_put_16 (output_bfd, got_address_low, loc + 14); 10695 } 10696 else 10697 { 10698 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; 10699 bfd_signed_vma gotpc_offset; 10700 bfd_vma loc_address; 10701 10702 BFD_ASSERT (got_address % 4 == 0); 10703 10704 loc_address = (htab->splt->output_section->vma 10705 + htab->splt->output_offset + plt_offset); 10706 gotpc_offset = got_address - ((loc_address | 3) ^ 3); 10707 10708 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 10709 if (gotpc_offset + 0x1000000 >= 0x2000000) 10710 { 10711 (*_bfd_error_handler) 10712 (_("%B: `%A' offset of %ld from `%A' " 10713 "beyond the range of ADDIUPC"), 10714 output_bfd, 10715 htab->sgotplt->output_section, 10716 htab->splt->output_section, 10717 (long) gotpc_offset); 10718 bfd_set_error (bfd_error_no_error); 10719 return FALSE; 10720 } 10721 bfd_put_16 (output_bfd, 10722 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 10723 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 10724 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10725 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10726 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10727 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10728 } 10729 } 10730 10731 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 10732 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, 10733 got_index - 2, h->dynindx, 10734 R_MIPS_JUMP_SLOT, got_address); 10735 10736 /* We distinguish between PLT entries and lazy-binding stubs by 10737 giving the former an st_other value of STO_MIPS_PLT. Set the 10738 flag and leave the value if there are any relocations in the 10739 binary where pointer equality matters. */ 10740 sym->st_shndx = SHN_UNDEF; 10741 if (h->pointer_equality_needed) 10742 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); 10743 else 10744 { 10745 sym->st_value = 0; 10746 sym->st_other = 0; 10747 } 10748 } 10749 10750 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) 10751 { 10752 /* We've decided to create a lazy-binding stub. */ 10753 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 10754 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 10755 bfd_vma stub_size = htab->function_stub_size; 10756 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; 10757 bfd_vma isa_bit = micromips_p; 10758 bfd_vma stub_big_size; 10759 10760 if (!micromips_p) 10761 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; 10762 else if (htab->insn32) 10763 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; 10764 else 10765 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; 10766 10767 /* This symbol has a stub. Set it up. */ 10768 10769 BFD_ASSERT (h->dynindx != -1); 10770 10771 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); 10772 10773 /* Values up to 2^31 - 1 are allowed. Larger values would cause 10774 sign extension at runtime in the stub, resulting in a negative 10775 index value. */ 10776 if (h->dynindx & ~0x7fffffff) 10777 return FALSE; 10778 10779 /* Fill the stub. */ 10780 if (micromips_p) 10781 { 10782 idx = 0; 10783 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), 10784 stub + idx); 10785 idx += 4; 10786 if (htab->insn32) 10787 { 10788 bfd_put_micromips_32 (output_bfd, 10789 STUB_MOVE32_MICROMIPS, stub + idx); 10790 idx += 4; 10791 } 10792 else 10793 { 10794 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); 10795 idx += 2; 10796 } 10797 if (stub_size == stub_big_size) 10798 { 10799 long dynindx_hi = (h->dynindx >> 16) & 0x7fff; 10800 10801 bfd_put_micromips_32 (output_bfd, 10802 STUB_LUI_MICROMIPS (dynindx_hi), 10803 stub + idx); 10804 idx += 4; 10805 } 10806 if (htab->insn32) 10807 { 10808 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, 10809 stub + idx); 10810 idx += 4; 10811 } 10812 else 10813 { 10814 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); 10815 idx += 2; 10816 } 10817 10818 /* If a large stub is not required and sign extension is not a 10819 problem, then use legacy code in the stub. */ 10820 if (stub_size == stub_big_size) 10821 bfd_put_micromips_32 (output_bfd, 10822 STUB_ORI_MICROMIPS (h->dynindx & 0xffff), 10823 stub + idx); 10824 else if (h->dynindx & ~0x7fff) 10825 bfd_put_micromips_32 (output_bfd, 10826 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), 10827 stub + idx); 10828 else 10829 bfd_put_micromips_32 (output_bfd, 10830 STUB_LI16S_MICROMIPS (output_bfd, 10831 h->dynindx), 10832 stub + idx); 10833 } 10834 else 10835 { 10836 idx = 0; 10837 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); 10838 idx += 4; 10839 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx); 10840 idx += 4; 10841 if (stub_size == stub_big_size) 10842 { 10843 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), 10844 stub + idx); 10845 idx += 4; 10846 } 10847 bfd_put_32 (output_bfd, STUB_JALR, stub + idx); 10848 idx += 4; 10849 10850 /* If a large stub is not required and sign extension is not a 10851 problem, then use legacy code in the stub. */ 10852 if (stub_size == stub_big_size) 10853 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), 10854 stub + idx); 10855 else if (h->dynindx & ~0x7fff) 10856 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), 10857 stub + idx); 10858 else 10859 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), 10860 stub + idx); 10861 } 10862 10863 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); 10864 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, 10865 stub, stub_size); 10866 10867 /* Mark the symbol as undefined. stub_offset != -1 occurs 10868 only for the referenced symbol. */ 10869 sym->st_shndx = SHN_UNDEF; 10870 10871 /* The run-time linker uses the st_value field of the symbol 10872 to reset the global offset table entry for this external 10873 to its stub address when unlinking a shared object. */ 10874 sym->st_value = (htab->sstubs->output_section->vma 10875 + htab->sstubs->output_offset 10876 + h->plt.plist->stub_offset 10877 + isa_bit); 10878 sym->st_other = other; 10879 } 10880 10881 /* If we have a MIPS16 function with a stub, the dynamic symbol must 10882 refer to the stub, since only the stub uses the standard calling 10883 conventions. */ 10884 if (h->dynindx != -1 && hmips->fn_stub != NULL) 10885 { 10886 BFD_ASSERT (hmips->need_fn_stub); 10887 sym->st_value = (hmips->fn_stub->output_section->vma 10888 + hmips->fn_stub->output_offset); 10889 sym->st_size = hmips->fn_stub->size; 10890 sym->st_other = ELF_ST_VISIBILITY (sym->st_other); 10891 } 10892 10893 BFD_ASSERT (h->dynindx != -1 10894 || h->forced_local); 10895 10896 sgot = htab->sgot; 10897 g = htab->got_info; 10898 BFD_ASSERT (g != NULL); 10899 10900 /* Run through the global symbol table, creating GOT entries for all 10901 the symbols that need them. */ 10902 if (hmips->global_got_area != GGA_NONE) 10903 { 10904 bfd_vma offset; 10905 bfd_vma value; 10906 10907 value = sym->st_value; 10908 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 10909 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); 10910 } 10911 10912 if (hmips->global_got_area != GGA_NONE && g->next) 10913 { 10914 struct mips_got_entry e, *p; 10915 bfd_vma entry; 10916 bfd_vma offset; 10917 10918 gg = g; 10919 10920 e.abfd = output_bfd; 10921 e.symndx = -1; 10922 e.d.h = hmips; 10923 e.tls_type = GOT_TLS_NONE; 10924 10925 for (g = g->next; g->next != gg; g = g->next) 10926 { 10927 if (g->got_entries 10928 && (p = (struct mips_got_entry *) htab_find (g->got_entries, 10929 &e))) 10930 { 10931 offset = p->gotidx; 10932 BFD_ASSERT (offset > 0 && offset < htab->sgot->size); 10933 if (bfd_link_pic (info) 10934 || (elf_hash_table (info)->dynamic_sections_created 10935 && p->d.h != NULL 10936 && p->d.h->root.def_dynamic 10937 && !p->d.h->root.def_regular)) 10938 { 10939 /* Create an R_MIPS_REL32 relocation for this entry. Due to 10940 the various compatibility problems, it's easier to mock 10941 up an R_MIPS_32 or R_MIPS_64 relocation and leave 10942 mips_elf_create_dynamic_relocation to calculate the 10943 appropriate addend. */ 10944 Elf_Internal_Rela rel[3]; 10945 10946 memset (rel, 0, sizeof (rel)); 10947 if (ABI_64_P (output_bfd)) 10948 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); 10949 else 10950 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); 10951 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 10952 10953 entry = 0; 10954 if (! (mips_elf_create_dynamic_relocation 10955 (output_bfd, info, rel, 10956 e.d.h, NULL, sym->st_value, &entry, sgot))) 10957 return FALSE; 10958 } 10959 else 10960 entry = sym->st_value; 10961 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); 10962 } 10963 } 10964 } 10965 10966 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 10967 name = h->root.root.string; 10968 if (h == elf_hash_table (info)->hdynamic 10969 || h == elf_hash_table (info)->hgot) 10970 sym->st_shndx = SHN_ABS; 10971 else if (strcmp (name, "_DYNAMIC_LINK") == 0 10972 || strcmp (name, "_DYNAMIC_LINKING") == 0) 10973 { 10974 sym->st_shndx = SHN_ABS; 10975 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10976 sym->st_value = 1; 10977 } 10978 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) 10979 { 10980 sym->st_shndx = SHN_ABS; 10981 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10982 sym->st_value = elf_gp (output_bfd); 10983 } 10984 else if (SGI_COMPAT (output_bfd)) 10985 { 10986 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 10987 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 10988 { 10989 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10990 sym->st_other = STO_PROTECTED; 10991 sym->st_value = 0; 10992 sym->st_shndx = SHN_MIPS_DATA; 10993 } 10994 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 10995 { 10996 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10997 sym->st_other = STO_PROTECTED; 10998 sym->st_value = mips_elf_hash_table (info)->procedure_count; 10999 sym->st_shndx = SHN_ABS; 11000 } 11001 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) 11002 { 11003 if (h->type == STT_FUNC) 11004 sym->st_shndx = SHN_MIPS_TEXT; 11005 else if (h->type == STT_OBJECT) 11006 sym->st_shndx = SHN_MIPS_DATA; 11007 } 11008 } 11009 11010 /* Emit a copy reloc, if needed. */ 11011 if (h->needs_copy) 11012 { 11013 asection *s; 11014 bfd_vma symval; 11015 11016 BFD_ASSERT (h->dynindx != -1); 11017 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11018 11019 s = mips_elf_rel_dyn_section (info, FALSE); 11020 symval = (h->root.u.def.section->output_section->vma 11021 + h->root.u.def.section->output_offset 11022 + h->root.u.def.value); 11023 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, 11024 h->dynindx, R_MIPS_COPY, symval); 11025 } 11026 11027 /* Handle the IRIX6-specific symbols. */ 11028 if (IRIX_COMPAT (output_bfd) == ict_irix6) 11029 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); 11030 11031 /* Keep dynamic compressed symbols odd. This allows the dynamic linker 11032 to treat compressed symbols like any other. */ 11033 if (ELF_ST_IS_MIPS16 (sym->st_other)) 11034 { 11035 BFD_ASSERT (sym->st_value & 1); 11036 sym->st_other -= STO_MIPS16; 11037 } 11038 else if (ELF_ST_IS_MICROMIPS (sym->st_other)) 11039 { 11040 BFD_ASSERT (sym->st_value & 1); 11041 sym->st_other -= STO_MICROMIPS; 11042 } 11043 11044 return TRUE; 11045 } 11046 11047 /* Likewise, for VxWorks. */ 11048 11049 bfd_boolean 11050 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, 11051 struct bfd_link_info *info, 11052 struct elf_link_hash_entry *h, 11053 Elf_Internal_Sym *sym) 11054 { 11055 bfd *dynobj; 11056 asection *sgot; 11057 struct mips_got_info *g; 11058 struct mips_elf_link_hash_table *htab; 11059 struct mips_elf_link_hash_entry *hmips; 11060 11061 htab = mips_elf_hash_table (info); 11062 BFD_ASSERT (htab != NULL); 11063 dynobj = elf_hash_table (info)->dynobj; 11064 hmips = (struct mips_elf_link_hash_entry *) h; 11065 11066 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) 11067 { 11068 bfd_byte *loc; 11069 bfd_vma plt_address, got_address, got_offset, branch_offset; 11070 Elf_Internal_Rela rel; 11071 static const bfd_vma *plt_entry; 11072 bfd_vma gotplt_index; 11073 bfd_vma plt_offset; 11074 11075 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 11076 gotplt_index = h->plt.plist->gotplt_index; 11077 11078 BFD_ASSERT (h->dynindx != -1); 11079 BFD_ASSERT (htab->splt != NULL); 11080 BFD_ASSERT (gotplt_index != MINUS_ONE); 11081 BFD_ASSERT (plt_offset <= htab->splt->size); 11082 11083 /* Calculate the address of the .plt entry. */ 11084 plt_address = (htab->splt->output_section->vma 11085 + htab->splt->output_offset 11086 + plt_offset); 11087 11088 /* Calculate the address of the .got.plt entry. */ 11089 got_address = (htab->sgotplt->output_section->vma 11090 + htab->sgotplt->output_offset 11091 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); 11092 11093 /* Calculate the offset of the .got.plt entry from 11094 _GLOBAL_OFFSET_TABLE_. */ 11095 got_offset = mips_elf_gotplt_index (info, h); 11096 11097 /* Calculate the offset for the branch at the start of the PLT 11098 entry. The branch jumps to the beginning of .plt. */ 11099 branch_offset = -(plt_offset / 4 + 1) & 0xffff; 11100 11101 /* Fill in the initial value of the .got.plt entry. */ 11102 bfd_put_32 (output_bfd, plt_address, 11103 (htab->sgotplt->contents 11104 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); 11105 11106 /* Find out where the .plt entry should go. */ 11107 loc = htab->splt->contents + plt_offset; 11108 11109 if (bfd_link_pic (info)) 11110 { 11111 plt_entry = mips_vxworks_shared_plt_entry; 11112 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11113 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11114 } 11115 else 11116 { 11117 bfd_vma got_address_high, got_address_low; 11118 11119 plt_entry = mips_vxworks_exec_plt_entry; 11120 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 11121 got_address_low = got_address & 0xffff; 11122 11123 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11124 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11125 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); 11126 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); 11127 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11128 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11129 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11130 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11131 11132 loc = (htab->srelplt2->contents 11133 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); 11134 11135 /* Emit a relocation for the .got.plt entry. */ 11136 rel.r_offset = got_address; 11137 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11138 rel.r_addend = plt_offset; 11139 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11140 11141 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ 11142 loc += sizeof (Elf32_External_Rela); 11143 rel.r_offset = plt_address + 8; 11144 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11145 rel.r_addend = got_offset; 11146 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11147 11148 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ 11149 loc += sizeof (Elf32_External_Rela); 11150 rel.r_offset += 4; 11151 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11152 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11153 } 11154 11155 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 11156 loc = (htab->srelplt->contents 11157 + gotplt_index * sizeof (Elf32_External_Rela)); 11158 rel.r_offset = got_address; 11159 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); 11160 rel.r_addend = 0; 11161 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11162 11163 if (!h->def_regular) 11164 sym->st_shndx = SHN_UNDEF; 11165 } 11166 11167 BFD_ASSERT (h->dynindx != -1 || h->forced_local); 11168 11169 sgot = htab->sgot; 11170 g = htab->got_info; 11171 BFD_ASSERT (g != NULL); 11172 11173 /* See if this symbol has an entry in the GOT. */ 11174 if (hmips->global_got_area != GGA_NONE) 11175 { 11176 bfd_vma offset; 11177 Elf_Internal_Rela outrel; 11178 bfd_byte *loc; 11179 asection *s; 11180 11181 /* Install the symbol value in the GOT. */ 11182 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 11183 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); 11184 11185 /* Add a dynamic relocation for it. */ 11186 s = mips_elf_rel_dyn_section (info, FALSE); 11187 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 11188 outrel.r_offset = (sgot->output_section->vma 11189 + sgot->output_offset 11190 + offset); 11191 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); 11192 outrel.r_addend = 0; 11193 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); 11194 } 11195 11196 /* Emit a copy reloc, if needed. */ 11197 if (h->needs_copy) 11198 { 11199 Elf_Internal_Rela rel; 11200 11201 BFD_ASSERT (h->dynindx != -1); 11202 11203 rel.r_offset = (h->root.u.def.section->output_section->vma 11204 + h->root.u.def.section->output_offset 11205 + h->root.u.def.value); 11206 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); 11207 rel.r_addend = 0; 11208 bfd_elf32_swap_reloca_out (output_bfd, &rel, 11209 htab->srelbss->contents 11210 + (htab->srelbss->reloc_count 11211 * sizeof (Elf32_External_Rela))); 11212 ++htab->srelbss->reloc_count; 11213 } 11214 11215 /* If this is a mips16/microMIPS symbol, force the value to be even. */ 11216 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 11217 sym->st_value &= ~1; 11218 11219 return TRUE; 11220 } 11221 11222 /* Write out a plt0 entry to the beginning of .plt. */ 11223 11224 static bfd_boolean 11225 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11226 { 11227 bfd_byte *loc; 11228 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; 11229 static const bfd_vma *plt_entry; 11230 struct mips_elf_link_hash_table *htab; 11231 11232 htab = mips_elf_hash_table (info); 11233 BFD_ASSERT (htab != NULL); 11234 11235 if (ABI_64_P (output_bfd)) 11236 plt_entry = mips_n64_exec_plt0_entry; 11237 else if (ABI_N32_P (output_bfd)) 11238 plt_entry = mips_n32_exec_plt0_entry; 11239 else if (!htab->plt_header_is_comp) 11240 plt_entry = mips_o32_exec_plt0_entry; 11241 else if (htab->insn32) 11242 plt_entry = micromips_insn32_o32_exec_plt0_entry; 11243 else 11244 plt_entry = micromips_o32_exec_plt0_entry; 11245 11246 /* Calculate the value of .got.plt. */ 11247 gotplt_value = (htab->sgotplt->output_section->vma 11248 + htab->sgotplt->output_offset); 11249 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; 11250 gotplt_value_low = gotplt_value & 0xffff; 11251 11252 /* The PLT sequence is not safe for N64 if .got.plt's address can 11253 not be loaded in two instructions. */ 11254 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 11255 || ~(gotplt_value | 0x7fffffff) == 0); 11256 11257 /* Install the PLT header. */ 11258 loc = htab->splt->contents; 11259 if (plt_entry == micromips_o32_exec_plt0_entry) 11260 { 11261 bfd_vma gotpc_offset; 11262 bfd_vma loc_address; 11263 size_t i; 11264 11265 BFD_ASSERT (gotplt_value % 4 == 0); 11266 11267 loc_address = (htab->splt->output_section->vma 11268 + htab->splt->output_offset); 11269 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); 11270 11271 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 11272 if (gotpc_offset + 0x1000000 >= 0x2000000) 11273 { 11274 (*_bfd_error_handler) 11275 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), 11276 output_bfd, 11277 htab->sgotplt->output_section, 11278 htab->splt->output_section, 11279 (long) gotpc_offset); 11280 bfd_set_error (bfd_error_no_error); 11281 return FALSE; 11282 } 11283 bfd_put_16 (output_bfd, 11284 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 11285 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 11286 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) 11287 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11288 } 11289 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) 11290 { 11291 size_t i; 11292 11293 bfd_put_16 (output_bfd, plt_entry[0], loc); 11294 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); 11295 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11296 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); 11297 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11298 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); 11299 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) 11300 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11301 } 11302 else 11303 { 11304 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); 11305 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); 11306 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); 11307 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11308 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11309 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11310 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11311 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11312 } 11313 11314 return TRUE; 11315 } 11316 11317 /* Install the PLT header for a VxWorks executable and finalize the 11318 contents of .rela.plt.unloaded. */ 11319 11320 static void 11321 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11322 { 11323 Elf_Internal_Rela rela; 11324 bfd_byte *loc; 11325 bfd_vma got_value, got_value_high, got_value_low, plt_address; 11326 static const bfd_vma *plt_entry; 11327 struct mips_elf_link_hash_table *htab; 11328 11329 htab = mips_elf_hash_table (info); 11330 BFD_ASSERT (htab != NULL); 11331 11332 plt_entry = mips_vxworks_exec_plt0_entry; 11333 11334 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 11335 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 11336 + htab->root.hgot->root.u.def.section->output_offset 11337 + htab->root.hgot->root.u.def.value); 11338 11339 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; 11340 got_value_low = got_value & 0xffff; 11341 11342 /* Calculate the address of the PLT header. */ 11343 plt_address = htab->splt->output_section->vma + htab->splt->output_offset; 11344 11345 /* Install the PLT header. */ 11346 loc = htab->splt->contents; 11347 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); 11348 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); 11349 bfd_put_32 (output_bfd, plt_entry[2], loc + 8); 11350 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11351 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11352 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11353 11354 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ 11355 loc = htab->srelplt2->contents; 11356 rela.r_offset = plt_address; 11357 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11358 rela.r_addend = 0; 11359 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11360 loc += sizeof (Elf32_External_Rela); 11361 11362 /* Output the relocation for the following addiu of 11363 %lo(_GLOBAL_OFFSET_TABLE_). */ 11364 rela.r_offset += 4; 11365 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11366 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11367 loc += sizeof (Elf32_External_Rela); 11368 11369 /* Fix up the remaining relocations. They may have the wrong 11370 symbol index for _G_O_T_ or _P_L_T_ depending on the order 11371 in which symbols were output. */ 11372 while (loc < htab->srelplt2->contents + htab->srelplt2->size) 11373 { 11374 Elf_Internal_Rela rel; 11375 11376 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11377 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11378 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11379 loc += sizeof (Elf32_External_Rela); 11380 11381 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11382 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11383 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11384 loc += sizeof (Elf32_External_Rela); 11385 11386 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11387 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11388 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11389 loc += sizeof (Elf32_External_Rela); 11390 } 11391 } 11392 11393 /* Install the PLT header for a VxWorks shared library. */ 11394 11395 static void 11396 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) 11397 { 11398 unsigned int i; 11399 struct mips_elf_link_hash_table *htab; 11400 11401 htab = mips_elf_hash_table (info); 11402 BFD_ASSERT (htab != NULL); 11403 11404 /* We just need to copy the entry byte-by-byte. */ 11405 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) 11406 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], 11407 htab->splt->contents + i * 4); 11408 } 11409 11410 /* Finish up the dynamic sections. */ 11411 11412 bfd_boolean 11413 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, 11414 struct bfd_link_info *info) 11415 { 11416 bfd *dynobj; 11417 asection *sdyn; 11418 asection *sgot; 11419 struct mips_got_info *gg, *g; 11420 struct mips_elf_link_hash_table *htab; 11421 11422 htab = mips_elf_hash_table (info); 11423 BFD_ASSERT (htab != NULL); 11424 11425 dynobj = elf_hash_table (info)->dynobj; 11426 11427 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 11428 11429 sgot = htab->sgot; 11430 gg = htab->got_info; 11431 11432 if (elf_hash_table (info)->dynamic_sections_created) 11433 { 11434 bfd_byte *b; 11435 int dyn_to_skip = 0, dyn_skipped = 0; 11436 11437 BFD_ASSERT (sdyn != NULL); 11438 BFD_ASSERT (gg != NULL); 11439 11440 g = mips_elf_bfd_got (output_bfd, FALSE); 11441 BFD_ASSERT (g != NULL); 11442 11443 for (b = sdyn->contents; 11444 b < sdyn->contents + sdyn->size; 11445 b += MIPS_ELF_DYN_SIZE (dynobj)) 11446 { 11447 Elf_Internal_Dyn dyn; 11448 const char *name; 11449 size_t elemsize; 11450 asection *s; 11451 bfd_boolean swap_out_p; 11452 11453 /* Read in the current dynamic entry. */ 11454 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11455 11456 /* Assume that we're going to modify it and write it out. */ 11457 swap_out_p = TRUE; 11458 11459 switch (dyn.d_tag) 11460 { 11461 case DT_RELENT: 11462 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); 11463 break; 11464 11465 case DT_RELAENT: 11466 BFD_ASSERT (htab->is_vxworks); 11467 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); 11468 break; 11469 11470 case DT_STRSZ: 11471 /* Rewrite DT_STRSZ. */ 11472 dyn.d_un.d_val = 11473 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 11474 break; 11475 11476 case DT_PLTGOT: 11477 s = htab->sgot; 11478 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11479 break; 11480 11481 case DT_MIPS_PLTGOT: 11482 s = htab->sgotplt; 11483 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11484 break; 11485 11486 case DT_MIPS_RLD_VERSION: 11487 dyn.d_un.d_val = 1; /* XXX */ 11488 break; 11489 11490 case DT_MIPS_FLAGS: 11491 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ 11492 break; 11493 11494 case DT_MIPS_TIME_STAMP: 11495 { 11496 time_t t; 11497 time (&t); 11498 dyn.d_un.d_val = t; 11499 } 11500 break; 11501 11502 case DT_MIPS_ICHECKSUM: 11503 /* XXX FIXME: */ 11504 swap_out_p = FALSE; 11505 break; 11506 11507 case DT_MIPS_IVERSION: 11508 /* XXX FIXME: */ 11509 swap_out_p = FALSE; 11510 break; 11511 11512 case DT_MIPS_BASE_ADDRESS: 11513 s = output_bfd->sections; 11514 BFD_ASSERT (s != NULL); 11515 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; 11516 break; 11517 11518 case DT_MIPS_LOCAL_GOTNO: 11519 dyn.d_un.d_val = g->local_gotno; 11520 break; 11521 11522 case DT_MIPS_UNREFEXTNO: 11523 /* The index into the dynamic symbol table which is the 11524 entry of the first external symbol that is not 11525 referenced within the same object. */ 11526 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; 11527 break; 11528 11529 case DT_MIPS_GOTSYM: 11530 if (htab->global_gotsym) 11531 { 11532 dyn.d_un.d_val = htab->global_gotsym->dynindx; 11533 break; 11534 } 11535 /* In case if we don't have global got symbols we default 11536 to setting DT_MIPS_GOTSYM to the same value as 11537 DT_MIPS_SYMTABNO, so we just fall through. */ 11538 11539 case DT_MIPS_SYMTABNO: 11540 name = ".dynsym"; 11541 elemsize = MIPS_ELF_SYM_SIZE (output_bfd); 11542 s = bfd_get_linker_section (dynobj, name); 11543 11544 if (s != NULL) 11545 dyn.d_un.d_val = s->size / elemsize; 11546 else 11547 dyn.d_un.d_val = 0; 11548 break; 11549 11550 case DT_MIPS_HIPAGENO: 11551 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; 11552 break; 11553 11554 case DT_MIPS_RLD_MAP: 11555 { 11556 struct elf_link_hash_entry *h; 11557 h = mips_elf_hash_table (info)->rld_symbol; 11558 if (!h) 11559 { 11560 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11561 swap_out_p = FALSE; 11562 break; 11563 } 11564 s = h->root.u.def.section; 11565 11566 /* The MIPS_RLD_MAP tag stores the absolute address of the 11567 debug pointer. */ 11568 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 11569 + h->root.u.def.value); 11570 } 11571 break; 11572 11573 case DT_MIPS_RLD_MAP_REL: 11574 { 11575 struct elf_link_hash_entry *h; 11576 bfd_vma dt_addr, rld_addr; 11577 h = mips_elf_hash_table (info)->rld_symbol; 11578 if (!h) 11579 { 11580 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11581 swap_out_p = FALSE; 11582 break; 11583 } 11584 s = h->root.u.def.section; 11585 11586 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug 11587 pointer, relative to the address of the tag. */ 11588 dt_addr = (sdyn->output_section->vma + sdyn->output_offset 11589 + (b - sdyn->contents)); 11590 rld_addr = (s->output_section->vma + s->output_offset 11591 + h->root.u.def.value); 11592 dyn.d_un.d_ptr = rld_addr - dt_addr; 11593 } 11594 break; 11595 11596 case DT_MIPS_OPTIONS: 11597 s = (bfd_get_section_by_name 11598 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); 11599 dyn.d_un.d_ptr = s->vma; 11600 break; 11601 11602 case DT_RELASZ: 11603 BFD_ASSERT (htab->is_vxworks); 11604 /* The count does not include the JUMP_SLOT relocations. */ 11605 if (htab->srelplt) 11606 dyn.d_un.d_val -= htab->srelplt->size; 11607 break; 11608 11609 case DT_PLTREL: 11610 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11611 if (htab->is_vxworks) 11612 dyn.d_un.d_val = DT_RELA; 11613 else 11614 dyn.d_un.d_val = DT_REL; 11615 break; 11616 11617 case DT_PLTRELSZ: 11618 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11619 dyn.d_un.d_val = htab->srelplt->size; 11620 break; 11621 11622 case DT_JMPREL: 11623 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11624 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma 11625 + htab->srelplt->output_offset); 11626 break; 11627 11628 case DT_TEXTREL: 11629 /* If we didn't need any text relocations after all, delete 11630 the dynamic tag. */ 11631 if (!(info->flags & DF_TEXTREL)) 11632 { 11633 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11634 swap_out_p = FALSE; 11635 } 11636 break; 11637 11638 case DT_FLAGS: 11639 /* If we didn't need any text relocations after all, clear 11640 DF_TEXTREL from DT_FLAGS. */ 11641 if (!(info->flags & DF_TEXTREL)) 11642 dyn.d_un.d_val &= ~DF_TEXTREL; 11643 else 11644 swap_out_p = FALSE; 11645 break; 11646 11647 default: 11648 swap_out_p = FALSE; 11649 if (htab->is_vxworks 11650 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 11651 swap_out_p = TRUE; 11652 break; 11653 } 11654 11655 if (swap_out_p || dyn_skipped) 11656 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11657 (dynobj, &dyn, b - dyn_skipped); 11658 11659 if (dyn_to_skip) 11660 { 11661 dyn_skipped += dyn_to_skip; 11662 dyn_to_skip = 0; 11663 } 11664 } 11665 11666 /* Wipe out any trailing entries if we shifted down a dynamic tag. */ 11667 if (dyn_skipped > 0) 11668 memset (b - dyn_skipped, 0, dyn_skipped); 11669 } 11670 11671 if (sgot != NULL && sgot->size > 0 11672 && !bfd_is_abs_section (sgot->output_section)) 11673 { 11674 if (htab->is_vxworks) 11675 { 11676 /* The first entry of the global offset table points to the 11677 ".dynamic" section. The second is initialized by the 11678 loader and contains the shared library identifier. 11679 The third is also initialized by the loader and points 11680 to the lazy resolution stub. */ 11681 MIPS_ELF_PUT_WORD (output_bfd, 11682 sdyn->output_offset + sdyn->output_section->vma, 11683 sgot->contents); 11684 MIPS_ELF_PUT_WORD (output_bfd, 0, 11685 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11686 MIPS_ELF_PUT_WORD (output_bfd, 0, 11687 sgot->contents 11688 + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); 11689 } 11690 else 11691 { 11692 /* The first entry of the global offset table will be filled at 11693 runtime. The second entry will be used by some runtime loaders. 11694 This isn't the case of IRIX rld. */ 11695 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); 11696 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11697 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11698 } 11699 11700 elf_section_data (sgot->output_section)->this_hdr.sh_entsize 11701 = MIPS_ELF_GOT_SIZE (output_bfd); 11702 } 11703 11704 /* Generate dynamic relocations for the non-primary gots. */ 11705 if (gg != NULL && gg->next) 11706 { 11707 Elf_Internal_Rela rel[3]; 11708 bfd_vma addend = 0; 11709 11710 memset (rel, 0, sizeof (rel)); 11711 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); 11712 11713 for (g = gg->next; g->next != gg; g = g->next) 11714 { 11715 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno 11716 + g->next->tls_gotno; 11717 11718 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents 11719 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11720 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11721 sgot->contents 11722 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11723 11724 if (! bfd_link_pic (info)) 11725 continue; 11726 11727 for (; got_index < g->local_gotno; got_index++) 11728 { 11729 if (got_index >= g->assigned_low_gotno 11730 && got_index <= g->assigned_high_gotno) 11731 continue; 11732 11733 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset 11734 = got_index * MIPS_ELF_GOT_SIZE (output_bfd); 11735 if (!(mips_elf_create_dynamic_relocation 11736 (output_bfd, info, rel, NULL, 11737 bfd_abs_section_ptr, 11738 0, &addend, sgot))) 11739 return FALSE; 11740 BFD_ASSERT (addend == 0); 11741 } 11742 } 11743 } 11744 11745 /* The generation of dynamic relocations for the non-primary gots 11746 adds more dynamic relocations. We cannot count them until 11747 here. */ 11748 11749 if (elf_hash_table (info)->dynamic_sections_created) 11750 { 11751 bfd_byte *b; 11752 bfd_boolean swap_out_p; 11753 11754 BFD_ASSERT (sdyn != NULL); 11755 11756 for (b = sdyn->contents; 11757 b < sdyn->contents + sdyn->size; 11758 b += MIPS_ELF_DYN_SIZE (dynobj)) 11759 { 11760 Elf_Internal_Dyn dyn; 11761 asection *s; 11762 11763 /* Read in the current dynamic entry. */ 11764 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11765 11766 /* Assume that we're going to modify it and write it out. */ 11767 swap_out_p = TRUE; 11768 11769 switch (dyn.d_tag) 11770 { 11771 case DT_RELSZ: 11772 /* Reduce DT_RELSZ to account for any relocations we 11773 decided not to make. This is for the n64 irix rld, 11774 which doesn't seem to apply any relocations if there 11775 are trailing null entries. */ 11776 s = mips_elf_rel_dyn_section (info, FALSE); 11777 dyn.d_un.d_val = (s->reloc_count 11778 * (ABI_64_P (output_bfd) 11779 ? sizeof (Elf64_Mips_External_Rel) 11780 : sizeof (Elf32_External_Rel))); 11781 /* Adjust the section size too. Tools like the prelinker 11782 can reasonably expect the values to the same. */ 11783 elf_section_data (s->output_section)->this_hdr.sh_size 11784 = dyn.d_un.d_val; 11785 break; 11786 11787 default: 11788 swap_out_p = FALSE; 11789 break; 11790 } 11791 11792 if (swap_out_p) 11793 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11794 (dynobj, &dyn, b); 11795 } 11796 } 11797 11798 { 11799 asection *s; 11800 Elf32_compact_rel cpt; 11801 11802 if (SGI_COMPAT (output_bfd)) 11803 { 11804 /* Write .compact_rel section out. */ 11805 s = bfd_get_linker_section (dynobj, ".compact_rel"); 11806 if (s != NULL) 11807 { 11808 cpt.id1 = 1; 11809 cpt.num = s->reloc_count; 11810 cpt.id2 = 2; 11811 cpt.offset = (s->output_section->filepos 11812 + sizeof (Elf32_External_compact_rel)); 11813 cpt.reserved0 = 0; 11814 cpt.reserved1 = 0; 11815 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, 11816 ((Elf32_External_compact_rel *) 11817 s->contents)); 11818 11819 /* Clean up a dummy stub function entry in .text. */ 11820 if (htab->sstubs != NULL) 11821 { 11822 file_ptr dummy_offset; 11823 11824 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); 11825 dummy_offset = htab->sstubs->size - htab->function_stub_size; 11826 memset (htab->sstubs->contents + dummy_offset, 0, 11827 htab->function_stub_size); 11828 } 11829 } 11830 } 11831 11832 /* The psABI says that the dynamic relocations must be sorted in 11833 increasing order of r_symndx. The VxWorks EABI doesn't require 11834 this, and because the code below handles REL rather than RELA 11835 relocations, using it for VxWorks would be outright harmful. */ 11836 if (!htab->is_vxworks) 11837 { 11838 s = mips_elf_rel_dyn_section (info, FALSE); 11839 if (s != NULL 11840 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) 11841 { 11842 reldyn_sorting_bfd = output_bfd; 11843 11844 if (ABI_64_P (output_bfd)) 11845 qsort ((Elf64_External_Rel *) s->contents + 1, 11846 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), 11847 sort_dynamic_relocs_64); 11848 else 11849 qsort ((Elf32_External_Rel *) s->contents + 1, 11850 s->reloc_count - 1, sizeof (Elf32_External_Rel), 11851 sort_dynamic_relocs); 11852 } 11853 } 11854 } 11855 11856 if (htab->splt && htab->splt->size > 0) 11857 { 11858 if (htab->is_vxworks) 11859 { 11860 if (bfd_link_pic (info)) 11861 mips_vxworks_finish_shared_plt (output_bfd, info); 11862 else 11863 mips_vxworks_finish_exec_plt (output_bfd, info); 11864 } 11865 else 11866 { 11867 BFD_ASSERT (!bfd_link_pic (info)); 11868 if (!mips_finish_exec_plt (output_bfd, info)) 11869 return FALSE; 11870 } 11871 } 11872 return TRUE; 11873 } 11874 11875 11876 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ 11877 11878 static void 11879 mips_set_isa_flags (bfd *abfd) 11880 { 11881 flagword val; 11882 11883 switch (bfd_get_mach (abfd)) 11884 { 11885 default: 11886 case bfd_mach_mips3000: 11887 val = E_MIPS_ARCH_1; 11888 break; 11889 11890 case bfd_mach_mips3900: 11891 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; 11892 break; 11893 11894 case bfd_mach_mips6000: 11895 val = E_MIPS_ARCH_2; 11896 break; 11897 11898 case bfd_mach_mips4000: 11899 case bfd_mach_mips4300: 11900 case bfd_mach_mips4400: 11901 case bfd_mach_mips4600: 11902 val = E_MIPS_ARCH_3; 11903 break; 11904 11905 case bfd_mach_mips4010: 11906 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; 11907 break; 11908 11909 case bfd_mach_mips4100: 11910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; 11911 break; 11912 11913 case bfd_mach_mips4111: 11914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; 11915 break; 11916 11917 case bfd_mach_mips4120: 11918 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; 11919 break; 11920 11921 case bfd_mach_mips4650: 11922 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; 11923 break; 11924 11925 case bfd_mach_mips5400: 11926 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; 11927 break; 11928 11929 case bfd_mach_mips5500: 11930 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; 11931 break; 11932 11933 case bfd_mach_mips5900: 11934 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; 11935 break; 11936 11937 case bfd_mach_mips9000: 11938 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; 11939 break; 11940 11941 case bfd_mach_mips5000: 11942 case bfd_mach_mips7000: 11943 case bfd_mach_mips8000: 11944 case bfd_mach_mips10000: 11945 case bfd_mach_mips12000: 11946 case bfd_mach_mips14000: 11947 case bfd_mach_mips16000: 11948 val = E_MIPS_ARCH_4; 11949 break; 11950 11951 case bfd_mach_mips5: 11952 val = E_MIPS_ARCH_5; 11953 break; 11954 11955 case bfd_mach_mips_loongson_2e: 11956 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; 11957 break; 11958 11959 case bfd_mach_mips_loongson_2f: 11960 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; 11961 break; 11962 11963 case bfd_mach_mips_sb1: 11964 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; 11965 break; 11966 11967 case bfd_mach_mips_loongson_3a: 11968 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A; 11969 break; 11970 11971 case bfd_mach_mips_octeon: 11972 case bfd_mach_mips_octeonp: 11973 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; 11974 break; 11975 11976 case bfd_mach_mips_octeon3: 11977 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3; 11978 break; 11979 11980 case bfd_mach_mips_xlr: 11981 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; 11982 break; 11983 11984 case bfd_mach_mips_octeon2: 11985 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; 11986 break; 11987 11988 case bfd_mach_mipsisa32: 11989 val = E_MIPS_ARCH_32; 11990 break; 11991 11992 case bfd_mach_mipsisa64: 11993 val = E_MIPS_ARCH_64; 11994 break; 11995 11996 case bfd_mach_mipsisa32r2: 11997 case bfd_mach_mipsisa32r3: 11998 case bfd_mach_mipsisa32r5: 11999 val = E_MIPS_ARCH_32R2; 12000 break; 12001 12002 case bfd_mach_mipsisa64r2: 12003 case bfd_mach_mipsisa64r3: 12004 case bfd_mach_mipsisa64r5: 12005 val = E_MIPS_ARCH_64R2; 12006 break; 12007 12008 case bfd_mach_mipsisa32r6: 12009 val = E_MIPS_ARCH_32R6; 12010 break; 12011 12012 case bfd_mach_mipsisa64r6: 12013 val = E_MIPS_ARCH_64R6; 12014 break; 12015 } 12016 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 12017 elf_elfheader (abfd)->e_flags |= val; 12018 12019 } 12020 12021 12022 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. 12023 Don't do so for code sections. We want to keep ordering of HI16/LO16 12024 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame 12025 relocs to be sorted. */ 12026 12027 bfd_boolean 12028 _bfd_mips_elf_sort_relocs_p (asection *sec) 12029 { 12030 return (sec->flags & SEC_CODE) == 0; 12031 } 12032 12033 12034 /* The final processing done just before writing out a MIPS ELF object 12035 file. This gets the MIPS architecture right based on the machine 12036 number. This is used by both the 32-bit and the 64-bit ABI. */ 12037 12038 void 12039 _bfd_mips_elf_final_write_processing (bfd *abfd, 12040 bfd_boolean linker ATTRIBUTE_UNUSED) 12041 { 12042 unsigned int i; 12043 Elf_Internal_Shdr **hdrpp; 12044 const char *name; 12045 asection *sec; 12046 12047 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former 12048 is nonzero. This is for compatibility with old objects, which used 12049 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ 12050 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) 12051 mips_set_isa_flags (abfd); 12052 12053 /* Set the sh_info field for .gptab sections and other appropriate 12054 info for each special section. */ 12055 for (i = 1, hdrpp = elf_elfsections (abfd) + 1; 12056 i < elf_numsections (abfd); 12057 i++, hdrpp++) 12058 { 12059 switch ((*hdrpp)->sh_type) 12060 { 12061 case SHT_MIPS_MSYM: 12062 case SHT_MIPS_LIBLIST: 12063 sec = bfd_get_section_by_name (abfd, ".dynstr"); 12064 if (sec != NULL) 12065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12066 break; 12067 12068 case SHT_MIPS_GPTAB: 12069 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12070 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12071 BFD_ASSERT (name != NULL 12072 && CONST_STRNEQ (name, ".gptab.")); 12073 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); 12074 BFD_ASSERT (sec != NULL); 12075 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12076 break; 12077 12078 case SHT_MIPS_CONTENT: 12079 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12080 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12081 BFD_ASSERT (name != NULL 12082 && CONST_STRNEQ (name, ".MIPS.content")); 12083 sec = bfd_get_section_by_name (abfd, 12084 name + sizeof ".MIPS.content" - 1); 12085 BFD_ASSERT (sec != NULL); 12086 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12087 break; 12088 12089 case SHT_MIPS_SYMBOL_LIB: 12090 sec = bfd_get_section_by_name (abfd, ".dynsym"); 12091 if (sec != NULL) 12092 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12093 sec = bfd_get_section_by_name (abfd, ".liblist"); 12094 if (sec != NULL) 12095 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 12096 break; 12097 12098 case SHT_MIPS_EVENTS: 12099 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 12100 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 12101 BFD_ASSERT (name != NULL); 12102 if (CONST_STRNEQ (name, ".MIPS.events")) 12103 sec = bfd_get_section_by_name (abfd, 12104 name + sizeof ".MIPS.events" - 1); 12105 else 12106 { 12107 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); 12108 sec = bfd_get_section_by_name (abfd, 12109 (name 12110 + sizeof ".MIPS.post_rel" - 1)); 12111 } 12112 BFD_ASSERT (sec != NULL); 12113 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12114 break; 12115 12116 } 12117 } 12118 } 12119 12120 /* When creating an IRIX5 executable, we need REGINFO and RTPROC 12122 segments. */ 12123 12124 int 12125 _bfd_mips_elf_additional_program_headers (bfd *abfd, 12126 struct bfd_link_info *info ATTRIBUTE_UNUSED) 12127 { 12128 asection *s; 12129 int ret = 0; 12130 12131 /* See if we need a PT_MIPS_REGINFO segment. */ 12132 s = bfd_get_section_by_name (abfd, ".reginfo"); 12133 if (s && (s->flags & SEC_LOAD)) 12134 ++ret; 12135 12136 /* See if we need a PT_MIPS_ABIFLAGS segment. */ 12137 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) 12138 ++ret; 12139 12140 /* See if we need a PT_MIPS_OPTIONS segment. */ 12141 if (IRIX_COMPAT (abfd) == ict_irix6 12142 && bfd_get_section_by_name (abfd, 12143 MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) 12144 ++ret; 12145 12146 /* See if we need a PT_MIPS_RTPROC segment. */ 12147 if (IRIX_COMPAT (abfd) == ict_irix5 12148 && bfd_get_section_by_name (abfd, ".dynamic") 12149 && bfd_get_section_by_name (abfd, ".mdebug")) 12150 ++ret; 12151 12152 /* Allocate a PT_NULL header in dynamic objects. See 12153 _bfd_mips_elf_modify_segment_map for details. */ 12154 if (!SGI_COMPAT (abfd) 12155 && bfd_get_section_by_name (abfd, ".dynamic")) 12156 ++ret; 12157 12158 return ret; 12159 } 12160 12161 /* Modify the segment map for an IRIX5 executable. */ 12162 12163 bfd_boolean 12164 _bfd_mips_elf_modify_segment_map (bfd *abfd, 12165 struct bfd_link_info *info) 12166 { 12167 asection *s; 12168 struct elf_segment_map *m, **pm; 12169 bfd_size_type amt; 12170 12171 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO 12172 segment. */ 12173 s = bfd_get_section_by_name (abfd, ".reginfo"); 12174 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12175 { 12176 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12177 if (m->p_type == PT_MIPS_REGINFO) 12178 break; 12179 if (m == NULL) 12180 { 12181 amt = sizeof *m; 12182 m = bfd_zalloc (abfd, amt); 12183 if (m == NULL) 12184 return FALSE; 12185 12186 m->p_type = PT_MIPS_REGINFO; 12187 m->count = 1; 12188 m->sections[0] = s; 12189 12190 /* We want to put it after the PHDR and INTERP segments. */ 12191 pm = &elf_seg_map (abfd); 12192 while (*pm != NULL 12193 && ((*pm)->p_type == PT_PHDR 12194 || (*pm)->p_type == PT_INTERP)) 12195 pm = &(*pm)->next; 12196 12197 m->next = *pm; 12198 *pm = m; 12199 } 12200 } 12201 12202 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS 12203 segment. */ 12204 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); 12205 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12206 { 12207 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12208 if (m->p_type == PT_MIPS_ABIFLAGS) 12209 break; 12210 if (m == NULL) 12211 { 12212 amt = sizeof *m; 12213 m = bfd_zalloc (abfd, amt); 12214 if (m == NULL) 12215 return FALSE; 12216 12217 m->p_type = PT_MIPS_ABIFLAGS; 12218 m->count = 1; 12219 m->sections[0] = s; 12220 12221 /* We want to put it after the PHDR and INTERP segments. */ 12222 pm = &elf_seg_map (abfd); 12223 while (*pm != NULL 12224 && ((*pm)->p_type == PT_PHDR 12225 || (*pm)->p_type == PT_INTERP)) 12226 pm = &(*pm)->next; 12227 12228 m->next = *pm; 12229 *pm = m; 12230 } 12231 } 12232 12233 /* For IRIX 6, we don't have .mdebug sections, nor does anything but 12234 .dynamic end up in PT_DYNAMIC. However, we do have to insert a 12235 PT_MIPS_OPTIONS segment immediately following the program header 12236 table. */ 12237 if (NEWABI_P (abfd) 12238 /* On non-IRIX6 new abi, we'll have already created a segment 12239 for this section, so don't create another. I'm not sure this 12240 is not also the case for IRIX 6, but I can't test it right 12241 now. */ 12242 && IRIX_COMPAT (abfd) == ict_irix6) 12243 { 12244 for (s = abfd->sections; s; s = s->next) 12245 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) 12246 break; 12247 12248 if (s) 12249 { 12250 struct elf_segment_map *options_segment; 12251 12252 pm = &elf_seg_map (abfd); 12253 while (*pm != NULL 12254 && ((*pm)->p_type == PT_PHDR 12255 || (*pm)->p_type == PT_INTERP)) 12256 pm = &(*pm)->next; 12257 12258 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) 12259 { 12260 amt = sizeof (struct elf_segment_map); 12261 options_segment = bfd_zalloc (abfd, amt); 12262 options_segment->next = *pm; 12263 options_segment->p_type = PT_MIPS_OPTIONS; 12264 options_segment->p_flags = PF_R; 12265 options_segment->p_flags_valid = TRUE; 12266 options_segment->count = 1; 12267 options_segment->sections[0] = s; 12268 *pm = options_segment; 12269 } 12270 } 12271 } 12272 else 12273 { 12274 if (IRIX_COMPAT (abfd) == ict_irix5) 12275 { 12276 /* If there are .dynamic and .mdebug sections, we make a room 12277 for the RTPROC header. FIXME: Rewrite without section names. */ 12278 if (bfd_get_section_by_name (abfd, ".interp") == NULL 12279 && bfd_get_section_by_name (abfd, ".dynamic") != NULL 12280 && bfd_get_section_by_name (abfd, ".mdebug") != NULL) 12281 { 12282 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12283 if (m->p_type == PT_MIPS_RTPROC) 12284 break; 12285 if (m == NULL) 12286 { 12287 amt = sizeof *m; 12288 m = bfd_zalloc (abfd, amt); 12289 if (m == NULL) 12290 return FALSE; 12291 12292 m->p_type = PT_MIPS_RTPROC; 12293 12294 s = bfd_get_section_by_name (abfd, ".rtproc"); 12295 if (s == NULL) 12296 { 12297 m->count = 0; 12298 m->p_flags = 0; 12299 m->p_flags_valid = 1; 12300 } 12301 else 12302 { 12303 m->count = 1; 12304 m->sections[0] = s; 12305 } 12306 12307 /* We want to put it after the DYNAMIC segment. */ 12308 pm = &elf_seg_map (abfd); 12309 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) 12310 pm = &(*pm)->next; 12311 if (*pm != NULL) 12312 pm = &(*pm)->next; 12313 12314 m->next = *pm; 12315 *pm = m; 12316 } 12317 } 12318 } 12319 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, 12320 .dynstr, .dynsym, and .hash sections, and everything in 12321 between. */ 12322 for (pm = &elf_seg_map (abfd); *pm != NULL; 12323 pm = &(*pm)->next) 12324 if ((*pm)->p_type == PT_DYNAMIC) 12325 break; 12326 m = *pm; 12327 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. 12328 glibc's dynamic linker has traditionally derived the number of 12329 tags from the p_filesz field, and sometimes allocates stack 12330 arrays of that size. An overly-big PT_DYNAMIC segment can 12331 be actively harmful in such cases. Making PT_DYNAMIC contain 12332 other sections can also make life hard for the prelinker, 12333 which might move one of the other sections to a different 12334 PT_LOAD segment. */ 12335 if (SGI_COMPAT (abfd) 12336 && m != NULL 12337 && m->count == 1 12338 && strcmp (m->sections[0]->name, ".dynamic") == 0) 12339 { 12340 static const char *sec_names[] = 12341 { 12342 ".dynamic", ".dynstr", ".dynsym", ".hash" 12343 }; 12344 bfd_vma low, high; 12345 unsigned int i, c; 12346 struct elf_segment_map *n; 12347 12348 low = ~(bfd_vma) 0; 12349 high = 0; 12350 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) 12351 { 12352 s = bfd_get_section_by_name (abfd, sec_names[i]); 12353 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12354 { 12355 bfd_size_type sz; 12356 12357 if (low > s->vma) 12358 low = s->vma; 12359 sz = s->size; 12360 if (high < s->vma + sz) 12361 high = s->vma + sz; 12362 } 12363 } 12364 12365 c = 0; 12366 for (s = abfd->sections; s != NULL; s = s->next) 12367 if ((s->flags & SEC_LOAD) != 0 12368 && s->vma >= low 12369 && s->vma + s->size <= high) 12370 ++c; 12371 12372 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); 12373 n = bfd_zalloc (abfd, amt); 12374 if (n == NULL) 12375 return FALSE; 12376 *n = *m; 12377 n->count = c; 12378 12379 i = 0; 12380 for (s = abfd->sections; s != NULL; s = s->next) 12381 { 12382 if ((s->flags & SEC_LOAD) != 0 12383 && s->vma >= low 12384 && s->vma + s->size <= high) 12385 { 12386 n->sections[i] = s; 12387 ++i; 12388 } 12389 } 12390 12391 *pm = n; 12392 } 12393 } 12394 12395 /* Allocate a spare program header in dynamic objects so that tools 12396 like the prelinker can add an extra PT_LOAD entry. 12397 12398 If the prelinker needs to make room for a new PT_LOAD entry, its 12399 standard procedure is to move the first (read-only) sections into 12400 the new (writable) segment. However, the MIPS ABI requires 12401 .dynamic to be in a read-only segment, and the section will often 12402 start within sizeof (ElfNN_Phdr) bytes of the last program header. 12403 12404 Although the prelinker could in principle move .dynamic to a 12405 writable segment, it seems better to allocate a spare program 12406 header instead, and avoid the need to move any sections. 12407 There is a long tradition of allocating spare dynamic tags, 12408 so allocating a spare program header seems like a natural 12409 extension. 12410 12411 If INFO is NULL, we may be copying an already prelinked binary 12412 with objcopy or strip, so do not add this header. */ 12413 if (info != NULL 12414 && !SGI_COMPAT (abfd) 12415 && bfd_get_section_by_name (abfd, ".dynamic")) 12416 { 12417 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) 12418 if ((*pm)->p_type == PT_NULL) 12419 break; 12420 if (*pm == NULL) 12421 { 12422 m = bfd_zalloc (abfd, sizeof (*m)); 12423 if (m == NULL) 12424 return FALSE; 12425 12426 m->p_type = PT_NULL; 12427 *pm = m; 12428 } 12429 } 12430 12431 return TRUE; 12432 } 12433 12434 /* Return the section that should be marked against GC for a given 12436 relocation. */ 12437 12438 asection * 12439 _bfd_mips_elf_gc_mark_hook (asection *sec, 12440 struct bfd_link_info *info, 12441 Elf_Internal_Rela *rel, 12442 struct elf_link_hash_entry *h, 12443 Elf_Internal_Sym *sym) 12444 { 12445 /* ??? Do mips16 stub sections need to be handled special? */ 12446 12447 if (h != NULL) 12448 switch (ELF_R_TYPE (sec->owner, rel->r_info)) 12449 { 12450 case R_MIPS_GNU_VTINHERIT: 12451 case R_MIPS_GNU_VTENTRY: 12452 return NULL; 12453 } 12454 12455 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 12456 } 12457 12458 /* Update the got entry reference counts for the section being removed. */ 12459 12460 bfd_boolean 12461 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 12462 struct bfd_link_info *info ATTRIBUTE_UNUSED, 12463 asection *sec ATTRIBUTE_UNUSED, 12464 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 12465 { 12466 #if 0 12467 Elf_Internal_Shdr *symtab_hdr; 12468 struct elf_link_hash_entry **sym_hashes; 12469 bfd_signed_vma *local_got_refcounts; 12470 const Elf_Internal_Rela *rel, *relend; 12471 unsigned long r_symndx; 12472 struct elf_link_hash_entry *h; 12473 12474 if (bfd_link_relocatable (info)) 12475 return TRUE; 12476 12477 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12478 sym_hashes = elf_sym_hashes (abfd); 12479 local_got_refcounts = elf_local_got_refcounts (abfd); 12480 12481 relend = relocs + sec->reloc_count; 12482 for (rel = relocs; rel < relend; rel++) 12483 switch (ELF_R_TYPE (abfd, rel->r_info)) 12484 { 12485 case R_MIPS16_GOT16: 12486 case R_MIPS16_CALL16: 12487 case R_MIPS_GOT16: 12488 case R_MIPS_CALL16: 12489 case R_MIPS_CALL_HI16: 12490 case R_MIPS_CALL_LO16: 12491 case R_MIPS_GOT_HI16: 12492 case R_MIPS_GOT_LO16: 12493 case R_MIPS_GOT_DISP: 12494 case R_MIPS_GOT_PAGE: 12495 case R_MIPS_GOT_OFST: 12496 case R_MICROMIPS_GOT16: 12497 case R_MICROMIPS_CALL16: 12498 case R_MICROMIPS_CALL_HI16: 12499 case R_MICROMIPS_CALL_LO16: 12500 case R_MICROMIPS_GOT_HI16: 12501 case R_MICROMIPS_GOT_LO16: 12502 case R_MICROMIPS_GOT_DISP: 12503 case R_MICROMIPS_GOT_PAGE: 12504 case R_MICROMIPS_GOT_OFST: 12505 /* ??? It would seem that the existing MIPS code does no sort 12506 of reference counting or whatnot on its GOT and PLT entries, 12507 so it is not possible to garbage collect them at this time. */ 12508 break; 12509 12510 default: 12511 break; 12512 } 12513 #endif 12514 12515 return TRUE; 12516 } 12517 12518 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ 12519 12520 bfd_boolean 12521 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, 12522 elf_gc_mark_hook_fn gc_mark_hook) 12523 { 12524 bfd *sub; 12525 12526 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 12527 12528 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12529 { 12530 asection *o; 12531 12532 if (! is_mips_elf (sub)) 12533 continue; 12534 12535 for (o = sub->sections; o != NULL; o = o->next) 12536 if (!o->gc_mark 12537 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P 12538 (bfd_get_section_name (sub, o))) 12539 { 12540 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 12541 return FALSE; 12542 } 12543 } 12544 12545 return TRUE; 12546 } 12547 12548 /* Copy data from a MIPS ELF indirect symbol to its direct symbol, 12550 hiding the old indirect symbol. Process additional relocation 12551 information. Also called for weakdefs, in which case we just let 12552 _bfd_elf_link_hash_copy_indirect copy the flags for us. */ 12553 12554 void 12555 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, 12556 struct elf_link_hash_entry *dir, 12557 struct elf_link_hash_entry *ind) 12558 { 12559 struct mips_elf_link_hash_entry *dirmips, *indmips; 12560 12561 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 12562 12563 dirmips = (struct mips_elf_link_hash_entry *) dir; 12564 indmips = (struct mips_elf_link_hash_entry *) ind; 12565 /* Any absolute non-dynamic relocations against an indirect or weak 12566 definition will be against the target symbol. */ 12567 if (indmips->has_static_relocs) 12568 dirmips->has_static_relocs = TRUE; 12569 12570 if (ind->root.type != bfd_link_hash_indirect) 12571 return; 12572 12573 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; 12574 if (indmips->readonly_reloc) 12575 dirmips->readonly_reloc = TRUE; 12576 if (indmips->no_fn_stub) 12577 dirmips->no_fn_stub = TRUE; 12578 if (indmips->fn_stub) 12579 { 12580 dirmips->fn_stub = indmips->fn_stub; 12581 indmips->fn_stub = NULL; 12582 } 12583 if (indmips->need_fn_stub) 12584 { 12585 dirmips->need_fn_stub = TRUE; 12586 indmips->need_fn_stub = FALSE; 12587 } 12588 if (indmips->call_stub) 12589 { 12590 dirmips->call_stub = indmips->call_stub; 12591 indmips->call_stub = NULL; 12592 } 12593 if (indmips->call_fp_stub) 12594 { 12595 dirmips->call_fp_stub = indmips->call_fp_stub; 12596 indmips->call_fp_stub = NULL; 12597 } 12598 if (indmips->global_got_area < dirmips->global_got_area) 12599 dirmips->global_got_area = indmips->global_got_area; 12600 if (indmips->global_got_area < GGA_NONE) 12601 indmips->global_got_area = GGA_NONE; 12602 if (indmips->has_nonpic_branches) 12603 dirmips->has_nonpic_branches = TRUE; 12604 } 12605 12606 #define PDR_SIZE 32 12608 12609 bfd_boolean 12610 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, 12611 struct bfd_link_info *info) 12612 { 12613 asection *o; 12614 bfd_boolean ret = FALSE; 12615 unsigned char *tdata; 12616 size_t i, skip; 12617 12618 o = bfd_get_section_by_name (abfd, ".pdr"); 12619 if (! o) 12620 return FALSE; 12621 if (o->size == 0) 12622 return FALSE; 12623 if (o->size % PDR_SIZE != 0) 12624 return FALSE; 12625 if (o->output_section != NULL 12626 && bfd_is_abs_section (o->output_section)) 12627 return FALSE; 12628 12629 tdata = bfd_zmalloc (o->size / PDR_SIZE); 12630 if (! tdata) 12631 return FALSE; 12632 12633 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 12634 info->keep_memory); 12635 if (!cookie->rels) 12636 { 12637 free (tdata); 12638 return FALSE; 12639 } 12640 12641 cookie->rel = cookie->rels; 12642 cookie->relend = cookie->rels + o->reloc_count; 12643 12644 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) 12645 { 12646 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) 12647 { 12648 tdata[i] = 1; 12649 skip ++; 12650 } 12651 } 12652 12653 if (skip != 0) 12654 { 12655 mips_elf_section_data (o)->u.tdata = tdata; 12656 if (o->rawsize == 0) 12657 o->rawsize = o->size; 12658 o->size -= skip * PDR_SIZE; 12659 ret = TRUE; 12660 } 12661 else 12662 free (tdata); 12663 12664 if (! info->keep_memory) 12665 free (cookie->rels); 12666 12667 return ret; 12668 } 12669 12670 bfd_boolean 12671 _bfd_mips_elf_ignore_discarded_relocs (asection *sec) 12672 { 12673 if (strcmp (sec->name, ".pdr") == 0) 12674 return TRUE; 12675 return FALSE; 12676 } 12677 12678 bfd_boolean 12679 _bfd_mips_elf_write_section (bfd *output_bfd, 12680 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 12681 asection *sec, bfd_byte *contents) 12682 { 12683 bfd_byte *to, *from, *end; 12684 int i; 12685 12686 if (strcmp (sec->name, ".pdr") != 0) 12687 return FALSE; 12688 12689 if (mips_elf_section_data (sec)->u.tdata == NULL) 12690 return FALSE; 12691 12692 to = contents; 12693 end = contents + sec->size; 12694 for (from = contents, i = 0; 12695 from < end; 12696 from += PDR_SIZE, i++) 12697 { 12698 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) 12699 continue; 12700 if (to != from) 12701 memcpy (to, from, PDR_SIZE); 12702 to += PDR_SIZE; 12703 } 12704 bfd_set_section_contents (output_bfd, sec->output_section, contents, 12705 sec->output_offset, sec->size); 12706 return TRUE; 12707 } 12708 12709 /* microMIPS code retains local labels for linker relaxation. Omit them 12711 from output by default for clarity. */ 12712 12713 bfd_boolean 12714 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) 12715 { 12716 return _bfd_elf_is_local_label_name (abfd, sym->name); 12717 } 12718 12719 /* MIPS ELF uses a special find_nearest_line routine in order the 12720 handle the ECOFF debugging information. */ 12721 12722 struct mips_elf_find_line 12723 { 12724 struct ecoff_debug_info d; 12725 struct ecoff_find_line i; 12726 }; 12727 12728 bfd_boolean 12729 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, 12730 asection *section, bfd_vma offset, 12731 const char **filename_ptr, 12732 const char **functionname_ptr, 12733 unsigned int *line_ptr, 12734 unsigned int *discriminator_ptr) 12735 { 12736 asection *msec; 12737 12738 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 12739 filename_ptr, functionname_ptr, 12740 line_ptr, discriminator_ptr, 12741 dwarf_debug_sections, 12742 ABI_64_P (abfd) ? 8 : 0, 12743 &elf_tdata (abfd)->dwarf2_find_line_info)) 12744 return TRUE; 12745 12746 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 12747 filename_ptr, functionname_ptr, 12748 line_ptr)) 12749 return TRUE; 12750 12751 msec = bfd_get_section_by_name (abfd, ".mdebug"); 12752 if (msec != NULL) 12753 { 12754 flagword origflags; 12755 struct mips_elf_find_line *fi; 12756 const struct ecoff_debug_swap * const swap = 12757 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 12758 12759 /* If we are called during a link, mips_elf_final_link may have 12760 cleared the SEC_HAS_CONTENTS field. We force it back on here 12761 if appropriate (which it normally will be). */ 12762 origflags = msec->flags; 12763 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) 12764 msec->flags |= SEC_HAS_CONTENTS; 12765 12766 fi = mips_elf_tdata (abfd)->find_line_info; 12767 if (fi == NULL) 12768 { 12769 bfd_size_type external_fdr_size; 12770 char *fraw_src; 12771 char *fraw_end; 12772 struct fdr *fdr_ptr; 12773 bfd_size_type amt = sizeof (struct mips_elf_find_line); 12774 12775 fi = bfd_zalloc (abfd, amt); 12776 if (fi == NULL) 12777 { 12778 msec->flags = origflags; 12779 return FALSE; 12780 } 12781 12782 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) 12783 { 12784 msec->flags = origflags; 12785 return FALSE; 12786 } 12787 12788 /* Swap in the FDR information. */ 12789 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); 12790 fi->d.fdr = bfd_alloc (abfd, amt); 12791 if (fi->d.fdr == NULL) 12792 { 12793 msec->flags = origflags; 12794 return FALSE; 12795 } 12796 external_fdr_size = swap->external_fdr_size; 12797 fdr_ptr = fi->d.fdr; 12798 fraw_src = (char *) fi->d.external_fdr; 12799 fraw_end = (fraw_src 12800 + fi->d.symbolic_header.ifdMax * external_fdr_size); 12801 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) 12802 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); 12803 12804 mips_elf_tdata (abfd)->find_line_info = fi; 12805 12806 /* Note that we don't bother to ever free this information. 12807 find_nearest_line is either called all the time, as in 12808 objdump -l, so the information should be saved, or it is 12809 rarely called, as in ld error messages, so the memory 12810 wasted is unimportant. Still, it would probably be a 12811 good idea for free_cached_info to throw it away. */ 12812 } 12813 12814 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, 12815 &fi->i, filename_ptr, functionname_ptr, 12816 line_ptr)) 12817 { 12818 msec->flags = origflags; 12819 return TRUE; 12820 } 12821 12822 msec->flags = origflags; 12823 } 12824 12825 /* Fall back on the generic ELF find_nearest_line routine. */ 12826 12827 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, 12828 filename_ptr, functionname_ptr, 12829 line_ptr, discriminator_ptr); 12830 } 12831 12832 bfd_boolean 12833 _bfd_mips_elf_find_inliner_info (bfd *abfd, 12834 const char **filename_ptr, 12835 const char **functionname_ptr, 12836 unsigned int *line_ptr) 12837 { 12838 bfd_boolean found; 12839 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 12840 functionname_ptr, line_ptr, 12841 & elf_tdata (abfd)->dwarf2_find_line_info); 12842 return found; 12843 } 12844 12845 12846 /* When are writing out the .options or .MIPS.options section, 12848 remember the bytes we are writing out, so that we can install the 12849 GP value in the section_processing routine. */ 12850 12851 bfd_boolean 12852 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, 12853 const void *location, 12854 file_ptr offset, bfd_size_type count) 12855 { 12856 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) 12857 { 12858 bfd_byte *c; 12859 12860 if (elf_section_data (section) == NULL) 12861 { 12862 bfd_size_type amt = sizeof (struct bfd_elf_section_data); 12863 section->used_by_bfd = bfd_zalloc (abfd, amt); 12864 if (elf_section_data (section) == NULL) 12865 return FALSE; 12866 } 12867 c = mips_elf_section_data (section)->u.tdata; 12868 if (c == NULL) 12869 { 12870 c = bfd_zalloc (abfd, section->size); 12871 if (c == NULL) 12872 return FALSE; 12873 mips_elf_section_data (section)->u.tdata = c; 12874 } 12875 12876 memcpy (c + offset, location, count); 12877 } 12878 12879 return _bfd_elf_set_section_contents (abfd, section, location, offset, 12880 count); 12881 } 12882 12883 /* This is almost identical to bfd_generic_get_... except that some 12884 MIPS relocations need to be handled specially. Sigh. */ 12885 12886 bfd_byte * 12887 _bfd_elf_mips_get_relocated_section_contents 12888 (bfd *abfd, 12889 struct bfd_link_info *link_info, 12890 struct bfd_link_order *link_order, 12891 bfd_byte *data, 12892 bfd_boolean relocatable, 12893 asymbol **symbols) 12894 { 12895 /* Get enough memory to hold the stuff */ 12896 bfd *input_bfd = link_order->u.indirect.section->owner; 12897 asection *input_section = link_order->u.indirect.section; 12898 bfd_size_type sz; 12899 12900 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 12901 arelent **reloc_vector = NULL; 12902 long reloc_count; 12903 12904 if (reloc_size < 0) 12905 goto error_return; 12906 12907 reloc_vector = bfd_malloc (reloc_size); 12908 if (reloc_vector == NULL && reloc_size != 0) 12909 goto error_return; 12910 12911 /* read in the section */ 12912 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 12913 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 12914 goto error_return; 12915 12916 reloc_count = bfd_canonicalize_reloc (input_bfd, 12917 input_section, 12918 reloc_vector, 12919 symbols); 12920 if (reloc_count < 0) 12921 goto error_return; 12922 12923 if (reloc_count > 0) 12924 { 12925 arelent **parent; 12926 /* for mips */ 12927 int gp_found; 12928 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ 12929 12930 { 12931 struct bfd_hash_entry *h; 12932 struct bfd_link_hash_entry *lh; 12933 /* Skip all this stuff if we aren't mixing formats. */ 12934 if (abfd && input_bfd 12935 && abfd->xvec == input_bfd->xvec) 12936 lh = 0; 12937 else 12938 { 12939 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); 12940 lh = (struct bfd_link_hash_entry *) h; 12941 } 12942 lookup: 12943 if (lh) 12944 { 12945 switch (lh->type) 12946 { 12947 case bfd_link_hash_undefined: 12948 case bfd_link_hash_undefweak: 12949 case bfd_link_hash_common: 12950 gp_found = 0; 12951 break; 12952 case bfd_link_hash_defined: 12953 case bfd_link_hash_defweak: 12954 gp_found = 1; 12955 gp = lh->u.def.value; 12956 break; 12957 case bfd_link_hash_indirect: 12958 case bfd_link_hash_warning: 12959 lh = lh->u.i.link; 12960 /* @@FIXME ignoring warning for now */ 12961 goto lookup; 12962 case bfd_link_hash_new: 12963 default: 12964 abort (); 12965 } 12966 } 12967 else 12968 gp_found = 0; 12969 } 12970 /* end mips */ 12971 for (parent = reloc_vector; *parent != NULL; parent++) 12972 { 12973 char *error_message = NULL; 12974 bfd_reloc_status_type r; 12975 12976 /* Specific to MIPS: Deal with relocation types that require 12977 knowing the gp of the output bfd. */ 12978 asymbol *sym = *(*parent)->sym_ptr_ptr; 12979 12980 /* If we've managed to find the gp and have a special 12981 function for the relocation then go ahead, else default 12982 to the generic handling. */ 12983 if (gp_found 12984 && (*parent)->howto->special_function 12985 == _bfd_mips_elf32_gprel16_reloc) 12986 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, 12987 input_section, relocatable, 12988 data, gp); 12989 else 12990 r = bfd_perform_relocation (input_bfd, *parent, data, 12991 input_section, 12992 relocatable ? abfd : NULL, 12993 &error_message); 12994 12995 if (relocatable) 12996 { 12997 asection *os = input_section->output_section; 12998 12999 /* A partial link, so keep the relocs */ 13000 os->orelocation[os->reloc_count] = *parent; 13001 os->reloc_count++; 13002 } 13003 13004 if (r != bfd_reloc_ok) 13005 { 13006 switch (r) 13007 { 13008 case bfd_reloc_undefined: 13009 (*link_info->callbacks->undefined_symbol) 13010 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 13011 input_bfd, input_section, (*parent)->address, TRUE); 13012 break; 13013 case bfd_reloc_dangerous: 13014 BFD_ASSERT (error_message != NULL); 13015 (*link_info->callbacks->reloc_dangerous) 13016 (link_info, error_message, 13017 input_bfd, input_section, (*parent)->address); 13018 break; 13019 case bfd_reloc_overflow: 13020 (*link_info->callbacks->reloc_overflow) 13021 (link_info, NULL, 13022 bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 13023 (*parent)->howto->name, (*parent)->addend, 13024 input_bfd, input_section, (*parent)->address); 13025 break; 13026 case bfd_reloc_outofrange: 13027 default: 13028 abort (); 13029 break; 13030 } 13031 13032 } 13033 } 13034 } 13035 if (reloc_vector != NULL) 13036 free (reloc_vector); 13037 return data; 13038 13039 error_return: 13040 if (reloc_vector != NULL) 13041 free (reloc_vector); 13042 return NULL; 13043 } 13044 13045 static bfd_boolean 13047 mips_elf_relax_delete_bytes (bfd *abfd, 13048 asection *sec, bfd_vma addr, int count) 13049 { 13050 Elf_Internal_Shdr *symtab_hdr; 13051 unsigned int sec_shndx; 13052 bfd_byte *contents; 13053 Elf_Internal_Rela *irel, *irelend; 13054 Elf_Internal_Sym *isym; 13055 Elf_Internal_Sym *isymend; 13056 struct elf_link_hash_entry **sym_hashes; 13057 struct elf_link_hash_entry **end_hashes; 13058 struct elf_link_hash_entry **start_hashes; 13059 unsigned int symcount; 13060 13061 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 13062 contents = elf_section_data (sec)->this_hdr.contents; 13063 13064 irel = elf_section_data (sec)->relocs; 13065 irelend = irel + sec->reloc_count; 13066 13067 /* Actually delete the bytes. */ 13068 memmove (contents + addr, contents + addr + count, 13069 (size_t) (sec->size - addr - count)); 13070 sec->size -= count; 13071 13072 /* Adjust all the relocs. */ 13073 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 13074 { 13075 /* Get the new reloc address. */ 13076 if (irel->r_offset > addr) 13077 irel->r_offset -= count; 13078 } 13079 13080 BFD_ASSERT (addr % 2 == 0); 13081 BFD_ASSERT (count % 2 == 0); 13082 13083 /* Adjust the local symbols defined in this section. */ 13084 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13085 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 13086 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 13087 if (isym->st_shndx == sec_shndx && isym->st_value > addr) 13088 isym->st_value -= count; 13089 13090 /* Now adjust the global symbols defined in this section. */ 13091 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 13092 - symtab_hdr->sh_info); 13093 sym_hashes = start_hashes = elf_sym_hashes (abfd); 13094 end_hashes = sym_hashes + symcount; 13095 13096 for (; sym_hashes < end_hashes; sym_hashes++) 13097 { 13098 struct elf_link_hash_entry *sym_hash = *sym_hashes; 13099 13100 if ((sym_hash->root.type == bfd_link_hash_defined 13101 || sym_hash->root.type == bfd_link_hash_defweak) 13102 && sym_hash->root.u.def.section == sec) 13103 { 13104 bfd_vma value = sym_hash->root.u.def.value; 13105 13106 if (ELF_ST_IS_MICROMIPS (sym_hash->other)) 13107 value &= MINUS_TWO; 13108 if (value > addr) 13109 sym_hash->root.u.def.value -= count; 13110 } 13111 } 13112 13113 return TRUE; 13114 } 13115 13116 13117 /* Opcodes needed for microMIPS relaxation as found in 13118 opcodes/micromips-opc.c. */ 13119 13120 struct opcode_descriptor { 13121 unsigned long match; 13122 unsigned long mask; 13123 }; 13124 13125 /* The $ra register aka $31. */ 13126 13127 #define RA 31 13128 13129 /* 32-bit instruction format register fields. */ 13130 13131 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) 13132 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) 13133 13134 /* Check if a 5-bit register index can be abbreviated to 3 bits. */ 13135 13136 #define OP16_VALID_REG(r) \ 13137 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) 13138 13139 13140 /* 32-bit and 16-bit branches. */ 13141 13142 static const struct opcode_descriptor b_insns_32[] = { 13143 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ 13144 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ 13145 { 0, 0 } /* End marker for find_match(). */ 13146 }; 13147 13148 static const struct opcode_descriptor bc_insn_32 = 13149 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; 13150 13151 static const struct opcode_descriptor bz_insn_32 = 13152 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; 13153 13154 static const struct opcode_descriptor bzal_insn_32 = 13155 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; 13156 13157 static const struct opcode_descriptor beq_insn_32 = 13158 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; 13159 13160 static const struct opcode_descriptor b_insn_16 = 13161 { /* "b", "mD", */ 0xcc00, 0xfc00 }; 13162 13163 static const struct opcode_descriptor bz_insn_16 = 13164 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; 13165 13166 13167 /* 32-bit and 16-bit branch EQ and NE zero. */ 13168 13169 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the 13170 eq and second the ne. This convention is used when replacing a 13171 32-bit BEQ/BNE with the 16-bit version. */ 13172 13173 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) 13174 13175 static const struct opcode_descriptor bz_rs_insns_32[] = { 13176 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, 13177 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, 13178 { 0, 0 } /* End marker for find_match(). */ 13179 }; 13180 13181 static const struct opcode_descriptor bz_rt_insns_32[] = { 13182 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, 13183 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, 13184 { 0, 0 } /* End marker for find_match(). */ 13185 }; 13186 13187 static const struct opcode_descriptor bzc_insns_32[] = { 13188 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, 13189 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, 13190 { 0, 0 } /* End marker for find_match(). */ 13191 }; 13192 13193 static const struct opcode_descriptor bz_insns_16[] = { 13194 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, 13195 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, 13196 { 0, 0 } /* End marker for find_match(). */ 13197 }; 13198 13199 /* Switch between a 5-bit register index and its 3-bit shorthand. */ 13200 13201 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2) 13202 #define BZ16_REG_FIELD(r) (((r) & 7) << 7) 13203 13204 13205 /* 32-bit instructions with a delay slot. */ 13206 13207 static const struct opcode_descriptor jal_insn_32_bd16 = 13208 { /* "jals", "a", */ 0x74000000, 0xfc000000 }; 13209 13210 static const struct opcode_descriptor jal_insn_32_bd32 = 13211 { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; 13212 13213 static const struct opcode_descriptor jal_x_insn_32_bd32 = 13214 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; 13215 13216 static const struct opcode_descriptor j_insn_32 = 13217 { /* "j", "a", */ 0xd4000000, 0xfc000000 }; 13218 13219 static const struct opcode_descriptor jalr_insn_32 = 13220 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; 13221 13222 /* This table can be compacted, because no opcode replacement is made. */ 13223 13224 static const struct opcode_descriptor ds_insns_32_bd16[] = { 13225 { /* "jals", "a", */ 0x74000000, 0xfc000000 }, 13226 13227 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, 13228 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, 13229 13230 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, 13231 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, 13232 { /* "j", "a", */ 0xd4000000, 0xfc000000 }, 13233 { 0, 0 } /* End marker for find_match(). */ 13234 }; 13235 13236 /* This table can be compacted, because no opcode replacement is made. */ 13237 13238 static const struct opcode_descriptor ds_insns_32_bd32[] = { 13239 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, 13240 13241 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, 13242 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, 13243 { 0, 0 } /* End marker for find_match(). */ 13244 }; 13245 13246 13247 /* 16-bit instructions with a delay slot. */ 13248 13249 static const struct opcode_descriptor jalr_insn_16_bd16 = 13250 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; 13251 13252 static const struct opcode_descriptor jalr_insn_16_bd32 = 13253 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; 13254 13255 static const struct opcode_descriptor jr_insn_16 = 13256 { /* "jr", "mj", */ 0x4580, 0xffe0 }; 13257 13258 #define JR16_REG(opcode) ((opcode) & 0x1f) 13259 13260 /* This table can be compacted, because no opcode replacement is made. */ 13261 13262 static const struct opcode_descriptor ds_insns_16_bd16[] = { 13263 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, 13264 13265 { /* "b", "mD", */ 0xcc00, 0xfc00 }, 13266 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, 13267 { /* "jr", "mj", */ 0x4580, 0xffe0 }, 13268 { 0, 0 } /* End marker for find_match(). */ 13269 }; 13270 13271 13272 /* LUI instruction. */ 13273 13274 static const struct opcode_descriptor lui_insn = 13275 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; 13276 13277 13278 /* ADDIU instruction. */ 13279 13280 static const struct opcode_descriptor addiu_insn = 13281 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; 13282 13283 static const struct opcode_descriptor addiupc_insn = 13284 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; 13285 13286 #define ADDIUPC_REG_FIELD(r) \ 13287 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) 13288 13289 13290 /* Relaxable instructions in a JAL delay slot: MOVE. */ 13291 13292 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves 13293 (ADDU, OR) have rd in 15:11 and rs in 10:16. */ 13294 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) 13295 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) 13296 13297 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) 13298 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) 13299 13300 static const struct opcode_descriptor move_insns_32[] = { 13301 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ 13302 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ 13303 { 0, 0 } /* End marker for find_match(). */ 13304 }; 13305 13306 static const struct opcode_descriptor move_insn_16 = 13307 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; 13308 13309 13310 /* NOP instructions. */ 13311 13312 static const struct opcode_descriptor nop_insn_32 = 13313 { /* "nop", "", */ 0x00000000, 0xffffffff }; 13314 13315 static const struct opcode_descriptor nop_insn_16 = 13316 { /* "nop", "", */ 0x0c00, 0xffff }; 13317 13318 13319 /* Instruction match support. */ 13320 13321 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) 13322 13323 static int 13324 find_match (unsigned long opcode, const struct opcode_descriptor insn[]) 13325 { 13326 unsigned long indx; 13327 13328 for (indx = 0; insn[indx].mask != 0; indx++) 13329 if (MATCH (opcode, insn[indx])) 13330 return indx; 13331 13332 return -1; 13333 } 13334 13335 13336 /* Branch and delay slot decoding support. */ 13337 13338 /* If PTR points to what *might* be a 16-bit branch or jump, then 13339 return the minimum length of its delay slot, otherwise return 0. 13340 Non-zero results are not definitive as we might be checking against 13341 the second half of another instruction. */ 13342 13343 static int 13344 check_br16_dslot (bfd *abfd, bfd_byte *ptr) 13345 { 13346 unsigned long opcode; 13347 int bdsize; 13348 13349 opcode = bfd_get_16 (abfd, ptr); 13350 if (MATCH (opcode, jalr_insn_16_bd32) != 0) 13351 /* 16-bit branch/jump with a 32-bit delay slot. */ 13352 bdsize = 4; 13353 else if (MATCH (opcode, jalr_insn_16_bd16) != 0 13354 || find_match (opcode, ds_insns_16_bd16) >= 0) 13355 /* 16-bit branch/jump with a 16-bit delay slot. */ 13356 bdsize = 2; 13357 else 13358 /* No delay slot. */ 13359 bdsize = 0; 13360 13361 return bdsize; 13362 } 13363 13364 /* If PTR points to what *might* be a 32-bit branch or jump, then 13365 return the minimum length of its delay slot, otherwise return 0. 13366 Non-zero results are not definitive as we might be checking against 13367 the second half of another instruction. */ 13368 13369 static int 13370 check_br32_dslot (bfd *abfd, bfd_byte *ptr) 13371 { 13372 unsigned long opcode; 13373 int bdsize; 13374 13375 opcode = bfd_get_micromips_32 (abfd, ptr); 13376 if (find_match (opcode, ds_insns_32_bd32) >= 0) 13377 /* 32-bit branch/jump with a 32-bit delay slot. */ 13378 bdsize = 4; 13379 else if (find_match (opcode, ds_insns_32_bd16) >= 0) 13380 /* 32-bit branch/jump with a 16-bit delay slot. */ 13381 bdsize = 2; 13382 else 13383 /* No delay slot. */ 13384 bdsize = 0; 13385 13386 return bdsize; 13387 } 13388 13389 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot 13390 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ 13391 13392 static bfd_boolean 13393 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13394 { 13395 unsigned long opcode; 13396 13397 opcode = bfd_get_16 (abfd, ptr); 13398 if (MATCH (opcode, b_insn_16) 13399 /* B16 */ 13400 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) 13401 /* JR16 */ 13402 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) 13403 /* BEQZ16, BNEZ16 */ 13404 || (MATCH (opcode, jalr_insn_16_bd32) 13405 /* JALR16 */ 13406 && reg != JR16_REG (opcode) && reg != RA)) 13407 return TRUE; 13408 13409 return FALSE; 13410 } 13411 13412 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, 13413 then return TRUE, otherwise FALSE. */ 13414 13415 static bfd_boolean 13416 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13417 { 13418 unsigned long opcode; 13419 13420 opcode = bfd_get_micromips_32 (abfd, ptr); 13421 if (MATCH (opcode, j_insn_32) 13422 /* J */ 13423 || MATCH (opcode, bc_insn_32) 13424 /* BC1F, BC1T, BC2F, BC2T */ 13425 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) 13426 /* JAL, JALX */ 13427 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) 13428 /* BGEZ, BGTZ, BLEZ, BLTZ */ 13429 || (MATCH (opcode, bzal_insn_32) 13430 /* BGEZAL, BLTZAL */ 13431 && reg != OP32_SREG (opcode) && reg != RA) 13432 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) 13433 /* JALR, JALR.HB, BEQ, BNE */ 13434 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) 13435 return TRUE; 13436 13437 return FALSE; 13438 } 13439 13440 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, 13441 IRELEND) at OFFSET indicate that there must be a compact branch there, 13442 then return TRUE, otherwise FALSE. */ 13443 13444 static bfd_boolean 13445 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, 13446 const Elf_Internal_Rela *internal_relocs, 13447 const Elf_Internal_Rela *irelend) 13448 { 13449 const Elf_Internal_Rela *irel; 13450 unsigned long opcode; 13451 13452 opcode = bfd_get_micromips_32 (abfd, ptr); 13453 if (find_match (opcode, bzc_insns_32) < 0) 13454 return FALSE; 13455 13456 for (irel = internal_relocs; irel < irelend; irel++) 13457 if (irel->r_offset == offset 13458 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) 13459 return TRUE; 13460 13461 return FALSE; 13462 } 13463 13464 /* Bitsize checking. */ 13465 #define IS_BITSIZE(val, N) \ 13466 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ 13467 - (1ULL << ((N) - 1))) == (val)) 13468 13469 13470 bfd_boolean 13472 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, 13473 struct bfd_link_info *link_info, 13474 bfd_boolean *again) 13475 { 13476 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; 13477 Elf_Internal_Shdr *symtab_hdr; 13478 Elf_Internal_Rela *internal_relocs; 13479 Elf_Internal_Rela *irel, *irelend; 13480 bfd_byte *contents = NULL; 13481 Elf_Internal_Sym *isymbuf = NULL; 13482 13483 /* Assume nothing changes. */ 13484 *again = FALSE; 13485 13486 /* We don't have to do anything for a relocatable link, if 13487 this section does not have relocs, or if this is not a 13488 code section. */ 13489 13490 if (bfd_link_relocatable (link_info) 13491 || (sec->flags & SEC_RELOC) == 0 13492 || sec->reloc_count == 0 13493 || (sec->flags & SEC_CODE) == 0) 13494 return TRUE; 13495 13496 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13497 13498 /* Get a copy of the native relocations. */ 13499 internal_relocs = (_bfd_elf_link_read_relocs 13500 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, 13501 link_info->keep_memory)); 13502 if (internal_relocs == NULL) 13503 goto error_return; 13504 13505 /* Walk through them looking for relaxing opportunities. */ 13506 irelend = internal_relocs + sec->reloc_count; 13507 for (irel = internal_relocs; irel < irelend; irel++) 13508 { 13509 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 13510 unsigned int r_type = ELF32_R_TYPE (irel->r_info); 13511 bfd_boolean target_is_micromips_code_p; 13512 unsigned long opcode; 13513 bfd_vma symval; 13514 bfd_vma pcrval; 13515 bfd_byte *ptr; 13516 int fndopc; 13517 13518 /* The number of bytes to delete for relaxation and from where 13519 to delete these bytes starting at irel->r_offset. */ 13520 int delcnt = 0; 13521 int deloff = 0; 13522 13523 /* If this isn't something that can be relaxed, then ignore 13524 this reloc. */ 13525 if (r_type != R_MICROMIPS_HI16 13526 && r_type != R_MICROMIPS_PC16_S1 13527 && r_type != R_MICROMIPS_26_S1) 13528 continue; 13529 13530 /* Get the section contents if we haven't done so already. */ 13531 if (contents == NULL) 13532 { 13533 /* Get cached copy if it exists. */ 13534 if (elf_section_data (sec)->this_hdr.contents != NULL) 13535 contents = elf_section_data (sec)->this_hdr.contents; 13536 /* Go get them off disk. */ 13537 else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 13538 goto error_return; 13539 } 13540 ptr = contents + irel->r_offset; 13541 13542 /* Read this BFD's local symbols if we haven't done so already. */ 13543 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 13544 { 13545 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 13546 if (isymbuf == NULL) 13547 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 13548 symtab_hdr->sh_info, 0, 13549 NULL, NULL, NULL); 13550 if (isymbuf == NULL) 13551 goto error_return; 13552 } 13553 13554 /* Get the value of the symbol referred to by the reloc. */ 13555 if (r_symndx < symtab_hdr->sh_info) 13556 { 13557 /* A local symbol. */ 13558 Elf_Internal_Sym *isym; 13559 asection *sym_sec; 13560 13561 isym = isymbuf + r_symndx; 13562 if (isym->st_shndx == SHN_UNDEF) 13563 sym_sec = bfd_und_section_ptr; 13564 else if (isym->st_shndx == SHN_ABS) 13565 sym_sec = bfd_abs_section_ptr; 13566 else if (isym->st_shndx == SHN_COMMON) 13567 sym_sec = bfd_com_section_ptr; 13568 else 13569 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 13570 symval = (isym->st_value 13571 + sym_sec->output_section->vma 13572 + sym_sec->output_offset); 13573 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); 13574 } 13575 else 13576 { 13577 unsigned long indx; 13578 struct elf_link_hash_entry *h; 13579 13580 /* An external symbol. */ 13581 indx = r_symndx - symtab_hdr->sh_info; 13582 h = elf_sym_hashes (abfd)[indx]; 13583 BFD_ASSERT (h != NULL); 13584 13585 if (h->root.type != bfd_link_hash_defined 13586 && h->root.type != bfd_link_hash_defweak) 13587 /* This appears to be a reference to an undefined 13588 symbol. Just ignore it -- it will be caught by the 13589 regular reloc processing. */ 13590 continue; 13591 13592 symval = (h->root.u.def.value 13593 + h->root.u.def.section->output_section->vma 13594 + h->root.u.def.section->output_offset); 13595 target_is_micromips_code_p = (!h->needs_plt 13596 && ELF_ST_IS_MICROMIPS (h->other)); 13597 } 13598 13599 13600 /* For simplicity of coding, we are going to modify the 13601 section contents, the section relocs, and the BFD symbol 13602 table. We must tell the rest of the code not to free up this 13603 information. It would be possible to instead create a table 13604 of changes which have to be made, as is done in coff-mips.c; 13605 that would be more work, but would require less memory when 13606 the linker is run. */ 13607 13608 /* Only 32-bit instructions relaxed. */ 13609 if (irel->r_offset + 4 > sec->size) 13610 continue; 13611 13612 opcode = bfd_get_micromips_32 (abfd, ptr); 13613 13614 /* This is the pc-relative distance from the instruction the 13615 relocation is applied to, to the symbol referred. */ 13616 pcrval = (symval 13617 - (sec->output_section->vma + sec->output_offset) 13618 - irel->r_offset); 13619 13620 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation 13621 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or 13622 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is 13623 13624 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) 13625 13626 where pcrval has first to be adjusted to apply against the LO16 13627 location (we make the adjustment later on, when we have figured 13628 out the offset). */ 13629 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) 13630 { 13631 bfd_boolean bzc = FALSE; 13632 unsigned long nextopc; 13633 unsigned long reg; 13634 bfd_vma offset; 13635 13636 /* Give up if the previous reloc was a HI16 against this symbol 13637 too. */ 13638 if (irel > internal_relocs 13639 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 13640 && ELF32_R_SYM (irel[-1].r_info) == r_symndx) 13641 continue; 13642 13643 /* Or if the next reloc is not a LO16 against this symbol. */ 13644 if (irel + 1 >= irelend 13645 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 13646 || ELF32_R_SYM (irel[1].r_info) != r_symndx) 13647 continue; 13648 13649 /* Or if the second next reloc is a LO16 against this symbol too. */ 13650 if (irel + 2 >= irelend 13651 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 13652 && ELF32_R_SYM (irel[2].r_info) == r_symndx) 13653 continue; 13654 13655 /* See if the LUI instruction *might* be in a branch delay slot. 13656 We check whether what looks like a 16-bit branch or jump is 13657 actually an immediate argument to a compact branch, and let 13658 it through if so. */ 13659 if (irel->r_offset >= 2 13660 && check_br16_dslot (abfd, ptr - 2) 13661 && !(irel->r_offset >= 4 13662 && (bzc = check_relocated_bzc (abfd, 13663 ptr - 4, irel->r_offset - 4, 13664 internal_relocs, irelend)))) 13665 continue; 13666 if (irel->r_offset >= 4 13667 && !bzc 13668 && check_br32_dslot (abfd, ptr - 4)) 13669 continue; 13670 13671 reg = OP32_SREG (opcode); 13672 13673 /* We only relax adjacent instructions or ones separated with 13674 a branch or jump that has a delay slot. The branch or jump 13675 must not fiddle with the register used to hold the address. 13676 Subtract 4 for the LUI itself. */ 13677 offset = irel[1].r_offset - irel[0].r_offset; 13678 switch (offset - 4) 13679 { 13680 case 0: 13681 break; 13682 case 2: 13683 if (check_br16 (abfd, ptr + 4, reg)) 13684 break; 13685 continue; 13686 case 4: 13687 if (check_br32 (abfd, ptr + 4, reg)) 13688 break; 13689 continue; 13690 default: 13691 continue; 13692 } 13693 13694 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); 13695 13696 /* Give up unless the same register is used with both 13697 relocations. */ 13698 if (OP32_SREG (nextopc) != reg) 13699 continue; 13700 13701 /* Now adjust pcrval, subtracting the offset to the LO16 reloc 13702 and rounding up to take masking of the two LSBs into account. */ 13703 pcrval = ((pcrval - offset + 3) | 3) ^ 3; 13704 13705 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ 13706 if (IS_BITSIZE (symval, 16)) 13707 { 13708 /* Fix the relocation's type. */ 13709 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); 13710 13711 /* Instructions using R_MICROMIPS_LO16 have the base or 13712 source register in bits 20:16. This register becomes $0 13713 (zero) as the result of the R_MICROMIPS_HI16 being 0. */ 13714 nextopc &= ~0x001f0000; 13715 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, 13716 contents + irel[1].r_offset); 13717 } 13718 13719 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. 13720 We add 4 to take LUI deletion into account while checking 13721 the PC-relative distance. */ 13722 else if (symval % 4 == 0 13723 && IS_BITSIZE (pcrval + 4, 25) 13724 && MATCH (nextopc, addiu_insn) 13725 && OP32_TREG (nextopc) == OP32_SREG (nextopc) 13726 && OP16_VALID_REG (OP32_TREG (nextopc))) 13727 { 13728 /* Fix the relocation's type. */ 13729 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); 13730 13731 /* Replace ADDIU with the ADDIUPC version. */ 13732 nextopc = (addiupc_insn.match 13733 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); 13734 13735 bfd_put_micromips_32 (abfd, nextopc, 13736 contents + irel[1].r_offset); 13737 } 13738 13739 /* Can't do anything, give up, sigh... */ 13740 else 13741 continue; 13742 13743 /* Fix the relocation's type. */ 13744 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); 13745 13746 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ 13747 delcnt = 4; 13748 deloff = 0; 13749 } 13750 13751 /* Compact branch relaxation -- due to the multitude of macros 13752 employed by the compiler/assembler, compact branches are not 13753 always generated. Obviously, this can/will be fixed elsewhere, 13754 but there is no drawback in double checking it here. */ 13755 else if (r_type == R_MICROMIPS_PC16_S1 13756 && irel->r_offset + 5 < sec->size 13757 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13758 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) 13759 && ((!insn32 13760 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), 13761 nop_insn_16) ? 2 : 0)) 13762 || (irel->r_offset + 7 < sec->size 13763 && (delcnt = MATCH (bfd_get_micromips_32 (abfd, 13764 ptr + 4), 13765 nop_insn_32) ? 4 : 0)))) 13766 { 13767 unsigned long reg; 13768 13769 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13770 13771 /* Replace BEQZ/BNEZ with the compact version. */ 13772 opcode = (bzc_insns_32[fndopc].match 13773 | BZC32_REG_FIELD (reg) 13774 | (opcode & 0xffff)); /* Addend value. */ 13775 13776 bfd_put_micromips_32 (abfd, opcode, ptr); 13777 13778 /* Delete the delay slot NOP: two or four bytes from 13779 irel->offset + 4; delcnt has already been set above. */ 13780 deloff = 4; 13781 } 13782 13783 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need 13784 to check the distance from the next instruction, so subtract 2. */ 13785 else if (!insn32 13786 && r_type == R_MICROMIPS_PC16_S1 13787 && IS_BITSIZE (pcrval - 2, 11) 13788 && find_match (opcode, b_insns_32) >= 0) 13789 { 13790 /* Fix the relocation's type. */ 13791 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); 13792 13793 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13794 bfd_put_16 (abfd, 13795 (b_insn_16.match 13796 | (opcode & 0x3ff)), /* Addend value. */ 13797 ptr); 13798 13799 /* Delete 2 bytes from irel->r_offset + 2. */ 13800 delcnt = 2; 13801 deloff = 2; 13802 } 13803 13804 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need 13805 to check the distance from the next instruction, so subtract 2. */ 13806 else if (!insn32 13807 && r_type == R_MICROMIPS_PC16_S1 13808 && IS_BITSIZE (pcrval - 2, 8) 13809 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13810 && OP16_VALID_REG (OP32_SREG (opcode))) 13811 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 13812 && OP16_VALID_REG (OP32_TREG (opcode))))) 13813 { 13814 unsigned long reg; 13815 13816 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13817 13818 /* Fix the relocation's type. */ 13819 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); 13820 13821 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13822 bfd_put_16 (abfd, 13823 (bz_insns_16[fndopc].match 13824 | BZ16_REG_FIELD (reg) 13825 | (opcode & 0x7f)), /* Addend value. */ 13826 ptr); 13827 13828 /* Delete 2 bytes from irel->r_offset + 2. */ 13829 delcnt = 2; 13830 deloff = 2; 13831 } 13832 13833 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ 13834 else if (!insn32 13835 && r_type == R_MICROMIPS_26_S1 13836 && target_is_micromips_code_p 13837 && irel->r_offset + 7 < sec->size 13838 && MATCH (opcode, jal_insn_32_bd32)) 13839 { 13840 unsigned long n32opc; 13841 bfd_boolean relaxed = FALSE; 13842 13843 n32opc = bfd_get_micromips_32 (abfd, ptr + 4); 13844 13845 if (MATCH (n32opc, nop_insn_32)) 13846 { 13847 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ 13848 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); 13849 13850 relaxed = TRUE; 13851 } 13852 else if (find_match (n32opc, move_insns_32) >= 0) 13853 { 13854 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ 13855 bfd_put_16 (abfd, 13856 (move_insn_16.match 13857 | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) 13858 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), 13859 ptr + 4); 13860 13861 relaxed = TRUE; 13862 } 13863 /* Other 32-bit instructions relaxable to 16-bit 13864 instructions will be handled here later. */ 13865 13866 if (relaxed) 13867 { 13868 /* JAL with 32-bit delay slot that is changed to a JALS 13869 with 16-bit delay slot. */ 13870 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); 13871 13872 /* Delete 2 bytes from irel->r_offset + 6. */ 13873 delcnt = 2; 13874 deloff = 6; 13875 } 13876 } 13877 13878 if (delcnt != 0) 13879 { 13880 /* Note that we've changed the relocs, section contents, etc. */ 13881 elf_section_data (sec)->relocs = internal_relocs; 13882 elf_section_data (sec)->this_hdr.contents = contents; 13883 symtab_hdr->contents = (unsigned char *) isymbuf; 13884 13885 /* Delete bytes depending on the delcnt and deloff. */ 13886 if (!mips_elf_relax_delete_bytes (abfd, sec, 13887 irel->r_offset + deloff, delcnt)) 13888 goto error_return; 13889 13890 /* That will change things, so we should relax again. 13891 Note that this is not required, and it may be slow. */ 13892 *again = TRUE; 13893 } 13894 } 13895 13896 if (isymbuf != NULL 13897 && symtab_hdr->contents != (unsigned char *) isymbuf) 13898 { 13899 if (! link_info->keep_memory) 13900 free (isymbuf); 13901 else 13902 { 13903 /* Cache the symbols for elf_link_input_bfd. */ 13904 symtab_hdr->contents = (unsigned char *) isymbuf; 13905 } 13906 } 13907 13908 if (contents != NULL 13909 && elf_section_data (sec)->this_hdr.contents != contents) 13910 { 13911 if (! link_info->keep_memory) 13912 free (contents); 13913 else 13914 { 13915 /* Cache the section contents for elf_link_input_bfd. */ 13916 elf_section_data (sec)->this_hdr.contents = contents; 13917 } 13918 } 13919 13920 if (internal_relocs != NULL 13921 && elf_section_data (sec)->relocs != internal_relocs) 13922 free (internal_relocs); 13923 13924 return TRUE; 13925 13926 error_return: 13927 if (isymbuf != NULL 13928 && symtab_hdr->contents != (unsigned char *) isymbuf) 13929 free (isymbuf); 13930 if (contents != NULL 13931 && elf_section_data (sec)->this_hdr.contents != contents) 13932 free (contents); 13933 if (internal_relocs != NULL 13934 && elf_section_data (sec)->relocs != internal_relocs) 13935 free (internal_relocs); 13936 13937 return FALSE; 13938 } 13939 13940 /* Create a MIPS ELF linker hash table. */ 13942 13943 struct bfd_link_hash_table * 13944 _bfd_mips_elf_link_hash_table_create (bfd *abfd) 13945 { 13946 struct mips_elf_link_hash_table *ret; 13947 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); 13948 13949 ret = bfd_zmalloc (amt); 13950 if (ret == NULL) 13951 return NULL; 13952 13953 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 13954 mips_elf_link_hash_newfunc, 13955 sizeof (struct mips_elf_link_hash_entry), 13956 MIPS_ELF_DATA)) 13957 { 13958 free (ret); 13959 return NULL; 13960 } 13961 ret->root.init_plt_refcount.plist = NULL; 13962 ret->root.init_plt_offset.plist = NULL; 13963 13964 return &ret->root.root; 13965 } 13966 13967 /* Likewise, but indicate that the target is VxWorks. */ 13968 13969 struct bfd_link_hash_table * 13970 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) 13971 { 13972 struct bfd_link_hash_table *ret; 13973 13974 ret = _bfd_mips_elf_link_hash_table_create (abfd); 13975 if (ret) 13976 { 13977 struct mips_elf_link_hash_table *htab; 13978 13979 htab = (struct mips_elf_link_hash_table *) ret; 13980 htab->use_plts_and_copy_relocs = TRUE; 13981 htab->is_vxworks = TRUE; 13982 } 13983 return ret; 13984 } 13985 13986 /* A function that the linker calls if we are allowed to use PLTs 13987 and copy relocs. */ 13988 13989 void 13990 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) 13991 { 13992 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; 13993 } 13994 13995 /* A function that the linker calls to select between all or only 13996 32-bit microMIPS instructions. */ 13997 13998 void 13999 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) 14000 { 14001 mips_elf_hash_table (info)->insn32 = on; 14002 } 14003 14004 /* Structure for saying that BFD machine EXTENSION extends BASE. */ 14006 14007 struct mips_mach_extension 14008 { 14009 unsigned long extension, base; 14010 }; 14011 14012 14013 /* An array describing how BFD machines relate to one another. The entries 14014 are ordered topologically with MIPS I extensions listed last. */ 14015 14016 static const struct mips_mach_extension mips_mach_extensions[] = 14017 { 14018 /* MIPS64r2 extensions. */ 14019 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, 14020 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, 14021 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, 14022 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, 14023 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 }, 14024 14025 /* MIPS64 extensions. */ 14026 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, 14027 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, 14028 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, 14029 14030 /* MIPS V extensions. */ 14031 { bfd_mach_mipsisa64, bfd_mach_mips5 }, 14032 14033 /* R10000 extensions. */ 14034 { bfd_mach_mips12000, bfd_mach_mips10000 }, 14035 { bfd_mach_mips14000, bfd_mach_mips10000 }, 14036 { bfd_mach_mips16000, bfd_mach_mips10000 }, 14037 14038 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core 14039 vr5400 ISA, but doesn't include the multimedia stuff. It seems 14040 better to allow vr5400 and vr5500 code to be merged anyway, since 14041 many libraries will just use the core ISA. Perhaps we could add 14042 some sort of ASE flag if this ever proves a problem. */ 14043 { bfd_mach_mips5500, bfd_mach_mips5400 }, 14044 { bfd_mach_mips5400, bfd_mach_mips5000 }, 14045 14046 /* MIPS IV extensions. */ 14047 { bfd_mach_mips5, bfd_mach_mips8000 }, 14048 { bfd_mach_mips10000, bfd_mach_mips8000 }, 14049 { bfd_mach_mips5000, bfd_mach_mips8000 }, 14050 { bfd_mach_mips7000, bfd_mach_mips8000 }, 14051 { bfd_mach_mips9000, bfd_mach_mips8000 }, 14052 14053 /* VR4100 extensions. */ 14054 { bfd_mach_mips4120, bfd_mach_mips4100 }, 14055 { bfd_mach_mips4111, bfd_mach_mips4100 }, 14056 14057 /* MIPS III extensions. */ 14058 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, 14059 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, 14060 { bfd_mach_mips8000, bfd_mach_mips4000 }, 14061 { bfd_mach_mips4650, bfd_mach_mips4000 }, 14062 { bfd_mach_mips4600, bfd_mach_mips4000 }, 14063 { bfd_mach_mips4400, bfd_mach_mips4000 }, 14064 { bfd_mach_mips4300, bfd_mach_mips4000 }, 14065 { bfd_mach_mips4100, bfd_mach_mips4000 }, 14066 { bfd_mach_mips4010, bfd_mach_mips4000 }, 14067 { bfd_mach_mips5900, bfd_mach_mips4000 }, 14068 14069 /* MIPS32 extensions. */ 14070 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, 14071 14072 /* MIPS II extensions. */ 14073 { bfd_mach_mips4000, bfd_mach_mips6000 }, 14074 { bfd_mach_mipsisa32, bfd_mach_mips6000 }, 14075 14076 /* MIPS I extensions. */ 14077 { bfd_mach_mips6000, bfd_mach_mips3000 }, 14078 { bfd_mach_mips3900, bfd_mach_mips3000 } 14079 }; 14080 14081 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ 14082 14083 static bfd_boolean 14084 mips_mach_extends_p (unsigned long base, unsigned long extension) 14085 { 14086 size_t i; 14087 14088 if (extension == base) 14089 return TRUE; 14090 14091 if (base == bfd_mach_mipsisa32 14092 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) 14093 return TRUE; 14094 14095 if (base == bfd_mach_mipsisa32r2 14096 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) 14097 return TRUE; 14098 14099 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) 14100 if (extension == mips_mach_extensions[i].extension) 14101 { 14102 extension = mips_mach_extensions[i].base; 14103 if (extension == base) 14104 return TRUE; 14105 } 14106 14107 return FALSE; 14108 } 14109 14110 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */ 14111 14112 static unsigned long 14113 bfd_mips_isa_ext_mach (unsigned int isa_ext) 14114 { 14115 switch (isa_ext) 14116 { 14117 case AFL_EXT_3900: return bfd_mach_mips3900; 14118 case AFL_EXT_4010: return bfd_mach_mips4010; 14119 case AFL_EXT_4100: return bfd_mach_mips4100; 14120 case AFL_EXT_4111: return bfd_mach_mips4111; 14121 case AFL_EXT_4120: return bfd_mach_mips4120; 14122 case AFL_EXT_4650: return bfd_mach_mips4650; 14123 case AFL_EXT_5400: return bfd_mach_mips5400; 14124 case AFL_EXT_5500: return bfd_mach_mips5500; 14125 case AFL_EXT_5900: return bfd_mach_mips5900; 14126 case AFL_EXT_10000: return bfd_mach_mips10000; 14127 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e; 14128 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f; 14129 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a; 14130 case AFL_EXT_SB1: return bfd_mach_mips_sb1; 14131 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon; 14132 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp; 14133 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2; 14134 case AFL_EXT_XLR: return bfd_mach_mips_xlr; 14135 default: return bfd_mach_mips3000; 14136 } 14137 } 14138 14139 /* Return the .MIPS.abiflags value representing each ISA Extension. */ 14140 14141 unsigned int 14142 bfd_mips_isa_ext (bfd *abfd) 14143 { 14144 switch (bfd_get_mach (abfd)) 14145 { 14146 case bfd_mach_mips3900: return AFL_EXT_3900; 14147 case bfd_mach_mips4010: return AFL_EXT_4010; 14148 case bfd_mach_mips4100: return AFL_EXT_4100; 14149 case bfd_mach_mips4111: return AFL_EXT_4111; 14150 case bfd_mach_mips4120: return AFL_EXT_4120; 14151 case bfd_mach_mips4650: return AFL_EXT_4650; 14152 case bfd_mach_mips5400: return AFL_EXT_5400; 14153 case bfd_mach_mips5500: return AFL_EXT_5500; 14154 case bfd_mach_mips5900: return AFL_EXT_5900; 14155 case bfd_mach_mips10000: return AFL_EXT_10000; 14156 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E; 14157 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F; 14158 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A; 14159 case bfd_mach_mips_sb1: return AFL_EXT_SB1; 14160 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON; 14161 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP; 14162 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3; 14163 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2; 14164 case bfd_mach_mips_xlr: return AFL_EXT_XLR; 14165 default: return 0; 14166 } 14167 } 14168 14169 /* Encode ISA level and revision as a single value. */ 14170 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV)) 14171 14172 /* Decode a single value into level and revision. */ 14173 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3) 14174 #define ISA_REV(LEVREV) ((LEVREV) & 0x7) 14175 14176 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ 14177 14178 static void 14179 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) 14180 { 14181 int new_isa = 0; 14182 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) 14183 { 14184 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break; 14185 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break; 14186 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break; 14187 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break; 14188 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break; 14189 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break; 14190 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break; 14191 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break; 14192 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break; 14193 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break; 14194 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break; 14195 default: 14196 (*_bfd_error_handler) 14197 (_("%B: Unknown architecture %s"), 14198 abfd, bfd_printable_name (abfd)); 14199 } 14200 14201 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev)) 14202 { 14203 abiflags->isa_level = ISA_LEVEL (new_isa); 14204 abiflags->isa_rev = ISA_REV (new_isa); 14205 } 14206 14207 /* Update the isa_ext if ABFD describes a further extension. */ 14208 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext), 14209 bfd_get_mach (abfd))) 14210 abiflags->isa_ext = bfd_mips_isa_ext (abfd); 14211 } 14212 14213 /* Return true if the given ELF header flags describe a 32-bit binary. */ 14214 14215 static bfd_boolean 14216 mips_32bit_flags_p (flagword flags) 14217 { 14218 return ((flags & EF_MIPS_32BITMODE) != 0 14219 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 14220 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 14221 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 14222 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 14223 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 14224 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 14225 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); 14226 } 14227 14228 /* Infer the content of the ABI flags based on the elf header. */ 14229 14230 static void 14231 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) 14232 { 14233 obj_attribute *in_attr; 14234 14235 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); 14236 update_mips_abiflags_isa (abfd, abiflags); 14237 14238 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) 14239 abiflags->gpr_size = AFL_REG_32; 14240 else 14241 abiflags->gpr_size = AFL_REG_64; 14242 14243 abiflags->cpr1_size = AFL_REG_NONE; 14244 14245 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; 14246 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14247 14248 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE 14249 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX 14250 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14251 && abiflags->gpr_size == AFL_REG_32)) 14252 abiflags->cpr1_size = AFL_REG_32; 14253 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14254 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 14255 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) 14256 abiflags->cpr1_size = AFL_REG_64; 14257 14258 abiflags->cpr2_size = AFL_REG_NONE; 14259 14260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 14261 abiflags->ases |= AFL_ASE_MDMX; 14262 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 14263 abiflags->ases |= AFL_ASE_MIPS16; 14264 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 14265 abiflags->ases |= AFL_ASE_MICROMIPS; 14266 14267 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY 14268 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT 14269 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A 14270 && abiflags->isa_level >= 32 14271 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A) 14272 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; 14273 } 14274 14275 /* We need to use a special link routine to handle the .reginfo and 14276 the .mdebug sections. We need to merge all instances of these 14277 sections together, not write them all out sequentially. */ 14278 14279 bfd_boolean 14280 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) 14281 { 14282 asection *o; 14283 struct bfd_link_order *p; 14284 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; 14285 asection *rtproc_sec, *abiflags_sec; 14286 Elf32_RegInfo reginfo; 14287 struct ecoff_debug_info debug; 14288 struct mips_htab_traverse_info hti; 14289 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14290 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; 14291 HDRR *symhdr = &debug.symbolic_header; 14292 void *mdebug_handle = NULL; 14293 asection *s; 14294 EXTR esym; 14295 unsigned int i; 14296 bfd_size_type amt; 14297 struct mips_elf_link_hash_table *htab; 14298 14299 static const char * const secname[] = 14300 { 14301 ".text", ".init", ".fini", ".data", 14302 ".rodata", ".sdata", ".sbss", ".bss" 14303 }; 14304 static const int sc[] = 14305 { 14306 scText, scInit, scFini, scData, 14307 scRData, scSData, scSBss, scBss 14308 }; 14309 14310 /* Sort the dynamic symbols so that those with GOT entries come after 14311 those without. */ 14312 htab = mips_elf_hash_table (info); 14313 BFD_ASSERT (htab != NULL); 14314 14315 if (!mips_elf_sort_hash_table (abfd, info)) 14316 return FALSE; 14317 14318 /* Create any scheduled LA25 stubs. */ 14319 hti.info = info; 14320 hti.output_bfd = abfd; 14321 hti.error = FALSE; 14322 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); 14323 if (hti.error) 14324 return FALSE; 14325 14326 /* Get a value for the GP register. */ 14327 if (elf_gp (abfd) == 0) 14328 { 14329 struct bfd_link_hash_entry *h; 14330 14331 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); 14332 if (h != NULL && h->type == bfd_link_hash_defined) 14333 elf_gp (abfd) = (h->u.def.value 14334 + h->u.def.section->output_section->vma 14335 + h->u.def.section->output_offset); 14336 else if (htab->is_vxworks 14337 && (h = bfd_link_hash_lookup (info->hash, 14338 "_GLOBAL_OFFSET_TABLE_", 14339 FALSE, FALSE, TRUE)) 14340 && h->type == bfd_link_hash_defined) 14341 elf_gp (abfd) = (h->u.def.section->output_section->vma 14342 + h->u.def.section->output_offset 14343 + h->u.def.value); 14344 else if (bfd_link_relocatable (info)) 14345 { 14346 bfd_vma lo = MINUS_ONE; 14347 14348 /* Find the GP-relative section with the lowest offset. */ 14349 for (o = abfd->sections; o != NULL; o = o->next) 14350 if (o->vma < lo 14351 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) 14352 lo = o->vma; 14353 14354 /* And calculate GP relative to that. */ 14355 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); 14356 } 14357 else 14358 { 14359 /* If the relocate_section function needs to do a reloc 14360 involving the GP value, it should make a reloc_dangerous 14361 callback to warn that GP is not defined. */ 14362 } 14363 } 14364 14365 /* Go through the sections and collect the .reginfo and .mdebug 14366 information. */ 14367 abiflags_sec = NULL; 14368 reginfo_sec = NULL; 14369 mdebug_sec = NULL; 14370 gptab_data_sec = NULL; 14371 gptab_bss_sec = NULL; 14372 for (o = abfd->sections; o != NULL; o = o->next) 14373 { 14374 if (strcmp (o->name, ".MIPS.abiflags") == 0) 14375 { 14376 /* We have found the .MIPS.abiflags section in the output file. 14377 Look through all the link_orders comprising it and remove them. 14378 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ 14379 for (p = o->map_head.link_order; p != NULL; p = p->next) 14380 { 14381 asection *input_section; 14382 14383 if (p->type != bfd_indirect_link_order) 14384 { 14385 if (p->type == bfd_data_link_order) 14386 continue; 14387 abort (); 14388 } 14389 14390 input_section = p->u.indirect.section; 14391 14392 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14393 elf_link_input_bfd ignores this section. */ 14394 input_section->flags &= ~SEC_HAS_CONTENTS; 14395 } 14396 14397 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14398 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); 14399 14400 /* Skip this section later on (I don't think this currently 14401 matters, but someday it might). */ 14402 o->map_head.link_order = NULL; 14403 14404 abiflags_sec = o; 14405 } 14406 14407 if (strcmp (o->name, ".reginfo") == 0) 14408 { 14409 memset (®info, 0, sizeof reginfo); 14410 14411 /* We have found the .reginfo section in the output file. 14412 Look through all the link_orders comprising it and merge 14413 the information together. */ 14414 for (p = o->map_head.link_order; p != NULL; p = p->next) 14415 { 14416 asection *input_section; 14417 bfd *input_bfd; 14418 Elf32_External_RegInfo ext; 14419 Elf32_RegInfo sub; 14420 14421 if (p->type != bfd_indirect_link_order) 14422 { 14423 if (p->type == bfd_data_link_order) 14424 continue; 14425 abort (); 14426 } 14427 14428 input_section = p->u.indirect.section; 14429 input_bfd = input_section->owner; 14430 14431 if (! bfd_get_section_contents (input_bfd, input_section, 14432 &ext, 0, sizeof ext)) 14433 return FALSE; 14434 14435 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); 14436 14437 reginfo.ri_gprmask |= sub.ri_gprmask; 14438 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; 14439 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; 14440 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; 14441 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; 14442 14443 /* ri_gp_value is set by the function 14444 mips_elf32_section_processing when the section is 14445 finally written out. */ 14446 14447 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14448 elf_link_input_bfd ignores this section. */ 14449 input_section->flags &= ~SEC_HAS_CONTENTS; 14450 } 14451 14452 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14453 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); 14454 14455 /* Skip this section later on (I don't think this currently 14456 matters, but someday it might). */ 14457 o->map_head.link_order = NULL; 14458 14459 reginfo_sec = o; 14460 } 14461 14462 if (strcmp (o->name, ".mdebug") == 0) 14463 { 14464 struct extsym_info einfo; 14465 bfd_vma last; 14466 14467 /* We have found the .mdebug section in the output file. 14468 Look through all the link_orders comprising it and merge 14469 the information together. */ 14470 symhdr->magic = swap->sym_magic; 14471 /* FIXME: What should the version stamp be? */ 14472 symhdr->vstamp = 0; 14473 symhdr->ilineMax = 0; 14474 symhdr->cbLine = 0; 14475 symhdr->idnMax = 0; 14476 symhdr->ipdMax = 0; 14477 symhdr->isymMax = 0; 14478 symhdr->ioptMax = 0; 14479 symhdr->iauxMax = 0; 14480 symhdr->issMax = 0; 14481 symhdr->issExtMax = 0; 14482 symhdr->ifdMax = 0; 14483 symhdr->crfd = 0; 14484 symhdr->iextMax = 0; 14485 14486 /* We accumulate the debugging information itself in the 14487 debug_info structure. */ 14488 debug.line = NULL; 14489 debug.external_dnr = NULL; 14490 debug.external_pdr = NULL; 14491 debug.external_sym = NULL; 14492 debug.external_opt = NULL; 14493 debug.external_aux = NULL; 14494 debug.ss = NULL; 14495 debug.ssext = debug.ssext_end = NULL; 14496 debug.external_fdr = NULL; 14497 debug.external_rfd = NULL; 14498 debug.external_ext = debug.external_ext_end = NULL; 14499 14500 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); 14501 if (mdebug_handle == NULL) 14502 return FALSE; 14503 14504 esym.jmptbl = 0; 14505 esym.cobol_main = 0; 14506 esym.weakext = 0; 14507 esym.reserved = 0; 14508 esym.ifd = ifdNil; 14509 esym.asym.iss = issNil; 14510 esym.asym.st = stLocal; 14511 esym.asym.reserved = 0; 14512 esym.asym.index = indexNil; 14513 last = 0; 14514 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) 14515 { 14516 esym.asym.sc = sc[i]; 14517 s = bfd_get_section_by_name (abfd, secname[i]); 14518 if (s != NULL) 14519 { 14520 esym.asym.value = s->vma; 14521 last = s->vma + s->size; 14522 } 14523 else 14524 esym.asym.value = last; 14525 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, 14526 secname[i], &esym)) 14527 return FALSE; 14528 } 14529 14530 for (p = o->map_head.link_order; p != NULL; p = p->next) 14531 { 14532 asection *input_section; 14533 bfd *input_bfd; 14534 const struct ecoff_debug_swap *input_swap; 14535 struct ecoff_debug_info input_debug; 14536 char *eraw_src; 14537 char *eraw_end; 14538 14539 if (p->type != bfd_indirect_link_order) 14540 { 14541 if (p->type == bfd_data_link_order) 14542 continue; 14543 abort (); 14544 } 14545 14546 input_section = p->u.indirect.section; 14547 input_bfd = input_section->owner; 14548 14549 if (!is_mips_elf (input_bfd)) 14550 { 14551 /* I don't know what a non MIPS ELF bfd would be 14552 doing with a .mdebug section, but I don't really 14553 want to deal with it. */ 14554 continue; 14555 } 14556 14557 input_swap = (get_elf_backend_data (input_bfd) 14558 ->elf_backend_ecoff_debug_swap); 14559 14560 BFD_ASSERT (p->size == input_section->size); 14561 14562 /* The ECOFF linking code expects that we have already 14563 read in the debugging information and set up an 14564 ecoff_debug_info structure, so we do that now. */ 14565 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, 14566 &input_debug)) 14567 return FALSE; 14568 14569 if (! (bfd_ecoff_debug_accumulate 14570 (mdebug_handle, abfd, &debug, swap, input_bfd, 14571 &input_debug, input_swap, info))) 14572 return FALSE; 14573 14574 /* Loop through the external symbols. For each one with 14575 interesting information, try to find the symbol in 14576 the linker global hash table and save the information 14577 for the output external symbols. */ 14578 eraw_src = input_debug.external_ext; 14579 eraw_end = (eraw_src 14580 + (input_debug.symbolic_header.iextMax 14581 * input_swap->external_ext_size)); 14582 for (; 14583 eraw_src < eraw_end; 14584 eraw_src += input_swap->external_ext_size) 14585 { 14586 EXTR ext; 14587 const char *name; 14588 struct mips_elf_link_hash_entry *h; 14589 14590 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); 14591 if (ext.asym.sc == scNil 14592 || ext.asym.sc == scUndefined 14593 || ext.asym.sc == scSUndefined) 14594 continue; 14595 14596 name = input_debug.ssext + ext.asym.iss; 14597 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), 14598 name, FALSE, FALSE, TRUE); 14599 if (h == NULL || h->esym.ifd != -2) 14600 continue; 14601 14602 if (ext.ifd != -1) 14603 { 14604 BFD_ASSERT (ext.ifd 14605 < input_debug.symbolic_header.ifdMax); 14606 ext.ifd = input_debug.ifdmap[ext.ifd]; 14607 } 14608 14609 h->esym = ext; 14610 } 14611 14612 /* Free up the information we just read. */ 14613 free (input_debug.line); 14614 free (input_debug.external_dnr); 14615 free (input_debug.external_pdr); 14616 free (input_debug.external_sym); 14617 free (input_debug.external_opt); 14618 free (input_debug.external_aux); 14619 free (input_debug.ss); 14620 free (input_debug.ssext); 14621 free (input_debug.external_fdr); 14622 free (input_debug.external_rfd); 14623 free (input_debug.external_ext); 14624 14625 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14626 elf_link_input_bfd ignores this section. */ 14627 input_section->flags &= ~SEC_HAS_CONTENTS; 14628 } 14629 14630 if (SGI_COMPAT (abfd) && bfd_link_pic (info)) 14631 { 14632 /* Create .rtproc section. */ 14633 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); 14634 if (rtproc_sec == NULL) 14635 { 14636 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 14637 | SEC_LINKER_CREATED | SEC_READONLY); 14638 14639 rtproc_sec = bfd_make_section_anyway_with_flags (abfd, 14640 ".rtproc", 14641 flags); 14642 if (rtproc_sec == NULL 14643 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) 14644 return FALSE; 14645 } 14646 14647 if (! mips_elf_create_procedure_table (mdebug_handle, abfd, 14648 info, rtproc_sec, 14649 &debug)) 14650 return FALSE; 14651 } 14652 14653 /* Build the external symbol information. */ 14654 einfo.abfd = abfd; 14655 einfo.info = info; 14656 einfo.debug = &debug; 14657 einfo.swap = swap; 14658 einfo.failed = FALSE; 14659 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 14660 mips_elf_output_extsym, &einfo); 14661 if (einfo.failed) 14662 return FALSE; 14663 14664 /* Set the size of the .mdebug section. */ 14665 o->size = bfd_ecoff_debug_size (abfd, &debug, swap); 14666 14667 /* Skip this section later on (I don't think this currently 14668 matters, but someday it might). */ 14669 o->map_head.link_order = NULL; 14670 14671 mdebug_sec = o; 14672 } 14673 14674 if (CONST_STRNEQ (o->name, ".gptab.")) 14675 { 14676 const char *subname; 14677 unsigned int c; 14678 Elf32_gptab *tab; 14679 Elf32_External_gptab *ext_tab; 14680 unsigned int j; 14681 14682 /* The .gptab.sdata and .gptab.sbss sections hold 14683 information describing how the small data area would 14684 change depending upon the -G switch. These sections 14685 not used in executables files. */ 14686 if (! bfd_link_relocatable (info)) 14687 { 14688 for (p = o->map_head.link_order; p != NULL; p = p->next) 14689 { 14690 asection *input_section; 14691 14692 if (p->type != bfd_indirect_link_order) 14693 { 14694 if (p->type == bfd_data_link_order) 14695 continue; 14696 abort (); 14697 } 14698 14699 input_section = p->u.indirect.section; 14700 14701 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14702 elf_link_input_bfd ignores this section. */ 14703 input_section->flags &= ~SEC_HAS_CONTENTS; 14704 } 14705 14706 /* Skip this section later on (I don't think this 14707 currently matters, but someday it might). */ 14708 o->map_head.link_order = NULL; 14709 14710 /* Really remove the section. */ 14711 bfd_section_list_remove (abfd, o); 14712 --abfd->section_count; 14713 14714 continue; 14715 } 14716 14717 /* There is one gptab for initialized data, and one for 14718 uninitialized data. */ 14719 if (strcmp (o->name, ".gptab.sdata") == 0) 14720 gptab_data_sec = o; 14721 else if (strcmp (o->name, ".gptab.sbss") == 0) 14722 gptab_bss_sec = o; 14723 else 14724 { 14725 (*_bfd_error_handler) 14726 (_("%s: illegal section name `%s'"), 14727 bfd_get_filename (abfd), o->name); 14728 bfd_set_error (bfd_error_nonrepresentable_section); 14729 return FALSE; 14730 } 14731 14732 /* The linker script always combines .gptab.data and 14733 .gptab.sdata into .gptab.sdata, and likewise for 14734 .gptab.bss and .gptab.sbss. It is possible that there is 14735 no .sdata or .sbss section in the output file, in which 14736 case we must change the name of the output section. */ 14737 subname = o->name + sizeof ".gptab" - 1; 14738 if (bfd_get_section_by_name (abfd, subname) == NULL) 14739 { 14740 if (o == gptab_data_sec) 14741 o->name = ".gptab.data"; 14742 else 14743 o->name = ".gptab.bss"; 14744 subname = o->name + sizeof ".gptab" - 1; 14745 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); 14746 } 14747 14748 /* Set up the first entry. */ 14749 c = 1; 14750 amt = c * sizeof (Elf32_gptab); 14751 tab = bfd_malloc (amt); 14752 if (tab == NULL) 14753 return FALSE; 14754 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); 14755 tab[0].gt_header.gt_unused = 0; 14756 14757 /* Combine the input sections. */ 14758 for (p = o->map_head.link_order; p != NULL; p = p->next) 14759 { 14760 asection *input_section; 14761 bfd *input_bfd; 14762 bfd_size_type size; 14763 unsigned long last; 14764 bfd_size_type gpentry; 14765 14766 if (p->type != bfd_indirect_link_order) 14767 { 14768 if (p->type == bfd_data_link_order) 14769 continue; 14770 abort (); 14771 } 14772 14773 input_section = p->u.indirect.section; 14774 input_bfd = input_section->owner; 14775 14776 /* Combine the gptab entries for this input section one 14777 by one. We know that the input gptab entries are 14778 sorted by ascending -G value. */ 14779 size = input_section->size; 14780 last = 0; 14781 for (gpentry = sizeof (Elf32_External_gptab); 14782 gpentry < size; 14783 gpentry += sizeof (Elf32_External_gptab)) 14784 { 14785 Elf32_External_gptab ext_gptab; 14786 Elf32_gptab int_gptab; 14787 unsigned long val; 14788 unsigned long add; 14789 bfd_boolean exact; 14790 unsigned int look; 14791 14792 if (! (bfd_get_section_contents 14793 (input_bfd, input_section, &ext_gptab, gpentry, 14794 sizeof (Elf32_External_gptab)))) 14795 { 14796 free (tab); 14797 return FALSE; 14798 } 14799 14800 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, 14801 &int_gptab); 14802 val = int_gptab.gt_entry.gt_g_value; 14803 add = int_gptab.gt_entry.gt_bytes - last; 14804 14805 exact = FALSE; 14806 for (look = 1; look < c; look++) 14807 { 14808 if (tab[look].gt_entry.gt_g_value >= val) 14809 tab[look].gt_entry.gt_bytes += add; 14810 14811 if (tab[look].gt_entry.gt_g_value == val) 14812 exact = TRUE; 14813 } 14814 14815 if (! exact) 14816 { 14817 Elf32_gptab *new_tab; 14818 unsigned int max; 14819 14820 /* We need a new table entry. */ 14821 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); 14822 new_tab = bfd_realloc (tab, amt); 14823 if (new_tab == NULL) 14824 { 14825 free (tab); 14826 return FALSE; 14827 } 14828 tab = new_tab; 14829 tab[c].gt_entry.gt_g_value = val; 14830 tab[c].gt_entry.gt_bytes = add; 14831 14832 /* Merge in the size for the next smallest -G 14833 value, since that will be implied by this new 14834 value. */ 14835 max = 0; 14836 for (look = 1; look < c; look++) 14837 { 14838 if (tab[look].gt_entry.gt_g_value < val 14839 && (max == 0 14840 || (tab[look].gt_entry.gt_g_value 14841 > tab[max].gt_entry.gt_g_value))) 14842 max = look; 14843 } 14844 if (max != 0) 14845 tab[c].gt_entry.gt_bytes += 14846 tab[max].gt_entry.gt_bytes; 14847 14848 ++c; 14849 } 14850 14851 last = int_gptab.gt_entry.gt_bytes; 14852 } 14853 14854 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14855 elf_link_input_bfd ignores this section. */ 14856 input_section->flags &= ~SEC_HAS_CONTENTS; 14857 } 14858 14859 /* The table must be sorted by -G value. */ 14860 if (c > 2) 14861 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); 14862 14863 /* Swap out the table. */ 14864 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); 14865 ext_tab = bfd_alloc (abfd, amt); 14866 if (ext_tab == NULL) 14867 { 14868 free (tab); 14869 return FALSE; 14870 } 14871 14872 for (j = 0; j < c; j++) 14873 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); 14874 free (tab); 14875 14876 o->size = c * sizeof (Elf32_External_gptab); 14877 o->contents = (bfd_byte *) ext_tab; 14878 14879 /* Skip this section later on (I don't think this currently 14880 matters, but someday it might). */ 14881 o->map_head.link_order = NULL; 14882 } 14883 } 14884 14885 /* Invoke the regular ELF backend linker to do all the work. */ 14886 if (!bfd_elf_final_link (abfd, info)) 14887 return FALSE; 14888 14889 /* Now write out the computed sections. */ 14890 14891 if (abiflags_sec != NULL) 14892 { 14893 Elf_External_ABIFlags_v0 ext; 14894 Elf_Internal_ABIFlags_v0 *abiflags; 14895 14896 abiflags = &mips_elf_tdata (abfd)->abiflags; 14897 14898 /* Set up the abiflags if no valid input sections were found. */ 14899 if (!mips_elf_tdata (abfd)->abiflags_valid) 14900 { 14901 infer_mips_abiflags (abfd, abiflags); 14902 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 14903 } 14904 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); 14905 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) 14906 return FALSE; 14907 } 14908 14909 if (reginfo_sec != NULL) 14910 { 14911 Elf32_External_RegInfo ext; 14912 14913 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); 14914 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) 14915 return FALSE; 14916 } 14917 14918 if (mdebug_sec != NULL) 14919 { 14920 BFD_ASSERT (abfd->output_has_begun); 14921 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, 14922 swap, info, 14923 mdebug_sec->filepos)) 14924 return FALSE; 14925 14926 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); 14927 } 14928 14929 if (gptab_data_sec != NULL) 14930 { 14931 if (! bfd_set_section_contents (abfd, gptab_data_sec, 14932 gptab_data_sec->contents, 14933 0, gptab_data_sec->size)) 14934 return FALSE; 14935 } 14936 14937 if (gptab_bss_sec != NULL) 14938 { 14939 if (! bfd_set_section_contents (abfd, gptab_bss_sec, 14940 gptab_bss_sec->contents, 14941 0, gptab_bss_sec->size)) 14942 return FALSE; 14943 } 14944 14945 if (SGI_COMPAT (abfd)) 14946 { 14947 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 14948 if (rtproc_sec != NULL) 14949 { 14950 if (! bfd_set_section_contents (abfd, rtproc_sec, 14951 rtproc_sec->contents, 14952 0, rtproc_sec->size)) 14953 return FALSE; 14954 } 14955 } 14956 14957 return TRUE; 14958 } 14959 14960 /* Merge object file header flags from IBFD into OBFD. Raise an error 14962 if there are conflicting settings. */ 14963 14964 static bfd_boolean 14965 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd) 14966 { 14967 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 14968 flagword old_flags; 14969 flagword new_flags; 14970 bfd_boolean ok; 14971 14972 new_flags = elf_elfheader (ibfd)->e_flags; 14973 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; 14974 old_flags = elf_elfheader (obfd)->e_flags; 14975 14976 /* Check flag compatibility. */ 14977 14978 new_flags &= ~EF_MIPS_NOREORDER; 14979 old_flags &= ~EF_MIPS_NOREORDER; 14980 14981 /* Some IRIX 6 BSD-compatibility objects have this bit set. It 14982 doesn't seem to matter. */ 14983 new_flags &= ~EF_MIPS_XGOT; 14984 old_flags &= ~EF_MIPS_XGOT; 14985 14986 /* MIPSpro generates ucode info in n64 objects. Again, we should 14987 just be able to ignore this. */ 14988 new_flags &= ~EF_MIPS_UCODE; 14989 old_flags &= ~EF_MIPS_UCODE; 14990 14991 /* DSOs should only be linked with CPIC code. */ 14992 if ((ibfd->flags & DYNAMIC) != 0) 14993 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; 14994 14995 if (new_flags == old_flags) 14996 return TRUE; 14997 14998 ok = TRUE; 14999 15000 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) 15001 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) 15002 { 15003 (*_bfd_error_handler) 15004 (_("%B: warning: linking abicalls files with non-abicalls files"), 15005 ibfd); 15006 ok = TRUE; 15007 } 15008 15009 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) 15010 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; 15011 if (! (new_flags & EF_MIPS_PIC)) 15012 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; 15013 15014 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15015 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15016 15017 /* Compare the ISAs. */ 15018 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) 15019 { 15020 (*_bfd_error_handler) 15021 (_("%B: linking 32-bit code with 64-bit code"), 15022 ibfd); 15023 ok = FALSE; 15024 } 15025 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) 15026 { 15027 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ 15028 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) 15029 { 15030 /* Copy the architecture info from IBFD to OBFD. Also copy 15031 the 32-bit flag (if set) so that we continue to recognise 15032 OBFD as a 32-bit binary. */ 15033 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); 15034 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 15035 elf_elfheader (obfd)->e_flags 15036 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15037 15038 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ 15039 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15040 15041 /* Copy across the ABI flags if OBFD doesn't use them 15042 and if that was what caused us to treat IBFD as 32-bit. */ 15043 if ((old_flags & EF_MIPS_ABI) == 0 15044 && mips_32bit_flags_p (new_flags) 15045 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) 15046 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; 15047 } 15048 else 15049 { 15050 /* The ISAs aren't compatible. */ 15051 (*_bfd_error_handler) 15052 (_("%B: linking %s module with previous %s modules"), 15053 ibfd, 15054 bfd_printable_name (ibfd), 15055 bfd_printable_name (obfd)); 15056 ok = FALSE; 15057 } 15058 } 15059 15060 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15061 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15062 15063 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it 15064 does set EI_CLASS differently from any 32-bit ABI. */ 15065 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) 15066 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15067 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15068 { 15069 /* Only error if both are set (to different values). */ 15070 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) 15071 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15072 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15073 { 15074 (*_bfd_error_handler) 15075 (_("%B: ABI mismatch: linking %s module with previous %s modules"), 15076 ibfd, 15077 elf_mips_abi_name (ibfd), 15078 elf_mips_abi_name (obfd)); 15079 ok = FALSE; 15080 } 15081 new_flags &= ~EF_MIPS_ABI; 15082 old_flags &= ~EF_MIPS_ABI; 15083 } 15084 15085 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together 15086 and allow arbitrary mixing of the remaining ASEs (retain the union). */ 15087 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) 15088 { 15089 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15090 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15091 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; 15092 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; 15093 int micro_mis = old_m16 && new_micro; 15094 int m16_mis = old_micro && new_m16; 15095 15096 if (m16_mis || micro_mis) 15097 { 15098 (*_bfd_error_handler) 15099 (_("%B: ASE mismatch: linking %s module with previous %s modules"), 15100 ibfd, 15101 m16_mis ? "MIPS16" : "microMIPS", 15102 m16_mis ? "microMIPS" : "MIPS16"); 15103 ok = FALSE; 15104 } 15105 15106 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; 15107 15108 new_flags &= ~ EF_MIPS_ARCH_ASE; 15109 old_flags &= ~ EF_MIPS_ARCH_ASE; 15110 } 15111 15112 /* Compare NaN encodings. */ 15113 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) 15114 { 15115 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15116 ibfd, 15117 (new_flags & EF_MIPS_NAN2008 15118 ? "-mnan=2008" : "-mnan=legacy"), 15119 (old_flags & EF_MIPS_NAN2008 15120 ? "-mnan=2008" : "-mnan=legacy")); 15121 ok = FALSE; 15122 new_flags &= ~EF_MIPS_NAN2008; 15123 old_flags &= ~EF_MIPS_NAN2008; 15124 } 15125 15126 /* Compare FP64 state. */ 15127 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) 15128 { 15129 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15130 ibfd, 15131 (new_flags & EF_MIPS_FP64 15132 ? "-mfp64" : "-mfp32"), 15133 (old_flags & EF_MIPS_FP64 15134 ? "-mfp64" : "-mfp32")); 15135 ok = FALSE; 15136 new_flags &= ~EF_MIPS_FP64; 15137 old_flags &= ~EF_MIPS_FP64; 15138 } 15139 15140 /* Warn about any other mismatches */ 15141 if (new_flags != old_flags) 15142 { 15143 (*_bfd_error_handler) 15144 (_("%B: uses different e_flags (0x%lx) fields than previous modules " 15145 "(0x%lx)"), 15146 ibfd, (unsigned long) new_flags, 15147 (unsigned long) old_flags); 15148 ok = FALSE; 15149 } 15150 15151 return ok; 15152 } 15153 15154 /* Merge object attributes from IBFD into OBFD. Raise an error if 15155 there are conflicting attributes. */ 15156 static bfd_boolean 15157 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) 15158 { 15159 obj_attribute *in_attr; 15160 obj_attribute *out_attr; 15161 bfd *abi_fp_bfd; 15162 bfd *abi_msa_bfd; 15163 15164 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; 15165 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15166 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) 15167 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15168 15169 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; 15170 if (!abi_msa_bfd 15171 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15172 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; 15173 15174 if (!elf_known_obj_attributes_proc (obfd)[0].i) 15175 { 15176 /* This is the first object. Copy the attributes. */ 15177 _bfd_elf_copy_obj_attributes (ibfd, obfd); 15178 15179 /* Use the Tag_null value to indicate the attributes have been 15180 initialized. */ 15181 elf_known_obj_attributes_proc (obfd)[0].i = 1; 15182 15183 return TRUE; 15184 } 15185 15186 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge 15187 non-conflicting ones. */ 15188 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15189 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) 15190 { 15191 int out_fp, in_fp; 15192 15193 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15194 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15195 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; 15196 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) 15197 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; 15198 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX 15199 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15200 || in_fp == Val_GNU_MIPS_ABI_FP_64 15201 || in_fp == Val_GNU_MIPS_ABI_FP_64A)) 15202 { 15203 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15204 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15205 } 15206 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX 15207 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 15208 || out_fp == Val_GNU_MIPS_ABI_FP_64 15209 || out_fp == Val_GNU_MIPS_ABI_FP_64A)) 15210 /* Keep the current setting. */; 15211 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A 15212 && in_fp == Val_GNU_MIPS_ABI_FP_64) 15213 { 15214 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 15215 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 15216 } 15217 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A 15218 && out_fp == Val_GNU_MIPS_ABI_FP_64) 15219 /* Keep the current setting. */; 15220 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) 15221 { 15222 const char *out_string, *in_string; 15223 15224 out_string = _bfd_mips_fp_abi_string (out_fp); 15225 in_string = _bfd_mips_fp_abi_string (in_fp); 15226 /* First warn about cases involving unrecognised ABIs. */ 15227 if (!out_string && !in_string) 15228 _bfd_error_handler 15229 (_("Warning: %B uses unknown floating point ABI %d " 15230 "(set by %B), %B uses unknown floating point ABI %d"), 15231 obfd, abi_fp_bfd, ibfd, out_fp, in_fp); 15232 else if (!out_string) 15233 _bfd_error_handler 15234 (_("Warning: %B uses unknown floating point ABI %d " 15235 "(set by %B), %B uses %s"), 15236 obfd, abi_fp_bfd, ibfd, out_fp, in_string); 15237 else if (!in_string) 15238 _bfd_error_handler 15239 (_("Warning: %B uses %s (set by %B), " 15240 "%B uses unknown floating point ABI %d"), 15241 obfd, abi_fp_bfd, ibfd, out_string, in_fp); 15242 else 15243 { 15244 /* If one of the bfds is soft-float, the other must be 15245 hard-float. The exact choice of hard-float ABI isn't 15246 really relevant to the error message. */ 15247 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15248 out_string = "-mhard-float"; 15249 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) 15250 in_string = "-mhard-float"; 15251 _bfd_error_handler 15252 (_("Warning: %B uses %s (set by %B), %B uses %s"), 15253 obfd, abi_fp_bfd, ibfd, out_string, in_string); 15254 } 15255 } 15256 } 15257 15258 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge 15259 non-conflicting ones. */ 15260 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15261 { 15262 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; 15263 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) 15264 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; 15265 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 15266 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) 15267 { 15268 case Val_GNU_MIPS_ABI_MSA_128: 15269 _bfd_error_handler 15270 (_("Warning: %B uses %s (set by %B), " 15271 "%B uses unknown MSA ABI %d"), 15272 obfd, abi_msa_bfd, ibfd, 15273 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15274 break; 15275 15276 default: 15277 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) 15278 { 15279 case Val_GNU_MIPS_ABI_MSA_128: 15280 _bfd_error_handler 15281 (_("Warning: %B uses unknown MSA ABI %d " 15282 "(set by %B), %B uses %s"), 15283 obfd, abi_msa_bfd, ibfd, 15284 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa"); 15285 break; 15286 15287 default: 15288 _bfd_error_handler 15289 (_("Warning: %B uses unknown MSA ABI %d " 15290 "(set by %B), %B uses unknown MSA ABI %d"), 15291 obfd, abi_msa_bfd, ibfd, 15292 out_attr[Tag_GNU_MIPS_ABI_MSA].i, 15293 in_attr[Tag_GNU_MIPS_ABI_MSA].i); 15294 break; 15295 } 15296 } 15297 } 15298 15299 /* Merge Tag_compatibility attributes and any common GNU ones. */ 15300 return _bfd_elf_merge_object_attributes (ibfd, obfd); 15301 } 15302 15303 /* Merge object ABI flags from IBFD into OBFD. Raise an error if 15304 there are conflicting settings. */ 15305 15306 static bfd_boolean 15307 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd) 15308 { 15309 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15310 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd); 15311 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd); 15312 15313 /* Update the output abiflags fp_abi using the computed fp_abi. */ 15314 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15315 15316 #define max(a, b) ((a) > (b) ? (a) : (b)) 15317 /* Merge abiflags. */ 15318 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level, 15319 in_tdata->abiflags.isa_level); 15320 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev, 15321 in_tdata->abiflags.isa_rev); 15322 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size, 15323 in_tdata->abiflags.gpr_size); 15324 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size, 15325 in_tdata->abiflags.cpr1_size); 15326 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size, 15327 in_tdata->abiflags.cpr2_size); 15328 #undef max 15329 out_tdata->abiflags.ases |= in_tdata->abiflags.ases; 15330 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1; 15331 15332 return TRUE; 15333 } 15334 15335 /* Merge backend specific data from an object file to the output 15336 object file when linking. */ 15337 15338 bfd_boolean 15339 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 15340 { 15341 struct mips_elf_obj_tdata *out_tdata; 15342 struct mips_elf_obj_tdata *in_tdata; 15343 bfd_boolean null_input_bfd = TRUE; 15344 asection *sec; 15345 bfd_boolean ok; 15346 15347 /* Check if we have the same endianness. */ 15348 if (! _bfd_generic_verify_endian_match (ibfd, obfd)) 15349 { 15350 (*_bfd_error_handler) 15351 (_("%B: endianness incompatible with that of the selected emulation"), 15352 ibfd); 15353 return FALSE; 15354 } 15355 15356 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) 15357 return TRUE; 15358 15359 in_tdata = mips_elf_tdata (ibfd); 15360 out_tdata = mips_elf_tdata (obfd); 15361 15362 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 15363 { 15364 (*_bfd_error_handler) 15365 (_("%B: ABI is incompatible with that of the selected emulation"), 15366 ibfd); 15367 return FALSE; 15368 } 15369 15370 /* Check to see if the input BFD actually contains any sections. If not, 15371 then it has no attributes, and its flags may not have been initialized 15372 either, but it cannot actually cause any incompatibility. */ 15373 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 15374 { 15375 /* Ignore synthetic sections and empty .text, .data and .bss sections 15376 which are automatically generated by gas. Also ignore fake 15377 (s)common sections, since merely defining a common symbol does 15378 not affect compatibility. */ 15379 if ((sec->flags & SEC_IS_COMMON) == 0 15380 && strcmp (sec->name, ".reginfo") 15381 && strcmp (sec->name, ".mdebug") 15382 && (sec->size != 0 15383 || (strcmp (sec->name, ".text") 15384 && strcmp (sec->name, ".data") 15385 && strcmp (sec->name, ".bss")))) 15386 { 15387 null_input_bfd = FALSE; 15388 break; 15389 } 15390 } 15391 if (null_input_bfd) 15392 return TRUE; 15393 15394 /* Populate abiflags using existing information. */ 15395 if (in_tdata->abiflags_valid) 15396 { 15397 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15398 Elf_Internal_ABIFlags_v0 in_abiflags; 15399 Elf_Internal_ABIFlags_v0 abiflags; 15400 15401 /* Set up the FP ABI attribute from the abiflags if it is not already 15402 set. */ 15403 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) 15404 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi; 15405 15406 infer_mips_abiflags (ibfd, &abiflags); 15407 in_abiflags = in_tdata->abiflags; 15408 15409 /* It is not possible to infer the correct ISA revision 15410 for R3 or R5 so drop down to R2 for the checks. */ 15411 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) 15412 in_abiflags.isa_rev = 2; 15413 15414 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev) 15415 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev)) 15416 (*_bfd_error_handler) 15417 (_("%B: warning: Inconsistent ISA between e_flags and " 15418 ".MIPS.abiflags"), ibfd); 15419 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY 15420 && in_abiflags.fp_abi != abiflags.fp_abi) 15421 (*_bfd_error_handler) 15422 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and " 15423 ".MIPS.abiflags"), ibfd); 15424 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) 15425 (*_bfd_error_handler) 15426 (_("%B: warning: Inconsistent ASEs between e_flags and " 15427 ".MIPS.abiflags"), ibfd); 15428 /* The isa_ext is allowed to be an extension of what can be inferred 15429 from e_flags. */ 15430 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext), 15431 bfd_mips_isa_ext_mach (in_abiflags.isa_ext))) 15432 (*_bfd_error_handler) 15433 (_("%B: warning: Inconsistent ISA extensions between e_flags and " 15434 ".MIPS.abiflags"), ibfd); 15435 if (in_abiflags.flags2 != 0) 15436 (*_bfd_error_handler) 15437 (_("%B: warning: Unexpected flag in the flags2 field of " 15438 ".MIPS.abiflags (0x%lx)"), ibfd, 15439 (unsigned long) in_abiflags.flags2); 15440 } 15441 else 15442 { 15443 infer_mips_abiflags (ibfd, &in_tdata->abiflags); 15444 in_tdata->abiflags_valid = TRUE; 15445 } 15446 15447 if (!out_tdata->abiflags_valid) 15448 { 15449 /* Copy input abiflags if output abiflags are not already valid. */ 15450 out_tdata->abiflags = in_tdata->abiflags; 15451 out_tdata->abiflags_valid = TRUE; 15452 } 15453 15454 if (! elf_flags_init (obfd)) 15455 { 15456 elf_flags_init (obfd) = TRUE; 15457 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 15458 elf_elfheader (obfd)->e_ident[EI_CLASS] 15459 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 15460 15461 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 15462 && (bfd_get_arch_info (obfd)->the_default 15463 || mips_mach_extends_p (bfd_get_mach (obfd), 15464 bfd_get_mach (ibfd)))) 15465 { 15466 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 15467 bfd_get_mach (ibfd))) 15468 return FALSE; 15469 15470 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ 15471 update_mips_abiflags_isa (obfd, &out_tdata->abiflags); 15472 } 15473 15474 ok = TRUE; 15475 } 15476 else 15477 ok = mips_elf_merge_obj_e_flags (ibfd, obfd); 15478 15479 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok; 15480 15481 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok; 15482 15483 if (!ok) 15484 { 15485 bfd_set_error (bfd_error_bad_value); 15486 return FALSE; 15487 } 15488 15489 return TRUE; 15490 } 15491 15492 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ 15493 15494 bfd_boolean 15495 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) 15496 { 15497 BFD_ASSERT (!elf_flags_init (abfd) 15498 || elf_elfheader (abfd)->e_flags == flags); 15499 15500 elf_elfheader (abfd)->e_flags = flags; 15501 elf_flags_init (abfd) = TRUE; 15502 return TRUE; 15503 } 15504 15505 char * 15506 _bfd_mips_elf_get_target_dtag (bfd_vma dtag) 15507 { 15508 switch (dtag) 15509 { 15510 default: return ""; 15511 case DT_MIPS_RLD_VERSION: 15512 return "MIPS_RLD_VERSION"; 15513 case DT_MIPS_TIME_STAMP: 15514 return "MIPS_TIME_STAMP"; 15515 case DT_MIPS_ICHECKSUM: 15516 return "MIPS_ICHECKSUM"; 15517 case DT_MIPS_IVERSION: 15518 return "MIPS_IVERSION"; 15519 case DT_MIPS_FLAGS: 15520 return "MIPS_FLAGS"; 15521 case DT_MIPS_BASE_ADDRESS: 15522 return "MIPS_BASE_ADDRESS"; 15523 case DT_MIPS_MSYM: 15524 return "MIPS_MSYM"; 15525 case DT_MIPS_CONFLICT: 15526 return "MIPS_CONFLICT"; 15527 case DT_MIPS_LIBLIST: 15528 return "MIPS_LIBLIST"; 15529 case DT_MIPS_LOCAL_GOTNO: 15530 return "MIPS_LOCAL_GOTNO"; 15531 case DT_MIPS_CONFLICTNO: 15532 return "MIPS_CONFLICTNO"; 15533 case DT_MIPS_LIBLISTNO: 15534 return "MIPS_LIBLISTNO"; 15535 case DT_MIPS_SYMTABNO: 15536 return "MIPS_SYMTABNO"; 15537 case DT_MIPS_UNREFEXTNO: 15538 return "MIPS_UNREFEXTNO"; 15539 case DT_MIPS_GOTSYM: 15540 return "MIPS_GOTSYM"; 15541 case DT_MIPS_HIPAGENO: 15542 return "MIPS_HIPAGENO"; 15543 case DT_MIPS_RLD_MAP: 15544 return "MIPS_RLD_MAP"; 15545 case DT_MIPS_RLD_MAP_REL: 15546 return "MIPS_RLD_MAP_REL"; 15547 case DT_MIPS_DELTA_CLASS: 15548 return "MIPS_DELTA_CLASS"; 15549 case DT_MIPS_DELTA_CLASS_NO: 15550 return "MIPS_DELTA_CLASS_NO"; 15551 case DT_MIPS_DELTA_INSTANCE: 15552 return "MIPS_DELTA_INSTANCE"; 15553 case DT_MIPS_DELTA_INSTANCE_NO: 15554 return "MIPS_DELTA_INSTANCE_NO"; 15555 case DT_MIPS_DELTA_RELOC: 15556 return "MIPS_DELTA_RELOC"; 15557 case DT_MIPS_DELTA_RELOC_NO: 15558 return "MIPS_DELTA_RELOC_NO"; 15559 case DT_MIPS_DELTA_SYM: 15560 return "MIPS_DELTA_SYM"; 15561 case DT_MIPS_DELTA_SYM_NO: 15562 return "MIPS_DELTA_SYM_NO"; 15563 case DT_MIPS_DELTA_CLASSSYM: 15564 return "MIPS_DELTA_CLASSSYM"; 15565 case DT_MIPS_DELTA_CLASSSYM_NO: 15566 return "MIPS_DELTA_CLASSSYM_NO"; 15567 case DT_MIPS_CXX_FLAGS: 15568 return "MIPS_CXX_FLAGS"; 15569 case DT_MIPS_PIXIE_INIT: 15570 return "MIPS_PIXIE_INIT"; 15571 case DT_MIPS_SYMBOL_LIB: 15572 return "MIPS_SYMBOL_LIB"; 15573 case DT_MIPS_LOCALPAGE_GOTIDX: 15574 return "MIPS_LOCALPAGE_GOTIDX"; 15575 case DT_MIPS_LOCAL_GOTIDX: 15576 return "MIPS_LOCAL_GOTIDX"; 15577 case DT_MIPS_HIDDEN_GOTIDX: 15578 return "MIPS_HIDDEN_GOTIDX"; 15579 case DT_MIPS_PROTECTED_GOTIDX: 15580 return "MIPS_PROTECTED_GOT_IDX"; 15581 case DT_MIPS_OPTIONS: 15582 return "MIPS_OPTIONS"; 15583 case DT_MIPS_INTERFACE: 15584 return "MIPS_INTERFACE"; 15585 case DT_MIPS_DYNSTR_ALIGN: 15586 return "DT_MIPS_DYNSTR_ALIGN"; 15587 case DT_MIPS_INTERFACE_SIZE: 15588 return "DT_MIPS_INTERFACE_SIZE"; 15589 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 15590 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; 15591 case DT_MIPS_PERF_SUFFIX: 15592 return "DT_MIPS_PERF_SUFFIX"; 15593 case DT_MIPS_COMPACT_SIZE: 15594 return "DT_MIPS_COMPACT_SIZE"; 15595 case DT_MIPS_GP_VALUE: 15596 return "DT_MIPS_GP_VALUE"; 15597 case DT_MIPS_AUX_DYNAMIC: 15598 return "DT_MIPS_AUX_DYNAMIC"; 15599 case DT_MIPS_PLTGOT: 15600 return "DT_MIPS_PLTGOT"; 15601 case DT_MIPS_RWPLT: 15602 return "DT_MIPS_RWPLT"; 15603 } 15604 } 15605 15606 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if 15607 not known. */ 15608 15609 const char * 15610 _bfd_mips_fp_abi_string (int fp) 15611 { 15612 switch (fp) 15613 { 15614 /* These strings aren't translated because they're simply 15615 option lists. */ 15616 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15617 return "-mdouble-float"; 15618 15619 case Val_GNU_MIPS_ABI_FP_SINGLE: 15620 return "-msingle-float"; 15621 15622 case Val_GNU_MIPS_ABI_FP_SOFT: 15623 return "-msoft-float"; 15624 15625 case Val_GNU_MIPS_ABI_FP_OLD_64: 15626 return _("-mips32r2 -mfp64 (12 callee-saved)"); 15627 15628 case Val_GNU_MIPS_ABI_FP_XX: 15629 return "-mfpxx"; 15630 15631 case Val_GNU_MIPS_ABI_FP_64: 15632 return "-mgp32 -mfp64"; 15633 15634 case Val_GNU_MIPS_ABI_FP_64A: 15635 return "-mgp32 -mfp64 -mno-odd-spreg"; 15636 15637 default: 15638 return 0; 15639 } 15640 } 15641 15642 static void 15643 print_mips_ases (FILE *file, unsigned int mask) 15644 { 15645 if (mask & AFL_ASE_DSP) 15646 fputs ("\n\tDSP ASE", file); 15647 if (mask & AFL_ASE_DSPR2) 15648 fputs ("\n\tDSP R2 ASE", file); 15649 if (mask & AFL_ASE_DSPR3) 15650 fputs ("\n\tDSP R3 ASE", file); 15651 if (mask & AFL_ASE_EVA) 15652 fputs ("\n\tEnhanced VA Scheme", file); 15653 if (mask & AFL_ASE_MCU) 15654 fputs ("\n\tMCU (MicroController) ASE", file); 15655 if (mask & AFL_ASE_MDMX) 15656 fputs ("\n\tMDMX ASE", file); 15657 if (mask & AFL_ASE_MIPS3D) 15658 fputs ("\n\tMIPS-3D ASE", file); 15659 if (mask & AFL_ASE_MT) 15660 fputs ("\n\tMT ASE", file); 15661 if (mask & AFL_ASE_SMARTMIPS) 15662 fputs ("\n\tSmartMIPS ASE", file); 15663 if (mask & AFL_ASE_VIRT) 15664 fputs ("\n\tVZ ASE", file); 15665 if (mask & AFL_ASE_MSA) 15666 fputs ("\n\tMSA ASE", file); 15667 if (mask & AFL_ASE_MIPS16) 15668 fputs ("\n\tMIPS16 ASE", file); 15669 if (mask & AFL_ASE_MICROMIPS) 15670 fputs ("\n\tMICROMIPS ASE", file); 15671 if (mask & AFL_ASE_XPA) 15672 fputs ("\n\tXPA ASE", file); 15673 if (mask == 0) 15674 fprintf (file, "\n\t%s", _("None")); 15675 else if ((mask & ~AFL_ASE_MASK) != 0) 15676 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); 15677 } 15678 15679 static void 15680 print_mips_isa_ext (FILE *file, unsigned int isa_ext) 15681 { 15682 switch (isa_ext) 15683 { 15684 case 0: 15685 fputs (_("None"), file); 15686 break; 15687 case AFL_EXT_XLR: 15688 fputs ("RMI XLR", file); 15689 break; 15690 case AFL_EXT_OCTEON3: 15691 fputs ("Cavium Networks Octeon3", file); 15692 break; 15693 case AFL_EXT_OCTEON2: 15694 fputs ("Cavium Networks Octeon2", file); 15695 break; 15696 case AFL_EXT_OCTEONP: 15697 fputs ("Cavium Networks OcteonP", file); 15698 break; 15699 case AFL_EXT_LOONGSON_3A: 15700 fputs ("Loongson 3A", file); 15701 break; 15702 case AFL_EXT_OCTEON: 15703 fputs ("Cavium Networks Octeon", file); 15704 break; 15705 case AFL_EXT_5900: 15706 fputs ("Toshiba R5900", file); 15707 break; 15708 case AFL_EXT_4650: 15709 fputs ("MIPS R4650", file); 15710 break; 15711 case AFL_EXT_4010: 15712 fputs ("LSI R4010", file); 15713 break; 15714 case AFL_EXT_4100: 15715 fputs ("NEC VR4100", file); 15716 break; 15717 case AFL_EXT_3900: 15718 fputs ("Toshiba R3900", file); 15719 break; 15720 case AFL_EXT_10000: 15721 fputs ("MIPS R10000", file); 15722 break; 15723 case AFL_EXT_SB1: 15724 fputs ("Broadcom SB-1", file); 15725 break; 15726 case AFL_EXT_4111: 15727 fputs ("NEC VR4111/VR4181", file); 15728 break; 15729 case AFL_EXT_4120: 15730 fputs ("NEC VR4120", file); 15731 break; 15732 case AFL_EXT_5400: 15733 fputs ("NEC VR5400", file); 15734 break; 15735 case AFL_EXT_5500: 15736 fputs ("NEC VR5500", file); 15737 break; 15738 case AFL_EXT_LOONGSON_2E: 15739 fputs ("ST Microelectronics Loongson 2E", file); 15740 break; 15741 case AFL_EXT_LOONGSON_2F: 15742 fputs ("ST Microelectronics Loongson 2F", file); 15743 break; 15744 default: 15745 fprintf (file, "%s (%d)", _("Unknown"), isa_ext); 15746 break; 15747 } 15748 } 15749 15750 static void 15751 print_mips_fp_abi_value (FILE *file, int val) 15752 { 15753 switch (val) 15754 { 15755 case Val_GNU_MIPS_ABI_FP_ANY: 15756 fprintf (file, _("Hard or soft float\n")); 15757 break; 15758 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15759 fprintf (file, _("Hard float (double precision)\n")); 15760 break; 15761 case Val_GNU_MIPS_ABI_FP_SINGLE: 15762 fprintf (file, _("Hard float (single precision)\n")); 15763 break; 15764 case Val_GNU_MIPS_ABI_FP_SOFT: 15765 fprintf (file, _("Soft float\n")); 15766 break; 15767 case Val_GNU_MIPS_ABI_FP_OLD_64: 15768 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); 15769 break; 15770 case Val_GNU_MIPS_ABI_FP_XX: 15771 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); 15772 break; 15773 case Val_GNU_MIPS_ABI_FP_64: 15774 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); 15775 break; 15776 case Val_GNU_MIPS_ABI_FP_64A: 15777 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); 15778 break; 15779 default: 15780 fprintf (file, "??? (%d)\n", val); 15781 break; 15782 } 15783 } 15784 15785 static int 15786 get_mips_reg_size (int reg_size) 15787 { 15788 return (reg_size == AFL_REG_NONE) ? 0 15789 : (reg_size == AFL_REG_32) ? 32 15790 : (reg_size == AFL_REG_64) ? 64 15791 : (reg_size == AFL_REG_128) ? 128 15792 : -1; 15793 } 15794 15795 bfd_boolean 15796 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) 15797 { 15798 FILE *file = ptr; 15799 15800 BFD_ASSERT (abfd != NULL && ptr != NULL); 15801 15802 /* Print normal ELF private data. */ 15803 _bfd_elf_print_private_bfd_data (abfd, ptr); 15804 15805 /* xgettext:c-format */ 15806 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 15807 15808 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 15809 fprintf (file, _(" [abi=O32]")); 15810 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) 15811 fprintf (file, _(" [abi=O64]")); 15812 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) 15813 fprintf (file, _(" [abi=EABI32]")); 15814 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 15815 fprintf (file, _(" [abi=EABI64]")); 15816 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) 15817 fprintf (file, _(" [abi unknown]")); 15818 else if (ABI_N32_P (abfd)) 15819 fprintf (file, _(" [abi=N32]")); 15820 else if (ABI_64_P (abfd)) 15821 fprintf (file, _(" [abi=64]")); 15822 else 15823 fprintf (file, _(" [no abi set]")); 15824 15825 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) 15826 fprintf (file, " [mips1]"); 15827 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) 15828 fprintf (file, " [mips2]"); 15829 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) 15830 fprintf (file, " [mips3]"); 15831 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) 15832 fprintf (file, " [mips4]"); 15833 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) 15834 fprintf (file, " [mips5]"); 15835 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) 15836 fprintf (file, " [mips32]"); 15837 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) 15838 fprintf (file, " [mips64]"); 15839 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) 15840 fprintf (file, " [mips32r2]"); 15841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) 15842 fprintf (file, " [mips64r2]"); 15843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) 15844 fprintf (file, " [mips32r6]"); 15845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 15846 fprintf (file, " [mips64r6]"); 15847 else 15848 fprintf (file, _(" [unknown ISA]")); 15849 15850 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 15851 fprintf (file, " [mdmx]"); 15852 15853 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 15854 fprintf (file, " [mips16]"); 15855 15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 15857 fprintf (file, " [micromips]"); 15858 15859 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) 15860 fprintf (file, " [nan2008]"); 15861 15862 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) 15863 fprintf (file, " [old fp64]"); 15864 15865 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) 15866 fprintf (file, " [32bitmode]"); 15867 else 15868 fprintf (file, _(" [not 32bitmode]")); 15869 15870 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) 15871 fprintf (file, " [noreorder]"); 15872 15873 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) 15874 fprintf (file, " [PIC]"); 15875 15876 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) 15877 fprintf (file, " [CPIC]"); 15878 15879 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) 15880 fprintf (file, " [XGOT]"); 15881 15882 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) 15883 fprintf (file, " [UCODE]"); 15884 15885 fputc ('\n', file); 15886 15887 if (mips_elf_tdata (abfd)->abiflags_valid) 15888 { 15889 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; 15890 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); 15891 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); 15892 if (abiflags->isa_rev > 1) 15893 fprintf (file, "r%d", abiflags->isa_rev); 15894 fprintf (file, "\nGPR size: %d", 15895 get_mips_reg_size (abiflags->gpr_size)); 15896 fprintf (file, "\nCPR1 size: %d", 15897 get_mips_reg_size (abiflags->cpr1_size)); 15898 fprintf (file, "\nCPR2 size: %d", 15899 get_mips_reg_size (abiflags->cpr2_size)); 15900 fputs ("\nFP ABI: ", file); 15901 print_mips_fp_abi_value (file, abiflags->fp_abi); 15902 fputs ("ISA Extension: ", file); 15903 print_mips_isa_ext (file, abiflags->isa_ext); 15904 fputs ("\nASEs:", file); 15905 print_mips_ases (file, abiflags->ases); 15906 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); 15907 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); 15908 fputc ('\n', file); 15909 } 15910 15911 return TRUE; 15912 } 15913 15914 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = 15915 { 15916 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15917 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15918 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, 15919 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15920 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15921 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, 15922 { NULL, 0, 0, 0, 0 } 15923 }; 15924 15925 /* Merge non visibility st_other attributes. Ensure that the 15926 STO_OPTIONAL flag is copied into h->other, even if this is not a 15927 definiton of the symbol. */ 15928 void 15929 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, 15930 const Elf_Internal_Sym *isym, 15931 bfd_boolean definition, 15932 bfd_boolean dynamic ATTRIBUTE_UNUSED) 15933 { 15934 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) 15935 { 15936 unsigned char other; 15937 15938 other = (definition ? isym->st_other : h->other); 15939 other &= ~ELF_ST_VISIBILITY (-1); 15940 h->other = other | ELF_ST_VISIBILITY (h->other); 15941 } 15942 15943 if (!definition 15944 && ELF_MIPS_IS_OPTIONAL (isym->st_other)) 15945 h->other |= STO_OPTIONAL; 15946 } 15947 15948 /* Decide whether an undefined symbol is special and can be ignored. 15949 This is the case for OPTIONAL symbols on IRIX. */ 15950 bfd_boolean 15951 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) 15952 { 15953 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; 15954 } 15955 15956 bfd_boolean 15957 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) 15958 { 15959 return (sym->st_shndx == SHN_COMMON 15960 || sym->st_shndx == SHN_MIPS_ACOMMON 15961 || sym->st_shndx == SHN_MIPS_SCOMMON); 15962 } 15963 15964 /* Return address for Ith PLT stub in section PLT, for relocation REL 15965 or (bfd_vma) -1 if it should not be included. */ 15966 15967 bfd_vma 15968 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, 15969 const arelent *rel ATTRIBUTE_UNUSED) 15970 { 15971 return (plt->vma 15972 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) 15973 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); 15974 } 15975 15976 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 15977 and microMIPS PLT slots we may have a many-to-one mapping between .plt 15978 and .got.plt and also the slots may be of a different size each we walk 15979 the PLT manually fetching instructions and matching them against known 15980 patterns. To make things easier standard MIPS slots, if any, always come 15981 first. As we don't create proper ELF symbols we use the UDATA.I member 15982 of ASYMBOL to carry ISA annotation. The encoding used is the same as 15983 with the ST_OTHER member of the ELF symbol. */ 15984 15985 long 15986 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, 15987 long symcount ATTRIBUTE_UNUSED, 15988 asymbol **syms ATTRIBUTE_UNUSED, 15989 long dynsymcount, asymbol **dynsyms, 15990 asymbol **ret) 15991 { 15992 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; 15993 static const char microsuffix[] = "@micromipsplt"; 15994 static const char m16suffix[] = "@mips16plt"; 15995 static const char mipssuffix[] = "@plt"; 15996 15997 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 15998 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15999 bfd_boolean micromips_p = MICROMIPS_P (abfd); 16000 Elf_Internal_Shdr *hdr; 16001 bfd_byte *plt_data; 16002 bfd_vma plt_offset; 16003 unsigned int other; 16004 bfd_vma entry_size; 16005 bfd_vma plt0_size; 16006 asection *relplt; 16007 bfd_vma opcode; 16008 asection *plt; 16009 asymbol *send; 16010 size_t size; 16011 char *names; 16012 long counti; 16013 arelent *p; 16014 asymbol *s; 16015 char *nend; 16016 long count; 16017 long pi; 16018 long i; 16019 long n; 16020 16021 *ret = NULL; 16022 16023 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) 16024 return 0; 16025 16026 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 16027 if (relplt == NULL) 16028 return 0; 16029 16030 hdr = &elf_section_data (relplt)->this_hdr; 16031 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) 16032 return 0; 16033 16034 plt = bfd_get_section_by_name (abfd, ".plt"); 16035 if (plt == NULL) 16036 return 0; 16037 16038 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 16039 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 16040 return -1; 16041 p = relplt->relocation; 16042 16043 /* Calculating the exact amount of space required for symbols would 16044 require two passes over the PLT, so just pessimise assuming two 16045 PLT slots per relocation. */ 16046 count = relplt->size / hdr->sh_entsize; 16047 counti = count * bed->s->int_rels_per_ext_rel; 16048 size = 2 * count * sizeof (asymbol); 16049 size += count * (sizeof (mipssuffix) + 16050 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); 16051 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) 16052 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); 16053 16054 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ 16055 size += sizeof (asymbol) + sizeof (pltname); 16056 16057 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) 16058 return -1; 16059 16060 if (plt->size < 16) 16061 return -1; 16062 16063 s = *ret = bfd_malloc (size); 16064 if (s == NULL) 16065 return -1; 16066 send = s + 2 * count + 1; 16067 16068 names = (char *) send; 16069 nend = (char *) s + size; 16070 n = 0; 16071 16072 opcode = bfd_get_micromips_32 (abfd, plt_data + 12); 16073 if (opcode == 0x3302fffe) 16074 { 16075 if (!micromips_p) 16076 return -1; 16077 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 16078 other = STO_MICROMIPS; 16079 } 16080 else if (opcode == 0x0398c1d0) 16081 { 16082 if (!micromips_p) 16083 return -1; 16084 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 16085 other = STO_MICROMIPS; 16086 } 16087 else 16088 { 16089 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 16090 other = 0; 16091 } 16092 16093 s->the_bfd = abfd; 16094 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; 16095 s->section = plt; 16096 s->value = 0; 16097 s->name = names; 16098 s->udata.i = other; 16099 memcpy (names, pltname, sizeof (pltname)); 16100 names += sizeof (pltname); 16101 ++s, ++n; 16102 16103 pi = 0; 16104 for (plt_offset = plt0_size; 16105 plt_offset + 8 <= plt->size && s < send; 16106 plt_offset += entry_size) 16107 { 16108 bfd_vma gotplt_addr; 16109 const char *suffix; 16110 bfd_vma gotplt_hi; 16111 bfd_vma gotplt_lo; 16112 size_t suffixlen; 16113 16114 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); 16115 16116 /* Check if the second word matches the expected MIPS16 instruction. */ 16117 if (opcode == 0x651aeb00) 16118 { 16119 if (micromips_p) 16120 return -1; 16121 /* Truncated table??? */ 16122 if (plt_offset + 16 > plt->size) 16123 break; 16124 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); 16125 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 16126 suffixlen = sizeof (m16suffix); 16127 suffix = m16suffix; 16128 other = STO_MIPS16; 16129 } 16130 /* Likewise the expected microMIPS instruction (no insn32 mode). */ 16131 else if (opcode == 0xff220000) 16132 { 16133 if (!micromips_p) 16134 return -1; 16135 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; 16136 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16137 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; 16138 gotplt_lo <<= 2; 16139 gotplt_addr = gotplt_hi + gotplt_lo; 16140 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; 16141 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 16142 suffixlen = sizeof (microsuffix); 16143 suffix = microsuffix; 16144 other = STO_MICROMIPS; 16145 } 16146 /* Likewise the expected microMIPS instruction (insn32 mode). */ 16147 else if ((opcode & 0xffff0000) == 0xff2f0000) 16148 { 16149 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16150 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; 16151 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16152 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16153 gotplt_addr = gotplt_hi + gotplt_lo; 16154 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 16155 suffixlen = sizeof (microsuffix); 16156 suffix = microsuffix; 16157 other = STO_MICROMIPS; 16158 } 16159 /* Otherwise assume standard MIPS code. */ 16160 else 16161 { 16162 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; 16163 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; 16164 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16165 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16166 gotplt_addr = gotplt_hi + gotplt_lo; 16167 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); 16168 suffixlen = sizeof (mipssuffix); 16169 suffix = mipssuffix; 16170 other = 0; 16171 } 16172 /* Truncated table??? */ 16173 if (plt_offset + entry_size > plt->size) 16174 break; 16175 16176 for (i = 0; 16177 i < count && p[pi].address != gotplt_addr; 16178 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); 16179 16180 if (i < count) 16181 { 16182 size_t namelen; 16183 size_t len; 16184 16185 *s = **p[pi].sym_ptr_ptr; 16186 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 16187 we are defining a symbol, ensure one of them is set. */ 16188 if ((s->flags & BSF_LOCAL) == 0) 16189 s->flags |= BSF_GLOBAL; 16190 s->flags |= BSF_SYNTHETIC; 16191 s->section = plt; 16192 s->value = plt_offset; 16193 s->name = names; 16194 s->udata.i = other; 16195 16196 len = strlen ((*p[pi].sym_ptr_ptr)->name); 16197 namelen = len + suffixlen; 16198 if (names + namelen > nend) 16199 break; 16200 16201 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); 16202 names += len; 16203 memcpy (names, suffix, suffixlen); 16204 names += suffixlen; 16205 16206 ++s, ++n; 16207 pi = (pi + bed->s->int_rels_per_ext_rel) % counti; 16208 } 16209 } 16210 16211 free (plt_data); 16212 16213 return n; 16214 } 16215 16216 void 16217 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) 16218 { 16219 struct mips_elf_link_hash_table *htab; 16220 Elf_Internal_Ehdr *i_ehdrp; 16221 16222 i_ehdrp = elf_elfheader (abfd); 16223 if (link_info) 16224 { 16225 htab = mips_elf_hash_table (link_info); 16226 BFD_ASSERT (htab != NULL); 16227 16228 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) 16229 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 16230 } 16231 16232 _bfd_elf_post_process_headers (abfd, link_info); 16233 16234 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 16235 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) 16236 i_ehdrp->e_ident[EI_ABIVERSION] = 3; 16237 } 16238 16239 int 16240 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16241 { 16242 return DW_EH_PE_pcrel | DW_EH_PE_sdata4; 16243 } 16244 16245 /* Return the opcode for can't unwind. */ 16246 16247 int 16248 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED) 16249 { 16250 return COMPACT_EH_CANT_UNWIND_OPCODE; 16251 } 16252