Home | History | Annotate | Download | only in dexlayout
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  *
     16  * Implementation file of the dexlayout utility.
     17  *
     18  * This is a tool to read dex files into an internal representation,
     19  * reorganize the representation, and emit dex files with a better
     20  * file layout.
     21  */
     22 
     23 #include "dexlayout.h"
     24 
     25 #include <inttypes.h>
     26 #include <stdio.h>
     27 #include <sys/mman.h>  // For the PROT_* and MAP_* constants.
     28 
     29 #include <iostream>
     30 #include <memory>
     31 #include <sstream>
     32 #include <vector>
     33 
     34 #include "android-base/stringprintf.h"
     35 
     36 #include "base/logging.h"  // For VLOG_IS_ON.
     37 #include "base/os.h"
     38 #include "base/utils.h"
     39 #include "dex/art_dex_file_loader.h"
     40 #include "dex/descriptors_names.h"
     41 #include "dex/dex_file-inl.h"
     42 #include "dex/dex_file_layout.h"
     43 #include "dex/dex_file_loader.h"
     44 #include "dex/dex_file_types.h"
     45 #include "dex/dex_file_verifier.h"
     46 #include "dex/dex_instruction-inl.h"
     47 #include "dex_ir_builder.h"
     48 #include "dex_verify.h"
     49 #include "dex_visualize.h"
     50 #include "dex_writer.h"
     51 #include "jit/profile_compilation_info.h"
     52 #include "mem_map.h"
     53 
     54 namespace art {
     55 
     56 using android::base::StringPrintf;
     57 
     58 /*
     59  * Flags for use with createAccessFlagStr().
     60  */
     61 enum AccessFor {
     62   kAccessForClass = 0, kAccessForMethod = 1, kAccessForField = 2, kAccessForMAX
     63 };
     64 const int kNumFlags = 18;
     65 
     66 /*
     67  * Gets 2 little-endian bytes.
     68  */
     69 static inline uint16_t Get2LE(unsigned char const* src) {
     70   return src[0] | (src[1] << 8);
     71 }
     72 
     73 /*
     74  * Converts a type descriptor to human-readable "dotted" form.  For
     75  * example, "Ljava/lang/String;" becomes "java.lang.String", and
     76  * "[I" becomes "int[]".  Also converts '$' to '.', which means this
     77  * form can't be converted back to a descriptor.
     78  */
     79 static std::string DescriptorToDotWrapper(const char* descriptor) {
     80   std::string result = DescriptorToDot(descriptor);
     81   size_t found = result.find('$');
     82   while (found != std::string::npos) {
     83     result[found] = '.';
     84     found = result.find('$', found);
     85   }
     86   return result;
     87 }
     88 
     89 /*
     90  * Converts the class name portion of a type descriptor to human-readable
     91  * "dotted" form. For example, "Ljava/lang/String;" becomes "String".
     92  */
     93 static std::string DescriptorClassToDot(const char* str) {
     94   std::string descriptor(str);
     95   // Reduce to just the class name prefix.
     96   size_t last_slash = descriptor.rfind('/');
     97   if (last_slash == std::string::npos) {
     98     last_slash = 0;
     99   }
    100   // Start past the '/' or 'L'.
    101   last_slash++;
    102 
    103   // Copy class name over, trimming trailing ';'.
    104   size_t size = descriptor.size() - 1 - last_slash;
    105   std::string result(descriptor.substr(last_slash, size));
    106 
    107   // Replace '$' with '.'.
    108   size_t dollar_sign = result.find('$');
    109   while (dollar_sign != std::string::npos) {
    110     result[dollar_sign] = '.';
    111     dollar_sign = result.find('$', dollar_sign);
    112   }
    113 
    114   return result;
    115 }
    116 
    117 /*
    118  * Returns string representing the boolean value.
    119  */
    120 static const char* StrBool(bool val) {
    121   return val ? "true" : "false";
    122 }
    123 
    124 /*
    125  * Returns a quoted string representing the boolean value.
    126  */
    127 static const char* QuotedBool(bool val) {
    128   return val ? "\"true\"" : "\"false\"";
    129 }
    130 
    131 /*
    132  * Returns a quoted string representing the access flags.
    133  */
    134 static const char* QuotedVisibility(uint32_t access_flags) {
    135   if (access_flags & kAccPublic) {
    136     return "\"public\"";
    137   } else if (access_flags & kAccProtected) {
    138     return "\"protected\"";
    139   } else if (access_flags & kAccPrivate) {
    140     return "\"private\"";
    141   } else {
    142     return "\"package\"";
    143   }
    144 }
    145 
    146 /*
    147  * Counts the number of '1' bits in a word.
    148  */
    149 static int CountOnes(uint32_t val) {
    150   val = val - ((val >> 1) & 0x55555555);
    151   val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
    152   return (((val + (val >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
    153 }
    154 
    155 /*
    156  * Creates a new string with human-readable access flags.
    157  *
    158  * In the base language the access_flags fields are type uint16_t; in Dalvik they're uint32_t.
    159  */
    160 static char* CreateAccessFlagStr(uint32_t flags, AccessFor for_what) {
    161   static const char* kAccessStrings[kAccessForMAX][kNumFlags] = {
    162     {
    163       "PUBLIC",                /* 0x00001 */
    164       "PRIVATE",               /* 0x00002 */
    165       "PROTECTED",             /* 0x00004 */
    166       "STATIC",                /* 0x00008 */
    167       "FINAL",                 /* 0x00010 */
    168       "?",                     /* 0x00020 */
    169       "?",                     /* 0x00040 */
    170       "?",                     /* 0x00080 */
    171       "?",                     /* 0x00100 */
    172       "INTERFACE",             /* 0x00200 */
    173       "ABSTRACT",              /* 0x00400 */
    174       "?",                     /* 0x00800 */
    175       "SYNTHETIC",             /* 0x01000 */
    176       "ANNOTATION",            /* 0x02000 */
    177       "ENUM",                  /* 0x04000 */
    178       "?",                     /* 0x08000 */
    179       "VERIFIED",              /* 0x10000 */
    180       "OPTIMIZED",             /* 0x20000 */
    181     }, {
    182       "PUBLIC",                /* 0x00001 */
    183       "PRIVATE",               /* 0x00002 */
    184       "PROTECTED",             /* 0x00004 */
    185       "STATIC",                /* 0x00008 */
    186       "FINAL",                 /* 0x00010 */
    187       "SYNCHRONIZED",          /* 0x00020 */
    188       "BRIDGE",                /* 0x00040 */
    189       "VARARGS",               /* 0x00080 */
    190       "NATIVE",                /* 0x00100 */
    191       "?",                     /* 0x00200 */
    192       "ABSTRACT",              /* 0x00400 */
    193       "STRICT",                /* 0x00800 */
    194       "SYNTHETIC",             /* 0x01000 */
    195       "?",                     /* 0x02000 */
    196       "?",                     /* 0x04000 */
    197       "MIRANDA",               /* 0x08000 */
    198       "CONSTRUCTOR",           /* 0x10000 */
    199       "DECLARED_SYNCHRONIZED", /* 0x20000 */
    200     }, {
    201       "PUBLIC",                /* 0x00001 */
    202       "PRIVATE",               /* 0x00002 */
    203       "PROTECTED",             /* 0x00004 */
    204       "STATIC",                /* 0x00008 */
    205       "FINAL",                 /* 0x00010 */
    206       "?",                     /* 0x00020 */
    207       "VOLATILE",              /* 0x00040 */
    208       "TRANSIENT",             /* 0x00080 */
    209       "?",                     /* 0x00100 */
    210       "?",                     /* 0x00200 */
    211       "?",                     /* 0x00400 */
    212       "?",                     /* 0x00800 */
    213       "SYNTHETIC",             /* 0x01000 */
    214       "?",                     /* 0x02000 */
    215       "ENUM",                  /* 0x04000 */
    216       "?",                     /* 0x08000 */
    217       "?",                     /* 0x10000 */
    218       "?",                     /* 0x20000 */
    219     },
    220   };
    221 
    222   // Allocate enough storage to hold the expected number of strings,
    223   // plus a space between each.  We over-allocate, using the longest
    224   // string above as the base metric.
    225   const int kLongest = 21;  // The strlen of longest string above.
    226   const int count = CountOnes(flags);
    227   char* str;
    228   char* cp;
    229   cp = str = reinterpret_cast<char*>(malloc(count * (kLongest + 1) + 1));
    230 
    231   for (int i = 0; i < kNumFlags; i++) {
    232     if (flags & 0x01) {
    233       const char* accessStr = kAccessStrings[for_what][i];
    234       const int len = strlen(accessStr);
    235       if (cp != str) {
    236         *cp++ = ' ';
    237       }
    238       memcpy(cp, accessStr, len);
    239       cp += len;
    240     }
    241     flags >>= 1;
    242   }  // for
    243 
    244   *cp = '\0';
    245   return str;
    246 }
    247 
    248 static std::string GetSignatureForProtoId(const dex_ir::ProtoId* proto) {
    249   if (proto == nullptr) {
    250     return "<no signature>";
    251   }
    252 
    253   std::string result("(");
    254   const dex_ir::TypeList* type_list = proto->Parameters();
    255   if (type_list != nullptr) {
    256     for (const dex_ir::TypeId* type_id : *type_list->GetTypeList()) {
    257       result += type_id->GetStringId()->Data();
    258     }
    259   }
    260   result += ")";
    261   result += proto->ReturnType()->GetStringId()->Data();
    262   return result;
    263 }
    264 
    265 /*
    266  * Copies character data from "data" to "out", converting non-ASCII values
    267  * to fprintf format chars or an ASCII filler ('.' or '?').
    268  *
    269  * The output buffer must be able to hold (2*len)+1 bytes.  The result is
    270  * NULL-terminated.
    271  */
    272 static void Asciify(char* out, const unsigned char* data, size_t len) {
    273   while (len--) {
    274     if (*data < 0x20) {
    275       // Could do more here, but we don't need them yet.
    276       switch (*data) {
    277         case '\0':
    278           *out++ = '\\';
    279           *out++ = '0';
    280           break;
    281         case '\n':
    282           *out++ = '\\';
    283           *out++ = 'n';
    284           break;
    285         default:
    286           *out++ = '.';
    287           break;
    288       }  // switch
    289     } else if (*data >= 0x80) {
    290       *out++ = '?';
    291     } else {
    292       *out++ = *data;
    293     }
    294     data++;
    295   }  // while
    296   *out = '\0';
    297 }
    298 
    299 /*
    300  * Dumps a string value with some escape characters.
    301  */
    302 static void DumpEscapedString(const char* p, FILE* out_file) {
    303   fputs("\"", out_file);
    304   for (; *p; p++) {
    305     switch (*p) {
    306       case '\\':
    307         fputs("\\\\", out_file);
    308         break;
    309       case '\"':
    310         fputs("\\\"", out_file);
    311         break;
    312       case '\t':
    313         fputs("\\t", out_file);
    314         break;
    315       case '\n':
    316         fputs("\\n", out_file);
    317         break;
    318       case '\r':
    319         fputs("\\r", out_file);
    320         break;
    321       default:
    322         putc(*p, out_file);
    323     }  // switch
    324   }  // for
    325   fputs("\"", out_file);
    326 }
    327 
    328 /*
    329  * Dumps a string as an XML attribute value.
    330  */
    331 static void DumpXmlAttribute(const char* p, FILE* out_file) {
    332   for (; *p; p++) {
    333     switch (*p) {
    334       case '&':
    335         fputs("&amp;", out_file);
    336         break;
    337       case '<':
    338         fputs("&lt;", out_file);
    339         break;
    340       case '>':
    341         fputs("&gt;", out_file);
    342         break;
    343       case '"':
    344         fputs("&quot;", out_file);
    345         break;
    346       case '\t':
    347         fputs("&#x9;", out_file);
    348         break;
    349       case '\n':
    350         fputs("&#xA;", out_file);
    351         break;
    352       case '\r':
    353         fputs("&#xD;", out_file);
    354         break;
    355       default:
    356         putc(*p, out_file);
    357     }  // switch
    358   }  // for
    359 }
    360 
    361 /*
    362  * Helper for dumpInstruction(), which builds the string
    363  * representation for the index in the given instruction.
    364  * Returns a pointer to a buffer of sufficient size.
    365  */
    366 static std::unique_ptr<char[]> IndexString(dex_ir::Header* header,
    367                                            const Instruction* dec_insn,
    368                                            size_t buf_size) {
    369   std::unique_ptr<char[]> buf(new char[buf_size]);
    370   // Determine index and width of the string.
    371   uint32_t index = 0;
    372   uint32_t secondary_index = dex::kDexNoIndex;
    373   uint32_t width = 4;
    374   switch (Instruction::FormatOf(dec_insn->Opcode())) {
    375     // SOME NOT SUPPORTED:
    376     // case Instruction::k20bc:
    377     case Instruction::k21c:
    378     case Instruction::k35c:
    379     // case Instruction::k35ms:
    380     case Instruction::k3rc:
    381     // case Instruction::k3rms:
    382     // case Instruction::k35mi:
    383     // case Instruction::k3rmi:
    384       index = dec_insn->VRegB();
    385       width = 4;
    386       break;
    387     case Instruction::k31c:
    388       index = dec_insn->VRegB();
    389       width = 8;
    390       break;
    391     case Instruction::k22c:
    392     // case Instruction::k22cs:
    393       index = dec_insn->VRegC();
    394       width = 4;
    395       break;
    396     case Instruction::k45cc:
    397     case Instruction::k4rcc:
    398       index = dec_insn->VRegB();
    399       secondary_index = dec_insn->VRegH();
    400       width = 4;
    401       break;
    402     default:
    403       break;
    404   }  // switch
    405 
    406   // Determine index type.
    407   size_t outSize = 0;
    408   switch (Instruction::IndexTypeOf(dec_insn->Opcode())) {
    409     case Instruction::kIndexUnknown:
    410       // This function should never get called for this type, but do
    411       // something sensible here, just to help with debugging.
    412       outSize = snprintf(buf.get(), buf_size, "<unknown-index>");
    413       break;
    414     case Instruction::kIndexNone:
    415       // This function should never get called for this type, but do
    416       // something sensible here, just to help with debugging.
    417       outSize = snprintf(buf.get(), buf_size, "<no-index>");
    418       break;
    419     case Instruction::kIndexTypeRef:
    420       if (index < header->GetCollections().TypeIdsSize()) {
    421         const char* tp = header->GetCollections().GetTypeId(index)->GetStringId()->Data();
    422         outSize = snprintf(buf.get(), buf_size, "%s // type@%0*x", tp, width, index);
    423       } else {
    424         outSize = snprintf(buf.get(), buf_size, "<type?> // type@%0*x", width, index);
    425       }
    426       break;
    427     case Instruction::kIndexStringRef:
    428       if (index < header->GetCollections().StringIdsSize()) {
    429         const char* st = header->GetCollections().GetStringId(index)->Data();
    430         outSize = snprintf(buf.get(), buf_size, "\"%s\" // string@%0*x", st, width, index);
    431       } else {
    432         outSize = snprintf(buf.get(), buf_size, "<string?> // string@%0*x", width, index);
    433       }
    434       break;
    435     case Instruction::kIndexMethodRef:
    436       if (index < header->GetCollections().MethodIdsSize()) {
    437         dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
    438         const char* name = method_id->Name()->Data();
    439         std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
    440         const char* back_descriptor = method_id->Class()->GetStringId()->Data();
    441         outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // method@%0*x",
    442                            back_descriptor, name, type_descriptor.c_str(), width, index);
    443       } else {
    444         outSize = snprintf(buf.get(), buf_size, "<method?> // method@%0*x", width, index);
    445       }
    446       break;
    447     case Instruction::kIndexFieldRef:
    448       if (index < header->GetCollections().FieldIdsSize()) {
    449         dex_ir::FieldId* field_id = header->GetCollections().GetFieldId(index);
    450         const char* name = field_id->Name()->Data();
    451         const char* type_descriptor = field_id->Type()->GetStringId()->Data();
    452         const char* back_descriptor = field_id->Class()->GetStringId()->Data();
    453         outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // field@%0*x",
    454                            back_descriptor, name, type_descriptor, width, index);
    455       } else {
    456         outSize = snprintf(buf.get(), buf_size, "<field?> // field@%0*x", width, index);
    457       }
    458       break;
    459     case Instruction::kIndexVtableOffset:
    460       outSize = snprintf(buf.get(), buf_size, "[%0*x] // vtable #%0*x",
    461                          width, index, width, index);
    462       break;
    463     case Instruction::kIndexFieldOffset:
    464       outSize = snprintf(buf.get(), buf_size, "[obj+%0*x]", width, index);
    465       break;
    466     case Instruction::kIndexMethodAndProtoRef: {
    467       std::string method("<method?>");
    468       std::string proto("<proto?>");
    469       if (index < header->GetCollections().MethodIdsSize()) {
    470         dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
    471         const char* name = method_id->Name()->Data();
    472         std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
    473         const char* back_descriptor = method_id->Class()->GetStringId()->Data();
    474         method = StringPrintf("%s.%s:%s", back_descriptor, name, type_descriptor.c_str());
    475       }
    476       if (secondary_index < header->GetCollections().ProtoIdsSize()) {
    477         dex_ir::ProtoId* proto_id = header->GetCollections().GetProtoId(secondary_index);
    478         proto = GetSignatureForProtoId(proto_id);
    479       }
    480       outSize = snprintf(buf.get(), buf_size, "%s, %s // method@%0*x, proto@%0*x",
    481                          method.c_str(), proto.c_str(), width, index, width, secondary_index);
    482     }
    483     break;
    484     // SOME NOT SUPPORTED:
    485     // case Instruction::kIndexVaries:
    486     // case Instruction::kIndexInlineMethod:
    487     default:
    488       outSize = snprintf(buf.get(), buf_size, "<?>");
    489       break;
    490   }  // switch
    491 
    492   // Determine success of string construction.
    493   if (outSize >= buf_size) {
    494     // The buffer wasn't big enough; retry with computed size. Note: snprintf()
    495     // doesn't count/ the '\0' as part of its returned size, so we add explicit
    496     // space for it here.
    497     return IndexString(header, dec_insn, outSize + 1);
    498   }
    499   return buf;
    500 }
    501 
    502 /*
    503  * Dumps encoded annotation.
    504  */
    505 void DexLayout::DumpEncodedAnnotation(dex_ir::EncodedAnnotation* annotation) {
    506   fputs(annotation->GetType()->GetStringId()->Data(), out_file_);
    507   // Display all name=value pairs.
    508   for (auto& subannotation : *annotation->GetAnnotationElements()) {
    509     fputc(' ', out_file_);
    510     fputs(subannotation->GetName()->Data(), out_file_);
    511     fputc('=', out_file_);
    512     DumpEncodedValue(subannotation->GetValue());
    513   }
    514 }
    515 /*
    516  * Dumps encoded value.
    517  */
    518 void DexLayout::DumpEncodedValue(const dex_ir::EncodedValue* data) {
    519   switch (data->Type()) {
    520     case DexFile::kDexAnnotationByte:
    521       fprintf(out_file_, "%" PRId8, data->GetByte());
    522       break;
    523     case DexFile::kDexAnnotationShort:
    524       fprintf(out_file_, "%" PRId16, data->GetShort());
    525       break;
    526     case DexFile::kDexAnnotationChar:
    527       fprintf(out_file_, "%" PRIu16, data->GetChar());
    528       break;
    529     case DexFile::kDexAnnotationInt:
    530       fprintf(out_file_, "%" PRId32, data->GetInt());
    531       break;
    532     case DexFile::kDexAnnotationLong:
    533       fprintf(out_file_, "%" PRId64, data->GetLong());
    534       break;
    535     case DexFile::kDexAnnotationFloat: {
    536       fprintf(out_file_, "%g", data->GetFloat());
    537       break;
    538     }
    539     case DexFile::kDexAnnotationDouble: {
    540       fprintf(out_file_, "%g", data->GetDouble());
    541       break;
    542     }
    543     case DexFile::kDexAnnotationString: {
    544       dex_ir::StringId* string_id = data->GetStringId();
    545       if (options_.output_format_ == kOutputPlain) {
    546         DumpEscapedString(string_id->Data(), out_file_);
    547       } else {
    548         DumpXmlAttribute(string_id->Data(), out_file_);
    549       }
    550       break;
    551     }
    552     case DexFile::kDexAnnotationType: {
    553       dex_ir::TypeId* type_id = data->GetTypeId();
    554       fputs(type_id->GetStringId()->Data(), out_file_);
    555       break;
    556     }
    557     case DexFile::kDexAnnotationField:
    558     case DexFile::kDexAnnotationEnum: {
    559       dex_ir::FieldId* field_id = data->GetFieldId();
    560       fputs(field_id->Name()->Data(), out_file_);
    561       break;
    562     }
    563     case DexFile::kDexAnnotationMethod: {
    564       dex_ir::MethodId* method_id = data->GetMethodId();
    565       fputs(method_id->Name()->Data(), out_file_);
    566       break;
    567     }
    568     case DexFile::kDexAnnotationArray: {
    569       fputc('{', out_file_);
    570       // Display all elements.
    571       for (auto& value : *data->GetEncodedArray()->GetEncodedValues()) {
    572         fputc(' ', out_file_);
    573         DumpEncodedValue(value.get());
    574       }
    575       fputs(" }", out_file_);
    576       break;
    577     }
    578     case DexFile::kDexAnnotationAnnotation: {
    579       DumpEncodedAnnotation(data->GetEncodedAnnotation());
    580       break;
    581     }
    582     case DexFile::kDexAnnotationNull:
    583       fputs("null", out_file_);
    584       break;
    585     case DexFile::kDexAnnotationBoolean:
    586       fputs(StrBool(data->GetBoolean()), out_file_);
    587       break;
    588     default:
    589       fputs("????", out_file_);
    590       break;
    591   }  // switch
    592 }
    593 
    594 /*
    595  * Dumps the file header.
    596  */
    597 void DexLayout::DumpFileHeader() {
    598   char sanitized[8 * 2 + 1];
    599   dex_ir::Collections& collections = header_->GetCollections();
    600   fprintf(out_file_, "DEX file header:\n");
    601   Asciify(sanitized, header_->Magic(), 8);
    602   fprintf(out_file_, "magic               : '%s'\n", sanitized);
    603   fprintf(out_file_, "checksum            : %08x\n", header_->Checksum());
    604   fprintf(out_file_, "signature           : %02x%02x...%02x%02x\n",
    605           header_->Signature()[0], header_->Signature()[1],
    606           header_->Signature()[DexFile::kSha1DigestSize - 2],
    607           header_->Signature()[DexFile::kSha1DigestSize - 1]);
    608   fprintf(out_file_, "file_size           : %d\n", header_->FileSize());
    609   fprintf(out_file_, "header_size         : %d\n", header_->HeaderSize());
    610   fprintf(out_file_, "link_size           : %d\n", header_->LinkSize());
    611   fprintf(out_file_, "link_off            : %d (0x%06x)\n",
    612           header_->LinkOffset(), header_->LinkOffset());
    613   fprintf(out_file_, "string_ids_size     : %d\n", collections.StringIdsSize());
    614   fprintf(out_file_, "string_ids_off      : %d (0x%06x)\n",
    615           collections.StringIdsOffset(), collections.StringIdsOffset());
    616   fprintf(out_file_, "type_ids_size       : %d\n", collections.TypeIdsSize());
    617   fprintf(out_file_, "type_ids_off        : %d (0x%06x)\n",
    618           collections.TypeIdsOffset(), collections.TypeIdsOffset());
    619   fprintf(out_file_, "proto_ids_size      : %d\n", collections.ProtoIdsSize());
    620   fprintf(out_file_, "proto_ids_off       : %d (0x%06x)\n",
    621           collections.ProtoIdsOffset(), collections.ProtoIdsOffset());
    622   fprintf(out_file_, "field_ids_size      : %d\n", collections.FieldIdsSize());
    623   fprintf(out_file_, "field_ids_off       : %d (0x%06x)\n",
    624           collections.FieldIdsOffset(), collections.FieldIdsOffset());
    625   fprintf(out_file_, "method_ids_size     : %d\n", collections.MethodIdsSize());
    626   fprintf(out_file_, "method_ids_off      : %d (0x%06x)\n",
    627           collections.MethodIdsOffset(), collections.MethodIdsOffset());
    628   fprintf(out_file_, "class_defs_size     : %d\n", collections.ClassDefsSize());
    629   fprintf(out_file_, "class_defs_off      : %d (0x%06x)\n",
    630           collections.ClassDefsOffset(), collections.ClassDefsOffset());
    631   fprintf(out_file_, "data_size           : %d\n", header_->DataSize());
    632   fprintf(out_file_, "data_off            : %d (0x%06x)\n\n",
    633           header_->DataOffset(), header_->DataOffset());
    634 }
    635 
    636 /*
    637  * Dumps a class_def_item.
    638  */
    639 void DexLayout::DumpClassDef(int idx) {
    640   // General class information.
    641   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
    642   fprintf(out_file_, "Class #%d header:\n", idx);
    643   fprintf(out_file_, "class_idx           : %d\n", class_def->ClassType()->GetIndex());
    644   fprintf(out_file_, "access_flags        : %d (0x%04x)\n",
    645           class_def->GetAccessFlags(), class_def->GetAccessFlags());
    646   uint32_t superclass_idx =  class_def->Superclass() == nullptr ?
    647       DexFile::kDexNoIndex16 : class_def->Superclass()->GetIndex();
    648   fprintf(out_file_, "superclass_idx      : %d\n", superclass_idx);
    649   fprintf(out_file_, "interfaces_off      : %d (0x%06x)\n",
    650           class_def->InterfacesOffset(), class_def->InterfacesOffset());
    651   uint32_t source_file_offset = 0xffffffffU;
    652   if (class_def->SourceFile() != nullptr) {
    653     source_file_offset = class_def->SourceFile()->GetIndex();
    654   }
    655   fprintf(out_file_, "source_file_idx     : %d\n", source_file_offset);
    656   uint32_t annotations_offset = 0;
    657   if (class_def->Annotations() != nullptr) {
    658     annotations_offset = class_def->Annotations()->GetOffset();
    659   }
    660   fprintf(out_file_, "annotations_off     : %d (0x%06x)\n",
    661           annotations_offset, annotations_offset);
    662   if (class_def->GetClassData() == nullptr) {
    663     fprintf(out_file_, "class_data_off      : %d (0x%06x)\n", 0, 0);
    664   } else {
    665     fprintf(out_file_, "class_data_off      : %d (0x%06x)\n",
    666             class_def->GetClassData()->GetOffset(), class_def->GetClassData()->GetOffset());
    667   }
    668 
    669   // Fields and methods.
    670   dex_ir::ClassData* class_data = class_def->GetClassData();
    671   if (class_data != nullptr && class_data->StaticFields() != nullptr) {
    672     fprintf(out_file_, "static_fields_size  : %zu\n", class_data->StaticFields()->size());
    673   } else {
    674     fprintf(out_file_, "static_fields_size  : 0\n");
    675   }
    676   if (class_data != nullptr && class_data->InstanceFields() != nullptr) {
    677     fprintf(out_file_, "instance_fields_size: %zu\n", class_data->InstanceFields()->size());
    678   } else {
    679     fprintf(out_file_, "instance_fields_size: 0\n");
    680   }
    681   if (class_data != nullptr && class_data->DirectMethods() != nullptr) {
    682     fprintf(out_file_, "direct_methods_size : %zu\n", class_data->DirectMethods()->size());
    683   } else {
    684     fprintf(out_file_, "direct_methods_size : 0\n");
    685   }
    686   if (class_data != nullptr && class_data->VirtualMethods() != nullptr) {
    687     fprintf(out_file_, "virtual_methods_size: %zu\n", class_data->VirtualMethods()->size());
    688   } else {
    689     fprintf(out_file_, "virtual_methods_size: 0\n");
    690   }
    691   fprintf(out_file_, "\n");
    692 }
    693 
    694 /**
    695  * Dumps an annotation set item.
    696  */
    697 void DexLayout::DumpAnnotationSetItem(dex_ir::AnnotationSetItem* set_item) {
    698   if (set_item == nullptr || set_item->GetItems()->size() == 0) {
    699     fputs("  empty-annotation-set\n", out_file_);
    700     return;
    701   }
    702   for (dex_ir::AnnotationItem* annotation : *set_item->GetItems()) {
    703     if (annotation == nullptr) {
    704       continue;
    705     }
    706     fputs("  ", out_file_);
    707     switch (annotation->GetVisibility()) {
    708       case DexFile::kDexVisibilityBuild:   fputs("VISIBILITY_BUILD ",   out_file_); break;
    709       case DexFile::kDexVisibilityRuntime: fputs("VISIBILITY_RUNTIME ", out_file_); break;
    710       case DexFile::kDexVisibilitySystem:  fputs("VISIBILITY_SYSTEM ",  out_file_); break;
    711       default:                             fputs("VISIBILITY_UNKNOWN ", out_file_); break;
    712     }  // switch
    713     DumpEncodedAnnotation(annotation->GetAnnotation());
    714     fputc('\n', out_file_);
    715   }
    716 }
    717 
    718 /*
    719  * Dumps class annotations.
    720  */
    721 void DexLayout::DumpClassAnnotations(int idx) {
    722   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
    723   dex_ir::AnnotationsDirectoryItem* annotations_directory = class_def->Annotations();
    724   if (annotations_directory == nullptr) {
    725     return;  // none
    726   }
    727 
    728   fprintf(out_file_, "Class #%d annotations:\n", idx);
    729 
    730   dex_ir::AnnotationSetItem* class_set_item = annotations_directory->GetClassAnnotation();
    731   dex_ir::FieldAnnotationVector* fields = annotations_directory->GetFieldAnnotations();
    732   dex_ir::MethodAnnotationVector* methods = annotations_directory->GetMethodAnnotations();
    733   dex_ir::ParameterAnnotationVector* parameters = annotations_directory->GetParameterAnnotations();
    734 
    735   // Annotations on the class itself.
    736   if (class_set_item != nullptr) {
    737     fprintf(out_file_, "Annotations on class\n");
    738     DumpAnnotationSetItem(class_set_item);
    739   }
    740 
    741   // Annotations on fields.
    742   if (fields != nullptr) {
    743     for (auto& field : *fields) {
    744       const dex_ir::FieldId* field_id = field->GetFieldId();
    745       const uint32_t field_idx = field_id->GetIndex();
    746       const char* field_name = field_id->Name()->Data();
    747       fprintf(out_file_, "Annotations on field #%u '%s'\n", field_idx, field_name);
    748       DumpAnnotationSetItem(field->GetAnnotationSetItem());
    749     }
    750   }
    751 
    752   // Annotations on methods.
    753   if (methods != nullptr) {
    754     for (auto& method : *methods) {
    755       const dex_ir::MethodId* method_id = method->GetMethodId();
    756       const uint32_t method_idx = method_id->GetIndex();
    757       const char* method_name = method_id->Name()->Data();
    758       fprintf(out_file_, "Annotations on method #%u '%s'\n", method_idx, method_name);
    759       DumpAnnotationSetItem(method->GetAnnotationSetItem());
    760     }
    761   }
    762 
    763   // Annotations on method parameters.
    764   if (parameters != nullptr) {
    765     for (auto& parameter : *parameters) {
    766       const dex_ir::MethodId* method_id = parameter->GetMethodId();
    767       const uint32_t method_idx = method_id->GetIndex();
    768       const char* method_name = method_id->Name()->Data();
    769       fprintf(out_file_, "Annotations on method #%u '%s' parameters\n", method_idx, method_name);
    770       uint32_t j = 0;
    771       for (dex_ir::AnnotationSetItem* annotation : *parameter->GetAnnotations()->GetItems()) {
    772         fprintf(out_file_, "#%u\n", j);
    773         DumpAnnotationSetItem(annotation);
    774         ++j;
    775       }
    776     }
    777   }
    778 
    779   fputc('\n', out_file_);
    780 }
    781 
    782 /*
    783  * Dumps an interface that a class declares to implement.
    784  */
    785 void DexLayout::DumpInterface(const dex_ir::TypeId* type_item, int i) {
    786   const char* interface_name = type_item->GetStringId()->Data();
    787   if (options_.output_format_ == kOutputPlain) {
    788     fprintf(out_file_, "    #%d              : '%s'\n", i, interface_name);
    789   } else {
    790     std::string dot(DescriptorToDotWrapper(interface_name));
    791     fprintf(out_file_, "<implements name=\"%s\">\n</implements>\n", dot.c_str());
    792   }
    793 }
    794 
    795 /*
    796  * Dumps the catches table associated with the code.
    797  */
    798 void DexLayout::DumpCatches(const dex_ir::CodeItem* code) {
    799   const uint16_t tries_size = code->TriesSize();
    800 
    801   // No catch table.
    802   if (tries_size == 0) {
    803     fprintf(out_file_, "      catches       : (none)\n");
    804     return;
    805   }
    806 
    807   // Dump all table entries.
    808   fprintf(out_file_, "      catches       : %d\n", tries_size);
    809   std::vector<std::unique_ptr<const dex_ir::TryItem>>* tries = code->Tries();
    810   for (uint32_t i = 0; i < tries_size; i++) {
    811     const dex_ir::TryItem* try_item = (*tries)[i].get();
    812     const uint32_t start = try_item->StartAddr();
    813     const uint32_t end = start + try_item->InsnCount();
    814     fprintf(out_file_, "        0x%04x - 0x%04x\n", start, end);
    815     for (auto& handler : *try_item->GetHandlers()->GetHandlers()) {
    816       const dex_ir::TypeId* type_id = handler->GetTypeId();
    817       const char* descriptor = (type_id == nullptr) ? "<any>" : type_id->GetStringId()->Data();
    818       fprintf(out_file_, "          %s -> 0x%04x\n", descriptor, handler->GetAddress());
    819     }  // for
    820   }  // for
    821 }
    822 
    823 /*
    824  * Dumps a single instruction.
    825  */
    826 void DexLayout::DumpInstruction(const dex_ir::CodeItem* code,
    827                                 uint32_t code_offset,
    828                                 uint32_t insn_idx,
    829                                 uint32_t insn_width,
    830                                 const Instruction* dec_insn) {
    831   // Address of instruction (expressed as byte offset).
    832   fprintf(out_file_, "%06x:", code_offset + 0x10 + insn_idx * 2);
    833 
    834   // Dump (part of) raw bytes.
    835   const uint16_t* insns = code->Insns();
    836   for (uint32_t i = 0; i < 8; i++) {
    837     if (i < insn_width) {
    838       if (i == 7) {
    839         fprintf(out_file_, " ... ");
    840       } else {
    841         // Print 16-bit value in little-endian order.
    842         const uint8_t* bytePtr = (const uint8_t*) &insns[insn_idx + i];
    843         fprintf(out_file_, " %02x%02x", bytePtr[0], bytePtr[1]);
    844       }
    845     } else {
    846       fputs("     ", out_file_);
    847     }
    848   }  // for
    849 
    850   // Dump pseudo-instruction or opcode.
    851   if (dec_insn->Opcode() == Instruction::NOP) {
    852     const uint16_t instr = Get2LE((const uint8_t*) &insns[insn_idx]);
    853     if (instr == Instruction::kPackedSwitchSignature) {
    854       fprintf(out_file_, "|%04x: packed-switch-data (%d units)", insn_idx, insn_width);
    855     } else if (instr == Instruction::kSparseSwitchSignature) {
    856       fprintf(out_file_, "|%04x: sparse-switch-data (%d units)", insn_idx, insn_width);
    857     } else if (instr == Instruction::kArrayDataSignature) {
    858       fprintf(out_file_, "|%04x: array-data (%d units)", insn_idx, insn_width);
    859     } else {
    860       fprintf(out_file_, "|%04x: nop // spacer", insn_idx);
    861     }
    862   } else {
    863     fprintf(out_file_, "|%04x: %s", insn_idx, dec_insn->Name());
    864   }
    865 
    866   // Set up additional argument.
    867   std::unique_ptr<char[]> index_buf;
    868   if (Instruction::IndexTypeOf(dec_insn->Opcode()) != Instruction::kIndexNone) {
    869     index_buf = IndexString(header_, dec_insn, 200);
    870   }
    871 
    872   // Dump the instruction.
    873   //
    874   // NOTE: pDecInsn->DumpString(pDexFile) differs too much from original.
    875   //
    876   switch (Instruction::FormatOf(dec_insn->Opcode())) {
    877     case Instruction::k10x:        // op
    878       break;
    879     case Instruction::k12x:        // op vA, vB
    880       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
    881       break;
    882     case Instruction::k11n:        // op vA, #+B
    883       fprintf(out_file_, " v%d, #int %d // #%x",
    884               dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint8_t)dec_insn->VRegB());
    885       break;
    886     case Instruction::k11x:        // op vAA
    887       fprintf(out_file_, " v%d", dec_insn->VRegA());
    888       break;
    889     case Instruction::k10t:        // op +AA
    890     case Instruction::k20t: {      // op +AAAA
    891       const int32_t targ = (int32_t) dec_insn->VRegA();
    892       fprintf(out_file_, " %04x // %c%04x",
    893               insn_idx + targ,
    894               (targ < 0) ? '-' : '+',
    895               (targ < 0) ? -targ : targ);
    896       break;
    897     }
    898     case Instruction::k22x:        // op vAA, vBBBB
    899       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
    900       break;
    901     case Instruction::k21t: {     // op vAA, +BBBB
    902       const int32_t targ = (int32_t) dec_insn->VRegB();
    903       fprintf(out_file_, " v%d, %04x // %c%04x", dec_insn->VRegA(),
    904               insn_idx + targ,
    905               (targ < 0) ? '-' : '+',
    906               (targ < 0) ? -targ : targ);
    907       break;
    908     }
    909     case Instruction::k21s:        // op vAA, #+BBBB
    910       fprintf(out_file_, " v%d, #int %d // #%x",
    911               dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint16_t)dec_insn->VRegB());
    912       break;
    913     case Instruction::k21h:        // op vAA, #+BBBB0000[00000000]
    914       // The printed format varies a bit based on the actual opcode.
    915       if (dec_insn->Opcode() == Instruction::CONST_HIGH16) {
    916         const int32_t value = dec_insn->VRegB() << 16;
    917         fprintf(out_file_, " v%d, #int %d // #%x",
    918                 dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
    919       } else {
    920         const int64_t value = ((int64_t) dec_insn->VRegB()) << 48;
    921         fprintf(out_file_, " v%d, #long %" PRId64 " // #%x",
    922                 dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
    923       }
    924       break;
    925     case Instruction::k21c:        // op vAA, thing@BBBB
    926     case Instruction::k31c:        // op vAA, thing@BBBBBBBB
    927       fprintf(out_file_, " v%d, %s", dec_insn->VRegA(), index_buf.get());
    928       break;
    929     case Instruction::k23x:        // op vAA, vBB, vCC
    930       fprintf(out_file_, " v%d, v%d, v%d",
    931               dec_insn->VRegA(), dec_insn->VRegB(), dec_insn->VRegC());
    932       break;
    933     case Instruction::k22b:        // op vAA, vBB, #+CC
    934       fprintf(out_file_, " v%d, v%d, #int %d // #%02x",
    935               dec_insn->VRegA(), dec_insn->VRegB(),
    936               (int32_t) dec_insn->VRegC(), (uint8_t) dec_insn->VRegC());
    937       break;
    938     case Instruction::k22t: {      // op vA, vB, +CCCC
    939       const int32_t targ = (int32_t) dec_insn->VRegC();
    940       fprintf(out_file_, " v%d, v%d, %04x // %c%04x",
    941               dec_insn->VRegA(), dec_insn->VRegB(),
    942               insn_idx + targ,
    943               (targ < 0) ? '-' : '+',
    944               (targ < 0) ? -targ : targ);
    945       break;
    946     }
    947     case Instruction::k22s:        // op vA, vB, #+CCCC
    948       fprintf(out_file_, " v%d, v%d, #int %d // #%04x",
    949               dec_insn->VRegA(), dec_insn->VRegB(),
    950               (int32_t) dec_insn->VRegC(), (uint16_t) dec_insn->VRegC());
    951       break;
    952     case Instruction::k22c:        // op vA, vB, thing@CCCC
    953     // NOT SUPPORTED:
    954     // case Instruction::k22cs:    // [opt] op vA, vB, field offset CCCC
    955       fprintf(out_file_, " v%d, v%d, %s",
    956               dec_insn->VRegA(), dec_insn->VRegB(), index_buf.get());
    957       break;
    958     case Instruction::k30t:
    959       fprintf(out_file_, " #%08x", dec_insn->VRegA());
    960       break;
    961     case Instruction::k31i: {     // op vAA, #+BBBBBBBB
    962       // This is often, but not always, a float.
    963       union {
    964         float f;
    965         uint32_t i;
    966       } conv;
    967       conv.i = dec_insn->VRegB();
    968       fprintf(out_file_, " v%d, #float %g // #%08x",
    969               dec_insn->VRegA(), conv.f, dec_insn->VRegB());
    970       break;
    971     }
    972     case Instruction::k31t:       // op vAA, offset +BBBBBBBB
    973       fprintf(out_file_, " v%d, %08x // +%08x",
    974               dec_insn->VRegA(), insn_idx + dec_insn->VRegB(), dec_insn->VRegB());
    975       break;
    976     case Instruction::k32x:        // op vAAAA, vBBBB
    977       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
    978       break;
    979     case Instruction::k35c:           // op {vC, vD, vE, vF, vG}, thing@BBBB
    980     case Instruction::k45cc: {        // op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH
    981     // NOT SUPPORTED:
    982     // case Instruction::k35ms:       // [opt] invoke-virtual+super
    983     // case Instruction::k35mi:       // [opt] inline invoke
    984       uint32_t arg[Instruction::kMaxVarArgRegs];
    985       dec_insn->GetVarArgs(arg);
    986       fputs(" {", out_file_);
    987       for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
    988         if (i == 0) {
    989           fprintf(out_file_, "v%d", arg[i]);
    990         } else {
    991           fprintf(out_file_, ", v%d", arg[i]);
    992         }
    993       }  // for
    994       fprintf(out_file_, "}, %s", index_buf.get());
    995       break;
    996     }
    997     case Instruction::k3rc:           // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB
    998     case Instruction::k4rcc:          // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH
    999     // NOT SUPPORTED:
   1000     // case Instruction::k3rms:       // [opt] invoke-virtual+super/range
   1001     // case Instruction::k3rmi:       // [opt] execute-inline/range
   1002       {
   1003         // This doesn't match the "dx" output when some of the args are
   1004         // 64-bit values -- dx only shows the first register.
   1005         fputs(" {", out_file_);
   1006         for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
   1007           if (i == 0) {
   1008             fprintf(out_file_, "v%d", dec_insn->VRegC() + i);
   1009           } else {
   1010             fprintf(out_file_, ", v%d", dec_insn->VRegC() + i);
   1011           }
   1012         }  // for
   1013         fprintf(out_file_, "}, %s", index_buf.get());
   1014       }
   1015       break;
   1016     case Instruction::k51l: {      // op vAA, #+BBBBBBBBBBBBBBBB
   1017       // This is often, but not always, a double.
   1018       union {
   1019         double d;
   1020         uint64_t j;
   1021       } conv;
   1022       conv.j = dec_insn->WideVRegB();
   1023       fprintf(out_file_, " v%d, #double %g // #%016" PRIx64,
   1024               dec_insn->VRegA(), conv.d, dec_insn->WideVRegB());
   1025       break;
   1026     }
   1027     // NOT SUPPORTED:
   1028     // case Instruction::k00x:        // unknown op or breakpoint
   1029     //    break;
   1030     default:
   1031       fprintf(out_file_, " ???");
   1032       break;
   1033   }  // switch
   1034 
   1035   fputc('\n', out_file_);
   1036 }
   1037 
   1038 /*
   1039  * Dumps a bytecode disassembly.
   1040  */
   1041 void DexLayout::DumpBytecodes(uint32_t idx, const dex_ir::CodeItem* code, uint32_t code_offset) {
   1042   dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
   1043   const char* name = method_id->Name()->Data();
   1044   std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
   1045   const char* back_descriptor = method_id->Class()->GetStringId()->Data();
   1046 
   1047   // Generate header.
   1048   std::string dot(DescriptorToDotWrapper(back_descriptor));
   1049   fprintf(out_file_, "%06x:                                        |[%06x] %s.%s:%s\n",
   1050           code_offset, code_offset, dot.c_str(), name, type_descriptor.c_str());
   1051 
   1052   // Iterate over all instructions.
   1053   for (const DexInstructionPcPair& inst : code->Instructions()) {
   1054     const uint32_t insn_width = inst->SizeInCodeUnits();
   1055     if (insn_width == 0) {
   1056       LOG(WARNING) << "GLITCH: zero-width instruction at idx=0x" << std::hex << inst.DexPc();
   1057       break;
   1058     }
   1059     DumpInstruction(code, code_offset, inst.DexPc(), insn_width, &inst.Inst());
   1060   }  // for
   1061 }
   1062 
   1063 /*
   1064  * Callback for dumping each positions table entry.
   1065  */
   1066 static bool DumpPositionsCb(void* context, const DexFile::PositionInfo& entry) {
   1067   FILE* out_file = reinterpret_cast<FILE*>(context);
   1068   fprintf(out_file, "        0x%04x line=%d\n", entry.address_, entry.line_);
   1069   return false;
   1070 }
   1071 
   1072 /*
   1073  * Callback for dumping locals table entry.
   1074  */
   1075 static void DumpLocalsCb(void* context, const DexFile::LocalInfo& entry) {
   1076   const char* signature = entry.signature_ != nullptr ? entry.signature_ : "";
   1077   FILE* out_file = reinterpret_cast<FILE*>(context);
   1078   fprintf(out_file, "        0x%04x - 0x%04x reg=%d %s %s %s\n",
   1079           entry.start_address_, entry.end_address_, entry.reg_,
   1080           entry.name_, entry.descriptor_, signature);
   1081 }
   1082 
   1083 /*
   1084  * Lookup functions.
   1085  */
   1086 static const char* StringDataByIdx(uint32_t idx, dex_ir::Collections& collections) {
   1087   dex_ir::StringId* string_id = collections.GetStringIdOrNullPtr(idx);
   1088   if (string_id == nullptr) {
   1089     return nullptr;
   1090   }
   1091   return string_id->Data();
   1092 }
   1093 
   1094 static const char* StringDataByTypeIdx(uint16_t idx, dex_ir::Collections& collections) {
   1095   dex_ir::TypeId* type_id = collections.GetTypeIdOrNullPtr(idx);
   1096   if (type_id == nullptr) {
   1097     return nullptr;
   1098   }
   1099   dex_ir::StringId* string_id = type_id->GetStringId();
   1100   if (string_id == nullptr) {
   1101     return nullptr;
   1102   }
   1103   return string_id->Data();
   1104 }
   1105 
   1106 
   1107 /*
   1108  * Dumps code of a method.
   1109  */
   1110 void DexLayout::DumpCode(uint32_t idx,
   1111                          const dex_ir::CodeItem* code,
   1112                          uint32_t code_offset,
   1113                          const char* declaring_class_descriptor,
   1114                          const char* method_name,
   1115                          bool is_static,
   1116                          const dex_ir::ProtoId* proto) {
   1117   fprintf(out_file_, "      registers     : %d\n", code->RegistersSize());
   1118   fprintf(out_file_, "      ins           : %d\n", code->InsSize());
   1119   fprintf(out_file_, "      outs          : %d\n", code->OutsSize());
   1120   fprintf(out_file_, "      insns size    : %d 16-bit code units\n",
   1121           code->InsnsSize());
   1122 
   1123   // Bytecode disassembly, if requested.
   1124   if (options_.disassemble_) {
   1125     DumpBytecodes(idx, code, code_offset);
   1126   }
   1127 
   1128   // Try-catch blocks.
   1129   DumpCatches(code);
   1130 
   1131   // Positions and locals table in the debug info.
   1132   dex_ir::DebugInfoItem* debug_info = code->DebugInfo();
   1133   fprintf(out_file_, "      positions     : \n");
   1134   if (debug_info != nullptr) {
   1135     DexFile::DecodeDebugPositionInfo(debug_info->GetDebugInfo(),
   1136                                      [this](uint32_t idx) {
   1137                                        return StringDataByIdx(idx, this->header_->GetCollections());
   1138                                      },
   1139                                      DumpPositionsCb,
   1140                                      out_file_);
   1141   }
   1142   fprintf(out_file_, "      locals        : \n");
   1143   if (debug_info != nullptr) {
   1144     std::vector<const char*> arg_descriptors;
   1145     const dex_ir::TypeList* parameters = proto->Parameters();
   1146     if (parameters != nullptr) {
   1147       const dex_ir::TypeIdVector* parameter_type_vector = parameters->GetTypeList();
   1148       if (parameter_type_vector != nullptr) {
   1149         for (const dex_ir::TypeId* type_id : *parameter_type_vector) {
   1150           arg_descriptors.push_back(type_id->GetStringId()->Data());
   1151         }
   1152       }
   1153     }
   1154     DexFile::DecodeDebugLocalInfo(debug_info->GetDebugInfo(),
   1155                                   "DexLayout in-memory",
   1156                                   declaring_class_descriptor,
   1157                                   arg_descriptors,
   1158                                   method_name,
   1159                                   is_static,
   1160                                   code->RegistersSize(),
   1161                                   code->InsSize(),
   1162                                   code->InsnsSize(),
   1163                                   [this](uint32_t idx) {
   1164                                     return StringDataByIdx(idx, this->header_->GetCollections());
   1165                                   },
   1166                                   [this](uint32_t idx) {
   1167                                     return
   1168                                         StringDataByTypeIdx(dchecked_integral_cast<uint16_t>(idx),
   1169                                                             this->header_->GetCollections());
   1170                                   },
   1171                                   DumpLocalsCb,
   1172                                   out_file_);
   1173   }
   1174 }
   1175 
   1176 /*
   1177  * Dumps a method.
   1178  */
   1179 void DexLayout::DumpMethod(uint32_t idx, uint32_t flags, const dex_ir::CodeItem* code, int i) {
   1180   // Bail for anything private if export only requested.
   1181   if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
   1182     return;
   1183   }
   1184 
   1185   dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
   1186   const char* name = method_id->Name()->Data();
   1187   char* type_descriptor = strdup(GetSignatureForProtoId(method_id->Proto()).c_str());
   1188   const char* back_descriptor = method_id->Class()->GetStringId()->Data();
   1189   char* access_str = CreateAccessFlagStr(flags, kAccessForMethod);
   1190 
   1191   if (options_.output_format_ == kOutputPlain) {
   1192     fprintf(out_file_, "    #%d              : (in %s)\n", i, back_descriptor);
   1193     fprintf(out_file_, "      name          : '%s'\n", name);
   1194     fprintf(out_file_, "      type          : '%s'\n", type_descriptor);
   1195     fprintf(out_file_, "      access        : 0x%04x (%s)\n", flags, access_str);
   1196     if (code == nullptr) {
   1197       fprintf(out_file_, "      code          : (none)\n");
   1198     } else {
   1199       fprintf(out_file_, "      code          -\n");
   1200       DumpCode(idx,
   1201                code,
   1202                code->GetOffset(),
   1203                back_descriptor,
   1204                name,
   1205                (flags & kAccStatic) != 0,
   1206                method_id->Proto());
   1207     }
   1208     if (options_.disassemble_) {
   1209       fputc('\n', out_file_);
   1210     }
   1211   } else if (options_.output_format_ == kOutputXml) {
   1212     const bool constructor = (name[0] == '<');
   1213 
   1214     // Method name and prototype.
   1215     if (constructor) {
   1216       std::string dot(DescriptorClassToDot(back_descriptor));
   1217       fprintf(out_file_, "<constructor name=\"%s\"\n", dot.c_str());
   1218       dot = DescriptorToDotWrapper(back_descriptor);
   1219       fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
   1220     } else {
   1221       fprintf(out_file_, "<method name=\"%s\"\n", name);
   1222       const char* return_type = strrchr(type_descriptor, ')');
   1223       if (return_type == nullptr) {
   1224         LOG(ERROR) << "bad method type descriptor '" << type_descriptor << "'";
   1225         goto bail;
   1226       }
   1227       std::string dot(DescriptorToDotWrapper(return_type + 1));
   1228       fprintf(out_file_, " return=\"%s\"\n", dot.c_str());
   1229       fprintf(out_file_, " abstract=%s\n", QuotedBool((flags & kAccAbstract) != 0));
   1230       fprintf(out_file_, " native=%s\n", QuotedBool((flags & kAccNative) != 0));
   1231       fprintf(out_file_, " synchronized=%s\n", QuotedBool(
   1232           (flags & (kAccSynchronized | kAccDeclaredSynchronized)) != 0));
   1233     }
   1234 
   1235     // Additional method flags.
   1236     fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
   1237     fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
   1238     // The "deprecated=" not knowable w/o parsing annotations.
   1239     fprintf(out_file_, " visibility=%s\n>\n", QuotedVisibility(flags));
   1240 
   1241     // Parameters.
   1242     if (type_descriptor[0] != '(') {
   1243       LOG(ERROR) << "ERROR: bad descriptor '" << type_descriptor << "'";
   1244       goto bail;
   1245     }
   1246     char* tmp_buf = reinterpret_cast<char*>(malloc(strlen(type_descriptor) + 1));
   1247     const char* base = type_descriptor + 1;
   1248     int arg_num = 0;
   1249     while (*base != ')') {
   1250       char* cp = tmp_buf;
   1251       while (*base == '[') {
   1252         *cp++ = *base++;
   1253       }
   1254       if (*base == 'L') {
   1255         // Copy through ';'.
   1256         do {
   1257           *cp = *base++;
   1258         } while (*cp++ != ';');
   1259       } else {
   1260         // Primitive char, copy it.
   1261         if (strchr("ZBCSIFJD", *base) == nullptr) {
   1262           LOG(ERROR) << "ERROR: bad method signature '" << base << "'";
   1263           break;  // while
   1264         }
   1265         *cp++ = *base++;
   1266       }
   1267       // Null terminate and display.
   1268       *cp++ = '\0';
   1269       std::string dot(DescriptorToDotWrapper(tmp_buf));
   1270       fprintf(out_file_, "<parameter name=\"arg%d\" type=\"%s\">\n"
   1271                         "</parameter>\n", arg_num++, dot.c_str());
   1272     }  // while
   1273     free(tmp_buf);
   1274     if (constructor) {
   1275       fprintf(out_file_, "</constructor>\n");
   1276     } else {
   1277       fprintf(out_file_, "</method>\n");
   1278     }
   1279   }
   1280 
   1281  bail:
   1282   free(type_descriptor);
   1283   free(access_str);
   1284 }
   1285 
   1286 /*
   1287  * Dumps a static (class) field.
   1288  */
   1289 void DexLayout::DumpSField(uint32_t idx, uint32_t flags, int i, dex_ir::EncodedValue* init) {
   1290   // Bail for anything private if export only requested.
   1291   if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
   1292     return;
   1293   }
   1294 
   1295   dex_ir::FieldId* field_id = header_->GetCollections().GetFieldId(idx);
   1296   const char* name = field_id->Name()->Data();
   1297   const char* type_descriptor = field_id->Type()->GetStringId()->Data();
   1298   const char* back_descriptor = field_id->Class()->GetStringId()->Data();
   1299   char* access_str = CreateAccessFlagStr(flags, kAccessForField);
   1300 
   1301   if (options_.output_format_ == kOutputPlain) {
   1302     fprintf(out_file_, "    #%d              : (in %s)\n", i, back_descriptor);
   1303     fprintf(out_file_, "      name          : '%s'\n", name);
   1304     fprintf(out_file_, "      type          : '%s'\n", type_descriptor);
   1305     fprintf(out_file_, "      access        : 0x%04x (%s)\n", flags, access_str);
   1306     if (init != nullptr) {
   1307       fputs("      value         : ", out_file_);
   1308       DumpEncodedValue(init);
   1309       fputs("\n", out_file_);
   1310     }
   1311   } else if (options_.output_format_ == kOutputXml) {
   1312     fprintf(out_file_, "<field name=\"%s\"\n", name);
   1313     std::string dot(DescriptorToDotWrapper(type_descriptor));
   1314     fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
   1315     fprintf(out_file_, " transient=%s\n", QuotedBool((flags & kAccTransient) != 0));
   1316     fprintf(out_file_, " volatile=%s\n", QuotedBool((flags & kAccVolatile) != 0));
   1317     // The "value=" is not knowable w/o parsing annotations.
   1318     fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
   1319     fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
   1320     // The "deprecated=" is not knowable w/o parsing annotations.
   1321     fprintf(out_file_, " visibility=%s\n", QuotedVisibility(flags));
   1322     if (init != nullptr) {
   1323       fputs(" value=\"", out_file_);
   1324       DumpEncodedValue(init);
   1325       fputs("\"\n", out_file_);
   1326     }
   1327     fputs(">\n</field>\n", out_file_);
   1328   }
   1329 
   1330   free(access_str);
   1331 }
   1332 
   1333 /*
   1334  * Dumps an instance field.
   1335  */
   1336 void DexLayout::DumpIField(uint32_t idx, uint32_t flags, int i) {
   1337   DumpSField(idx, flags, i, nullptr);
   1338 }
   1339 
   1340 /*
   1341  * Dumps the class.
   1342  *
   1343  * Note "idx" is a DexClassDef index, not a DexTypeId index.
   1344  *
   1345  * If "*last_package" is nullptr or does not match the current class' package,
   1346  * the value will be replaced with a newly-allocated string.
   1347  */
   1348 void DexLayout::DumpClass(int idx, char** last_package) {
   1349   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
   1350   // Omitting non-public class.
   1351   if (options_.exports_only_ && (class_def->GetAccessFlags() & kAccPublic) == 0) {
   1352     return;
   1353   }
   1354 
   1355   if (options_.show_section_headers_) {
   1356     DumpClassDef(idx);
   1357   }
   1358 
   1359   if (options_.show_annotations_) {
   1360     DumpClassAnnotations(idx);
   1361   }
   1362 
   1363   // For the XML output, show the package name.  Ideally we'd gather
   1364   // up the classes, sort them, and dump them alphabetically so the
   1365   // package name wouldn't jump around, but that's not a great plan
   1366   // for something that needs to run on the device.
   1367   const char* class_descriptor =
   1368       header_->GetCollections().GetClassDef(idx)->ClassType()->GetStringId()->Data();
   1369   if (!(class_descriptor[0] == 'L' &&
   1370         class_descriptor[strlen(class_descriptor)-1] == ';')) {
   1371     // Arrays and primitives should not be defined explicitly. Keep going?
   1372     LOG(ERROR) << "Malformed class name '" << class_descriptor << "'";
   1373   } else if (options_.output_format_ == kOutputXml) {
   1374     char* mangle = strdup(class_descriptor + 1);
   1375     mangle[strlen(mangle)-1] = '\0';
   1376 
   1377     // Reduce to just the package name.
   1378     char* last_slash = strrchr(mangle, '/');
   1379     if (last_slash != nullptr) {
   1380       *last_slash = '\0';
   1381     } else {
   1382       *mangle = '\0';
   1383     }
   1384 
   1385     for (char* cp = mangle; *cp != '\0'; cp++) {
   1386       if (*cp == '/') {
   1387         *cp = '.';
   1388       }
   1389     }  // for
   1390 
   1391     if (*last_package == nullptr || strcmp(mangle, *last_package) != 0) {
   1392       // Start of a new package.
   1393       if (*last_package != nullptr) {
   1394         fprintf(out_file_, "</package>\n");
   1395       }
   1396       fprintf(out_file_, "<package name=\"%s\"\n>\n", mangle);
   1397       free(*last_package);
   1398       *last_package = mangle;
   1399     } else {
   1400       free(mangle);
   1401     }
   1402   }
   1403 
   1404   // General class information.
   1405   char* access_str = CreateAccessFlagStr(class_def->GetAccessFlags(), kAccessForClass);
   1406   const char* superclass_descriptor = nullptr;
   1407   if (class_def->Superclass() != nullptr) {
   1408     superclass_descriptor = class_def->Superclass()->GetStringId()->Data();
   1409   }
   1410   if (options_.output_format_ == kOutputPlain) {
   1411     fprintf(out_file_, "Class #%d            -\n", idx);
   1412     fprintf(out_file_, "  Class descriptor  : '%s'\n", class_descriptor);
   1413     fprintf(out_file_, "  Access flags      : 0x%04x (%s)\n",
   1414             class_def->GetAccessFlags(), access_str);
   1415     if (superclass_descriptor != nullptr) {
   1416       fprintf(out_file_, "  Superclass        : '%s'\n", superclass_descriptor);
   1417     }
   1418     fprintf(out_file_, "  Interfaces        -\n");
   1419   } else {
   1420     std::string dot(DescriptorClassToDot(class_descriptor));
   1421     fprintf(out_file_, "<class name=\"%s\"\n", dot.c_str());
   1422     if (superclass_descriptor != nullptr) {
   1423       dot = DescriptorToDotWrapper(superclass_descriptor);
   1424       fprintf(out_file_, " extends=\"%s\"\n", dot.c_str());
   1425     }
   1426     fprintf(out_file_, " interface=%s\n",
   1427             QuotedBool((class_def->GetAccessFlags() & kAccInterface) != 0));
   1428     fprintf(out_file_, " abstract=%s\n",
   1429             QuotedBool((class_def->GetAccessFlags() & kAccAbstract) != 0));
   1430     fprintf(out_file_, " static=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccStatic) != 0));
   1431     fprintf(out_file_, " final=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccFinal) != 0));
   1432     // The "deprecated=" not knowable w/o parsing annotations.
   1433     fprintf(out_file_, " visibility=%s\n", QuotedVisibility(class_def->GetAccessFlags()));
   1434     fprintf(out_file_, ">\n");
   1435   }
   1436 
   1437   // Interfaces.
   1438   const dex_ir::TypeList* interfaces = class_def->Interfaces();
   1439   if (interfaces != nullptr) {
   1440     const dex_ir::TypeIdVector* interfaces_vector = interfaces->GetTypeList();
   1441     for (uint32_t i = 0; i < interfaces_vector->size(); i++) {
   1442       DumpInterface((*interfaces_vector)[i], i);
   1443     }  // for
   1444   }
   1445 
   1446   // Fields and methods.
   1447   dex_ir::ClassData* class_data = class_def->GetClassData();
   1448   // Prepare data for static fields.
   1449   dex_ir::EncodedArrayItem* static_values = class_def->StaticValues();
   1450   dex_ir::EncodedValueVector* encoded_values =
   1451       static_values == nullptr ? nullptr : static_values->GetEncodedValues();
   1452   const uint32_t encoded_values_size = (encoded_values == nullptr) ? 0 : encoded_values->size();
   1453 
   1454   // Static fields.
   1455   if (options_.output_format_ == kOutputPlain) {
   1456     fprintf(out_file_, "  Static fields     -\n");
   1457   }
   1458   if (class_data != nullptr) {
   1459     dex_ir::FieldItemVector* static_fields = class_data->StaticFields();
   1460     if (static_fields != nullptr) {
   1461       for (uint32_t i = 0; i < static_fields->size(); i++) {
   1462         DumpSField((*static_fields)[i]->GetFieldId()->GetIndex(),
   1463                    (*static_fields)[i]->GetAccessFlags(),
   1464                    i,
   1465                    i < encoded_values_size ? (*encoded_values)[i].get() : nullptr);
   1466       }  // for
   1467     }
   1468   }
   1469 
   1470   // Instance fields.
   1471   if (options_.output_format_ == kOutputPlain) {
   1472     fprintf(out_file_, "  Instance fields   -\n");
   1473   }
   1474   if (class_data != nullptr) {
   1475     dex_ir::FieldItemVector* instance_fields = class_data->InstanceFields();
   1476     if (instance_fields != nullptr) {
   1477       for (uint32_t i = 0; i < instance_fields->size(); i++) {
   1478         DumpIField((*instance_fields)[i]->GetFieldId()->GetIndex(),
   1479                    (*instance_fields)[i]->GetAccessFlags(),
   1480                    i);
   1481       }  // for
   1482     }
   1483   }
   1484 
   1485   // Direct methods.
   1486   if (options_.output_format_ == kOutputPlain) {
   1487     fprintf(out_file_, "  Direct methods    -\n");
   1488   }
   1489   if (class_data != nullptr) {
   1490     dex_ir::MethodItemVector* direct_methods = class_data->DirectMethods();
   1491     if (direct_methods != nullptr) {
   1492       for (uint32_t i = 0; i < direct_methods->size(); i++) {
   1493         DumpMethod((*direct_methods)[i]->GetMethodId()->GetIndex(),
   1494                    (*direct_methods)[i]->GetAccessFlags(),
   1495                    (*direct_methods)[i]->GetCodeItem(),
   1496                  i);
   1497       }  // for
   1498     }
   1499   }
   1500 
   1501   // Virtual methods.
   1502   if (options_.output_format_ == kOutputPlain) {
   1503     fprintf(out_file_, "  Virtual methods   -\n");
   1504   }
   1505   if (class_data != nullptr) {
   1506     dex_ir::MethodItemVector* virtual_methods = class_data->VirtualMethods();
   1507     if (virtual_methods != nullptr) {
   1508       for (uint32_t i = 0; i < virtual_methods->size(); i++) {
   1509         DumpMethod((*virtual_methods)[i]->GetMethodId()->GetIndex(),
   1510                    (*virtual_methods)[i]->GetAccessFlags(),
   1511                    (*virtual_methods)[i]->GetCodeItem(),
   1512                    i);
   1513       }  // for
   1514     }
   1515   }
   1516 
   1517   // End of class.
   1518   if (options_.output_format_ == kOutputPlain) {
   1519     const char* file_name = "unknown";
   1520     if (class_def->SourceFile() != nullptr) {
   1521       file_name = class_def->SourceFile()->Data();
   1522     }
   1523     const dex_ir::StringId* source_file = class_def->SourceFile();
   1524     fprintf(out_file_, "  source_file_idx   : %d (%s)\n\n",
   1525             source_file == nullptr ? 0xffffffffU : source_file->GetIndex(), file_name);
   1526   } else if (options_.output_format_ == kOutputXml) {
   1527     fprintf(out_file_, "</class>\n");
   1528   }
   1529 
   1530   free(access_str);
   1531 }
   1532 
   1533 void DexLayout::DumpDexFile() {
   1534   // Headers.
   1535   if (options_.show_file_headers_) {
   1536     DumpFileHeader();
   1537   }
   1538 
   1539   // Open XML context.
   1540   if (options_.output_format_ == kOutputXml) {
   1541     fprintf(out_file_, "<api>\n");
   1542   }
   1543 
   1544   // Iterate over all classes.
   1545   char* package = nullptr;
   1546   const uint32_t class_defs_size = header_->GetCollections().ClassDefsSize();
   1547   for (uint32_t i = 0; i < class_defs_size; i++) {
   1548     DumpClass(i, &package);
   1549   }  // for
   1550 
   1551   // Free the last package allocated.
   1552   if (package != nullptr) {
   1553     fprintf(out_file_, "</package>\n");
   1554     free(package);
   1555   }
   1556 
   1557   // Close XML context.
   1558   if (options_.output_format_ == kOutputXml) {
   1559     fprintf(out_file_, "</api>\n");
   1560   }
   1561 }
   1562 
   1563 void DexLayout::LayoutClassDefsAndClassData(const DexFile* dex_file) {
   1564   std::vector<dex_ir::ClassDef*> new_class_def_order;
   1565   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1566     dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
   1567     if (info_->ContainsClass(*dex_file, type_idx)) {
   1568       new_class_def_order.push_back(class_def.get());
   1569     }
   1570   }
   1571   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1572     dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
   1573     if (!info_->ContainsClass(*dex_file, type_idx)) {
   1574       new_class_def_order.push_back(class_def.get());
   1575     }
   1576   }
   1577   std::unordered_set<dex_ir::ClassData*> visited_class_data;
   1578   size_t class_data_index = 0;
   1579   dex_ir::CollectionVector<dex_ir::ClassData>::Vector& class_datas =
   1580       header_->GetCollections().ClassDatas();
   1581   for (dex_ir::ClassDef* class_def : new_class_def_order) {
   1582     dex_ir::ClassData* class_data = class_def->GetClassData();
   1583     if (class_data != nullptr && visited_class_data.find(class_data) == visited_class_data.end()) {
   1584       visited_class_data.insert(class_data);
   1585       // Overwrite the existing vector with the new ordering, note that the sets of objects are
   1586       // equivalent, but the order changes. This is why this is not a memory leak.
   1587       // TODO: Consider cleaning this up with a shared_ptr.
   1588       class_datas[class_data_index].release();
   1589       class_datas[class_data_index].reset(class_data);
   1590       ++class_data_index;
   1591     }
   1592   }
   1593   CHECK_EQ(class_data_index, class_datas.size());
   1594 
   1595   if (DexLayout::kChangeClassDefOrder) {
   1596     // This currently produces dex files that violate the spec since the super class class_def is
   1597     // supposed to occur before any subclasses.
   1598     dex_ir::CollectionVector<dex_ir::ClassDef>::Vector& class_defs =
   1599         header_->GetCollections().ClassDefs();
   1600     CHECK_EQ(new_class_def_order.size(), class_defs.size());
   1601     for (size_t i = 0; i < class_defs.size(); ++i) {
   1602       // Overwrite the existing vector with the new ordering, note that the sets of objects are
   1603       // equivalent, but the order changes. This is why this is not a memory leak.
   1604       // TODO: Consider cleaning this up with a shared_ptr.
   1605       class_defs[i].release();
   1606       class_defs[i].reset(new_class_def_order[i]);
   1607     }
   1608   }
   1609 }
   1610 
   1611 void DexLayout::LayoutStringData(const DexFile* dex_file) {
   1612   const size_t num_strings = header_->GetCollections().StringIds().size();
   1613   std::vector<bool> is_shorty(num_strings, false);
   1614   std::vector<bool> from_hot_method(num_strings, false);
   1615   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1616     // A name of a profile class is probably going to get looked up by ClassTable::Lookup, mark it
   1617     // as hot. Add its super class and interfaces as well, which can be used during initialization.
   1618     const bool is_profile_class =
   1619         info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
   1620     if (is_profile_class) {
   1621       from_hot_method[class_def->ClassType()->GetStringId()->GetIndex()] = true;
   1622       const dex_ir::TypeId* superclass = class_def->Superclass();
   1623       if (superclass != nullptr) {
   1624         from_hot_method[superclass->GetStringId()->GetIndex()] = true;
   1625       }
   1626       const dex_ir::TypeList* interfaces = class_def->Interfaces();
   1627       if (interfaces != nullptr) {
   1628         for (const dex_ir::TypeId* interface_type : *interfaces->GetTypeList()) {
   1629           from_hot_method[interface_type->GetStringId()->GetIndex()] = true;
   1630         }
   1631       }
   1632     }
   1633     dex_ir::ClassData* data = class_def->GetClassData();
   1634     if (data == nullptr) {
   1635       continue;
   1636     }
   1637     for (size_t i = 0; i < 2; ++i) {
   1638       for (auto& method : *(i == 0 ? data->DirectMethods() : data->VirtualMethods())) {
   1639         const dex_ir::MethodId* method_id = method->GetMethodId();
   1640         dex_ir::CodeItem* code_item = method->GetCodeItem();
   1641         if (code_item == nullptr) {
   1642           continue;
   1643         }
   1644         const bool is_clinit = is_profile_class &&
   1645             (method->GetAccessFlags() & kAccConstructor) != 0 &&
   1646             (method->GetAccessFlags() & kAccStatic) != 0;
   1647         const bool method_executed = is_clinit ||
   1648             info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex())).IsInProfile();
   1649         if (!method_executed) {
   1650           continue;
   1651         }
   1652         is_shorty[method_id->Proto()->Shorty()->GetIndex()] = true;
   1653         dex_ir::CodeFixups* fixups = code_item->GetCodeFixups();
   1654         if (fixups == nullptr) {
   1655           continue;
   1656         }
   1657         // Add const-strings.
   1658         for (dex_ir::StringId* id : fixups->StringIds()) {
   1659           from_hot_method[id->GetIndex()] = true;
   1660         }
   1661         // Add field classes, names, and types.
   1662         for (dex_ir::FieldId* id : fixups->FieldIds()) {
   1663           // TODO: Only visit field ids from static getters and setters.
   1664           from_hot_method[id->Class()->GetStringId()->GetIndex()] = true;
   1665           from_hot_method[id->Name()->GetIndex()] = true;
   1666           from_hot_method[id->Type()->GetStringId()->GetIndex()] = true;
   1667         }
   1668         // For clinits, add referenced method classes, names, and protos.
   1669         if (is_clinit) {
   1670           for (dex_ir::MethodId* id : fixups->MethodIds()) {
   1671             from_hot_method[id->Class()->GetStringId()->GetIndex()] = true;
   1672             from_hot_method[id->Name()->GetIndex()] = true;
   1673             is_shorty[id->Proto()->Shorty()->GetIndex()] = true;
   1674           }
   1675         }
   1676       }
   1677     }
   1678   }
   1679   // Sort string data by specified order.
   1680   std::vector<dex_ir::StringId*> string_ids;
   1681   for (auto& string_id : header_->GetCollections().StringIds()) {
   1682     string_ids.push_back(string_id.get());
   1683   }
   1684   std::sort(string_ids.begin(),
   1685             string_ids.end(),
   1686             [&is_shorty, &from_hot_method](const dex_ir::StringId* a,
   1687                                            const dex_ir::StringId* b) {
   1688     const bool a_is_hot = from_hot_method[a->GetIndex()];
   1689     const bool b_is_hot = from_hot_method[b->GetIndex()];
   1690     if (a_is_hot != b_is_hot) {
   1691       return a_is_hot < b_is_hot;
   1692     }
   1693     // After hot methods are partitioned, subpartition shorties.
   1694     const bool a_is_shorty = is_shorty[a->GetIndex()];
   1695     const bool b_is_shorty = is_shorty[b->GetIndex()];
   1696     if (a_is_shorty != b_is_shorty) {
   1697       return a_is_shorty < b_is_shorty;
   1698     }
   1699     // Order by index by default.
   1700     return a->GetIndex() < b->GetIndex();
   1701   });
   1702   dex_ir::CollectionVector<dex_ir::StringData>::Vector& string_datas =
   1703       header_->GetCollections().StringDatas();
   1704   // Now we know what order we want the string data, reorder them.
   1705   size_t data_index = 0;
   1706   for (dex_ir::StringId* string_id : string_ids) {
   1707     string_datas[data_index].release();
   1708     string_datas[data_index].reset(string_id->DataItem());
   1709     ++data_index;
   1710   }
   1711   if (kIsDebugBuild) {
   1712     std::unordered_set<dex_ir::StringData*> visited;
   1713     for (const std::unique_ptr<dex_ir::StringData>& data : string_datas) {
   1714       visited.insert(data.get());
   1715     }
   1716     for (auto& string_id : header_->GetCollections().StringIds()) {
   1717       CHECK(visited.find(string_id->DataItem()) != visited.end());
   1718     }
   1719   }
   1720   CHECK_EQ(data_index, string_datas.size());
   1721 }
   1722 
   1723 // Orders code items according to specified class data ordering.
   1724 void DexLayout::LayoutCodeItems(const DexFile* dex_file) {
   1725   static constexpr InvokeType invoke_types[] = {
   1726     kDirect,
   1727     kVirtual
   1728   };
   1729 
   1730   std::unordered_map<dex_ir::CodeItem*, LayoutType>& code_item_layout =
   1731       layout_hotness_info_.code_item_layout_;
   1732 
   1733   // Assign hotness flags to all code items.
   1734   for (InvokeType invoke_type : invoke_types) {
   1735     for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
   1736       const bool is_profile_class =
   1737           info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
   1738 
   1739       // Skip classes that are not defined in this dex file.
   1740       dex_ir::ClassData* class_data = class_def->GetClassData();
   1741       if (class_data == nullptr) {
   1742         continue;
   1743       }
   1744       for (auto& method : *(invoke_type == InvokeType::kDirect
   1745                                 ? class_data->DirectMethods()
   1746                                 : class_data->VirtualMethods())) {
   1747         const dex_ir::MethodId *method_id = method->GetMethodId();
   1748         dex_ir::CodeItem *code_item = method->GetCodeItem();
   1749         if (code_item == nullptr) {
   1750           continue;
   1751         }
   1752         // Separate executed methods (clinits and profiled methods) from unexecuted methods.
   1753         const bool is_clinit = (method->GetAccessFlags() & kAccConstructor) != 0 &&
   1754             (method->GetAccessFlags() & kAccStatic) != 0;
   1755         const bool is_startup_clinit = is_profile_class && is_clinit;
   1756         using Hotness = ProfileCompilationInfo::MethodHotness;
   1757         Hotness hotness = info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex()));
   1758         LayoutType state = LayoutType::kLayoutTypeUnused;
   1759         if (hotness.IsHot()) {
   1760           // Hot code is compiled, maybe one day it won't be accessed. So lay it out together for
   1761           // now.
   1762           state = LayoutType::kLayoutTypeHot;
   1763         } else if (is_startup_clinit || hotness.GetFlags() == Hotness::kFlagStartup) {
   1764           // Startup clinit or a method that only has the startup flag.
   1765           state = LayoutType::kLayoutTypeStartupOnly;
   1766         } else if (is_clinit) {
   1767           state = LayoutType::kLayoutTypeUsedOnce;
   1768         } else if (hotness.IsInProfile()) {
   1769           state = LayoutType::kLayoutTypeSometimesUsed;
   1770         }
   1771         auto it = code_item_layout.emplace(code_item, state);
   1772         if (!it.second) {
   1773           LayoutType& layout_type = it.first->second;
   1774           // Already exists, merge the hotness.
   1775           layout_type = MergeLayoutType(layout_type, state);
   1776         }
   1777       }
   1778     }
   1779   }
   1780 
   1781   dex_ir::CollectionVector<dex_ir::CodeItem>::Vector& code_items =
   1782         header_->GetCollections().CodeItems();
   1783   if (VLOG_IS_ON(dex)) {
   1784     size_t layout_count[static_cast<size_t>(LayoutType::kLayoutTypeCount)] = {};
   1785     for (const std::unique_ptr<dex_ir::CodeItem>& code_item : code_items) {
   1786       auto it = code_item_layout.find(code_item.get());
   1787       DCHECK(it != code_item_layout.end());
   1788       ++layout_count[static_cast<size_t>(it->second)];
   1789     }
   1790     for (size_t i = 0; i < static_cast<size_t>(LayoutType::kLayoutTypeCount); ++i) {
   1791       LOG(INFO) << "Code items in category " << i << " count=" << layout_count[i];
   1792     }
   1793   }
   1794 
   1795   // Sort the code items vector by new layout. The writing process will take care of calculating
   1796   // all the offsets. Stable sort to preserve any existing locality that might be there.
   1797   std::stable_sort(code_items.begin(),
   1798                    code_items.end(),
   1799                    [&](const std::unique_ptr<dex_ir::CodeItem>& a,
   1800                        const std::unique_ptr<dex_ir::CodeItem>& b) {
   1801     auto it_a = code_item_layout.find(a.get());
   1802     auto it_b = code_item_layout.find(b.get());
   1803     DCHECK(it_a != code_item_layout.end());
   1804     DCHECK(it_b != code_item_layout.end());
   1805     const LayoutType layout_type_a = it_a->second;
   1806     const LayoutType layout_type_b = it_b->second;
   1807     return layout_type_a < layout_type_b;
   1808   });
   1809 }
   1810 
   1811 void DexLayout::LayoutOutputFile(const DexFile* dex_file) {
   1812   LayoutStringData(dex_file);
   1813   LayoutClassDefsAndClassData(dex_file);
   1814   LayoutCodeItems(dex_file);
   1815 }
   1816 
   1817 bool DexLayout::OutputDexFile(const DexFile* input_dex_file,
   1818                               bool compute_offsets,
   1819                               std::unique_ptr<DexContainer>* dex_container,
   1820                               std::string* error_msg) {
   1821   const std::string& dex_file_location = input_dex_file->GetLocation();
   1822   std::unique_ptr<File> new_file;
   1823   // If options_.output_dex_directory_ is non null, we are outputting to a file.
   1824   if (options_.output_dex_directory_ != nullptr) {
   1825     std::string output_location(options_.output_dex_directory_);
   1826     size_t last_slash = dex_file_location.rfind('/');
   1827     std::string dex_file_directory = dex_file_location.substr(0, last_slash + 1);
   1828     if (output_location == dex_file_directory) {
   1829       output_location = dex_file_location + ".new";
   1830     } else if (last_slash != std::string::npos) {
   1831       output_location += dex_file_location.substr(last_slash);
   1832     } else {
   1833       output_location += "/" + dex_file_location + ".new";
   1834     }
   1835     new_file.reset(OS::CreateEmptyFile(output_location.c_str()));
   1836     if (new_file == nullptr) {
   1837       LOG(ERROR) << "Could not create dex writer output file: " << output_location;
   1838       return false;
   1839     }
   1840   }
   1841   if (!DexWriter::Output(this, dex_container, compute_offsets, error_msg)) {
   1842     return false;
   1843   }
   1844   if (new_file != nullptr) {
   1845     DexContainer* const container = dex_container->get();
   1846     DexContainer::Section* const main_section = container->GetMainSection();
   1847     if (!new_file->WriteFully(main_section->Begin(), main_section->Size())) {
   1848       LOG(ERROR) << "Failed to write main section for dex file " << dex_file_location;
   1849       new_file->Erase();
   1850       return false;
   1851     }
   1852     DexContainer::Section* const data_section = container->GetDataSection();
   1853     if (!new_file->WriteFully(data_section->Begin(), data_section->Size())) {
   1854       LOG(ERROR) << "Failed to write data section for dex file " << dex_file_location;
   1855       new_file->Erase();
   1856       return false;
   1857     }
   1858     UNUSED(new_file->FlushCloseOrErase());
   1859   }
   1860   return true;
   1861 }
   1862 
   1863 /*
   1864  * Dumps the requested sections of the file.
   1865  */
   1866 bool DexLayout::ProcessDexFile(const char* file_name,
   1867                                const DexFile* dex_file,
   1868                                size_t dex_file_index,
   1869                                std::unique_ptr<DexContainer>* dex_container,
   1870                                std::string* error_msg) {
   1871   const bool has_output_container = dex_container != nullptr;
   1872   const bool output = options_.output_dex_directory_ != nullptr || has_output_container;
   1873 
   1874   // Try to avoid eagerly assigning offsets to find bugs since GetOffset will abort if the offset
   1875   // is unassigned.
   1876   bool eagerly_assign_offsets = false;
   1877   if (options_.visualize_pattern_ || options_.show_section_statistics_ || options_.dump_) {
   1878     // These options required the offsets for dumping purposes.
   1879     eagerly_assign_offsets = true;
   1880   }
   1881   std::unique_ptr<dex_ir::Header> header(dex_ir::DexIrBuilder(*dex_file,
   1882                                                                eagerly_assign_offsets,
   1883                                                                GetOptions()));
   1884   SetHeader(header.get());
   1885 
   1886   if (options_.verbose_) {
   1887     fprintf(out_file_, "Opened '%s', DEX version '%.3s'\n",
   1888             file_name, dex_file->GetHeader().magic_ + 4);
   1889   }
   1890 
   1891   if (options_.visualize_pattern_) {
   1892     VisualizeDexLayout(header_, dex_file, dex_file_index, info_);
   1893     return true;
   1894   }
   1895 
   1896   if (options_.show_section_statistics_) {
   1897     ShowDexSectionStatistics(header_, dex_file_index);
   1898     return true;
   1899   }
   1900 
   1901   // Dump dex file.
   1902   if (options_.dump_) {
   1903     DumpDexFile();
   1904   }
   1905 
   1906   // In case we are outputting to a file, keep it open so we can verify.
   1907   if (output) {
   1908     // Layout information about what strings and code items are hot. Used by the writing process
   1909     // to generate the sections that are stored in the oat file.
   1910     bool do_layout = info_ != nullptr;
   1911     if (do_layout) {
   1912       LayoutOutputFile(dex_file);
   1913     }
   1914     // The output needs a dex container, use a temporary one.
   1915     std::unique_ptr<DexContainer> temp_container;
   1916     if (dex_container == nullptr) {
   1917       dex_container = &temp_container;
   1918     }
   1919     // If we didn't set the offsets eagerly, we definitely need to compute them here.
   1920     if (!OutputDexFile(dex_file, do_layout || !eagerly_assign_offsets, dex_container, error_msg)) {
   1921       return false;
   1922     }
   1923 
   1924     // Clear header before verifying to reduce peak RAM usage.
   1925     const size_t file_size = header_->FileSize();
   1926     header.reset();
   1927 
   1928     // Verify the output dex file's structure, only enabled by default for debug builds.
   1929     if (options_.verify_output_ && has_output_container) {
   1930       std::string location = "memory mapped file for " + std::string(file_name);
   1931       // Dex file verifier cannot handle compact dex.
   1932       bool verify = options_.compact_dex_level_ == CompactDexLevel::kCompactDexLevelNone;
   1933       const ArtDexFileLoader dex_file_loader;
   1934       DexContainer::Section* const main_section = (*dex_container)->GetMainSection();
   1935       DexContainer::Section* const data_section = (*dex_container)->GetDataSection();
   1936       DCHECK_EQ(file_size, main_section->Size())
   1937           << main_section->Size() << " " << data_section->Size();
   1938       std::unique_ptr<const DexFile> output_dex_file(
   1939           dex_file_loader.OpenWithDataSection(
   1940               main_section->Begin(),
   1941               main_section->Size(),
   1942               data_section->Begin(),
   1943               data_section->Size(),
   1944               location,
   1945               /* checksum */ 0,
   1946               /*oat_dex_file*/ nullptr,
   1947               verify,
   1948               /*verify_checksum*/ false,
   1949               error_msg));
   1950       CHECK(output_dex_file != nullptr) << "Failed to re-open output file:" << *error_msg;
   1951 
   1952       // Do IR-level comparison between input and output. This check ignores potential differences
   1953       // due to layout, so offsets are not checked. Instead, it checks the data contents of each
   1954       // item.
   1955       //
   1956       // Regenerate output IR to catch any bugs that might happen during writing.
   1957       std::unique_ptr<dex_ir::Header> output_header(
   1958           dex_ir::DexIrBuilder(*output_dex_file,
   1959                                /*eagerly_assign_offsets*/ true,
   1960                                GetOptions()));
   1961       std::unique_ptr<dex_ir::Header> orig_header(
   1962           dex_ir::DexIrBuilder(*dex_file,
   1963                                /*eagerly_assign_offsets*/ true,
   1964                                GetOptions()));
   1965       CHECK(VerifyOutputDexFile(output_header.get(), orig_header.get(), error_msg)) << *error_msg;
   1966     }
   1967   }
   1968   return true;
   1969 }
   1970 
   1971 /*
   1972  * Processes a single file (either direct .dex or indirect .zip/.jar/.apk).
   1973  */
   1974 int DexLayout::ProcessFile(const char* file_name) {
   1975   if (options_.verbose_) {
   1976     fprintf(out_file_, "Processing '%s'...\n", file_name);
   1977   }
   1978 
   1979   // If the file is not a .dex file, the function tries .zip/.jar/.apk files,
   1980   // all of which are Zip archives with "classes.dex" inside.
   1981   const bool verify_checksum = !options_.ignore_bad_checksum_;
   1982   std::string error_msg;
   1983   const ArtDexFileLoader dex_file_loader;
   1984   std::vector<std::unique_ptr<const DexFile>> dex_files;
   1985   if (!dex_file_loader.Open(
   1986         file_name, file_name, /* verify */ true, verify_checksum, &error_msg, &dex_files)) {
   1987     // Display returned error message to user. Note that this error behavior
   1988     // differs from the error messages shown by the original Dalvik dexdump.
   1989     LOG(ERROR) << error_msg;
   1990     return -1;
   1991   }
   1992 
   1993   // Success. Either report checksum verification or process
   1994   // all dex files found in given file.
   1995   if (options_.checksum_only_) {
   1996     fprintf(out_file_, "Checksum verified\n");
   1997   } else {
   1998     for (size_t i = 0; i < dex_files.size(); i++) {
   1999       // Pass in a null container to avoid output by default.
   2000       if (!ProcessDexFile(file_name,
   2001                           dex_files[i].get(),
   2002                           i,
   2003                           /*dex_container*/ nullptr,
   2004                           &error_msg)) {
   2005         LOG(WARNING) << "Failed to run dex file " << i << " in " << file_name << " : " << error_msg;
   2006       }
   2007     }
   2008   }
   2009   return 0;
   2010 }
   2011 
   2012 }  // namespace art
   2013