Home | History | Annotate | Download | only in Utils
      1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines common loop utility functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/AliasAnalysis.h"
     15 #include "llvm/Analysis/BasicAliasAnalysis.h"
     16 #include "llvm/Analysis/LoopInfo.h"
     17 #include "llvm/Analysis/GlobalsModRef.h"
     18 #include "llvm/Analysis/ScalarEvolution.h"
     19 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     21 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/Module.h"
     25 #include "llvm/IR/PatternMatch.h"
     26 #include "llvm/IR/ValueHandle.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Transforms/Utils/LoopUtils.h"
     30 
     31 using namespace llvm;
     32 using namespace llvm::PatternMatch;
     33 
     34 #define DEBUG_TYPE "loop-utils"
     35 
     36 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
     37                                         SmallPtrSetImpl<Instruction *> &Set) {
     38   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
     39     if (!Set.count(dyn_cast<Instruction>(*Use)))
     40       return false;
     41   return true;
     42 }
     43 
     44 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
     45   switch (Kind) {
     46   default:
     47     break;
     48   case RK_IntegerAdd:
     49   case RK_IntegerMult:
     50   case RK_IntegerOr:
     51   case RK_IntegerAnd:
     52   case RK_IntegerXor:
     53   case RK_IntegerMinMax:
     54     return true;
     55   }
     56   return false;
     57 }
     58 
     59 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
     60   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
     61 }
     62 
     63 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
     64   switch (Kind) {
     65   default:
     66     break;
     67   case RK_IntegerAdd:
     68   case RK_IntegerMult:
     69   case RK_FloatAdd:
     70   case RK_FloatMult:
     71     return true;
     72   }
     73   return false;
     74 }
     75 
     76 Instruction *
     77 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
     78                                      SmallPtrSetImpl<Instruction *> &Visited,
     79                                      SmallPtrSetImpl<Instruction *> &CI) {
     80   if (!Phi->hasOneUse())
     81     return Phi;
     82 
     83   const APInt *M = nullptr;
     84   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
     85 
     86   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
     87   // with a new integer type of the corresponding bit width.
     88   if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
     89                            m_And(m_APInt(M), m_Instruction(I))))) {
     90     int32_t Bits = (*M + 1).exactLogBase2();
     91     if (Bits > 0) {
     92       RT = IntegerType::get(Phi->getContext(), Bits);
     93       Visited.insert(Phi);
     94       CI.insert(J);
     95       return J;
     96     }
     97   }
     98   return Phi;
     99 }
    100 
    101 bool RecurrenceDescriptor::getSourceExtensionKind(
    102     Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
    103     SmallPtrSetImpl<Instruction *> &Visited,
    104     SmallPtrSetImpl<Instruction *> &CI) {
    105 
    106   SmallVector<Instruction *, 8> Worklist;
    107   bool FoundOneOperand = false;
    108   unsigned DstSize = RT->getPrimitiveSizeInBits();
    109   Worklist.push_back(Exit);
    110 
    111   // Traverse the instructions in the reduction expression, beginning with the
    112   // exit value.
    113   while (!Worklist.empty()) {
    114     Instruction *I = Worklist.pop_back_val();
    115     for (Use &U : I->operands()) {
    116 
    117       // Terminate the traversal if the operand is not an instruction, or we
    118       // reach the starting value.
    119       Instruction *J = dyn_cast<Instruction>(U.get());
    120       if (!J || J == Start)
    121         continue;
    122 
    123       // Otherwise, investigate the operation if it is also in the expression.
    124       if (Visited.count(J)) {
    125         Worklist.push_back(J);
    126         continue;
    127       }
    128 
    129       // If the operand is not in Visited, it is not a reduction operation, but
    130       // it does feed into one. Make sure it is either a single-use sign- or
    131       // zero-extend instruction.
    132       CastInst *Cast = dyn_cast<CastInst>(J);
    133       bool IsSExtInst = isa<SExtInst>(J);
    134       if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
    135         return false;
    136 
    137       // Ensure the source type of the extend is no larger than the reduction
    138       // type. It is not necessary for the types to be identical.
    139       unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
    140       if (SrcSize > DstSize)
    141         return false;
    142 
    143       // Furthermore, ensure that all such extends are of the same kind.
    144       if (FoundOneOperand) {
    145         if (IsSigned != IsSExtInst)
    146           return false;
    147       } else {
    148         FoundOneOperand = true;
    149         IsSigned = IsSExtInst;
    150       }
    151 
    152       // Lastly, if the source type of the extend matches the reduction type,
    153       // add the extend to CI so that we can avoid accounting for it in the
    154       // cost model.
    155       if (SrcSize == DstSize)
    156         CI.insert(Cast);
    157     }
    158   }
    159   return true;
    160 }
    161 
    162 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
    163                                            Loop *TheLoop, bool HasFunNoNaNAttr,
    164                                            RecurrenceDescriptor &RedDes) {
    165   if (Phi->getNumIncomingValues() != 2)
    166     return false;
    167 
    168   // Reduction variables are only found in the loop header block.
    169   if (Phi->getParent() != TheLoop->getHeader())
    170     return false;
    171 
    172   // Obtain the reduction start value from the value that comes from the loop
    173   // preheader.
    174   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
    175 
    176   // ExitInstruction is the single value which is used outside the loop.
    177   // We only allow for a single reduction value to be used outside the loop.
    178   // This includes users of the reduction, variables (which form a cycle
    179   // which ends in the phi node).
    180   Instruction *ExitInstruction = nullptr;
    181   // Indicates that we found a reduction operation in our scan.
    182   bool FoundReduxOp = false;
    183 
    184   // We start with the PHI node and scan for all of the users of this
    185   // instruction. All users must be instructions that can be used as reduction
    186   // variables (such as ADD). We must have a single out-of-block user. The cycle
    187   // must include the original PHI.
    188   bool FoundStartPHI = false;
    189 
    190   // To recognize min/max patterns formed by a icmp select sequence, we store
    191   // the number of instruction we saw from the recognized min/max pattern,
    192   //  to make sure we only see exactly the two instructions.
    193   unsigned NumCmpSelectPatternInst = 0;
    194   InstDesc ReduxDesc(false, nullptr);
    195 
    196   // Data used for determining if the recurrence has been type-promoted.
    197   Type *RecurrenceType = Phi->getType();
    198   SmallPtrSet<Instruction *, 4> CastInsts;
    199   Instruction *Start = Phi;
    200   bool IsSigned = false;
    201 
    202   SmallPtrSet<Instruction *, 8> VisitedInsts;
    203   SmallVector<Instruction *, 8> Worklist;
    204 
    205   // Return early if the recurrence kind does not match the type of Phi. If the
    206   // recurrence kind is arithmetic, we attempt to look through AND operations
    207   // resulting from the type promotion performed by InstCombine.  Vector
    208   // operations are not limited to the legal integer widths, so we may be able
    209   // to evaluate the reduction in the narrower width.
    210   if (RecurrenceType->isFloatingPointTy()) {
    211     if (!isFloatingPointRecurrenceKind(Kind))
    212       return false;
    213   } else {
    214     if (!isIntegerRecurrenceKind(Kind))
    215       return false;
    216     if (isArithmeticRecurrenceKind(Kind))
    217       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
    218   }
    219 
    220   Worklist.push_back(Start);
    221   VisitedInsts.insert(Start);
    222 
    223   // A value in the reduction can be used:
    224   //  - By the reduction:
    225   //      - Reduction operation:
    226   //        - One use of reduction value (safe).
    227   //        - Multiple use of reduction value (not safe).
    228   //      - PHI:
    229   //        - All uses of the PHI must be the reduction (safe).
    230   //        - Otherwise, not safe.
    231   //  - By one instruction outside of the loop (safe).
    232   //  - By further instructions outside of the loop (not safe).
    233   //  - By an instruction that is not part of the reduction (not safe).
    234   //    This is either:
    235   //      * An instruction type other than PHI or the reduction operation.
    236   //      * A PHI in the header other than the initial PHI.
    237   while (!Worklist.empty()) {
    238     Instruction *Cur = Worklist.back();
    239     Worklist.pop_back();
    240 
    241     // No Users.
    242     // If the instruction has no users then this is a broken chain and can't be
    243     // a reduction variable.
    244     if (Cur->use_empty())
    245       return false;
    246 
    247     bool IsAPhi = isa<PHINode>(Cur);
    248 
    249     // A header PHI use other than the original PHI.
    250     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
    251       return false;
    252 
    253     // Reductions of instructions such as Div, and Sub is only possible if the
    254     // LHS is the reduction variable.
    255     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
    256         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
    257         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
    258       return false;
    259 
    260     // Any reduction instruction must be of one of the allowed kinds. We ignore
    261     // the starting value (the Phi or an AND instruction if the Phi has been
    262     // type-promoted).
    263     if (Cur != Start) {
    264       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
    265       if (!ReduxDesc.isRecurrence())
    266         return false;
    267     }
    268 
    269     // A reduction operation must only have one use of the reduction value.
    270     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
    271         hasMultipleUsesOf(Cur, VisitedInsts))
    272       return false;
    273 
    274     // All inputs to a PHI node must be a reduction value.
    275     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
    276       return false;
    277 
    278     if (Kind == RK_IntegerMinMax &&
    279         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
    280       ++NumCmpSelectPatternInst;
    281     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
    282       ++NumCmpSelectPatternInst;
    283 
    284     // Check  whether we found a reduction operator.
    285     FoundReduxOp |= !IsAPhi && Cur != Start;
    286 
    287     // Process users of current instruction. Push non-PHI nodes after PHI nodes
    288     // onto the stack. This way we are going to have seen all inputs to PHI
    289     // nodes once we get to them.
    290     SmallVector<Instruction *, 8> NonPHIs;
    291     SmallVector<Instruction *, 8> PHIs;
    292     for (User *U : Cur->users()) {
    293       Instruction *UI = cast<Instruction>(U);
    294 
    295       // Check if we found the exit user.
    296       BasicBlock *Parent = UI->getParent();
    297       if (!TheLoop->contains(Parent)) {
    298         // Exit if you find multiple outside users or if the header phi node is
    299         // being used. In this case the user uses the value of the previous
    300         // iteration, in which case we would loose "VF-1" iterations of the
    301         // reduction operation if we vectorize.
    302         if (ExitInstruction != nullptr || Cur == Phi)
    303           return false;
    304 
    305         // The instruction used by an outside user must be the last instruction
    306         // before we feed back to the reduction phi. Otherwise, we loose VF-1
    307         // operations on the value.
    308         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
    309           return false;
    310 
    311         ExitInstruction = Cur;
    312         continue;
    313       }
    314 
    315       // Process instructions only once (termination). Each reduction cycle
    316       // value must only be used once, except by phi nodes and min/max
    317       // reductions which are represented as a cmp followed by a select.
    318       InstDesc IgnoredVal(false, nullptr);
    319       if (VisitedInsts.insert(UI).second) {
    320         if (isa<PHINode>(UI))
    321           PHIs.push_back(UI);
    322         else
    323           NonPHIs.push_back(UI);
    324       } else if (!isa<PHINode>(UI) &&
    325                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
    326                    !isa<SelectInst>(UI)) ||
    327                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
    328         return false;
    329 
    330       // Remember that we completed the cycle.
    331       if (UI == Phi)
    332         FoundStartPHI = true;
    333     }
    334     Worklist.append(PHIs.begin(), PHIs.end());
    335     Worklist.append(NonPHIs.begin(), NonPHIs.end());
    336   }
    337 
    338   // This means we have seen one but not the other instruction of the
    339   // pattern or more than just a select and cmp.
    340   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
    341       NumCmpSelectPatternInst != 2)
    342     return false;
    343 
    344   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
    345     return false;
    346 
    347   // If we think Phi may have been type-promoted, we also need to ensure that
    348   // all source operands of the reduction are either SExtInsts or ZEstInsts. If
    349   // so, we will be able to evaluate the reduction in the narrower bit width.
    350   if (Start != Phi)
    351     if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
    352                                 IsSigned, VisitedInsts, CastInsts))
    353       return false;
    354 
    355   // We found a reduction var if we have reached the original phi node and we
    356   // only have a single instruction with out-of-loop users.
    357 
    358   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
    359   // is saved as part of the RecurrenceDescriptor.
    360 
    361   // Save the description of this reduction variable.
    362   RecurrenceDescriptor RD(
    363       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
    364       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
    365   RedDes = RD;
    366 
    367   return true;
    368 }
    369 
    370 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
    371 /// pattern corresponding to a min(X, Y) or max(X, Y).
    372 RecurrenceDescriptor::InstDesc
    373 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
    374 
    375   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
    376          "Expect a select instruction");
    377   Instruction *Cmp = nullptr;
    378   SelectInst *Select = nullptr;
    379 
    380   // We must handle the select(cmp()) as a single instruction. Advance to the
    381   // select.
    382   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
    383     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
    384       return InstDesc(false, I);
    385     return InstDesc(Select, Prev.getMinMaxKind());
    386   }
    387 
    388   // Only handle single use cases for now.
    389   if (!(Select = dyn_cast<SelectInst>(I)))
    390     return InstDesc(false, I);
    391   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
    392       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
    393     return InstDesc(false, I);
    394   if (!Cmp->hasOneUse())
    395     return InstDesc(false, I);
    396 
    397   Value *CmpLeft;
    398   Value *CmpRight;
    399 
    400   // Look for a min/max pattern.
    401   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    402     return InstDesc(Select, MRK_UIntMin);
    403   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    404     return InstDesc(Select, MRK_UIntMax);
    405   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    406     return InstDesc(Select, MRK_SIntMax);
    407   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    408     return InstDesc(Select, MRK_SIntMin);
    409   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    410     return InstDesc(Select, MRK_FloatMin);
    411   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    412     return InstDesc(Select, MRK_FloatMax);
    413   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    414     return InstDesc(Select, MRK_FloatMin);
    415   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    416     return InstDesc(Select, MRK_FloatMax);
    417 
    418   return InstDesc(false, I);
    419 }
    420 
    421 RecurrenceDescriptor::InstDesc
    422 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
    423                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
    424   bool FP = I->getType()->isFloatingPointTy();
    425   Instruction *UAI = Prev.getUnsafeAlgebraInst();
    426   if (!UAI && FP && !I->hasUnsafeAlgebra())
    427     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
    428 
    429   switch (I->getOpcode()) {
    430   default:
    431     return InstDesc(false, I);
    432   case Instruction::PHI:
    433     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
    434   case Instruction::Sub:
    435   case Instruction::Add:
    436     return InstDesc(Kind == RK_IntegerAdd, I);
    437   case Instruction::Mul:
    438     return InstDesc(Kind == RK_IntegerMult, I);
    439   case Instruction::And:
    440     return InstDesc(Kind == RK_IntegerAnd, I);
    441   case Instruction::Or:
    442     return InstDesc(Kind == RK_IntegerOr, I);
    443   case Instruction::Xor:
    444     return InstDesc(Kind == RK_IntegerXor, I);
    445   case Instruction::FMul:
    446     return InstDesc(Kind == RK_FloatMult, I, UAI);
    447   case Instruction::FSub:
    448   case Instruction::FAdd:
    449     return InstDesc(Kind == RK_FloatAdd, I, UAI);
    450   case Instruction::FCmp:
    451   case Instruction::ICmp:
    452   case Instruction::Select:
    453     if (Kind != RK_IntegerMinMax &&
    454         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
    455       return InstDesc(false, I);
    456     return isMinMaxSelectCmpPattern(I, Prev);
    457   }
    458 }
    459 
    460 bool RecurrenceDescriptor::hasMultipleUsesOf(
    461     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
    462   unsigned NumUses = 0;
    463   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
    464        ++Use) {
    465     if (Insts.count(dyn_cast<Instruction>(*Use)))
    466       ++NumUses;
    467     if (NumUses > 1)
    468       return true;
    469   }
    470 
    471   return false;
    472 }
    473 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
    474                                           RecurrenceDescriptor &RedDes) {
    475 
    476   BasicBlock *Header = TheLoop->getHeader();
    477   Function &F = *Header->getParent();
    478   bool HasFunNoNaNAttr =
    479       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
    480 
    481   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    482     DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
    483     return true;
    484   }
    485   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    486     DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
    487     return true;
    488   }
    489   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
    490     DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
    491     return true;
    492   }
    493   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    494     DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
    495     return true;
    496   }
    497   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
    498     DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
    499     return true;
    500   }
    501   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
    502                       RedDes)) {
    503     DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
    504     return true;
    505   }
    506   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    507     DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
    508     return true;
    509   }
    510   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    511     DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
    512     return true;
    513   }
    514   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
    515     DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
    516     return true;
    517   }
    518   // Not a reduction of known type.
    519   return false;
    520 }
    521 
    522 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
    523                                                   DominatorTree *DT) {
    524 
    525   // Ensure the phi node is in the loop header and has two incoming values.
    526   if (Phi->getParent() != TheLoop->getHeader() ||
    527       Phi->getNumIncomingValues() != 2)
    528     return false;
    529 
    530   // Ensure the loop has a preheader and a single latch block. The loop
    531   // vectorizer will need the latch to set up the next iteration of the loop.
    532   auto *Preheader = TheLoop->getLoopPreheader();
    533   auto *Latch = TheLoop->getLoopLatch();
    534   if (!Preheader || !Latch)
    535     return false;
    536 
    537   // Ensure the phi node's incoming blocks are the loop preheader and latch.
    538   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
    539       Phi->getBasicBlockIndex(Latch) < 0)
    540     return false;
    541 
    542   // Get the previous value. The previous value comes from the latch edge while
    543   // the initial value comes form the preheader edge.
    544   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
    545   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
    546     return false;
    547 
    548   // Ensure every user of the phi node is dominated by the previous value. The
    549   // dominance requirement ensures the loop vectorizer will not need to
    550   // vectorize the initial value prior to the first iteration of the loop.
    551   for (User *U : Phi->users())
    552     if (auto *I = dyn_cast<Instruction>(U))
    553       if (!DT->dominates(Previous, I))
    554         return false;
    555 
    556   return true;
    557 }
    558 
    559 /// This function returns the identity element (or neutral element) for
    560 /// the operation K.
    561 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
    562                                                       Type *Tp) {
    563   switch (K) {
    564   case RK_IntegerXor:
    565   case RK_IntegerAdd:
    566   case RK_IntegerOr:
    567     // Adding, Xoring, Oring zero to a number does not change it.
    568     return ConstantInt::get(Tp, 0);
    569   case RK_IntegerMult:
    570     // Multiplying a number by 1 does not change it.
    571     return ConstantInt::get(Tp, 1);
    572   case RK_IntegerAnd:
    573     // AND-ing a number with an all-1 value does not change it.
    574     return ConstantInt::get(Tp, -1, true);
    575   case RK_FloatMult:
    576     // Multiplying a number by 1 does not change it.
    577     return ConstantFP::get(Tp, 1.0L);
    578   case RK_FloatAdd:
    579     // Adding zero to a number does not change it.
    580     return ConstantFP::get(Tp, 0.0L);
    581   default:
    582     llvm_unreachable("Unknown recurrence kind");
    583   }
    584 }
    585 
    586 /// This function translates the recurrence kind to an LLVM binary operator.
    587 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
    588   switch (Kind) {
    589   case RK_IntegerAdd:
    590     return Instruction::Add;
    591   case RK_IntegerMult:
    592     return Instruction::Mul;
    593   case RK_IntegerOr:
    594     return Instruction::Or;
    595   case RK_IntegerAnd:
    596     return Instruction::And;
    597   case RK_IntegerXor:
    598     return Instruction::Xor;
    599   case RK_FloatMult:
    600     return Instruction::FMul;
    601   case RK_FloatAdd:
    602     return Instruction::FAdd;
    603   case RK_IntegerMinMax:
    604     return Instruction::ICmp;
    605   case RK_FloatMinMax:
    606     return Instruction::FCmp;
    607   default:
    608     llvm_unreachable("Unknown recurrence operation");
    609   }
    610 }
    611 
    612 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
    613                                             MinMaxRecurrenceKind RK,
    614                                             Value *Left, Value *Right) {
    615   CmpInst::Predicate P = CmpInst::ICMP_NE;
    616   switch (RK) {
    617   default:
    618     llvm_unreachable("Unknown min/max recurrence kind");
    619   case MRK_UIntMin:
    620     P = CmpInst::ICMP_ULT;
    621     break;
    622   case MRK_UIntMax:
    623     P = CmpInst::ICMP_UGT;
    624     break;
    625   case MRK_SIntMin:
    626     P = CmpInst::ICMP_SLT;
    627     break;
    628   case MRK_SIntMax:
    629     P = CmpInst::ICMP_SGT;
    630     break;
    631   case MRK_FloatMin:
    632     P = CmpInst::FCMP_OLT;
    633     break;
    634   case MRK_FloatMax:
    635     P = CmpInst::FCMP_OGT;
    636     break;
    637   }
    638 
    639   // We only match FP sequences with unsafe algebra, so we can unconditionally
    640   // set it on any generated instructions.
    641   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
    642   FastMathFlags FMF;
    643   FMF.setUnsafeAlgebra();
    644   Builder.setFastMathFlags(FMF);
    645 
    646   Value *Cmp;
    647   if (RK == MRK_FloatMin || RK == MRK_FloatMax)
    648     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
    649   else
    650     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
    651 
    652   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
    653   return Select;
    654 }
    655 
    656 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
    657                                          const SCEV *Step)
    658   : StartValue(Start), IK(K), Step(Step) {
    659   assert(IK != IK_NoInduction && "Not an induction");
    660 
    661   // Start value type should match the induction kind and the value
    662   // itself should not be null.
    663   assert(StartValue && "StartValue is null");
    664   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
    665          "StartValue is not a pointer for pointer induction");
    666   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
    667          "StartValue is not an integer for integer induction");
    668 
    669   // Check the Step Value. It should be non-zero integer value.
    670   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
    671          "Step value is zero");
    672 
    673   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
    674          "Step value should be constant for pointer induction");
    675   assert(Step->getType()->isIntegerTy() && "StepValue is not an integer");
    676 }
    677 
    678 int InductionDescriptor::getConsecutiveDirection() const {
    679   ConstantInt *ConstStep = getConstIntStepValue();
    680   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
    681     return ConstStep->getSExtValue();
    682   return 0;
    683 }
    684 
    685 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
    686   if (isa<SCEVConstant>(Step))
    687     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
    688   return nullptr;
    689 }
    690 
    691 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
    692                                       ScalarEvolution *SE,
    693                                       const DataLayout& DL) const {
    694 
    695   SCEVExpander Exp(*SE, DL, "induction");
    696   switch (IK) {
    697   case IK_IntInduction: {
    698     assert(Index->getType() == StartValue->getType() &&
    699            "Index type does not match StartValue type");
    700 
    701     // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
    702     // and calculate (Start + Index * Step) for all cases, without
    703     // special handling for "isOne" and "isMinusOne".
    704     // But in the real life the result code getting worse. We mix SCEV
    705     // expressions and ADD/SUB operations and receive redundant
    706     // intermediate values being calculated in different ways and
    707     // Instcombine is unable to reduce them all.
    708 
    709     if (getConstIntStepValue() &&
    710         getConstIntStepValue()->isMinusOne())
    711       return B.CreateSub(StartValue, Index);
    712     if (getConstIntStepValue() &&
    713         getConstIntStepValue()->isOne())
    714       return B.CreateAdd(StartValue, Index);
    715     const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
    716                                    SE->getMulExpr(Step, SE->getSCEV(Index)));
    717     return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
    718   }
    719   case IK_PtrInduction: {
    720     assert(Index->getType() == Step->getType() &&
    721            "Index type does not match StepValue type");
    722     assert(isa<SCEVConstant>(Step) &&
    723            "Expected constant step for pointer induction");
    724     const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
    725     Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
    726     return B.CreateGEP(nullptr, StartValue, Index);
    727   }
    728   case IK_NoInduction:
    729     return nullptr;
    730   }
    731   llvm_unreachable("invalid enum");
    732 }
    733 
    734 bool InductionDescriptor::isInductionPHI(PHINode *Phi,
    735                                          PredicatedScalarEvolution &PSE,
    736                                          InductionDescriptor &D,
    737                                          bool Assume) {
    738   Type *PhiTy = Phi->getType();
    739   // We only handle integer and pointer inductions variables.
    740   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
    741     return false;
    742 
    743   const SCEV *PhiScev = PSE.getSCEV(Phi);
    744   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
    745 
    746   // We need this expression to be an AddRecExpr.
    747   if (Assume && !AR)
    748     AR = PSE.getAsAddRec(Phi);
    749 
    750   if (!AR) {
    751     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    752     return false;
    753   }
    754 
    755   return isInductionPHI(Phi, PSE.getSE(), D, AR);
    756 }
    757 
    758 bool InductionDescriptor::isInductionPHI(PHINode *Phi,
    759                                          ScalarEvolution *SE,
    760                                          InductionDescriptor &D,
    761                                          const SCEV *Expr) {
    762   Type *PhiTy = Phi->getType();
    763   // We only handle integer and pointer inductions variables.
    764   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
    765     return false;
    766 
    767   // Check that the PHI is consecutive.
    768   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
    769   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
    770 
    771   if (!AR) {
    772     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    773     return false;
    774   }
    775 
    776   assert(AR->getLoop()->getHeader() == Phi->getParent() &&
    777          "PHI is an AddRec for a different loop?!");
    778   Value *StartValue =
    779     Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
    780   const SCEV *Step = AR->getStepRecurrence(*SE);
    781   // Calculate the pointer stride and check if it is consecutive.
    782   // The stride may be a constant or a loop invariant integer value.
    783   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
    784   if (!ConstStep && !SE->isLoopInvariant(Step, AR->getLoop()))
    785     return false;
    786 
    787   if (PhiTy->isIntegerTy()) {
    788     D = InductionDescriptor(StartValue, IK_IntInduction, Step);
    789     return true;
    790   }
    791 
    792   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
    793   // Pointer induction should be a constant.
    794   if (!ConstStep)
    795     return false;
    796 
    797   ConstantInt *CV = ConstStep->getValue();
    798   Type *PointerElementType = PhiTy->getPointerElementType();
    799   // The pointer stride cannot be determined if the pointer element type is not
    800   // sized.
    801   if (!PointerElementType->isSized())
    802     return false;
    803 
    804   const DataLayout &DL = Phi->getModule()->getDataLayout();
    805   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
    806   if (!Size)
    807     return false;
    808 
    809   int64_t CVSize = CV->getSExtValue();
    810   if (CVSize % Size)
    811     return false;
    812   auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
    813                                     true /* signed */);
    814   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
    815   return true;
    816 }
    817 
    818 /// \brief Returns the instructions that use values defined in the loop.
    819 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
    820   SmallVector<Instruction *, 8> UsedOutside;
    821 
    822   for (auto *Block : L->getBlocks())
    823     // FIXME: I believe that this could use copy_if if the Inst reference could
    824     // be adapted into a pointer.
    825     for (auto &Inst : *Block) {
    826       auto Users = Inst.users();
    827       if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
    828             auto *Use = cast<Instruction>(U);
    829             return !L->contains(Use->getParent());
    830           }))
    831         UsedOutside.push_back(&Inst);
    832     }
    833 
    834   return UsedOutside;
    835 }
    836 
    837 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
    838   // By definition, all loop passes need the LoopInfo analysis and the
    839   // Dominator tree it depends on. Because they all participate in the loop
    840   // pass manager, they must also preserve these.
    841   AU.addRequired<DominatorTreeWrapperPass>();
    842   AU.addPreserved<DominatorTreeWrapperPass>();
    843   AU.addRequired<LoopInfoWrapperPass>();
    844   AU.addPreserved<LoopInfoWrapperPass>();
    845 
    846   // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
    847   // here because users shouldn't directly get them from this header.
    848   extern char &LoopSimplifyID;
    849   extern char &LCSSAID;
    850   AU.addRequiredID(LoopSimplifyID);
    851   AU.addPreservedID(LoopSimplifyID);
    852   AU.addRequiredID(LCSSAID);
    853   AU.addPreservedID(LCSSAID);
    854 
    855   // Loop passes are designed to run inside of a loop pass manager which means
    856   // that any function analyses they require must be required by the first loop
    857   // pass in the manager (so that it is computed before the loop pass manager
    858   // runs) and preserved by all loop pasess in the manager. To make this
    859   // reasonably robust, the set needed for most loop passes is maintained here.
    860   // If your loop pass requires an analysis not listed here, you will need to
    861   // carefully audit the loop pass manager nesting structure that results.
    862   AU.addRequired<AAResultsWrapperPass>();
    863   AU.addPreserved<AAResultsWrapperPass>();
    864   AU.addPreserved<BasicAAWrapperPass>();
    865   AU.addPreserved<GlobalsAAWrapperPass>();
    866   AU.addPreserved<SCEVAAWrapperPass>();
    867   AU.addRequired<ScalarEvolutionWrapperPass>();
    868   AU.addPreserved<ScalarEvolutionWrapperPass>();
    869 }
    870 
    871 /// Manually defined generic "LoopPass" dependency initialization. This is used
    872 /// to initialize the exact set of passes from above in \c
    873 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
    874 /// with:
    875 ///
    876 ///   INITIALIZE_PASS_DEPENDENCY(LoopPass)
    877 ///
    878 /// As-if "LoopPass" were a pass.
    879 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
    880   INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    881   INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    882   INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    883   INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
    884   INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    885   INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
    886   INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    887   INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
    888   INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
    889 }
    890 
    891 /// \brief Find string metadata for loop
    892 ///
    893 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
    894 /// operand or null otherwise.  If the string metadata is not found return
    895 /// Optional's not-a-value.
    896 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
    897                                                             StringRef Name) {
    898   MDNode *LoopID = TheLoop->getLoopID();
    899   // Return none if LoopID is false.
    900   if (!LoopID)
    901     return None;
    902 
    903   // First operand should refer to the loop id itself.
    904   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
    905   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
    906 
    907   // Iterate over LoopID operands and look for MDString Metadata
    908   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    909     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    910     if (!MD)
    911       continue;
    912     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    913     if (!S)
    914       continue;
    915     // Return true if MDString holds expected MetaData.
    916     if (Name.equals(S->getString()))
    917       switch (MD->getNumOperands()) {
    918       case 1:
    919         return nullptr;
    920       case 2:
    921         return &MD->getOperand(1);
    922       default:
    923         llvm_unreachable("loop metadata has 0 or 1 operand");
    924       }
    925   }
    926   return None;
    927 }
    928 
    929 /// Returns true if the instruction in a loop is guaranteed to execute at least
    930 /// once.
    931 bool llvm::isGuaranteedToExecute(const Instruction &Inst,
    932                                  const DominatorTree *DT, const Loop *CurLoop,
    933                                  const LoopSafetyInfo *SafetyInfo) {
    934   // We have to check to make sure that the instruction dominates all
    935   // of the exit blocks.  If it doesn't, then there is a path out of the loop
    936   // which does not execute this instruction, so we can't hoist it.
    937 
    938   // If the instruction is in the header block for the loop (which is very
    939   // common), it is always guaranteed to dominate the exit blocks.  Since this
    940   // is a common case, and can save some work, check it now.
    941   if (Inst.getParent() == CurLoop->getHeader())
    942     // If there's a throw in the header block, we can't guarantee we'll reach
    943     // Inst.
    944     return !SafetyInfo->HeaderMayThrow;
    945 
    946   // Somewhere in this loop there is an instruction which may throw and make us
    947   // exit the loop.
    948   if (SafetyInfo->MayThrow)
    949     return false;
    950 
    951   // Get the exit blocks for the current loop.
    952   SmallVector<BasicBlock *, 8> ExitBlocks;
    953   CurLoop->getExitBlocks(ExitBlocks);
    954 
    955   // Verify that the block dominates each of the exit blocks of the loop.
    956   for (BasicBlock *ExitBlock : ExitBlocks)
    957     if (!DT->dominates(Inst.getParent(), ExitBlock))
    958       return false;
    959 
    960   // As a degenerate case, if the loop is statically infinite then we haven't
    961   // proven anything since there are no exit blocks.
    962   if (ExitBlocks.empty())
    963     return false;
    964 
    965   // FIXME: In general, we have to prove that the loop isn't an infinite loop.
    966   // See http::llvm.org/PR24078 .  (The "ExitBlocks.empty()" check above is
    967   // just a special case of this.)
    968   return true;
    969 }
    970