1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution expander, 11 // which is used to generate the code corresponding to a given scalar evolution 12 // expression. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/ScalarEvolutionExpander.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 35 /// reusing an existing cast if a suitable one exists, moving an existing 36 /// cast if a suitable one exists but isn't in the right place, or 37 /// creating a new one. 38 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 39 Instruction::CastOps Op, 40 BasicBlock::iterator IP) { 41 // This function must be called with the builder having a valid insertion 42 // point. It doesn't need to be the actual IP where the uses of the returned 43 // cast will be added, but it must dominate such IP. 44 // We use this precondition to produce a cast that will dominate all its 45 // uses. In particular, this is crucial for the case where the builder's 46 // insertion point *is* the point where we were asked to put the cast. 47 // Since we don't know the builder's insertion point is actually 48 // where the uses will be added (only that it dominates it), we are 49 // not allowed to move it. 50 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 51 52 Instruction *Ret = nullptr; 53 54 // Check to see if there is already a cast! 55 for (User *U : V->users()) 56 if (U->getType() == Ty) 57 if (CastInst *CI = dyn_cast<CastInst>(U)) 58 if (CI->getOpcode() == Op) { 59 // If the cast isn't where we want it, create a new cast at IP. 60 // Likewise, do not reuse a cast at BIP because it must dominate 61 // instructions that might be inserted before BIP. 62 if (BasicBlock::iterator(CI) != IP || BIP == IP) { 63 // Create a new cast, and leave the old cast in place in case 64 // it is being used as an insert point. Clear its operand 65 // so that it doesn't hold anything live. 66 Ret = CastInst::Create(Op, V, Ty, "", &*IP); 67 Ret->takeName(CI); 68 CI->replaceAllUsesWith(Ret); 69 CI->setOperand(0, UndefValue::get(V->getType())); 70 break; 71 } 72 Ret = CI; 73 break; 74 } 75 76 // Create a new cast. 77 if (!Ret) 78 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); 79 80 // We assert at the end of the function since IP might point to an 81 // instruction with different dominance properties than a cast 82 // (an invoke for example) and not dominate BIP (but the cast does). 83 assert(SE.DT.dominates(Ret, &*BIP)); 84 85 rememberInstruction(Ret); 86 return Ret; 87 } 88 89 static BasicBlock::iterator findInsertPointAfter(Instruction *I, 90 BasicBlock *MustDominate) { 91 BasicBlock::iterator IP = ++I->getIterator(); 92 if (auto *II = dyn_cast<InvokeInst>(I)) 93 IP = II->getNormalDest()->begin(); 94 95 while (isa<PHINode>(IP)) 96 ++IP; 97 98 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 99 ++IP; 100 } else if (isa<CatchSwitchInst>(IP)) { 101 IP = MustDominate->getFirstInsertionPt(); 102 } else { 103 assert(!IP->isEHPad() && "unexpected eh pad!"); 104 } 105 106 return IP; 107 } 108 109 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 110 /// which must be possible with a noop cast, doing what we can to share 111 /// the casts. 112 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 113 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 114 assert((Op == Instruction::BitCast || 115 Op == Instruction::PtrToInt || 116 Op == Instruction::IntToPtr) && 117 "InsertNoopCastOfTo cannot perform non-noop casts!"); 118 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 119 "InsertNoopCastOfTo cannot change sizes!"); 120 121 // Short-circuit unnecessary bitcasts. 122 if (Op == Instruction::BitCast) { 123 if (V->getType() == Ty) 124 return V; 125 if (CastInst *CI = dyn_cast<CastInst>(V)) { 126 if (CI->getOperand(0)->getType() == Ty) 127 return CI->getOperand(0); 128 } 129 } 130 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 131 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 132 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 133 if (CastInst *CI = dyn_cast<CastInst>(V)) 134 if ((CI->getOpcode() == Instruction::PtrToInt || 135 CI->getOpcode() == Instruction::IntToPtr) && 136 SE.getTypeSizeInBits(CI->getType()) == 137 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 138 return CI->getOperand(0); 139 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 140 if ((CE->getOpcode() == Instruction::PtrToInt || 141 CE->getOpcode() == Instruction::IntToPtr) && 142 SE.getTypeSizeInBits(CE->getType()) == 143 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 144 return CE->getOperand(0); 145 } 146 147 // Fold a cast of a constant. 148 if (Constant *C = dyn_cast<Constant>(V)) 149 return ConstantExpr::getCast(Op, C, Ty); 150 151 // Cast the argument at the beginning of the entry block, after 152 // any bitcasts of other arguments. 153 if (Argument *A = dyn_cast<Argument>(V)) { 154 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 155 while ((isa<BitCastInst>(IP) && 156 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 157 cast<BitCastInst>(IP)->getOperand(0) != A) || 158 isa<DbgInfoIntrinsic>(IP)) 159 ++IP; 160 return ReuseOrCreateCast(A, Ty, Op, IP); 161 } 162 163 // Cast the instruction immediately after the instruction. 164 Instruction *I = cast<Instruction>(V); 165 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); 166 return ReuseOrCreateCast(I, Ty, Op, IP); 167 } 168 169 /// InsertBinop - Insert the specified binary operator, doing a small amount 170 /// of work to avoid inserting an obviously redundant operation. 171 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 172 Value *LHS, Value *RHS) { 173 // Fold a binop with constant operands. 174 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 175 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 176 return ConstantExpr::get(Opcode, CLHS, CRHS); 177 178 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 179 unsigned ScanLimit = 6; 180 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 181 // Scanning starts from the last instruction before the insertion point. 182 BasicBlock::iterator IP = Builder.GetInsertPoint(); 183 if (IP != BlockBegin) { 184 --IP; 185 for (; ScanLimit; --IP, --ScanLimit) { 186 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 187 // generated code. 188 if (isa<DbgInfoIntrinsic>(IP)) 189 ScanLimit++; 190 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 191 IP->getOperand(1) == RHS) 192 return &*IP; 193 if (IP == BlockBegin) break; 194 } 195 } 196 197 // Save the original insertion point so we can restore it when we're done. 198 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 199 SCEVInsertPointGuard Guard(Builder, this); 200 201 // Move the insertion point out of as many loops as we can. 202 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 203 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 204 BasicBlock *Preheader = L->getLoopPreheader(); 205 if (!Preheader) break; 206 207 // Ok, move up a level. 208 Builder.SetInsertPoint(Preheader->getTerminator()); 209 } 210 211 // If we haven't found this binop, insert it. 212 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 213 BO->setDebugLoc(Loc); 214 rememberInstruction(BO); 215 216 return BO; 217 } 218 219 /// FactorOutConstant - Test if S is divisible by Factor, using signed 220 /// division. If so, update S with Factor divided out and return true. 221 /// S need not be evenly divisible if a reasonable remainder can be 222 /// computed. 223 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made 224 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and 225 /// check to see if the divide was folded. 226 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 227 const SCEV *Factor, ScalarEvolution &SE, 228 const DataLayout &DL) { 229 // Everything is divisible by one. 230 if (Factor->isOne()) 231 return true; 232 233 // x/x == 1. 234 if (S == Factor) { 235 S = SE.getConstant(S->getType(), 1); 236 return true; 237 } 238 239 // For a Constant, check for a multiple of the given factor. 240 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 241 // 0/x == 0. 242 if (C->isZero()) 243 return true; 244 // Check for divisibility. 245 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 246 ConstantInt *CI = 247 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 248 // If the quotient is zero and the remainder is non-zero, reject 249 // the value at this scale. It will be considered for subsequent 250 // smaller scales. 251 if (!CI->isZero()) { 252 const SCEV *Div = SE.getConstant(CI); 253 S = Div; 254 Remainder = SE.getAddExpr( 255 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 256 return true; 257 } 258 } 259 } 260 261 // In a Mul, check if there is a constant operand which is a multiple 262 // of the given factor. 263 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 264 // Size is known, check if there is a constant operand which is a multiple 265 // of the given factor. If so, we can factor it. 266 const SCEVConstant *FC = cast<SCEVConstant>(Factor); 267 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 268 if (!C->getAPInt().srem(FC->getAPInt())) { 269 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 270 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 271 S = SE.getMulExpr(NewMulOps); 272 return true; 273 } 274 } 275 276 // In an AddRec, check if both start and step are divisible. 277 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 278 const SCEV *Step = A->getStepRecurrence(SE); 279 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 280 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 281 return false; 282 if (!StepRem->isZero()) 283 return false; 284 const SCEV *Start = A->getStart(); 285 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 286 return false; 287 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 288 A->getNoWrapFlags(SCEV::FlagNW)); 289 return true; 290 } 291 292 return false; 293 } 294 295 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 296 /// is the number of SCEVAddRecExprs present, which are kept at the end of 297 /// the list. 298 /// 299 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 300 Type *Ty, 301 ScalarEvolution &SE) { 302 unsigned NumAddRecs = 0; 303 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 304 ++NumAddRecs; 305 // Group Ops into non-addrecs and addrecs. 306 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 307 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 308 // Let ScalarEvolution sort and simplify the non-addrecs list. 309 const SCEV *Sum = NoAddRecs.empty() ? 310 SE.getConstant(Ty, 0) : 311 SE.getAddExpr(NoAddRecs); 312 // If it returned an add, use the operands. Otherwise it simplified 313 // the sum into a single value, so just use that. 314 Ops.clear(); 315 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 316 Ops.append(Add->op_begin(), Add->op_end()); 317 else if (!Sum->isZero()) 318 Ops.push_back(Sum); 319 // Then append the addrecs. 320 Ops.append(AddRecs.begin(), AddRecs.end()); 321 } 322 323 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 324 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 325 /// This helps expose more opportunities for folding parts of the expressions 326 /// into GEP indices. 327 /// 328 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 329 Type *Ty, 330 ScalarEvolution &SE) { 331 // Find the addrecs. 332 SmallVector<const SCEV *, 8> AddRecs; 333 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 334 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 335 const SCEV *Start = A->getStart(); 336 if (Start->isZero()) break; 337 const SCEV *Zero = SE.getConstant(Ty, 0); 338 AddRecs.push_back(SE.getAddRecExpr(Zero, 339 A->getStepRecurrence(SE), 340 A->getLoop(), 341 A->getNoWrapFlags(SCEV::FlagNW))); 342 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 343 Ops[i] = Zero; 344 Ops.append(Add->op_begin(), Add->op_end()); 345 e += Add->getNumOperands(); 346 } else { 347 Ops[i] = Start; 348 } 349 } 350 if (!AddRecs.empty()) { 351 // Add the addrecs onto the end of the list. 352 Ops.append(AddRecs.begin(), AddRecs.end()); 353 // Resort the operand list, moving any constants to the front. 354 SimplifyAddOperands(Ops, Ty, SE); 355 } 356 } 357 358 /// expandAddToGEP - Expand an addition expression with a pointer type into 359 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 360 /// BasicAliasAnalysis and other passes analyze the result. See the rules 361 /// for getelementptr vs. inttoptr in 362 /// http://llvm.org/docs/LangRef.html#pointeraliasing 363 /// for details. 364 /// 365 /// Design note: The correctness of using getelementptr here depends on 366 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 367 /// they may introduce pointer arithmetic which may not be safely converted 368 /// into getelementptr. 369 /// 370 /// Design note: It might seem desirable for this function to be more 371 /// loop-aware. If some of the indices are loop-invariant while others 372 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 373 /// loop-invariant portions of the overall computation outside the loop. 374 /// However, there are a few reasons this is not done here. Hoisting simple 375 /// arithmetic is a low-level optimization that often isn't very 376 /// important until late in the optimization process. In fact, passes 377 /// like InstructionCombining will combine GEPs, even if it means 378 /// pushing loop-invariant computation down into loops, so even if the 379 /// GEPs were split here, the work would quickly be undone. The 380 /// LoopStrengthReduction pass, which is usually run quite late (and 381 /// after the last InstructionCombining pass), takes care of hoisting 382 /// loop-invariant portions of expressions, after considering what 383 /// can be folded using target addressing modes. 384 /// 385 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 386 const SCEV *const *op_end, 387 PointerType *PTy, 388 Type *Ty, 389 Value *V) { 390 Type *OriginalElTy = PTy->getElementType(); 391 Type *ElTy = OriginalElTy; 392 SmallVector<Value *, 4> GepIndices; 393 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 394 bool AnyNonZeroIndices = false; 395 396 // Split AddRecs up into parts as either of the parts may be usable 397 // without the other. 398 SplitAddRecs(Ops, Ty, SE); 399 400 Type *IntPtrTy = DL.getIntPtrType(PTy); 401 402 // Descend down the pointer's type and attempt to convert the other 403 // operands into GEP indices, at each level. The first index in a GEP 404 // indexes into the array implied by the pointer operand; the rest of 405 // the indices index into the element or field type selected by the 406 // preceding index. 407 for (;;) { 408 // If the scale size is not 0, attempt to factor out a scale for 409 // array indexing. 410 SmallVector<const SCEV *, 8> ScaledOps; 411 if (ElTy->isSized()) { 412 const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy); 413 if (!ElSize->isZero()) { 414 SmallVector<const SCEV *, 8> NewOps; 415 for (const SCEV *Op : Ops) { 416 const SCEV *Remainder = SE.getConstant(Ty, 0); 417 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 418 // Op now has ElSize factored out. 419 ScaledOps.push_back(Op); 420 if (!Remainder->isZero()) 421 NewOps.push_back(Remainder); 422 AnyNonZeroIndices = true; 423 } else { 424 // The operand was not divisible, so add it to the list of operands 425 // we'll scan next iteration. 426 NewOps.push_back(Op); 427 } 428 } 429 // If we made any changes, update Ops. 430 if (!ScaledOps.empty()) { 431 Ops = NewOps; 432 SimplifyAddOperands(Ops, Ty, SE); 433 } 434 } 435 } 436 437 // Record the scaled array index for this level of the type. If 438 // we didn't find any operands that could be factored, tentatively 439 // assume that element zero was selected (since the zero offset 440 // would obviously be folded away). 441 Value *Scaled = ScaledOps.empty() ? 442 Constant::getNullValue(Ty) : 443 expandCodeFor(SE.getAddExpr(ScaledOps), Ty); 444 GepIndices.push_back(Scaled); 445 446 // Collect struct field index operands. 447 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 448 bool FoundFieldNo = false; 449 // An empty struct has no fields. 450 if (STy->getNumElements() == 0) break; 451 // Field offsets are known. See if a constant offset falls within any of 452 // the struct fields. 453 if (Ops.empty()) 454 break; 455 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 456 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 457 const StructLayout &SL = *DL.getStructLayout(STy); 458 uint64_t FullOffset = C->getValue()->getZExtValue(); 459 if (FullOffset < SL.getSizeInBytes()) { 460 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 461 GepIndices.push_back( 462 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 463 ElTy = STy->getTypeAtIndex(ElIdx); 464 Ops[0] = 465 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 466 AnyNonZeroIndices = true; 467 FoundFieldNo = true; 468 } 469 } 470 // If no struct field offsets were found, tentatively assume that 471 // field zero was selected (since the zero offset would obviously 472 // be folded away). 473 if (!FoundFieldNo) { 474 ElTy = STy->getTypeAtIndex(0u); 475 GepIndices.push_back( 476 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 477 } 478 } 479 480 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 481 ElTy = ATy->getElementType(); 482 else 483 break; 484 } 485 486 // If none of the operands were convertible to proper GEP indices, cast 487 // the base to i8* and do an ugly getelementptr with that. It's still 488 // better than ptrtoint+arithmetic+inttoptr at least. 489 if (!AnyNonZeroIndices) { 490 // Cast the base to i8*. 491 V = InsertNoopCastOfTo(V, 492 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 493 494 assert(!isa<Instruction>(V) || 495 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 496 497 // Expand the operands for a plain byte offset. 498 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); 499 500 // Fold a GEP with constant operands. 501 if (Constant *CLHS = dyn_cast<Constant>(V)) 502 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 503 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 504 CLHS, CRHS); 505 506 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 507 unsigned ScanLimit = 6; 508 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 509 // Scanning starts from the last instruction before the insertion point. 510 BasicBlock::iterator IP = Builder.GetInsertPoint(); 511 if (IP != BlockBegin) { 512 --IP; 513 for (; ScanLimit; --IP, --ScanLimit) { 514 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 515 // generated code. 516 if (isa<DbgInfoIntrinsic>(IP)) 517 ScanLimit++; 518 if (IP->getOpcode() == Instruction::GetElementPtr && 519 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 520 return &*IP; 521 if (IP == BlockBegin) break; 522 } 523 } 524 525 // Save the original insertion point so we can restore it when we're done. 526 SCEVInsertPointGuard Guard(Builder, this); 527 528 // Move the insertion point out of as many loops as we can. 529 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 530 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 531 BasicBlock *Preheader = L->getLoopPreheader(); 532 if (!Preheader) break; 533 534 // Ok, move up a level. 535 Builder.SetInsertPoint(Preheader->getTerminator()); 536 } 537 538 // Emit a GEP. 539 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 540 rememberInstruction(GEP); 541 542 return GEP; 543 } 544 545 { 546 SCEVInsertPointGuard Guard(Builder, this); 547 548 // Move the insertion point out of as many loops as we can. 549 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 550 if (!L->isLoopInvariant(V)) break; 551 552 bool AnyIndexNotLoopInvariant = 553 std::any_of(GepIndices.begin(), GepIndices.end(), 554 [L](Value *Op) { return !L->isLoopInvariant(Op); }); 555 556 if (AnyIndexNotLoopInvariant) 557 break; 558 559 BasicBlock *Preheader = L->getLoopPreheader(); 560 if (!Preheader) break; 561 562 // Ok, move up a level. 563 Builder.SetInsertPoint(Preheader->getTerminator()); 564 } 565 566 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 567 // because ScalarEvolution may have changed the address arithmetic to 568 // compute a value which is beyond the end of the allocated object. 569 Value *Casted = V; 570 if (V->getType() != PTy) 571 Casted = InsertNoopCastOfTo(Casted, PTy); 572 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); 573 Ops.push_back(SE.getUnknown(GEP)); 574 rememberInstruction(GEP); 575 } 576 577 return expand(SE.getAddExpr(Ops)); 578 } 579 580 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 581 /// SCEV expansion. If they are nested, this is the most nested. If they are 582 /// neighboring, pick the later. 583 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 584 DominatorTree &DT) { 585 if (!A) return B; 586 if (!B) return A; 587 if (A->contains(B)) return B; 588 if (B->contains(A)) return A; 589 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 590 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 591 return A; // Arbitrarily break the tie. 592 } 593 594 /// getRelevantLoop - Get the most relevant loop associated with the given 595 /// expression, according to PickMostRelevantLoop. 596 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 597 // Test whether we've already computed the most relevant loop for this SCEV. 598 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 599 if (!Pair.second) 600 return Pair.first->second; 601 602 if (isa<SCEVConstant>(S)) 603 // A constant has no relevant loops. 604 return nullptr; 605 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 606 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 607 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 608 // A non-instruction has no relevant loops. 609 return nullptr; 610 } 611 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 612 const Loop *L = nullptr; 613 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 614 L = AR->getLoop(); 615 for (const SCEV *Op : N->operands()) 616 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 617 return RelevantLoops[N] = L; 618 } 619 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 620 const Loop *Result = getRelevantLoop(C->getOperand()); 621 return RelevantLoops[C] = Result; 622 } 623 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 624 const Loop *Result = PickMostRelevantLoop( 625 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 626 return RelevantLoops[D] = Result; 627 } 628 llvm_unreachable("Unexpected SCEV type!"); 629 } 630 631 namespace { 632 633 /// LoopCompare - Compare loops by PickMostRelevantLoop. 634 class LoopCompare { 635 DominatorTree &DT; 636 public: 637 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 638 639 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 640 std::pair<const Loop *, const SCEV *> RHS) const { 641 // Keep pointer operands sorted at the end. 642 if (LHS.second->getType()->isPointerTy() != 643 RHS.second->getType()->isPointerTy()) 644 return LHS.second->getType()->isPointerTy(); 645 646 // Compare loops with PickMostRelevantLoop. 647 if (LHS.first != RHS.first) 648 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 649 650 // If one operand is a non-constant negative and the other is not, 651 // put the non-constant negative on the right so that a sub can 652 // be used instead of a negate and add. 653 if (LHS.second->isNonConstantNegative()) { 654 if (!RHS.second->isNonConstantNegative()) 655 return false; 656 } else if (RHS.second->isNonConstantNegative()) 657 return true; 658 659 // Otherwise they are equivalent according to this comparison. 660 return false; 661 } 662 }; 663 664 } 665 666 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 667 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 668 669 // Collect all the add operands in a loop, along with their associated loops. 670 // Iterate in reverse so that constants are emitted last, all else equal, and 671 // so that pointer operands are inserted first, which the code below relies on 672 // to form more involved GEPs. 673 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 674 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 675 E(S->op_begin()); I != E; ++I) 676 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 677 678 // Sort by loop. Use a stable sort so that constants follow non-constants and 679 // pointer operands precede non-pointer operands. 680 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); 681 682 // Emit instructions to add all the operands. Hoist as much as possible 683 // out of loops, and form meaningful getelementptrs where possible. 684 Value *Sum = nullptr; 685 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 686 const Loop *CurLoop = I->first; 687 const SCEV *Op = I->second; 688 if (!Sum) { 689 // This is the first operand. Just expand it. 690 Sum = expand(Op); 691 ++I; 692 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 693 // The running sum expression is a pointer. Try to form a getelementptr 694 // at this level with that as the base. 695 SmallVector<const SCEV *, 4> NewOps; 696 for (; I != E && I->first == CurLoop; ++I) { 697 // If the operand is SCEVUnknown and not instructions, peek through 698 // it, to enable more of it to be folded into the GEP. 699 const SCEV *X = I->second; 700 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 701 if (!isa<Instruction>(U->getValue())) 702 X = SE.getSCEV(U->getValue()); 703 NewOps.push_back(X); 704 } 705 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 706 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 707 // The running sum is an integer, and there's a pointer at this level. 708 // Try to form a getelementptr. If the running sum is instructions, 709 // use a SCEVUnknown to avoid re-analyzing them. 710 SmallVector<const SCEV *, 4> NewOps; 711 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 712 SE.getSCEV(Sum)); 713 for (++I; I != E && I->first == CurLoop; ++I) 714 NewOps.push_back(I->second); 715 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 716 } else if (Op->isNonConstantNegative()) { 717 // Instead of doing a negate and add, just do a subtract. 718 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 719 Sum = InsertNoopCastOfTo(Sum, Ty); 720 Sum = InsertBinop(Instruction::Sub, Sum, W); 721 ++I; 722 } else { 723 // A simple add. 724 Value *W = expandCodeFor(Op, Ty); 725 Sum = InsertNoopCastOfTo(Sum, Ty); 726 // Canonicalize a constant to the RHS. 727 if (isa<Constant>(Sum)) std::swap(Sum, W); 728 Sum = InsertBinop(Instruction::Add, Sum, W); 729 ++I; 730 } 731 } 732 733 return Sum; 734 } 735 736 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 737 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 738 739 // Collect all the mul operands in a loop, along with their associated loops. 740 // Iterate in reverse so that constants are emitted last, all else equal. 741 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 742 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 743 E(S->op_begin()); I != E; ++I) 744 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 745 746 // Sort by loop. Use a stable sort so that constants follow non-constants. 747 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); 748 749 // Emit instructions to mul all the operands. Hoist as much as possible 750 // out of loops. 751 Value *Prod = nullptr; 752 for (const auto &I : OpsAndLoops) { 753 const SCEV *Op = I.second; 754 if (!Prod) { 755 // This is the first operand. Just expand it. 756 Prod = expand(Op); 757 } else if (Op->isAllOnesValue()) { 758 // Instead of doing a multiply by negative one, just do a negate. 759 Prod = InsertNoopCastOfTo(Prod, Ty); 760 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); 761 } else { 762 // A simple mul. 763 Value *W = expandCodeFor(Op, Ty); 764 Prod = InsertNoopCastOfTo(Prod, Ty); 765 // Canonicalize a constant to the RHS. 766 if (isa<Constant>(Prod)) std::swap(Prod, W); 767 const APInt *RHS; 768 if (match(W, m_Power2(RHS))) { 769 // Canonicalize Prod*(1<<C) to Prod<<C. 770 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 771 Prod = InsertBinop(Instruction::Shl, Prod, 772 ConstantInt::get(Ty, RHS->logBase2())); 773 } else { 774 Prod = InsertBinop(Instruction::Mul, Prod, W); 775 } 776 } 777 } 778 779 return Prod; 780 } 781 782 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 783 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 784 785 Value *LHS = expandCodeFor(S->getLHS(), Ty); 786 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 787 const APInt &RHS = SC->getAPInt(); 788 if (RHS.isPowerOf2()) 789 return InsertBinop(Instruction::LShr, LHS, 790 ConstantInt::get(Ty, RHS.logBase2())); 791 } 792 793 Value *RHS = expandCodeFor(S->getRHS(), Ty); 794 return InsertBinop(Instruction::UDiv, LHS, RHS); 795 } 796 797 /// Move parts of Base into Rest to leave Base with the minimal 798 /// expression that provides a pointer operand suitable for a 799 /// GEP expansion. 800 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 801 ScalarEvolution &SE) { 802 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 803 Base = A->getStart(); 804 Rest = SE.getAddExpr(Rest, 805 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 806 A->getStepRecurrence(SE), 807 A->getLoop(), 808 A->getNoWrapFlags(SCEV::FlagNW))); 809 } 810 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 811 Base = A->getOperand(A->getNumOperands()-1); 812 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 813 NewAddOps.back() = Rest; 814 Rest = SE.getAddExpr(NewAddOps); 815 ExposePointerBase(Base, Rest, SE); 816 } 817 } 818 819 /// Determine if this is a well-behaved chain of instructions leading back to 820 /// the PHI. If so, it may be reused by expanded expressions. 821 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 822 const Loop *L) { 823 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 824 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 825 return false; 826 // If any of the operands don't dominate the insert position, bail. 827 // Addrec operands are always loop-invariant, so this can only happen 828 // if there are instructions which haven't been hoisted. 829 if (L == IVIncInsertLoop) { 830 for (User::op_iterator OI = IncV->op_begin()+1, 831 OE = IncV->op_end(); OI != OE; ++OI) 832 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 833 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 834 return false; 835 } 836 // Advance to the next instruction. 837 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 838 if (!IncV) 839 return false; 840 841 if (IncV->mayHaveSideEffects()) 842 return false; 843 844 if (IncV != PN) 845 return true; 846 847 return isNormalAddRecExprPHI(PN, IncV, L); 848 } 849 850 /// getIVIncOperand returns an induction variable increment's induction 851 /// variable operand. 852 /// 853 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 854 /// operands dominate InsertPos. 855 /// 856 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 857 /// simple patterns generated by getAddRecExprPHILiterally and 858 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 859 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 860 Instruction *InsertPos, 861 bool allowScale) { 862 if (IncV == InsertPos) 863 return nullptr; 864 865 switch (IncV->getOpcode()) { 866 default: 867 return nullptr; 868 // Check for a simple Add/Sub or GEP of a loop invariant step. 869 case Instruction::Add: 870 case Instruction::Sub: { 871 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 872 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 873 return dyn_cast<Instruction>(IncV->getOperand(0)); 874 return nullptr; 875 } 876 case Instruction::BitCast: 877 return dyn_cast<Instruction>(IncV->getOperand(0)); 878 case Instruction::GetElementPtr: 879 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { 880 if (isa<Constant>(*I)) 881 continue; 882 if (Instruction *OInst = dyn_cast<Instruction>(*I)) { 883 if (!SE.DT.dominates(OInst, InsertPos)) 884 return nullptr; 885 } 886 if (allowScale) { 887 // allow any kind of GEP as long as it can be hoisted. 888 continue; 889 } 890 // This must be a pointer addition of constants (pretty), which is already 891 // handled, or some number of address-size elements (ugly). Ugly geps 892 // have 2 operands. i1* is used by the expander to represent an 893 // address-size element. 894 if (IncV->getNumOperands() != 2) 895 return nullptr; 896 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 897 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 898 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 899 return nullptr; 900 break; 901 } 902 return dyn_cast<Instruction>(IncV->getOperand(0)); 903 } 904 } 905 906 /// If the insert point of the current builder or any of the builders on the 907 /// stack of saved builders has 'I' as its insert point, update it to point to 908 /// the instruction after 'I'. This is intended to be used when the instruction 909 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 910 /// different block, the inconsistent insert point (with a mismatched 911 /// Instruction and Block) can lead to an instruction being inserted in a block 912 /// other than its parent. 913 void SCEVExpander::fixupInsertPoints(Instruction *I) { 914 BasicBlock::iterator It(*I); 915 BasicBlock::iterator NewInsertPt = std::next(It); 916 if (Builder.GetInsertPoint() == It) 917 Builder.SetInsertPoint(&*NewInsertPt); 918 for (auto *InsertPtGuard : InsertPointGuards) 919 if (InsertPtGuard->GetInsertPoint() == It) 920 InsertPtGuard->SetInsertPoint(NewInsertPt); 921 } 922 923 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 924 /// it available to other uses in this loop. Recursively hoist any operands, 925 /// until we reach a value that dominates InsertPos. 926 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 927 if (SE.DT.dominates(IncV, InsertPos)) 928 return true; 929 930 // InsertPos must itself dominate IncV so that IncV's new position satisfies 931 // its existing users. 932 if (isa<PHINode>(InsertPos) || 933 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 934 return false; 935 936 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 937 return false; 938 939 // Check that the chain of IV operands leading back to Phi can be hoisted. 940 SmallVector<Instruction*, 4> IVIncs; 941 for(;;) { 942 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 943 if (!Oper) 944 return false; 945 // IncV is safe to hoist. 946 IVIncs.push_back(IncV); 947 IncV = Oper; 948 if (SE.DT.dominates(IncV, InsertPos)) 949 break; 950 } 951 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 952 fixupInsertPoints(*I); 953 (*I)->moveBefore(InsertPos); 954 } 955 return true; 956 } 957 958 /// Determine if this cyclic phi is in a form that would have been generated by 959 /// LSR. We don't care if the phi was actually expanded in this pass, as long 960 /// as it is in a low-cost form, for example, no implied multiplication. This 961 /// should match any patterns generated by getAddRecExprPHILiterally and 962 /// expandAddtoGEP. 963 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 964 const Loop *L) { 965 for(Instruction *IVOper = IncV; 966 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 967 /*allowScale=*/false));) { 968 if (IVOper == PN) 969 return true; 970 } 971 return false; 972 } 973 974 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 975 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 976 /// need to materialize IV increments elsewhere to handle difficult situations. 977 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 978 Type *ExpandTy, Type *IntTy, 979 bool useSubtract) { 980 Value *IncV; 981 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 982 if (ExpandTy->isPointerTy()) { 983 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 984 // If the step isn't constant, don't use an implicitly scaled GEP, because 985 // that would require a multiply inside the loop. 986 if (!isa<ConstantInt>(StepV)) 987 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 988 GEPPtrTy->getAddressSpace()); 989 const SCEV *const StepArray[1] = { SE.getSCEV(StepV) }; 990 IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN); 991 if (IncV->getType() != PN->getType()) { 992 IncV = Builder.CreateBitCast(IncV, PN->getType()); 993 rememberInstruction(IncV); 994 } 995 } else { 996 IncV = useSubtract ? 997 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 998 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 999 rememberInstruction(IncV); 1000 } 1001 return IncV; 1002 } 1003 1004 /// \brief Hoist the addrec instruction chain rooted in the loop phi above the 1005 /// position. This routine assumes that this is possible (has been checked). 1006 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1007 Instruction *Pos, PHINode *LoopPhi) { 1008 do { 1009 if (DT->dominates(InstToHoist, Pos)) 1010 break; 1011 // Make sure the increment is where we want it. But don't move it 1012 // down past a potential existing post-inc user. 1013 fixupInsertPoints(InstToHoist); 1014 InstToHoist->moveBefore(Pos); 1015 Pos = InstToHoist; 1016 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1017 } while (InstToHoist != LoopPhi); 1018 } 1019 1020 /// \brief Check whether we can cheaply express the requested SCEV in terms of 1021 /// the available PHI SCEV by truncation and/or inversion of the step. 1022 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1023 const SCEVAddRecExpr *Phi, 1024 const SCEVAddRecExpr *Requested, 1025 bool &InvertStep) { 1026 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1027 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1028 1029 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1030 return false; 1031 1032 // Try truncate it if necessary. 1033 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1034 if (!Phi) 1035 return false; 1036 1037 // Check whether truncation will help. 1038 if (Phi == Requested) { 1039 InvertStep = false; 1040 return true; 1041 } 1042 1043 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1044 if (SE.getAddExpr(Requested->getStart(), 1045 SE.getNegativeSCEV(Requested)) == Phi) { 1046 InvertStep = true; 1047 return true; 1048 } 1049 1050 return false; 1051 } 1052 1053 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1054 if (!isa<IntegerType>(AR->getType())) 1055 return false; 1056 1057 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1058 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1059 const SCEV *Step = AR->getStepRecurrence(SE); 1060 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1061 SE.getSignExtendExpr(AR, WideTy)); 1062 const SCEV *ExtendAfterOp = 1063 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1064 return ExtendAfterOp == OpAfterExtend; 1065 } 1066 1067 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1068 if (!isa<IntegerType>(AR->getType())) 1069 return false; 1070 1071 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1072 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1073 const SCEV *Step = AR->getStepRecurrence(SE); 1074 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1075 SE.getZeroExtendExpr(AR, WideTy)); 1076 const SCEV *ExtendAfterOp = 1077 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1078 return ExtendAfterOp == OpAfterExtend; 1079 } 1080 1081 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1082 /// the base addrec, which is the addrec without any non-loop-dominating 1083 /// values, and return the PHI. 1084 PHINode * 1085 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1086 const Loop *L, 1087 Type *ExpandTy, 1088 Type *IntTy, 1089 Type *&TruncTy, 1090 bool &InvertStep) { 1091 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1092 1093 // Reuse a previously-inserted PHI, if present. 1094 BasicBlock *LatchBlock = L->getLoopLatch(); 1095 if (LatchBlock) { 1096 PHINode *AddRecPhiMatch = nullptr; 1097 Instruction *IncV = nullptr; 1098 TruncTy = nullptr; 1099 InvertStep = false; 1100 1101 // Only try partially matching scevs that need truncation and/or 1102 // step-inversion if we know this loop is outside the current loop. 1103 bool TryNonMatchingSCEV = 1104 IVIncInsertLoop && 1105 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1106 1107 for (auto &I : *L->getHeader()) { 1108 auto *PN = dyn_cast<PHINode>(&I); 1109 if (!PN || !SE.isSCEVable(PN->getType())) 1110 continue; 1111 1112 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PN)); 1113 if (!PhiSCEV) 1114 continue; 1115 1116 bool IsMatchingSCEV = PhiSCEV == Normalized; 1117 // We only handle truncation and inversion of phi recurrences for the 1118 // expanded expression if the expanded expression's loop dominates the 1119 // loop we insert to. Check now, so we can bail out early. 1120 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1121 continue; 1122 1123 Instruction *TempIncV = 1124 cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); 1125 1126 // Check whether we can reuse this PHI node. 1127 if (LSRMode) { 1128 if (!isExpandedAddRecExprPHI(PN, TempIncV, L)) 1129 continue; 1130 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1131 continue; 1132 } else { 1133 if (!isNormalAddRecExprPHI(PN, TempIncV, L)) 1134 continue; 1135 } 1136 1137 // Stop if we have found an exact match SCEV. 1138 if (IsMatchingSCEV) { 1139 IncV = TempIncV; 1140 TruncTy = nullptr; 1141 InvertStep = false; 1142 AddRecPhiMatch = PN; 1143 break; 1144 } 1145 1146 // Try whether the phi can be translated into the requested form 1147 // (truncated and/or offset by a constant). 1148 if ((!TruncTy || InvertStep) && 1149 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1150 // Record the phi node. But don't stop we might find an exact match 1151 // later. 1152 AddRecPhiMatch = PN; 1153 IncV = TempIncV; 1154 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1155 } 1156 } 1157 1158 if (AddRecPhiMatch) { 1159 // Potentially, move the increment. We have made sure in 1160 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1161 if (L == IVIncInsertLoop) 1162 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1163 1164 // Ok, the add recurrence looks usable. 1165 // Remember this PHI, even in post-inc mode. 1166 InsertedValues.insert(AddRecPhiMatch); 1167 // Remember the increment. 1168 rememberInstruction(IncV); 1169 return AddRecPhiMatch; 1170 } 1171 } 1172 1173 // Save the original insertion point so we can restore it when we're done. 1174 SCEVInsertPointGuard Guard(Builder, this); 1175 1176 // Another AddRec may need to be recursively expanded below. For example, if 1177 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1178 // loop. Remove this loop from the PostIncLoops set before expanding such 1179 // AddRecs. Otherwise, we cannot find a valid position for the step 1180 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1181 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1182 // so it's not worth implementing SmallPtrSet::swap. 1183 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1184 PostIncLoops.clear(); 1185 1186 // Expand code for the start value. 1187 Value *StartV = 1188 expandCodeFor(Normalized->getStart(), ExpandTy, &L->getHeader()->front()); 1189 1190 // StartV must be hoisted into L's preheader to dominate the new phi. 1191 assert(!isa<Instruction>(StartV) || 1192 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1193 L->getHeader())); 1194 1195 // Expand code for the step value. Do this before creating the PHI so that PHI 1196 // reuse code doesn't see an incomplete PHI. 1197 const SCEV *Step = Normalized->getStepRecurrence(SE); 1198 // If the stride is negative, insert a sub instead of an add for the increment 1199 // (unless it's a constant, because subtracts of constants are canonicalized 1200 // to adds). 1201 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1202 if (useSubtract) 1203 Step = SE.getNegativeSCEV(Step); 1204 // Expand the step somewhere that dominates the loop header. 1205 Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1206 1207 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1208 // we actually do emit an addition. It does not apply if we emit a 1209 // subtraction. 1210 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1211 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1212 1213 // Create the PHI. 1214 BasicBlock *Header = L->getHeader(); 1215 Builder.SetInsertPoint(Header, Header->begin()); 1216 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1217 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1218 Twine(IVName) + ".iv"); 1219 rememberInstruction(PN); 1220 1221 // Create the step instructions and populate the PHI. 1222 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1223 BasicBlock *Pred = *HPI; 1224 1225 // Add a start value. 1226 if (!L->contains(Pred)) { 1227 PN->addIncoming(StartV, Pred); 1228 continue; 1229 } 1230 1231 // Create a step value and add it to the PHI. 1232 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1233 // instructions at IVIncInsertPos. 1234 Instruction *InsertPos = L == IVIncInsertLoop ? 1235 IVIncInsertPos : Pred->getTerminator(); 1236 Builder.SetInsertPoint(InsertPos); 1237 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1238 1239 if (isa<OverflowingBinaryOperator>(IncV)) { 1240 if (IncrementIsNUW) 1241 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1242 if (IncrementIsNSW) 1243 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1244 } 1245 PN->addIncoming(IncV, Pred); 1246 } 1247 1248 // After expanding subexpressions, restore the PostIncLoops set so the caller 1249 // can ensure that IVIncrement dominates the current uses. 1250 PostIncLoops = SavedPostIncLoops; 1251 1252 // Remember this PHI, even in post-inc mode. 1253 InsertedValues.insert(PN); 1254 1255 return PN; 1256 } 1257 1258 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1259 Type *STy = S->getType(); 1260 Type *IntTy = SE.getEffectiveSCEVType(STy); 1261 const Loop *L = S->getLoop(); 1262 1263 // Determine a normalized form of this expression, which is the expression 1264 // before any post-inc adjustment is made. 1265 const SCEVAddRecExpr *Normalized = S; 1266 if (PostIncLoops.count(L)) { 1267 PostIncLoopSet Loops; 1268 Loops.insert(L); 1269 Normalized = cast<SCEVAddRecExpr>(TransformForPostIncUse( 1270 Normalize, S, nullptr, nullptr, Loops, SE, SE.DT)); 1271 } 1272 1273 // Strip off any non-loop-dominating component from the addrec start. 1274 const SCEV *Start = Normalized->getStart(); 1275 const SCEV *PostLoopOffset = nullptr; 1276 if (!SE.properlyDominates(Start, L->getHeader())) { 1277 PostLoopOffset = Start; 1278 Start = SE.getConstant(Normalized->getType(), 0); 1279 Normalized = cast<SCEVAddRecExpr>( 1280 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1281 Normalized->getLoop(), 1282 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1283 } 1284 1285 // Strip off any non-loop-dominating component from the addrec step. 1286 const SCEV *Step = Normalized->getStepRecurrence(SE); 1287 const SCEV *PostLoopScale = nullptr; 1288 if (!SE.dominates(Step, L->getHeader())) { 1289 PostLoopScale = Step; 1290 Step = SE.getConstant(Normalized->getType(), 1); 1291 if (!Start->isZero()) { 1292 // The normalization below assumes that Start is constant zero, so if 1293 // it isn't re-associate Start to PostLoopOffset. 1294 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1295 PostLoopOffset = Start; 1296 Start = SE.getConstant(Normalized->getType(), 0); 1297 } 1298 Normalized = 1299 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1300 Start, Step, Normalized->getLoop(), 1301 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1302 } 1303 1304 // Expand the core addrec. If we need post-loop scaling, force it to 1305 // expand to an integer type to avoid the need for additional casting. 1306 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1307 // In some cases, we decide to reuse an existing phi node but need to truncate 1308 // it and/or invert the step. 1309 Type *TruncTy = nullptr; 1310 bool InvertStep = false; 1311 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy, 1312 TruncTy, InvertStep); 1313 1314 // Accommodate post-inc mode, if necessary. 1315 Value *Result; 1316 if (!PostIncLoops.count(L)) 1317 Result = PN; 1318 else { 1319 // In PostInc mode, use the post-incremented value. 1320 BasicBlock *LatchBlock = L->getLoopLatch(); 1321 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1322 Result = PN->getIncomingValueForBlock(LatchBlock); 1323 1324 // For an expansion to use the postinc form, the client must call 1325 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1326 // or dominated by IVIncInsertPos. 1327 if (isa<Instruction>(Result) && 1328 !SE.DT.dominates(cast<Instruction>(Result), 1329 &*Builder.GetInsertPoint())) { 1330 // The induction variable's postinc expansion does not dominate this use. 1331 // IVUsers tries to prevent this case, so it is rare. However, it can 1332 // happen when an IVUser outside the loop is not dominated by the latch 1333 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1334 // all cases. Consider a phi outide whose operand is replaced during 1335 // expansion with the value of the postinc user. Without fundamentally 1336 // changing the way postinc users are tracked, the only remedy is 1337 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1338 // but hopefully expandCodeFor handles that. 1339 bool useSubtract = 1340 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1341 if (useSubtract) 1342 Step = SE.getNegativeSCEV(Step); 1343 Value *StepV; 1344 { 1345 // Expand the step somewhere that dominates the loop header. 1346 SCEVInsertPointGuard Guard(Builder, this); 1347 StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); 1348 } 1349 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1350 } 1351 } 1352 1353 // We have decided to reuse an induction variable of a dominating loop. Apply 1354 // truncation and/or invertion of the step. 1355 if (TruncTy) { 1356 Type *ResTy = Result->getType(); 1357 // Normalize the result type. 1358 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1359 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1360 // Truncate the result. 1361 if (TruncTy != Result->getType()) { 1362 Result = Builder.CreateTrunc(Result, TruncTy); 1363 rememberInstruction(Result); 1364 } 1365 // Invert the result. 1366 if (InvertStep) { 1367 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1368 Result); 1369 rememberInstruction(Result); 1370 } 1371 } 1372 1373 // Re-apply any non-loop-dominating scale. 1374 if (PostLoopScale) { 1375 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1376 Result = InsertNoopCastOfTo(Result, IntTy); 1377 Result = Builder.CreateMul(Result, 1378 expandCodeFor(PostLoopScale, IntTy)); 1379 rememberInstruction(Result); 1380 } 1381 1382 // Re-apply any non-loop-dominating offset. 1383 if (PostLoopOffset) { 1384 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1385 const SCEV *const OffsetArray[1] = { PostLoopOffset }; 1386 Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result); 1387 } else { 1388 Result = InsertNoopCastOfTo(Result, IntTy); 1389 Result = Builder.CreateAdd(Result, 1390 expandCodeFor(PostLoopOffset, IntTy)); 1391 rememberInstruction(Result); 1392 } 1393 } 1394 1395 return Result; 1396 } 1397 1398 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1399 if (!CanonicalMode) return expandAddRecExprLiterally(S); 1400 1401 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1402 const Loop *L = S->getLoop(); 1403 1404 // First check for an existing canonical IV in a suitable type. 1405 PHINode *CanonicalIV = nullptr; 1406 if (PHINode *PN = L->getCanonicalInductionVariable()) 1407 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1408 CanonicalIV = PN; 1409 1410 // Rewrite an AddRec in terms of the canonical induction variable, if 1411 // its type is more narrow. 1412 if (CanonicalIV && 1413 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1414 SE.getTypeSizeInBits(Ty)) { 1415 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1416 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1417 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1418 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1419 S->getNoWrapFlags(SCEV::FlagNW))); 1420 BasicBlock::iterator NewInsertPt = 1421 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); 1422 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1423 &*NewInsertPt); 1424 return V; 1425 } 1426 1427 // {X,+,F} --> X + {0,+,F} 1428 if (!S->getStart()->isZero()) { 1429 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1430 NewOps[0] = SE.getConstant(Ty, 0); 1431 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1432 S->getNoWrapFlags(SCEV::FlagNW)); 1433 1434 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1435 // comments on expandAddToGEP for details. 1436 const SCEV *Base = S->getStart(); 1437 const SCEV *RestArray[1] = { Rest }; 1438 // Dig into the expression to find the pointer base for a GEP. 1439 ExposePointerBase(Base, RestArray[0], SE); 1440 // If we found a pointer, expand the AddRec with a GEP. 1441 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1442 // Make sure the Base isn't something exotic, such as a multiplied 1443 // or divided pointer value. In those cases, the result type isn't 1444 // actually a pointer type. 1445 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1446 Value *StartV = expand(Base); 1447 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1448 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); 1449 } 1450 } 1451 1452 // Just do a normal add. Pre-expand the operands to suppress folding. 1453 // 1454 // The LHS and RHS values are factored out of the expand call to make the 1455 // output independent of the argument evaluation order. 1456 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1457 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1458 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1459 } 1460 1461 // If we don't yet have a canonical IV, create one. 1462 if (!CanonicalIV) { 1463 // Create and insert the PHI node for the induction variable in the 1464 // specified loop. 1465 BasicBlock *Header = L->getHeader(); 1466 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1467 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1468 &Header->front()); 1469 rememberInstruction(CanonicalIV); 1470 1471 SmallSet<BasicBlock *, 4> PredSeen; 1472 Constant *One = ConstantInt::get(Ty, 1); 1473 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1474 BasicBlock *HP = *HPI; 1475 if (!PredSeen.insert(HP).second) { 1476 // There must be an incoming value for each predecessor, even the 1477 // duplicates! 1478 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1479 continue; 1480 } 1481 1482 if (L->contains(HP)) { 1483 // Insert a unit add instruction right before the terminator 1484 // corresponding to the back-edge. 1485 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1486 "indvar.next", 1487 HP->getTerminator()); 1488 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1489 rememberInstruction(Add); 1490 CanonicalIV->addIncoming(Add, HP); 1491 } else { 1492 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1493 } 1494 } 1495 } 1496 1497 // {0,+,1} --> Insert a canonical induction variable into the loop! 1498 if (S->isAffine() && S->getOperand(1)->isOne()) { 1499 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1500 "IVs with types different from the canonical IV should " 1501 "already have been handled!"); 1502 return CanonicalIV; 1503 } 1504 1505 // {0,+,F} --> {0,+,1} * F 1506 1507 // If this is a simple linear addrec, emit it now as a special case. 1508 if (S->isAffine()) // {0,+,F} --> i*F 1509 return 1510 expand(SE.getTruncateOrNoop( 1511 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1512 SE.getNoopOrAnyExtend(S->getOperand(1), 1513 CanonicalIV->getType())), 1514 Ty)); 1515 1516 // If this is a chain of recurrences, turn it into a closed form, using the 1517 // folders, then expandCodeFor the closed form. This allows the folders to 1518 // simplify the expression without having to build a bunch of special code 1519 // into this folder. 1520 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1521 1522 // Promote S up to the canonical IV type, if the cast is foldable. 1523 const SCEV *NewS = S; 1524 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1525 if (isa<SCEVAddRecExpr>(Ext)) 1526 NewS = Ext; 1527 1528 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1529 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1530 1531 // Truncate the result down to the original type, if needed. 1532 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1533 return expand(T); 1534 } 1535 1536 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1537 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1538 Value *V = expandCodeFor(S->getOperand(), 1539 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1540 Value *I = Builder.CreateTrunc(V, Ty); 1541 rememberInstruction(I); 1542 return I; 1543 } 1544 1545 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1546 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1547 Value *V = expandCodeFor(S->getOperand(), 1548 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1549 Value *I = Builder.CreateZExt(V, Ty); 1550 rememberInstruction(I); 1551 return I; 1552 } 1553 1554 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1555 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1556 Value *V = expandCodeFor(S->getOperand(), 1557 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1558 Value *I = Builder.CreateSExt(V, Ty); 1559 rememberInstruction(I); 1560 return I; 1561 } 1562 1563 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1564 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1565 Type *Ty = LHS->getType(); 1566 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1567 // In the case of mixed integer and pointer types, do the 1568 // rest of the comparisons as integer. 1569 if (S->getOperand(i)->getType() != Ty) { 1570 Ty = SE.getEffectiveSCEVType(Ty); 1571 LHS = InsertNoopCastOfTo(LHS, Ty); 1572 } 1573 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1574 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1575 rememberInstruction(ICmp); 1576 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1577 rememberInstruction(Sel); 1578 LHS = Sel; 1579 } 1580 // In the case of mixed integer and pointer types, cast the 1581 // final result back to the pointer type. 1582 if (LHS->getType() != S->getType()) 1583 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1584 return LHS; 1585 } 1586 1587 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1588 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1589 Type *Ty = LHS->getType(); 1590 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1591 // In the case of mixed integer and pointer types, do the 1592 // rest of the comparisons as integer. 1593 if (S->getOperand(i)->getType() != Ty) { 1594 Ty = SE.getEffectiveSCEVType(Ty); 1595 LHS = InsertNoopCastOfTo(LHS, Ty); 1596 } 1597 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1598 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1599 rememberInstruction(ICmp); 1600 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1601 rememberInstruction(Sel); 1602 LHS = Sel; 1603 } 1604 // In the case of mixed integer and pointer types, cast the 1605 // final result back to the pointer type. 1606 if (LHS->getType() != S->getType()) 1607 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1608 return LHS; 1609 } 1610 1611 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1612 Instruction *IP) { 1613 assert(IP); 1614 Builder.SetInsertPoint(IP); 1615 return expandCodeFor(SH, Ty); 1616 } 1617 1618 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1619 // Expand the code for this SCEV. 1620 Value *V = expand(SH); 1621 if (Ty) { 1622 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1623 "non-trivial casts should be done with the SCEVs directly!"); 1624 V = InsertNoopCastOfTo(V, Ty); 1625 } 1626 return V; 1627 } 1628 1629 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1630 const Instruction *InsertPt) { 1631 SetVector<Value *> *Set = SE.getSCEVValues(S); 1632 // If the expansion is not in CanonicalMode, and the SCEV contains any 1633 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1634 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1635 // If S is scConstant, it may be worse to reuse an existing Value. 1636 if (S->getSCEVType() != scConstant && Set) { 1637 // Choose a Value from the set which dominates the insertPt. 1638 // insertPt should be inside the Value's parent loop so as not to break 1639 // the LCSSA form. 1640 for (auto const &Ent : *Set) { 1641 Instruction *EntInst = nullptr; 1642 if (Ent && isa<Instruction>(Ent) && 1643 (EntInst = cast<Instruction>(Ent)) && 1644 S->getType() == Ent->getType() && 1645 EntInst->getFunction() == InsertPt->getFunction() && 1646 SE.DT.dominates(EntInst, InsertPt) && 1647 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1648 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) { 1649 return Ent; 1650 } 1651 } 1652 } 1653 } 1654 return nullptr; 1655 } 1656 1657 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1658 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1659 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1660 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1661 // the expansion will try to reuse Value from ExprValueMap, and only when it 1662 // fails, expand the SCEV literally. 1663 Value *SCEVExpander::expand(const SCEV *S) { 1664 // Compute an insertion point for this SCEV object. Hoist the instructions 1665 // as far out in the loop nest as possible. 1666 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1667 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1668 L = L->getParentLoop()) 1669 if (SE.isLoopInvariant(S, L)) { 1670 if (!L) break; 1671 if (BasicBlock *Preheader = L->getLoopPreheader()) 1672 InsertPt = Preheader->getTerminator(); 1673 else { 1674 // LSR sets the insertion point for AddRec start/step values to the 1675 // block start to simplify value reuse, even though it's an invalid 1676 // position. SCEVExpander must correct for this in all cases. 1677 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1678 } 1679 } else { 1680 // If the SCEV is computable at this level, insert it into the header 1681 // after the PHIs (and after any other instructions that we've inserted 1682 // there) so that it is guaranteed to dominate any user inside the loop. 1683 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1684 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1685 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1686 (isInsertedInstruction(InsertPt) || 1687 isa<DbgInfoIntrinsic>(InsertPt))) { 1688 InsertPt = &*std::next(InsertPt->getIterator()); 1689 } 1690 break; 1691 } 1692 1693 // Check to see if we already expanded this here. 1694 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1695 if (I != InsertedExpressions.end()) 1696 return I->second; 1697 1698 SCEVInsertPointGuard Guard(Builder, this); 1699 Builder.SetInsertPoint(InsertPt); 1700 1701 // Expand the expression into instructions. 1702 Value *V = FindValueInExprValueMap(S, InsertPt); 1703 1704 if (!V) 1705 V = visit(S); 1706 1707 // Remember the expanded value for this SCEV at this location. 1708 // 1709 // This is independent of PostIncLoops. The mapped value simply materializes 1710 // the expression at this insertion point. If the mapped value happened to be 1711 // a postinc expansion, it could be reused by a non-postinc user, but only if 1712 // its insertion point was already at the head of the loop. 1713 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1714 return V; 1715 } 1716 1717 void SCEVExpander::rememberInstruction(Value *I) { 1718 if (!PostIncLoops.empty()) 1719 InsertedPostIncValues.insert(I); 1720 else 1721 InsertedValues.insert(I); 1722 } 1723 1724 /// getOrInsertCanonicalInductionVariable - This method returns the 1725 /// canonical induction variable of the specified type for the specified 1726 /// loop (inserting one if there is none). A canonical induction variable 1727 /// starts at zero and steps by one on each iteration. 1728 PHINode * 1729 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1730 Type *Ty) { 1731 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1732 1733 // Build a SCEV for {0,+,1}<L>. 1734 // Conservatively use FlagAnyWrap for now. 1735 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1736 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); 1737 1738 // Emit code for it. 1739 SCEVInsertPointGuard Guard(Builder, this); 1740 PHINode *V = 1741 cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front())); 1742 1743 return V; 1744 } 1745 1746 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1747 /// replace them with their most canonical representative. Return the number of 1748 /// phis eliminated. 1749 /// 1750 /// This does not depend on any SCEVExpander state but should be used in 1751 /// the same context that SCEVExpander is used. 1752 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1753 SmallVectorImpl<WeakVH> &DeadInsts, 1754 const TargetTransformInfo *TTI) { 1755 // Find integer phis in order of increasing width. 1756 SmallVector<PHINode*, 8> Phis; 1757 for (auto &I : *L->getHeader()) { 1758 if (auto *PN = dyn_cast<PHINode>(&I)) 1759 Phis.push_back(PN); 1760 else 1761 break; 1762 } 1763 1764 if (TTI) 1765 std::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) { 1766 // Put pointers at the back and make sure pointer < pointer = false. 1767 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1768 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1769 return RHS->getType()->getPrimitiveSizeInBits() < 1770 LHS->getType()->getPrimitiveSizeInBits(); 1771 }); 1772 1773 unsigned NumElim = 0; 1774 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1775 // Process phis from wide to narrow. Map wide phis to their truncation 1776 // so narrow phis can reuse them. 1777 for (PHINode *Phi : Phis) { 1778 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1779 if (Value *V = SimplifyInstruction(PN, DL, &SE.TLI, &SE.DT, &SE.AC)) 1780 return V; 1781 if (!SE.isSCEVable(PN->getType())) 1782 return nullptr; 1783 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1784 if (!Const) 1785 return nullptr; 1786 return Const->getValue(); 1787 }; 1788 1789 // Fold constant phis. They may be congruent to other constant phis and 1790 // would confuse the logic below that expects proper IVs. 1791 if (Value *V = SimplifyPHINode(Phi)) { 1792 if (V->getType() != Phi->getType()) 1793 continue; 1794 Phi->replaceAllUsesWith(V); 1795 DeadInsts.emplace_back(Phi); 1796 ++NumElim; 1797 DEBUG_WITH_TYPE(DebugType, dbgs() 1798 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 1799 continue; 1800 } 1801 1802 if (!SE.isSCEVable(Phi->getType())) 1803 continue; 1804 1805 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1806 if (!OrigPhiRef) { 1807 OrigPhiRef = Phi; 1808 if (Phi->getType()->isIntegerTy() && TTI && 1809 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1810 // This phi can be freely truncated to the narrowest phi type. Map the 1811 // truncated expression to it so it will be reused for narrow types. 1812 const SCEV *TruncExpr = 1813 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1814 ExprToIVMap[TruncExpr] = Phi; 1815 } 1816 continue; 1817 } 1818 1819 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1820 // sense. 1821 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1822 continue; 1823 1824 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1825 Instruction *OrigInc = dyn_cast<Instruction>( 1826 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1827 Instruction *IsomorphicInc = 1828 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1829 1830 if (OrigInc && IsomorphicInc) { 1831 // If this phi has the same width but is more canonical, replace the 1832 // original with it. As part of the "more canonical" determination, 1833 // respect a prior decision to use an IV chain. 1834 if (OrigPhiRef->getType() == Phi->getType() && 1835 !(ChainedPhis.count(Phi) || 1836 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1837 (ChainedPhis.count(Phi) || 1838 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1839 std::swap(OrigPhiRef, Phi); 1840 std::swap(OrigInc, IsomorphicInc); 1841 } 1842 // Replacing the congruent phi is sufficient because acyclic 1843 // redundancy elimination, CSE/GVN, should handle the 1844 // rest. However, once SCEV proves that a phi is congruent, 1845 // it's often the head of an IV user cycle that is isomorphic 1846 // with the original phi. It's worth eagerly cleaning up the 1847 // common case of a single IV increment so that DeleteDeadPHIs 1848 // can remove cycles that had postinc uses. 1849 const SCEV *TruncExpr = 1850 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1851 if (OrigInc != IsomorphicInc && 1852 TruncExpr == SE.getSCEV(IsomorphicInc) && 1853 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1854 hoistIVInc(OrigInc, IsomorphicInc)) { 1855 DEBUG_WITH_TYPE(DebugType, 1856 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1857 << *IsomorphicInc << '\n'); 1858 Value *NewInc = OrigInc; 1859 if (OrigInc->getType() != IsomorphicInc->getType()) { 1860 Instruction *IP = nullptr; 1861 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1862 IP = &*PN->getParent()->getFirstInsertionPt(); 1863 else 1864 IP = OrigInc->getNextNode(); 1865 1866 IRBuilder<> Builder(IP); 1867 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1868 NewInc = Builder.CreateTruncOrBitCast( 1869 OrigInc, IsomorphicInc->getType(), IVName); 1870 } 1871 IsomorphicInc->replaceAllUsesWith(NewInc); 1872 DeadInsts.emplace_back(IsomorphicInc); 1873 } 1874 } 1875 } 1876 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " 1877 << *Phi << '\n'); 1878 ++NumElim; 1879 Value *NewIV = OrigPhiRef; 1880 if (OrigPhiRef->getType() != Phi->getType()) { 1881 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 1882 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1883 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1884 } 1885 Phi->replaceAllUsesWith(NewIV); 1886 DeadInsts.emplace_back(Phi); 1887 } 1888 return NumElim; 1889 } 1890 1891 Value *SCEVExpander::findExistingExpansion(const SCEV *S, 1892 const Instruction *At, Loop *L) { 1893 using namespace llvm::PatternMatch; 1894 1895 SmallVector<BasicBlock *, 4> ExitingBlocks; 1896 L->getExitingBlocks(ExitingBlocks); 1897 1898 // Look for suitable value in simple conditions at the loop exits. 1899 for (BasicBlock *BB : ExitingBlocks) { 1900 ICmpInst::Predicate Pred; 1901 Instruction *LHS, *RHS; 1902 BasicBlock *TrueBB, *FalseBB; 1903 1904 if (!match(BB->getTerminator(), 1905 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1906 TrueBB, FalseBB))) 1907 continue; 1908 1909 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1910 return LHS; 1911 1912 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1913 return RHS; 1914 } 1915 1916 // Use expand's logic which is used for reusing a previous Value in 1917 // ExprValueMap. 1918 if (Value *Val = FindValueInExprValueMap(S, At)) 1919 return Val; 1920 1921 // There is potential to make this significantly smarter, but this simple 1922 // heuristic already gets some interesting cases. 1923 1924 // Can not find suitable value. 1925 return nullptr; 1926 } 1927 1928 bool SCEVExpander::isHighCostExpansionHelper( 1929 const SCEV *S, Loop *L, const Instruction *At, 1930 SmallPtrSetImpl<const SCEV *> &Processed) { 1931 1932 // If we can find an existing value for this scev avaliable at the point "At" 1933 // then consider the expression cheap. 1934 if (At && findExistingExpansion(S, At, L) != nullptr) 1935 return false; 1936 1937 // Zero/One operand expressions 1938 switch (S->getSCEVType()) { 1939 case scUnknown: 1940 case scConstant: 1941 return false; 1942 case scTruncate: 1943 return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(), 1944 L, At, Processed); 1945 case scZeroExtend: 1946 return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1947 L, At, Processed); 1948 case scSignExtend: 1949 return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(), 1950 L, At, Processed); 1951 } 1952 1953 if (!Processed.insert(S).second) 1954 return false; 1955 1956 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { 1957 // If the divisor is a power of two and the SCEV type fits in a native 1958 // integer, consider the division cheap irrespective of whether it occurs in 1959 // the user code since it can be lowered into a right shift. 1960 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) 1961 if (SC->getAPInt().isPowerOf2()) { 1962 const DataLayout &DL = 1963 L->getHeader()->getParent()->getParent()->getDataLayout(); 1964 unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth(); 1965 return DL.isIllegalInteger(Width); 1966 } 1967 1968 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 1969 // HowManyLessThans produced to compute a precise expression, rather than a 1970 // UDiv from the user's code. If we can't find a UDiv in the code with some 1971 // simple searching, assume the former consider UDivExpr expensive to 1972 // compute. 1973 BasicBlock *ExitingBB = L->getExitingBlock(); 1974 if (!ExitingBB) 1975 return true; 1976 1977 // At the beginning of this function we already tried to find existing value 1978 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern 1979 // involving division. This is just a simple search heuristic. 1980 if (!At) 1981 At = &ExitingBB->back(); 1982 if (!findExistingExpansion( 1983 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L)) 1984 return true; 1985 } 1986 1987 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1988 // the exit condition. 1989 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1990 return true; 1991 1992 // Recurse past nary expressions, which commonly occur in the 1993 // BackedgeTakenCount. They may already exist in program code, and if not, 1994 // they are not too expensive rematerialize. 1995 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { 1996 for (auto *Op : NAry->operands()) 1997 if (isHighCostExpansionHelper(Op, L, At, Processed)) 1998 return true; 1999 } 2000 2001 // If we haven't recognized an expensive SCEV pattern, assume it's an 2002 // expression produced by program code. 2003 return false; 2004 } 2005 2006 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2007 Instruction *IP) { 2008 assert(IP); 2009 switch (Pred->getKind()) { 2010 case SCEVPredicate::P_Union: 2011 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2012 case SCEVPredicate::P_Equal: 2013 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2014 case SCEVPredicate::P_Wrap: { 2015 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2016 return expandWrapPredicate(AddRecPred, IP); 2017 } 2018 } 2019 llvm_unreachable("Unknown SCEV predicate type"); 2020 } 2021 2022 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2023 Instruction *IP) { 2024 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2025 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2026 2027 Builder.SetInsertPoint(IP); 2028 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2029 return I; 2030 } 2031 2032 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2033 Instruction *Loc, bool Signed) { 2034 assert(AR->isAffine() && "Cannot generate RT check for " 2035 "non-affine expression"); 2036 2037 SCEVUnionPredicate Pred; 2038 const SCEV *ExitCount = 2039 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2040 2041 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); 2042 2043 const SCEV *Step = AR->getStepRecurrence(SE); 2044 const SCEV *Start = AR->getStart(); 2045 2046 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2047 unsigned DstBits = SE.getTypeSizeInBits(AR->getType()); 2048 2049 // The expression {Start,+,Step} has nusw/nssw if 2050 // Step < 0, Start - |Step| * Backedge <= Start 2051 // Step >= 0, Start + |Step| * Backedge > Start 2052 // and |Step| * Backedge doesn't unsigned overflow. 2053 2054 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2055 Builder.SetInsertPoint(Loc); 2056 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); 2057 2058 IntegerType *Ty = 2059 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(AR->getType())); 2060 2061 Value *StepValue = expandCodeFor(Step, Ty, Loc); 2062 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); 2063 Value *StartValue = expandCodeFor(Start, Ty, Loc); 2064 2065 ConstantInt *Zero = 2066 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2067 2068 Builder.SetInsertPoint(Loc); 2069 // Compute |Step| 2070 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2071 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2072 2073 // Get the backedge taken count and truncate or extended to the AR type. 2074 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2075 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2076 Intrinsic::umul_with_overflow, Ty); 2077 2078 // Compute |Step| * Backedge 2079 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2080 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2081 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2082 2083 // Compute: 2084 // Start + |Step| * Backedge < Start 2085 // Start - |Step| * Backedge > Start 2086 Value *Add = Builder.CreateAdd(StartValue, MulV); 2087 Value *Sub = Builder.CreateSub(StartValue, MulV); 2088 2089 Value *EndCompareGT = Builder.CreateICmp( 2090 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2091 2092 Value *EndCompareLT = Builder.CreateICmp( 2093 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2094 2095 // Select the answer based on the sign of Step. 2096 Value *EndCheck = 2097 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2098 2099 // If the backedge taken count type is larger than the AR type, 2100 // check that we don't drop any bits by truncating it. If we are 2101 // droping bits, then we have overflow (unless the step is zero). 2102 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2103 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2104 auto *BackedgeCheck = 2105 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2106 ConstantInt::get(Loc->getContext(), MaxVal)); 2107 BackedgeCheck = Builder.CreateAnd( 2108 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2109 2110 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2111 } 2112 2113 EndCheck = Builder.CreateOr(EndCheck, OfMul); 2114 return EndCheck; 2115 } 2116 2117 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2118 Instruction *IP) { 2119 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2120 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2121 2122 // Add a check for NUSW 2123 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2124 NUSWCheck = generateOverflowCheck(A, IP, false); 2125 2126 // Add a check for NSSW 2127 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2128 NSSWCheck = generateOverflowCheck(A, IP, true); 2129 2130 if (NUSWCheck && NSSWCheck) 2131 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2132 2133 if (NUSWCheck) 2134 return NUSWCheck; 2135 2136 if (NSSWCheck) 2137 return NSSWCheck; 2138 2139 return ConstantInt::getFalse(IP->getContext()); 2140 } 2141 2142 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2143 Instruction *IP) { 2144 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2145 Value *Check = ConstantInt::getNullValue(BoolType); 2146 2147 // Loop over all checks in this set. 2148 for (auto Pred : Union->getPredicates()) { 2149 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2150 Builder.SetInsertPoint(IP); 2151 Check = Builder.CreateOr(Check, NextCheck); 2152 } 2153 2154 return Check; 2155 } 2156 2157 namespace { 2158 // Search for a SCEV subexpression that is not safe to expand. Any expression 2159 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2160 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2161 // instruction, but the important thing is that we prove the denominator is 2162 // nonzero before expansion. 2163 // 2164 // IVUsers already checks that IV-derived expressions are safe. So this check is 2165 // only needed when the expression includes some subexpression that is not IV 2166 // derived. 2167 // 2168 // Currently, we only allow division by a nonzero constant here. If this is 2169 // inadequate, we could easily allow division by SCEVUnknown by using 2170 // ValueTracking to check isKnownNonZero(). 2171 // 2172 // We cannot generally expand recurrences unless the step dominates the loop 2173 // header. The expander handles the special case of affine recurrences by 2174 // scaling the recurrence outside the loop, but this technique isn't generally 2175 // applicable. Expanding a nested recurrence outside a loop requires computing 2176 // binomial coefficients. This could be done, but the recurrence has to be in a 2177 // perfectly reduced form, which can't be guaranteed. 2178 struct SCEVFindUnsafe { 2179 ScalarEvolution &SE; 2180 bool IsUnsafe; 2181 2182 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2183 2184 bool follow(const SCEV *S) { 2185 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2186 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2187 if (!SC || SC->getValue()->isZero()) { 2188 IsUnsafe = true; 2189 return false; 2190 } 2191 } 2192 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2193 const SCEV *Step = AR->getStepRecurrence(SE); 2194 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2195 IsUnsafe = true; 2196 return false; 2197 } 2198 } 2199 return true; 2200 } 2201 bool isDone() const { return IsUnsafe; } 2202 }; 2203 } 2204 2205 namespace llvm { 2206 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2207 SCEVFindUnsafe Search(SE); 2208 visitAll(S, Search); 2209 return !Search.IsUnsafe; 2210 } 2211 } 2212