1 /* Capstone Disassembly Engine */ 2 /* By Nguyen Anh Quynh <aquynh (at) gmail.com>, 2013-2014 */ 3 #if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64) 4 #pragma warning(disable:4996) // disable MSVC's warning on strcpy() 5 #pragma warning(disable:28719) // disable MSVC's warning on strcpy() 6 #endif 7 #if defined(CAPSTONE_HAS_OSXKERNEL) 8 #include <libkern/libkern.h> 9 #else 10 #include <stddef.h> 11 #include <stdio.h> 12 #include <stdlib.h> 13 #endif 14 15 #include <string.h> 16 #include <capstone.h> 17 18 #include "utils.h" 19 #include "MCRegisterInfo.h" 20 21 #if defined(_KERNEL_MODE) 22 #include "windows\winkernel_mm.h" 23 #endif 24 25 // Issue #681: Windows kernel does not support formatting float point 26 #if defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET) 27 #if defined(CAPSTONE_HAS_ARM) || defined(CAPSTONE_HAS_ARM64) 28 #define CAPSTONE_STR_INTERNAL(x) #x 29 #define CAPSTONE_STR(x) CAPSTONE_STR_INTERNAL(x) 30 #define CAPSTONE_MSVC_WRANING_PREFIX __FILE__ "("CAPSTONE_STR(__LINE__)") : warning message : " 31 32 #pragma message(CAPSTONE_MSVC_WRANING_PREFIX "Windows driver does not support full features for selected architecture(s). Define CAPSTONE_DIET to compile Capstone with only supported features. See issue #681 for details.") 33 34 #undef CAPSTONE_MSVC_WRANING_PREFIX 35 #undef CAPSTONE_STR 36 #undef CAPSTONE_STR_INTERNAL 37 #endif 38 #endif // defined(_KERNEL_MODE) && !defined(CAPSTONE_DIET) 39 40 #if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(CAPSTONE_DIET) && !defined(_KERNEL_MODE) 41 #define INSN_CACHE_SIZE 32 42 #else 43 // reduce stack variable size for kernel/firmware 44 #define INSN_CACHE_SIZE 8 45 #endif 46 47 // default SKIPDATA mnemonic 48 #ifndef CAPSTONE_DIET 49 #define SKIPDATA_MNEM ".byte" 50 #else // No printing is available in diet mode 51 #define SKIPDATA_MNEM NULL 52 #endif 53 54 cs_err (*arch_init[MAX_ARCH])(cs_struct *) = { NULL }; 55 cs_err (*arch_option[MAX_ARCH]) (cs_struct *, cs_opt_type, size_t value) = { NULL }; 56 void (*arch_destroy[MAX_ARCH]) (cs_struct *) = { NULL }; 57 58 extern void ARM_enable(void); 59 extern void AArch64_enable(void); 60 extern void Mips_enable(void); 61 extern void X86_enable(void); 62 extern void PPC_enable(void); 63 extern void Sparc_enable(void); 64 extern void SystemZ_enable(void); 65 extern void XCore_enable(void); 66 67 static void archs_enable(void) 68 { 69 static bool initialized = false; 70 71 if (initialized) 72 return; 73 74 #ifdef CAPSTONE_HAS_ARM 75 ARM_enable(); 76 #endif 77 #ifdef CAPSTONE_HAS_ARM64 78 AArch64_enable(); 79 #endif 80 #ifdef CAPSTONE_HAS_MIPS 81 Mips_enable(); 82 #endif 83 #ifdef CAPSTONE_HAS_POWERPC 84 PPC_enable(); 85 #endif 86 #ifdef CAPSTONE_HAS_SPARC 87 Sparc_enable(); 88 #endif 89 #ifdef CAPSTONE_HAS_SYSZ 90 SystemZ_enable(); 91 #endif 92 #ifdef CAPSTONE_HAS_X86 93 X86_enable(); 94 #endif 95 #ifdef CAPSTONE_HAS_XCORE 96 XCore_enable(); 97 #endif 98 99 100 initialized = true; 101 } 102 103 unsigned int all_arch = 0; 104 105 #if defined(CAPSTONE_USE_SYS_DYN_MEM) 106 #if !defined(CAPSTONE_HAS_OSXKERNEL) && !defined(_KERNEL_MODE) 107 cs_malloc_t cs_mem_malloc = malloc; 108 cs_calloc_t cs_mem_calloc = calloc; 109 cs_realloc_t cs_mem_realloc = realloc; 110 cs_free_t cs_mem_free = free; 111 cs_vsnprintf_t cs_vsnprintf = vsnprintf; 112 #elif defined(_KERNEL_MODE) 113 cs_malloc_t cs_mem_malloc = cs_winkernel_malloc; 114 cs_calloc_t cs_mem_calloc = cs_winkernel_calloc; 115 cs_realloc_t cs_mem_realloc = cs_winkernel_realloc; 116 cs_free_t cs_mem_free = cs_winkernel_free; 117 cs_vsnprintf_t cs_vsnprintf = cs_winkernel_vsnprintf; 118 #else 119 extern void* kern_os_malloc(size_t size); 120 extern void kern_os_free(void* addr); 121 extern void* kern_os_realloc(void* addr, size_t nsize); 122 123 static void* cs_kern_os_calloc(size_t num, size_t size) 124 { 125 return kern_os_malloc(num * size); // malloc bzeroes the buffer 126 } 127 128 cs_malloc_t cs_mem_malloc = kern_os_malloc; 129 cs_calloc_t cs_mem_calloc = cs_kern_os_calloc; 130 cs_realloc_t cs_mem_realloc = kern_os_realloc; 131 cs_free_t cs_mem_free = kern_os_free; 132 cs_vsnprintf_t cs_vsnprintf = vsnprintf; 133 #endif 134 #else 135 cs_malloc_t cs_mem_malloc = NULL; 136 cs_calloc_t cs_mem_calloc = NULL; 137 cs_realloc_t cs_mem_realloc = NULL; 138 cs_free_t cs_mem_free = NULL; 139 cs_vsnprintf_t cs_vsnprintf = NULL; 140 #endif 141 142 CAPSTONE_EXPORT 143 unsigned int CAPSTONE_API cs_version(int *major, int *minor) 144 { 145 archs_enable(); 146 147 if (major != NULL && minor != NULL) { 148 *major = CS_API_MAJOR; 149 *minor = CS_API_MINOR; 150 } 151 152 return (CS_API_MAJOR << 8) + CS_API_MINOR; 153 } 154 155 CAPSTONE_EXPORT 156 bool CAPSTONE_API cs_support(int query) 157 { 158 archs_enable(); 159 160 if (query == CS_ARCH_ALL) 161 return all_arch == ((1 << CS_ARCH_ARM) | (1 << CS_ARCH_ARM64) | 162 (1 << CS_ARCH_MIPS) | (1 << CS_ARCH_X86) | 163 (1 << CS_ARCH_PPC) | (1 << CS_ARCH_SPARC) | 164 (1 << CS_ARCH_SYSZ) | (1 << CS_ARCH_XCORE)); 165 166 if ((unsigned int)query < CS_ARCH_MAX) 167 return all_arch & (1 << query); 168 169 if (query == CS_SUPPORT_DIET) { 170 #ifdef CAPSTONE_DIET 171 return true; 172 #else 173 return false; 174 #endif 175 } 176 177 if (query == CS_SUPPORT_X86_REDUCE) { 178 #if defined(CAPSTONE_HAS_X86) && defined(CAPSTONE_X86_REDUCE) 179 return true; 180 #else 181 return false; 182 #endif 183 } 184 185 // unsupported query 186 return false; 187 } 188 189 CAPSTONE_EXPORT 190 cs_err CAPSTONE_API cs_errno(csh handle) 191 { 192 struct cs_struct *ud; 193 if (!handle) 194 return CS_ERR_CSH; 195 196 ud = (struct cs_struct *)(uintptr_t)handle; 197 198 return ud->errnum; 199 } 200 201 CAPSTONE_EXPORT 202 const char * CAPSTONE_API cs_strerror(cs_err code) 203 { 204 switch(code) { 205 default: 206 return "Unknown error code"; 207 case CS_ERR_OK: 208 return "OK (CS_ERR_OK)"; 209 case CS_ERR_MEM: 210 return "Out of memory (CS_ERR_MEM)"; 211 case CS_ERR_ARCH: 212 return "Invalid architecture (CS_ERR_ARCH)"; 213 case CS_ERR_HANDLE: 214 return "Invalid handle (CS_ERR_HANDLE)"; 215 case CS_ERR_CSH: 216 return "Invalid csh (CS_ERR_CSH)"; 217 case CS_ERR_MODE: 218 return "Invalid mode (CS_ERR_MODE)"; 219 case CS_ERR_OPTION: 220 return "Invalid option (CS_ERR_OPTION)"; 221 case CS_ERR_DETAIL: 222 return "Details are unavailable (CS_ERR_DETAIL)"; 223 case CS_ERR_MEMSETUP: 224 return "Dynamic memory management uninitialized (CS_ERR_MEMSETUP)"; 225 case CS_ERR_VERSION: 226 return "Different API version between core & binding (CS_ERR_VERSION)"; 227 case CS_ERR_DIET: 228 return "Information irrelevant in diet engine (CS_ERR_DIET)"; 229 case CS_ERR_SKIPDATA: 230 return "Information irrelevant for 'data' instruction in SKIPDATA mode (CS_ERR_SKIPDATA)"; 231 } 232 } 233 234 CAPSTONE_EXPORT 235 cs_err CAPSTONE_API cs_open(cs_arch arch, cs_mode mode, csh *handle) 236 { 237 cs_err err; 238 struct cs_struct *ud; 239 if (!cs_mem_malloc || !cs_mem_calloc || !cs_mem_realloc || !cs_mem_free || !cs_vsnprintf) 240 // Error: before cs_open(), dynamic memory management must be initialized 241 // with cs_option(CS_OPT_MEM) 242 return CS_ERR_MEMSETUP; 243 244 archs_enable(); 245 246 if (arch < CS_ARCH_MAX && arch_init[arch]) { 247 ud = cs_mem_calloc(1, sizeof(*ud)); 248 if (!ud) { 249 // memory insufficient 250 return CS_ERR_MEM; 251 } 252 253 ud->errnum = CS_ERR_OK; 254 ud->arch = arch; 255 ud->mode = mode; 256 ud->big_endian = (mode & CS_MODE_BIG_ENDIAN) != 0; 257 // by default, do not break instruction into details 258 ud->detail = CS_OPT_OFF; 259 260 // default skipdata setup 261 ud->skipdata_setup.mnemonic = SKIPDATA_MNEM; 262 263 err = arch_init[ud->arch](ud); 264 if (err) { 265 cs_mem_free(ud); 266 *handle = 0; 267 return err; 268 } 269 270 *handle = (uintptr_t)ud; 271 272 return CS_ERR_OK; 273 } else { 274 *handle = 0; 275 return CS_ERR_ARCH; 276 } 277 } 278 279 CAPSTONE_EXPORT 280 cs_err CAPSTONE_API cs_close(csh *handle) 281 { 282 struct cs_struct *ud; 283 284 if (*handle == 0) 285 // invalid handle 286 return CS_ERR_CSH; 287 288 ud = (struct cs_struct *)(*handle); 289 290 if (ud->printer_info) 291 cs_mem_free(ud->printer_info); 292 293 cs_mem_free(ud->insn_cache); 294 295 memset(ud, 0, sizeof(*ud)); 296 cs_mem_free(ud); 297 298 // invalidate this handle by ZERO out its value. 299 // this is to make sure it is unusable after cs_close() 300 *handle = 0; 301 302 return CS_ERR_OK; 303 } 304 305 // fill insn with mnemonic & operands info 306 static void fill_insn(struct cs_struct *handle, cs_insn *insn, char *buffer, MCInst *mci, 307 PostPrinter_t postprinter, const uint8_t *code) 308 { 309 #ifndef CAPSTONE_DIET 310 char *sp, *mnem; 311 #endif 312 uint16_t copy_size = MIN(sizeof(insn->bytes), insn->size); 313 314 // fill the instruction bytes. 315 // we might skip some redundant bytes in front in the case of X86 316 memcpy(insn->bytes, code + insn->size - copy_size, copy_size); 317 insn->size = copy_size; 318 319 // alias instruction might have ID saved in OpcodePub 320 if (MCInst_getOpcodePub(mci)) 321 insn->id = MCInst_getOpcodePub(mci); 322 323 // post printer handles some corner cases (hacky) 324 if (postprinter) 325 postprinter((csh)handle, insn, buffer, mci); 326 327 #ifndef CAPSTONE_DIET 328 // fill in mnemonic & operands 329 // find first space or tab 330 mnem = insn->mnemonic; 331 for (sp = buffer; *sp; sp++) { 332 if (*sp == ' '|| *sp == '\t') 333 break; 334 if (*sp == '|') // lock|rep prefix for x86 335 *sp = ' '; 336 // copy to @mnemonic 337 *mnem = *sp; 338 mnem++; 339 } 340 341 *mnem = '\0'; 342 343 // copy @op_str 344 if (*sp) { 345 // find the next non-space char 346 sp++; 347 for (; ((*sp == ' ') || (*sp == '\t')); sp++); 348 strncpy(insn->op_str, sp, sizeof(insn->op_str) - 1); 349 insn->op_str[sizeof(insn->op_str) - 1] = '\0'; 350 } else 351 insn->op_str[0] = '\0'; 352 #endif 353 } 354 355 // how many bytes will we skip when encountering data (CS_OPT_SKIPDATA)? 356 // this very much depends on instruction alignment requirement of each arch. 357 static uint8_t skipdata_size(cs_struct *handle) 358 { 359 switch(handle->arch) { 360 default: 361 // should never reach 362 return (uint8_t)-1; 363 case CS_ARCH_ARM: 364 // skip 2 bytes on Thumb mode. 365 if (handle->mode & CS_MODE_THUMB) 366 return 2; 367 // otherwise, skip 4 bytes 368 return 4; 369 case CS_ARCH_ARM64: 370 case CS_ARCH_MIPS: 371 case CS_ARCH_PPC: 372 case CS_ARCH_SPARC: 373 // skip 4 bytes 374 return 4; 375 case CS_ARCH_SYSZ: 376 // SystemZ instruction's length can be 2, 4 or 6 bytes, 377 // so we just skip 2 bytes 378 return 2; 379 case CS_ARCH_X86: 380 // X86 has no restriction on instruction alignment 381 return 1; 382 case CS_ARCH_XCORE: 383 // XCore instruction's length can be 2 or 4 bytes, 384 // so we just skip 2 bytes 385 return 2; 386 } 387 } 388 389 CAPSTONE_EXPORT 390 cs_err CAPSTONE_API cs_option(csh ud, cs_opt_type type, size_t value) 391 { 392 struct cs_struct *handle; 393 archs_enable(); 394 395 // cs_option() can be called with NULL handle just for CS_OPT_MEM 396 // This is supposed to be executed before all other APIs (even cs_open()) 397 if (type == CS_OPT_MEM) { 398 cs_opt_mem *mem = (cs_opt_mem *)value; 399 400 cs_mem_malloc = mem->malloc; 401 cs_mem_calloc = mem->calloc; 402 cs_mem_realloc = mem->realloc; 403 cs_mem_free = mem->free; 404 cs_vsnprintf = mem->vsnprintf; 405 406 return CS_ERR_OK; 407 } 408 409 handle = (struct cs_struct *)(uintptr_t)ud; 410 if (!handle) 411 return CS_ERR_CSH; 412 413 switch(type) { 414 default: 415 break; 416 case CS_OPT_DETAIL: 417 handle->detail = (cs_opt_value)value; 418 return CS_ERR_OK; 419 case CS_OPT_SKIPDATA: 420 handle->skipdata = (value == CS_OPT_ON); 421 if (handle->skipdata) { 422 if (handle->skipdata_size == 0) { 423 // set the default skipdata size 424 handle->skipdata_size = skipdata_size(handle); 425 } 426 } 427 return CS_ERR_OK; 428 case CS_OPT_SKIPDATA_SETUP: 429 if (value) 430 handle->skipdata_setup = *((cs_opt_skipdata *)value); 431 return CS_ERR_OK; 432 } 433 434 return arch_option[handle->arch](handle, type, value); 435 } 436 437 // generate @op_str for data instruction of SKIPDATA 438 #ifndef CAPSTONE_DIET 439 static void skipdata_opstr(char *opstr, const uint8_t *buffer, size_t size) 440 { 441 char *p = opstr; 442 int len; 443 size_t i; 444 size_t available = sizeof(((cs_insn*)NULL)->op_str); 445 446 if (!size) { 447 opstr[0] = '\0'; 448 return; 449 } 450 451 len = cs_snprintf(p, available, "0x%02x", buffer[0]); 452 p+= len; 453 available -= len; 454 455 for(i = 1; i < size; i++) { 456 len = cs_snprintf(p, available, ", 0x%02x", buffer[i]); 457 if (len < 0) { 458 break; 459 } 460 if ((size_t)len > available - 1) { 461 break; 462 } 463 p+= len; 464 available -= len; 465 } 466 } 467 #endif 468 469 // dynamicly allocate memory to contain disasm insn 470 // NOTE: caller must free() the allocated memory itself to avoid memory leaking 471 CAPSTONE_EXPORT 472 size_t CAPSTONE_API cs_disasm(csh ud, const uint8_t *buffer, size_t size, uint64_t offset, size_t count, cs_insn **insn) 473 { 474 struct cs_struct *handle; 475 MCInst mci; 476 uint16_t insn_size; 477 size_t c = 0, i; 478 unsigned int f = 0; // index of the next instruction in the cache 479 cs_insn *insn_cache; // cache contains disassembled instructions 480 void *total = NULL; 481 size_t total_size = 0; // total size of output buffer containing all insns 482 bool r; 483 void *tmp; 484 size_t skipdata_bytes; 485 uint64_t offset_org; // save all the original info of the buffer 486 size_t size_org; 487 const uint8_t *buffer_org; 488 unsigned int cache_size = INSN_CACHE_SIZE; 489 size_t next_offset; 490 491 handle = (struct cs_struct *)(uintptr_t)ud; 492 if (!handle) { 493 // FIXME: how to handle this case: 494 // handle->errnum = CS_ERR_HANDLE; 495 return 0; 496 } 497 498 handle->errnum = CS_ERR_OK; 499 500 // reset IT block of ARM structure 501 if (handle->arch == CS_ARCH_ARM) 502 handle->ITBlock.size = 0; 503 504 #ifdef CAPSTONE_USE_SYS_DYN_MEM 505 if (count > 0 && count <= INSN_CACHE_SIZE) 506 cache_size = (unsigned int) count; 507 #endif 508 509 // save the original offset for SKIPDATA 510 buffer_org = buffer; 511 offset_org = offset; 512 size_org = size; 513 514 total_size = sizeof(cs_insn) * cache_size; 515 total = cs_mem_malloc(total_size); 516 if (total == NULL) { 517 // insufficient memory 518 handle->errnum = CS_ERR_MEM; 519 return 0; 520 } 521 522 insn_cache = total; 523 524 while (size > 0) { 525 MCInst_Init(&mci); 526 mci.csh = handle; 527 528 // relative branches need to know the address & size of current insn 529 mci.address = offset; 530 531 if (handle->detail) { 532 // allocate memory for @detail pointer 533 insn_cache->detail = cs_mem_malloc(sizeof(cs_detail)); 534 } else { 535 insn_cache->detail = NULL; 536 } 537 538 // save all the information for non-detailed mode 539 mci.flat_insn = insn_cache; 540 mci.flat_insn->address = offset; 541 #ifdef CAPSTONE_DIET 542 // zero out mnemonic & op_str 543 mci.flat_insn->mnemonic[0] = '\0'; 544 mci.flat_insn->op_str[0] = '\0'; 545 #endif 546 547 r = handle->disasm(ud, buffer, size, &mci, &insn_size, offset, handle->getinsn_info); 548 if (r) { 549 SStream ss; 550 SStream_Init(&ss); 551 552 mci.flat_insn->size = insn_size; 553 554 // map internal instruction opcode to public insn ID 555 556 handle->insn_id(handle, insn_cache, mci.Opcode); 557 558 handle->printer(&mci, &ss, handle->printer_info); 559 560 fill_insn(handle, insn_cache, ss.buffer, &mci, handle->post_printer, buffer); 561 562 next_offset = insn_size; 563 } else { 564 // encounter a broken instruction 565 566 // free memory of @detail pointer 567 if (handle->detail) { 568 cs_mem_free(insn_cache->detail); 569 } 570 571 // if there is no request to skip data, or remaining data is too small, 572 // then bail out 573 if (!handle->skipdata || handle->skipdata_size > size) 574 break; 575 576 if (handle->skipdata_setup.callback) { 577 skipdata_bytes = handle->skipdata_setup.callback(buffer_org, size_org, 578 (size_t)(offset - offset_org), handle->skipdata_setup.user_data); 579 if (skipdata_bytes > size) 580 // remaining data is not enough 581 break; 582 583 if (!skipdata_bytes) 584 // user requested not to skip data, so bail out 585 break; 586 } else 587 skipdata_bytes = handle->skipdata_size; 588 589 // we have to skip some amount of data, depending on arch & mode 590 insn_cache->id = 0; // invalid ID for this "data" instruction 591 insn_cache->address = offset; 592 insn_cache->size = (uint16_t)skipdata_bytes; 593 memcpy(insn_cache->bytes, buffer, skipdata_bytes); 594 #ifdef CAPSTONE_DIET 595 insn_cache->mnemonic[0] = '\0'; 596 insn_cache->op_str[0] = '\0'; 597 #else 598 strncpy(insn_cache->mnemonic, handle->skipdata_setup.mnemonic, 599 sizeof(insn_cache->mnemonic) - 1); 600 skipdata_opstr(insn_cache->op_str, buffer, skipdata_bytes); 601 #endif 602 insn_cache->detail = NULL; 603 604 next_offset = skipdata_bytes; 605 } 606 607 // one more instruction entering the cache 608 f++; 609 610 // one more instruction disassembled 611 c++; 612 if (count > 0 && c == count) 613 // already got requested number of instructions 614 break; 615 616 if (f == cache_size) { 617 // full cache, so expand the cache to contain incoming insns 618 cache_size = cache_size * 8 / 5; // * 1.6 ~ golden ratio 619 total_size += (sizeof(cs_insn) * cache_size); 620 tmp = cs_mem_realloc(total, total_size); 621 if (tmp == NULL) { // insufficient memory 622 if (handle->detail) { 623 insn_cache = (cs_insn *)total; 624 for (i = 0; i < c; i++, insn_cache++) 625 cs_mem_free(insn_cache->detail); 626 } 627 628 cs_mem_free(total); 629 *insn = NULL; 630 handle->errnum = CS_ERR_MEM; 631 return 0; 632 } 633 634 total = tmp; 635 // continue to fill in the cache after the last instruction 636 insn_cache = (cs_insn *)((char *)total + sizeof(cs_insn) * c); 637 638 // reset f back to 0, so we fill in the cache from begining 639 f = 0; 640 } else 641 insn_cache++; 642 643 buffer += next_offset; 644 size -= next_offset; 645 offset += next_offset; 646 } 647 648 if (!c) { 649 // we did not disassemble any instruction 650 cs_mem_free(total); 651 total = NULL; 652 } else if (f != cache_size) { 653 // total did not fully use the last cache, so downsize it 654 tmp = cs_mem_realloc(total, total_size - (cache_size - f) * sizeof(*insn_cache)); 655 if (tmp == NULL) { // insufficient memory 656 // free all detail pointers 657 if (handle->detail) { 658 insn_cache = (cs_insn *)total; 659 for (i = 0; i < c; i++, insn_cache++) 660 cs_mem_free(insn_cache->detail); 661 } 662 663 cs_mem_free(total); 664 *insn = NULL; 665 666 handle->errnum = CS_ERR_MEM; 667 return 0; 668 } 669 670 total = tmp; 671 } 672 673 *insn = total; 674 675 return c; 676 } 677 678 CAPSTONE_EXPORT 679 CAPSTONE_DEPRECATED 680 size_t CAPSTONE_API cs_disasm_ex(csh ud, const uint8_t *buffer, size_t size, uint64_t offset, size_t count, cs_insn **insn) 681 { 682 return cs_disasm(ud, buffer, size, offset, count, insn); 683 } 684 685 CAPSTONE_EXPORT 686 void CAPSTONE_API cs_free(cs_insn *insn, size_t count) 687 { 688 size_t i; 689 690 // free all detail pointers 691 for (i = 0; i < count; i++) 692 cs_mem_free(insn[i].detail); 693 694 // then free pointer to cs_insn array 695 cs_mem_free(insn); 696 } 697 698 CAPSTONE_EXPORT 699 cs_insn * CAPSTONE_API cs_malloc(csh ud) 700 { 701 cs_insn *insn; 702 struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; 703 704 insn = cs_mem_malloc(sizeof(cs_insn)); 705 if (!insn) { 706 // insufficient memory 707 handle->errnum = CS_ERR_MEM; 708 return NULL; 709 } else { 710 if (handle->detail) { 711 // allocate memory for @detail pointer 712 insn->detail = cs_mem_malloc(sizeof(cs_detail)); 713 if (insn->detail == NULL) { // insufficient memory 714 cs_mem_free(insn); 715 handle->errnum = CS_ERR_MEM; 716 return NULL; 717 } 718 } else 719 insn->detail = NULL; 720 } 721 722 return insn; 723 } 724 725 // iterator for instruction "single-stepping" 726 CAPSTONE_EXPORT 727 bool CAPSTONE_API cs_disasm_iter(csh ud, const uint8_t **code, size_t *size, 728 uint64_t *address, cs_insn *insn) 729 { 730 struct cs_struct *handle; 731 uint16_t insn_size; 732 MCInst mci; 733 bool r; 734 735 handle = (struct cs_struct *)(uintptr_t)ud; 736 if (!handle) { 737 return false; 738 } 739 740 handle->errnum = CS_ERR_OK; 741 742 MCInst_Init(&mci); 743 mci.csh = handle; 744 745 // relative branches need to know the address & size of current insn 746 mci.address = *address; 747 748 // save all the information for non-detailed mode 749 mci.flat_insn = insn; 750 mci.flat_insn->address = *address; 751 #ifdef CAPSTONE_DIET 752 // zero out mnemonic & op_str 753 mci.flat_insn->mnemonic[0] = '\0'; 754 mci.flat_insn->op_str[0] = '\0'; 755 #endif 756 757 r = handle->disasm(ud, *code, *size, &mci, &insn_size, *address, handle->getinsn_info); 758 if (r) { 759 SStream ss; 760 SStream_Init(&ss); 761 762 mci.flat_insn->size = insn_size; 763 764 // map internal instruction opcode to public insn ID 765 handle->insn_id(handle, insn, mci.Opcode); 766 767 handle->printer(&mci, &ss, handle->printer_info); 768 769 fill_insn(handle, insn, ss.buffer, &mci, handle->post_printer, *code); 770 771 *code += insn_size; 772 *size -= insn_size; 773 *address += insn_size; 774 } else { // encounter a broken instruction 775 size_t skipdata_bytes; 776 777 // if there is no request to skip data, or remaining data is too small, 778 // then bail out 779 if (!handle->skipdata || handle->skipdata_size > *size) 780 return false; 781 782 if (handle->skipdata_setup.callback) { 783 skipdata_bytes = handle->skipdata_setup.callback(*code, *size, 784 0, handle->skipdata_setup.user_data); 785 if (skipdata_bytes > *size) 786 // remaining data is not enough 787 return false; 788 789 if (!skipdata_bytes) 790 // user requested not to skip data, so bail out 791 return false; 792 } else 793 skipdata_bytes = handle->skipdata_size; 794 795 // we have to skip some amount of data, depending on arch & mode 796 insn->id = 0; // invalid ID for this "data" instruction 797 insn->address = *address; 798 insn->size = (uint16_t)skipdata_bytes; 799 memcpy(insn->bytes, *code, skipdata_bytes); 800 #ifdef CAPSTONE_DIET 801 insn->mnemonic[0] = '\0'; 802 insn->op_str[0] = '\0'; 803 #else 804 strncpy(insn->mnemonic, handle->skipdata_setup.mnemonic, 805 sizeof(insn->mnemonic) - 1); 806 skipdata_opstr(insn->op_str, *code, skipdata_bytes); 807 #endif 808 809 *code += skipdata_bytes; 810 *size -= skipdata_bytes; 811 *address += skipdata_bytes; 812 } 813 814 return true; 815 } 816 817 // return friendly name of regiser in a string 818 CAPSTONE_EXPORT 819 const char * CAPSTONE_API cs_reg_name(csh ud, unsigned int reg) 820 { 821 struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; 822 823 if (!handle || handle->reg_name == NULL) { 824 return NULL; 825 } 826 827 return handle->reg_name(ud, reg); 828 } 829 830 CAPSTONE_EXPORT 831 const char * CAPSTONE_API cs_insn_name(csh ud, unsigned int insn) 832 { 833 struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; 834 835 if (!handle || handle->insn_name == NULL) { 836 return NULL; 837 } 838 839 return handle->insn_name(ud, insn); 840 } 841 842 CAPSTONE_EXPORT 843 const char * CAPSTONE_API cs_group_name(csh ud, unsigned int group) 844 { 845 struct cs_struct *handle = (struct cs_struct *)(uintptr_t)ud; 846 847 if (!handle || handle->group_name == NULL) { 848 return NULL; 849 } 850 851 return handle->group_name(ud, group); 852 } 853 854 static bool arr_exist(unsigned char *arr, unsigned char max, unsigned int id) 855 { 856 int i; 857 858 for (i = 0; i < max; i++) { 859 if (arr[i] == id) 860 return true; 861 } 862 863 return false; 864 } 865 866 CAPSTONE_EXPORT 867 bool CAPSTONE_API cs_insn_group(csh ud, const cs_insn *insn, unsigned int group_id) 868 { 869 struct cs_struct *handle; 870 if (!ud) 871 return false; 872 873 handle = (struct cs_struct *)(uintptr_t)ud; 874 875 if (!handle->detail) { 876 handle->errnum = CS_ERR_DETAIL; 877 return false; 878 } 879 880 if(!insn->id) { 881 handle->errnum = CS_ERR_SKIPDATA; 882 return false; 883 } 884 885 if(!insn->detail) { 886 handle->errnum = CS_ERR_DETAIL; 887 return false; 888 } 889 890 return arr_exist(insn->detail->groups, insn->detail->groups_count, group_id); 891 } 892 893 CAPSTONE_EXPORT 894 bool CAPSTONE_API cs_reg_read(csh ud, const cs_insn *insn, unsigned int reg_id) 895 { 896 struct cs_struct *handle; 897 if (!ud) 898 return false; 899 900 handle = (struct cs_struct *)(uintptr_t)ud; 901 902 if (!handle->detail) { 903 handle->errnum = CS_ERR_DETAIL; 904 return false; 905 } 906 907 if(!insn->id) { 908 handle->errnum = CS_ERR_SKIPDATA; 909 return false; 910 } 911 912 if(!insn->detail) { 913 handle->errnum = CS_ERR_DETAIL; 914 return false; 915 } 916 917 return arr_exist(insn->detail->regs_read, insn->detail->regs_read_count, reg_id); 918 } 919 920 CAPSTONE_EXPORT 921 bool CAPSTONE_API cs_reg_write(csh ud, const cs_insn *insn, unsigned int reg_id) 922 { 923 struct cs_struct *handle; 924 if (!ud) 925 return false; 926 927 handle = (struct cs_struct *)(uintptr_t)ud; 928 929 if (!handle->detail) { 930 handle->errnum = CS_ERR_DETAIL; 931 return false; 932 } 933 934 if(!insn->id) { 935 handle->errnum = CS_ERR_SKIPDATA; 936 return false; 937 } 938 939 if(!insn->detail) { 940 handle->errnum = CS_ERR_DETAIL; 941 return false; 942 } 943 944 return arr_exist(insn->detail->regs_write, insn->detail->regs_write_count, reg_id); 945 } 946 947 CAPSTONE_EXPORT 948 int CAPSTONE_API cs_op_count(csh ud, const cs_insn *insn, unsigned int op_type) 949 { 950 struct cs_struct *handle; 951 unsigned int count = 0, i; 952 if (!ud) 953 return -1; 954 955 handle = (struct cs_struct *)(uintptr_t)ud; 956 957 if (!handle->detail) { 958 handle->errnum = CS_ERR_DETAIL; 959 return -1; 960 } 961 962 if(!insn->id) { 963 handle->errnum = CS_ERR_SKIPDATA; 964 return -1; 965 } 966 967 if(!insn->detail) { 968 handle->errnum = CS_ERR_DETAIL; 969 return -1; 970 } 971 972 handle->errnum = CS_ERR_OK; 973 974 switch (handle->arch) { 975 default: 976 handle->errnum = CS_ERR_HANDLE; 977 return -1; 978 case CS_ARCH_ARM: 979 for (i = 0; i < insn->detail->arm.op_count; i++) 980 if (insn->detail->arm.operands[i].type == (arm_op_type)op_type) 981 count++; 982 break; 983 case CS_ARCH_ARM64: 984 for (i = 0; i < insn->detail->arm64.op_count; i++) 985 if (insn->detail->arm64.operands[i].type == (arm64_op_type)op_type) 986 count++; 987 break; 988 case CS_ARCH_X86: 989 for (i = 0; i < insn->detail->x86.op_count; i++) 990 if (insn->detail->x86.operands[i].type == (x86_op_type)op_type) 991 count++; 992 break; 993 case CS_ARCH_MIPS: 994 for (i = 0; i < insn->detail->mips.op_count; i++) 995 if (insn->detail->mips.operands[i].type == (mips_op_type)op_type) 996 count++; 997 break; 998 case CS_ARCH_PPC: 999 for (i = 0; i < insn->detail->ppc.op_count; i++) 1000 if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type) 1001 count++; 1002 break; 1003 case CS_ARCH_SPARC: 1004 for (i = 0; i < insn->detail->sparc.op_count; i++) 1005 if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type) 1006 count++; 1007 break; 1008 case CS_ARCH_SYSZ: 1009 for (i = 0; i < insn->detail->sysz.op_count; i++) 1010 if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type) 1011 count++; 1012 break; 1013 case CS_ARCH_XCORE: 1014 for (i = 0; i < insn->detail->xcore.op_count; i++) 1015 if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type) 1016 count++; 1017 break; 1018 } 1019 1020 return count; 1021 } 1022 1023 CAPSTONE_EXPORT 1024 int CAPSTONE_API cs_op_index(csh ud, const cs_insn *insn, unsigned int op_type, 1025 unsigned int post) 1026 { 1027 struct cs_struct *handle; 1028 unsigned int count = 0, i; 1029 if (!ud) 1030 return -1; 1031 1032 handle = (struct cs_struct *)(uintptr_t)ud; 1033 1034 if (!handle->detail) { 1035 handle->errnum = CS_ERR_DETAIL; 1036 return -1; 1037 } 1038 1039 if(!insn->id) { 1040 handle->errnum = CS_ERR_SKIPDATA; 1041 return -1; 1042 } 1043 1044 if(!insn->detail) { 1045 handle->errnum = CS_ERR_DETAIL; 1046 return -1; 1047 } 1048 1049 handle->errnum = CS_ERR_OK; 1050 1051 switch (handle->arch) { 1052 default: 1053 handle->errnum = CS_ERR_HANDLE; 1054 return -1; 1055 case CS_ARCH_ARM: 1056 for (i = 0; i < insn->detail->arm.op_count; i++) { 1057 if (insn->detail->arm.operands[i].type == (arm_op_type)op_type) 1058 count++; 1059 if (count == post) 1060 return i; 1061 } 1062 break; 1063 case CS_ARCH_ARM64: 1064 for (i = 0; i < insn->detail->arm64.op_count; i++) { 1065 if (insn->detail->arm64.operands[i].type == (arm64_op_type)op_type) 1066 count++; 1067 if (count == post) 1068 return i; 1069 } 1070 break; 1071 case CS_ARCH_X86: 1072 for (i = 0; i < insn->detail->x86.op_count; i++) { 1073 if (insn->detail->x86.operands[i].type == (x86_op_type)op_type) 1074 count++; 1075 if (count == post) 1076 return i; 1077 } 1078 break; 1079 case CS_ARCH_MIPS: 1080 for (i = 0; i < insn->detail->mips.op_count; i++) { 1081 if (insn->detail->mips.operands[i].type == (mips_op_type)op_type) 1082 count++; 1083 if (count == post) 1084 return i; 1085 } 1086 break; 1087 case CS_ARCH_PPC: 1088 for (i = 0; i < insn->detail->ppc.op_count; i++) { 1089 if (insn->detail->ppc.operands[i].type == (ppc_op_type)op_type) 1090 count++; 1091 if (count == post) 1092 return i; 1093 } 1094 break; 1095 case CS_ARCH_SPARC: 1096 for (i = 0; i < insn->detail->sparc.op_count; i++) { 1097 if (insn->detail->sparc.operands[i].type == (sparc_op_type)op_type) 1098 count++; 1099 if (count == post) 1100 return i; 1101 } 1102 break; 1103 case CS_ARCH_SYSZ: 1104 for (i = 0; i < insn->detail->sysz.op_count; i++) { 1105 if (insn->detail->sysz.operands[i].type == (sysz_op_type)op_type) 1106 count++; 1107 if (count == post) 1108 return i; 1109 } 1110 break; 1111 case CS_ARCH_XCORE: 1112 for (i = 0; i < insn->detail->xcore.op_count; i++) { 1113 if (insn->detail->xcore.operands[i].type == (xcore_op_type)op_type) 1114 count++; 1115 if (count == post) 1116 return i; 1117 } 1118 break; 1119 } 1120 1121 return -1; 1122 } 1123