Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/APSInt.h"
     16 #include "llvm/ADT/SetVector.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/Analysis/ConstantFolding.h"
     19 #include "llvm/Analysis/InstructionSimplify.h"
     20 #include "llvm/Analysis/MemoryBuiltins.h"
     21 #include "llvm/Analysis/TargetLibraryInfo.h"
     22 #include "llvm/Analysis/VectorUtils.h"
     23 #include "llvm/IR/ConstantRange.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/GetElementPtrTypeIterator.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/PatternMatch.h"
     28 #include "llvm/Support/Debug.h"
     29 
     30 using namespace llvm;
     31 using namespace PatternMatch;
     32 
     33 #define DEBUG_TYPE "instcombine"
     34 
     35 // How many times is a select replaced by one of its operands?
     36 STATISTIC(NumSel, "Number of select opts");
     37 
     38 // Initialization Routines
     39 
     40 static ConstantInt *getOne(Constant *C) {
     41   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     42 }
     43 
     44 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     45   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     46 }
     47 
     48 static bool HasAddOverflow(ConstantInt *Result,
     49                            ConstantInt *In1, ConstantInt *In2,
     50                            bool IsSigned) {
     51   if (!IsSigned)
     52     return Result->getValue().ult(In1->getValue());
     53 
     54   if (In2->isNegative())
     55     return Result->getValue().sgt(In1->getValue());
     56   return Result->getValue().slt(In1->getValue());
     57 }
     58 
     59 /// Compute Result = In1+In2, returning true if the result overflowed for this
     60 /// type.
     61 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     62                             Constant *In2, bool IsSigned = false) {
     63   Result = ConstantExpr::getAdd(In1, In2);
     64 
     65   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     66     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     67       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     68       if (HasAddOverflow(ExtractElement(Result, Idx),
     69                          ExtractElement(In1, Idx),
     70                          ExtractElement(In2, Idx),
     71                          IsSigned))
     72         return true;
     73     }
     74     return false;
     75   }
     76 
     77   return HasAddOverflow(cast<ConstantInt>(Result),
     78                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     79                         IsSigned);
     80 }
     81 
     82 static bool HasSubOverflow(ConstantInt *Result,
     83                            ConstantInt *In1, ConstantInt *In2,
     84                            bool IsSigned) {
     85   if (!IsSigned)
     86     return Result->getValue().ugt(In1->getValue());
     87 
     88   if (In2->isNegative())
     89     return Result->getValue().slt(In1->getValue());
     90 
     91   return Result->getValue().sgt(In1->getValue());
     92 }
     93 
     94 /// Compute Result = In1-In2, returning true if the result overflowed for this
     95 /// type.
     96 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     97                             Constant *In2, bool IsSigned = false) {
     98   Result = ConstantExpr::getSub(In1, In2);
     99 
    100   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
    101     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
    102       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
    103       if (HasSubOverflow(ExtractElement(Result, Idx),
    104                          ExtractElement(In1, Idx),
    105                          ExtractElement(In2, Idx),
    106                          IsSigned))
    107         return true;
    108     }
    109     return false;
    110   }
    111 
    112   return HasSubOverflow(cast<ConstantInt>(Result),
    113                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    114                         IsSigned);
    115 }
    116 
    117 /// Given an icmp instruction, return true if any use of this comparison is a
    118 /// branch on sign bit comparison.
    119 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
    120   for (auto *U : I.users())
    121     if (isa<BranchInst>(U))
    122       return isSignBit;
    123   return false;
    124 }
    125 
    126 /// Given an exploded icmp instruction, return true if the comparison only
    127 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
    128 /// result of the comparison is true when the input value is signed.
    129 static bool isSignBitCheck(ICmpInst::Predicate Pred, ConstantInt *RHS,
    130                            bool &TrueIfSigned) {
    131   switch (Pred) {
    132   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    133     TrueIfSigned = true;
    134     return RHS->isZero();
    135   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    136     TrueIfSigned = true;
    137     return RHS->isAllOnesValue();
    138   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    139     TrueIfSigned = false;
    140     return RHS->isAllOnesValue();
    141   case ICmpInst::ICMP_UGT:
    142     // True if LHS u> RHS and RHS == high-bit-mask - 1
    143     TrueIfSigned = true;
    144     return RHS->isMaxValue(true);
    145   case ICmpInst::ICMP_UGE:
    146     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    147     TrueIfSigned = true;
    148     return RHS->getValue().isSignBit();
    149   default:
    150     return false;
    151   }
    152 }
    153 
    154 /// Returns true if the exploded icmp can be expressed as a signed comparison
    155 /// to zero and updates the predicate accordingly.
    156 /// The signedness of the comparison is preserved.
    157 static bool isSignTest(ICmpInst::Predicate &Pred, const ConstantInt *RHS) {
    158   if (!ICmpInst::isSigned(Pred))
    159     return false;
    160 
    161   if (RHS->isZero())
    162     return ICmpInst::isRelational(Pred);
    163 
    164   if (RHS->isOne()) {
    165     if (Pred == ICmpInst::ICMP_SLT) {
    166       Pred = ICmpInst::ICMP_SLE;
    167       return true;
    168     }
    169   } else if (RHS->isAllOnesValue()) {
    170     if (Pred == ICmpInst::ICMP_SGT) {
    171       Pred = ICmpInst::ICMP_SGE;
    172       return true;
    173     }
    174   }
    175 
    176   return false;
    177 }
    178 
    179 /// Return true if the constant is of the form 1+0+. This is the same as
    180 /// lowones(~X).
    181 static bool isHighOnes(const ConstantInt *CI) {
    182   return (~CI->getValue() + 1).isPowerOf2();
    183 }
    184 
    185 /// Given a signed integer type and a set of known zero and one bits, compute
    186 /// the maximum and minimum values that could have the specified known zero and
    187 /// known one bits, returning them in Min/Max.
    188 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    189                                                    const APInt &KnownOne,
    190                                                    APInt &Min, APInt &Max) {
    191   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    192          KnownZero.getBitWidth() == Min.getBitWidth() &&
    193          KnownZero.getBitWidth() == Max.getBitWidth() &&
    194          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    195   APInt UnknownBits = ~(KnownZero|KnownOne);
    196 
    197   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    198   // bit if it is unknown.
    199   Min = KnownOne;
    200   Max = KnownOne|UnknownBits;
    201 
    202   if (UnknownBits.isNegative()) { // Sign bit is unknown
    203     Min.setBit(Min.getBitWidth()-1);
    204     Max.clearBit(Max.getBitWidth()-1);
    205   }
    206 }
    207 
    208 /// Given an unsigned integer type and a set of known zero and one bits, compute
    209 /// the maximum and minimum values that could have the specified known zero and
    210 /// known one bits, returning them in Min/Max.
    211 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    212                                                      const APInt &KnownOne,
    213                                                      APInt &Min, APInt &Max) {
    214   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    215          KnownZero.getBitWidth() == Min.getBitWidth() &&
    216          KnownZero.getBitWidth() == Max.getBitWidth() &&
    217          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    218   APInt UnknownBits = ~(KnownZero|KnownOne);
    219 
    220   // The minimum value is when the unknown bits are all zeros.
    221   Min = KnownOne;
    222   // The maximum value is when the unknown bits are all ones.
    223   Max = KnownOne|UnknownBits;
    224 }
    225 
    226 /// This is called when we see this pattern:
    227 ///   cmp pred (load (gep GV, ...)), cmpcst
    228 /// where GV is a global variable with a constant initializer. Try to simplify
    229 /// this into some simple computation that does not need the load. For example
    230 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    231 ///
    232 /// If AndCst is non-null, then the loaded value is masked with that constant
    233 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
    234 Instruction *InstCombiner::
    235 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    236                              CmpInst &ICI, ConstantInt *AndCst) {
    237   Constant *Init = GV->getInitializer();
    238   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    239     return nullptr;
    240 
    241   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    242   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
    243 
    244   // There are many forms of this optimization we can handle, for now, just do
    245   // the simple index into a single-dimensional array.
    246   //
    247   // Require: GEP GV, 0, i {{, constant indices}}
    248   if (GEP->getNumOperands() < 3 ||
    249       !isa<ConstantInt>(GEP->getOperand(1)) ||
    250       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    251       isa<Constant>(GEP->getOperand(2)))
    252     return nullptr;
    253 
    254   // Check that indices after the variable are constants and in-range for the
    255   // type they index.  Collect the indices.  This is typically for arrays of
    256   // structs.
    257   SmallVector<unsigned, 4> LaterIndices;
    258 
    259   Type *EltTy = Init->getType()->getArrayElementType();
    260   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    261     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    262     if (!Idx) return nullptr;  // Variable index.
    263 
    264     uint64_t IdxVal = Idx->getZExtValue();
    265     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
    266 
    267     if (StructType *STy = dyn_cast<StructType>(EltTy))
    268       EltTy = STy->getElementType(IdxVal);
    269     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    270       if (IdxVal >= ATy->getNumElements()) return nullptr;
    271       EltTy = ATy->getElementType();
    272     } else {
    273       return nullptr; // Unknown type.
    274     }
    275 
    276     LaterIndices.push_back(IdxVal);
    277   }
    278 
    279   enum { Overdefined = -3, Undefined = -2 };
    280 
    281   // Variables for our state machines.
    282 
    283   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    284   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    285   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    286   // undefined, otherwise set to the first true element.  SecondTrueElement is
    287   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    288   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    289 
    290   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    291   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    292   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    293 
    294   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    295   /// define a state machine that triggers for ranges of values that the index
    296   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    297   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    298   /// index in the range (inclusive).  We use -2 for undefined here because we
    299   /// use relative comparisons and don't want 0-1 to match -1.
    300   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    301 
    302   // MagicBitvector - This is a magic bitvector where we set a bit if the
    303   // comparison is true for element 'i'.  If there are 64 elements or less in
    304   // the array, this will fully represent all the comparison results.
    305   uint64_t MagicBitvector = 0;
    306 
    307   // Scan the array and see if one of our patterns matches.
    308   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    309   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    310     Constant *Elt = Init->getAggregateElement(i);
    311     if (!Elt) return nullptr;
    312 
    313     // If this is indexing an array of structures, get the structure element.
    314     if (!LaterIndices.empty())
    315       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    316 
    317     // If the element is masked, handle it.
    318     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    319 
    320     // Find out if the comparison would be true or false for the i'th element.
    321     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    322                                                   CompareRHS, DL, TLI);
    323     // If the result is undef for this element, ignore it.
    324     if (isa<UndefValue>(C)) {
    325       // Extend range state machines to cover this element in case there is an
    326       // undef in the middle of the range.
    327       if (TrueRangeEnd == (int)i-1)
    328         TrueRangeEnd = i;
    329       if (FalseRangeEnd == (int)i-1)
    330         FalseRangeEnd = i;
    331       continue;
    332     }
    333 
    334     // If we can't compute the result for any of the elements, we have to give
    335     // up evaluating the entire conditional.
    336     if (!isa<ConstantInt>(C)) return nullptr;
    337 
    338     // Otherwise, we know if the comparison is true or false for this element,
    339     // update our state machines.
    340     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    341 
    342     // State machine for single/double/range index comparison.
    343     if (IsTrueForElt) {
    344       // Update the TrueElement state machine.
    345       if (FirstTrueElement == Undefined)
    346         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    347       else {
    348         // Update double-compare state machine.
    349         if (SecondTrueElement == Undefined)
    350           SecondTrueElement = i;
    351         else
    352           SecondTrueElement = Overdefined;
    353 
    354         // Update range state machine.
    355         if (TrueRangeEnd == (int)i-1)
    356           TrueRangeEnd = i;
    357         else
    358           TrueRangeEnd = Overdefined;
    359       }
    360     } else {
    361       // Update the FalseElement state machine.
    362       if (FirstFalseElement == Undefined)
    363         FirstFalseElement = FalseRangeEnd = i; // First false element.
    364       else {
    365         // Update double-compare state machine.
    366         if (SecondFalseElement == Undefined)
    367           SecondFalseElement = i;
    368         else
    369           SecondFalseElement = Overdefined;
    370 
    371         // Update range state machine.
    372         if (FalseRangeEnd == (int)i-1)
    373           FalseRangeEnd = i;
    374         else
    375           FalseRangeEnd = Overdefined;
    376       }
    377     }
    378 
    379     // If this element is in range, update our magic bitvector.
    380     if (i < 64 && IsTrueForElt)
    381       MagicBitvector |= 1ULL << i;
    382 
    383     // If all of our states become overdefined, bail out early.  Since the
    384     // predicate is expensive, only check it every 8 elements.  This is only
    385     // really useful for really huge arrays.
    386     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    387         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    388         FalseRangeEnd == Overdefined)
    389       return nullptr;
    390   }
    391 
    392   // Now that we've scanned the entire array, emit our new comparison(s).  We
    393   // order the state machines in complexity of the generated code.
    394   Value *Idx = GEP->getOperand(2);
    395 
    396   // If the index is larger than the pointer size of the target, truncate the
    397   // index down like the GEP would do implicitly.  We don't have to do this for
    398   // an inbounds GEP because the index can't be out of range.
    399   if (!GEP->isInBounds()) {
    400     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
    401     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
    402     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
    403       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
    404   }
    405 
    406   // If the comparison is only true for one or two elements, emit direct
    407   // comparisons.
    408   if (SecondTrueElement != Overdefined) {
    409     // None true -> false.
    410     if (FirstTrueElement == Undefined)
    411       return replaceInstUsesWith(ICI, Builder->getFalse());
    412 
    413     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    414 
    415     // True for one element -> 'i == 47'.
    416     if (SecondTrueElement == Undefined)
    417       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    418 
    419     // True for two elements -> 'i == 47 | i == 72'.
    420     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    421     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    422     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    423     return BinaryOperator::CreateOr(C1, C2);
    424   }
    425 
    426   // If the comparison is only false for one or two elements, emit direct
    427   // comparisons.
    428   if (SecondFalseElement != Overdefined) {
    429     // None false -> true.
    430     if (FirstFalseElement == Undefined)
    431       return replaceInstUsesWith(ICI, Builder->getTrue());
    432 
    433     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    434 
    435     // False for one element -> 'i != 47'.
    436     if (SecondFalseElement == Undefined)
    437       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    438 
    439     // False for two elements -> 'i != 47 & i != 72'.
    440     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    441     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    442     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    443     return BinaryOperator::CreateAnd(C1, C2);
    444   }
    445 
    446   // If the comparison can be replaced with a range comparison for the elements
    447   // where it is true, emit the range check.
    448   if (TrueRangeEnd != Overdefined) {
    449     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    450 
    451     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    452     if (FirstTrueElement) {
    453       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    454       Idx = Builder->CreateAdd(Idx, Offs);
    455     }
    456 
    457     Value *End = ConstantInt::get(Idx->getType(),
    458                                   TrueRangeEnd-FirstTrueElement+1);
    459     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    460   }
    461 
    462   // False range check.
    463   if (FalseRangeEnd != Overdefined) {
    464     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    465     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    466     if (FirstFalseElement) {
    467       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    468       Idx = Builder->CreateAdd(Idx, Offs);
    469     }
    470 
    471     Value *End = ConstantInt::get(Idx->getType(),
    472                                   FalseRangeEnd-FirstFalseElement);
    473     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    474   }
    475 
    476   // If a magic bitvector captures the entire comparison state
    477   // of this load, replace it with computation that does:
    478   //   ((magic_cst >> i) & 1) != 0
    479   {
    480     Type *Ty = nullptr;
    481 
    482     // Look for an appropriate type:
    483     // - The type of Idx if the magic fits
    484     // - The smallest fitting legal type if we have a DataLayout
    485     // - Default to i32
    486     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
    487       Ty = Idx->getType();
    488     else
    489       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
    490 
    491     if (Ty) {
    492       Value *V = Builder->CreateIntCast(Idx, Ty, false);
    493       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    494       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    495       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    496     }
    497   }
    498 
    499   return nullptr;
    500 }
    501 
    502 /// Return a value that can be used to compare the *offset* implied by a GEP to
    503 /// zero. For example, if we have &A[i], we want to return 'i' for
    504 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
    505 /// are involved. The above expression would also be legal to codegen as
    506 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    507 /// This latter form is less amenable to optimization though, and we are allowed
    508 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    509 ///
    510 /// If we can't emit an optimized form for this expression, this returns null.
    511 ///
    512 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
    513                                           const DataLayout &DL) {
    514   gep_type_iterator GTI = gep_type_begin(GEP);
    515 
    516   // Check to see if this gep only has a single variable index.  If so, and if
    517   // any constant indices are a multiple of its scale, then we can compute this
    518   // in terms of the scale of the variable index.  For example, if the GEP
    519   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    520   // because the expression will cross zero at the same point.
    521   unsigned i, e = GEP->getNumOperands();
    522   int64_t Offset = 0;
    523   for (i = 1; i != e; ++i, ++GTI) {
    524     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    525       // Compute the aggregate offset of constant indices.
    526       if (CI->isZero()) continue;
    527 
    528       // Handle a struct index, which adds its field offset to the pointer.
    529       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    530         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    531       } else {
    532         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    533         Offset += Size*CI->getSExtValue();
    534       }
    535     } else {
    536       // Found our variable index.
    537       break;
    538     }
    539   }
    540 
    541   // If there are no variable indices, we must have a constant offset, just
    542   // evaluate it the general way.
    543   if (i == e) return nullptr;
    544 
    545   Value *VariableIdx = GEP->getOperand(i);
    546   // Determine the scale factor of the variable element.  For example, this is
    547   // 4 if the variable index is into an array of i32.
    548   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
    549 
    550   // Verify that there are no other variable indices.  If so, emit the hard way.
    551   for (++i, ++GTI; i != e; ++i, ++GTI) {
    552     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    553     if (!CI) return nullptr;
    554 
    555     // Compute the aggregate offset of constant indices.
    556     if (CI->isZero()) continue;
    557 
    558     // Handle a struct index, which adds its field offset to the pointer.
    559     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    560       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    561     } else {
    562       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    563       Offset += Size*CI->getSExtValue();
    564     }
    565   }
    566 
    567   // Okay, we know we have a single variable index, which must be a
    568   // pointer/array/vector index.  If there is no offset, life is simple, return
    569   // the index.
    570   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
    571   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
    572   if (Offset == 0) {
    573     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    574     // we don't need to bother extending: the extension won't affect where the
    575     // computation crosses zero.
    576     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    577       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    578     }
    579     return VariableIdx;
    580   }
    581 
    582   // Otherwise, there is an index.  The computation we will do will be modulo
    583   // the pointer size, so get it.
    584   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    585 
    586   Offset &= PtrSizeMask;
    587   VariableScale &= PtrSizeMask;
    588 
    589   // To do this transformation, any constant index must be a multiple of the
    590   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    591   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    592   // multiple of the variable scale.
    593   int64_t NewOffs = Offset / (int64_t)VariableScale;
    594   if (Offset != NewOffs*(int64_t)VariableScale)
    595     return nullptr;
    596 
    597   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    598   if (VariableIdx->getType() != IntPtrTy)
    599     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    600                                             true /*Signed*/);
    601   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    602   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    603 }
    604 
    605 /// Returns true if we can rewrite Start as a GEP with pointer Base
    606 /// and some integer offset. The nodes that need to be re-written
    607 /// for this transformation will be added to Explored.
    608 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
    609                                   const DataLayout &DL,
    610                                   SetVector<Value *> &Explored) {
    611   SmallVector<Value *, 16> WorkList(1, Start);
    612   Explored.insert(Base);
    613 
    614   // The following traversal gives us an order which can be used
    615   // when doing the final transformation. Since in the final
    616   // transformation we create the PHI replacement instructions first,
    617   // we don't have to get them in any particular order.
    618   //
    619   // However, for other instructions we will have to traverse the
    620   // operands of an instruction first, which means that we have to
    621   // do a post-order traversal.
    622   while (!WorkList.empty()) {
    623     SetVector<PHINode *> PHIs;
    624 
    625     while (!WorkList.empty()) {
    626       if (Explored.size() >= 100)
    627         return false;
    628 
    629       Value *V = WorkList.back();
    630 
    631       if (Explored.count(V) != 0) {
    632         WorkList.pop_back();
    633         continue;
    634       }
    635 
    636       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
    637           !isa<GEPOperator>(V) && !isa<PHINode>(V))
    638         // We've found some value that we can't explore which is different from
    639         // the base. Therefore we can't do this transformation.
    640         return false;
    641 
    642       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
    643         auto *CI = dyn_cast<CastInst>(V);
    644         if (!CI->isNoopCast(DL))
    645           return false;
    646 
    647         if (Explored.count(CI->getOperand(0)) == 0)
    648           WorkList.push_back(CI->getOperand(0));
    649       }
    650 
    651       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
    652         // We're limiting the GEP to having one index. This will preserve
    653         // the original pointer type. We could handle more cases in the
    654         // future.
    655         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
    656             GEP->getType() != Start->getType())
    657           return false;
    658 
    659         if (Explored.count(GEP->getOperand(0)) == 0)
    660           WorkList.push_back(GEP->getOperand(0));
    661       }
    662 
    663       if (WorkList.back() == V) {
    664         WorkList.pop_back();
    665         // We've finished visiting this node, mark it as such.
    666         Explored.insert(V);
    667       }
    668 
    669       if (auto *PN = dyn_cast<PHINode>(V)) {
    670         // We cannot transform PHIs on unsplittable basic blocks.
    671         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
    672           return false;
    673         Explored.insert(PN);
    674         PHIs.insert(PN);
    675       }
    676     }
    677 
    678     // Explore the PHI nodes further.
    679     for (auto *PN : PHIs)
    680       for (Value *Op : PN->incoming_values())
    681         if (Explored.count(Op) == 0)
    682           WorkList.push_back(Op);
    683   }
    684 
    685   // Make sure that we can do this. Since we can't insert GEPs in a basic
    686   // block before a PHI node, we can't easily do this transformation if
    687   // we have PHI node users of transformed instructions.
    688   for (Value *Val : Explored) {
    689     for (Value *Use : Val->uses()) {
    690 
    691       auto *PHI = dyn_cast<PHINode>(Use);
    692       auto *Inst = dyn_cast<Instruction>(Val);
    693 
    694       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
    695           Explored.count(PHI) == 0)
    696         continue;
    697 
    698       if (PHI->getParent() == Inst->getParent())
    699         return false;
    700     }
    701   }
    702   return true;
    703 }
    704 
    705 // Sets the appropriate insert point on Builder where we can add
    706 // a replacement Instruction for V (if that is possible).
    707 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
    708                               bool Before = true) {
    709   if (auto *PHI = dyn_cast<PHINode>(V)) {
    710     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
    711     return;
    712   }
    713   if (auto *I = dyn_cast<Instruction>(V)) {
    714     if (!Before)
    715       I = &*std::next(I->getIterator());
    716     Builder.SetInsertPoint(I);
    717     return;
    718   }
    719   if (auto *A = dyn_cast<Argument>(V)) {
    720     // Set the insertion point in the entry block.
    721     BasicBlock &Entry = A->getParent()->getEntryBlock();
    722     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
    723     return;
    724   }
    725   // Otherwise, this is a constant and we don't need to set a new
    726   // insertion point.
    727   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
    728 }
    729 
    730 /// Returns a re-written value of Start as an indexed GEP using Base as a
    731 /// pointer.
    732 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
    733                                  const DataLayout &DL,
    734                                  SetVector<Value *> &Explored) {
    735   // Perform all the substitutions. This is a bit tricky because we can
    736   // have cycles in our use-def chains.
    737   // 1. Create the PHI nodes without any incoming values.
    738   // 2. Create all the other values.
    739   // 3. Add the edges for the PHI nodes.
    740   // 4. Emit GEPs to get the original pointers.
    741   // 5. Remove the original instructions.
    742   Type *IndexType = IntegerType::get(
    743       Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType()));
    744 
    745   DenseMap<Value *, Value *> NewInsts;
    746   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
    747 
    748   // Create the new PHI nodes, without adding any incoming values.
    749   for (Value *Val : Explored) {
    750     if (Val == Base)
    751       continue;
    752     // Create empty phi nodes. This avoids cyclic dependencies when creating
    753     // the remaining instructions.
    754     if (auto *PHI = dyn_cast<PHINode>(Val))
    755       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
    756                                       PHI->getName() + ".idx", PHI);
    757   }
    758   IRBuilder<> Builder(Base->getContext());
    759 
    760   // Create all the other instructions.
    761   for (Value *Val : Explored) {
    762 
    763     if (NewInsts.find(Val) != NewInsts.end())
    764       continue;
    765 
    766     if (auto *CI = dyn_cast<CastInst>(Val)) {
    767       NewInsts[CI] = NewInsts[CI->getOperand(0)];
    768       continue;
    769     }
    770     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
    771       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
    772                                                   : GEP->getOperand(1);
    773       setInsertionPoint(Builder, GEP);
    774       // Indices might need to be sign extended. GEPs will magically do
    775       // this, but we need to do it ourselves here.
    776       if (Index->getType()->getScalarSizeInBits() !=
    777           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
    778         Index = Builder.CreateSExtOrTrunc(
    779             Index, NewInsts[GEP->getOperand(0)]->getType(),
    780             GEP->getOperand(0)->getName() + ".sext");
    781       }
    782 
    783       auto *Op = NewInsts[GEP->getOperand(0)];
    784       if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero())
    785         NewInsts[GEP] = Index;
    786       else
    787         NewInsts[GEP] = Builder.CreateNSWAdd(
    788             Op, Index, GEP->getOperand(0)->getName() + ".add");
    789       continue;
    790     }
    791     if (isa<PHINode>(Val))
    792       continue;
    793 
    794     llvm_unreachable("Unexpected instruction type");
    795   }
    796 
    797   // Add the incoming values to the PHI nodes.
    798   for (Value *Val : Explored) {
    799     if (Val == Base)
    800       continue;
    801     // All the instructions have been created, we can now add edges to the
    802     // phi nodes.
    803     if (auto *PHI = dyn_cast<PHINode>(Val)) {
    804       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
    805       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
    806         Value *NewIncoming = PHI->getIncomingValue(I);
    807 
    808         if (NewInsts.find(NewIncoming) != NewInsts.end())
    809           NewIncoming = NewInsts[NewIncoming];
    810 
    811         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
    812       }
    813     }
    814   }
    815 
    816   for (Value *Val : Explored) {
    817     if (Val == Base)
    818       continue;
    819 
    820     // Depending on the type, for external users we have to emit
    821     // a GEP or a GEP + ptrtoint.
    822     setInsertionPoint(Builder, Val, false);
    823 
    824     // If required, create an inttoptr instruction for Base.
    825     Value *NewBase = Base;
    826     if (!Base->getType()->isPointerTy())
    827       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
    828                                                Start->getName() + "to.ptr");
    829 
    830     Value *GEP = Builder.CreateInBoundsGEP(
    831         Start->getType()->getPointerElementType(), NewBase,
    832         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
    833 
    834     if (!Val->getType()->isPointerTy()) {
    835       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
    836                                               Val->getName() + ".conv");
    837       GEP = Cast;
    838     }
    839     Val->replaceAllUsesWith(GEP);
    840   }
    841 
    842   return NewInsts[Start];
    843 }
    844 
    845 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
    846 /// the input Value as a constant indexed GEP. Returns a pair containing
    847 /// the GEPs Pointer and Index.
    848 static std::pair<Value *, Value *>
    849 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
    850   Type *IndexType = IntegerType::get(V->getContext(),
    851                                      DL.getPointerTypeSizeInBits(V->getType()));
    852 
    853   Constant *Index = ConstantInt::getNullValue(IndexType);
    854   while (true) {
    855     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    856       // We accept only inbouds GEPs here to exclude the possibility of
    857       // overflow.
    858       if (!GEP->isInBounds())
    859         break;
    860       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
    861           GEP->getType() == V->getType()) {
    862         V = GEP->getOperand(0);
    863         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
    864         Index = ConstantExpr::getAdd(
    865             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
    866         continue;
    867       }
    868       break;
    869     }
    870     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
    871       if (!CI->isNoopCast(DL))
    872         break;
    873       V = CI->getOperand(0);
    874       continue;
    875     }
    876     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
    877       if (!CI->isNoopCast(DL))
    878         break;
    879       V = CI->getOperand(0);
    880       continue;
    881     }
    882     break;
    883   }
    884   return {V, Index};
    885 }
    886 
    887 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
    888 /// We can look through PHIs, GEPs and casts in order to determine a common base
    889 /// between GEPLHS and RHS.
    890 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
    891                                               ICmpInst::Predicate Cond,
    892                                               const DataLayout &DL) {
    893   if (!GEPLHS->hasAllConstantIndices())
    894     return nullptr;
    895 
    896   Value *PtrBase, *Index;
    897   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
    898 
    899   // The set of nodes that will take part in this transformation.
    900   SetVector<Value *> Nodes;
    901 
    902   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
    903     return nullptr;
    904 
    905   // We know we can re-write this as
    906   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
    907   // Since we've only looked through inbouds GEPs we know that we
    908   // can't have overflow on either side. We can therefore re-write
    909   // this as:
    910   //   OFFSET1 cmp OFFSET2
    911   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
    912 
    913   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
    914   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
    915   // offset. Since Index is the offset of LHS to the base pointer, we will now
    916   // compare the offsets instead of comparing the pointers.
    917   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
    918 }
    919 
    920 /// Fold comparisons between a GEP instruction and something else. At this point
    921 /// we know that the GEP is on the LHS of the comparison.
    922 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    923                                        ICmpInst::Predicate Cond,
    924                                        Instruction &I) {
    925   // Don't transform signed compares of GEPs into index compares. Even if the
    926   // GEP is inbounds, the final add of the base pointer can have signed overflow
    927   // and would change the result of the icmp.
    928   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    929   // the maximum signed value for the pointer type.
    930   if (ICmpInst::isSigned(Cond))
    931     return nullptr;
    932 
    933   // Look through bitcasts and addrspacecasts. We do not however want to remove
    934   // 0 GEPs.
    935   if (!isa<GetElementPtrInst>(RHS))
    936     RHS = RHS->stripPointerCasts();
    937 
    938   Value *PtrBase = GEPLHS->getOperand(0);
    939   if (PtrBase == RHS && GEPLHS->isInBounds()) {
    940     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    941     // This transformation (ignoring the base and scales) is valid because we
    942     // know pointers can't overflow since the gep is inbounds.  See if we can
    943     // output an optimized form.
    944     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
    945 
    946     // If not, synthesize the offset the hard way.
    947     if (!Offset)
    948       Offset = EmitGEPOffset(GEPLHS);
    949     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    950                         Constant::getNullValue(Offset->getType()));
    951   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    952     // If the base pointers are different, but the indices are the same, just
    953     // compare the base pointer.
    954     if (PtrBase != GEPRHS->getOperand(0)) {
    955       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    956       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    957                         GEPRHS->getOperand(0)->getType();
    958       if (IndicesTheSame)
    959         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    960           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    961             IndicesTheSame = false;
    962             break;
    963           }
    964 
    965       // If all indices are the same, just compare the base pointers.
    966       if (IndicesTheSame)
    967         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    968 
    969       // If we're comparing GEPs with two base pointers that only differ in type
    970       // and both GEPs have only constant indices or just one use, then fold
    971       // the compare with the adjusted indices.
    972       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    973           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    974           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    975           PtrBase->stripPointerCasts() ==
    976               GEPRHS->getOperand(0)->stripPointerCasts()) {
    977         Value *LOffset = EmitGEPOffset(GEPLHS);
    978         Value *ROffset = EmitGEPOffset(GEPRHS);
    979 
    980         // If we looked through an addrspacecast between different sized address
    981         // spaces, the LHS and RHS pointers are different sized
    982         // integers. Truncate to the smaller one.
    983         Type *LHSIndexTy = LOffset->getType();
    984         Type *RHSIndexTy = ROffset->getType();
    985         if (LHSIndexTy != RHSIndexTy) {
    986           if (LHSIndexTy->getPrimitiveSizeInBits() <
    987               RHSIndexTy->getPrimitiveSizeInBits()) {
    988             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
    989           } else
    990             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
    991         }
    992 
    993         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    994                                          LOffset, ROffset);
    995         return replaceInstUsesWith(I, Cmp);
    996       }
    997 
    998       // Otherwise, the base pointers are different and the indices are
    999       // different. Try convert this to an indexed compare by looking through
   1000       // PHIs/casts.
   1001       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
   1002     }
   1003 
   1004     // If one of the GEPs has all zero indices, recurse.
   1005     if (GEPLHS->hasAllZeroIndices())
   1006       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
   1007                          ICmpInst::getSwappedPredicate(Cond), I);
   1008 
   1009     // If the other GEP has all zero indices, recurse.
   1010     if (GEPRHS->hasAllZeroIndices())
   1011       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
   1012 
   1013     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
   1014     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
   1015       // If the GEPs only differ by one index, compare it.
   1016       unsigned NumDifferences = 0;  // Keep track of # differences.
   1017       unsigned DiffOperand = 0;     // The operand that differs.
   1018       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
   1019         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
   1020           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
   1021                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
   1022             // Irreconcilable differences.
   1023             NumDifferences = 2;
   1024             break;
   1025           } else {
   1026             if (NumDifferences++) break;
   1027             DiffOperand = i;
   1028           }
   1029         }
   1030 
   1031       if (NumDifferences == 0)   // SAME GEP?
   1032         return replaceInstUsesWith(I, // No comparison is needed here.
   1033                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
   1034 
   1035       else if (NumDifferences == 1 && GEPsInBounds) {
   1036         Value *LHSV = GEPLHS->getOperand(DiffOperand);
   1037         Value *RHSV = GEPRHS->getOperand(DiffOperand);
   1038         // Make sure we do a signed comparison here.
   1039         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
   1040       }
   1041     }
   1042 
   1043     // Only lower this if the icmp is the only user of the GEP or if we expect
   1044     // the result to fold to a constant!
   1045     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
   1046         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
   1047       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
   1048       Value *L = EmitGEPOffset(GEPLHS);
   1049       Value *R = EmitGEPOffset(GEPRHS);
   1050       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
   1051     }
   1052   }
   1053 
   1054   // Try convert this to an indexed compare by looking through PHIs/casts as a
   1055   // last resort.
   1056   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
   1057 }
   1058 
   1059 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
   1060                                          Value *Other) {
   1061   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
   1062 
   1063   // It would be tempting to fold away comparisons between allocas and any
   1064   // pointer not based on that alloca (e.g. an argument). However, even
   1065   // though such pointers cannot alias, they can still compare equal.
   1066   //
   1067   // But LLVM doesn't specify where allocas get their memory, so if the alloca
   1068   // doesn't escape we can argue that it's impossible to guess its value, and we
   1069   // can therefore act as if any such guesses are wrong.
   1070   //
   1071   // The code below checks that the alloca doesn't escape, and that it's only
   1072   // used in a comparison once (the current instruction). The
   1073   // single-comparison-use condition ensures that we're trivially folding all
   1074   // comparisons against the alloca consistently, and avoids the risk of
   1075   // erroneously folding a comparison of the pointer with itself.
   1076 
   1077   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
   1078 
   1079   SmallVector<Use *, 32> Worklist;
   1080   for (Use &U : Alloca->uses()) {
   1081     if (Worklist.size() >= MaxIter)
   1082       return nullptr;
   1083     Worklist.push_back(&U);
   1084   }
   1085 
   1086   unsigned NumCmps = 0;
   1087   while (!Worklist.empty()) {
   1088     assert(Worklist.size() <= MaxIter);
   1089     Use *U = Worklist.pop_back_val();
   1090     Value *V = U->getUser();
   1091     --MaxIter;
   1092 
   1093     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
   1094         isa<SelectInst>(V)) {
   1095       // Track the uses.
   1096     } else if (isa<LoadInst>(V)) {
   1097       // Loading from the pointer doesn't escape it.
   1098       continue;
   1099     } else if (auto *SI = dyn_cast<StoreInst>(V)) {
   1100       // Storing *to* the pointer is fine, but storing the pointer escapes it.
   1101       if (SI->getValueOperand() == U->get())
   1102         return nullptr;
   1103       continue;
   1104     } else if (isa<ICmpInst>(V)) {
   1105       if (NumCmps++)
   1106         return nullptr; // Found more than one cmp.
   1107       continue;
   1108     } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
   1109       switch (Intrin->getIntrinsicID()) {
   1110         // These intrinsics don't escape or compare the pointer. Memset is safe
   1111         // because we don't allow ptrtoint. Memcpy and memmove are safe because
   1112         // we don't allow stores, so src cannot point to V.
   1113         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
   1114         case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
   1115         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
   1116           continue;
   1117         default:
   1118           return nullptr;
   1119       }
   1120     } else {
   1121       return nullptr;
   1122     }
   1123     for (Use &U : V->uses()) {
   1124       if (Worklist.size() >= MaxIter)
   1125         return nullptr;
   1126       Worklist.push_back(&U);
   1127     }
   1128   }
   1129 
   1130   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
   1131   return replaceInstUsesWith(
   1132       ICI,
   1133       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
   1134 }
   1135 
   1136 /// Fold "icmp pred (X+CI), X".
   1137 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
   1138                                             Value *X, ConstantInt *CI,
   1139                                             ICmpInst::Predicate Pred) {
   1140   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
   1141   // so the values can never be equal.  Similarly for all other "or equals"
   1142   // operators.
   1143 
   1144   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
   1145   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
   1146   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
   1147   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
   1148     Value *R =
   1149       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
   1150     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
   1151   }
   1152 
   1153   // (X+1) >u X        --> X <u (0-1)        --> X != 255
   1154   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
   1155   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
   1156   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
   1157     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
   1158 
   1159   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
   1160   ConstantInt *SMax = ConstantInt::get(X->getContext(),
   1161                                        APInt::getSignedMaxValue(BitWidth));
   1162 
   1163   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
   1164   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
   1165   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
   1166   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
   1167   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
   1168   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
   1169   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
   1170     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
   1171 
   1172   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
   1173   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
   1174   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
   1175   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
   1176   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
   1177   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
   1178 
   1179   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
   1180   Constant *C = Builder->getInt(CI->getValue()-1);
   1181   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
   1182 }
   1183 
   1184 /// Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS and CmpRHS are
   1185 /// both known to be integer constants.
   1186 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
   1187                                           ConstantInt *DivRHS) {
   1188   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
   1189   const APInt &CmpRHSV = CmpRHS->getValue();
   1190 
   1191   // FIXME: If the operand types don't match the type of the divide
   1192   // then don't attempt this transform. The code below doesn't have the
   1193   // logic to deal with a signed divide and an unsigned compare (and
   1194   // vice versa). This is because (x /s C1) <s C2  produces different
   1195   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
   1196   // (x /u C1) <u C2.  Simply casting the operands and result won't
   1197   // work. :(  The if statement below tests that condition and bails
   1198   // if it finds it.
   1199   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
   1200   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
   1201     return nullptr;
   1202   if (DivRHS->isZero())
   1203     return nullptr; // The ProdOV computation fails on divide by zero.
   1204   if (DivIsSigned && DivRHS->isAllOnesValue())
   1205     return nullptr; // The overflow computation also screws up here
   1206   if (DivRHS->isOne()) {
   1207     // This eliminates some funny cases with INT_MIN.
   1208     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
   1209     return &ICI;
   1210   }
   1211 
   1212   // Compute Prod = CI * DivRHS. We are essentially solving an equation
   1213   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
   1214   // C2 (CI). By solving for X we can turn this into a range check
   1215   // instead of computing a divide.
   1216   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
   1217 
   1218   // Determine if the product overflows by seeing if the product is
   1219   // not equal to the divide. Make sure we do the same kind of divide
   1220   // as in the LHS instruction that we're folding.
   1221   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
   1222                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
   1223 
   1224   // Get the ICmp opcode
   1225   ICmpInst::Predicate Pred = ICI.getPredicate();
   1226 
   1227   // If the division is known to be exact, then there is no remainder from the
   1228   // divide, so the covered range size is unit, otherwise it is the divisor.
   1229   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
   1230 
   1231   // Figure out the interval that is being checked.  For example, a comparison
   1232   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
   1233   // Compute this interval based on the constants involved and the signedness of
   1234   // the compare/divide.  This computes a half-open interval, keeping track of
   1235   // whether either value in the interval overflows.  After analysis each
   1236   // overflow variable is set to 0 if it's corresponding bound variable is valid
   1237   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
   1238   int LoOverflow = 0, HiOverflow = 0;
   1239   Constant *LoBound = nullptr, *HiBound = nullptr;
   1240 
   1241   if (!DivIsSigned) {  // udiv
   1242     // e.g. X/5 op 3  --> [15, 20)
   1243     LoBound = Prod;
   1244     HiOverflow = LoOverflow = ProdOV;
   1245     if (!HiOverflow) {
   1246       // If this is not an exact divide, then many values in the range collapse
   1247       // to the same result value.
   1248       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
   1249     }
   1250   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
   1251     if (CmpRHSV == 0) {       // (X / pos) op 0
   1252       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
   1253       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
   1254       HiBound = RangeSize;
   1255     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
   1256       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
   1257       HiOverflow = LoOverflow = ProdOV;
   1258       if (!HiOverflow)
   1259         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
   1260     } else {                       // (X / pos) op neg
   1261       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
   1262       HiBound = AddOne(Prod);
   1263       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
   1264       if (!LoOverflow) {
   1265         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
   1266         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
   1267       }
   1268     }
   1269   } else if (DivRHS->isNegative()) { // Divisor is < 0.
   1270     if (DivI->isExact())
   1271       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
   1272     if (CmpRHSV == 0) {       // (X / neg) op 0
   1273       // e.g. X/-5 op 0  --> [-4, 5)
   1274       LoBound = AddOne(RangeSize);
   1275       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
   1276       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
   1277         HiOverflow = 1;            // [INTMIN+1, overflow)
   1278         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
   1279       }
   1280     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
   1281       // e.g. X/-5 op 3  --> [-19, -14)
   1282       HiBound = AddOne(Prod);
   1283       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
   1284       if (!LoOverflow)
   1285         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
   1286     } else {                       // (X / neg) op neg
   1287       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
   1288       LoOverflow = HiOverflow = ProdOV;
   1289       if (!HiOverflow)
   1290         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
   1291     }
   1292 
   1293     // Dividing by a negative swaps the condition.  LT <-> GT
   1294     Pred = ICmpInst::getSwappedPredicate(Pred);
   1295   }
   1296 
   1297   Value *X = DivI->getOperand(0);
   1298   switch (Pred) {
   1299   default: llvm_unreachable("Unhandled icmp opcode!");
   1300   case ICmpInst::ICMP_EQ:
   1301     if (LoOverflow && HiOverflow)
   1302       return replaceInstUsesWith(ICI, Builder->getFalse());
   1303     if (HiOverflow)
   1304       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
   1305                           ICmpInst::ICMP_UGE, X, LoBound);
   1306     if (LoOverflow)
   1307       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
   1308                           ICmpInst::ICMP_ULT, X, HiBound);
   1309     return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
   1310                                                     DivIsSigned, true));
   1311   case ICmpInst::ICMP_NE:
   1312     if (LoOverflow && HiOverflow)
   1313       return replaceInstUsesWith(ICI, Builder->getTrue());
   1314     if (HiOverflow)
   1315       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
   1316                           ICmpInst::ICMP_ULT, X, LoBound);
   1317     if (LoOverflow)
   1318       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
   1319                           ICmpInst::ICMP_UGE, X, HiBound);
   1320     return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
   1321                                                     DivIsSigned, false));
   1322   case ICmpInst::ICMP_ULT:
   1323   case ICmpInst::ICMP_SLT:
   1324     if (LoOverflow == +1)   // Low bound is greater than input range.
   1325       return replaceInstUsesWith(ICI, Builder->getTrue());
   1326     if (LoOverflow == -1)   // Low bound is less than input range.
   1327       return replaceInstUsesWith(ICI, Builder->getFalse());
   1328     return new ICmpInst(Pred, X, LoBound);
   1329   case ICmpInst::ICMP_UGT:
   1330   case ICmpInst::ICMP_SGT:
   1331     if (HiOverflow == +1)       // High bound greater than input range.
   1332       return replaceInstUsesWith(ICI, Builder->getFalse());
   1333     if (HiOverflow == -1)       // High bound less than input range.
   1334       return replaceInstUsesWith(ICI, Builder->getTrue());
   1335     if (Pred == ICmpInst::ICMP_UGT)
   1336       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
   1337     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
   1338   }
   1339 }
   1340 
   1341 /// Handle "icmp(([al]shr X, cst1), cst2)".
   1342 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
   1343                                           ConstantInt *ShAmt) {
   1344   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
   1345 
   1346   // Check that the shift amount is in range.  If not, don't perform
   1347   // undefined shifts.  When the shift is visited it will be
   1348   // simplified.
   1349   uint32_t TypeBits = CmpRHSV.getBitWidth();
   1350   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1351   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
   1352     return nullptr;
   1353 
   1354   if (!ICI.isEquality()) {
   1355     // If we have an unsigned comparison and an ashr, we can't simplify this.
   1356     // Similarly for signed comparisons with lshr.
   1357     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
   1358       return nullptr;
   1359 
   1360     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
   1361     // by a power of 2.  Since we already have logic to simplify these,
   1362     // transform to div and then simplify the resultant comparison.
   1363     if (Shr->getOpcode() == Instruction::AShr &&
   1364         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
   1365       return nullptr;
   1366 
   1367     // Revisit the shift (to delete it).
   1368     Worklist.Add(Shr);
   1369 
   1370     Constant *DivCst =
   1371       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
   1372 
   1373     Value *Tmp =
   1374       Shr->getOpcode() == Instruction::AShr ?
   1375       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
   1376       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
   1377 
   1378     ICI.setOperand(0, Tmp);
   1379 
   1380     // If the builder folded the binop, just return it.
   1381     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
   1382     if (!TheDiv)
   1383       return &ICI;
   1384 
   1385     // Otherwise, fold this div/compare.
   1386     assert(TheDiv->getOpcode() == Instruction::SDiv ||
   1387            TheDiv->getOpcode() == Instruction::UDiv);
   1388 
   1389     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
   1390     assert(Res && "This div/cst should have folded!");
   1391     return Res;
   1392   }
   1393 
   1394   // If we are comparing against bits always shifted out, the
   1395   // comparison cannot succeed.
   1396   APInt Comp = CmpRHSV << ShAmtVal;
   1397   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
   1398   if (Shr->getOpcode() == Instruction::LShr)
   1399     Comp = Comp.lshr(ShAmtVal);
   1400   else
   1401     Comp = Comp.ashr(ShAmtVal);
   1402 
   1403   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
   1404     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1405     Constant *Cst = Builder->getInt1(IsICMP_NE);
   1406     return replaceInstUsesWith(ICI, Cst);
   1407   }
   1408 
   1409   // Otherwise, check to see if the bits shifted out are known to be zero.
   1410   // If so, we can compare against the unshifted value:
   1411   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1412   if (Shr->hasOneUse() && Shr->isExact())
   1413     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1414 
   1415   if (Shr->hasOneUse()) {
   1416     // Otherwise strength reduce the shift into an and.
   1417     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1418     Constant *Mask = Builder->getInt(Val);
   1419 
   1420     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1421                                     Mask, Shr->getName()+".mask");
   1422     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1423   }
   1424   return nullptr;
   1425 }
   1426 
   1427 /// Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
   1428 /// (icmp eq/ne A, Log2(const2/const1)) ->
   1429 /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
   1430 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
   1431                                              ConstantInt *CI1,
   1432                                              ConstantInt *CI2) {
   1433   assert(I.isEquality() && "Cannot fold icmp gt/lt");
   1434 
   1435   auto getConstant = [&I, this](bool IsTrue) {
   1436     if (I.getPredicate() == I.ICMP_NE)
   1437       IsTrue = !IsTrue;
   1438     return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
   1439   };
   1440 
   1441   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
   1442     if (I.getPredicate() == I.ICMP_NE)
   1443       Pred = CmpInst::getInversePredicate(Pred);
   1444     return new ICmpInst(Pred, LHS, RHS);
   1445   };
   1446 
   1447   const APInt &AP1 = CI1->getValue();
   1448   const APInt &AP2 = CI2->getValue();
   1449 
   1450   // Don't bother doing any work for cases which InstSimplify handles.
   1451   if (AP2 == 0)
   1452     return nullptr;
   1453   bool IsAShr = isa<AShrOperator>(Op);
   1454   if (IsAShr) {
   1455     if (AP2.isAllOnesValue())
   1456       return nullptr;
   1457     if (AP2.isNegative() != AP1.isNegative())
   1458       return nullptr;
   1459     if (AP2.sgt(AP1))
   1460       return nullptr;
   1461   }
   1462 
   1463   if (!AP1)
   1464     // 'A' must be large enough to shift out the highest set bit.
   1465     return getICmp(I.ICMP_UGT, A,
   1466                    ConstantInt::get(A->getType(), AP2.logBase2()));
   1467 
   1468   if (AP1 == AP2)
   1469     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
   1470 
   1471   int Shift;
   1472   if (IsAShr && AP1.isNegative())
   1473     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
   1474   else
   1475     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
   1476 
   1477   if (Shift > 0) {
   1478     if (IsAShr && AP1 == AP2.ashr(Shift)) {
   1479       // There are multiple solutions if we are comparing against -1 and the LHS
   1480       // of the ashr is not a power of two.
   1481       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
   1482         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
   1483       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1484     } else if (AP1 == AP2.lshr(Shift)) {
   1485       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1486     }
   1487   }
   1488   // Shifting const2 will never be equal to const1.
   1489   return getConstant(false);
   1490 }
   1491 
   1492 /// Handle "(icmp eq/ne (shl const2, A), const1)" ->
   1493 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
   1494 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
   1495                                              ConstantInt *CI1,
   1496                                              ConstantInt *CI2) {
   1497   assert(I.isEquality() && "Cannot fold icmp gt/lt");
   1498 
   1499   auto getConstant = [&I, this](bool IsTrue) {
   1500     if (I.getPredicate() == I.ICMP_NE)
   1501       IsTrue = !IsTrue;
   1502     return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
   1503   };
   1504 
   1505   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
   1506     if (I.getPredicate() == I.ICMP_NE)
   1507       Pred = CmpInst::getInversePredicate(Pred);
   1508     return new ICmpInst(Pred, LHS, RHS);
   1509   };
   1510 
   1511   const APInt &AP1 = CI1->getValue();
   1512   const APInt &AP2 = CI2->getValue();
   1513 
   1514   // Don't bother doing any work for cases which InstSimplify handles.
   1515   if (AP2 == 0)
   1516     return nullptr;
   1517 
   1518   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
   1519 
   1520   if (!AP1 && AP2TrailingZeros != 0)
   1521     return getICmp(I.ICMP_UGE, A,
   1522                    ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
   1523 
   1524   if (AP1 == AP2)
   1525     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
   1526 
   1527   // Get the distance between the lowest bits that are set.
   1528   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
   1529 
   1530   if (Shift > 0 && AP2.shl(Shift) == AP1)
   1531     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1532 
   1533   // Shifting const2 will never be equal to const1.
   1534   return getConstant(false);
   1535 }
   1536 
   1537 /// Handle "icmp (instr, intcst)".
   1538 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1539                                                           Instruction *LHSI,
   1540                                                           ConstantInt *RHS) {
   1541   const APInt &RHSV = RHS->getValue();
   1542 
   1543   switch (LHSI->getOpcode()) {
   1544   case Instruction::Trunc:
   1545     if (RHS->isOne() && RHSV.getBitWidth() > 1) {
   1546       // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
   1547       Value *V = nullptr;
   1548       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
   1549           match(LHSI->getOperand(0), m_Signum(m_Value(V))))
   1550         return new ICmpInst(ICmpInst::ICMP_SLT, V,
   1551                             ConstantInt::get(V->getType(), 1));
   1552     }
   1553     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1554       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1555       // of the high bits truncated out of x are known.
   1556       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1557              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1558       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1559       computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
   1560 
   1561       // If all the high bits are known, we can do this xform.
   1562       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1563         // Pull in the high bits from known-ones set.
   1564         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1565         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
   1566         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1567                             Builder->getInt(NewRHS));
   1568       }
   1569     }
   1570     break;
   1571 
   1572   case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
   1573     if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1574       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1575       // fold the xor.
   1576       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1577           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1578         Value *CompareVal = LHSI->getOperand(0);
   1579 
   1580         // If the sign bit of the XorCst is not set, there is no change to
   1581         // the operation, just stop using the Xor.
   1582         if (!XorCst->isNegative()) {
   1583           ICI.setOperand(0, CompareVal);
   1584           Worklist.Add(LHSI);
   1585           return &ICI;
   1586         }
   1587 
   1588         // Was the old condition true if the operand is positive?
   1589         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1590 
   1591         // If so, the new one isn't.
   1592         isTrueIfPositive ^= true;
   1593 
   1594         if (isTrueIfPositive)
   1595           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1596                               SubOne(RHS));
   1597         else
   1598           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1599                               AddOne(RHS));
   1600       }
   1601 
   1602       if (LHSI->hasOneUse()) {
   1603         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1604         if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
   1605           const APInt &SignBit = XorCst->getValue();
   1606           ICmpInst::Predicate Pred = ICI.isSigned()
   1607                                          ? ICI.getUnsignedPredicate()
   1608                                          : ICI.getSignedPredicate();
   1609           return new ICmpInst(Pred, LHSI->getOperand(0),
   1610                               Builder->getInt(RHSV ^ SignBit));
   1611         }
   1612 
   1613         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1614         if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
   1615           const APInt &NotSignBit = XorCst->getValue();
   1616           ICmpInst::Predicate Pred = ICI.isSigned()
   1617                                          ? ICI.getUnsignedPredicate()
   1618                                          : ICI.getSignedPredicate();
   1619           Pred = ICI.getSwappedPredicate(Pred);
   1620           return new ICmpInst(Pred, LHSI->getOperand(0),
   1621                               Builder->getInt(RHSV ^ NotSignBit));
   1622         }
   1623       }
   1624 
   1625       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
   1626       //   iff -C is a power of 2
   1627       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
   1628           XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
   1629         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
   1630 
   1631       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
   1632       //   iff -C is a power of 2
   1633       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
   1634           XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
   1635         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
   1636     }
   1637     break;
   1638   case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
   1639     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1640         LHSI->getOperand(0)->hasOneUse()) {
   1641       ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
   1642 
   1643       // If the LHS is an AND of a truncating cast, we can widen the
   1644       // and/compare to be the input width without changing the value
   1645       // produced, eliminating a cast.
   1646       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1647         // We can do this transformation if either the AND constant does not
   1648         // have its sign bit set or if it is an equality comparison.
   1649         // Extending a relational comparison when we're checking the sign
   1650         // bit would not work.
   1651         if (ICI.isEquality() ||
   1652             (!AndCst->isNegative() && RHSV.isNonNegative())) {
   1653           Value *NewAnd =
   1654             Builder->CreateAnd(Cast->getOperand(0),
   1655                                ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
   1656           NewAnd->takeName(LHSI);
   1657           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1658                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1659         }
   1660       }
   1661 
   1662       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1663       // shrink the and/compare to the smaller type, eliminating the cast.
   1664       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1665         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1666         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1667         // should fold the icmp to true/false in that case.
   1668         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1669           Value *NewAnd =
   1670             Builder->CreateAnd(Cast->getOperand(0),
   1671                                ConstantExpr::getTrunc(AndCst, Ty));
   1672           NewAnd->takeName(LHSI);
   1673           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1674                               ConstantExpr::getTrunc(RHS, Ty));
   1675         }
   1676       }
   1677 
   1678       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1679       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1680       // happens a LOT in code produced by the C front-end, for bitfield
   1681       // access.
   1682       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1683       if (Shift && !Shift->isShift())
   1684         Shift = nullptr;
   1685 
   1686       ConstantInt *ShAmt;
   1687       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
   1688 
   1689       // This seemingly simple opportunity to fold away a shift turns out to
   1690       // be rather complicated. See PR17827
   1691       // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
   1692       if (ShAmt) {
   1693         bool CanFold = false;
   1694         unsigned ShiftOpcode = Shift->getOpcode();
   1695         if (ShiftOpcode == Instruction::AShr) {
   1696           // There may be some constraints that make this possible,
   1697           // but nothing simple has been discovered yet.
   1698           CanFold = false;
   1699         } else if (ShiftOpcode == Instruction::Shl) {
   1700           // For a left shift, we can fold if the comparison is not signed.
   1701           // We can also fold a signed comparison if the mask value and
   1702           // comparison value are not negative. These constraints may not be
   1703           // obvious, but we can prove that they are correct using an SMT
   1704           // solver.
   1705           if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
   1706             CanFold = true;
   1707         } else if (ShiftOpcode == Instruction::LShr) {
   1708           // For a logical right shift, we can fold if the comparison is not
   1709           // signed. We can also fold a signed comparison if the shifted mask
   1710           // value and the shifted comparison value are not negative.
   1711           // These constraints may not be obvious, but we can prove that they
   1712           // are correct using an SMT solver.
   1713           if (!ICI.isSigned())
   1714             CanFold = true;
   1715           else {
   1716             ConstantInt *ShiftedAndCst =
   1717               cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
   1718             ConstantInt *ShiftedRHSCst =
   1719               cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
   1720 
   1721             if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
   1722               CanFold = true;
   1723           }
   1724         }
   1725 
   1726         if (CanFold) {
   1727           Constant *NewCst;
   1728           if (ShiftOpcode == Instruction::Shl)
   1729             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1730           else
   1731             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1732 
   1733           // Check to see if we are shifting out any of the bits being
   1734           // compared.
   1735           if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
   1736             // If we shifted bits out, the fold is not going to work out.
   1737             // As a special case, check to see if this means that the
   1738             // result is always true or false now.
   1739             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1740               return replaceInstUsesWith(ICI, Builder->getFalse());
   1741             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1742               return replaceInstUsesWith(ICI, Builder->getTrue());
   1743           } else {
   1744             ICI.setOperand(1, NewCst);
   1745             Constant *NewAndCst;
   1746             if (ShiftOpcode == Instruction::Shl)
   1747               NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
   1748             else
   1749               NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
   1750             LHSI->setOperand(1, NewAndCst);
   1751             LHSI->setOperand(0, Shift->getOperand(0));
   1752             Worklist.Add(Shift); // Shift is dead.
   1753             return &ICI;
   1754           }
   1755         }
   1756       }
   1757 
   1758       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1759       // preferable because it allows the C<<Y expression to be hoisted out
   1760       // of a loop if Y is invariant and X is not.
   1761       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1762           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1763           !isa<Constant>(Shift->getOperand(0))) {
   1764         // Compute C << Y.
   1765         Value *NS;
   1766         if (Shift->getOpcode() == Instruction::LShr) {
   1767           NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
   1768         } else {
   1769           // Insert a logical shift.
   1770           NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
   1771         }
   1772 
   1773         // Compute X & (C << Y).
   1774         Value *NewAnd =
   1775           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1776 
   1777         ICI.setOperand(0, NewAnd);
   1778         return &ICI;
   1779       }
   1780 
   1781       // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
   1782       //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
   1783       //
   1784       // iff pred isn't signed
   1785       {
   1786         Value *X, *Y, *LShr;
   1787         if (!ICI.isSigned() && RHSV == 0) {
   1788           if (match(LHSI->getOperand(1), m_One())) {
   1789             Constant *One = cast<Constant>(LHSI->getOperand(1));
   1790             Value *Or = LHSI->getOperand(0);
   1791             if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
   1792                 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
   1793               unsigned UsesRemoved = 0;
   1794               if (LHSI->hasOneUse())
   1795                 ++UsesRemoved;
   1796               if (Or->hasOneUse())
   1797                 ++UsesRemoved;
   1798               if (LShr->hasOneUse())
   1799                 ++UsesRemoved;
   1800               Value *NewOr = nullptr;
   1801               // Compute X & ((1 << Y) | 1)
   1802               if (auto *C = dyn_cast<Constant>(Y)) {
   1803                 if (UsesRemoved >= 1)
   1804                   NewOr =
   1805                       ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
   1806               } else {
   1807                 if (UsesRemoved >= 3)
   1808                   NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
   1809                                                                LShr->getName(),
   1810                                                                /*HasNUW=*/true),
   1811                                             One, Or->getName());
   1812               }
   1813               if (NewOr) {
   1814                 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
   1815                 ICI.setOperand(0, NewAnd);
   1816                 return &ICI;
   1817               }
   1818             }
   1819           }
   1820         }
   1821       }
   1822 
   1823       // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
   1824       // bit set in (X & AndCst) will produce a result greater than RHSV.
   1825       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
   1826         unsigned NTZ = AndCst->getValue().countTrailingZeros();
   1827         if ((NTZ < AndCst->getBitWidth()) &&
   1828             APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
   1829           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
   1830                               Constant::getNullValue(RHS->getType()));
   1831       }
   1832     }
   1833 
   1834     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1835     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1836       if (GetElementPtrInst *GEP =
   1837           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1838         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1839           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1840               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1841             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1842             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1843               return Res;
   1844           }
   1845     }
   1846 
   1847     // X & -C == -C -> X >  u ~C
   1848     // X & -C != -C -> X <= u ~C
   1849     //   iff C is a power of 2
   1850     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
   1851       return new ICmpInst(
   1852           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
   1853                                                   : ICmpInst::ICMP_ULE,
   1854           LHSI->getOperand(0), SubOne(RHS));
   1855 
   1856     // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
   1857     //   iff C is a power of 2
   1858     if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
   1859       if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1860         const APInt &AI = CI->getValue();
   1861         int32_t ExactLogBase2 = AI.exactLogBase2();
   1862         if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
   1863           Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
   1864           Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
   1865           return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
   1866                                   ? ICmpInst::ICMP_SGE
   1867                                   : ICmpInst::ICMP_SLT,
   1868                               Trunc, Constant::getNullValue(NTy));
   1869         }
   1870       }
   1871     }
   1872     break;
   1873 
   1874   case Instruction::Or: {
   1875     if (RHS->isOne()) {
   1876       // icmp slt signum(V) 1 --> icmp slt V, 1
   1877       Value *V = nullptr;
   1878       if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
   1879           match(LHSI, m_Signum(m_Value(V))))
   1880         return new ICmpInst(ICmpInst::ICMP_SLT, V,
   1881                             ConstantInt::get(V->getType(), 1));
   1882     }
   1883 
   1884     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1885       break;
   1886     Value *P, *Q;
   1887     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1888       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1889       // -> and (icmp eq P, null), (icmp eq Q, null).
   1890       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1891                                         Constant::getNullValue(P->getType()));
   1892       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1893                                         Constant::getNullValue(Q->getType()));
   1894       Instruction *Op;
   1895       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1896         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1897       else
   1898         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1899       return Op;
   1900     }
   1901     break;
   1902   }
   1903 
   1904   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
   1905     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1906     if (!Val) break;
   1907 
   1908     // If this is a signed comparison to 0 and the mul is sign preserving,
   1909     // use the mul LHS operand instead.
   1910     ICmpInst::Predicate pred = ICI.getPredicate();
   1911     if (isSignTest(pred, RHS) && !Val->isZero() &&
   1912         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1913       return new ICmpInst(Val->isNegative() ?
   1914                           ICmpInst::getSwappedPredicate(pred) : pred,
   1915                           LHSI->getOperand(0),
   1916                           Constant::getNullValue(RHS->getType()));
   1917 
   1918     break;
   1919   }
   1920 
   1921   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1922     uint32_t TypeBits = RHSV.getBitWidth();
   1923     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1924     if (!ShAmt) {
   1925       Value *X;
   1926       // (1 << X) pred P2 -> X pred Log2(P2)
   1927       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
   1928         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
   1929         ICmpInst::Predicate Pred = ICI.getPredicate();
   1930         if (ICI.isUnsigned()) {
   1931           if (!RHSVIsPowerOf2) {
   1932             // (1 << X) <  30 -> X <= 4
   1933             // (1 << X) <= 30 -> X <= 4
   1934             // (1 << X) >= 30 -> X >  4
   1935             // (1 << X) >  30 -> X >  4
   1936             if (Pred == ICmpInst::ICMP_ULT)
   1937               Pred = ICmpInst::ICMP_ULE;
   1938             else if (Pred == ICmpInst::ICMP_UGE)
   1939               Pred = ICmpInst::ICMP_UGT;
   1940           }
   1941           unsigned RHSLog2 = RHSV.logBase2();
   1942 
   1943           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
   1944           // (1 << X) <  2147483648 -> X <  31 -> X != 31
   1945           if (RHSLog2 == TypeBits-1) {
   1946             if (Pred == ICmpInst::ICMP_UGE)
   1947               Pred = ICmpInst::ICMP_EQ;
   1948             else if (Pred == ICmpInst::ICMP_ULT)
   1949               Pred = ICmpInst::ICMP_NE;
   1950           }
   1951 
   1952           return new ICmpInst(Pred, X,
   1953                               ConstantInt::get(RHS->getType(), RHSLog2));
   1954         } else if (ICI.isSigned()) {
   1955           if (RHSV.isAllOnesValue()) {
   1956             // (1 << X) <= -1 -> X == 31
   1957             if (Pred == ICmpInst::ICMP_SLE)
   1958               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1959                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1960 
   1961             // (1 << X) >  -1 -> X != 31
   1962             if (Pred == ICmpInst::ICMP_SGT)
   1963               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1964                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1965           } else if (!RHSV) {
   1966             // (1 << X) <  0 -> X == 31
   1967             // (1 << X) <= 0 -> X == 31
   1968             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
   1969               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1970                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1971 
   1972             // (1 << X) >= 0 -> X != 31
   1973             // (1 << X) >  0 -> X != 31
   1974             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
   1975               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1976                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1977           }
   1978         } else if (ICI.isEquality()) {
   1979           if (RHSVIsPowerOf2)
   1980             return new ICmpInst(
   1981                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
   1982         }
   1983       }
   1984       break;
   1985     }
   1986 
   1987     // Check that the shift amount is in range.  If not, don't perform
   1988     // undefined shifts.  When the shift is visited it will be
   1989     // simplified.
   1990     if (ShAmt->uge(TypeBits))
   1991       break;
   1992 
   1993     if (ICI.isEquality()) {
   1994       // If we are comparing against bits always shifted out, the
   1995       // comparison cannot succeed.
   1996       Constant *Comp =
   1997         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1998                                                                  ShAmt);
   1999       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   2000         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   2001         Constant *Cst = Builder->getInt1(IsICMP_NE);
   2002         return replaceInstUsesWith(ICI, Cst);
   2003       }
   2004 
   2005       // If the shift is NUW, then it is just shifting out zeros, no need for an
   2006       // AND.
   2007       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   2008         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   2009                             ConstantExpr::getLShr(RHS, ShAmt));
   2010 
   2011       // If the shift is NSW and we compare to 0, then it is just shifting out
   2012       // sign bits, no need for an AND either.
   2013       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
   2014         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   2015                             ConstantExpr::getLShr(RHS, ShAmt));
   2016 
   2017       if (LHSI->hasOneUse()) {
   2018         // Otherwise strength reduce the shift into an and.
   2019         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   2020         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
   2021                                                           TypeBits - ShAmtVal));
   2022 
   2023         Value *And =
   2024           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   2025         return new ICmpInst(ICI.getPredicate(), And,
   2026                             ConstantExpr::getLShr(RHS, ShAmt));
   2027       }
   2028     }
   2029 
   2030     // If this is a signed comparison to 0 and the shift is sign preserving,
   2031     // use the shift LHS operand instead.
   2032     ICmpInst::Predicate pred = ICI.getPredicate();
   2033     if (isSignTest(pred, RHS) &&
   2034         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   2035       return new ICmpInst(pred,
   2036                           LHSI->getOperand(0),
   2037                           Constant::getNullValue(RHS->getType()));
   2038 
   2039     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   2040     bool TrueIfSigned = false;
   2041     if (LHSI->hasOneUse() &&
   2042         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   2043       // (X << 31) <s 0  --> (X&1) != 0
   2044       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   2045                                         APInt::getOneBitSet(TypeBits,
   2046                                             TypeBits-ShAmt->getZExtValue()-1));
   2047       Value *And =
   2048         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   2049       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   2050                           And, Constant::getNullValue(And->getType()));
   2051     }
   2052 
   2053     // Transform (icmp pred iM (shl iM %v, N), CI)
   2054     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
   2055     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
   2056     // This enables to get rid of the shift in favor of a trunc which can be
   2057     // free on the target. It has the additional benefit of comparing to a
   2058     // smaller constant, which will be target friendly.
   2059     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
   2060     if (LHSI->hasOneUse() &&
   2061         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
   2062       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
   2063       Constant *NCI = ConstantExpr::getTrunc(
   2064                         ConstantExpr::getAShr(RHS,
   2065                           ConstantInt::get(RHS->getType(), Amt)),
   2066                         NTy);
   2067       return new ICmpInst(ICI.getPredicate(),
   2068                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
   2069                           NCI);
   2070     }
   2071 
   2072     break;
   2073   }
   2074 
   2075   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   2076   case Instruction::AShr: {
   2077     // Handle equality comparisons of shift-by-constant.
   2078     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   2079     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   2080       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   2081         return Res;
   2082     }
   2083 
   2084     // Handle exact shr's.
   2085     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   2086       if (RHSV.isMinValue())
   2087         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   2088     }
   2089     break;
   2090   }
   2091 
   2092   case Instruction::UDiv:
   2093     if (ConstantInt *DivLHS = dyn_cast<ConstantInt>(LHSI->getOperand(0))) {
   2094       Value *X = LHSI->getOperand(1);
   2095       const APInt &C1 = RHS->getValue();
   2096       const APInt &C2 = DivLHS->getValue();
   2097       assert(C2 != 0 && "udiv 0, X should have been simplified already.");
   2098       // (icmp ugt (udiv C2, X), C1) -> (icmp ule X, C2/(C1+1))
   2099       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
   2100         assert(!C1.isMaxValue() &&
   2101                "icmp ugt X, UINT_MAX should have been simplified already.");
   2102         return new ICmpInst(ICmpInst::ICMP_ULE, X,
   2103                             ConstantInt::get(X->getType(), C2.udiv(C1 + 1)));
   2104       }
   2105       // (icmp ult (udiv C2, X), C1) -> (icmp ugt X, C2/C1)
   2106       if (ICI.getPredicate() == ICmpInst::ICMP_ULT) {
   2107         assert(C1 != 0 && "icmp ult X, 0 should have been simplified already.");
   2108         return new ICmpInst(ICmpInst::ICMP_UGT, X,
   2109                             ConstantInt::get(X->getType(), C2.udiv(C1)));
   2110       }
   2111     }
   2112   // fall-through
   2113   case Instruction::SDiv:
   2114     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   2115     // Fold this div into the comparison, producing a range check.
   2116     // Determine, based on the divide type, what the range is being
   2117     // checked.  If there is an overflow on the low or high side, remember
   2118     // it, otherwise compute the range [low, hi) bounding the new value.
   2119     // See: InsertRangeTest above for the kinds of replacements possible.
   2120     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   2121       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   2122                                           DivRHS))
   2123         return R;
   2124     break;
   2125 
   2126   case Instruction::Sub: {
   2127     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
   2128     if (!LHSC) break;
   2129     const APInt &LHSV = LHSC->getValue();
   2130 
   2131     // C1-X <u C2 -> (X|(C2-1)) == C1
   2132     //   iff C1 & (C2-1) == C2-1
   2133     //       C2 is a power of 2
   2134     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   2135         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
   2136       return new ICmpInst(ICmpInst::ICMP_EQ,
   2137                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
   2138                           LHSC);
   2139 
   2140     // C1-X >u C2 -> (X|C2) != C1
   2141     //   iff C1 & C2 == C2
   2142     //       C2+1 is a power of 2
   2143     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   2144         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
   2145       return new ICmpInst(ICmpInst::ICMP_NE,
   2146                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
   2147     break;
   2148   }
   2149 
   2150   case Instruction::Add:
   2151     // Fold: icmp pred (add X, C1), C2
   2152     if (!ICI.isEquality()) {
   2153       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   2154       if (!LHSC) break;
   2155       const APInt &LHSV = LHSC->getValue();
   2156 
   2157       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   2158                             .subtract(LHSV);
   2159 
   2160       if (ICI.isSigned()) {
   2161         if (CR.getLower().isSignBit()) {
   2162           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   2163                               Builder->getInt(CR.getUpper()));
   2164         } else if (CR.getUpper().isSignBit()) {
   2165           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   2166                               Builder->getInt(CR.getLower()));
   2167         }
   2168       } else {
   2169         if (CR.getLower().isMinValue()) {
   2170           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   2171                               Builder->getInt(CR.getUpper()));
   2172         } else if (CR.getUpper().isMinValue()) {
   2173           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   2174                               Builder->getInt(CR.getLower()));
   2175         }
   2176       }
   2177 
   2178       // X-C1 <u C2 -> (X & -C2) == C1
   2179       //   iff C1 & (C2-1) == 0
   2180       //       C2 is a power of 2
   2181       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   2182           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
   2183         return new ICmpInst(ICmpInst::ICMP_EQ,
   2184                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
   2185                             ConstantExpr::getNeg(LHSC));
   2186 
   2187       // X-C1 >u C2 -> (X & ~C2) != C1
   2188       //   iff C1 & C2 == 0
   2189       //       C2+1 is a power of 2
   2190       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   2191           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
   2192         return new ICmpInst(ICmpInst::ICMP_NE,
   2193                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
   2194                             ConstantExpr::getNeg(LHSC));
   2195     }
   2196     break;
   2197   }
   2198 
   2199   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   2200   if (ICI.isEquality()) {
   2201     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   2202 
   2203     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   2204     // the second operand is a constant, simplify a bit.
   2205     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   2206       switch (BO->getOpcode()) {
   2207       case Instruction::SRem:
   2208         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   2209         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   2210           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   2211           if (V.sgt(1) && V.isPowerOf2()) {
   2212             Value *NewRem =
   2213               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   2214                                   BO->getName());
   2215             return new ICmpInst(ICI.getPredicate(), NewRem,
   2216                                 Constant::getNullValue(BO->getType()));
   2217           }
   2218         }
   2219         break;
   2220       case Instruction::Add:
   2221         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   2222         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2223           if (BO->hasOneUse())
   2224             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   2225                                 ConstantExpr::getSub(RHS, BOp1C));
   2226         } else if (RHSV == 0) {
   2227           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   2228           // efficiently invertible, or if the add has just this one use.
   2229           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   2230 
   2231           if (Value *NegVal = dyn_castNegVal(BOp1))
   2232             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   2233           if (Value *NegVal = dyn_castNegVal(BOp0))
   2234             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   2235           if (BO->hasOneUse()) {
   2236             Value *Neg = Builder->CreateNeg(BOp1);
   2237             Neg->takeName(BO);
   2238             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   2239           }
   2240         }
   2241         break;
   2242       case Instruction::Xor:
   2243         if (BO->hasOneUse()) {
   2244           if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   2245             // For the xor case, we can xor two constants together, eliminating
   2246             // the explicit xor.
   2247             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   2248                 ConstantExpr::getXor(RHS, BOC));
   2249           } else if (RHSV == 0) {
   2250             // Replace ((xor A, B) != 0) with (A != B)
   2251             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   2252                 BO->getOperand(1));
   2253           }
   2254         }
   2255         break;
   2256       case Instruction::Sub:
   2257         if (BO->hasOneUse()) {
   2258           if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   2259             // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   2260             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   2261                 ConstantExpr::getSub(BOp0C, RHS));
   2262           } else if (RHSV == 0) {
   2263             // Replace ((sub A, B) != 0) with (A != B)
   2264             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   2265                 BO->getOperand(1));
   2266           }
   2267         }
   2268         break;
   2269       case Instruction::Or:
   2270         // If bits are being or'd in that are not present in the constant we
   2271         // are comparing against, then the comparison could never succeed!
   2272         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2273           Constant *NotCI = ConstantExpr::getNot(RHS);
   2274           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   2275             return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   2276 
   2277           // Comparing if all bits outside of a constant mask are set?
   2278           // Replace (X | C) == -1 with (X & ~C) == ~C.
   2279           // This removes the -1 constant.
   2280           if (BO->hasOneUse() && RHS->isAllOnesValue()) {
   2281             Constant *NotBOC = ConstantExpr::getNot(BOC);
   2282             Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC);
   2283             return new ICmpInst(ICI.getPredicate(), And, NotBOC);
   2284           }
   2285         }
   2286         break;
   2287 
   2288       case Instruction::And:
   2289         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2290           // If bits are being compared against that are and'd out, then the
   2291           // comparison can never succeed!
   2292           if ((RHSV & ~BOC->getValue()) != 0)
   2293             return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   2294 
   2295           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   2296           if (RHS == BOC && RHSV.isPowerOf2())
   2297             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   2298                                 ICmpInst::ICMP_NE, LHSI,
   2299                                 Constant::getNullValue(RHS->getType()));
   2300 
   2301           // Don't perform the following transforms if the AND has multiple uses
   2302           if (!BO->hasOneUse())
   2303             break;
   2304 
   2305           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   2306           if (BOC->getValue().isSignBit()) {
   2307             Value *X = BO->getOperand(0);
   2308             Constant *Zero = Constant::getNullValue(X->getType());
   2309             ICmpInst::Predicate pred = isICMP_NE ?
   2310               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   2311             return new ICmpInst(pred, X, Zero);
   2312           }
   2313 
   2314           // ((X & ~7) == 0) --> X < 8
   2315           if (RHSV == 0 && isHighOnes(BOC)) {
   2316             Value *X = BO->getOperand(0);
   2317             Constant *NegX = ConstantExpr::getNeg(BOC);
   2318             ICmpInst::Predicate pred = isICMP_NE ?
   2319               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   2320             return new ICmpInst(pred, X, NegX);
   2321           }
   2322         }
   2323         break;
   2324       case Instruction::Mul:
   2325         if (RHSV == 0 && BO->hasNoSignedWrap()) {
   2326           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2327             // The trivial case (mul X, 0) is handled by InstSimplify
   2328             // General case : (mul X, C) != 0 iff X != 0
   2329             //                (mul X, C) == 0 iff X == 0
   2330             if (!BOC->isZero())
   2331               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   2332                                   Constant::getNullValue(RHS->getType()));
   2333           }
   2334         }
   2335         break;
   2336       default: break;
   2337       }
   2338     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   2339       // Handle icmp {eq|ne} <intrinsic>, intcst.
   2340       switch (II->getIntrinsicID()) {
   2341       case Intrinsic::bswap:
   2342         Worklist.Add(II);
   2343         ICI.setOperand(0, II->getArgOperand(0));
   2344         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
   2345         return &ICI;
   2346       case Intrinsic::ctlz:
   2347       case Intrinsic::cttz:
   2348         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   2349         if (RHSV == RHS->getType()->getBitWidth()) {
   2350           Worklist.Add(II);
   2351           ICI.setOperand(0, II->getArgOperand(0));
   2352           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   2353           return &ICI;
   2354         }
   2355         break;
   2356       case Intrinsic::ctpop:
   2357         // popcount(A) == 0  ->  A == 0 and likewise for !=
   2358         if (RHS->isZero()) {
   2359           Worklist.Add(II);
   2360           ICI.setOperand(0, II->getArgOperand(0));
   2361           ICI.setOperand(1, RHS);
   2362           return &ICI;
   2363         }
   2364         break;
   2365       default:
   2366         break;
   2367       }
   2368     }
   2369   }
   2370   return nullptr;
   2371 }
   2372 
   2373 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
   2374 /// far.
   2375 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICmp) {
   2376   const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
   2377   Value *LHSCIOp        = LHSCI->getOperand(0);
   2378   Type *SrcTy     = LHSCIOp->getType();
   2379   Type *DestTy    = LHSCI->getType();
   2380   Value *RHSCIOp;
   2381 
   2382   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   2383   // integer type is the same size as the pointer type.
   2384   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
   2385       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
   2386     Value *RHSOp = nullptr;
   2387     if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
   2388       Value *RHSCIOp = RHSC->getOperand(0);
   2389       if (RHSCIOp->getType()->getPointerAddressSpace() ==
   2390           LHSCIOp->getType()->getPointerAddressSpace()) {
   2391         RHSOp = RHSC->getOperand(0);
   2392         // If the pointer types don't match, insert a bitcast.
   2393         if (LHSCIOp->getType() != RHSOp->getType())
   2394           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   2395       }
   2396     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
   2397       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   2398     }
   2399 
   2400     if (RHSOp)
   2401       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp);
   2402   }
   2403 
   2404   // The code below only handles extension cast instructions, so far.
   2405   // Enforce this.
   2406   if (LHSCI->getOpcode() != Instruction::ZExt &&
   2407       LHSCI->getOpcode() != Instruction::SExt)
   2408     return nullptr;
   2409 
   2410   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   2411   bool isSignedCmp = ICmp.isSigned();
   2412 
   2413   if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) {
   2414     // Not an extension from the same type?
   2415     RHSCIOp = CI->getOperand(0);
   2416     if (RHSCIOp->getType() != LHSCIOp->getType())
   2417       return nullptr;
   2418 
   2419     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   2420     // and the other is a zext), then we can't handle this.
   2421     if (CI->getOpcode() != LHSCI->getOpcode())
   2422       return nullptr;
   2423 
   2424     // Deal with equality cases early.
   2425     if (ICmp.isEquality())
   2426       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
   2427 
   2428     // A signed comparison of sign extended values simplifies into a
   2429     // signed comparison.
   2430     if (isSignedCmp && isSignedExt)
   2431       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp);
   2432 
   2433     // The other three cases all fold into an unsigned comparison.
   2434     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   2435   }
   2436 
   2437   // If we aren't dealing with a constant on the RHS, exit early.
   2438   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
   2439   if (!C)
   2440     return nullptr;
   2441 
   2442   // Compute the constant that would happen if we truncated to SrcTy then
   2443   // re-extended to DestTy.
   2444   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
   2445   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
   2446 
   2447   // If the re-extended constant didn't change...
   2448   if (Res2 == C) {
   2449     // Deal with equality cases early.
   2450     if (ICmp.isEquality())
   2451       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
   2452 
   2453     // A signed comparison of sign extended values simplifies into a
   2454     // signed comparison.
   2455     if (isSignedExt && isSignedCmp)
   2456       return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1);
   2457 
   2458     // The other three cases all fold into an unsigned comparison.
   2459     return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1);
   2460   }
   2461 
   2462   // The re-extended constant changed, partly changed (in the case of a vector),
   2463   // or could not be determined to be equal (in the case of a constant
   2464   // expression), so the constant cannot be represented in the shorter type.
   2465   // Consequently, we cannot emit a simple comparison.
   2466   // All the cases that fold to true or false will have already been handled
   2467   // by SimplifyICmpInst, so only deal with the tricky case.
   2468 
   2469   if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C))
   2470     return nullptr;
   2471 
   2472   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   2473   // should have been folded away previously and not enter in here.
   2474 
   2475   // We're performing an unsigned comp with a sign extended value.
   2476   // This is true if the input is >= 0. [aka >s -1]
   2477   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   2478   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName());
   2479 
   2480   // Finally, return the value computed.
   2481   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
   2482     return replaceInstUsesWith(ICmp, Result);
   2483 
   2484   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   2485   return BinaryOperator::CreateNot(Result);
   2486 }
   2487 
   2488 /// The caller has matched a pattern of the form:
   2489 ///   I = icmp ugt (add (add A, B), CI2), CI1
   2490 /// If this is of the form:
   2491 ///   sum = a + b
   2492 ///   if (sum+128 >u 255)
   2493 /// Then replace it with llvm.sadd.with.overflow.i8.
   2494 ///
   2495 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   2496                                           ConstantInt *CI2, ConstantInt *CI1,
   2497                                           InstCombiner &IC) {
   2498   // The transformation we're trying to do here is to transform this into an
   2499   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   2500   // with a narrower add, and discard the add-with-constant that is part of the
   2501   // range check (if we can't eliminate it, this isn't profitable).
   2502 
   2503   // In order to eliminate the add-with-constant, the compare can be its only
   2504   // use.
   2505   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   2506   if (!AddWithCst->hasOneUse()) return nullptr;
   2507 
   2508   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   2509   if (!CI2->getValue().isPowerOf2()) return nullptr;
   2510   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   2511   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
   2512 
   2513   // The width of the new add formed is 1 more than the bias.
   2514   ++NewWidth;
   2515 
   2516   // Check to see that CI1 is an all-ones value with NewWidth bits.
   2517   if (CI1->getBitWidth() == NewWidth ||
   2518       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   2519     return nullptr;
   2520 
   2521   // This is only really a signed overflow check if the inputs have been
   2522   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   2523   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   2524   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   2525   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
   2526       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
   2527     return nullptr;
   2528 
   2529   // In order to replace the original add with a narrower
   2530   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   2531   // and truncates that discard the high bits of the add.  Verify that this is
   2532   // the case.
   2533   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   2534   for (User *U : OrigAdd->users()) {
   2535     if (U == AddWithCst) continue;
   2536 
   2537     // Only accept truncates for now.  We would really like a nice recursive
   2538     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   2539     // chain to see which bits of a value are actually demanded.  If the
   2540     // original add had another add which was then immediately truncated, we
   2541     // could still do the transformation.
   2542     TruncInst *TI = dyn_cast<TruncInst>(U);
   2543     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
   2544       return nullptr;
   2545   }
   2546 
   2547   // If the pattern matches, truncate the inputs to the narrower type and
   2548   // use the sadd_with_overflow intrinsic to efficiently compute both the
   2549   // result and the overflow bit.
   2550   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   2551   Value *F = Intrinsic::getDeclaration(I.getModule(),
   2552                                        Intrinsic::sadd_with_overflow, NewType);
   2553 
   2554   InstCombiner::BuilderTy *Builder = IC.Builder;
   2555 
   2556   // Put the new code above the original add, in case there are any uses of the
   2557   // add between the add and the compare.
   2558   Builder->SetInsertPoint(OrigAdd);
   2559 
   2560   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   2561   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   2562   CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
   2563   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   2564   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   2565 
   2566   // The inner add was the result of the narrow add, zero extended to the
   2567   // wider type.  Replace it with the result computed by the intrinsic.
   2568   IC.replaceInstUsesWith(*OrigAdd, ZExt);
   2569 
   2570   // The original icmp gets replaced with the overflow value.
   2571   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   2572 }
   2573 
   2574 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
   2575                                          Value *RHS, Instruction &OrigI,
   2576                                          Value *&Result, Constant *&Overflow) {
   2577   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
   2578     std::swap(LHS, RHS);
   2579 
   2580   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
   2581     Result = OpResult;
   2582     Overflow = OverflowVal;
   2583     if (ReuseName)
   2584       Result->takeName(&OrigI);
   2585     return true;
   2586   };
   2587 
   2588   // If the overflow check was an add followed by a compare, the insertion point
   2589   // may be pointing to the compare.  We want to insert the new instructions
   2590   // before the add in case there are uses of the add between the add and the
   2591   // compare.
   2592   Builder->SetInsertPoint(&OrigI);
   2593 
   2594   switch (OCF) {
   2595   case OCF_INVALID:
   2596     llvm_unreachable("bad overflow check kind!");
   2597 
   2598   case OCF_UNSIGNED_ADD: {
   2599     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
   2600     if (OR == OverflowResult::NeverOverflows)
   2601       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
   2602                        true);
   2603 
   2604     if (OR == OverflowResult::AlwaysOverflows)
   2605       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
   2606   }
   2607   // FALL THROUGH uadd into sadd
   2608   case OCF_SIGNED_ADD: {
   2609     // X + 0 -> {X, false}
   2610     if (match(RHS, m_Zero()))
   2611       return SetResult(LHS, Builder->getFalse(), false);
   2612 
   2613     // We can strength reduce this signed add into a regular add if we can prove
   2614     // that it will never overflow.
   2615     if (OCF == OCF_SIGNED_ADD)
   2616       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
   2617         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
   2618                          true);
   2619     break;
   2620   }
   2621 
   2622   case OCF_UNSIGNED_SUB:
   2623   case OCF_SIGNED_SUB: {
   2624     // X - 0 -> {X, false}
   2625     if (match(RHS, m_Zero()))
   2626       return SetResult(LHS, Builder->getFalse(), false);
   2627 
   2628     if (OCF == OCF_SIGNED_SUB) {
   2629       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
   2630         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
   2631                          true);
   2632     } else {
   2633       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
   2634         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
   2635                          true);
   2636     }
   2637     break;
   2638   }
   2639 
   2640   case OCF_UNSIGNED_MUL: {
   2641     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
   2642     if (OR == OverflowResult::NeverOverflows)
   2643       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
   2644                        true);
   2645     if (OR == OverflowResult::AlwaysOverflows)
   2646       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
   2647   } // FALL THROUGH
   2648   case OCF_SIGNED_MUL:
   2649     // X * undef -> undef
   2650     if (isa<UndefValue>(RHS))
   2651       return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
   2652 
   2653     // X * 0 -> {0, false}
   2654     if (match(RHS, m_Zero()))
   2655       return SetResult(RHS, Builder->getFalse(), false);
   2656 
   2657     // X * 1 -> {X, false}
   2658     if (match(RHS, m_One()))
   2659       return SetResult(LHS, Builder->getFalse(), false);
   2660 
   2661     if (OCF == OCF_SIGNED_MUL)
   2662       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
   2663         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
   2664                          true);
   2665     break;
   2666   }
   2667 
   2668   return false;
   2669 }
   2670 
   2671 /// \brief Recognize and process idiom involving test for multiplication
   2672 /// overflow.
   2673 ///
   2674 /// The caller has matched a pattern of the form:
   2675 ///   I = cmp u (mul(zext A, zext B), V
   2676 /// The function checks if this is a test for overflow and if so replaces
   2677 /// multiplication with call to 'mul.with.overflow' intrinsic.
   2678 ///
   2679 /// \param I Compare instruction.
   2680 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
   2681 ///               the compare instruction.  Must be of integer type.
   2682 /// \param OtherVal The other argument of compare instruction.
   2683 /// \returns Instruction which must replace the compare instruction, NULL if no
   2684 ///          replacement required.
   2685 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
   2686                                          Value *OtherVal, InstCombiner &IC) {
   2687   // Don't bother doing this transformation for pointers, don't do it for
   2688   // vectors.
   2689   if (!isa<IntegerType>(MulVal->getType()))
   2690     return nullptr;
   2691 
   2692   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
   2693   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
   2694   auto *MulInstr = dyn_cast<Instruction>(MulVal);
   2695   if (!MulInstr)
   2696     return nullptr;
   2697   assert(MulInstr->getOpcode() == Instruction::Mul);
   2698 
   2699   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
   2700        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
   2701   assert(LHS->getOpcode() == Instruction::ZExt);
   2702   assert(RHS->getOpcode() == Instruction::ZExt);
   2703   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
   2704 
   2705   // Calculate type and width of the result produced by mul.with.overflow.
   2706   Type *TyA = A->getType(), *TyB = B->getType();
   2707   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
   2708            WidthB = TyB->getPrimitiveSizeInBits();
   2709   unsigned MulWidth;
   2710   Type *MulType;
   2711   if (WidthB > WidthA) {
   2712     MulWidth = WidthB;
   2713     MulType = TyB;
   2714   } else {
   2715     MulWidth = WidthA;
   2716     MulType = TyA;
   2717   }
   2718 
   2719   // In order to replace the original mul with a narrower mul.with.overflow,
   2720   // all uses must ignore upper bits of the product.  The number of used low
   2721   // bits must be not greater than the width of mul.with.overflow.
   2722   if (MulVal->hasNUsesOrMore(2))
   2723     for (User *U : MulVal->users()) {
   2724       if (U == &I)
   2725         continue;
   2726       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2727         // Check if truncation ignores bits above MulWidth.
   2728         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
   2729         if (TruncWidth > MulWidth)
   2730           return nullptr;
   2731       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2732         // Check if AND ignores bits above MulWidth.
   2733         if (BO->getOpcode() != Instruction::And)
   2734           return nullptr;
   2735         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2736           const APInt &CVal = CI->getValue();
   2737           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
   2738             return nullptr;
   2739         }
   2740       } else {
   2741         // Other uses prohibit this transformation.
   2742         return nullptr;
   2743       }
   2744     }
   2745 
   2746   // Recognize patterns
   2747   switch (I.getPredicate()) {
   2748   case ICmpInst::ICMP_EQ:
   2749   case ICmpInst::ICMP_NE:
   2750     // Recognize pattern:
   2751     //   mulval = mul(zext A, zext B)
   2752     //   cmp eq/neq mulval, zext trunc mulval
   2753     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
   2754       if (Zext->hasOneUse()) {
   2755         Value *ZextArg = Zext->getOperand(0);
   2756         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
   2757           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
   2758             break; //Recognized
   2759       }
   2760 
   2761     // Recognize pattern:
   2762     //   mulval = mul(zext A, zext B)
   2763     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
   2764     ConstantInt *CI;
   2765     Value *ValToMask;
   2766     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
   2767       if (ValToMask != MulVal)
   2768         return nullptr;
   2769       const APInt &CVal = CI->getValue() + 1;
   2770       if (CVal.isPowerOf2()) {
   2771         unsigned MaskWidth = CVal.logBase2();
   2772         if (MaskWidth == MulWidth)
   2773           break; // Recognized
   2774       }
   2775     }
   2776     return nullptr;
   2777 
   2778   case ICmpInst::ICMP_UGT:
   2779     // Recognize pattern:
   2780     //   mulval = mul(zext A, zext B)
   2781     //   cmp ugt mulval, max
   2782     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2783       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2784       MaxVal = MaxVal.zext(CI->getBitWidth());
   2785       if (MaxVal.eq(CI->getValue()))
   2786         break; // Recognized
   2787     }
   2788     return nullptr;
   2789 
   2790   case ICmpInst::ICMP_UGE:
   2791     // Recognize pattern:
   2792     //   mulval = mul(zext A, zext B)
   2793     //   cmp uge mulval, max+1
   2794     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2795       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2796       if (MaxVal.eq(CI->getValue()))
   2797         break; // Recognized
   2798     }
   2799     return nullptr;
   2800 
   2801   case ICmpInst::ICMP_ULE:
   2802     // Recognize pattern:
   2803     //   mulval = mul(zext A, zext B)
   2804     //   cmp ule mulval, max
   2805     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2806       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2807       MaxVal = MaxVal.zext(CI->getBitWidth());
   2808       if (MaxVal.eq(CI->getValue()))
   2809         break; // Recognized
   2810     }
   2811     return nullptr;
   2812 
   2813   case ICmpInst::ICMP_ULT:
   2814     // Recognize pattern:
   2815     //   mulval = mul(zext A, zext B)
   2816     //   cmp ule mulval, max + 1
   2817     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2818       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2819       if (MaxVal.eq(CI->getValue()))
   2820         break; // Recognized
   2821     }
   2822     return nullptr;
   2823 
   2824   default:
   2825     return nullptr;
   2826   }
   2827 
   2828   InstCombiner::BuilderTy *Builder = IC.Builder;
   2829   Builder->SetInsertPoint(MulInstr);
   2830 
   2831   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
   2832   Value *MulA = A, *MulB = B;
   2833   if (WidthA < MulWidth)
   2834     MulA = Builder->CreateZExt(A, MulType);
   2835   if (WidthB < MulWidth)
   2836     MulB = Builder->CreateZExt(B, MulType);
   2837   Value *F = Intrinsic::getDeclaration(I.getModule(),
   2838                                        Intrinsic::umul_with_overflow, MulType);
   2839   CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
   2840   IC.Worklist.Add(MulInstr);
   2841 
   2842   // If there are uses of mul result other than the comparison, we know that
   2843   // they are truncation or binary AND. Change them to use result of
   2844   // mul.with.overflow and adjust properly mask/size.
   2845   if (MulVal->hasNUsesOrMore(2)) {
   2846     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
   2847     for (User *U : MulVal->users()) {
   2848       if (U == &I || U == OtherVal)
   2849         continue;
   2850       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2851         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
   2852           IC.replaceInstUsesWith(*TI, Mul);
   2853         else
   2854           TI->setOperand(0, Mul);
   2855       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2856         assert(BO->getOpcode() == Instruction::And);
   2857         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
   2858         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
   2859         APInt ShortMask = CI->getValue().trunc(MulWidth);
   2860         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
   2861         Instruction *Zext =
   2862             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
   2863         IC.Worklist.Add(Zext);
   2864         IC.replaceInstUsesWith(*BO, Zext);
   2865       } else {
   2866         llvm_unreachable("Unexpected Binary operation");
   2867       }
   2868       IC.Worklist.Add(cast<Instruction>(U));
   2869     }
   2870   }
   2871   if (isa<Instruction>(OtherVal))
   2872     IC.Worklist.Add(cast<Instruction>(OtherVal));
   2873 
   2874   // The original icmp gets replaced with the overflow value, maybe inverted
   2875   // depending on predicate.
   2876   bool Inverse = false;
   2877   switch (I.getPredicate()) {
   2878   case ICmpInst::ICMP_NE:
   2879     break;
   2880   case ICmpInst::ICMP_EQ:
   2881     Inverse = true;
   2882     break;
   2883   case ICmpInst::ICMP_UGT:
   2884   case ICmpInst::ICMP_UGE:
   2885     if (I.getOperand(0) == MulVal)
   2886       break;
   2887     Inverse = true;
   2888     break;
   2889   case ICmpInst::ICMP_ULT:
   2890   case ICmpInst::ICMP_ULE:
   2891     if (I.getOperand(1) == MulVal)
   2892       break;
   2893     Inverse = true;
   2894     break;
   2895   default:
   2896     llvm_unreachable("Unexpected predicate");
   2897   }
   2898   if (Inverse) {
   2899     Value *Res = Builder->CreateExtractValue(Call, 1);
   2900     return BinaryOperator::CreateNot(Res);
   2901   }
   2902 
   2903   return ExtractValueInst::Create(Call, 1);
   2904 }
   2905 
   2906 /// When performing a comparison against a constant, it is possible that not all
   2907 /// the bits in the LHS are demanded. This helper method computes the mask that
   2908 /// IS demanded.
   2909 static APInt DemandedBitsLHSMask(ICmpInst &I,
   2910                                  unsigned BitWidth, bool isSignCheck) {
   2911   if (isSignCheck)
   2912     return APInt::getSignBit(BitWidth);
   2913 
   2914   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   2915   if (!CI) return APInt::getAllOnesValue(BitWidth);
   2916   const APInt &RHS = CI->getValue();
   2917 
   2918   switch (I.getPredicate()) {
   2919   // For a UGT comparison, we don't care about any bits that
   2920   // correspond to the trailing ones of the comparand.  The value of these
   2921   // bits doesn't impact the outcome of the comparison, because any value
   2922   // greater than the RHS must differ in a bit higher than these due to carry.
   2923   case ICmpInst::ICMP_UGT: {
   2924     unsigned trailingOnes = RHS.countTrailingOnes();
   2925     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   2926     return ~lowBitsSet;
   2927   }
   2928 
   2929   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   2930   // Any value less than the RHS must differ in a higher bit because of carries.
   2931   case ICmpInst::ICMP_ULT: {
   2932     unsigned trailingZeros = RHS.countTrailingZeros();
   2933     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   2934     return ~lowBitsSet;
   2935   }
   2936 
   2937   default:
   2938     return APInt::getAllOnesValue(BitWidth);
   2939   }
   2940 }
   2941 
   2942 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
   2943 /// should be swapped.
   2944 /// The decision is based on how many times these two operands are reused
   2945 /// as subtract operands and their positions in those instructions.
   2946 /// The rational is that several architectures use the same instruction for
   2947 /// both subtract and cmp, thus it is better if the order of those operands
   2948 /// match.
   2949 /// \return true if Op0 and Op1 should be swapped.
   2950 static bool swapMayExposeCSEOpportunities(const Value * Op0,
   2951                                           const Value * Op1) {
   2952   // Filter out pointer value as those cannot appears directly in subtract.
   2953   // FIXME: we may want to go through inttoptrs or bitcasts.
   2954   if (Op0->getType()->isPointerTy())
   2955     return false;
   2956   // Count every uses of both Op0 and Op1 in a subtract.
   2957   // Each time Op0 is the first operand, count -1: swapping is bad, the
   2958   // subtract has already the same layout as the compare.
   2959   // Each time Op0 is the second operand, count +1: swapping is good, the
   2960   // subtract has a different layout as the compare.
   2961   // At the end, if the benefit is greater than 0, Op0 should come second to
   2962   // expose more CSE opportunities.
   2963   int GlobalSwapBenefits = 0;
   2964   for (const User *U : Op0->users()) {
   2965     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
   2966     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
   2967       continue;
   2968     // If Op0 is the first argument, this is not beneficial to swap the
   2969     // arguments.
   2970     int LocalSwapBenefits = -1;
   2971     unsigned Op1Idx = 1;
   2972     if (BinOp->getOperand(Op1Idx) == Op0) {
   2973       Op1Idx = 0;
   2974       LocalSwapBenefits = 1;
   2975     }
   2976     if (BinOp->getOperand(Op1Idx) != Op1)
   2977       continue;
   2978     GlobalSwapBenefits += LocalSwapBenefits;
   2979   }
   2980   return GlobalSwapBenefits > 0;
   2981 }
   2982 
   2983 /// \brief Check that one use is in the same block as the definition and all
   2984 /// other uses are in blocks dominated by a given block
   2985 ///
   2986 /// \param DI Definition
   2987 /// \param UI Use
   2988 /// \param DB Block that must dominate all uses of \p DI outside
   2989 ///           the parent block
   2990 /// \return true when \p UI is the only use of \p DI in the parent block
   2991 /// and all other uses of \p DI are in blocks dominated by \p DB.
   2992 ///
   2993 bool InstCombiner::dominatesAllUses(const Instruction *DI,
   2994                                     const Instruction *UI,
   2995                                     const BasicBlock *DB) const {
   2996   assert(DI && UI && "Instruction not defined\n");
   2997   // ignore incomplete definitions
   2998   if (!DI->getParent())
   2999     return false;
   3000   // DI and UI must be in the same block
   3001   if (DI->getParent() != UI->getParent())
   3002     return false;
   3003   // Protect from self-referencing blocks
   3004   if (DI->getParent() == DB)
   3005     return false;
   3006   // DominatorTree available?
   3007   if (!DT)
   3008     return false;
   3009   for (const User *U : DI->users()) {
   3010     auto *Usr = cast<Instruction>(U);
   3011     if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
   3012       return false;
   3013   }
   3014   return true;
   3015 }
   3016 
   3017 /// Return true when the instruction sequence within a block is select-cmp-br.
   3018 static bool isChainSelectCmpBranch(const SelectInst *SI) {
   3019   const BasicBlock *BB = SI->getParent();
   3020   if (!BB)
   3021     return false;
   3022   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
   3023   if (!BI || BI->getNumSuccessors() != 2)
   3024     return false;
   3025   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
   3026   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
   3027     return false;
   3028   return true;
   3029 }
   3030 
   3031 /// \brief True when a select result is replaced by one of its operands
   3032 /// in select-icmp sequence. This will eventually result in the elimination
   3033 /// of the select.
   3034 ///
   3035 /// \param SI    Select instruction
   3036 /// \param Icmp  Compare instruction
   3037 /// \param SIOpd Operand that replaces the select
   3038 ///
   3039 /// Notes:
   3040 /// - The replacement is global and requires dominator information
   3041 /// - The caller is responsible for the actual replacement
   3042 ///
   3043 /// Example:
   3044 ///
   3045 /// entry:
   3046 ///  %4 = select i1 %3, %C* %0, %C* null
   3047 ///  %5 = icmp eq %C* %4, null
   3048 ///  br i1 %5, label %9, label %7
   3049 ///  ...
   3050 ///  ; <label>:7                                       ; preds = %entry
   3051 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
   3052 ///  ...
   3053 ///
   3054 /// can be transformed to
   3055 ///
   3056 ///  %5 = icmp eq %C* %0, null
   3057 ///  %6 = select i1 %3, i1 %5, i1 true
   3058 ///  br i1 %6, label %9, label %7
   3059 ///  ...
   3060 ///  ; <label>:7                                       ; preds = %entry
   3061 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
   3062 ///
   3063 /// Similar when the first operand of the select is a constant or/and
   3064 /// the compare is for not equal rather than equal.
   3065 ///
   3066 /// NOTE: The function is only called when the select and compare constants
   3067 /// are equal, the optimization can work only for EQ predicates. This is not a
   3068 /// major restriction since a NE compare should be 'normalized' to an equal
   3069 /// compare, which usually happens in the combiner and test case
   3070 /// select-cmp-br.ll
   3071 /// checks for it.
   3072 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
   3073                                              const ICmpInst *Icmp,
   3074                                              const unsigned SIOpd) {
   3075   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
   3076   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
   3077     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
   3078     // The check for the unique predecessor is not the best that can be
   3079     // done. But it protects efficiently against cases like  when SI's
   3080     // home block has two successors, Succ and Succ1, and Succ1 predecessor
   3081     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
   3082     // replaced can be reached on either path. So the uniqueness check
   3083     // guarantees that the path all uses of SI (outside SI's parent) are on
   3084     // is disjoint from all other paths out of SI. But that information
   3085     // is more expensive to compute, and the trade-off here is in favor
   3086     // of compile-time.
   3087     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
   3088       NumSel++;
   3089       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
   3090       return true;
   3091     }
   3092   }
   3093   return false;
   3094 }
   3095 
   3096 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
   3097 /// it into the appropriate icmp lt or icmp gt instruction. This transform
   3098 /// allows them to be folded in visitICmpInst.
   3099 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
   3100   ICmpInst::Predicate Pred = I.getPredicate();
   3101   if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE &&
   3102       Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE)
   3103     return nullptr;
   3104 
   3105   Value *Op0 = I.getOperand(0);
   3106   Value *Op1 = I.getOperand(1);
   3107   auto *Op1C = dyn_cast<Constant>(Op1);
   3108   if (!Op1C)
   3109     return nullptr;
   3110 
   3111   // Check if the constant operand can be safely incremented/decremented without
   3112   // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled
   3113   // the edge cases for us, so we just assert on them. For vectors, we must
   3114   // handle the edge cases.
   3115   Type *Op1Type = Op1->getType();
   3116   bool IsSigned = I.isSigned();
   3117   bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE);
   3118   auto *CI = dyn_cast<ConstantInt>(Op1C);
   3119   if (CI) {
   3120     // A <= MAX -> TRUE ; A >= MIN -> TRUE
   3121     assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned));
   3122   } else if (Op1Type->isVectorTy()) {
   3123     // TODO? If the edge cases for vectors were guaranteed to be handled as they
   3124     // are for scalar, we could remove the min/max checks. However, to do that,
   3125     // we would have to use insertelement/shufflevector to replace edge values.
   3126     unsigned NumElts = Op1Type->getVectorNumElements();
   3127     for (unsigned i = 0; i != NumElts; ++i) {
   3128       Constant *Elt = Op1C->getAggregateElement(i);
   3129       if (!Elt)
   3130         return nullptr;
   3131 
   3132       if (isa<UndefValue>(Elt))
   3133         continue;
   3134       // Bail out if we can't determine if this constant is min/max or if we
   3135       // know that this constant is min/max.
   3136       auto *CI = dyn_cast<ConstantInt>(Elt);
   3137       if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned)))
   3138         return nullptr;
   3139     }
   3140   } else {
   3141     // ConstantExpr?
   3142     return nullptr;
   3143   }
   3144 
   3145   // Increment or decrement the constant and set the new comparison predicate:
   3146   // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT
   3147   Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true);
   3148   CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT;
   3149   NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred;
   3150   return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne));
   3151 }
   3152 
   3153 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   3154   bool Changed = false;
   3155   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   3156   unsigned Op0Cplxity = getComplexity(Op0);
   3157   unsigned Op1Cplxity = getComplexity(Op1);
   3158 
   3159   /// Orders the operands of the compare so that they are listed from most
   3160   /// complex to least complex.  This puts constants before unary operators,
   3161   /// before binary operators.
   3162   if (Op0Cplxity < Op1Cplxity ||
   3163       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
   3164     I.swapOperands();
   3165     std::swap(Op0, Op1);
   3166     Changed = true;
   3167   }
   3168 
   3169   if (Value *V =
   3170           SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
   3171     return replaceInstUsesWith(I, V);
   3172 
   3173   // comparing -val or val with non-zero is the same as just comparing val
   3174   // ie, abs(val) != 0 -> val != 0
   3175   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
   3176     Value *Cond, *SelectTrue, *SelectFalse;
   3177     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   3178                             m_Value(SelectFalse)))) {
   3179       if (Value *V = dyn_castNegVal(SelectTrue)) {
   3180         if (V == SelectFalse)
   3181           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   3182       }
   3183       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   3184         if (V == SelectTrue)
   3185           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   3186       }
   3187     }
   3188   }
   3189 
   3190   Type *Ty = Op0->getType();
   3191 
   3192   // icmp's with boolean values can always be turned into bitwise operations
   3193   if (Ty->getScalarType()->isIntegerTy(1)) {
   3194     switch (I.getPredicate()) {
   3195     default: llvm_unreachable("Invalid icmp instruction!");
   3196     case ICmpInst::ICMP_EQ: {                // icmp eq i1 A, B -> ~(A^B)
   3197       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp");
   3198       return BinaryOperator::CreateNot(Xor);
   3199     }
   3200     case ICmpInst::ICMP_NE:                  // icmp ne i1 A, B -> A^B
   3201       return BinaryOperator::CreateXor(Op0, Op1);
   3202 
   3203     case ICmpInst::ICMP_UGT:
   3204       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   3205       // FALL THROUGH
   3206     case ICmpInst::ICMP_ULT:{                // icmp ult i1 A, B -> ~A & B
   3207       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
   3208       return BinaryOperator::CreateAnd(Not, Op1);
   3209     }
   3210     case ICmpInst::ICMP_SGT:
   3211       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   3212       // FALL THROUGH
   3213     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   3214       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
   3215       return BinaryOperator::CreateAnd(Not, Op0);
   3216     }
   3217     case ICmpInst::ICMP_UGE:
   3218       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   3219       // FALL THROUGH
   3220     case ICmpInst::ICMP_ULE: {               // icmp ule i1 A, B -> ~A | B
   3221       Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
   3222       return BinaryOperator::CreateOr(Not, Op1);
   3223     }
   3224     case ICmpInst::ICMP_SGE:
   3225       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   3226       // FALL THROUGH
   3227     case ICmpInst::ICMP_SLE: {               // icmp sle i1 A, B -> A | ~B
   3228       Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
   3229       return BinaryOperator::CreateOr(Not, Op0);
   3230     }
   3231     }
   3232   }
   3233 
   3234   if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
   3235     return NewICmp;
   3236 
   3237   unsigned BitWidth = 0;
   3238   if (Ty->isIntOrIntVectorTy())
   3239     BitWidth = Ty->getScalarSizeInBits();
   3240   else // Get pointer size.
   3241     BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
   3242 
   3243   bool isSignBit = false;
   3244 
   3245   // See if we are doing a comparison with a constant.
   3246   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3247     Value *A = nullptr, *B = nullptr;
   3248 
   3249     // Match the following pattern, which is a common idiom when writing
   3250     // overflow-safe integer arithmetic function.  The source performs an
   3251     // addition in wider type, and explicitly checks for overflow using
   3252     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   3253     // sadd_with_overflow intrinsic.
   3254     //
   3255     // TODO: This could probably be generalized to handle other overflow-safe
   3256     // operations if we worked out the formulas to compute the appropriate
   3257     // magic constants.
   3258     //
   3259     // sum = a + b
   3260     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   3261     {
   3262     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   3263     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   3264         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   3265       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   3266         return Res;
   3267     }
   3268 
   3269     // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
   3270     if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
   3271       if (auto *SI = dyn_cast<SelectInst>(Op0)) {
   3272         SelectPatternResult SPR = matchSelectPattern(SI, A, B);
   3273         if (SPR.Flavor == SPF_SMIN) {
   3274           if (isKnownPositive(A, DL))
   3275             return new ICmpInst(I.getPredicate(), B, CI);
   3276           if (isKnownPositive(B, DL))
   3277             return new ICmpInst(I.getPredicate(), A, CI);
   3278         }
   3279       }
   3280 
   3281 
   3282     // The following transforms are only 'worth it' if the only user of the
   3283     // subtraction is the icmp.
   3284     if (Op0->hasOneUse()) {
   3285       // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   3286       if (I.isEquality() && CI->isZero() &&
   3287           match(Op0, m_Sub(m_Value(A), m_Value(B))))
   3288         return new ICmpInst(I.getPredicate(), A, B);
   3289 
   3290       // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
   3291       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
   3292           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   3293         return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
   3294 
   3295       // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
   3296       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
   3297           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   3298         return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
   3299 
   3300       // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
   3301       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
   3302           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   3303         return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
   3304 
   3305       // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
   3306       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
   3307           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   3308         return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
   3309     }
   3310 
   3311     if (I.isEquality()) {
   3312       ConstantInt *CI2;
   3313       if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
   3314           match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
   3315         // (icmp eq/ne (ashr/lshr const2, A), const1)
   3316         if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
   3317           return Inst;
   3318       }
   3319       if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
   3320         // (icmp eq/ne (shl const2, A), const1)
   3321         if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
   3322           return Inst;
   3323       }
   3324     }
   3325 
   3326     // If this comparison is a normal comparison, it demands all
   3327     // bits, if it is a sign bit comparison, it only demands the sign bit.
   3328     bool UnusedBit;
   3329     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   3330 
   3331     // Canonicalize icmp instructions based on dominating conditions.
   3332     BasicBlock *Parent = I.getParent();
   3333     BasicBlock *Dom = Parent->getSinglePredecessor();
   3334     auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
   3335     ICmpInst::Predicate Pred;
   3336     BasicBlock *TrueBB, *FalseBB;
   3337     ConstantInt *CI2;
   3338     if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)),
   3339                              TrueBB, FalseBB)) &&
   3340         TrueBB != FalseBB) {
   3341       ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(),
   3342                                                               CI->getValue());
   3343       ConstantRange DominatingCR =
   3344           (Parent == TrueBB)
   3345               ? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue())
   3346               : ConstantRange::makeExactICmpRegion(
   3347                     CmpInst::getInversePredicate(Pred), CI2->getValue());
   3348       ConstantRange Intersection = DominatingCR.intersectWith(CR);
   3349       ConstantRange Difference = DominatingCR.difference(CR);
   3350       if (Intersection.isEmptySet())
   3351         return replaceInstUsesWith(I, Builder->getFalse());
   3352       if (Difference.isEmptySet())
   3353         return replaceInstUsesWith(I, Builder->getTrue());
   3354       // Canonicalizing a sign bit comparison that gets used in a branch,
   3355       // pessimizes codegen by generating branch on zero instruction instead
   3356       // of a test and branch. So we avoid canonicalizing in such situations
   3357       // because test and branch instruction has better branch displacement
   3358       // than compare and branch instruction.
   3359       if (!isBranchOnSignBitCheck(I, isSignBit) && !I.isEquality()) {
   3360         if (auto *AI = Intersection.getSingleElement())
   3361           return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI));
   3362         if (auto *AD = Difference.getSingleElement())
   3363           return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD));
   3364       }
   3365     }
   3366   }
   3367 
   3368   // See if we can fold the comparison based on range information we can get
   3369   // by checking whether bits are known to be zero or one in the input.
   3370   if (BitWidth != 0) {
   3371     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   3372     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   3373 
   3374     if (SimplifyDemandedBits(I.getOperandUse(0),
   3375                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   3376                              Op0KnownZero, Op0KnownOne, 0))
   3377       return &I;
   3378     if (SimplifyDemandedBits(I.getOperandUse(1),
   3379                              APInt::getAllOnesValue(BitWidth), Op1KnownZero,
   3380                              Op1KnownOne, 0))
   3381       return &I;
   3382 
   3383     // Given the known and unknown bits, compute a range that the LHS could be
   3384     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   3385     // EQ and NE we use unsigned values.
   3386     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   3387     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   3388     if (I.isSigned()) {
   3389       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   3390                                              Op0Min, Op0Max);
   3391       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   3392                                              Op1Min, Op1Max);
   3393     } else {
   3394       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   3395                                                Op0Min, Op0Max);
   3396       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   3397                                                Op1Min, Op1Max);
   3398     }
   3399 
   3400     // If Min and Max are known to be the same, then SimplifyDemandedBits
   3401     // figured out that the LHS is a constant.  Just constant fold this now so
   3402     // that code below can assume that Min != Max.
   3403     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   3404       return new ICmpInst(I.getPredicate(),
   3405                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   3406     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   3407       return new ICmpInst(I.getPredicate(), Op0,
   3408                           ConstantInt::get(Op1->getType(), Op1Min));
   3409 
   3410     // Based on the range information we know about the LHS, see if we can
   3411     // simplify this comparison.  For example, (x&4) < 8 is always true.
   3412     switch (I.getPredicate()) {
   3413     default: llvm_unreachable("Unknown icmp opcode!");
   3414     case ICmpInst::ICMP_EQ: {
   3415       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   3416         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3417 
   3418       // If all bits are known zero except for one, then we know at most one
   3419       // bit is set.   If the comparison is against zero, then this is a check
   3420       // to see if *that* bit is set.
   3421       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   3422       if (~Op1KnownZero == 0) {
   3423         // If the LHS is an AND with the same constant, look through it.
   3424         Value *LHS = nullptr;
   3425         ConstantInt *LHSC = nullptr;
   3426         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   3427             LHSC->getValue() != Op0KnownZeroInverted)
   3428           LHS = Op0;
   3429 
   3430         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   3431         // then turn "((1 << x)&8) == 0" into "x != 3".
   3432         // or turn "((1 << x)&7) == 0" into "x > 2".
   3433         Value *X = nullptr;
   3434         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   3435           APInt ValToCheck = Op0KnownZeroInverted;
   3436           if (ValToCheck.isPowerOf2()) {
   3437             unsigned CmpVal = ValToCheck.countTrailingZeros();
   3438             return new ICmpInst(ICmpInst::ICMP_NE, X,
   3439                                 ConstantInt::get(X->getType(), CmpVal));
   3440           } else if ((++ValToCheck).isPowerOf2()) {
   3441             unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
   3442             return new ICmpInst(ICmpInst::ICMP_UGT, X,
   3443                                 ConstantInt::get(X->getType(), CmpVal));
   3444           }
   3445         }
   3446 
   3447         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   3448         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   3449         const APInt *CI;
   3450         if (Op0KnownZeroInverted == 1 &&
   3451             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   3452           return new ICmpInst(ICmpInst::ICMP_NE, X,
   3453                               ConstantInt::get(X->getType(),
   3454                                                CI->countTrailingZeros()));
   3455       }
   3456       break;
   3457     }
   3458     case ICmpInst::ICMP_NE: {
   3459       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   3460         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3461 
   3462       // If all bits are known zero except for one, then we know at most one
   3463       // bit is set.   If the comparison is against zero, then this is a check
   3464       // to see if *that* bit is set.
   3465       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   3466       if (~Op1KnownZero == 0) {
   3467         // If the LHS is an AND with the same constant, look through it.
   3468         Value *LHS = nullptr;
   3469         ConstantInt *LHSC = nullptr;
   3470         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   3471             LHSC->getValue() != Op0KnownZeroInverted)
   3472           LHS = Op0;
   3473 
   3474         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   3475         // then turn "((1 << x)&8) != 0" into "x == 3".
   3476         // or turn "((1 << x)&7) != 0" into "x < 3".
   3477         Value *X = nullptr;
   3478         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   3479           APInt ValToCheck = Op0KnownZeroInverted;
   3480           if (ValToCheck.isPowerOf2()) {
   3481             unsigned CmpVal = ValToCheck.countTrailingZeros();
   3482             return new ICmpInst(ICmpInst::ICMP_EQ, X,
   3483                                 ConstantInt::get(X->getType(), CmpVal));
   3484           } else if ((++ValToCheck).isPowerOf2()) {
   3485             unsigned CmpVal = ValToCheck.countTrailingZeros();
   3486             return new ICmpInst(ICmpInst::ICMP_ULT, X,
   3487                                 ConstantInt::get(X->getType(), CmpVal));
   3488           }
   3489         }
   3490 
   3491         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   3492         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   3493         const APInt *CI;
   3494         if (Op0KnownZeroInverted == 1 &&
   3495             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   3496           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   3497                               ConstantInt::get(X->getType(),
   3498                                                CI->countTrailingZeros()));
   3499       }
   3500       break;
   3501     }
   3502     case ICmpInst::ICMP_ULT:
   3503       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   3504         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3505       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   3506         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3507       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   3508         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3509       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3510         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   3511           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3512                               Builder->getInt(CI->getValue()-1));
   3513 
   3514         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   3515         if (CI->isMinValue(true))
   3516           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   3517                            Constant::getAllOnesValue(Op0->getType()));
   3518       }
   3519       break;
   3520     case ICmpInst::ICMP_UGT:
   3521       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   3522         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3523       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   3524         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3525 
   3526       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   3527         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3528       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3529         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   3530           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3531                               Builder->getInt(CI->getValue()+1));
   3532 
   3533         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   3534         if (CI->isMaxValue(true))
   3535           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   3536                               Constant::getNullValue(Op0->getType()));
   3537       }
   3538       break;
   3539     case ICmpInst::ICMP_SLT:
   3540       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   3541         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3542       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   3543         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3544       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   3545         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3546       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3547         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   3548           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3549                               Builder->getInt(CI->getValue()-1));
   3550       }
   3551       break;
   3552     case ICmpInst::ICMP_SGT:
   3553       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   3554         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3555       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   3556         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3557 
   3558       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   3559         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3560       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3561         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   3562           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3563                               Builder->getInt(CI->getValue()+1));
   3564       }
   3565       break;
   3566     case ICmpInst::ICMP_SGE:
   3567       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   3568       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   3569         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3570       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   3571         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3572       break;
   3573     case ICmpInst::ICMP_SLE:
   3574       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   3575       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   3576         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3577       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   3578         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3579       break;
   3580     case ICmpInst::ICMP_UGE:
   3581       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   3582       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   3583         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3584       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   3585         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3586       break;
   3587     case ICmpInst::ICMP_ULE:
   3588       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   3589       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   3590         return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3591       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   3592         return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3593       break;
   3594     }
   3595 
   3596     // Turn a signed comparison into an unsigned one if both operands
   3597     // are known to have the same sign.
   3598     if (I.isSigned() &&
   3599         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   3600          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   3601       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   3602   }
   3603 
   3604   // Test if the ICmpInst instruction is used exclusively by a select as
   3605   // part of a minimum or maximum operation. If so, refrain from doing
   3606   // any other folding. This helps out other analyses which understand
   3607   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   3608   // and CodeGen. And in this case, at least one of the comparison
   3609   // operands has at least one user besides the compare (the select),
   3610   // which would often largely negate the benefit of folding anyway.
   3611   if (I.hasOneUse())
   3612     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
   3613       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   3614           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   3615         return nullptr;
   3616 
   3617   // See if we are doing a comparison between a constant and an instruction that
   3618   // can be folded into the comparison.
   3619   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3620     Value *A = nullptr, *B = nullptr;
   3621     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   3622     // instruction, see if that instruction also has constants so that the
   3623     // instruction can be folded into the icmp
   3624     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3625       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   3626         return Res;
   3627 
   3628     // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
   3629     if (I.isEquality() && CI->isZero() &&
   3630         match(Op0, m_UDiv(m_Value(A), m_Value(B)))) {
   3631       ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_EQ
   3632                                      ? ICmpInst::ICMP_UGT
   3633                                      : ICmpInst::ICMP_ULE;
   3634       return new ICmpInst(Pred, B, A);
   3635     }
   3636   }
   3637 
   3638   // Handle icmp with constant (but not simple integer constant) RHS
   3639   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   3640     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3641       switch (LHSI->getOpcode()) {
   3642       case Instruction::GetElementPtr:
   3643           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   3644         if (RHSC->isNullValue() &&
   3645             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   3646           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   3647                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   3648         break;
   3649       case Instruction::PHI:
   3650         // Only fold icmp into the PHI if the phi and icmp are in the same
   3651         // block.  If in the same block, we're encouraging jump threading.  If
   3652         // not, we are just pessimizing the code by making an i1 phi.
   3653         if (LHSI->getParent() == I.getParent())
   3654           if (Instruction *NV = FoldOpIntoPhi(I))
   3655             return NV;
   3656         break;
   3657       case Instruction::Select: {
   3658         // If either operand of the select is a constant, we can fold the
   3659         // comparison into the select arms, which will cause one to be
   3660         // constant folded and the select turned into a bitwise or.
   3661         Value *Op1 = nullptr, *Op2 = nullptr;
   3662         ConstantInt *CI = nullptr;
   3663         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   3664           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   3665           CI = dyn_cast<ConstantInt>(Op1);
   3666         }
   3667         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   3668           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   3669           CI = dyn_cast<ConstantInt>(Op2);
   3670         }
   3671 
   3672         // We only want to perform this transformation if it will not lead to
   3673         // additional code. This is true if either both sides of the select
   3674         // fold to a constant (in which case the icmp is replaced with a select
   3675         // which will usually simplify) or this is the only user of the
   3676         // select (in which case we are trading a select+icmp for a simpler
   3677         // select+icmp) or all uses of the select can be replaced based on
   3678         // dominance information ("Global cases").
   3679         bool Transform = false;
   3680         if (Op1 && Op2)
   3681           Transform = true;
   3682         else if (Op1 || Op2) {
   3683           // Local case
   3684           if (LHSI->hasOneUse())
   3685             Transform = true;
   3686           // Global cases
   3687           else if (CI && !CI->isZero())
   3688             // When Op1 is constant try replacing select with second operand.
   3689             // Otherwise Op2 is constant and try replacing select with first
   3690             // operand.
   3691             Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
   3692                                                   Op1 ? 2 : 1);
   3693         }
   3694         if (Transform) {
   3695           if (!Op1)
   3696             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   3697                                       RHSC, I.getName());
   3698           if (!Op2)
   3699             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   3700                                       RHSC, I.getName());
   3701           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   3702         }
   3703         break;
   3704       }
   3705       case Instruction::IntToPtr:
   3706         // icmp pred inttoptr(X), null -> icmp pred X, 0
   3707         if (RHSC->isNullValue() &&
   3708             DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
   3709           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   3710                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   3711         break;
   3712 
   3713       case Instruction::Load:
   3714         // Try to optimize things like "A[i] > 4" to index computations.
   3715         if (GetElementPtrInst *GEP =
   3716               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   3717           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   3718             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   3719                 !cast<LoadInst>(LHSI)->isVolatile())
   3720               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   3721                 return Res;
   3722         }
   3723         break;
   3724       }
   3725   }
   3726 
   3727   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   3728   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   3729     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   3730       return NI;
   3731   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   3732     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   3733                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   3734       return NI;
   3735 
   3736   // Try to optimize equality comparisons against alloca-based pointers.
   3737   if (Op0->getType()->isPointerTy() && I.isEquality()) {
   3738     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
   3739     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
   3740       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
   3741         return New;
   3742     if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
   3743       if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
   3744         return New;
   3745   }
   3746 
   3747   // Test to see if the operands of the icmp are casted versions of other
   3748   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   3749   // now.
   3750   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   3751     if (Op0->getType()->isPointerTy() &&
   3752         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   3753       // We keep moving the cast from the left operand over to the right
   3754       // operand, where it can often be eliminated completely.
   3755       Op0 = CI->getOperand(0);
   3756 
   3757       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   3758       // so eliminate it as well.
   3759       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   3760         Op1 = CI2->getOperand(0);
   3761 
   3762       // If Op1 is a constant, we can fold the cast into the constant.
   3763       if (Op0->getType() != Op1->getType()) {
   3764         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   3765           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   3766         } else {
   3767           // Otherwise, cast the RHS right before the icmp
   3768           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   3769         }
   3770       }
   3771       return new ICmpInst(I.getPredicate(), Op0, Op1);
   3772     }
   3773   }
   3774 
   3775   if (isa<CastInst>(Op0)) {
   3776     // Handle the special case of: icmp (cast bool to X), <cst>
   3777     // This comes up when you have code like
   3778     //   int X = A < B;
   3779     //   if (X) ...
   3780     // For generality, we handle any zero-extension of any operand comparison
   3781     // with a constant or another cast from the same type.
   3782     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   3783       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   3784         return R;
   3785   }
   3786 
   3787   // Special logic for binary operators.
   3788   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   3789   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   3790   if (BO0 || BO1) {
   3791     CmpInst::Predicate Pred = I.getPredicate();
   3792     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   3793     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   3794       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   3795         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   3796         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   3797     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   3798       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   3799         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   3800         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   3801 
   3802     // Analyze the case when either Op0 or Op1 is an add instruction.
   3803     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   3804     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   3805     if (BO0 && BO0->getOpcode() == Instruction::Add) {
   3806       A = BO0->getOperand(0);
   3807       B = BO0->getOperand(1);
   3808     }
   3809     if (BO1 && BO1->getOpcode() == Instruction::Add) {
   3810       C = BO1->getOperand(0);
   3811       D = BO1->getOperand(1);
   3812     }
   3813 
   3814     // icmp (X+cst) < 0 --> X < -cst
   3815     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
   3816       if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
   3817         if (!RHSC->isMinValue(/*isSigned=*/true))
   3818           return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
   3819 
   3820     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   3821     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   3822       return new ICmpInst(Pred, A == Op1 ? B : A,
   3823                           Constant::getNullValue(Op1->getType()));
   3824 
   3825     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   3826     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   3827       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   3828                           C == Op0 ? D : C);
   3829 
   3830     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   3831     if (A && C && (A == C || A == D || B == C || B == D) &&
   3832         NoOp0WrapProblem && NoOp1WrapProblem &&
   3833         // Try not to increase register pressure.
   3834         BO0->hasOneUse() && BO1->hasOneUse()) {
   3835       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   3836       Value *Y, *Z;
   3837       if (A == C) {
   3838         // C + B == C + D  ->  B == D
   3839         Y = B;
   3840         Z = D;
   3841       } else if (A == D) {
   3842         // D + B == C + D  ->  B == C
   3843         Y = B;
   3844         Z = C;
   3845       } else if (B == C) {
   3846         // A + C == C + D  ->  A == D
   3847         Y = A;
   3848         Z = D;
   3849       } else {
   3850         assert(B == D);
   3851         // A + D == C + D  ->  A == C
   3852         Y = A;
   3853         Z = C;
   3854       }
   3855       return new ICmpInst(Pred, Y, Z);
   3856     }
   3857 
   3858     // icmp slt (X + -1), Y -> icmp sle X, Y
   3859     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
   3860         match(B, m_AllOnes()))
   3861       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
   3862 
   3863     // icmp sge (X + -1), Y -> icmp sgt X, Y
   3864     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
   3865         match(B, m_AllOnes()))
   3866       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
   3867 
   3868     // icmp sle (X + 1), Y -> icmp slt X, Y
   3869     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
   3870         match(B, m_One()))
   3871       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
   3872 
   3873     // icmp sgt (X + 1), Y -> icmp sge X, Y
   3874     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
   3875         match(B, m_One()))
   3876       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
   3877 
   3878     // icmp sgt X, (Y + -1) -> icmp sge X, Y
   3879     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
   3880         match(D, m_AllOnes()))
   3881       return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
   3882 
   3883     // icmp sle X, (Y + -1) -> icmp slt X, Y
   3884     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
   3885         match(D, m_AllOnes()))
   3886       return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
   3887 
   3888     // icmp sge X, (Y + 1) -> icmp sgt X, Y
   3889     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
   3890         match(D, m_One()))
   3891       return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
   3892 
   3893     // icmp slt X, (Y + 1) -> icmp sle X, Y
   3894     if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
   3895         match(D, m_One()))
   3896       return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
   3897 
   3898     // if C1 has greater magnitude than C2:
   3899     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
   3900     //  s.t. C3 = C1 - C2
   3901     //
   3902     // if C2 has greater magnitude than C1:
   3903     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
   3904     //  s.t. C3 = C2 - C1
   3905     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
   3906         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
   3907       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
   3908         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
   3909           const APInt &AP1 = C1->getValue();
   3910           const APInt &AP2 = C2->getValue();
   3911           if (AP1.isNegative() == AP2.isNegative()) {
   3912             APInt AP1Abs = C1->getValue().abs();
   3913             APInt AP2Abs = C2->getValue().abs();
   3914             if (AP1Abs.uge(AP2Abs)) {
   3915               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
   3916               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
   3917               return new ICmpInst(Pred, NewAdd, C);
   3918             } else {
   3919               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
   3920               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
   3921               return new ICmpInst(Pred, A, NewAdd);
   3922             }
   3923           }
   3924         }
   3925 
   3926 
   3927     // Analyze the case when either Op0 or Op1 is a sub instruction.
   3928     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   3929     A = nullptr;
   3930     B = nullptr;
   3931     C = nullptr;
   3932     D = nullptr;
   3933     if (BO0 && BO0->getOpcode() == Instruction::Sub) {
   3934       A = BO0->getOperand(0);
   3935       B = BO0->getOperand(1);
   3936     }
   3937     if (BO1 && BO1->getOpcode() == Instruction::Sub) {
   3938       C = BO1->getOperand(0);
   3939       D = BO1->getOperand(1);
   3940     }
   3941 
   3942     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   3943     if (A == Op1 && NoOp0WrapProblem)
   3944       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   3945 
   3946     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   3947     if (C == Op0 && NoOp1WrapProblem)
   3948       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   3949 
   3950     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   3951     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   3952         // Try not to increase register pressure.
   3953         BO0->hasOneUse() && BO1->hasOneUse())
   3954       return new ICmpInst(Pred, A, C);
   3955 
   3956     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   3957     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   3958         // Try not to increase register pressure.
   3959         BO0->hasOneUse() && BO1->hasOneUse())
   3960       return new ICmpInst(Pred, D, B);
   3961 
   3962     // icmp (0-X) < cst --> x > -cst
   3963     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
   3964       Value *X;
   3965       if (match(BO0, m_Neg(m_Value(X))))
   3966         if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   3967           if (!RHSC->isMinValue(/*isSigned=*/true))
   3968             return new ICmpInst(I.getSwappedPredicate(), X,
   3969                                 ConstantExpr::getNeg(RHSC));
   3970     }
   3971 
   3972     BinaryOperator *SRem = nullptr;
   3973     // icmp (srem X, Y), Y
   3974     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   3975         Op1 == BO0->getOperand(1))
   3976       SRem = BO0;
   3977     // icmp Y, (srem X, Y)
   3978     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   3979              Op0 == BO1->getOperand(1))
   3980       SRem = BO1;
   3981     if (SRem) {
   3982       // We don't check hasOneUse to avoid increasing register pressure because
   3983       // the value we use is the same value this instruction was already using.
   3984       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   3985         default: break;
   3986         case ICmpInst::ICMP_EQ:
   3987           return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3988         case ICmpInst::ICMP_NE:
   3989           return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3990         case ICmpInst::ICMP_SGT:
   3991         case ICmpInst::ICMP_SGE:
   3992           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   3993                               Constant::getAllOnesValue(SRem->getType()));
   3994         case ICmpInst::ICMP_SLT:
   3995         case ICmpInst::ICMP_SLE:
   3996           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   3997                               Constant::getNullValue(SRem->getType()));
   3998       }
   3999     }
   4000 
   4001     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   4002         BO0->hasOneUse() && BO1->hasOneUse() &&
   4003         BO0->getOperand(1) == BO1->getOperand(1)) {
   4004       switch (BO0->getOpcode()) {
   4005       default: break;
   4006       case Instruction::Add:
   4007       case Instruction::Sub:
   4008       case Instruction::Xor:
   4009         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   4010           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   4011                               BO1->getOperand(0));
   4012         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   4013         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   4014           if (CI->getValue().isSignBit()) {
   4015             ICmpInst::Predicate Pred = I.isSigned()
   4016                                            ? I.getUnsignedPredicate()
   4017                                            : I.getSignedPredicate();
   4018             return new ICmpInst(Pred, BO0->getOperand(0),
   4019                                 BO1->getOperand(0));
   4020           }
   4021 
   4022           if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
   4023             ICmpInst::Predicate Pred = I.isSigned()
   4024                                            ? I.getUnsignedPredicate()
   4025                                            : I.getSignedPredicate();
   4026             Pred = I.getSwappedPredicate(Pred);
   4027             return new ICmpInst(Pred, BO0->getOperand(0),
   4028                                 BO1->getOperand(0));
   4029           }
   4030         }
   4031         break;
   4032       case Instruction::Mul:
   4033         if (!I.isEquality())
   4034           break;
   4035 
   4036         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   4037           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   4038           // Mask = -1 >> count-trailing-zeros(Cst).
   4039           if (!CI->isZero() && !CI->isOne()) {
   4040             const APInt &AP = CI->getValue();
   4041             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   4042                                     APInt::getLowBitsSet(AP.getBitWidth(),
   4043                                                          AP.getBitWidth() -
   4044                                                     AP.countTrailingZeros()));
   4045             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   4046             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   4047             return new ICmpInst(I.getPredicate(), And1, And2);
   4048           }
   4049         }
   4050         break;
   4051       case Instruction::UDiv:
   4052       case Instruction::LShr:
   4053         if (I.isSigned())
   4054           break;
   4055         // fall-through
   4056       case Instruction::SDiv:
   4057       case Instruction::AShr:
   4058         if (!BO0->isExact() || !BO1->isExact())
   4059           break;
   4060         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   4061                             BO1->getOperand(0));
   4062       case Instruction::Shl: {
   4063         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   4064         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   4065         if (!NUW && !NSW)
   4066           break;
   4067         if (!NSW && I.isSigned())
   4068           break;
   4069         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   4070                             BO1->getOperand(0));
   4071       }
   4072       }
   4073     }
   4074 
   4075     if (BO0) {
   4076       // Transform  A & (L - 1) `ult` L --> L != 0
   4077       auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
   4078       auto BitwiseAnd =
   4079           m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
   4080 
   4081       if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
   4082         auto *Zero = Constant::getNullValue(BO0->getType());
   4083         return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
   4084       }
   4085     }
   4086   }
   4087 
   4088   { Value *A, *B;
   4089     // Transform (A & ~B) == 0 --> (A & B) != 0
   4090     // and       (A & ~B) != 0 --> (A & B) == 0
   4091     // if A is a power of 2.
   4092     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   4093         match(Op1, m_Zero()) &&
   4094         isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
   4095       return new ICmpInst(I.getInversePredicate(),
   4096                           Builder->CreateAnd(A, B),
   4097                           Op1);
   4098 
   4099     // ~x < ~y --> y < x
   4100     // ~x < cst --> ~cst < x
   4101     if (match(Op0, m_Not(m_Value(A)))) {
   4102       if (match(Op1, m_Not(m_Value(B))))
   4103         return new ICmpInst(I.getPredicate(), B, A);
   4104       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   4105         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   4106     }
   4107 
   4108     Instruction *AddI = nullptr;
   4109     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
   4110                                      m_Instruction(AddI))) &&
   4111         isa<IntegerType>(A->getType())) {
   4112       Value *Result;
   4113       Constant *Overflow;
   4114       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
   4115                                 Overflow)) {
   4116         replaceInstUsesWith(*AddI, Result);
   4117         return replaceInstUsesWith(I, Overflow);
   4118       }
   4119     }
   4120 
   4121     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
   4122     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   4123       if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
   4124         return R;
   4125     }
   4126     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   4127       if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
   4128         return R;
   4129     }
   4130   }
   4131 
   4132   if (I.isEquality()) {
   4133     Value *A, *B, *C, *D;
   4134 
   4135     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   4136       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   4137         Value *OtherVal = A == Op1 ? B : A;
   4138         return new ICmpInst(I.getPredicate(), OtherVal,
   4139                             Constant::getNullValue(A->getType()));
   4140       }
   4141 
   4142       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   4143         // A^c1 == C^c2 --> A == C^(c1^c2)
   4144         ConstantInt *C1, *C2;
   4145         if (match(B, m_ConstantInt(C1)) &&
   4146             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   4147           Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
   4148           Value *Xor = Builder->CreateXor(C, NC);
   4149           return new ICmpInst(I.getPredicate(), A, Xor);
   4150         }
   4151 
   4152         // A^B == A^D -> B == D
   4153         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   4154         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   4155         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   4156         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   4157       }
   4158     }
   4159 
   4160     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   4161         (A == Op0 || B == Op0)) {
   4162       // A == (A^B)  ->  B == 0
   4163       Value *OtherVal = A == Op0 ? B : A;
   4164       return new ICmpInst(I.getPredicate(), OtherVal,
   4165                           Constant::getNullValue(A->getType()));
   4166     }
   4167 
   4168     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   4169     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   4170         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   4171       Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   4172 
   4173       if (A == C) {
   4174         X = B; Y = D; Z = A;
   4175       } else if (A == D) {
   4176         X = B; Y = C; Z = A;
   4177       } else if (B == C) {
   4178         X = A; Y = D; Z = B;
   4179       } else if (B == D) {
   4180         X = A; Y = C; Z = B;
   4181       }
   4182 
   4183       if (X) {   // Build (X^Y) & Z
   4184         Op1 = Builder->CreateXor(X, Y);
   4185         Op1 = Builder->CreateAnd(Op1, Z);
   4186         I.setOperand(0, Op1);
   4187         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   4188         return &I;
   4189       }
   4190     }
   4191 
   4192     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
   4193     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
   4194     ConstantInt *Cst1;
   4195     if ((Op0->hasOneUse() &&
   4196          match(Op0, m_ZExt(m_Value(A))) &&
   4197          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
   4198         (Op1->hasOneUse() &&
   4199          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
   4200          match(Op1, m_ZExt(m_Value(A))))) {
   4201       APInt Pow2 = Cst1->getValue() + 1;
   4202       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
   4203           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
   4204         return new ICmpInst(I.getPredicate(), A,
   4205                             Builder->CreateTrunc(B, A->getType()));
   4206     }
   4207 
   4208     // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
   4209     // For lshr and ashr pairs.
   4210     if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   4211          match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
   4212         (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   4213          match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
   4214       unsigned TypeBits = Cst1->getBitWidth();
   4215       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
   4216       if (ShAmt < TypeBits && ShAmt != 0) {
   4217         ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
   4218                                        ? ICmpInst::ICMP_UGE
   4219                                        : ICmpInst::ICMP_ULT;
   4220         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
   4221         APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
   4222         return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
   4223       }
   4224     }
   4225 
   4226     // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
   4227     if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
   4228         match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
   4229       unsigned TypeBits = Cst1->getBitWidth();
   4230       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
   4231       if (ShAmt < TypeBits && ShAmt != 0) {
   4232         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
   4233         APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
   4234         Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
   4235                                         I.getName() + ".mask");
   4236         return new ICmpInst(I.getPredicate(), And,
   4237                             Constant::getNullValue(Cst1->getType()));
   4238       }
   4239     }
   4240 
   4241     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   4242     // "icmp (and X, mask), cst"
   4243     uint64_t ShAmt = 0;
   4244     if (Op0->hasOneUse() &&
   4245         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   4246                                            m_ConstantInt(ShAmt))))) &&
   4247         match(Op1, m_ConstantInt(Cst1)) &&
   4248         // Only do this when A has multiple uses.  This is most important to do
   4249         // when it exposes other optimizations.
   4250         !A->hasOneUse()) {
   4251       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   4252 
   4253       if (ShAmt < ASize) {
   4254         APInt MaskV =
   4255           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   4256         MaskV <<= ShAmt;
   4257 
   4258         APInt CmpV = Cst1->getValue().zext(ASize);
   4259         CmpV <<= ShAmt;
   4260 
   4261         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   4262         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   4263       }
   4264     }
   4265   }
   4266 
   4267   // The 'cmpxchg' instruction returns an aggregate containing the old value and
   4268   // an i1 which indicates whether or not we successfully did the swap.
   4269   //
   4270   // Replace comparisons between the old value and the expected value with the
   4271   // indicator that 'cmpxchg' returns.
   4272   //
   4273   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
   4274   // spuriously fail.  In those cases, the old value may equal the expected
   4275   // value but it is possible for the swap to not occur.
   4276   if (I.getPredicate() == ICmpInst::ICMP_EQ)
   4277     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
   4278       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
   4279         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
   4280             !ACXI->isWeak())
   4281           return ExtractValueInst::Create(ACXI, 1);
   4282 
   4283   {
   4284     Value *X; ConstantInt *Cst;
   4285     // icmp X+Cst, X
   4286     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   4287       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
   4288 
   4289     // icmp X, X+Cst
   4290     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   4291       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
   4292   }
   4293   return Changed ? &I : nullptr;
   4294 }
   4295 
   4296 /// Fold fcmp ([us]itofp x, cst) if possible.
   4297 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   4298                                                 Instruction *LHSI,
   4299                                                 Constant *RHSC) {
   4300   if (!isa<ConstantFP>(RHSC)) return nullptr;
   4301   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   4302 
   4303   // Get the width of the mantissa.  We don't want to hack on conversions that
   4304   // might lose information from the integer, e.g. "i64 -> float"
   4305   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   4306   if (MantissaWidth == -1) return nullptr;  // Unknown.
   4307 
   4308   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   4309 
   4310   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   4311 
   4312   if (I.isEquality()) {
   4313     FCmpInst::Predicate P = I.getPredicate();
   4314     bool IsExact = false;
   4315     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
   4316     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
   4317 
   4318     // If the floating point constant isn't an integer value, we know if we will
   4319     // ever compare equal / not equal to it.
   4320     if (!IsExact) {
   4321       // TODO: Can never be -0.0 and other non-representable values
   4322       APFloat RHSRoundInt(RHS);
   4323       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
   4324       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
   4325         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
   4326           return replaceInstUsesWith(I, Builder->getFalse());
   4327 
   4328         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
   4329         return replaceInstUsesWith(I, Builder->getTrue());
   4330       }
   4331     }
   4332 
   4333     // TODO: If the constant is exactly representable, is it always OK to do
   4334     // equality compares as integer?
   4335   }
   4336 
   4337   // Check to see that the input is converted from an integer type that is small
   4338   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   4339   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   4340   unsigned InputSize = IntTy->getScalarSizeInBits();
   4341 
   4342   // Following test does NOT adjust InputSize downwards for signed inputs,
   4343   // because the most negative value still requires all the mantissa bits
   4344   // to distinguish it from one less than that value.
   4345   if ((int)InputSize > MantissaWidth) {
   4346     // Conversion would lose accuracy. Check if loss can impact comparison.
   4347     int Exp = ilogb(RHS);
   4348     if (Exp == APFloat::IEK_Inf) {
   4349       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
   4350       if (MaxExponent < (int)InputSize - !LHSUnsigned)
   4351         // Conversion could create infinity.
   4352         return nullptr;
   4353     } else {
   4354       // Note that if RHS is zero or NaN, then Exp is negative
   4355       // and first condition is trivially false.
   4356       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
   4357         // Conversion could affect comparison.
   4358         return nullptr;
   4359     }
   4360   }
   4361 
   4362   // Otherwise, we can potentially simplify the comparison.  We know that it
   4363   // will always come through as an integer value and we know the constant is
   4364   // not a NAN (it would have been previously simplified).
   4365   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   4366 
   4367   ICmpInst::Predicate Pred;
   4368   switch (I.getPredicate()) {
   4369   default: llvm_unreachable("Unexpected predicate!");
   4370   case FCmpInst::FCMP_UEQ:
   4371   case FCmpInst::FCMP_OEQ:
   4372     Pred = ICmpInst::ICMP_EQ;
   4373     break;
   4374   case FCmpInst::FCMP_UGT:
   4375   case FCmpInst::FCMP_OGT:
   4376     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   4377     break;
   4378   case FCmpInst::FCMP_UGE:
   4379   case FCmpInst::FCMP_OGE:
   4380     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   4381     break;
   4382   case FCmpInst::FCMP_ULT:
   4383   case FCmpInst::FCMP_OLT:
   4384     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   4385     break;
   4386   case FCmpInst::FCMP_ULE:
   4387   case FCmpInst::FCMP_OLE:
   4388     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   4389     break;
   4390   case FCmpInst::FCMP_UNE:
   4391   case FCmpInst::FCMP_ONE:
   4392     Pred = ICmpInst::ICMP_NE;
   4393     break;
   4394   case FCmpInst::FCMP_ORD:
   4395     return replaceInstUsesWith(I, Builder->getTrue());
   4396   case FCmpInst::FCMP_UNO:
   4397     return replaceInstUsesWith(I, Builder->getFalse());
   4398   }
   4399 
   4400   // Now we know that the APFloat is a normal number, zero or inf.
   4401 
   4402   // See if the FP constant is too large for the integer.  For example,
   4403   // comparing an i8 to 300.0.
   4404   unsigned IntWidth = IntTy->getScalarSizeInBits();
   4405 
   4406   if (!LHSUnsigned) {
   4407     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   4408     // and large values.
   4409     APFloat SMax(RHS.getSemantics());
   4410     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   4411                           APFloat::rmNearestTiesToEven);
   4412     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   4413       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   4414           Pred == ICmpInst::ICMP_SLE)
   4415         return replaceInstUsesWith(I, Builder->getTrue());
   4416       return replaceInstUsesWith(I, Builder->getFalse());
   4417     }
   4418   } else {
   4419     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   4420     // +INF and large values.
   4421     APFloat UMax(RHS.getSemantics());
   4422     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   4423                           APFloat::rmNearestTiesToEven);
   4424     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   4425       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   4426           Pred == ICmpInst::ICMP_ULE)
   4427         return replaceInstUsesWith(I, Builder->getTrue());
   4428       return replaceInstUsesWith(I, Builder->getFalse());
   4429     }
   4430   }
   4431 
   4432   if (!LHSUnsigned) {
   4433     // See if the RHS value is < SignedMin.
   4434     APFloat SMin(RHS.getSemantics());
   4435     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   4436                           APFloat::rmNearestTiesToEven);
   4437     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   4438       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   4439           Pred == ICmpInst::ICMP_SGE)
   4440         return replaceInstUsesWith(I, Builder->getTrue());
   4441       return replaceInstUsesWith(I, Builder->getFalse());
   4442     }
   4443   } else {
   4444     // See if the RHS value is < UnsignedMin.
   4445     APFloat SMin(RHS.getSemantics());
   4446     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   4447                           APFloat::rmNearestTiesToEven);
   4448     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   4449       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   4450           Pred == ICmpInst::ICMP_UGE)
   4451         return replaceInstUsesWith(I, Builder->getTrue());
   4452       return replaceInstUsesWith(I, Builder->getFalse());
   4453     }
   4454   }
   4455 
   4456   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   4457   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   4458   // casting the FP value to the integer value and back, checking for equality.
   4459   // Don't do this for zero, because -0.0 is not fractional.
   4460   Constant *RHSInt = LHSUnsigned
   4461     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   4462     : ConstantExpr::getFPToSI(RHSC, IntTy);
   4463   if (!RHS.isZero()) {
   4464     bool Equal = LHSUnsigned
   4465       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   4466       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   4467     if (!Equal) {
   4468       // If we had a comparison against a fractional value, we have to adjust
   4469       // the compare predicate and sometimes the value.  RHSC is rounded towards
   4470       // zero at this point.
   4471       switch (Pred) {
   4472       default: llvm_unreachable("Unexpected integer comparison!");
   4473       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   4474         return replaceInstUsesWith(I, Builder->getTrue());
   4475       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   4476         return replaceInstUsesWith(I, Builder->getFalse());
   4477       case ICmpInst::ICMP_ULE:
   4478         // (float)int <= 4.4   --> int <= 4
   4479         // (float)int <= -4.4  --> false
   4480         if (RHS.isNegative())
   4481           return replaceInstUsesWith(I, Builder->getFalse());
   4482         break;
   4483       case ICmpInst::ICMP_SLE:
   4484         // (float)int <= 4.4   --> int <= 4
   4485         // (float)int <= -4.4  --> int < -4
   4486         if (RHS.isNegative())
   4487           Pred = ICmpInst::ICMP_SLT;
   4488         break;
   4489       case ICmpInst::ICMP_ULT:
   4490         // (float)int < -4.4   --> false
   4491         // (float)int < 4.4    --> int <= 4
   4492         if (RHS.isNegative())
   4493           return replaceInstUsesWith(I, Builder->getFalse());
   4494         Pred = ICmpInst::ICMP_ULE;
   4495         break;
   4496       case ICmpInst::ICMP_SLT:
   4497         // (float)int < -4.4   --> int < -4
   4498         // (float)int < 4.4    --> int <= 4
   4499         if (!RHS.isNegative())
   4500           Pred = ICmpInst::ICMP_SLE;
   4501         break;
   4502       case ICmpInst::ICMP_UGT:
   4503         // (float)int > 4.4    --> int > 4
   4504         // (float)int > -4.4   --> true
   4505         if (RHS.isNegative())
   4506           return replaceInstUsesWith(I, Builder->getTrue());
   4507         break;
   4508       case ICmpInst::ICMP_SGT:
   4509         // (float)int > 4.4    --> int > 4
   4510         // (float)int > -4.4   --> int >= -4
   4511         if (RHS.isNegative())
   4512           Pred = ICmpInst::ICMP_SGE;
   4513         break;
   4514       case ICmpInst::ICMP_UGE:
   4515         // (float)int >= -4.4   --> true
   4516         // (float)int >= 4.4    --> int > 4
   4517         if (RHS.isNegative())
   4518           return replaceInstUsesWith(I, Builder->getTrue());
   4519         Pred = ICmpInst::ICMP_UGT;
   4520         break;
   4521       case ICmpInst::ICMP_SGE:
   4522         // (float)int >= -4.4   --> int >= -4
   4523         // (float)int >= 4.4    --> int > 4
   4524         if (!RHS.isNegative())
   4525           Pred = ICmpInst::ICMP_SGT;
   4526         break;
   4527       }
   4528     }
   4529   }
   4530 
   4531   // Lower this FP comparison into an appropriate integer version of the
   4532   // comparison.
   4533   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   4534 }
   4535 
   4536 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   4537   bool Changed = false;
   4538 
   4539   /// Orders the operands of the compare so that they are listed from most
   4540   /// complex to least complex.  This puts constants before unary operators,
   4541   /// before binary operators.
   4542   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   4543     I.swapOperands();
   4544     Changed = true;
   4545   }
   4546 
   4547   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   4548 
   4549   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
   4550                                   I.getFastMathFlags(), DL, TLI, DT, AC, &I))
   4551     return replaceInstUsesWith(I, V);
   4552 
   4553   // Simplify 'fcmp pred X, X'
   4554   if (Op0 == Op1) {
   4555     switch (I.getPredicate()) {
   4556     default: llvm_unreachable("Unknown predicate!");
   4557     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   4558     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   4559     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   4560     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   4561       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   4562       I.setPredicate(FCmpInst::FCMP_UNO);
   4563       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   4564       return &I;
   4565 
   4566     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   4567     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   4568     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   4569     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   4570       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   4571       I.setPredicate(FCmpInst::FCMP_ORD);
   4572       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   4573       return &I;
   4574     }
   4575   }
   4576 
   4577   // Test if the FCmpInst instruction is used exclusively by a select as
   4578   // part of a minimum or maximum operation. If so, refrain from doing
   4579   // any other folding. This helps out other analyses which understand
   4580   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   4581   // and CodeGen. And in this case, at least one of the comparison
   4582   // operands has at least one user besides the compare (the select),
   4583   // which would often largely negate the benefit of folding anyway.
   4584   if (I.hasOneUse())
   4585     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
   4586       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   4587           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   4588         return nullptr;
   4589 
   4590   // Handle fcmp with constant RHS
   4591   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   4592     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   4593       switch (LHSI->getOpcode()) {
   4594       case Instruction::FPExt: {
   4595         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   4596         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   4597         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   4598         if (!RHSF)
   4599           break;
   4600 
   4601         const fltSemantics *Sem;
   4602         // FIXME: This shouldn't be here.
   4603         if (LHSExt->getSrcTy()->isHalfTy())
   4604           Sem = &APFloat::IEEEhalf;
   4605         else if (LHSExt->getSrcTy()->isFloatTy())
   4606           Sem = &APFloat::IEEEsingle;
   4607         else if (LHSExt->getSrcTy()->isDoubleTy())
   4608           Sem = &APFloat::IEEEdouble;
   4609         else if (LHSExt->getSrcTy()->isFP128Ty())
   4610           Sem = &APFloat::IEEEquad;
   4611         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   4612           Sem = &APFloat::x87DoubleExtended;
   4613         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
   4614           Sem = &APFloat::PPCDoubleDouble;
   4615         else
   4616           break;
   4617 
   4618         bool Lossy;
   4619         APFloat F = RHSF->getValueAPF();
   4620         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   4621 
   4622         // Avoid lossy conversions and denormals. Zero is a special case
   4623         // that's OK to convert.
   4624         APFloat Fabs = F;
   4625         Fabs.clearSign();
   4626         if (!Lossy &&
   4627             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   4628                  APFloat::cmpLessThan) || Fabs.isZero()))
   4629 
   4630           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   4631                               ConstantFP::get(RHSC->getContext(), F));
   4632         break;
   4633       }
   4634       case Instruction::PHI:
   4635         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   4636         // block.  If in the same block, we're encouraging jump threading.  If
   4637         // not, we are just pessimizing the code by making an i1 phi.
   4638         if (LHSI->getParent() == I.getParent())
   4639           if (Instruction *NV = FoldOpIntoPhi(I))
   4640             return NV;
   4641         break;
   4642       case Instruction::SIToFP:
   4643       case Instruction::UIToFP:
   4644         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   4645           return NV;
   4646         break;
   4647       case Instruction::FSub: {
   4648         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   4649         Value *Op;
   4650         if (match(LHSI, m_FNeg(m_Value(Op))))
   4651           return new FCmpInst(I.getSwappedPredicate(), Op,
   4652                               ConstantExpr::getFNeg(RHSC));
   4653         break;
   4654       }
   4655       case Instruction::Load:
   4656         if (GetElementPtrInst *GEP =
   4657             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   4658           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   4659             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   4660                 !cast<LoadInst>(LHSI)->isVolatile())
   4661               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   4662                 return Res;
   4663         }
   4664         break;
   4665       case Instruction::Call: {
   4666         if (!RHSC->isNullValue())
   4667           break;
   4668 
   4669         CallInst *CI = cast<CallInst>(LHSI);
   4670         Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
   4671         if (IID != Intrinsic::fabs)
   4672           break;
   4673 
   4674         // Various optimization for fabs compared with zero.
   4675         switch (I.getPredicate()) {
   4676         default:
   4677           break;
   4678         // fabs(x) < 0 --> false
   4679         case FCmpInst::FCMP_OLT:
   4680           llvm_unreachable("handled by SimplifyFCmpInst");
   4681         // fabs(x) > 0 --> x != 0
   4682         case FCmpInst::FCMP_OGT:
   4683           return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
   4684         // fabs(x) <= 0 --> x == 0
   4685         case FCmpInst::FCMP_OLE:
   4686           return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
   4687         // fabs(x) >= 0 --> !isnan(x)
   4688         case FCmpInst::FCMP_OGE:
   4689           return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
   4690         // fabs(x) == 0 --> x == 0
   4691         // fabs(x) != 0 --> x != 0
   4692         case FCmpInst::FCMP_OEQ:
   4693         case FCmpInst::FCMP_UEQ:
   4694         case FCmpInst::FCMP_ONE:
   4695         case FCmpInst::FCMP_UNE:
   4696           return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
   4697         }
   4698       }
   4699       }
   4700   }
   4701 
   4702   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   4703   Value *X, *Y;
   4704   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   4705     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   4706 
   4707   // fcmp (fpext x), (fpext y) -> fcmp x, y
   4708   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   4709     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   4710       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   4711         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   4712                             RHSExt->getOperand(0));
   4713 
   4714   return Changed ? &I : nullptr;
   4715 }
   4716