1 //===- InstCombineCompares.cpp --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitICmp and visitFCmp functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Support/Debug.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "instcombine" 34 35 // How many times is a select replaced by one of its operands? 36 STATISTIC(NumSel, "Number of select opts"); 37 38 // Initialization Routines 39 40 static ConstantInt *getOne(Constant *C) { 41 return ConstantInt::get(cast<IntegerType>(C->getType()), 1); 42 } 43 44 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) { 45 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx)); 46 } 47 48 static bool HasAddOverflow(ConstantInt *Result, 49 ConstantInt *In1, ConstantInt *In2, 50 bool IsSigned) { 51 if (!IsSigned) 52 return Result->getValue().ult(In1->getValue()); 53 54 if (In2->isNegative()) 55 return Result->getValue().sgt(In1->getValue()); 56 return Result->getValue().slt(In1->getValue()); 57 } 58 59 /// Compute Result = In1+In2, returning true if the result overflowed for this 60 /// type. 61 static bool AddWithOverflow(Constant *&Result, Constant *In1, 62 Constant *In2, bool IsSigned = false) { 63 Result = ConstantExpr::getAdd(In1, In2); 64 65 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 66 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 67 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 68 if (HasAddOverflow(ExtractElement(Result, Idx), 69 ExtractElement(In1, Idx), 70 ExtractElement(In2, Idx), 71 IsSigned)) 72 return true; 73 } 74 return false; 75 } 76 77 return HasAddOverflow(cast<ConstantInt>(Result), 78 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 79 IsSigned); 80 } 81 82 static bool HasSubOverflow(ConstantInt *Result, 83 ConstantInt *In1, ConstantInt *In2, 84 bool IsSigned) { 85 if (!IsSigned) 86 return Result->getValue().ugt(In1->getValue()); 87 88 if (In2->isNegative()) 89 return Result->getValue().slt(In1->getValue()); 90 91 return Result->getValue().sgt(In1->getValue()); 92 } 93 94 /// Compute Result = In1-In2, returning true if the result overflowed for this 95 /// type. 96 static bool SubWithOverflow(Constant *&Result, Constant *In1, 97 Constant *In2, bool IsSigned = false) { 98 Result = ConstantExpr::getSub(In1, In2); 99 100 if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { 101 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 102 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); 103 if (HasSubOverflow(ExtractElement(Result, Idx), 104 ExtractElement(In1, Idx), 105 ExtractElement(In2, Idx), 106 IsSigned)) 107 return true; 108 } 109 return false; 110 } 111 112 return HasSubOverflow(cast<ConstantInt>(Result), 113 cast<ConstantInt>(In1), cast<ConstantInt>(In2), 114 IsSigned); 115 } 116 117 /// Given an icmp instruction, return true if any use of this comparison is a 118 /// branch on sign bit comparison. 119 static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) { 120 for (auto *U : I.users()) 121 if (isa<BranchInst>(U)) 122 return isSignBit; 123 return false; 124 } 125 126 /// Given an exploded icmp instruction, return true if the comparison only 127 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the 128 /// result of the comparison is true when the input value is signed. 129 static bool isSignBitCheck(ICmpInst::Predicate Pred, ConstantInt *RHS, 130 bool &TrueIfSigned) { 131 switch (Pred) { 132 case ICmpInst::ICMP_SLT: // True if LHS s< 0 133 TrueIfSigned = true; 134 return RHS->isZero(); 135 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 136 TrueIfSigned = true; 137 return RHS->isAllOnesValue(); 138 case ICmpInst::ICMP_SGT: // True if LHS s> -1 139 TrueIfSigned = false; 140 return RHS->isAllOnesValue(); 141 case ICmpInst::ICMP_UGT: 142 // True if LHS u> RHS and RHS == high-bit-mask - 1 143 TrueIfSigned = true; 144 return RHS->isMaxValue(true); 145 case ICmpInst::ICMP_UGE: 146 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) 147 TrueIfSigned = true; 148 return RHS->getValue().isSignBit(); 149 default: 150 return false; 151 } 152 } 153 154 /// Returns true if the exploded icmp can be expressed as a signed comparison 155 /// to zero and updates the predicate accordingly. 156 /// The signedness of the comparison is preserved. 157 static bool isSignTest(ICmpInst::Predicate &Pred, const ConstantInt *RHS) { 158 if (!ICmpInst::isSigned(Pred)) 159 return false; 160 161 if (RHS->isZero()) 162 return ICmpInst::isRelational(Pred); 163 164 if (RHS->isOne()) { 165 if (Pred == ICmpInst::ICMP_SLT) { 166 Pred = ICmpInst::ICMP_SLE; 167 return true; 168 } 169 } else if (RHS->isAllOnesValue()) { 170 if (Pred == ICmpInst::ICMP_SGT) { 171 Pred = ICmpInst::ICMP_SGE; 172 return true; 173 } 174 } 175 176 return false; 177 } 178 179 /// Return true if the constant is of the form 1+0+. This is the same as 180 /// lowones(~X). 181 static bool isHighOnes(const ConstantInt *CI) { 182 return (~CI->getValue() + 1).isPowerOf2(); 183 } 184 185 /// Given a signed integer type and a set of known zero and one bits, compute 186 /// the maximum and minimum values that could have the specified known zero and 187 /// known one bits, returning them in Min/Max. 188 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 189 const APInt &KnownOne, 190 APInt &Min, APInt &Max) { 191 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 192 KnownZero.getBitWidth() == Min.getBitWidth() && 193 KnownZero.getBitWidth() == Max.getBitWidth() && 194 "KnownZero, KnownOne and Min, Max must have equal bitwidth."); 195 APInt UnknownBits = ~(KnownZero|KnownOne); 196 197 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign 198 // bit if it is unknown. 199 Min = KnownOne; 200 Max = KnownOne|UnknownBits; 201 202 if (UnknownBits.isNegative()) { // Sign bit is unknown 203 Min.setBit(Min.getBitWidth()-1); 204 Max.clearBit(Max.getBitWidth()-1); 205 } 206 } 207 208 /// Given an unsigned integer type and a set of known zero and one bits, compute 209 /// the maximum and minimum values that could have the specified known zero and 210 /// known one bits, returning them in Min/Max. 211 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, 212 const APInt &KnownOne, 213 APInt &Min, APInt &Max) { 214 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() && 215 KnownZero.getBitWidth() == Min.getBitWidth() && 216 KnownZero.getBitWidth() == Max.getBitWidth() && 217 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); 218 APInt UnknownBits = ~(KnownZero|KnownOne); 219 220 // The minimum value is when the unknown bits are all zeros. 221 Min = KnownOne; 222 // The maximum value is when the unknown bits are all ones. 223 Max = KnownOne|UnknownBits; 224 } 225 226 /// This is called when we see this pattern: 227 /// cmp pred (load (gep GV, ...)), cmpcst 228 /// where GV is a global variable with a constant initializer. Try to simplify 229 /// this into some simple computation that does not need the load. For example 230 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3". 231 /// 232 /// If AndCst is non-null, then the loaded value is masked with that constant 233 /// before doing the comparison. This handles cases like "A[i]&4 == 0". 234 Instruction *InstCombiner:: 235 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, 236 CmpInst &ICI, ConstantInt *AndCst) { 237 Constant *Init = GV->getInitializer(); 238 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init)) 239 return nullptr; 240 241 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements(); 242 if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays. 243 244 // There are many forms of this optimization we can handle, for now, just do 245 // the simple index into a single-dimensional array. 246 // 247 // Require: GEP GV, 0, i {{, constant indices}} 248 if (GEP->getNumOperands() < 3 || 249 !isa<ConstantInt>(GEP->getOperand(1)) || 250 !cast<ConstantInt>(GEP->getOperand(1))->isZero() || 251 isa<Constant>(GEP->getOperand(2))) 252 return nullptr; 253 254 // Check that indices after the variable are constants and in-range for the 255 // type they index. Collect the indices. This is typically for arrays of 256 // structs. 257 SmallVector<unsigned, 4> LaterIndices; 258 259 Type *EltTy = Init->getType()->getArrayElementType(); 260 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { 261 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); 262 if (!Idx) return nullptr; // Variable index. 263 264 uint64_t IdxVal = Idx->getZExtValue(); 265 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index. 266 267 if (StructType *STy = dyn_cast<StructType>(EltTy)) 268 EltTy = STy->getElementType(IdxVal); 269 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { 270 if (IdxVal >= ATy->getNumElements()) return nullptr; 271 EltTy = ATy->getElementType(); 272 } else { 273 return nullptr; // Unknown type. 274 } 275 276 LaterIndices.push_back(IdxVal); 277 } 278 279 enum { Overdefined = -3, Undefined = -2 }; 280 281 // Variables for our state machines. 282 283 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form 284 // "i == 47 | i == 87", where 47 is the first index the condition is true for, 285 // and 87 is the second (and last) index. FirstTrueElement is -2 when 286 // undefined, otherwise set to the first true element. SecondTrueElement is 287 // -2 when undefined, -3 when overdefined and >= 0 when that index is true. 288 int FirstTrueElement = Undefined, SecondTrueElement = Undefined; 289 290 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the 291 // form "i != 47 & i != 87". Same state transitions as for true elements. 292 int FirstFalseElement = Undefined, SecondFalseElement = Undefined; 293 294 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these 295 /// define a state machine that triggers for ranges of values that the index 296 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. 297 /// This is -2 when undefined, -3 when overdefined, and otherwise the last 298 /// index in the range (inclusive). We use -2 for undefined here because we 299 /// use relative comparisons and don't want 0-1 to match -1. 300 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; 301 302 // MagicBitvector - This is a magic bitvector where we set a bit if the 303 // comparison is true for element 'i'. If there are 64 elements or less in 304 // the array, this will fully represent all the comparison results. 305 uint64_t MagicBitvector = 0; 306 307 // Scan the array and see if one of our patterns matches. 308 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); 309 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) { 310 Constant *Elt = Init->getAggregateElement(i); 311 if (!Elt) return nullptr; 312 313 // If this is indexing an array of structures, get the structure element. 314 if (!LaterIndices.empty()) 315 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); 316 317 // If the element is masked, handle it. 318 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); 319 320 // Find out if the comparison would be true or false for the i'th element. 321 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, 322 CompareRHS, DL, TLI); 323 // If the result is undef for this element, ignore it. 324 if (isa<UndefValue>(C)) { 325 // Extend range state machines to cover this element in case there is an 326 // undef in the middle of the range. 327 if (TrueRangeEnd == (int)i-1) 328 TrueRangeEnd = i; 329 if (FalseRangeEnd == (int)i-1) 330 FalseRangeEnd = i; 331 continue; 332 } 333 334 // If we can't compute the result for any of the elements, we have to give 335 // up evaluating the entire conditional. 336 if (!isa<ConstantInt>(C)) return nullptr; 337 338 // Otherwise, we know if the comparison is true or false for this element, 339 // update our state machines. 340 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); 341 342 // State machine for single/double/range index comparison. 343 if (IsTrueForElt) { 344 // Update the TrueElement state machine. 345 if (FirstTrueElement == Undefined) 346 FirstTrueElement = TrueRangeEnd = i; // First true element. 347 else { 348 // Update double-compare state machine. 349 if (SecondTrueElement == Undefined) 350 SecondTrueElement = i; 351 else 352 SecondTrueElement = Overdefined; 353 354 // Update range state machine. 355 if (TrueRangeEnd == (int)i-1) 356 TrueRangeEnd = i; 357 else 358 TrueRangeEnd = Overdefined; 359 } 360 } else { 361 // Update the FalseElement state machine. 362 if (FirstFalseElement == Undefined) 363 FirstFalseElement = FalseRangeEnd = i; // First false element. 364 else { 365 // Update double-compare state machine. 366 if (SecondFalseElement == Undefined) 367 SecondFalseElement = i; 368 else 369 SecondFalseElement = Overdefined; 370 371 // Update range state machine. 372 if (FalseRangeEnd == (int)i-1) 373 FalseRangeEnd = i; 374 else 375 FalseRangeEnd = Overdefined; 376 } 377 } 378 379 // If this element is in range, update our magic bitvector. 380 if (i < 64 && IsTrueForElt) 381 MagicBitvector |= 1ULL << i; 382 383 // If all of our states become overdefined, bail out early. Since the 384 // predicate is expensive, only check it every 8 elements. This is only 385 // really useful for really huge arrays. 386 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined && 387 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined && 388 FalseRangeEnd == Overdefined) 389 return nullptr; 390 } 391 392 // Now that we've scanned the entire array, emit our new comparison(s). We 393 // order the state machines in complexity of the generated code. 394 Value *Idx = GEP->getOperand(2); 395 396 // If the index is larger than the pointer size of the target, truncate the 397 // index down like the GEP would do implicitly. We don't have to do this for 398 // an inbounds GEP because the index can't be out of range. 399 if (!GEP->isInBounds()) { 400 Type *IntPtrTy = DL.getIntPtrType(GEP->getType()); 401 unsigned PtrSize = IntPtrTy->getIntegerBitWidth(); 402 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize) 403 Idx = Builder->CreateTrunc(Idx, IntPtrTy); 404 } 405 406 // If the comparison is only true for one or two elements, emit direct 407 // comparisons. 408 if (SecondTrueElement != Overdefined) { 409 // None true -> false. 410 if (FirstTrueElement == Undefined) 411 return replaceInstUsesWith(ICI, Builder->getFalse()); 412 413 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); 414 415 // True for one element -> 'i == 47'. 416 if (SecondTrueElement == Undefined) 417 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); 418 419 // True for two elements -> 'i == 47 | i == 72'. 420 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); 421 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); 422 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx); 423 return BinaryOperator::CreateOr(C1, C2); 424 } 425 426 // If the comparison is only false for one or two elements, emit direct 427 // comparisons. 428 if (SecondFalseElement != Overdefined) { 429 // None false -> true. 430 if (FirstFalseElement == Undefined) 431 return replaceInstUsesWith(ICI, Builder->getTrue()); 432 433 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); 434 435 // False for one element -> 'i != 47'. 436 if (SecondFalseElement == Undefined) 437 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); 438 439 // False for two elements -> 'i != 47 & i != 72'. 440 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); 441 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); 442 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); 443 return BinaryOperator::CreateAnd(C1, C2); 444 } 445 446 // If the comparison can be replaced with a range comparison for the elements 447 // where it is true, emit the range check. 448 if (TrueRangeEnd != Overdefined) { 449 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); 450 451 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). 452 if (FirstTrueElement) { 453 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); 454 Idx = Builder->CreateAdd(Idx, Offs); 455 } 456 457 Value *End = ConstantInt::get(Idx->getType(), 458 TrueRangeEnd-FirstTrueElement+1); 459 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); 460 } 461 462 // False range check. 463 if (FalseRangeEnd != Overdefined) { 464 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); 465 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse). 466 if (FirstFalseElement) { 467 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); 468 Idx = Builder->CreateAdd(Idx, Offs); 469 } 470 471 Value *End = ConstantInt::get(Idx->getType(), 472 FalseRangeEnd-FirstFalseElement); 473 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); 474 } 475 476 // If a magic bitvector captures the entire comparison state 477 // of this load, replace it with computation that does: 478 // ((magic_cst >> i) & 1) != 0 479 { 480 Type *Ty = nullptr; 481 482 // Look for an appropriate type: 483 // - The type of Idx if the magic fits 484 // - The smallest fitting legal type if we have a DataLayout 485 // - Default to i32 486 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth()) 487 Ty = Idx->getType(); 488 else 489 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount); 490 491 if (Ty) { 492 Value *V = Builder->CreateIntCast(Idx, Ty, false); 493 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V); 494 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); 495 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); 496 } 497 } 498 499 return nullptr; 500 } 501 502 /// Return a value that can be used to compare the *offset* implied by a GEP to 503 /// zero. For example, if we have &A[i], we want to return 'i' for 504 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales 505 /// are involved. The above expression would also be legal to codegen as 506 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32). 507 /// This latter form is less amenable to optimization though, and we are allowed 508 /// to generate the first by knowing that pointer arithmetic doesn't overflow. 509 /// 510 /// If we can't emit an optimized form for this expression, this returns null. 511 /// 512 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC, 513 const DataLayout &DL) { 514 gep_type_iterator GTI = gep_type_begin(GEP); 515 516 // Check to see if this gep only has a single variable index. If so, and if 517 // any constant indices are a multiple of its scale, then we can compute this 518 // in terms of the scale of the variable index. For example, if the GEP 519 // implies an offset of "12 + i*4", then we can codegen this as "3 + i", 520 // because the expression will cross zero at the same point. 521 unsigned i, e = GEP->getNumOperands(); 522 int64_t Offset = 0; 523 for (i = 1; i != e; ++i, ++GTI) { 524 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 525 // Compute the aggregate offset of constant indices. 526 if (CI->isZero()) continue; 527 528 // Handle a struct index, which adds its field offset to the pointer. 529 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 530 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 531 } else { 532 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 533 Offset += Size*CI->getSExtValue(); 534 } 535 } else { 536 // Found our variable index. 537 break; 538 } 539 } 540 541 // If there are no variable indices, we must have a constant offset, just 542 // evaluate it the general way. 543 if (i == e) return nullptr; 544 545 Value *VariableIdx = GEP->getOperand(i); 546 // Determine the scale factor of the variable element. For example, this is 547 // 4 if the variable index is into an array of i32. 548 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType()); 549 550 // Verify that there are no other variable indices. If so, emit the hard way. 551 for (++i, ++GTI; i != e; ++i, ++GTI) { 552 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); 553 if (!CI) return nullptr; 554 555 // Compute the aggregate offset of constant indices. 556 if (CI->isZero()) continue; 557 558 // Handle a struct index, which adds its field offset to the pointer. 559 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 560 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); 561 } else { 562 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 563 Offset += Size*CI->getSExtValue(); 564 } 565 } 566 567 // Okay, we know we have a single variable index, which must be a 568 // pointer/array/vector index. If there is no offset, life is simple, return 569 // the index. 570 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType()); 571 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth(); 572 if (Offset == 0) { 573 // Cast to intptrty in case a truncation occurs. If an extension is needed, 574 // we don't need to bother extending: the extension won't affect where the 575 // computation crosses zero. 576 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { 577 VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); 578 } 579 return VariableIdx; 580 } 581 582 // Otherwise, there is an index. The computation we will do will be modulo 583 // the pointer size, so get it. 584 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); 585 586 Offset &= PtrSizeMask; 587 VariableScale &= PtrSizeMask; 588 589 // To do this transformation, any constant index must be a multiple of the 590 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", 591 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a 592 // multiple of the variable scale. 593 int64_t NewOffs = Offset / (int64_t)VariableScale; 594 if (Offset != NewOffs*(int64_t)VariableScale) 595 return nullptr; 596 597 // Okay, we can do this evaluation. Start by converting the index to intptr. 598 if (VariableIdx->getType() != IntPtrTy) 599 VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, 600 true /*Signed*/); 601 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs); 602 return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset"); 603 } 604 605 /// Returns true if we can rewrite Start as a GEP with pointer Base 606 /// and some integer offset. The nodes that need to be re-written 607 /// for this transformation will be added to Explored. 608 static bool canRewriteGEPAsOffset(Value *Start, Value *Base, 609 const DataLayout &DL, 610 SetVector<Value *> &Explored) { 611 SmallVector<Value *, 16> WorkList(1, Start); 612 Explored.insert(Base); 613 614 // The following traversal gives us an order which can be used 615 // when doing the final transformation. Since in the final 616 // transformation we create the PHI replacement instructions first, 617 // we don't have to get them in any particular order. 618 // 619 // However, for other instructions we will have to traverse the 620 // operands of an instruction first, which means that we have to 621 // do a post-order traversal. 622 while (!WorkList.empty()) { 623 SetVector<PHINode *> PHIs; 624 625 while (!WorkList.empty()) { 626 if (Explored.size() >= 100) 627 return false; 628 629 Value *V = WorkList.back(); 630 631 if (Explored.count(V) != 0) { 632 WorkList.pop_back(); 633 continue; 634 } 635 636 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) && 637 !isa<GEPOperator>(V) && !isa<PHINode>(V)) 638 // We've found some value that we can't explore which is different from 639 // the base. Therefore we can't do this transformation. 640 return false; 641 642 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) { 643 auto *CI = dyn_cast<CastInst>(V); 644 if (!CI->isNoopCast(DL)) 645 return false; 646 647 if (Explored.count(CI->getOperand(0)) == 0) 648 WorkList.push_back(CI->getOperand(0)); 649 } 650 651 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 652 // We're limiting the GEP to having one index. This will preserve 653 // the original pointer type. We could handle more cases in the 654 // future. 655 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() || 656 GEP->getType() != Start->getType()) 657 return false; 658 659 if (Explored.count(GEP->getOperand(0)) == 0) 660 WorkList.push_back(GEP->getOperand(0)); 661 } 662 663 if (WorkList.back() == V) { 664 WorkList.pop_back(); 665 // We've finished visiting this node, mark it as such. 666 Explored.insert(V); 667 } 668 669 if (auto *PN = dyn_cast<PHINode>(V)) { 670 // We cannot transform PHIs on unsplittable basic blocks. 671 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator())) 672 return false; 673 Explored.insert(PN); 674 PHIs.insert(PN); 675 } 676 } 677 678 // Explore the PHI nodes further. 679 for (auto *PN : PHIs) 680 for (Value *Op : PN->incoming_values()) 681 if (Explored.count(Op) == 0) 682 WorkList.push_back(Op); 683 } 684 685 // Make sure that we can do this. Since we can't insert GEPs in a basic 686 // block before a PHI node, we can't easily do this transformation if 687 // we have PHI node users of transformed instructions. 688 for (Value *Val : Explored) { 689 for (Value *Use : Val->uses()) { 690 691 auto *PHI = dyn_cast<PHINode>(Use); 692 auto *Inst = dyn_cast<Instruction>(Val); 693 694 if (Inst == Base || Inst == PHI || !Inst || !PHI || 695 Explored.count(PHI) == 0) 696 continue; 697 698 if (PHI->getParent() == Inst->getParent()) 699 return false; 700 } 701 } 702 return true; 703 } 704 705 // Sets the appropriate insert point on Builder where we can add 706 // a replacement Instruction for V (if that is possible). 707 static void setInsertionPoint(IRBuilder<> &Builder, Value *V, 708 bool Before = true) { 709 if (auto *PHI = dyn_cast<PHINode>(V)) { 710 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt()); 711 return; 712 } 713 if (auto *I = dyn_cast<Instruction>(V)) { 714 if (!Before) 715 I = &*std::next(I->getIterator()); 716 Builder.SetInsertPoint(I); 717 return; 718 } 719 if (auto *A = dyn_cast<Argument>(V)) { 720 // Set the insertion point in the entry block. 721 BasicBlock &Entry = A->getParent()->getEntryBlock(); 722 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt()); 723 return; 724 } 725 // Otherwise, this is a constant and we don't need to set a new 726 // insertion point. 727 assert(isa<Constant>(V) && "Setting insertion point for unknown value!"); 728 } 729 730 /// Returns a re-written value of Start as an indexed GEP using Base as a 731 /// pointer. 732 static Value *rewriteGEPAsOffset(Value *Start, Value *Base, 733 const DataLayout &DL, 734 SetVector<Value *> &Explored) { 735 // Perform all the substitutions. This is a bit tricky because we can 736 // have cycles in our use-def chains. 737 // 1. Create the PHI nodes without any incoming values. 738 // 2. Create all the other values. 739 // 3. Add the edges for the PHI nodes. 740 // 4. Emit GEPs to get the original pointers. 741 // 5. Remove the original instructions. 742 Type *IndexType = IntegerType::get( 743 Base->getContext(), DL.getPointerTypeSizeInBits(Start->getType())); 744 745 DenseMap<Value *, Value *> NewInsts; 746 NewInsts[Base] = ConstantInt::getNullValue(IndexType); 747 748 // Create the new PHI nodes, without adding any incoming values. 749 for (Value *Val : Explored) { 750 if (Val == Base) 751 continue; 752 // Create empty phi nodes. This avoids cyclic dependencies when creating 753 // the remaining instructions. 754 if (auto *PHI = dyn_cast<PHINode>(Val)) 755 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(), 756 PHI->getName() + ".idx", PHI); 757 } 758 IRBuilder<> Builder(Base->getContext()); 759 760 // Create all the other instructions. 761 for (Value *Val : Explored) { 762 763 if (NewInsts.find(Val) != NewInsts.end()) 764 continue; 765 766 if (auto *CI = dyn_cast<CastInst>(Val)) { 767 NewInsts[CI] = NewInsts[CI->getOperand(0)]; 768 continue; 769 } 770 if (auto *GEP = dyn_cast<GEPOperator>(Val)) { 771 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)] 772 : GEP->getOperand(1); 773 setInsertionPoint(Builder, GEP); 774 // Indices might need to be sign extended. GEPs will magically do 775 // this, but we need to do it ourselves here. 776 if (Index->getType()->getScalarSizeInBits() != 777 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) { 778 Index = Builder.CreateSExtOrTrunc( 779 Index, NewInsts[GEP->getOperand(0)]->getType(), 780 GEP->getOperand(0)->getName() + ".sext"); 781 } 782 783 auto *Op = NewInsts[GEP->getOperand(0)]; 784 if (isa<ConstantInt>(Op) && dyn_cast<ConstantInt>(Op)->isZero()) 785 NewInsts[GEP] = Index; 786 else 787 NewInsts[GEP] = Builder.CreateNSWAdd( 788 Op, Index, GEP->getOperand(0)->getName() + ".add"); 789 continue; 790 } 791 if (isa<PHINode>(Val)) 792 continue; 793 794 llvm_unreachable("Unexpected instruction type"); 795 } 796 797 // Add the incoming values to the PHI nodes. 798 for (Value *Val : Explored) { 799 if (Val == Base) 800 continue; 801 // All the instructions have been created, we can now add edges to the 802 // phi nodes. 803 if (auto *PHI = dyn_cast<PHINode>(Val)) { 804 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]); 805 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { 806 Value *NewIncoming = PHI->getIncomingValue(I); 807 808 if (NewInsts.find(NewIncoming) != NewInsts.end()) 809 NewIncoming = NewInsts[NewIncoming]; 810 811 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I)); 812 } 813 } 814 } 815 816 for (Value *Val : Explored) { 817 if (Val == Base) 818 continue; 819 820 // Depending on the type, for external users we have to emit 821 // a GEP or a GEP + ptrtoint. 822 setInsertionPoint(Builder, Val, false); 823 824 // If required, create an inttoptr instruction for Base. 825 Value *NewBase = Base; 826 if (!Base->getType()->isPointerTy()) 827 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(), 828 Start->getName() + "to.ptr"); 829 830 Value *GEP = Builder.CreateInBoundsGEP( 831 Start->getType()->getPointerElementType(), NewBase, 832 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr"); 833 834 if (!Val->getType()->isPointerTy()) { 835 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(), 836 Val->getName() + ".conv"); 837 GEP = Cast; 838 } 839 Val->replaceAllUsesWith(GEP); 840 } 841 842 return NewInsts[Start]; 843 } 844 845 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express 846 /// the input Value as a constant indexed GEP. Returns a pair containing 847 /// the GEPs Pointer and Index. 848 static std::pair<Value *, Value *> 849 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) { 850 Type *IndexType = IntegerType::get(V->getContext(), 851 DL.getPointerTypeSizeInBits(V->getType())); 852 853 Constant *Index = ConstantInt::getNullValue(IndexType); 854 while (true) { 855 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 856 // We accept only inbouds GEPs here to exclude the possibility of 857 // overflow. 858 if (!GEP->isInBounds()) 859 break; 860 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 && 861 GEP->getType() == V->getType()) { 862 V = GEP->getOperand(0); 863 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1)); 864 Index = ConstantExpr::getAdd( 865 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType)); 866 continue; 867 } 868 break; 869 } 870 if (auto *CI = dyn_cast<IntToPtrInst>(V)) { 871 if (!CI->isNoopCast(DL)) 872 break; 873 V = CI->getOperand(0); 874 continue; 875 } 876 if (auto *CI = dyn_cast<PtrToIntInst>(V)) { 877 if (!CI->isNoopCast(DL)) 878 break; 879 V = CI->getOperand(0); 880 continue; 881 } 882 break; 883 } 884 return {V, Index}; 885 } 886 887 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant. 888 /// We can look through PHIs, GEPs and casts in order to determine a common base 889 /// between GEPLHS and RHS. 890 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, 891 ICmpInst::Predicate Cond, 892 const DataLayout &DL) { 893 if (!GEPLHS->hasAllConstantIndices()) 894 return nullptr; 895 896 Value *PtrBase, *Index; 897 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL); 898 899 // The set of nodes that will take part in this transformation. 900 SetVector<Value *> Nodes; 901 902 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes)) 903 return nullptr; 904 905 // We know we can re-write this as 906 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) 907 // Since we've only looked through inbouds GEPs we know that we 908 // can't have overflow on either side. We can therefore re-write 909 // this as: 910 // OFFSET1 cmp OFFSET2 911 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes); 912 913 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written 914 // GEP having PtrBase as the pointer base, and has returned in NewRHS the 915 // offset. Since Index is the offset of LHS to the base pointer, we will now 916 // compare the offsets instead of comparing the pointers. 917 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS); 918 } 919 920 /// Fold comparisons between a GEP instruction and something else. At this point 921 /// we know that the GEP is on the LHS of the comparison. 922 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, 923 ICmpInst::Predicate Cond, 924 Instruction &I) { 925 // Don't transform signed compares of GEPs into index compares. Even if the 926 // GEP is inbounds, the final add of the base pointer can have signed overflow 927 // and would change the result of the icmp. 928 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be 929 // the maximum signed value for the pointer type. 930 if (ICmpInst::isSigned(Cond)) 931 return nullptr; 932 933 // Look through bitcasts and addrspacecasts. We do not however want to remove 934 // 0 GEPs. 935 if (!isa<GetElementPtrInst>(RHS)) 936 RHS = RHS->stripPointerCasts(); 937 938 Value *PtrBase = GEPLHS->getOperand(0); 939 if (PtrBase == RHS && GEPLHS->isInBounds()) { 940 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). 941 // This transformation (ignoring the base and scales) is valid because we 942 // know pointers can't overflow since the gep is inbounds. See if we can 943 // output an optimized form. 944 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL); 945 946 // If not, synthesize the offset the hard way. 947 if (!Offset) 948 Offset = EmitGEPOffset(GEPLHS); 949 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, 950 Constant::getNullValue(Offset->getType())); 951 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) { 952 // If the base pointers are different, but the indices are the same, just 953 // compare the base pointer. 954 if (PtrBase != GEPRHS->getOperand(0)) { 955 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); 956 IndicesTheSame &= GEPLHS->getOperand(0)->getType() == 957 GEPRHS->getOperand(0)->getType(); 958 if (IndicesTheSame) 959 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) 960 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 961 IndicesTheSame = false; 962 break; 963 } 964 965 // If all indices are the same, just compare the base pointers. 966 if (IndicesTheSame) 967 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); 968 969 // If we're comparing GEPs with two base pointers that only differ in type 970 // and both GEPs have only constant indices or just one use, then fold 971 // the compare with the adjusted indices. 972 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() && 973 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) && 974 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) && 975 PtrBase->stripPointerCasts() == 976 GEPRHS->getOperand(0)->stripPointerCasts()) { 977 Value *LOffset = EmitGEPOffset(GEPLHS); 978 Value *ROffset = EmitGEPOffset(GEPRHS); 979 980 // If we looked through an addrspacecast between different sized address 981 // spaces, the LHS and RHS pointers are different sized 982 // integers. Truncate to the smaller one. 983 Type *LHSIndexTy = LOffset->getType(); 984 Type *RHSIndexTy = ROffset->getType(); 985 if (LHSIndexTy != RHSIndexTy) { 986 if (LHSIndexTy->getPrimitiveSizeInBits() < 987 RHSIndexTy->getPrimitiveSizeInBits()) { 988 ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy); 989 } else 990 LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy); 991 } 992 993 Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond), 994 LOffset, ROffset); 995 return replaceInstUsesWith(I, Cmp); 996 } 997 998 // Otherwise, the base pointers are different and the indices are 999 // different. Try convert this to an indexed compare by looking through 1000 // PHIs/casts. 1001 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1002 } 1003 1004 // If one of the GEPs has all zero indices, recurse. 1005 if (GEPLHS->hasAllZeroIndices()) 1006 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), 1007 ICmpInst::getSwappedPredicate(Cond), I); 1008 1009 // If the other GEP has all zero indices, recurse. 1010 if (GEPRHS->hasAllZeroIndices()) 1011 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); 1012 1013 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds(); 1014 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { 1015 // If the GEPs only differ by one index, compare it. 1016 unsigned NumDifferences = 0; // Keep track of # differences. 1017 unsigned DiffOperand = 0; // The operand that differs. 1018 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) 1019 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { 1020 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != 1021 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { 1022 // Irreconcilable differences. 1023 NumDifferences = 2; 1024 break; 1025 } else { 1026 if (NumDifferences++) break; 1027 DiffOperand = i; 1028 } 1029 } 1030 1031 if (NumDifferences == 0) // SAME GEP? 1032 return replaceInstUsesWith(I, // No comparison is needed here. 1033 Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond))); 1034 1035 else if (NumDifferences == 1 && GEPsInBounds) { 1036 Value *LHSV = GEPLHS->getOperand(DiffOperand); 1037 Value *RHSV = GEPRHS->getOperand(DiffOperand); 1038 // Make sure we do a signed comparison here. 1039 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); 1040 } 1041 } 1042 1043 // Only lower this if the icmp is the only user of the GEP or if we expect 1044 // the result to fold to a constant! 1045 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) && 1046 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) { 1047 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) 1048 Value *L = EmitGEPOffset(GEPLHS); 1049 Value *R = EmitGEPOffset(GEPRHS); 1050 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); 1051 } 1052 } 1053 1054 // Try convert this to an indexed compare by looking through PHIs/casts as a 1055 // last resort. 1056 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL); 1057 } 1058 1059 Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca, 1060 Value *Other) { 1061 assert(ICI.isEquality() && "Cannot fold non-equality comparison."); 1062 1063 // It would be tempting to fold away comparisons between allocas and any 1064 // pointer not based on that alloca (e.g. an argument). However, even 1065 // though such pointers cannot alias, they can still compare equal. 1066 // 1067 // But LLVM doesn't specify where allocas get their memory, so if the alloca 1068 // doesn't escape we can argue that it's impossible to guess its value, and we 1069 // can therefore act as if any such guesses are wrong. 1070 // 1071 // The code below checks that the alloca doesn't escape, and that it's only 1072 // used in a comparison once (the current instruction). The 1073 // single-comparison-use condition ensures that we're trivially folding all 1074 // comparisons against the alloca consistently, and avoids the risk of 1075 // erroneously folding a comparison of the pointer with itself. 1076 1077 unsigned MaxIter = 32; // Break cycles and bound to constant-time. 1078 1079 SmallVector<Use *, 32> Worklist; 1080 for (Use &U : Alloca->uses()) { 1081 if (Worklist.size() >= MaxIter) 1082 return nullptr; 1083 Worklist.push_back(&U); 1084 } 1085 1086 unsigned NumCmps = 0; 1087 while (!Worklist.empty()) { 1088 assert(Worklist.size() <= MaxIter); 1089 Use *U = Worklist.pop_back_val(); 1090 Value *V = U->getUser(); 1091 --MaxIter; 1092 1093 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) || 1094 isa<SelectInst>(V)) { 1095 // Track the uses. 1096 } else if (isa<LoadInst>(V)) { 1097 // Loading from the pointer doesn't escape it. 1098 continue; 1099 } else if (auto *SI = dyn_cast<StoreInst>(V)) { 1100 // Storing *to* the pointer is fine, but storing the pointer escapes it. 1101 if (SI->getValueOperand() == U->get()) 1102 return nullptr; 1103 continue; 1104 } else if (isa<ICmpInst>(V)) { 1105 if (NumCmps++) 1106 return nullptr; // Found more than one cmp. 1107 continue; 1108 } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) { 1109 switch (Intrin->getIntrinsicID()) { 1110 // These intrinsics don't escape or compare the pointer. Memset is safe 1111 // because we don't allow ptrtoint. Memcpy and memmove are safe because 1112 // we don't allow stores, so src cannot point to V. 1113 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: 1114 case Intrinsic::dbg_declare: case Intrinsic::dbg_value: 1115 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: 1116 continue; 1117 default: 1118 return nullptr; 1119 } 1120 } else { 1121 return nullptr; 1122 } 1123 for (Use &U : V->uses()) { 1124 if (Worklist.size() >= MaxIter) 1125 return nullptr; 1126 Worklist.push_back(&U); 1127 } 1128 } 1129 1130 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType()); 1131 return replaceInstUsesWith( 1132 ICI, 1133 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate()))); 1134 } 1135 1136 /// Fold "icmp pred (X+CI), X". 1137 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI, 1138 Value *X, ConstantInt *CI, 1139 ICmpInst::Predicate Pred) { 1140 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, 1141 // so the values can never be equal. Similarly for all other "or equals" 1142 // operators. 1143 1144 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 1145 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 1146 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 1147 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 1148 Value *R = 1149 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); 1150 return new ICmpInst(ICmpInst::ICMP_UGT, X, R); 1151 } 1152 1153 // (X+1) >u X --> X <u (0-1) --> X != 255 1154 // (X+2) >u X --> X <u (0-2) --> X <u 254 1155 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 1156 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 1157 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); 1158 1159 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); 1160 ConstantInt *SMax = ConstantInt::get(X->getContext(), 1161 APInt::getSignedMaxValue(BitWidth)); 1162 1163 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127 1164 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125 1165 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0 1166 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1 1167 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126 1168 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 1169 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1170 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); 1171 1172 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 1173 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 1174 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 1175 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 1176 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 1177 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 1178 1179 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); 1180 Constant *C = Builder->getInt(CI->getValue()-1); 1181 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); 1182 } 1183 1184 /// Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS and CmpRHS are 1185 /// both known to be integer constants. 1186 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, 1187 ConstantInt *DivRHS) { 1188 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); 1189 const APInt &CmpRHSV = CmpRHS->getValue(); 1190 1191 // FIXME: If the operand types don't match the type of the divide 1192 // then don't attempt this transform. The code below doesn't have the 1193 // logic to deal with a signed divide and an unsigned compare (and 1194 // vice versa). This is because (x /s C1) <s C2 produces different 1195 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even 1196 // (x /u C1) <u C2. Simply casting the operands and result won't 1197 // work. :( The if statement below tests that condition and bails 1198 // if it finds it. 1199 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; 1200 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) 1201 return nullptr; 1202 if (DivRHS->isZero()) 1203 return nullptr; // The ProdOV computation fails on divide by zero. 1204 if (DivIsSigned && DivRHS->isAllOnesValue()) 1205 return nullptr; // The overflow computation also screws up here 1206 if (DivRHS->isOne()) { 1207 // This eliminates some funny cases with INT_MIN. 1208 ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X. 1209 return &ICI; 1210 } 1211 1212 // Compute Prod = CI * DivRHS. We are essentially solving an equation 1213 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 1214 // C2 (CI). By solving for X we can turn this into a range check 1215 // instead of computing a divide. 1216 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); 1217 1218 // Determine if the product overflows by seeing if the product is 1219 // not equal to the divide. Make sure we do the same kind of divide 1220 // as in the LHS instruction that we're folding. 1221 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : 1222 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; 1223 1224 // Get the ICmp opcode 1225 ICmpInst::Predicate Pred = ICI.getPredicate(); 1226 1227 // If the division is known to be exact, then there is no remainder from the 1228 // divide, so the covered range size is unit, otherwise it is the divisor. 1229 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; 1230 1231 // Figure out the interval that is being checked. For example, a comparison 1232 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 1233 // Compute this interval based on the constants involved and the signedness of 1234 // the compare/divide. This computes a half-open interval, keeping track of 1235 // whether either value in the interval overflows. After analysis each 1236 // overflow variable is set to 0 if it's corresponding bound variable is valid 1237 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. 1238 int LoOverflow = 0, HiOverflow = 0; 1239 Constant *LoBound = nullptr, *HiBound = nullptr; 1240 1241 if (!DivIsSigned) { // udiv 1242 // e.g. X/5 op 3 --> [15, 20) 1243 LoBound = Prod; 1244 HiOverflow = LoOverflow = ProdOV; 1245 if (!HiOverflow) { 1246 // If this is not an exact divide, then many values in the range collapse 1247 // to the same result value. 1248 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); 1249 } 1250 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. 1251 if (CmpRHSV == 0) { // (X / pos) op 0 1252 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) 1253 LoBound = ConstantExpr::getNeg(SubOne(RangeSize)); 1254 HiBound = RangeSize; 1255 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos 1256 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) 1257 HiOverflow = LoOverflow = ProdOV; 1258 if (!HiOverflow) 1259 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true); 1260 } else { // (X / pos) op neg 1261 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) 1262 HiBound = AddOne(Prod); 1263 LoOverflow = HiOverflow = ProdOV ? -1 : 0; 1264 if (!LoOverflow) { 1265 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1266 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0; 1267 } 1268 } 1269 } else if (DivRHS->isNegative()) { // Divisor is < 0. 1270 if (DivI->isExact()) 1271 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1272 if (CmpRHSV == 0) { // (X / neg) op 0 1273 // e.g. X/-5 op 0 --> [-4, 5) 1274 LoBound = AddOne(RangeSize); 1275 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize)); 1276 if (HiBound == DivRHS) { // -INTMIN = INTMIN 1277 HiOverflow = 1; // [INTMIN+1, overflow) 1278 HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN 1279 } 1280 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos 1281 // e.g. X/-5 op 3 --> [-19, -14) 1282 HiBound = AddOne(Prod); 1283 HiOverflow = LoOverflow = ProdOV ? -1 : 0; 1284 if (!LoOverflow) 1285 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0; 1286 } else { // (X / neg) op neg 1287 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20) 1288 LoOverflow = HiOverflow = ProdOV; 1289 if (!HiOverflow) 1290 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); 1291 } 1292 1293 // Dividing by a negative swaps the condition. LT <-> GT 1294 Pred = ICmpInst::getSwappedPredicate(Pred); 1295 } 1296 1297 Value *X = DivI->getOperand(0); 1298 switch (Pred) { 1299 default: llvm_unreachable("Unhandled icmp opcode!"); 1300 case ICmpInst::ICMP_EQ: 1301 if (LoOverflow && HiOverflow) 1302 return replaceInstUsesWith(ICI, Builder->getFalse()); 1303 if (HiOverflow) 1304 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 1305 ICmpInst::ICMP_UGE, X, LoBound); 1306 if (LoOverflow) 1307 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 1308 ICmpInst::ICMP_ULT, X, HiBound); 1309 return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 1310 DivIsSigned, true)); 1311 case ICmpInst::ICMP_NE: 1312 if (LoOverflow && HiOverflow) 1313 return replaceInstUsesWith(ICI, Builder->getTrue()); 1314 if (HiOverflow) 1315 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : 1316 ICmpInst::ICMP_ULT, X, LoBound); 1317 if (LoOverflow) 1318 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : 1319 ICmpInst::ICMP_UGE, X, HiBound); 1320 return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound, 1321 DivIsSigned, false)); 1322 case ICmpInst::ICMP_ULT: 1323 case ICmpInst::ICMP_SLT: 1324 if (LoOverflow == +1) // Low bound is greater than input range. 1325 return replaceInstUsesWith(ICI, Builder->getTrue()); 1326 if (LoOverflow == -1) // Low bound is less than input range. 1327 return replaceInstUsesWith(ICI, Builder->getFalse()); 1328 return new ICmpInst(Pred, X, LoBound); 1329 case ICmpInst::ICMP_UGT: 1330 case ICmpInst::ICMP_SGT: 1331 if (HiOverflow == +1) // High bound greater than input range. 1332 return replaceInstUsesWith(ICI, Builder->getFalse()); 1333 if (HiOverflow == -1) // High bound less than input range. 1334 return replaceInstUsesWith(ICI, Builder->getTrue()); 1335 if (Pred == ICmpInst::ICMP_UGT) 1336 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); 1337 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); 1338 } 1339 } 1340 1341 /// Handle "icmp(([al]shr X, cst1), cst2)". 1342 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, 1343 ConstantInt *ShAmt) { 1344 const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); 1345 1346 // Check that the shift amount is in range. If not, don't perform 1347 // undefined shifts. When the shift is visited it will be 1348 // simplified. 1349 uint32_t TypeBits = CmpRHSV.getBitWidth(); 1350 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 1351 if (ShAmtVal >= TypeBits || ShAmtVal == 0) 1352 return nullptr; 1353 1354 if (!ICI.isEquality()) { 1355 // If we have an unsigned comparison and an ashr, we can't simplify this. 1356 // Similarly for signed comparisons with lshr. 1357 if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) 1358 return nullptr; 1359 1360 // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv 1361 // by a power of 2. Since we already have logic to simplify these, 1362 // transform to div and then simplify the resultant comparison. 1363 if (Shr->getOpcode() == Instruction::AShr && 1364 (!Shr->isExact() || ShAmtVal == TypeBits - 1)) 1365 return nullptr; 1366 1367 // Revisit the shift (to delete it). 1368 Worklist.Add(Shr); 1369 1370 Constant *DivCst = 1371 ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); 1372 1373 Value *Tmp = 1374 Shr->getOpcode() == Instruction::AShr ? 1375 Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : 1376 Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); 1377 1378 ICI.setOperand(0, Tmp); 1379 1380 // If the builder folded the binop, just return it. 1381 BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); 1382 if (!TheDiv) 1383 return &ICI; 1384 1385 // Otherwise, fold this div/compare. 1386 assert(TheDiv->getOpcode() == Instruction::SDiv || 1387 TheDiv->getOpcode() == Instruction::UDiv); 1388 1389 Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); 1390 assert(Res && "This div/cst should have folded!"); 1391 return Res; 1392 } 1393 1394 // If we are comparing against bits always shifted out, the 1395 // comparison cannot succeed. 1396 APInt Comp = CmpRHSV << ShAmtVal; 1397 ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp); 1398 if (Shr->getOpcode() == Instruction::LShr) 1399 Comp = Comp.lshr(ShAmtVal); 1400 else 1401 Comp = Comp.ashr(ShAmtVal); 1402 1403 if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. 1404 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 1405 Constant *Cst = Builder->getInt1(IsICMP_NE); 1406 return replaceInstUsesWith(ICI, Cst); 1407 } 1408 1409 // Otherwise, check to see if the bits shifted out are known to be zero. 1410 // If so, we can compare against the unshifted value: 1411 // (X & 4) >> 1 == 2 --> (X & 4) == 4. 1412 if (Shr->hasOneUse() && Shr->isExact()) 1413 return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); 1414 1415 if (Shr->hasOneUse()) { 1416 // Otherwise strength reduce the shift into an and. 1417 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); 1418 Constant *Mask = Builder->getInt(Val); 1419 1420 Value *And = Builder->CreateAnd(Shr->getOperand(0), 1421 Mask, Shr->getName()+".mask"); 1422 return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); 1423 } 1424 return nullptr; 1425 } 1426 1427 /// Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" -> 1428 /// (icmp eq/ne A, Log2(const2/const1)) -> 1429 /// (icmp eq/ne A, Log2(const2) - Log2(const1)). 1430 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A, 1431 ConstantInt *CI1, 1432 ConstantInt *CI2) { 1433 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1434 1435 auto getConstant = [&I, this](bool IsTrue) { 1436 if (I.getPredicate() == I.ICMP_NE) 1437 IsTrue = !IsTrue; 1438 return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1439 }; 1440 1441 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1442 if (I.getPredicate() == I.ICMP_NE) 1443 Pred = CmpInst::getInversePredicate(Pred); 1444 return new ICmpInst(Pred, LHS, RHS); 1445 }; 1446 1447 const APInt &AP1 = CI1->getValue(); 1448 const APInt &AP2 = CI2->getValue(); 1449 1450 // Don't bother doing any work for cases which InstSimplify handles. 1451 if (AP2 == 0) 1452 return nullptr; 1453 bool IsAShr = isa<AShrOperator>(Op); 1454 if (IsAShr) { 1455 if (AP2.isAllOnesValue()) 1456 return nullptr; 1457 if (AP2.isNegative() != AP1.isNegative()) 1458 return nullptr; 1459 if (AP2.sgt(AP1)) 1460 return nullptr; 1461 } 1462 1463 if (!AP1) 1464 // 'A' must be large enough to shift out the highest set bit. 1465 return getICmp(I.ICMP_UGT, A, 1466 ConstantInt::get(A->getType(), AP2.logBase2())); 1467 1468 if (AP1 == AP2) 1469 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1470 1471 int Shift; 1472 if (IsAShr && AP1.isNegative()) 1473 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes(); 1474 else 1475 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros(); 1476 1477 if (Shift > 0) { 1478 if (IsAShr && AP1 == AP2.ashr(Shift)) { 1479 // There are multiple solutions if we are comparing against -1 and the LHS 1480 // of the ashr is not a power of two. 1481 if (AP1.isAllOnesValue() && !AP2.isPowerOf2()) 1482 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift)); 1483 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1484 } else if (AP1 == AP2.lshr(Shift)) { 1485 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1486 } 1487 } 1488 // Shifting const2 will never be equal to const1. 1489 return getConstant(false); 1490 } 1491 1492 /// Handle "(icmp eq/ne (shl const2, A), const1)" -> 1493 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)). 1494 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A, 1495 ConstantInt *CI1, 1496 ConstantInt *CI2) { 1497 assert(I.isEquality() && "Cannot fold icmp gt/lt"); 1498 1499 auto getConstant = [&I, this](bool IsTrue) { 1500 if (I.getPredicate() == I.ICMP_NE) 1501 IsTrue = !IsTrue; 1502 return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue)); 1503 }; 1504 1505 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) { 1506 if (I.getPredicate() == I.ICMP_NE) 1507 Pred = CmpInst::getInversePredicate(Pred); 1508 return new ICmpInst(Pred, LHS, RHS); 1509 }; 1510 1511 const APInt &AP1 = CI1->getValue(); 1512 const APInt &AP2 = CI2->getValue(); 1513 1514 // Don't bother doing any work for cases which InstSimplify handles. 1515 if (AP2 == 0) 1516 return nullptr; 1517 1518 unsigned AP2TrailingZeros = AP2.countTrailingZeros(); 1519 1520 if (!AP1 && AP2TrailingZeros != 0) 1521 return getICmp(I.ICMP_UGE, A, 1522 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros)); 1523 1524 if (AP1 == AP2) 1525 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType())); 1526 1527 // Get the distance between the lowest bits that are set. 1528 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros; 1529 1530 if (Shift > 0 && AP2.shl(Shift) == AP1) 1531 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift)); 1532 1533 // Shifting const2 will never be equal to const1. 1534 return getConstant(false); 1535 } 1536 1537 /// Handle "icmp (instr, intcst)". 1538 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, 1539 Instruction *LHSI, 1540 ConstantInt *RHS) { 1541 const APInt &RHSV = RHS->getValue(); 1542 1543 switch (LHSI->getOpcode()) { 1544 case Instruction::Trunc: 1545 if (RHS->isOne() && RHSV.getBitWidth() > 1) { 1546 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1 1547 Value *V = nullptr; 1548 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1549 match(LHSI->getOperand(0), m_Signum(m_Value(V)))) 1550 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1551 ConstantInt::get(V->getType(), 1)); 1552 } 1553 if (ICI.isEquality() && LHSI->hasOneUse()) { 1554 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all 1555 // of the high bits truncated out of x are known. 1556 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(), 1557 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits(); 1558 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); 1559 computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI); 1560 1561 // If all the high bits are known, we can do this xform. 1562 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { 1563 // Pull in the high bits from known-ones set. 1564 APInt NewRHS = RHS->getValue().zext(SrcBits); 1565 NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits); 1566 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 1567 Builder->getInt(NewRHS)); 1568 } 1569 } 1570 break; 1571 1572 case Instruction::Xor: // (icmp pred (xor X, XorCst), CI) 1573 if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1574 // If this is a comparison that tests the signbit (X < 0) or (x > -1), 1575 // fold the xor. 1576 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || 1577 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { 1578 Value *CompareVal = LHSI->getOperand(0); 1579 1580 // If the sign bit of the XorCst is not set, there is no change to 1581 // the operation, just stop using the Xor. 1582 if (!XorCst->isNegative()) { 1583 ICI.setOperand(0, CompareVal); 1584 Worklist.Add(LHSI); 1585 return &ICI; 1586 } 1587 1588 // Was the old condition true if the operand is positive? 1589 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; 1590 1591 // If so, the new one isn't. 1592 isTrueIfPositive ^= true; 1593 1594 if (isTrueIfPositive) 1595 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, 1596 SubOne(RHS)); 1597 else 1598 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, 1599 AddOne(RHS)); 1600 } 1601 1602 if (LHSI->hasOneUse()) { 1603 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit)) 1604 if (!ICI.isEquality() && XorCst->getValue().isSignBit()) { 1605 const APInt &SignBit = XorCst->getValue(); 1606 ICmpInst::Predicate Pred = ICI.isSigned() 1607 ? ICI.getUnsignedPredicate() 1608 : ICI.getSignedPredicate(); 1609 return new ICmpInst(Pred, LHSI->getOperand(0), 1610 Builder->getInt(RHSV ^ SignBit)); 1611 } 1612 1613 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A) 1614 if (!ICI.isEquality() && XorCst->isMaxValue(true)) { 1615 const APInt &NotSignBit = XorCst->getValue(); 1616 ICmpInst::Predicate Pred = ICI.isSigned() 1617 ? ICI.getUnsignedPredicate() 1618 : ICI.getSignedPredicate(); 1619 Pred = ICI.getSwappedPredicate(Pred); 1620 return new ICmpInst(Pred, LHSI->getOperand(0), 1621 Builder->getInt(RHSV ^ NotSignBit)); 1622 } 1623 } 1624 1625 // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C) 1626 // iff -C is a power of 2 1627 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && 1628 XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2()) 1629 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst); 1630 1631 // (icmp ult (xor X, C), -C) -> (icmp uge X, C) 1632 // iff -C is a power of 2 1633 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && 1634 XorCst->getValue() == -RHSV && RHSV.isPowerOf2()) 1635 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst); 1636 } 1637 break; 1638 case Instruction::And: // (icmp pred (and X, AndCst), RHS) 1639 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && 1640 LHSI->getOperand(0)->hasOneUse()) { 1641 ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1)); 1642 1643 // If the LHS is an AND of a truncating cast, we can widen the 1644 // and/compare to be the input width without changing the value 1645 // produced, eliminating a cast. 1646 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { 1647 // We can do this transformation if either the AND constant does not 1648 // have its sign bit set or if it is an equality comparison. 1649 // Extending a relational comparison when we're checking the sign 1650 // bit would not work. 1651 if (ICI.isEquality() || 1652 (!AndCst->isNegative() && RHSV.isNonNegative())) { 1653 Value *NewAnd = 1654 Builder->CreateAnd(Cast->getOperand(0), 1655 ConstantExpr::getZExt(AndCst, Cast->getSrcTy())); 1656 NewAnd->takeName(LHSI); 1657 return new ICmpInst(ICI.getPredicate(), NewAnd, 1658 ConstantExpr::getZExt(RHS, Cast->getSrcTy())); 1659 } 1660 } 1661 1662 // If the LHS is an AND of a zext, and we have an equality compare, we can 1663 // shrink the and/compare to the smaller type, eliminating the cast. 1664 if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { 1665 IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); 1666 // Make sure we don't compare the upper bits, SimplifyDemandedBits 1667 // should fold the icmp to true/false in that case. 1668 if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { 1669 Value *NewAnd = 1670 Builder->CreateAnd(Cast->getOperand(0), 1671 ConstantExpr::getTrunc(AndCst, Ty)); 1672 NewAnd->takeName(LHSI); 1673 return new ICmpInst(ICI.getPredicate(), NewAnd, 1674 ConstantExpr::getTrunc(RHS, Ty)); 1675 } 1676 } 1677 1678 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare 1679 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This 1680 // happens a LOT in code produced by the C front-end, for bitfield 1681 // access. 1682 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); 1683 if (Shift && !Shift->isShift()) 1684 Shift = nullptr; 1685 1686 ConstantInt *ShAmt; 1687 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr; 1688 1689 // This seemingly simple opportunity to fold away a shift turns out to 1690 // be rather complicated. See PR17827 1691 // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details. 1692 if (ShAmt) { 1693 bool CanFold = false; 1694 unsigned ShiftOpcode = Shift->getOpcode(); 1695 if (ShiftOpcode == Instruction::AShr) { 1696 // There may be some constraints that make this possible, 1697 // but nothing simple has been discovered yet. 1698 CanFold = false; 1699 } else if (ShiftOpcode == Instruction::Shl) { 1700 // For a left shift, we can fold if the comparison is not signed. 1701 // We can also fold a signed comparison if the mask value and 1702 // comparison value are not negative. These constraints may not be 1703 // obvious, but we can prove that they are correct using an SMT 1704 // solver. 1705 if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative())) 1706 CanFold = true; 1707 } else if (ShiftOpcode == Instruction::LShr) { 1708 // For a logical right shift, we can fold if the comparison is not 1709 // signed. We can also fold a signed comparison if the shifted mask 1710 // value and the shifted comparison value are not negative. 1711 // These constraints may not be obvious, but we can prove that they 1712 // are correct using an SMT solver. 1713 if (!ICI.isSigned()) 1714 CanFold = true; 1715 else { 1716 ConstantInt *ShiftedAndCst = 1717 cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt)); 1718 ConstantInt *ShiftedRHSCst = 1719 cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt)); 1720 1721 if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative()) 1722 CanFold = true; 1723 } 1724 } 1725 1726 if (CanFold) { 1727 Constant *NewCst; 1728 if (ShiftOpcode == Instruction::Shl) 1729 NewCst = ConstantExpr::getLShr(RHS, ShAmt); 1730 else 1731 NewCst = ConstantExpr::getShl(RHS, ShAmt); 1732 1733 // Check to see if we are shifting out any of the bits being 1734 // compared. 1735 if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) { 1736 // If we shifted bits out, the fold is not going to work out. 1737 // As a special case, check to see if this means that the 1738 // result is always true or false now. 1739 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1740 return replaceInstUsesWith(ICI, Builder->getFalse()); 1741 if (ICI.getPredicate() == ICmpInst::ICMP_NE) 1742 return replaceInstUsesWith(ICI, Builder->getTrue()); 1743 } else { 1744 ICI.setOperand(1, NewCst); 1745 Constant *NewAndCst; 1746 if (ShiftOpcode == Instruction::Shl) 1747 NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt); 1748 else 1749 NewAndCst = ConstantExpr::getShl(AndCst, ShAmt); 1750 LHSI->setOperand(1, NewAndCst); 1751 LHSI->setOperand(0, Shift->getOperand(0)); 1752 Worklist.Add(Shift); // Shift is dead. 1753 return &ICI; 1754 } 1755 } 1756 } 1757 1758 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is 1759 // preferable because it allows the C<<Y expression to be hoisted out 1760 // of a loop if Y is invariant and X is not. 1761 if (Shift && Shift->hasOneUse() && RHSV == 0 && 1762 ICI.isEquality() && !Shift->isArithmeticShift() && 1763 !isa<Constant>(Shift->getOperand(0))) { 1764 // Compute C << Y. 1765 Value *NS; 1766 if (Shift->getOpcode() == Instruction::LShr) { 1767 NS = Builder->CreateShl(AndCst, Shift->getOperand(1)); 1768 } else { 1769 // Insert a logical shift. 1770 NS = Builder->CreateLShr(AndCst, Shift->getOperand(1)); 1771 } 1772 1773 // Compute X & (C << Y). 1774 Value *NewAnd = 1775 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); 1776 1777 ICI.setOperand(0, NewAnd); 1778 return &ICI; 1779 } 1780 1781 // (icmp pred (and (or (lshr X, Y), X), 1), 0) --> 1782 // (icmp pred (and X, (or (shl 1, Y), 1), 0)) 1783 // 1784 // iff pred isn't signed 1785 { 1786 Value *X, *Y, *LShr; 1787 if (!ICI.isSigned() && RHSV == 0) { 1788 if (match(LHSI->getOperand(1), m_One())) { 1789 Constant *One = cast<Constant>(LHSI->getOperand(1)); 1790 Value *Or = LHSI->getOperand(0); 1791 if (match(Or, m_Or(m_Value(LShr), m_Value(X))) && 1792 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) { 1793 unsigned UsesRemoved = 0; 1794 if (LHSI->hasOneUse()) 1795 ++UsesRemoved; 1796 if (Or->hasOneUse()) 1797 ++UsesRemoved; 1798 if (LShr->hasOneUse()) 1799 ++UsesRemoved; 1800 Value *NewOr = nullptr; 1801 // Compute X & ((1 << Y) | 1) 1802 if (auto *C = dyn_cast<Constant>(Y)) { 1803 if (UsesRemoved >= 1) 1804 NewOr = 1805 ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One); 1806 } else { 1807 if (UsesRemoved >= 3) 1808 NewOr = Builder->CreateOr(Builder->CreateShl(One, Y, 1809 LShr->getName(), 1810 /*HasNUW=*/true), 1811 One, Or->getName()); 1812 } 1813 if (NewOr) { 1814 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName()); 1815 ICI.setOperand(0, NewAnd); 1816 return &ICI; 1817 } 1818 } 1819 } 1820 } 1821 } 1822 1823 // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any 1824 // bit set in (X & AndCst) will produce a result greater than RHSV. 1825 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 1826 unsigned NTZ = AndCst->getValue().countTrailingZeros(); 1827 if ((NTZ < AndCst->getBitWidth()) && 1828 APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV)) 1829 return new ICmpInst(ICmpInst::ICMP_NE, LHSI, 1830 Constant::getNullValue(RHS->getType())); 1831 } 1832 } 1833 1834 // Try to optimize things like "A[i]&42 == 0" to index computations. 1835 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { 1836 if (GetElementPtrInst *GEP = 1837 dyn_cast<GetElementPtrInst>(LI->getOperand(0))) 1838 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 1839 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 1840 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) { 1841 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1)); 1842 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C)) 1843 return Res; 1844 } 1845 } 1846 1847 // X & -C == -C -> X > u ~C 1848 // X & -C != -C -> X <= u ~C 1849 // iff C is a power of 2 1850 if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2()) 1851 return new ICmpInst( 1852 ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT 1853 : ICmpInst::ICMP_ULE, 1854 LHSI->getOperand(0), SubOne(RHS)); 1855 1856 // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1) 1857 // iff C is a power of 2 1858 if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) { 1859 if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 1860 const APInt &AI = CI->getValue(); 1861 int32_t ExactLogBase2 = AI.exactLogBase2(); 1862 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) { 1863 Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1); 1864 Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy); 1865 return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ 1866 ? ICmpInst::ICMP_SGE 1867 : ICmpInst::ICMP_SLT, 1868 Trunc, Constant::getNullValue(NTy)); 1869 } 1870 } 1871 } 1872 break; 1873 1874 case Instruction::Or: { 1875 if (RHS->isOne()) { 1876 // icmp slt signum(V) 1 --> icmp slt V, 1 1877 Value *V = nullptr; 1878 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && 1879 match(LHSI, m_Signum(m_Value(V)))) 1880 return new ICmpInst(ICmpInst::ICMP_SLT, V, 1881 ConstantInt::get(V->getType(), 1)); 1882 } 1883 1884 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse()) 1885 break; 1886 Value *P, *Q; 1887 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) { 1888 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0 1889 // -> and (icmp eq P, null), (icmp eq Q, null). 1890 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P, 1891 Constant::getNullValue(P->getType())); 1892 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q, 1893 Constant::getNullValue(Q->getType())); 1894 Instruction *Op; 1895 if (ICI.getPredicate() == ICmpInst::ICMP_EQ) 1896 Op = BinaryOperator::CreateAnd(ICIP, ICIQ); 1897 else 1898 Op = BinaryOperator::CreateOr(ICIP, ICIQ); 1899 return Op; 1900 } 1901 break; 1902 } 1903 1904 case Instruction::Mul: { // (icmp pred (mul X, Val), CI) 1905 ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1906 if (!Val) break; 1907 1908 // If this is a signed comparison to 0 and the mul is sign preserving, 1909 // use the mul LHS operand instead. 1910 ICmpInst::Predicate pred = ICI.getPredicate(); 1911 if (isSignTest(pred, RHS) && !Val->isZero() && 1912 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 1913 return new ICmpInst(Val->isNegative() ? 1914 ICmpInst::getSwappedPredicate(pred) : pred, 1915 LHSI->getOperand(0), 1916 Constant::getNullValue(RHS->getType())); 1917 1918 break; 1919 } 1920 1921 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) 1922 uint32_t TypeBits = RHSV.getBitWidth(); 1923 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 1924 if (!ShAmt) { 1925 Value *X; 1926 // (1 << X) pred P2 -> X pred Log2(P2) 1927 if (match(LHSI, m_Shl(m_One(), m_Value(X)))) { 1928 bool RHSVIsPowerOf2 = RHSV.isPowerOf2(); 1929 ICmpInst::Predicate Pred = ICI.getPredicate(); 1930 if (ICI.isUnsigned()) { 1931 if (!RHSVIsPowerOf2) { 1932 // (1 << X) < 30 -> X <= 4 1933 // (1 << X) <= 30 -> X <= 4 1934 // (1 << X) >= 30 -> X > 4 1935 // (1 << X) > 30 -> X > 4 1936 if (Pred == ICmpInst::ICMP_ULT) 1937 Pred = ICmpInst::ICMP_ULE; 1938 else if (Pred == ICmpInst::ICMP_UGE) 1939 Pred = ICmpInst::ICMP_UGT; 1940 } 1941 unsigned RHSLog2 = RHSV.logBase2(); 1942 1943 // (1 << X) >= 2147483648 -> X >= 31 -> X == 31 1944 // (1 << X) < 2147483648 -> X < 31 -> X != 31 1945 if (RHSLog2 == TypeBits-1) { 1946 if (Pred == ICmpInst::ICMP_UGE) 1947 Pred = ICmpInst::ICMP_EQ; 1948 else if (Pred == ICmpInst::ICMP_ULT) 1949 Pred = ICmpInst::ICMP_NE; 1950 } 1951 1952 return new ICmpInst(Pred, X, 1953 ConstantInt::get(RHS->getType(), RHSLog2)); 1954 } else if (ICI.isSigned()) { 1955 if (RHSV.isAllOnesValue()) { 1956 // (1 << X) <= -1 -> X == 31 1957 if (Pred == ICmpInst::ICMP_SLE) 1958 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1959 ConstantInt::get(RHS->getType(), TypeBits-1)); 1960 1961 // (1 << X) > -1 -> X != 31 1962 if (Pred == ICmpInst::ICMP_SGT) 1963 return new ICmpInst(ICmpInst::ICMP_NE, X, 1964 ConstantInt::get(RHS->getType(), TypeBits-1)); 1965 } else if (!RHSV) { 1966 // (1 << X) < 0 -> X == 31 1967 // (1 << X) <= 0 -> X == 31 1968 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 1969 return new ICmpInst(ICmpInst::ICMP_EQ, X, 1970 ConstantInt::get(RHS->getType(), TypeBits-1)); 1971 1972 // (1 << X) >= 0 -> X != 31 1973 // (1 << X) > 0 -> X != 31 1974 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 1975 return new ICmpInst(ICmpInst::ICMP_NE, X, 1976 ConstantInt::get(RHS->getType(), TypeBits-1)); 1977 } 1978 } else if (ICI.isEquality()) { 1979 if (RHSVIsPowerOf2) 1980 return new ICmpInst( 1981 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2())); 1982 } 1983 } 1984 break; 1985 } 1986 1987 // Check that the shift amount is in range. If not, don't perform 1988 // undefined shifts. When the shift is visited it will be 1989 // simplified. 1990 if (ShAmt->uge(TypeBits)) 1991 break; 1992 1993 if (ICI.isEquality()) { 1994 // If we are comparing against bits always shifted out, the 1995 // comparison cannot succeed. 1996 Constant *Comp = 1997 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), 1998 ShAmt); 1999 if (Comp != RHS) {// Comparing against a bit that we know is zero. 2000 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 2001 Constant *Cst = Builder->getInt1(IsICMP_NE); 2002 return replaceInstUsesWith(ICI, Cst); 2003 } 2004 2005 // If the shift is NUW, then it is just shifting out zeros, no need for an 2006 // AND. 2007 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) 2008 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 2009 ConstantExpr::getLShr(RHS, ShAmt)); 2010 2011 // If the shift is NSW and we compare to 0, then it is just shifting out 2012 // sign bits, no need for an AND either. 2013 if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0) 2014 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), 2015 ConstantExpr::getLShr(RHS, ShAmt)); 2016 2017 if (LHSI->hasOneUse()) { 2018 // Otherwise strength reduce the shift into an and. 2019 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); 2020 Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits, 2021 TypeBits - ShAmtVal)); 2022 2023 Value *And = 2024 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); 2025 return new ICmpInst(ICI.getPredicate(), And, 2026 ConstantExpr::getLShr(RHS, ShAmt)); 2027 } 2028 } 2029 2030 // If this is a signed comparison to 0 and the shift is sign preserving, 2031 // use the shift LHS operand instead. 2032 ICmpInst::Predicate pred = ICI.getPredicate(); 2033 if (isSignTest(pred, RHS) && 2034 cast<BinaryOperator>(LHSI)->hasNoSignedWrap()) 2035 return new ICmpInst(pred, 2036 LHSI->getOperand(0), 2037 Constant::getNullValue(RHS->getType())); 2038 2039 // Otherwise, if this is a comparison of the sign bit, simplify to and/test. 2040 bool TrueIfSigned = false; 2041 if (LHSI->hasOneUse() && 2042 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { 2043 // (X << 31) <s 0 --> (X&1) != 0 2044 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), 2045 APInt::getOneBitSet(TypeBits, 2046 TypeBits-ShAmt->getZExtValue()-1)); 2047 Value *And = 2048 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); 2049 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, 2050 And, Constant::getNullValue(And->getType())); 2051 } 2052 2053 // Transform (icmp pred iM (shl iM %v, N), CI) 2054 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N)) 2055 // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N. 2056 // This enables to get rid of the shift in favor of a trunc which can be 2057 // free on the target. It has the additional benefit of comparing to a 2058 // smaller constant, which will be target friendly. 2059 unsigned Amt = ShAmt->getLimitedValue(TypeBits-1); 2060 if (LHSI->hasOneUse() && 2061 Amt != 0 && RHSV.countTrailingZeros() >= Amt) { 2062 Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt); 2063 Constant *NCI = ConstantExpr::getTrunc( 2064 ConstantExpr::getAShr(RHS, 2065 ConstantInt::get(RHS->getType(), Amt)), 2066 NTy); 2067 return new ICmpInst(ICI.getPredicate(), 2068 Builder->CreateTrunc(LHSI->getOperand(0), NTy), 2069 NCI); 2070 } 2071 2072 break; 2073 } 2074 2075 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) 2076 case Instruction::AShr: { 2077 // Handle equality comparisons of shift-by-constant. 2078 BinaryOperator *BO = cast<BinaryOperator>(LHSI); 2079 if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { 2080 if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt)) 2081 return Res; 2082 } 2083 2084 // Handle exact shr's. 2085 if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) { 2086 if (RHSV.isMinValue()) 2087 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS); 2088 } 2089 break; 2090 } 2091 2092 case Instruction::UDiv: 2093 if (ConstantInt *DivLHS = dyn_cast<ConstantInt>(LHSI->getOperand(0))) { 2094 Value *X = LHSI->getOperand(1); 2095 const APInt &C1 = RHS->getValue(); 2096 const APInt &C2 = DivLHS->getValue(); 2097 assert(C2 != 0 && "udiv 0, X should have been simplified already."); 2098 // (icmp ugt (udiv C2, X), C1) -> (icmp ule X, C2/(C1+1)) 2099 if (ICI.getPredicate() == ICmpInst::ICMP_UGT) { 2100 assert(!C1.isMaxValue() && 2101 "icmp ugt X, UINT_MAX should have been simplified already."); 2102 return new ICmpInst(ICmpInst::ICMP_ULE, X, 2103 ConstantInt::get(X->getType(), C2.udiv(C1 + 1))); 2104 } 2105 // (icmp ult (udiv C2, X), C1) -> (icmp ugt X, C2/C1) 2106 if (ICI.getPredicate() == ICmpInst::ICMP_ULT) { 2107 assert(C1 != 0 && "icmp ult X, 0 should have been simplified already."); 2108 return new ICmpInst(ICmpInst::ICMP_UGT, X, 2109 ConstantInt::get(X->getType(), C2.udiv(C1))); 2110 } 2111 } 2112 // fall-through 2113 case Instruction::SDiv: 2114 // Fold: icmp pred ([us]div X, C1), C2 -> range test 2115 // Fold this div into the comparison, producing a range check. 2116 // Determine, based on the divide type, what the range is being 2117 // checked. If there is an overflow on the low or high side, remember 2118 // it, otherwise compute the range [low, hi) bounding the new value. 2119 // See: InsertRangeTest above for the kinds of replacements possible. 2120 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) 2121 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI), 2122 DivRHS)) 2123 return R; 2124 break; 2125 2126 case Instruction::Sub: { 2127 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0)); 2128 if (!LHSC) break; 2129 const APInt &LHSV = LHSC->getValue(); 2130 2131 // C1-X <u C2 -> (X|(C2-1)) == C1 2132 // iff C1 & (C2-1) == C2-1 2133 // C2 is a power of 2 2134 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 2135 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1)) 2136 return new ICmpInst(ICmpInst::ICMP_EQ, 2137 Builder->CreateOr(LHSI->getOperand(1), RHSV - 1), 2138 LHSC); 2139 2140 // C1-X >u C2 -> (X|C2) != C1 2141 // iff C1 & C2 == C2 2142 // C2+1 is a power of 2 2143 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 2144 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV) 2145 return new ICmpInst(ICmpInst::ICMP_NE, 2146 Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC); 2147 break; 2148 } 2149 2150 case Instruction::Add: 2151 // Fold: icmp pred (add X, C1), C2 2152 if (!ICI.isEquality()) { 2153 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1)); 2154 if (!LHSC) break; 2155 const APInt &LHSV = LHSC->getValue(); 2156 2157 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV) 2158 .subtract(LHSV); 2159 2160 if (ICI.isSigned()) { 2161 if (CR.getLower().isSignBit()) { 2162 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0), 2163 Builder->getInt(CR.getUpper())); 2164 } else if (CR.getUpper().isSignBit()) { 2165 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0), 2166 Builder->getInt(CR.getLower())); 2167 } 2168 } else { 2169 if (CR.getLower().isMinValue()) { 2170 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), 2171 Builder->getInt(CR.getUpper())); 2172 } else if (CR.getUpper().isMinValue()) { 2173 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), 2174 Builder->getInt(CR.getLower())); 2175 } 2176 } 2177 2178 // X-C1 <u C2 -> (X & -C2) == C1 2179 // iff C1 & (C2-1) == 0 2180 // C2 is a power of 2 2181 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() && 2182 RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0) 2183 return new ICmpInst(ICmpInst::ICMP_EQ, 2184 Builder->CreateAnd(LHSI->getOperand(0), -RHSV), 2185 ConstantExpr::getNeg(LHSC)); 2186 2187 // X-C1 >u C2 -> (X & ~C2) != C1 2188 // iff C1 & C2 == 0 2189 // C2+1 is a power of 2 2190 if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() && 2191 (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0) 2192 return new ICmpInst(ICmpInst::ICMP_NE, 2193 Builder->CreateAnd(LHSI->getOperand(0), ~RHSV), 2194 ConstantExpr::getNeg(LHSC)); 2195 } 2196 break; 2197 } 2198 2199 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. 2200 if (ICI.isEquality()) { 2201 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; 2202 2203 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 2204 // the second operand is a constant, simplify a bit. 2205 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { 2206 switch (BO->getOpcode()) { 2207 case Instruction::SRem: 2208 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. 2209 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){ 2210 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue(); 2211 if (V.sgt(1) && V.isPowerOf2()) { 2212 Value *NewRem = 2213 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1), 2214 BO->getName()); 2215 return new ICmpInst(ICI.getPredicate(), NewRem, 2216 Constant::getNullValue(BO->getType())); 2217 } 2218 } 2219 break; 2220 case Instruction::Add: 2221 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. 2222 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2223 if (BO->hasOneUse()) 2224 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2225 ConstantExpr::getSub(RHS, BOp1C)); 2226 } else if (RHSV == 0) { 2227 // Replace ((add A, B) != 0) with (A != -B) if A or B is 2228 // efficiently invertible, or if the add has just this one use. 2229 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); 2230 2231 if (Value *NegVal = dyn_castNegVal(BOp1)) 2232 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); 2233 if (Value *NegVal = dyn_castNegVal(BOp0)) 2234 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); 2235 if (BO->hasOneUse()) { 2236 Value *Neg = Builder->CreateNeg(BOp1); 2237 Neg->takeName(BO); 2238 return new ICmpInst(ICI.getPredicate(), BOp0, Neg); 2239 } 2240 } 2241 break; 2242 case Instruction::Xor: 2243 if (BO->hasOneUse()) { 2244 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) { 2245 // For the xor case, we can xor two constants together, eliminating 2246 // the explicit xor. 2247 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2248 ConstantExpr::getXor(RHS, BOC)); 2249 } else if (RHSV == 0) { 2250 // Replace ((xor A, B) != 0) with (A != B) 2251 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2252 BO->getOperand(1)); 2253 } 2254 } 2255 break; 2256 case Instruction::Sub: 2257 if (BO->hasOneUse()) { 2258 if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) { 2259 // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants. 2260 return new ICmpInst(ICI.getPredicate(), BO->getOperand(1), 2261 ConstantExpr::getSub(BOp0C, RHS)); 2262 } else if (RHSV == 0) { 2263 // Replace ((sub A, B) != 0) with (A != B) 2264 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2265 BO->getOperand(1)); 2266 } 2267 } 2268 break; 2269 case Instruction::Or: 2270 // If bits are being or'd in that are not present in the constant we 2271 // are comparing against, then the comparison could never succeed! 2272 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2273 Constant *NotCI = ConstantExpr::getNot(RHS); 2274 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) 2275 return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 2276 2277 // Comparing if all bits outside of a constant mask are set? 2278 // Replace (X | C) == -1 with (X & ~C) == ~C. 2279 // This removes the -1 constant. 2280 if (BO->hasOneUse() && RHS->isAllOnesValue()) { 2281 Constant *NotBOC = ConstantExpr::getNot(BOC); 2282 Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC); 2283 return new ICmpInst(ICI.getPredicate(), And, NotBOC); 2284 } 2285 } 2286 break; 2287 2288 case Instruction::And: 2289 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2290 // If bits are being compared against that are and'd out, then the 2291 // comparison can never succeed! 2292 if ((RHSV & ~BOC->getValue()) != 0) 2293 return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE)); 2294 2295 // If we have ((X & C) == C), turn it into ((X & C) != 0). 2296 if (RHS == BOC && RHSV.isPowerOf2()) 2297 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : 2298 ICmpInst::ICMP_NE, LHSI, 2299 Constant::getNullValue(RHS->getType())); 2300 2301 // Don't perform the following transforms if the AND has multiple uses 2302 if (!BO->hasOneUse()) 2303 break; 2304 2305 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 2306 if (BOC->getValue().isSignBit()) { 2307 Value *X = BO->getOperand(0); 2308 Constant *Zero = Constant::getNullValue(X->getType()); 2309 ICmpInst::Predicate pred = isICMP_NE ? 2310 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; 2311 return new ICmpInst(pred, X, Zero); 2312 } 2313 2314 // ((X & ~7) == 0) --> X < 8 2315 if (RHSV == 0 && isHighOnes(BOC)) { 2316 Value *X = BO->getOperand(0); 2317 Constant *NegX = ConstantExpr::getNeg(BOC); 2318 ICmpInst::Predicate pred = isICMP_NE ? 2319 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; 2320 return new ICmpInst(pred, X, NegX); 2321 } 2322 } 2323 break; 2324 case Instruction::Mul: 2325 if (RHSV == 0 && BO->hasNoSignedWrap()) { 2326 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2327 // The trivial case (mul X, 0) is handled by InstSimplify 2328 // General case : (mul X, C) != 0 iff X != 0 2329 // (mul X, C) == 0 iff X == 0 2330 if (!BOC->isZero()) 2331 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 2332 Constant::getNullValue(RHS->getType())); 2333 } 2334 } 2335 break; 2336 default: break; 2337 } 2338 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) { 2339 // Handle icmp {eq|ne} <intrinsic>, intcst. 2340 switch (II->getIntrinsicID()) { 2341 case Intrinsic::bswap: 2342 Worklist.Add(II); 2343 ICI.setOperand(0, II->getArgOperand(0)); 2344 ICI.setOperand(1, Builder->getInt(RHSV.byteSwap())); 2345 return &ICI; 2346 case Intrinsic::ctlz: 2347 case Intrinsic::cttz: 2348 // ctz(A) == bitwidth(a) -> A == 0 and likewise for != 2349 if (RHSV == RHS->getType()->getBitWidth()) { 2350 Worklist.Add(II); 2351 ICI.setOperand(0, II->getArgOperand(0)); 2352 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0)); 2353 return &ICI; 2354 } 2355 break; 2356 case Intrinsic::ctpop: 2357 // popcount(A) == 0 -> A == 0 and likewise for != 2358 if (RHS->isZero()) { 2359 Worklist.Add(II); 2360 ICI.setOperand(0, II->getArgOperand(0)); 2361 ICI.setOperand(1, RHS); 2362 return &ICI; 2363 } 2364 break; 2365 default: 2366 break; 2367 } 2368 } 2369 } 2370 return nullptr; 2371 } 2372 2373 /// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so 2374 /// far. 2375 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICmp) { 2376 const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0)); 2377 Value *LHSCIOp = LHSCI->getOperand(0); 2378 Type *SrcTy = LHSCIOp->getType(); 2379 Type *DestTy = LHSCI->getType(); 2380 Value *RHSCIOp; 2381 2382 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 2383 // integer type is the same size as the pointer type. 2384 if (LHSCI->getOpcode() == Instruction::PtrToInt && 2385 DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) { 2386 Value *RHSOp = nullptr; 2387 if (auto *RHSC = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) { 2388 Value *RHSCIOp = RHSC->getOperand(0); 2389 if (RHSCIOp->getType()->getPointerAddressSpace() == 2390 LHSCIOp->getType()->getPointerAddressSpace()) { 2391 RHSOp = RHSC->getOperand(0); 2392 // If the pointer types don't match, insert a bitcast. 2393 if (LHSCIOp->getType() != RHSOp->getType()) 2394 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType()); 2395 } 2396 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) { 2397 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); 2398 } 2399 2400 if (RHSOp) 2401 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSOp); 2402 } 2403 2404 // The code below only handles extension cast instructions, so far. 2405 // Enforce this. 2406 if (LHSCI->getOpcode() != Instruction::ZExt && 2407 LHSCI->getOpcode() != Instruction::SExt) 2408 return nullptr; 2409 2410 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; 2411 bool isSignedCmp = ICmp.isSigned(); 2412 2413 if (auto *CI = dyn_cast<CastInst>(ICmp.getOperand(1))) { 2414 // Not an extension from the same type? 2415 RHSCIOp = CI->getOperand(0); 2416 if (RHSCIOp->getType() != LHSCIOp->getType()) 2417 return nullptr; 2418 2419 // If the signedness of the two casts doesn't agree (i.e. one is a sext 2420 // and the other is a zext), then we can't handle this. 2421 if (CI->getOpcode() != LHSCI->getOpcode()) 2422 return nullptr; 2423 2424 // Deal with equality cases early. 2425 if (ICmp.isEquality()) 2426 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 2427 2428 // A signed comparison of sign extended values simplifies into a 2429 // signed comparison. 2430 if (isSignedCmp && isSignedExt) 2431 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, RHSCIOp); 2432 2433 // The other three cases all fold into an unsigned comparison. 2434 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, RHSCIOp); 2435 } 2436 2437 // If we aren't dealing with a constant on the RHS, exit early. 2438 auto *C = dyn_cast<Constant>(ICmp.getOperand(1)); 2439 if (!C) 2440 return nullptr; 2441 2442 // Compute the constant that would happen if we truncated to SrcTy then 2443 // re-extended to DestTy. 2444 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy); 2445 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); 2446 2447 // If the re-extended constant didn't change... 2448 if (Res2 == C) { 2449 // Deal with equality cases early. 2450 if (ICmp.isEquality()) 2451 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 2452 2453 // A signed comparison of sign extended values simplifies into a 2454 // signed comparison. 2455 if (isSignedExt && isSignedCmp) 2456 return new ICmpInst(ICmp.getPredicate(), LHSCIOp, Res1); 2457 2458 // The other three cases all fold into an unsigned comparison. 2459 return new ICmpInst(ICmp.getUnsignedPredicate(), LHSCIOp, Res1); 2460 } 2461 2462 // The re-extended constant changed, partly changed (in the case of a vector), 2463 // or could not be determined to be equal (in the case of a constant 2464 // expression), so the constant cannot be represented in the shorter type. 2465 // Consequently, we cannot emit a simple comparison. 2466 // All the cases that fold to true or false will have already been handled 2467 // by SimplifyICmpInst, so only deal with the tricky case. 2468 2469 if (isSignedCmp || !isSignedExt || !isa<ConstantInt>(C)) 2470 return nullptr; 2471 2472 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases 2473 // should have been folded away previously and not enter in here. 2474 2475 // We're performing an unsigned comp with a sign extended value. 2476 // This is true if the input is >= 0. [aka >s -1] 2477 Constant *NegOne = Constant::getAllOnesValue(SrcTy); 2478 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICmp.getName()); 2479 2480 // Finally, return the value computed. 2481 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT) 2482 return replaceInstUsesWith(ICmp, Result); 2483 2484 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"); 2485 return BinaryOperator::CreateNot(Result); 2486 } 2487 2488 /// The caller has matched a pattern of the form: 2489 /// I = icmp ugt (add (add A, B), CI2), CI1 2490 /// If this is of the form: 2491 /// sum = a + b 2492 /// if (sum+128 >u 255) 2493 /// Then replace it with llvm.sadd.with.overflow.i8. 2494 /// 2495 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, 2496 ConstantInt *CI2, ConstantInt *CI1, 2497 InstCombiner &IC) { 2498 // The transformation we're trying to do here is to transform this into an 2499 // llvm.sadd.with.overflow. To do this, we have to replace the original add 2500 // with a narrower add, and discard the add-with-constant that is part of the 2501 // range check (if we can't eliminate it, this isn't profitable). 2502 2503 // In order to eliminate the add-with-constant, the compare can be its only 2504 // use. 2505 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); 2506 if (!AddWithCst->hasOneUse()) return nullptr; 2507 2508 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. 2509 if (!CI2->getValue().isPowerOf2()) return nullptr; 2510 unsigned NewWidth = CI2->getValue().countTrailingZeros(); 2511 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr; 2512 2513 // The width of the new add formed is 1 more than the bias. 2514 ++NewWidth; 2515 2516 // Check to see that CI1 is an all-ones value with NewWidth bits. 2517 if (CI1->getBitWidth() == NewWidth || 2518 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) 2519 return nullptr; 2520 2521 // This is only really a signed overflow check if the inputs have been 2522 // sign-extended; check for that condition. For example, if CI2 is 2^31 and 2523 // the operands of the add are 64 bits wide, we need at least 33 sign bits. 2524 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1; 2525 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits || 2526 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits) 2527 return nullptr; 2528 2529 // In order to replace the original add with a narrower 2530 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant 2531 // and truncates that discard the high bits of the add. Verify that this is 2532 // the case. 2533 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0)); 2534 for (User *U : OrigAdd->users()) { 2535 if (U == AddWithCst) continue; 2536 2537 // Only accept truncates for now. We would really like a nice recursive 2538 // predicate like SimplifyDemandedBits, but which goes downwards the use-def 2539 // chain to see which bits of a value are actually demanded. If the 2540 // original add had another add which was then immediately truncated, we 2541 // could still do the transformation. 2542 TruncInst *TI = dyn_cast<TruncInst>(U); 2543 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth) 2544 return nullptr; 2545 } 2546 2547 // If the pattern matches, truncate the inputs to the narrower type and 2548 // use the sadd_with_overflow intrinsic to efficiently compute both the 2549 // result and the overflow bit. 2550 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); 2551 Value *F = Intrinsic::getDeclaration(I.getModule(), 2552 Intrinsic::sadd_with_overflow, NewType); 2553 2554 InstCombiner::BuilderTy *Builder = IC.Builder; 2555 2556 // Put the new code above the original add, in case there are any uses of the 2557 // add between the add and the compare. 2558 Builder->SetInsertPoint(OrigAdd); 2559 2560 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); 2561 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); 2562 CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd"); 2563 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); 2564 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); 2565 2566 // The inner add was the result of the narrow add, zero extended to the 2567 // wider type. Replace it with the result computed by the intrinsic. 2568 IC.replaceInstUsesWith(*OrigAdd, ZExt); 2569 2570 // The original icmp gets replaced with the overflow value. 2571 return ExtractValueInst::Create(Call, 1, "sadd.overflow"); 2572 } 2573 2574 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, 2575 Value *RHS, Instruction &OrigI, 2576 Value *&Result, Constant *&Overflow) { 2577 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS)) 2578 std::swap(LHS, RHS); 2579 2580 auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) { 2581 Result = OpResult; 2582 Overflow = OverflowVal; 2583 if (ReuseName) 2584 Result->takeName(&OrigI); 2585 return true; 2586 }; 2587 2588 // If the overflow check was an add followed by a compare, the insertion point 2589 // may be pointing to the compare. We want to insert the new instructions 2590 // before the add in case there are uses of the add between the add and the 2591 // compare. 2592 Builder->SetInsertPoint(&OrigI); 2593 2594 switch (OCF) { 2595 case OCF_INVALID: 2596 llvm_unreachable("bad overflow check kind!"); 2597 2598 case OCF_UNSIGNED_ADD: { 2599 OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI); 2600 if (OR == OverflowResult::NeverOverflows) 2601 return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(), 2602 true); 2603 2604 if (OR == OverflowResult::AlwaysOverflows) 2605 return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true); 2606 } 2607 // FALL THROUGH uadd into sadd 2608 case OCF_SIGNED_ADD: { 2609 // X + 0 -> {X, false} 2610 if (match(RHS, m_Zero())) 2611 return SetResult(LHS, Builder->getFalse(), false); 2612 2613 // We can strength reduce this signed add into a regular add if we can prove 2614 // that it will never overflow. 2615 if (OCF == OCF_SIGNED_ADD) 2616 if (WillNotOverflowSignedAdd(LHS, RHS, OrigI)) 2617 return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(), 2618 true); 2619 break; 2620 } 2621 2622 case OCF_UNSIGNED_SUB: 2623 case OCF_SIGNED_SUB: { 2624 // X - 0 -> {X, false} 2625 if (match(RHS, m_Zero())) 2626 return SetResult(LHS, Builder->getFalse(), false); 2627 2628 if (OCF == OCF_SIGNED_SUB) { 2629 if (WillNotOverflowSignedSub(LHS, RHS, OrigI)) 2630 return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(), 2631 true); 2632 } else { 2633 if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI)) 2634 return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(), 2635 true); 2636 } 2637 break; 2638 } 2639 2640 case OCF_UNSIGNED_MUL: { 2641 OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI); 2642 if (OR == OverflowResult::NeverOverflows) 2643 return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(), 2644 true); 2645 if (OR == OverflowResult::AlwaysOverflows) 2646 return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true); 2647 } // FALL THROUGH 2648 case OCF_SIGNED_MUL: 2649 // X * undef -> undef 2650 if (isa<UndefValue>(RHS)) 2651 return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false); 2652 2653 // X * 0 -> {0, false} 2654 if (match(RHS, m_Zero())) 2655 return SetResult(RHS, Builder->getFalse(), false); 2656 2657 // X * 1 -> {X, false} 2658 if (match(RHS, m_One())) 2659 return SetResult(LHS, Builder->getFalse(), false); 2660 2661 if (OCF == OCF_SIGNED_MUL) 2662 if (WillNotOverflowSignedMul(LHS, RHS, OrigI)) 2663 return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(), 2664 true); 2665 break; 2666 } 2667 2668 return false; 2669 } 2670 2671 /// \brief Recognize and process idiom involving test for multiplication 2672 /// overflow. 2673 /// 2674 /// The caller has matched a pattern of the form: 2675 /// I = cmp u (mul(zext A, zext B), V 2676 /// The function checks if this is a test for overflow and if so replaces 2677 /// multiplication with call to 'mul.with.overflow' intrinsic. 2678 /// 2679 /// \param I Compare instruction. 2680 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of 2681 /// the compare instruction. Must be of integer type. 2682 /// \param OtherVal The other argument of compare instruction. 2683 /// \returns Instruction which must replace the compare instruction, NULL if no 2684 /// replacement required. 2685 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal, 2686 Value *OtherVal, InstCombiner &IC) { 2687 // Don't bother doing this transformation for pointers, don't do it for 2688 // vectors. 2689 if (!isa<IntegerType>(MulVal->getType())) 2690 return nullptr; 2691 2692 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal); 2693 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal); 2694 auto *MulInstr = dyn_cast<Instruction>(MulVal); 2695 if (!MulInstr) 2696 return nullptr; 2697 assert(MulInstr->getOpcode() == Instruction::Mul); 2698 2699 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)), 2700 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1)); 2701 assert(LHS->getOpcode() == Instruction::ZExt); 2702 assert(RHS->getOpcode() == Instruction::ZExt); 2703 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0); 2704 2705 // Calculate type and width of the result produced by mul.with.overflow. 2706 Type *TyA = A->getType(), *TyB = B->getType(); 2707 unsigned WidthA = TyA->getPrimitiveSizeInBits(), 2708 WidthB = TyB->getPrimitiveSizeInBits(); 2709 unsigned MulWidth; 2710 Type *MulType; 2711 if (WidthB > WidthA) { 2712 MulWidth = WidthB; 2713 MulType = TyB; 2714 } else { 2715 MulWidth = WidthA; 2716 MulType = TyA; 2717 } 2718 2719 // In order to replace the original mul with a narrower mul.with.overflow, 2720 // all uses must ignore upper bits of the product. The number of used low 2721 // bits must be not greater than the width of mul.with.overflow. 2722 if (MulVal->hasNUsesOrMore(2)) 2723 for (User *U : MulVal->users()) { 2724 if (U == &I) 2725 continue; 2726 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2727 // Check if truncation ignores bits above MulWidth. 2728 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits(); 2729 if (TruncWidth > MulWidth) 2730 return nullptr; 2731 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2732 // Check if AND ignores bits above MulWidth. 2733 if (BO->getOpcode() != Instruction::And) 2734 return nullptr; 2735 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 2736 const APInt &CVal = CI->getValue(); 2737 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth) 2738 return nullptr; 2739 } 2740 } else { 2741 // Other uses prohibit this transformation. 2742 return nullptr; 2743 } 2744 } 2745 2746 // Recognize patterns 2747 switch (I.getPredicate()) { 2748 case ICmpInst::ICMP_EQ: 2749 case ICmpInst::ICMP_NE: 2750 // Recognize pattern: 2751 // mulval = mul(zext A, zext B) 2752 // cmp eq/neq mulval, zext trunc mulval 2753 if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal)) 2754 if (Zext->hasOneUse()) { 2755 Value *ZextArg = Zext->getOperand(0); 2756 if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg)) 2757 if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth) 2758 break; //Recognized 2759 } 2760 2761 // Recognize pattern: 2762 // mulval = mul(zext A, zext B) 2763 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits. 2764 ConstantInt *CI; 2765 Value *ValToMask; 2766 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) { 2767 if (ValToMask != MulVal) 2768 return nullptr; 2769 const APInt &CVal = CI->getValue() + 1; 2770 if (CVal.isPowerOf2()) { 2771 unsigned MaskWidth = CVal.logBase2(); 2772 if (MaskWidth == MulWidth) 2773 break; // Recognized 2774 } 2775 } 2776 return nullptr; 2777 2778 case ICmpInst::ICMP_UGT: 2779 // Recognize pattern: 2780 // mulval = mul(zext A, zext B) 2781 // cmp ugt mulval, max 2782 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2783 APInt MaxVal = APInt::getMaxValue(MulWidth); 2784 MaxVal = MaxVal.zext(CI->getBitWidth()); 2785 if (MaxVal.eq(CI->getValue())) 2786 break; // Recognized 2787 } 2788 return nullptr; 2789 2790 case ICmpInst::ICMP_UGE: 2791 // Recognize pattern: 2792 // mulval = mul(zext A, zext B) 2793 // cmp uge mulval, max+1 2794 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2795 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2796 if (MaxVal.eq(CI->getValue())) 2797 break; // Recognized 2798 } 2799 return nullptr; 2800 2801 case ICmpInst::ICMP_ULE: 2802 // Recognize pattern: 2803 // mulval = mul(zext A, zext B) 2804 // cmp ule mulval, max 2805 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2806 APInt MaxVal = APInt::getMaxValue(MulWidth); 2807 MaxVal = MaxVal.zext(CI->getBitWidth()); 2808 if (MaxVal.eq(CI->getValue())) 2809 break; // Recognized 2810 } 2811 return nullptr; 2812 2813 case ICmpInst::ICMP_ULT: 2814 // Recognize pattern: 2815 // mulval = mul(zext A, zext B) 2816 // cmp ule mulval, max + 1 2817 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) { 2818 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth); 2819 if (MaxVal.eq(CI->getValue())) 2820 break; // Recognized 2821 } 2822 return nullptr; 2823 2824 default: 2825 return nullptr; 2826 } 2827 2828 InstCombiner::BuilderTy *Builder = IC.Builder; 2829 Builder->SetInsertPoint(MulInstr); 2830 2831 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B) 2832 Value *MulA = A, *MulB = B; 2833 if (WidthA < MulWidth) 2834 MulA = Builder->CreateZExt(A, MulType); 2835 if (WidthB < MulWidth) 2836 MulB = Builder->CreateZExt(B, MulType); 2837 Value *F = Intrinsic::getDeclaration(I.getModule(), 2838 Intrinsic::umul_with_overflow, MulType); 2839 CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul"); 2840 IC.Worklist.Add(MulInstr); 2841 2842 // If there are uses of mul result other than the comparison, we know that 2843 // they are truncation or binary AND. Change them to use result of 2844 // mul.with.overflow and adjust properly mask/size. 2845 if (MulVal->hasNUsesOrMore(2)) { 2846 Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value"); 2847 for (User *U : MulVal->users()) { 2848 if (U == &I || U == OtherVal) 2849 continue; 2850 if (TruncInst *TI = dyn_cast<TruncInst>(U)) { 2851 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth) 2852 IC.replaceInstUsesWith(*TI, Mul); 2853 else 2854 TI->setOperand(0, Mul); 2855 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) { 2856 assert(BO->getOpcode() == Instruction::And); 2857 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask) 2858 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); 2859 APInt ShortMask = CI->getValue().trunc(MulWidth); 2860 Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask); 2861 Instruction *Zext = 2862 cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType())); 2863 IC.Worklist.Add(Zext); 2864 IC.replaceInstUsesWith(*BO, Zext); 2865 } else { 2866 llvm_unreachable("Unexpected Binary operation"); 2867 } 2868 IC.Worklist.Add(cast<Instruction>(U)); 2869 } 2870 } 2871 if (isa<Instruction>(OtherVal)) 2872 IC.Worklist.Add(cast<Instruction>(OtherVal)); 2873 2874 // The original icmp gets replaced with the overflow value, maybe inverted 2875 // depending on predicate. 2876 bool Inverse = false; 2877 switch (I.getPredicate()) { 2878 case ICmpInst::ICMP_NE: 2879 break; 2880 case ICmpInst::ICMP_EQ: 2881 Inverse = true; 2882 break; 2883 case ICmpInst::ICMP_UGT: 2884 case ICmpInst::ICMP_UGE: 2885 if (I.getOperand(0) == MulVal) 2886 break; 2887 Inverse = true; 2888 break; 2889 case ICmpInst::ICMP_ULT: 2890 case ICmpInst::ICMP_ULE: 2891 if (I.getOperand(1) == MulVal) 2892 break; 2893 Inverse = true; 2894 break; 2895 default: 2896 llvm_unreachable("Unexpected predicate"); 2897 } 2898 if (Inverse) { 2899 Value *Res = Builder->CreateExtractValue(Call, 1); 2900 return BinaryOperator::CreateNot(Res); 2901 } 2902 2903 return ExtractValueInst::Create(Call, 1); 2904 } 2905 2906 /// When performing a comparison against a constant, it is possible that not all 2907 /// the bits in the LHS are demanded. This helper method computes the mask that 2908 /// IS demanded. 2909 static APInt DemandedBitsLHSMask(ICmpInst &I, 2910 unsigned BitWidth, bool isSignCheck) { 2911 if (isSignCheck) 2912 return APInt::getSignBit(BitWidth); 2913 2914 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 2915 if (!CI) return APInt::getAllOnesValue(BitWidth); 2916 const APInt &RHS = CI->getValue(); 2917 2918 switch (I.getPredicate()) { 2919 // For a UGT comparison, we don't care about any bits that 2920 // correspond to the trailing ones of the comparand. The value of these 2921 // bits doesn't impact the outcome of the comparison, because any value 2922 // greater than the RHS must differ in a bit higher than these due to carry. 2923 case ICmpInst::ICMP_UGT: { 2924 unsigned trailingOnes = RHS.countTrailingOnes(); 2925 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); 2926 return ~lowBitsSet; 2927 } 2928 2929 // Similarly, for a ULT comparison, we don't care about the trailing zeros. 2930 // Any value less than the RHS must differ in a higher bit because of carries. 2931 case ICmpInst::ICMP_ULT: { 2932 unsigned trailingZeros = RHS.countTrailingZeros(); 2933 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); 2934 return ~lowBitsSet; 2935 } 2936 2937 default: 2938 return APInt::getAllOnesValue(BitWidth); 2939 } 2940 } 2941 2942 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst 2943 /// should be swapped. 2944 /// The decision is based on how many times these two operands are reused 2945 /// as subtract operands and their positions in those instructions. 2946 /// The rational is that several architectures use the same instruction for 2947 /// both subtract and cmp, thus it is better if the order of those operands 2948 /// match. 2949 /// \return true if Op0 and Op1 should be swapped. 2950 static bool swapMayExposeCSEOpportunities(const Value * Op0, 2951 const Value * Op1) { 2952 // Filter out pointer value as those cannot appears directly in subtract. 2953 // FIXME: we may want to go through inttoptrs or bitcasts. 2954 if (Op0->getType()->isPointerTy()) 2955 return false; 2956 // Count every uses of both Op0 and Op1 in a subtract. 2957 // Each time Op0 is the first operand, count -1: swapping is bad, the 2958 // subtract has already the same layout as the compare. 2959 // Each time Op0 is the second operand, count +1: swapping is good, the 2960 // subtract has a different layout as the compare. 2961 // At the end, if the benefit is greater than 0, Op0 should come second to 2962 // expose more CSE opportunities. 2963 int GlobalSwapBenefits = 0; 2964 for (const User *U : Op0->users()) { 2965 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U); 2966 if (!BinOp || BinOp->getOpcode() != Instruction::Sub) 2967 continue; 2968 // If Op0 is the first argument, this is not beneficial to swap the 2969 // arguments. 2970 int LocalSwapBenefits = -1; 2971 unsigned Op1Idx = 1; 2972 if (BinOp->getOperand(Op1Idx) == Op0) { 2973 Op1Idx = 0; 2974 LocalSwapBenefits = 1; 2975 } 2976 if (BinOp->getOperand(Op1Idx) != Op1) 2977 continue; 2978 GlobalSwapBenefits += LocalSwapBenefits; 2979 } 2980 return GlobalSwapBenefits > 0; 2981 } 2982 2983 /// \brief Check that one use is in the same block as the definition and all 2984 /// other uses are in blocks dominated by a given block 2985 /// 2986 /// \param DI Definition 2987 /// \param UI Use 2988 /// \param DB Block that must dominate all uses of \p DI outside 2989 /// the parent block 2990 /// \return true when \p UI is the only use of \p DI in the parent block 2991 /// and all other uses of \p DI are in blocks dominated by \p DB. 2992 /// 2993 bool InstCombiner::dominatesAllUses(const Instruction *DI, 2994 const Instruction *UI, 2995 const BasicBlock *DB) const { 2996 assert(DI && UI && "Instruction not defined\n"); 2997 // ignore incomplete definitions 2998 if (!DI->getParent()) 2999 return false; 3000 // DI and UI must be in the same block 3001 if (DI->getParent() != UI->getParent()) 3002 return false; 3003 // Protect from self-referencing blocks 3004 if (DI->getParent() == DB) 3005 return false; 3006 // DominatorTree available? 3007 if (!DT) 3008 return false; 3009 for (const User *U : DI->users()) { 3010 auto *Usr = cast<Instruction>(U); 3011 if (Usr != UI && !DT->dominates(DB, Usr->getParent())) 3012 return false; 3013 } 3014 return true; 3015 } 3016 3017 /// Return true when the instruction sequence within a block is select-cmp-br. 3018 static bool isChainSelectCmpBranch(const SelectInst *SI) { 3019 const BasicBlock *BB = SI->getParent(); 3020 if (!BB) 3021 return false; 3022 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator()); 3023 if (!BI || BI->getNumSuccessors() != 2) 3024 return false; 3025 auto *IC = dyn_cast<ICmpInst>(BI->getCondition()); 3026 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI)) 3027 return false; 3028 return true; 3029 } 3030 3031 /// \brief True when a select result is replaced by one of its operands 3032 /// in select-icmp sequence. This will eventually result in the elimination 3033 /// of the select. 3034 /// 3035 /// \param SI Select instruction 3036 /// \param Icmp Compare instruction 3037 /// \param SIOpd Operand that replaces the select 3038 /// 3039 /// Notes: 3040 /// - The replacement is global and requires dominator information 3041 /// - The caller is responsible for the actual replacement 3042 /// 3043 /// Example: 3044 /// 3045 /// entry: 3046 /// %4 = select i1 %3, %C* %0, %C* null 3047 /// %5 = icmp eq %C* %4, null 3048 /// br i1 %5, label %9, label %7 3049 /// ... 3050 /// ; <label>:7 ; preds = %entry 3051 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0 3052 /// ... 3053 /// 3054 /// can be transformed to 3055 /// 3056 /// %5 = icmp eq %C* %0, null 3057 /// %6 = select i1 %3, i1 %5, i1 true 3058 /// br i1 %6, label %9, label %7 3059 /// ... 3060 /// ; <label>:7 ; preds = %entry 3061 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0! 3062 /// 3063 /// Similar when the first operand of the select is a constant or/and 3064 /// the compare is for not equal rather than equal. 3065 /// 3066 /// NOTE: The function is only called when the select and compare constants 3067 /// are equal, the optimization can work only for EQ predicates. This is not a 3068 /// major restriction since a NE compare should be 'normalized' to an equal 3069 /// compare, which usually happens in the combiner and test case 3070 /// select-cmp-br.ll 3071 /// checks for it. 3072 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI, 3073 const ICmpInst *Icmp, 3074 const unsigned SIOpd) { 3075 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"); 3076 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) { 3077 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1); 3078 // The check for the unique predecessor is not the best that can be 3079 // done. But it protects efficiently against cases like when SI's 3080 // home block has two successors, Succ and Succ1, and Succ1 predecessor 3081 // of Succ. Then SI can't be replaced by SIOpd because the use that gets 3082 // replaced can be reached on either path. So the uniqueness check 3083 // guarantees that the path all uses of SI (outside SI's parent) are on 3084 // is disjoint from all other paths out of SI. But that information 3085 // is more expensive to compute, and the trade-off here is in favor 3086 // of compile-time. 3087 if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) { 3088 NumSel++; 3089 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent()); 3090 return true; 3091 } 3092 } 3093 return false; 3094 } 3095 3096 /// If we have an icmp le or icmp ge instruction with a constant operand, turn 3097 /// it into the appropriate icmp lt or icmp gt instruction. This transform 3098 /// allows them to be folded in visitICmpInst. 3099 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) { 3100 ICmpInst::Predicate Pred = I.getPredicate(); 3101 if (Pred != ICmpInst::ICMP_SLE && Pred != ICmpInst::ICMP_SGE && 3102 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_UGE) 3103 return nullptr; 3104 3105 Value *Op0 = I.getOperand(0); 3106 Value *Op1 = I.getOperand(1); 3107 auto *Op1C = dyn_cast<Constant>(Op1); 3108 if (!Op1C) 3109 return nullptr; 3110 3111 // Check if the constant operand can be safely incremented/decremented without 3112 // overflowing/underflowing. For scalars, SimplifyICmpInst has already handled 3113 // the edge cases for us, so we just assert on them. For vectors, we must 3114 // handle the edge cases. 3115 Type *Op1Type = Op1->getType(); 3116 bool IsSigned = I.isSigned(); 3117 bool IsLE = (Pred == ICmpInst::ICMP_SLE || Pred == ICmpInst::ICMP_ULE); 3118 auto *CI = dyn_cast<ConstantInt>(Op1C); 3119 if (CI) { 3120 // A <= MAX -> TRUE ; A >= MIN -> TRUE 3121 assert(IsLE ? !CI->isMaxValue(IsSigned) : !CI->isMinValue(IsSigned)); 3122 } else if (Op1Type->isVectorTy()) { 3123 // TODO? If the edge cases for vectors were guaranteed to be handled as they 3124 // are for scalar, we could remove the min/max checks. However, to do that, 3125 // we would have to use insertelement/shufflevector to replace edge values. 3126 unsigned NumElts = Op1Type->getVectorNumElements(); 3127 for (unsigned i = 0; i != NumElts; ++i) { 3128 Constant *Elt = Op1C->getAggregateElement(i); 3129 if (!Elt) 3130 return nullptr; 3131 3132 if (isa<UndefValue>(Elt)) 3133 continue; 3134 // Bail out if we can't determine if this constant is min/max or if we 3135 // know that this constant is min/max. 3136 auto *CI = dyn_cast<ConstantInt>(Elt); 3137 if (!CI || (IsLE ? CI->isMaxValue(IsSigned) : CI->isMinValue(IsSigned))) 3138 return nullptr; 3139 } 3140 } else { 3141 // ConstantExpr? 3142 return nullptr; 3143 } 3144 3145 // Increment or decrement the constant and set the new comparison predicate: 3146 // ULE -> ULT ; UGE -> UGT ; SLE -> SLT ; SGE -> SGT 3147 Constant *OneOrNegOne = ConstantInt::get(Op1Type, IsLE ? 1 : -1, true); 3148 CmpInst::Predicate NewPred = IsLE ? ICmpInst::ICMP_ULT: ICmpInst::ICMP_UGT; 3149 NewPred = IsSigned ? ICmpInst::getSignedPredicate(NewPred) : NewPred; 3150 return new ICmpInst(NewPred, Op0, ConstantExpr::getAdd(Op1C, OneOrNegOne)); 3151 } 3152 3153 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { 3154 bool Changed = false; 3155 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 3156 unsigned Op0Cplxity = getComplexity(Op0); 3157 unsigned Op1Cplxity = getComplexity(Op1); 3158 3159 /// Orders the operands of the compare so that they are listed from most 3160 /// complex to least complex. This puts constants before unary operators, 3161 /// before binary operators. 3162 if (Op0Cplxity < Op1Cplxity || 3163 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) { 3164 I.swapOperands(); 3165 std::swap(Op0, Op1); 3166 Changed = true; 3167 } 3168 3169 if (Value *V = 3170 SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I)) 3171 return replaceInstUsesWith(I, V); 3172 3173 // comparing -val or val with non-zero is the same as just comparing val 3174 // ie, abs(val) != 0 -> val != 0 3175 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) { 3176 Value *Cond, *SelectTrue, *SelectFalse; 3177 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue), 3178 m_Value(SelectFalse)))) { 3179 if (Value *V = dyn_castNegVal(SelectTrue)) { 3180 if (V == SelectFalse) 3181 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 3182 } 3183 else if (Value *V = dyn_castNegVal(SelectFalse)) { 3184 if (V == SelectTrue) 3185 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1); 3186 } 3187 } 3188 } 3189 3190 Type *Ty = Op0->getType(); 3191 3192 // icmp's with boolean values can always be turned into bitwise operations 3193 if (Ty->getScalarType()->isIntegerTy(1)) { 3194 switch (I.getPredicate()) { 3195 default: llvm_unreachable("Invalid icmp instruction!"); 3196 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B) 3197 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName() + "tmp"); 3198 return BinaryOperator::CreateNot(Xor); 3199 } 3200 case ICmpInst::ICMP_NE: // icmp ne i1 A, B -> A^B 3201 return BinaryOperator::CreateXor(Op0, Op1); 3202 3203 case ICmpInst::ICMP_UGT: 3204 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult 3205 // FALL THROUGH 3206 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B 3207 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp"); 3208 return BinaryOperator::CreateAnd(Not, Op1); 3209 } 3210 case ICmpInst::ICMP_SGT: 3211 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt 3212 // FALL THROUGH 3213 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B 3214 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp"); 3215 return BinaryOperator::CreateAnd(Not, Op0); 3216 } 3217 case ICmpInst::ICMP_UGE: 3218 std::swap(Op0, Op1); // Change icmp uge -> icmp ule 3219 // FALL THROUGH 3220 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B 3221 Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp"); 3222 return BinaryOperator::CreateOr(Not, Op1); 3223 } 3224 case ICmpInst::ICMP_SGE: 3225 std::swap(Op0, Op1); // Change icmp sge -> icmp sle 3226 // FALL THROUGH 3227 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B 3228 Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp"); 3229 return BinaryOperator::CreateOr(Not, Op0); 3230 } 3231 } 3232 } 3233 3234 if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I)) 3235 return NewICmp; 3236 3237 unsigned BitWidth = 0; 3238 if (Ty->isIntOrIntVectorTy()) 3239 BitWidth = Ty->getScalarSizeInBits(); 3240 else // Get pointer size. 3241 BitWidth = DL.getTypeSizeInBits(Ty->getScalarType()); 3242 3243 bool isSignBit = false; 3244 3245 // See if we are doing a comparison with a constant. 3246 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3247 Value *A = nullptr, *B = nullptr; 3248 3249 // Match the following pattern, which is a common idiom when writing 3250 // overflow-safe integer arithmetic function. The source performs an 3251 // addition in wider type, and explicitly checks for overflow using 3252 // comparisons against INT_MIN and INT_MAX. Simplify this by using the 3253 // sadd_with_overflow intrinsic. 3254 // 3255 // TODO: This could probably be generalized to handle other overflow-safe 3256 // operations if we worked out the formulas to compute the appropriate 3257 // magic constants. 3258 // 3259 // sum = a + b 3260 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 3261 { 3262 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI 3263 if (I.getPredicate() == ICmpInst::ICMP_UGT && 3264 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2)))) 3265 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) 3266 return Res; 3267 } 3268 3269 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0) 3270 if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT) 3271 if (auto *SI = dyn_cast<SelectInst>(Op0)) { 3272 SelectPatternResult SPR = matchSelectPattern(SI, A, B); 3273 if (SPR.Flavor == SPF_SMIN) { 3274 if (isKnownPositive(A, DL)) 3275 return new ICmpInst(I.getPredicate(), B, CI); 3276 if (isKnownPositive(B, DL)) 3277 return new ICmpInst(I.getPredicate(), A, CI); 3278 } 3279 } 3280 3281 3282 // The following transforms are only 'worth it' if the only user of the 3283 // subtraction is the icmp. 3284 if (Op0->hasOneUse()) { 3285 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) 3286 if (I.isEquality() && CI->isZero() && 3287 match(Op0, m_Sub(m_Value(A), m_Value(B)))) 3288 return new ICmpInst(I.getPredicate(), A, B); 3289 3290 // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B) 3291 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() && 3292 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3293 return new ICmpInst(ICmpInst::ICMP_SGE, A, B); 3294 3295 // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B) 3296 if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() && 3297 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3298 return new ICmpInst(ICmpInst::ICMP_SGT, A, B); 3299 3300 // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B) 3301 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() && 3302 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3303 return new ICmpInst(ICmpInst::ICMP_SLT, A, B); 3304 3305 // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B) 3306 if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() && 3307 match(Op0, m_NSWSub(m_Value(A), m_Value(B)))) 3308 return new ICmpInst(ICmpInst::ICMP_SLE, A, B); 3309 } 3310 3311 if (I.isEquality()) { 3312 ConstantInt *CI2; 3313 if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) || 3314 match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) { 3315 // (icmp eq/ne (ashr/lshr const2, A), const1) 3316 if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2)) 3317 return Inst; 3318 } 3319 if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) { 3320 // (icmp eq/ne (shl const2, A), const1) 3321 if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2)) 3322 return Inst; 3323 } 3324 } 3325 3326 // If this comparison is a normal comparison, it demands all 3327 // bits, if it is a sign bit comparison, it only demands the sign bit. 3328 bool UnusedBit; 3329 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); 3330 3331 // Canonicalize icmp instructions based on dominating conditions. 3332 BasicBlock *Parent = I.getParent(); 3333 BasicBlock *Dom = Parent->getSinglePredecessor(); 3334 auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr; 3335 ICmpInst::Predicate Pred; 3336 BasicBlock *TrueBB, *FalseBB; 3337 ConstantInt *CI2; 3338 if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)), 3339 TrueBB, FalseBB)) && 3340 TrueBB != FalseBB) { 3341 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(), 3342 CI->getValue()); 3343 ConstantRange DominatingCR = 3344 (Parent == TrueBB) 3345 ? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue()) 3346 : ConstantRange::makeExactICmpRegion( 3347 CmpInst::getInversePredicate(Pred), CI2->getValue()); 3348 ConstantRange Intersection = DominatingCR.intersectWith(CR); 3349 ConstantRange Difference = DominatingCR.difference(CR); 3350 if (Intersection.isEmptySet()) 3351 return replaceInstUsesWith(I, Builder->getFalse()); 3352 if (Difference.isEmptySet()) 3353 return replaceInstUsesWith(I, Builder->getTrue()); 3354 // Canonicalizing a sign bit comparison that gets used in a branch, 3355 // pessimizes codegen by generating branch on zero instruction instead 3356 // of a test and branch. So we avoid canonicalizing in such situations 3357 // because test and branch instruction has better branch displacement 3358 // than compare and branch instruction. 3359 if (!isBranchOnSignBitCheck(I, isSignBit) && !I.isEquality()) { 3360 if (auto *AI = Intersection.getSingleElement()) 3361 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI)); 3362 if (auto *AD = Difference.getSingleElement()) 3363 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD)); 3364 } 3365 } 3366 } 3367 3368 // See if we can fold the comparison based on range information we can get 3369 // by checking whether bits are known to be zero or one in the input. 3370 if (BitWidth != 0) { 3371 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0); 3372 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0); 3373 3374 if (SimplifyDemandedBits(I.getOperandUse(0), 3375 DemandedBitsLHSMask(I, BitWidth, isSignBit), 3376 Op0KnownZero, Op0KnownOne, 0)) 3377 return &I; 3378 if (SimplifyDemandedBits(I.getOperandUse(1), 3379 APInt::getAllOnesValue(BitWidth), Op1KnownZero, 3380 Op1KnownOne, 0)) 3381 return &I; 3382 3383 // Given the known and unknown bits, compute a range that the LHS could be 3384 // in. Compute the Min, Max and RHS values based on the known bits. For the 3385 // EQ and NE we use unsigned values. 3386 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0); 3387 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0); 3388 if (I.isSigned()) { 3389 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 3390 Op0Min, Op0Max); 3391 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 3392 Op1Min, Op1Max); 3393 } else { 3394 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, 3395 Op0Min, Op0Max); 3396 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, 3397 Op1Min, Op1Max); 3398 } 3399 3400 // If Min and Max are known to be the same, then SimplifyDemandedBits 3401 // figured out that the LHS is a constant. Just constant fold this now so 3402 // that code below can assume that Min != Max. 3403 if (!isa<Constant>(Op0) && Op0Min == Op0Max) 3404 return new ICmpInst(I.getPredicate(), 3405 ConstantInt::get(Op0->getType(), Op0Min), Op1); 3406 if (!isa<Constant>(Op1) && Op1Min == Op1Max) 3407 return new ICmpInst(I.getPredicate(), Op0, 3408 ConstantInt::get(Op1->getType(), Op1Min)); 3409 3410 // Based on the range information we know about the LHS, see if we can 3411 // simplify this comparison. For example, (x&4) < 8 is always true. 3412 switch (I.getPredicate()) { 3413 default: llvm_unreachable("Unknown icmp opcode!"); 3414 case ICmpInst::ICMP_EQ: { 3415 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 3416 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3417 3418 // If all bits are known zero except for one, then we know at most one 3419 // bit is set. If the comparison is against zero, then this is a check 3420 // to see if *that* bit is set. 3421 APInt Op0KnownZeroInverted = ~Op0KnownZero; 3422 if (~Op1KnownZero == 0) { 3423 // If the LHS is an AND with the same constant, look through it. 3424 Value *LHS = nullptr; 3425 ConstantInt *LHSC = nullptr; 3426 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 3427 LHSC->getValue() != Op0KnownZeroInverted) 3428 LHS = Op0; 3429 3430 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 3431 // then turn "((1 << x)&8) == 0" into "x != 3". 3432 // or turn "((1 << x)&7) == 0" into "x > 2". 3433 Value *X = nullptr; 3434 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 3435 APInt ValToCheck = Op0KnownZeroInverted; 3436 if (ValToCheck.isPowerOf2()) { 3437 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3438 return new ICmpInst(ICmpInst::ICMP_NE, X, 3439 ConstantInt::get(X->getType(), CmpVal)); 3440 } else if ((++ValToCheck).isPowerOf2()) { 3441 unsigned CmpVal = ValToCheck.countTrailingZeros() - 1; 3442 return new ICmpInst(ICmpInst::ICMP_UGT, X, 3443 ConstantInt::get(X->getType(), CmpVal)); 3444 } 3445 } 3446 3447 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 3448 // then turn "((8 >>u x)&1) == 0" into "x != 3". 3449 const APInt *CI; 3450 if (Op0KnownZeroInverted == 1 && 3451 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 3452 return new ICmpInst(ICmpInst::ICMP_NE, X, 3453 ConstantInt::get(X->getType(), 3454 CI->countTrailingZeros())); 3455 } 3456 break; 3457 } 3458 case ICmpInst::ICMP_NE: { 3459 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) 3460 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3461 3462 // If all bits are known zero except for one, then we know at most one 3463 // bit is set. If the comparison is against zero, then this is a check 3464 // to see if *that* bit is set. 3465 APInt Op0KnownZeroInverted = ~Op0KnownZero; 3466 if (~Op1KnownZero == 0) { 3467 // If the LHS is an AND with the same constant, look through it. 3468 Value *LHS = nullptr; 3469 ConstantInt *LHSC = nullptr; 3470 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || 3471 LHSC->getValue() != Op0KnownZeroInverted) 3472 LHS = Op0; 3473 3474 // If the LHS is 1 << x, and we know the result is a power of 2 like 8, 3475 // then turn "((1 << x)&8) != 0" into "x == 3". 3476 // or turn "((1 << x)&7) != 0" into "x < 3". 3477 Value *X = nullptr; 3478 if (match(LHS, m_Shl(m_One(), m_Value(X)))) { 3479 APInt ValToCheck = Op0KnownZeroInverted; 3480 if (ValToCheck.isPowerOf2()) { 3481 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3482 return new ICmpInst(ICmpInst::ICMP_EQ, X, 3483 ConstantInt::get(X->getType(), CmpVal)); 3484 } else if ((++ValToCheck).isPowerOf2()) { 3485 unsigned CmpVal = ValToCheck.countTrailingZeros(); 3486 return new ICmpInst(ICmpInst::ICMP_ULT, X, 3487 ConstantInt::get(X->getType(), CmpVal)); 3488 } 3489 } 3490 3491 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, 3492 // then turn "((8 >>u x)&1) != 0" into "x == 3". 3493 const APInt *CI; 3494 if (Op0KnownZeroInverted == 1 && 3495 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) 3496 return new ICmpInst(ICmpInst::ICMP_EQ, X, 3497 ConstantInt::get(X->getType(), 3498 CI->countTrailingZeros())); 3499 } 3500 break; 3501 } 3502 case ICmpInst::ICMP_ULT: 3503 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B) 3504 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3505 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B) 3506 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3507 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B) 3508 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3509 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3510 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C 3511 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3512 Builder->getInt(CI->getValue()-1)); 3513 3514 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear 3515 if (CI->isMinValue(true)) 3516 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, 3517 Constant::getAllOnesValue(Op0->getType())); 3518 } 3519 break; 3520 case ICmpInst::ICMP_UGT: 3521 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B) 3522 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3523 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B) 3524 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3525 3526 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B) 3527 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3528 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3529 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C 3530 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3531 Builder->getInt(CI->getValue()+1)); 3532 3533 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set 3534 if (CI->isMaxValue(true)) 3535 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, 3536 Constant::getNullValue(Op0->getType())); 3537 } 3538 break; 3539 case ICmpInst::ICMP_SLT: 3540 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C) 3541 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3542 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C) 3543 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3544 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B) 3545 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3546 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3547 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C 3548 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3549 Builder->getInt(CI->getValue()-1)); 3550 } 3551 break; 3552 case ICmpInst::ICMP_SGT: 3553 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B) 3554 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3555 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B) 3556 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3557 3558 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B) 3559 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); 3560 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3561 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C 3562 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, 3563 Builder->getInt(CI->getValue()+1)); 3564 } 3565 break; 3566 case ICmpInst::ICMP_SGE: 3567 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"); 3568 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B) 3569 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3570 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B) 3571 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3572 break; 3573 case ICmpInst::ICMP_SLE: 3574 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"); 3575 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B) 3576 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3577 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B) 3578 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3579 break; 3580 case ICmpInst::ICMP_UGE: 3581 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"); 3582 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B) 3583 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3584 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B) 3585 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3586 break; 3587 case ICmpInst::ICMP_ULE: 3588 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"); 3589 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B) 3590 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3591 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B) 3592 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3593 break; 3594 } 3595 3596 // Turn a signed comparison into an unsigned one if both operands 3597 // are known to have the same sign. 3598 if (I.isSigned() && 3599 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) || 3600 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative()))) 3601 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1); 3602 } 3603 3604 // Test if the ICmpInst instruction is used exclusively by a select as 3605 // part of a minimum or maximum operation. If so, refrain from doing 3606 // any other folding. This helps out other analyses which understand 3607 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 3608 // and CodeGen. And in this case, at least one of the comparison 3609 // operands has at least one user besides the compare (the select), 3610 // which would often largely negate the benefit of folding anyway. 3611 if (I.hasOneUse()) 3612 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 3613 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 3614 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 3615 return nullptr; 3616 3617 // See if we are doing a comparison between a constant and an instruction that 3618 // can be folded into the comparison. 3619 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { 3620 Value *A = nullptr, *B = nullptr; 3621 // Since the RHS is a ConstantInt (CI), if the left hand side is an 3622 // instruction, see if that instruction also has constants so that the 3623 // instruction can be folded into the icmp 3624 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3625 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) 3626 return Res; 3627 3628 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A) 3629 if (I.isEquality() && CI->isZero() && 3630 match(Op0, m_UDiv(m_Value(A), m_Value(B)))) { 3631 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_EQ 3632 ? ICmpInst::ICMP_UGT 3633 : ICmpInst::ICMP_ULE; 3634 return new ICmpInst(Pred, B, A); 3635 } 3636 } 3637 3638 // Handle icmp with constant (but not simple integer constant) RHS 3639 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 3640 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 3641 switch (LHSI->getOpcode()) { 3642 case Instruction::GetElementPtr: 3643 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null 3644 if (RHSC->isNullValue() && 3645 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices()) 3646 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3647 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3648 break; 3649 case Instruction::PHI: 3650 // Only fold icmp into the PHI if the phi and icmp are in the same 3651 // block. If in the same block, we're encouraging jump threading. If 3652 // not, we are just pessimizing the code by making an i1 phi. 3653 if (LHSI->getParent() == I.getParent()) 3654 if (Instruction *NV = FoldOpIntoPhi(I)) 3655 return NV; 3656 break; 3657 case Instruction::Select: { 3658 // If either operand of the select is a constant, we can fold the 3659 // comparison into the select arms, which will cause one to be 3660 // constant folded and the select turned into a bitwise or. 3661 Value *Op1 = nullptr, *Op2 = nullptr; 3662 ConstantInt *CI = nullptr; 3663 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) { 3664 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3665 CI = dyn_cast<ConstantInt>(Op1); 3666 } 3667 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) { 3668 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); 3669 CI = dyn_cast<ConstantInt>(Op2); 3670 } 3671 3672 // We only want to perform this transformation if it will not lead to 3673 // additional code. This is true if either both sides of the select 3674 // fold to a constant (in which case the icmp is replaced with a select 3675 // which will usually simplify) or this is the only user of the 3676 // select (in which case we are trading a select+icmp for a simpler 3677 // select+icmp) or all uses of the select can be replaced based on 3678 // dominance information ("Global cases"). 3679 bool Transform = false; 3680 if (Op1 && Op2) 3681 Transform = true; 3682 else if (Op1 || Op2) { 3683 // Local case 3684 if (LHSI->hasOneUse()) 3685 Transform = true; 3686 // Global cases 3687 else if (CI && !CI->isZero()) 3688 // When Op1 is constant try replacing select with second operand. 3689 // Otherwise Op2 is constant and try replacing select with first 3690 // operand. 3691 Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, 3692 Op1 ? 2 : 1); 3693 } 3694 if (Transform) { 3695 if (!Op1) 3696 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), 3697 RHSC, I.getName()); 3698 if (!Op2) 3699 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), 3700 RHSC, I.getName()); 3701 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2); 3702 } 3703 break; 3704 } 3705 case Instruction::IntToPtr: 3706 // icmp pred inttoptr(X), null -> icmp pred X, 0 3707 if (RHSC->isNullValue() && 3708 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType()) 3709 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), 3710 Constant::getNullValue(LHSI->getOperand(0)->getType())); 3711 break; 3712 3713 case Instruction::Load: 3714 // Try to optimize things like "A[i] > 4" to index computations. 3715 if (GetElementPtrInst *GEP = 3716 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 3717 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 3718 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 3719 !cast<LoadInst>(LHSI)->isVolatile()) 3720 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 3721 return Res; 3722 } 3723 break; 3724 } 3725 } 3726 3727 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. 3728 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0)) 3729 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) 3730 return NI; 3731 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) 3732 if (Instruction *NI = FoldGEPICmp(GEP, Op0, 3733 ICmpInst::getSwappedPredicate(I.getPredicate()), I)) 3734 return NI; 3735 3736 // Try to optimize equality comparisons against alloca-based pointers. 3737 if (Op0->getType()->isPointerTy() && I.isEquality()) { 3738 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"); 3739 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL))) 3740 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1)) 3741 return New; 3742 if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL))) 3743 if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0)) 3744 return New; 3745 } 3746 3747 // Test to see if the operands of the icmp are casted versions of other 3748 // values. If the ptr->ptr cast can be stripped off both arguments, we do so 3749 // now. 3750 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { 3751 if (Op0->getType()->isPointerTy() && 3752 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 3753 // We keep moving the cast from the left operand over to the right 3754 // operand, where it can often be eliminated completely. 3755 Op0 = CI->getOperand(0); 3756 3757 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast 3758 // so eliminate it as well. 3759 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1)) 3760 Op1 = CI2->getOperand(0); 3761 3762 // If Op1 is a constant, we can fold the cast into the constant. 3763 if (Op0->getType() != Op1->getType()) { 3764 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 3765 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); 3766 } else { 3767 // Otherwise, cast the RHS right before the icmp 3768 Op1 = Builder->CreateBitCast(Op1, Op0->getType()); 3769 } 3770 } 3771 return new ICmpInst(I.getPredicate(), Op0, Op1); 3772 } 3773 } 3774 3775 if (isa<CastInst>(Op0)) { 3776 // Handle the special case of: icmp (cast bool to X), <cst> 3777 // This comes up when you have code like 3778 // int X = A < B; 3779 // if (X) ... 3780 // For generality, we handle any zero-extension of any operand comparison 3781 // with a constant or another cast from the same type. 3782 if (isa<Constant>(Op1) || isa<CastInst>(Op1)) 3783 if (Instruction *R = visitICmpInstWithCastAndCast(I)) 3784 return R; 3785 } 3786 3787 // Special logic for binary operators. 3788 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0); 3789 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1); 3790 if (BO0 || BO1) { 3791 CmpInst::Predicate Pred = I.getPredicate(); 3792 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false; 3793 if (BO0 && isa<OverflowingBinaryOperator>(BO0)) 3794 NoOp0WrapProblem = ICmpInst::isEquality(Pred) || 3795 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) || 3796 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap()); 3797 if (BO1 && isa<OverflowingBinaryOperator>(BO1)) 3798 NoOp1WrapProblem = ICmpInst::isEquality(Pred) || 3799 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) || 3800 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap()); 3801 3802 // Analyze the case when either Op0 or Op1 is an add instruction. 3803 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null). 3804 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3805 if (BO0 && BO0->getOpcode() == Instruction::Add) { 3806 A = BO0->getOperand(0); 3807 B = BO0->getOperand(1); 3808 } 3809 if (BO1 && BO1->getOpcode() == Instruction::Add) { 3810 C = BO1->getOperand(0); 3811 D = BO1->getOperand(1); 3812 } 3813 3814 // icmp (X+cst) < 0 --> X < -cst 3815 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero())) 3816 if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B)) 3817 if (!RHSC->isMinValue(/*isSigned=*/true)) 3818 return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC)); 3819 3820 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3821 if ((A == Op1 || B == Op1) && NoOp0WrapProblem) 3822 return new ICmpInst(Pred, A == Op1 ? B : A, 3823 Constant::getNullValue(Op1->getType())); 3824 3825 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3826 if ((C == Op0 || D == Op0) && NoOp1WrapProblem) 3827 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()), 3828 C == Op0 ? D : C); 3829 3830 // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow. 3831 if (A && C && (A == C || A == D || B == C || B == D) && 3832 NoOp0WrapProblem && NoOp1WrapProblem && 3833 // Try not to increase register pressure. 3834 BO0->hasOneUse() && BO1->hasOneUse()) { 3835 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3836 Value *Y, *Z; 3837 if (A == C) { 3838 // C + B == C + D -> B == D 3839 Y = B; 3840 Z = D; 3841 } else if (A == D) { 3842 // D + B == C + D -> B == C 3843 Y = B; 3844 Z = C; 3845 } else if (B == C) { 3846 // A + C == C + D -> A == D 3847 Y = A; 3848 Z = D; 3849 } else { 3850 assert(B == D); 3851 // A + D == C + D -> A == C 3852 Y = A; 3853 Z = C; 3854 } 3855 return new ICmpInst(Pred, Y, Z); 3856 } 3857 3858 // icmp slt (X + -1), Y -> icmp sle X, Y 3859 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT && 3860 match(B, m_AllOnes())) 3861 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1); 3862 3863 // icmp sge (X + -1), Y -> icmp sgt X, Y 3864 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE && 3865 match(B, m_AllOnes())) 3866 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1); 3867 3868 // icmp sle (X + 1), Y -> icmp slt X, Y 3869 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && 3870 match(B, m_One())) 3871 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1); 3872 3873 // icmp sgt (X + 1), Y -> icmp sge X, Y 3874 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && 3875 match(B, m_One())) 3876 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1); 3877 3878 // icmp sgt X, (Y + -1) -> icmp sge X, Y 3879 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT && 3880 match(D, m_AllOnes())) 3881 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C); 3882 3883 // icmp sle X, (Y + -1) -> icmp slt X, Y 3884 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE && 3885 match(D, m_AllOnes())) 3886 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C); 3887 3888 // icmp sge X, (Y + 1) -> icmp sgt X, Y 3889 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && 3890 match(D, m_One())) 3891 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C); 3892 3893 // icmp slt X, (Y + 1) -> icmp sle X, Y 3894 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && 3895 match(D, m_One())) 3896 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C); 3897 3898 // if C1 has greater magnitude than C2: 3899 // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y 3900 // s.t. C3 = C1 - C2 3901 // 3902 // if C2 has greater magnitude than C1: 3903 // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3) 3904 // s.t. C3 = C2 - C1 3905 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem && 3906 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned()) 3907 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B)) 3908 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) { 3909 const APInt &AP1 = C1->getValue(); 3910 const APInt &AP2 = C2->getValue(); 3911 if (AP1.isNegative() == AP2.isNegative()) { 3912 APInt AP1Abs = C1->getValue().abs(); 3913 APInt AP2Abs = C2->getValue().abs(); 3914 if (AP1Abs.uge(AP2Abs)) { 3915 ConstantInt *C3 = Builder->getInt(AP1 - AP2); 3916 Value *NewAdd = Builder->CreateNSWAdd(A, C3); 3917 return new ICmpInst(Pred, NewAdd, C); 3918 } else { 3919 ConstantInt *C3 = Builder->getInt(AP2 - AP1); 3920 Value *NewAdd = Builder->CreateNSWAdd(C, C3); 3921 return new ICmpInst(Pred, A, NewAdd); 3922 } 3923 } 3924 } 3925 3926 3927 // Analyze the case when either Op0 or Op1 is a sub instruction. 3928 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null). 3929 A = nullptr; 3930 B = nullptr; 3931 C = nullptr; 3932 D = nullptr; 3933 if (BO0 && BO0->getOpcode() == Instruction::Sub) { 3934 A = BO0->getOperand(0); 3935 B = BO0->getOperand(1); 3936 } 3937 if (BO1 && BO1->getOpcode() == Instruction::Sub) { 3938 C = BO1->getOperand(0); 3939 D = BO1->getOperand(1); 3940 } 3941 3942 // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow. 3943 if (A == Op1 && NoOp0WrapProblem) 3944 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B); 3945 3946 // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow. 3947 if (C == Op0 && NoOp1WrapProblem) 3948 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType())); 3949 3950 // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow. 3951 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem && 3952 // Try not to increase register pressure. 3953 BO0->hasOneUse() && BO1->hasOneUse()) 3954 return new ICmpInst(Pred, A, C); 3955 3956 // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow. 3957 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem && 3958 // Try not to increase register pressure. 3959 BO0->hasOneUse() && BO1->hasOneUse()) 3960 return new ICmpInst(Pred, D, B); 3961 3962 // icmp (0-X) < cst --> x > -cst 3963 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) { 3964 Value *X; 3965 if (match(BO0, m_Neg(m_Value(X)))) 3966 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 3967 if (!RHSC->isMinValue(/*isSigned=*/true)) 3968 return new ICmpInst(I.getSwappedPredicate(), X, 3969 ConstantExpr::getNeg(RHSC)); 3970 } 3971 3972 BinaryOperator *SRem = nullptr; 3973 // icmp (srem X, Y), Y 3974 if (BO0 && BO0->getOpcode() == Instruction::SRem && 3975 Op1 == BO0->getOperand(1)) 3976 SRem = BO0; 3977 // icmp Y, (srem X, Y) 3978 else if (BO1 && BO1->getOpcode() == Instruction::SRem && 3979 Op0 == BO1->getOperand(1)) 3980 SRem = BO1; 3981 if (SRem) { 3982 // We don't check hasOneUse to avoid increasing register pressure because 3983 // the value we use is the same value this instruction was already using. 3984 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) { 3985 default: break; 3986 case ICmpInst::ICMP_EQ: 3987 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); 3988 case ICmpInst::ICMP_NE: 3989 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); 3990 case ICmpInst::ICMP_SGT: 3991 case ICmpInst::ICMP_SGE: 3992 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1), 3993 Constant::getAllOnesValue(SRem->getType())); 3994 case ICmpInst::ICMP_SLT: 3995 case ICmpInst::ICMP_SLE: 3996 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1), 3997 Constant::getNullValue(SRem->getType())); 3998 } 3999 } 4000 4001 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && 4002 BO0->hasOneUse() && BO1->hasOneUse() && 4003 BO0->getOperand(1) == BO1->getOperand(1)) { 4004 switch (BO0->getOpcode()) { 4005 default: break; 4006 case Instruction::Add: 4007 case Instruction::Sub: 4008 case Instruction::Xor: 4009 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b 4010 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 4011 BO1->getOperand(0)); 4012 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b 4013 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 4014 if (CI->getValue().isSignBit()) { 4015 ICmpInst::Predicate Pred = I.isSigned() 4016 ? I.getUnsignedPredicate() 4017 : I.getSignedPredicate(); 4018 return new ICmpInst(Pred, BO0->getOperand(0), 4019 BO1->getOperand(0)); 4020 } 4021 4022 if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) { 4023 ICmpInst::Predicate Pred = I.isSigned() 4024 ? I.getUnsignedPredicate() 4025 : I.getSignedPredicate(); 4026 Pred = I.getSwappedPredicate(Pred); 4027 return new ICmpInst(Pred, BO0->getOperand(0), 4028 BO1->getOperand(0)); 4029 } 4030 } 4031 break; 4032 case Instruction::Mul: 4033 if (!I.isEquality()) 4034 break; 4035 4036 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) { 4037 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask 4038 // Mask = -1 >> count-trailing-zeros(Cst). 4039 if (!CI->isZero() && !CI->isOne()) { 4040 const APInt &AP = CI->getValue(); 4041 ConstantInt *Mask = ConstantInt::get(I.getContext(), 4042 APInt::getLowBitsSet(AP.getBitWidth(), 4043 AP.getBitWidth() - 4044 AP.countTrailingZeros())); 4045 Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask); 4046 Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask); 4047 return new ICmpInst(I.getPredicate(), And1, And2); 4048 } 4049 } 4050 break; 4051 case Instruction::UDiv: 4052 case Instruction::LShr: 4053 if (I.isSigned()) 4054 break; 4055 // fall-through 4056 case Instruction::SDiv: 4057 case Instruction::AShr: 4058 if (!BO0->isExact() || !BO1->isExact()) 4059 break; 4060 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 4061 BO1->getOperand(0)); 4062 case Instruction::Shl: { 4063 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap(); 4064 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap(); 4065 if (!NUW && !NSW) 4066 break; 4067 if (!NSW && I.isSigned()) 4068 break; 4069 return new ICmpInst(I.getPredicate(), BO0->getOperand(0), 4070 BO1->getOperand(0)); 4071 } 4072 } 4073 } 4074 4075 if (BO0) { 4076 // Transform A & (L - 1) `ult` L --> L != 0 4077 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes()); 4078 auto BitwiseAnd = 4079 m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value())); 4080 4081 if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) { 4082 auto *Zero = Constant::getNullValue(BO0->getType()); 4083 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero); 4084 } 4085 } 4086 } 4087 4088 { Value *A, *B; 4089 // Transform (A & ~B) == 0 --> (A & B) != 0 4090 // and (A & ~B) != 0 --> (A & B) == 0 4091 // if A is a power of 2. 4092 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) && 4093 match(Op1, m_Zero()) && 4094 isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality()) 4095 return new ICmpInst(I.getInversePredicate(), 4096 Builder->CreateAnd(A, B), 4097 Op1); 4098 4099 // ~x < ~y --> y < x 4100 // ~x < cst --> ~cst < x 4101 if (match(Op0, m_Not(m_Value(A)))) { 4102 if (match(Op1, m_Not(m_Value(B)))) 4103 return new ICmpInst(I.getPredicate(), B, A); 4104 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) 4105 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A); 4106 } 4107 4108 Instruction *AddI = nullptr; 4109 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B), 4110 m_Instruction(AddI))) && 4111 isa<IntegerType>(A->getType())) { 4112 Value *Result; 4113 Constant *Overflow; 4114 if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result, 4115 Overflow)) { 4116 replaceInstUsesWith(*AddI, Result); 4117 return replaceInstUsesWith(I, Overflow); 4118 } 4119 } 4120 4121 // (zext a) * (zext b) --> llvm.umul.with.overflow. 4122 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4123 if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this)) 4124 return R; 4125 } 4126 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) { 4127 if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this)) 4128 return R; 4129 } 4130 } 4131 4132 if (I.isEquality()) { 4133 Value *A, *B, *C, *D; 4134 4135 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { 4136 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 4137 Value *OtherVal = A == Op1 ? B : A; 4138 return new ICmpInst(I.getPredicate(), OtherVal, 4139 Constant::getNullValue(A->getType())); 4140 } 4141 4142 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { 4143 // A^c1 == C^c2 --> A == C^(c1^c2) 4144 ConstantInt *C1, *C2; 4145 if (match(B, m_ConstantInt(C1)) && 4146 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { 4147 Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue()); 4148 Value *Xor = Builder->CreateXor(C, NC); 4149 return new ICmpInst(I.getPredicate(), A, Xor); 4150 } 4151 4152 // A^B == A^D -> B == D 4153 if (A == C) return new ICmpInst(I.getPredicate(), B, D); 4154 if (A == D) return new ICmpInst(I.getPredicate(), B, C); 4155 if (B == C) return new ICmpInst(I.getPredicate(), A, D); 4156 if (B == D) return new ICmpInst(I.getPredicate(), A, C); 4157 } 4158 } 4159 4160 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 4161 (A == Op0 || B == Op0)) { 4162 // A == (A^B) -> B == 0 4163 Value *OtherVal = A == Op0 ? B : A; 4164 return new ICmpInst(I.getPredicate(), OtherVal, 4165 Constant::getNullValue(A->getType())); 4166 } 4167 4168 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 4169 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && 4170 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { 4171 Value *X = nullptr, *Y = nullptr, *Z = nullptr; 4172 4173 if (A == C) { 4174 X = B; Y = D; Z = A; 4175 } else if (A == D) { 4176 X = B; Y = C; Z = A; 4177 } else if (B == C) { 4178 X = A; Y = D; Z = B; 4179 } else if (B == D) { 4180 X = A; Y = C; Z = B; 4181 } 4182 4183 if (X) { // Build (X^Y) & Z 4184 Op1 = Builder->CreateXor(X, Y); 4185 Op1 = Builder->CreateAnd(Op1, Z); 4186 I.setOperand(0, Op1); 4187 I.setOperand(1, Constant::getNullValue(Op1->getType())); 4188 return &I; 4189 } 4190 } 4191 4192 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B) 4193 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B) 4194 ConstantInt *Cst1; 4195 if ((Op0->hasOneUse() && 4196 match(Op0, m_ZExt(m_Value(A))) && 4197 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) || 4198 (Op1->hasOneUse() && 4199 match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) && 4200 match(Op1, m_ZExt(m_Value(A))))) { 4201 APInt Pow2 = Cst1->getValue() + 1; 4202 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) && 4203 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth()) 4204 return new ICmpInst(I.getPredicate(), A, 4205 Builder->CreateTrunc(B, A->getType())); 4206 } 4207 4208 // (A >> C) == (B >> C) --> (A^B) u< (1 << C) 4209 // For lshr and ashr pairs. 4210 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) && 4211 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) || 4212 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) && 4213 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) { 4214 unsigned TypeBits = Cst1->getBitWidth(); 4215 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4216 if (ShAmt < TypeBits && ShAmt != 0) { 4217 ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE 4218 ? ICmpInst::ICMP_UGE 4219 : ICmpInst::ICMP_ULT; 4220 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 4221 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt); 4222 return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal)); 4223 } 4224 } 4225 4226 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0 4227 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) && 4228 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) { 4229 unsigned TypeBits = Cst1->getBitWidth(); 4230 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits); 4231 if (ShAmt < TypeBits && ShAmt != 0) { 4232 Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted"); 4233 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt); 4234 Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal), 4235 I.getName() + ".mask"); 4236 return new ICmpInst(I.getPredicate(), And, 4237 Constant::getNullValue(Cst1->getType())); 4238 } 4239 } 4240 4241 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to 4242 // "icmp (and X, mask), cst" 4243 uint64_t ShAmt = 0; 4244 if (Op0->hasOneUse() && 4245 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), 4246 m_ConstantInt(ShAmt))))) && 4247 match(Op1, m_ConstantInt(Cst1)) && 4248 // Only do this when A has multiple uses. This is most important to do 4249 // when it exposes other optimizations. 4250 !A->hasOneUse()) { 4251 unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); 4252 4253 if (ShAmt < ASize) { 4254 APInt MaskV = 4255 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); 4256 MaskV <<= ShAmt; 4257 4258 APInt CmpV = Cst1->getValue().zext(ASize); 4259 CmpV <<= ShAmt; 4260 4261 Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); 4262 return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); 4263 } 4264 } 4265 } 4266 4267 // The 'cmpxchg' instruction returns an aggregate containing the old value and 4268 // an i1 which indicates whether or not we successfully did the swap. 4269 // 4270 // Replace comparisons between the old value and the expected value with the 4271 // indicator that 'cmpxchg' returns. 4272 // 4273 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to 4274 // spuriously fail. In those cases, the old value may equal the expected 4275 // value but it is possible for the swap to not occur. 4276 if (I.getPredicate() == ICmpInst::ICMP_EQ) 4277 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0)) 4278 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand())) 4279 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 && 4280 !ACXI->isWeak()) 4281 return ExtractValueInst::Create(ACXI, 1); 4282 4283 { 4284 Value *X; ConstantInt *Cst; 4285 // icmp X+Cst, X 4286 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X) 4287 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate()); 4288 4289 // icmp X, X+Cst 4290 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X) 4291 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate()); 4292 } 4293 return Changed ? &I : nullptr; 4294 } 4295 4296 /// Fold fcmp ([us]itofp x, cst) if possible. 4297 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, 4298 Instruction *LHSI, 4299 Constant *RHSC) { 4300 if (!isa<ConstantFP>(RHSC)) return nullptr; 4301 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); 4302 4303 // Get the width of the mantissa. We don't want to hack on conversions that 4304 // might lose information from the integer, e.g. "i64 -> float" 4305 int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); 4306 if (MantissaWidth == -1) return nullptr; // Unknown. 4307 4308 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); 4309 4310 bool LHSUnsigned = isa<UIToFPInst>(LHSI); 4311 4312 if (I.isEquality()) { 4313 FCmpInst::Predicate P = I.getPredicate(); 4314 bool IsExact = false; 4315 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned); 4316 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact); 4317 4318 // If the floating point constant isn't an integer value, we know if we will 4319 // ever compare equal / not equal to it. 4320 if (!IsExact) { 4321 // TODO: Can never be -0.0 and other non-representable values 4322 APFloat RHSRoundInt(RHS); 4323 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven); 4324 if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) { 4325 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ) 4326 return replaceInstUsesWith(I, Builder->getFalse()); 4327 4328 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE); 4329 return replaceInstUsesWith(I, Builder->getTrue()); 4330 } 4331 } 4332 4333 // TODO: If the constant is exactly representable, is it always OK to do 4334 // equality compares as integer? 4335 } 4336 4337 // Check to see that the input is converted from an integer type that is small 4338 // enough that preserves all bits. TODO: check here for "known" sign bits. 4339 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. 4340 unsigned InputSize = IntTy->getScalarSizeInBits(); 4341 4342 // Following test does NOT adjust InputSize downwards for signed inputs, 4343 // because the most negative value still requires all the mantissa bits 4344 // to distinguish it from one less than that value. 4345 if ((int)InputSize > MantissaWidth) { 4346 // Conversion would lose accuracy. Check if loss can impact comparison. 4347 int Exp = ilogb(RHS); 4348 if (Exp == APFloat::IEK_Inf) { 4349 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics())); 4350 if (MaxExponent < (int)InputSize - !LHSUnsigned) 4351 // Conversion could create infinity. 4352 return nullptr; 4353 } else { 4354 // Note that if RHS is zero or NaN, then Exp is negative 4355 // and first condition is trivially false. 4356 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned) 4357 // Conversion could affect comparison. 4358 return nullptr; 4359 } 4360 } 4361 4362 // Otherwise, we can potentially simplify the comparison. We know that it 4363 // will always come through as an integer value and we know the constant is 4364 // not a NAN (it would have been previously simplified). 4365 assert(!RHS.isNaN() && "NaN comparison not already folded!"); 4366 4367 ICmpInst::Predicate Pred; 4368 switch (I.getPredicate()) { 4369 default: llvm_unreachable("Unexpected predicate!"); 4370 case FCmpInst::FCMP_UEQ: 4371 case FCmpInst::FCMP_OEQ: 4372 Pred = ICmpInst::ICMP_EQ; 4373 break; 4374 case FCmpInst::FCMP_UGT: 4375 case FCmpInst::FCMP_OGT: 4376 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT; 4377 break; 4378 case FCmpInst::FCMP_UGE: 4379 case FCmpInst::FCMP_OGE: 4380 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE; 4381 break; 4382 case FCmpInst::FCMP_ULT: 4383 case FCmpInst::FCMP_OLT: 4384 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT; 4385 break; 4386 case FCmpInst::FCMP_ULE: 4387 case FCmpInst::FCMP_OLE: 4388 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE; 4389 break; 4390 case FCmpInst::FCMP_UNE: 4391 case FCmpInst::FCMP_ONE: 4392 Pred = ICmpInst::ICMP_NE; 4393 break; 4394 case FCmpInst::FCMP_ORD: 4395 return replaceInstUsesWith(I, Builder->getTrue()); 4396 case FCmpInst::FCMP_UNO: 4397 return replaceInstUsesWith(I, Builder->getFalse()); 4398 } 4399 4400 // Now we know that the APFloat is a normal number, zero or inf. 4401 4402 // See if the FP constant is too large for the integer. For example, 4403 // comparing an i8 to 300.0. 4404 unsigned IntWidth = IntTy->getScalarSizeInBits(); 4405 4406 if (!LHSUnsigned) { 4407 // If the RHS value is > SignedMax, fold the comparison. This handles +INF 4408 // and large values. 4409 APFloat SMax(RHS.getSemantics()); 4410 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true, 4411 APFloat::rmNearestTiesToEven); 4412 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0 4413 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT || 4414 Pred == ICmpInst::ICMP_SLE) 4415 return replaceInstUsesWith(I, Builder->getTrue()); 4416 return replaceInstUsesWith(I, Builder->getFalse()); 4417 } 4418 } else { 4419 // If the RHS value is > UnsignedMax, fold the comparison. This handles 4420 // +INF and large values. 4421 APFloat UMax(RHS.getSemantics()); 4422 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false, 4423 APFloat::rmNearestTiesToEven); 4424 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0 4425 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT || 4426 Pred == ICmpInst::ICMP_ULE) 4427 return replaceInstUsesWith(I, Builder->getTrue()); 4428 return replaceInstUsesWith(I, Builder->getFalse()); 4429 } 4430 } 4431 4432 if (!LHSUnsigned) { 4433 // See if the RHS value is < SignedMin. 4434 APFloat SMin(RHS.getSemantics()); 4435 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true, 4436 APFloat::rmNearestTiesToEven); 4437 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0 4438 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT || 4439 Pred == ICmpInst::ICMP_SGE) 4440 return replaceInstUsesWith(I, Builder->getTrue()); 4441 return replaceInstUsesWith(I, Builder->getFalse()); 4442 } 4443 } else { 4444 // See if the RHS value is < UnsignedMin. 4445 APFloat SMin(RHS.getSemantics()); 4446 SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true, 4447 APFloat::rmNearestTiesToEven); 4448 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0 4449 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT || 4450 Pred == ICmpInst::ICMP_UGE) 4451 return replaceInstUsesWith(I, Builder->getTrue()); 4452 return replaceInstUsesWith(I, Builder->getFalse()); 4453 } 4454 } 4455 4456 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or 4457 // [0, UMAX], but it may still be fractional. See if it is fractional by 4458 // casting the FP value to the integer value and back, checking for equality. 4459 // Don't do this for zero, because -0.0 is not fractional. 4460 Constant *RHSInt = LHSUnsigned 4461 ? ConstantExpr::getFPToUI(RHSC, IntTy) 4462 : ConstantExpr::getFPToSI(RHSC, IntTy); 4463 if (!RHS.isZero()) { 4464 bool Equal = LHSUnsigned 4465 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC 4466 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC; 4467 if (!Equal) { 4468 // If we had a comparison against a fractional value, we have to adjust 4469 // the compare predicate and sometimes the value. RHSC is rounded towards 4470 // zero at this point. 4471 switch (Pred) { 4472 default: llvm_unreachable("Unexpected integer comparison!"); 4473 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true 4474 return replaceInstUsesWith(I, Builder->getTrue()); 4475 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false 4476 return replaceInstUsesWith(I, Builder->getFalse()); 4477 case ICmpInst::ICMP_ULE: 4478 // (float)int <= 4.4 --> int <= 4 4479 // (float)int <= -4.4 --> false 4480 if (RHS.isNegative()) 4481 return replaceInstUsesWith(I, Builder->getFalse()); 4482 break; 4483 case ICmpInst::ICMP_SLE: 4484 // (float)int <= 4.4 --> int <= 4 4485 // (float)int <= -4.4 --> int < -4 4486 if (RHS.isNegative()) 4487 Pred = ICmpInst::ICMP_SLT; 4488 break; 4489 case ICmpInst::ICMP_ULT: 4490 // (float)int < -4.4 --> false 4491 // (float)int < 4.4 --> int <= 4 4492 if (RHS.isNegative()) 4493 return replaceInstUsesWith(I, Builder->getFalse()); 4494 Pred = ICmpInst::ICMP_ULE; 4495 break; 4496 case ICmpInst::ICMP_SLT: 4497 // (float)int < -4.4 --> int < -4 4498 // (float)int < 4.4 --> int <= 4 4499 if (!RHS.isNegative()) 4500 Pred = ICmpInst::ICMP_SLE; 4501 break; 4502 case ICmpInst::ICMP_UGT: 4503 // (float)int > 4.4 --> int > 4 4504 // (float)int > -4.4 --> true 4505 if (RHS.isNegative()) 4506 return replaceInstUsesWith(I, Builder->getTrue()); 4507 break; 4508 case ICmpInst::ICMP_SGT: 4509 // (float)int > 4.4 --> int > 4 4510 // (float)int > -4.4 --> int >= -4 4511 if (RHS.isNegative()) 4512 Pred = ICmpInst::ICMP_SGE; 4513 break; 4514 case ICmpInst::ICMP_UGE: 4515 // (float)int >= -4.4 --> true 4516 // (float)int >= 4.4 --> int > 4 4517 if (RHS.isNegative()) 4518 return replaceInstUsesWith(I, Builder->getTrue()); 4519 Pred = ICmpInst::ICMP_UGT; 4520 break; 4521 case ICmpInst::ICMP_SGE: 4522 // (float)int >= -4.4 --> int >= -4 4523 // (float)int >= 4.4 --> int > 4 4524 if (!RHS.isNegative()) 4525 Pred = ICmpInst::ICMP_SGT; 4526 break; 4527 } 4528 } 4529 } 4530 4531 // Lower this FP comparison into an appropriate integer version of the 4532 // comparison. 4533 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt); 4534 } 4535 4536 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { 4537 bool Changed = false; 4538 4539 /// Orders the operands of the compare so that they are listed from most 4540 /// complex to least complex. This puts constants before unary operators, 4541 /// before binary operators. 4542 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) { 4543 I.swapOperands(); 4544 Changed = true; 4545 } 4546 4547 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4548 4549 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, 4550 I.getFastMathFlags(), DL, TLI, DT, AC, &I)) 4551 return replaceInstUsesWith(I, V); 4552 4553 // Simplify 'fcmp pred X, X' 4554 if (Op0 == Op1) { 4555 switch (I.getPredicate()) { 4556 default: llvm_unreachable("Unknown predicate!"); 4557 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) 4558 case FCmpInst::FCMP_ULT: // True if unordered or less than 4559 case FCmpInst::FCMP_UGT: // True if unordered or greater than 4560 case FCmpInst::FCMP_UNE: // True if unordered or not equal 4561 // Canonicalize these to be 'fcmp uno %X, 0.0'. 4562 I.setPredicate(FCmpInst::FCMP_UNO); 4563 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4564 return &I; 4565 4566 case FCmpInst::FCMP_ORD: // True if ordered (no nans) 4567 case FCmpInst::FCMP_OEQ: // True if ordered and equal 4568 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal 4569 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal 4570 // Canonicalize these to be 'fcmp ord %X, 0.0'. 4571 I.setPredicate(FCmpInst::FCMP_ORD); 4572 I.setOperand(1, Constant::getNullValue(Op0->getType())); 4573 return &I; 4574 } 4575 } 4576 4577 // Test if the FCmpInst instruction is used exclusively by a select as 4578 // part of a minimum or maximum operation. If so, refrain from doing 4579 // any other folding. This helps out other analyses which understand 4580 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 4581 // and CodeGen. And in this case, at least one of the comparison 4582 // operands has at least one user besides the compare (the select), 4583 // which would often largely negate the benefit of folding anyway. 4584 if (I.hasOneUse()) 4585 if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin())) 4586 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 4587 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 4588 return nullptr; 4589 4590 // Handle fcmp with constant RHS 4591 if (Constant *RHSC = dyn_cast<Constant>(Op1)) { 4592 if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) 4593 switch (LHSI->getOpcode()) { 4594 case Instruction::FPExt: { 4595 // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless 4596 FPExtInst *LHSExt = cast<FPExtInst>(LHSI); 4597 ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC); 4598 if (!RHSF) 4599 break; 4600 4601 const fltSemantics *Sem; 4602 // FIXME: This shouldn't be here. 4603 if (LHSExt->getSrcTy()->isHalfTy()) 4604 Sem = &APFloat::IEEEhalf; 4605 else if (LHSExt->getSrcTy()->isFloatTy()) 4606 Sem = &APFloat::IEEEsingle; 4607 else if (LHSExt->getSrcTy()->isDoubleTy()) 4608 Sem = &APFloat::IEEEdouble; 4609 else if (LHSExt->getSrcTy()->isFP128Ty()) 4610 Sem = &APFloat::IEEEquad; 4611 else if (LHSExt->getSrcTy()->isX86_FP80Ty()) 4612 Sem = &APFloat::x87DoubleExtended; 4613 else if (LHSExt->getSrcTy()->isPPC_FP128Ty()) 4614 Sem = &APFloat::PPCDoubleDouble; 4615 else 4616 break; 4617 4618 bool Lossy; 4619 APFloat F = RHSF->getValueAPF(); 4620 F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); 4621 4622 // Avoid lossy conversions and denormals. Zero is a special case 4623 // that's OK to convert. 4624 APFloat Fabs = F; 4625 Fabs.clearSign(); 4626 if (!Lossy && 4627 ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != 4628 APFloat::cmpLessThan) || Fabs.isZero())) 4629 4630 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4631 ConstantFP::get(RHSC->getContext(), F)); 4632 break; 4633 } 4634 case Instruction::PHI: 4635 // Only fold fcmp into the PHI if the phi and fcmp are in the same 4636 // block. If in the same block, we're encouraging jump threading. If 4637 // not, we are just pessimizing the code by making an i1 phi. 4638 if (LHSI->getParent() == I.getParent()) 4639 if (Instruction *NV = FoldOpIntoPhi(I)) 4640 return NV; 4641 break; 4642 case Instruction::SIToFP: 4643 case Instruction::UIToFP: 4644 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC)) 4645 return NV; 4646 break; 4647 case Instruction::FSub: { 4648 // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C 4649 Value *Op; 4650 if (match(LHSI, m_FNeg(m_Value(Op)))) 4651 return new FCmpInst(I.getSwappedPredicate(), Op, 4652 ConstantExpr::getFNeg(RHSC)); 4653 break; 4654 } 4655 case Instruction::Load: 4656 if (GetElementPtrInst *GEP = 4657 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) { 4658 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) 4659 if (GV->isConstant() && GV->hasDefinitiveInitializer() && 4660 !cast<LoadInst>(LHSI)->isVolatile()) 4661 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I)) 4662 return Res; 4663 } 4664 break; 4665 case Instruction::Call: { 4666 if (!RHSC->isNullValue()) 4667 break; 4668 4669 CallInst *CI = cast<CallInst>(LHSI); 4670 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 4671 if (IID != Intrinsic::fabs) 4672 break; 4673 4674 // Various optimization for fabs compared with zero. 4675 switch (I.getPredicate()) { 4676 default: 4677 break; 4678 // fabs(x) < 0 --> false 4679 case FCmpInst::FCMP_OLT: 4680 llvm_unreachable("handled by SimplifyFCmpInst"); 4681 // fabs(x) > 0 --> x != 0 4682 case FCmpInst::FCMP_OGT: 4683 return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC); 4684 // fabs(x) <= 0 --> x == 0 4685 case FCmpInst::FCMP_OLE: 4686 return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC); 4687 // fabs(x) >= 0 --> !isnan(x) 4688 case FCmpInst::FCMP_OGE: 4689 return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC); 4690 // fabs(x) == 0 --> x == 0 4691 // fabs(x) != 0 --> x != 0 4692 case FCmpInst::FCMP_OEQ: 4693 case FCmpInst::FCMP_UEQ: 4694 case FCmpInst::FCMP_ONE: 4695 case FCmpInst::FCMP_UNE: 4696 return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC); 4697 } 4698 } 4699 } 4700 } 4701 4702 // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y 4703 Value *X, *Y; 4704 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) 4705 return new FCmpInst(I.getSwappedPredicate(), X, Y); 4706 4707 // fcmp (fpext x), (fpext y) -> fcmp x, y 4708 if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0)) 4709 if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1)) 4710 if (LHSExt->getSrcTy() == RHSExt->getSrcTy()) 4711 return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), 4712 RHSExt->getOperand(0)); 4713 4714 return Changed ? &I : nullptr; 4715 } 4716