Home | History | Annotate | Download | only in CodeGen
      1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides a class for OpenMP runtime code generation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGCXXABI.h"
     15 #include "CGCleanup.h"
     16 #include "CGOpenMPRuntime.h"
     17 #include "CodeGenFunction.h"
     18 #include "clang/AST/Decl.h"
     19 #include "clang/AST/StmtOpenMP.h"
     20 #include "llvm/ADT/ArrayRef.h"
     21 #include "llvm/Bitcode/ReaderWriter.h"
     22 #include "llvm/IR/CallSite.h"
     23 #include "llvm/IR/DerivedTypes.h"
     24 #include "llvm/IR/GlobalValue.h"
     25 #include "llvm/IR/Value.h"
     26 #include "llvm/Support/Format.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include <cassert>
     29 
     30 using namespace clang;
     31 using namespace CodeGen;
     32 
     33 namespace {
     34 /// \brief Base class for handling code generation inside OpenMP regions.
     35 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
     36 public:
     37   /// \brief Kinds of OpenMP regions used in codegen.
     38   enum CGOpenMPRegionKind {
     39     /// \brief Region with outlined function for standalone 'parallel'
     40     /// directive.
     41     ParallelOutlinedRegion,
     42     /// \brief Region with outlined function for standalone 'task' directive.
     43     TaskOutlinedRegion,
     44     /// \brief Region for constructs that do not require function outlining,
     45     /// like 'for', 'sections', 'atomic' etc. directives.
     46     InlinedRegion,
     47     /// \brief Region with outlined function for standalone 'target' directive.
     48     TargetRegion,
     49   };
     50 
     51   CGOpenMPRegionInfo(const CapturedStmt &CS,
     52                      const CGOpenMPRegionKind RegionKind,
     53                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
     54                      bool HasCancel)
     55       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
     56         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
     57 
     58   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
     59                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
     60                      bool HasCancel)
     61       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
     62         Kind(Kind), HasCancel(HasCancel) {}
     63 
     64   /// \brief Get a variable or parameter for storing global thread id
     65   /// inside OpenMP construct.
     66   virtual const VarDecl *getThreadIDVariable() const = 0;
     67 
     68   /// \brief Emit the captured statement body.
     69   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
     70 
     71   /// \brief Get an LValue for the current ThreadID variable.
     72   /// \return LValue for thread id variable. This LValue always has type int32*.
     73   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
     74 
     75   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
     76 
     77   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
     78 
     79   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
     80 
     81   bool hasCancel() const { return HasCancel; }
     82 
     83   static bool classof(const CGCapturedStmtInfo *Info) {
     84     return Info->getKind() == CR_OpenMP;
     85   }
     86 
     87   ~CGOpenMPRegionInfo() override = default;
     88 
     89 protected:
     90   CGOpenMPRegionKind RegionKind;
     91   RegionCodeGenTy CodeGen;
     92   OpenMPDirectiveKind Kind;
     93   bool HasCancel;
     94 };
     95 
     96 /// \brief API for captured statement code generation in OpenMP constructs.
     97 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
     98 public:
     99   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
    100                              const RegionCodeGenTy &CodeGen,
    101                              OpenMPDirectiveKind Kind, bool HasCancel)
    102       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
    103                            HasCancel),
    104         ThreadIDVar(ThreadIDVar) {
    105     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
    106   }
    107 
    108   /// \brief Get a variable or parameter for storing global thread id
    109   /// inside OpenMP construct.
    110   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
    111 
    112   /// \brief Get the name of the capture helper.
    113   StringRef getHelperName() const override { return ".omp_outlined."; }
    114 
    115   static bool classof(const CGCapturedStmtInfo *Info) {
    116     return CGOpenMPRegionInfo::classof(Info) &&
    117            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
    118                ParallelOutlinedRegion;
    119   }
    120 
    121 private:
    122   /// \brief A variable or parameter storing global thread id for OpenMP
    123   /// constructs.
    124   const VarDecl *ThreadIDVar;
    125 };
    126 
    127 /// \brief API for captured statement code generation in OpenMP constructs.
    128 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
    129 public:
    130   class UntiedTaskActionTy final : public PrePostActionTy {
    131     bool Untied;
    132     const VarDecl *PartIDVar;
    133     const RegionCodeGenTy UntiedCodeGen;
    134     llvm::SwitchInst *UntiedSwitch = nullptr;
    135 
    136   public:
    137     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
    138                        const RegionCodeGenTy &UntiedCodeGen)
    139         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
    140     void Enter(CodeGenFunction &CGF) override {
    141       if (Untied) {
    142         // Emit task switching point.
    143         auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
    144             CGF.GetAddrOfLocalVar(PartIDVar),
    145             PartIDVar->getType()->castAs<PointerType>());
    146         auto *Res = CGF.EmitLoadOfScalar(PartIdLVal, SourceLocation());
    147         auto *DoneBB = CGF.createBasicBlock(".untied.done.");
    148         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
    149         CGF.EmitBlock(DoneBB);
    150         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
    151         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
    152         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
    153                               CGF.Builder.GetInsertBlock());
    154         emitUntiedSwitch(CGF);
    155       }
    156     }
    157     void emitUntiedSwitch(CodeGenFunction &CGF) const {
    158       if (Untied) {
    159         auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
    160             CGF.GetAddrOfLocalVar(PartIDVar),
    161             PartIDVar->getType()->castAs<PointerType>());
    162         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
    163                               PartIdLVal);
    164         UntiedCodeGen(CGF);
    165         CodeGenFunction::JumpDest CurPoint =
    166             CGF.getJumpDestInCurrentScope(".untied.next.");
    167         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
    168         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
    169         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
    170                               CGF.Builder.GetInsertBlock());
    171         CGF.EmitBranchThroughCleanup(CurPoint);
    172         CGF.EmitBlock(CurPoint.getBlock());
    173       }
    174     }
    175     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
    176   };
    177   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
    178                                  const VarDecl *ThreadIDVar,
    179                                  const RegionCodeGenTy &CodeGen,
    180                                  OpenMPDirectiveKind Kind, bool HasCancel,
    181                                  const UntiedTaskActionTy &Action)
    182       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
    183         ThreadIDVar(ThreadIDVar), Action(Action) {
    184     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
    185   }
    186 
    187   /// \brief Get a variable or parameter for storing global thread id
    188   /// inside OpenMP construct.
    189   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
    190 
    191   /// \brief Get an LValue for the current ThreadID variable.
    192   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
    193 
    194   /// \brief Get the name of the capture helper.
    195   StringRef getHelperName() const override { return ".omp_outlined."; }
    196 
    197   void emitUntiedSwitch(CodeGenFunction &CGF) override {
    198     Action.emitUntiedSwitch(CGF);
    199   }
    200 
    201   static bool classof(const CGCapturedStmtInfo *Info) {
    202     return CGOpenMPRegionInfo::classof(Info) &&
    203            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
    204                TaskOutlinedRegion;
    205   }
    206 
    207 private:
    208   /// \brief A variable or parameter storing global thread id for OpenMP
    209   /// constructs.
    210   const VarDecl *ThreadIDVar;
    211   /// Action for emitting code for untied tasks.
    212   const UntiedTaskActionTy &Action;
    213 };
    214 
    215 /// \brief API for inlined captured statement code generation in OpenMP
    216 /// constructs.
    217 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
    218 public:
    219   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
    220                             const RegionCodeGenTy &CodeGen,
    221                             OpenMPDirectiveKind Kind, bool HasCancel)
    222       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
    223         OldCSI(OldCSI),
    224         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
    225 
    226   // \brief Retrieve the value of the context parameter.
    227   llvm::Value *getContextValue() const override {
    228     if (OuterRegionInfo)
    229       return OuterRegionInfo->getContextValue();
    230     llvm_unreachable("No context value for inlined OpenMP region");
    231   }
    232 
    233   void setContextValue(llvm::Value *V) override {
    234     if (OuterRegionInfo) {
    235       OuterRegionInfo->setContextValue(V);
    236       return;
    237     }
    238     llvm_unreachable("No context value for inlined OpenMP region");
    239   }
    240 
    241   /// \brief Lookup the captured field decl for a variable.
    242   const FieldDecl *lookup(const VarDecl *VD) const override {
    243     if (OuterRegionInfo)
    244       return OuterRegionInfo->lookup(VD);
    245     // If there is no outer outlined region,no need to lookup in a list of
    246     // captured variables, we can use the original one.
    247     return nullptr;
    248   }
    249 
    250   FieldDecl *getThisFieldDecl() const override {
    251     if (OuterRegionInfo)
    252       return OuterRegionInfo->getThisFieldDecl();
    253     return nullptr;
    254   }
    255 
    256   /// \brief Get a variable or parameter for storing global thread id
    257   /// inside OpenMP construct.
    258   const VarDecl *getThreadIDVariable() const override {
    259     if (OuterRegionInfo)
    260       return OuterRegionInfo->getThreadIDVariable();
    261     return nullptr;
    262   }
    263 
    264   /// \brief Get the name of the capture helper.
    265   StringRef getHelperName() const override {
    266     if (auto *OuterRegionInfo = getOldCSI())
    267       return OuterRegionInfo->getHelperName();
    268     llvm_unreachable("No helper name for inlined OpenMP construct");
    269   }
    270 
    271   void emitUntiedSwitch(CodeGenFunction &CGF) override {
    272     if (OuterRegionInfo)
    273       OuterRegionInfo->emitUntiedSwitch(CGF);
    274   }
    275 
    276   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
    277 
    278   static bool classof(const CGCapturedStmtInfo *Info) {
    279     return CGOpenMPRegionInfo::classof(Info) &&
    280            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
    281   }
    282 
    283   ~CGOpenMPInlinedRegionInfo() override = default;
    284 
    285 private:
    286   /// \brief CodeGen info about outer OpenMP region.
    287   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
    288   CGOpenMPRegionInfo *OuterRegionInfo;
    289 };
    290 
    291 /// \brief API for captured statement code generation in OpenMP target
    292 /// constructs. For this captures, implicit parameters are used instead of the
    293 /// captured fields. The name of the target region has to be unique in a given
    294 /// application so it is provided by the client, because only the client has
    295 /// the information to generate that.
    296 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
    297 public:
    298   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
    299                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
    300       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
    301                            /*HasCancel=*/false),
    302         HelperName(HelperName) {}
    303 
    304   /// \brief This is unused for target regions because each starts executing
    305   /// with a single thread.
    306   const VarDecl *getThreadIDVariable() const override { return nullptr; }
    307 
    308   /// \brief Get the name of the capture helper.
    309   StringRef getHelperName() const override { return HelperName; }
    310 
    311   static bool classof(const CGCapturedStmtInfo *Info) {
    312     return CGOpenMPRegionInfo::classof(Info) &&
    313            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
    314   }
    315 
    316 private:
    317   StringRef HelperName;
    318 };
    319 
    320 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
    321   llvm_unreachable("No codegen for expressions");
    322 }
    323 /// \brief API for generation of expressions captured in a innermost OpenMP
    324 /// region.
    325 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
    326 public:
    327   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
    328       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
    329                                   OMPD_unknown,
    330                                   /*HasCancel=*/false),
    331         PrivScope(CGF) {
    332     // Make sure the globals captured in the provided statement are local by
    333     // using the privatization logic. We assume the same variable is not
    334     // captured more than once.
    335     for (auto &C : CS.captures()) {
    336       if (!C.capturesVariable() && !C.capturesVariableByCopy())
    337         continue;
    338 
    339       const VarDecl *VD = C.getCapturedVar();
    340       if (VD->isLocalVarDeclOrParm())
    341         continue;
    342 
    343       DeclRefExpr DRE(const_cast<VarDecl *>(VD),
    344                       /*RefersToEnclosingVariableOrCapture=*/false,
    345                       VD->getType().getNonReferenceType(), VK_LValue,
    346                       SourceLocation());
    347       PrivScope.addPrivate(VD, [&CGF, &DRE]() -> Address {
    348         return CGF.EmitLValue(&DRE).getAddress();
    349       });
    350     }
    351     (void)PrivScope.Privatize();
    352   }
    353 
    354   /// \brief Lookup the captured field decl for a variable.
    355   const FieldDecl *lookup(const VarDecl *VD) const override {
    356     if (auto *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
    357       return FD;
    358     return nullptr;
    359   }
    360 
    361   /// \brief Emit the captured statement body.
    362   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
    363     llvm_unreachable("No body for expressions");
    364   }
    365 
    366   /// \brief Get a variable or parameter for storing global thread id
    367   /// inside OpenMP construct.
    368   const VarDecl *getThreadIDVariable() const override {
    369     llvm_unreachable("No thread id for expressions");
    370   }
    371 
    372   /// \brief Get the name of the capture helper.
    373   StringRef getHelperName() const override {
    374     llvm_unreachable("No helper name for expressions");
    375   }
    376 
    377   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
    378 
    379 private:
    380   /// Private scope to capture global variables.
    381   CodeGenFunction::OMPPrivateScope PrivScope;
    382 };
    383 
    384 /// \brief RAII for emitting code of OpenMP constructs.
    385 class InlinedOpenMPRegionRAII {
    386   CodeGenFunction &CGF;
    387   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
    388   FieldDecl *LambdaThisCaptureField = nullptr;
    389 
    390 public:
    391   /// \brief Constructs region for combined constructs.
    392   /// \param CodeGen Code generation sequence for combined directives. Includes
    393   /// a list of functions used for code generation of implicitly inlined
    394   /// regions.
    395   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
    396                           OpenMPDirectiveKind Kind, bool HasCancel)
    397       : CGF(CGF) {
    398     // Start emission for the construct.
    399     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
    400         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
    401     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
    402     LambdaThisCaptureField = CGF.LambdaThisCaptureField;
    403     CGF.LambdaThisCaptureField = nullptr;
    404   }
    405 
    406   ~InlinedOpenMPRegionRAII() {
    407     // Restore original CapturedStmtInfo only if we're done with code emission.
    408     auto *OldCSI =
    409         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
    410     delete CGF.CapturedStmtInfo;
    411     CGF.CapturedStmtInfo = OldCSI;
    412     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
    413     CGF.LambdaThisCaptureField = LambdaThisCaptureField;
    414   }
    415 };
    416 
    417 /// \brief Values for bit flags used in the ident_t to describe the fields.
    418 /// All enumeric elements are named and described in accordance with the code
    419 /// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
    420 enum OpenMPLocationFlags {
    421   /// \brief Use trampoline for internal microtask.
    422   OMP_IDENT_IMD = 0x01,
    423   /// \brief Use c-style ident structure.
    424   OMP_IDENT_KMPC = 0x02,
    425   /// \brief Atomic reduction option for kmpc_reduce.
    426   OMP_ATOMIC_REDUCE = 0x10,
    427   /// \brief Explicit 'barrier' directive.
    428   OMP_IDENT_BARRIER_EXPL = 0x20,
    429   /// \brief Implicit barrier in code.
    430   OMP_IDENT_BARRIER_IMPL = 0x40,
    431   /// \brief Implicit barrier in 'for' directive.
    432   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
    433   /// \brief Implicit barrier in 'sections' directive.
    434   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
    435   /// \brief Implicit barrier in 'single' directive.
    436   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140
    437 };
    438 
    439 /// \brief Describes ident structure that describes a source location.
    440 /// All descriptions are taken from
    441 /// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
    442 /// Original structure:
    443 /// typedef struct ident {
    444 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
    445 ///                                  see above  */
    446 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
    447 ///                                  KMP_IDENT_KMPC identifies this union
    448 ///                                  member  */
    449 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
    450 ///                                  see above */
    451 ///#if USE_ITT_BUILD
    452 ///                            /*  but currently used for storing
    453 ///                                region-specific ITT */
    454 ///                            /*  contextual information. */
    455 ///#endif /* USE_ITT_BUILD */
    456 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
    457 ///                                 C++  */
    458 ///    char const *psource;    /**< String describing the source location.
    459 ///                            The string is composed of semi-colon separated
    460 //                             fields which describe the source file,
    461 ///                            the function and a pair of line numbers that
    462 ///                            delimit the construct.
    463 ///                             */
    464 /// } ident_t;
    465 enum IdentFieldIndex {
    466   /// \brief might be used in Fortran
    467   IdentField_Reserved_1,
    468   /// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
    469   IdentField_Flags,
    470   /// \brief Not really used in Fortran any more
    471   IdentField_Reserved_2,
    472   /// \brief Source[4] in Fortran, do not use for C++
    473   IdentField_Reserved_3,
    474   /// \brief String describing the source location. The string is composed of
    475   /// semi-colon separated fields which describe the source file, the function
    476   /// and a pair of line numbers that delimit the construct.
    477   IdentField_PSource
    478 };
    479 
    480 /// \brief Schedule types for 'omp for' loops (these enumerators are taken from
    481 /// the enum sched_type in kmp.h).
    482 enum OpenMPSchedType {
    483   /// \brief Lower bound for default (unordered) versions.
    484   OMP_sch_lower = 32,
    485   OMP_sch_static_chunked = 33,
    486   OMP_sch_static = 34,
    487   OMP_sch_dynamic_chunked = 35,
    488   OMP_sch_guided_chunked = 36,
    489   OMP_sch_runtime = 37,
    490   OMP_sch_auto = 38,
    491   /// static with chunk adjustment (e.g., simd)
    492   OMP_sch_static_balanced_chunked   = 45,
    493   /// \brief Lower bound for 'ordered' versions.
    494   OMP_ord_lower = 64,
    495   OMP_ord_static_chunked = 65,
    496   OMP_ord_static = 66,
    497   OMP_ord_dynamic_chunked = 67,
    498   OMP_ord_guided_chunked = 68,
    499   OMP_ord_runtime = 69,
    500   OMP_ord_auto = 70,
    501   OMP_sch_default = OMP_sch_static,
    502   /// \brief dist_schedule types
    503   OMP_dist_sch_static_chunked = 91,
    504   OMP_dist_sch_static = 92,
    505   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
    506   /// Set if the monotonic schedule modifier was present.
    507   OMP_sch_modifier_monotonic = (1 << 29),
    508   /// Set if the nonmonotonic schedule modifier was present.
    509   OMP_sch_modifier_nonmonotonic = (1 << 30),
    510 };
    511 
    512 enum OpenMPRTLFunction {
    513   /// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
    514   /// kmpc_micro microtask, ...);
    515   OMPRTL__kmpc_fork_call,
    516   /// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc,
    517   /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
    518   OMPRTL__kmpc_threadprivate_cached,
    519   /// \brief Call to void __kmpc_threadprivate_register( ident_t *,
    520   /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
    521   OMPRTL__kmpc_threadprivate_register,
    522   // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
    523   OMPRTL__kmpc_global_thread_num,
    524   // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
    525   // kmp_critical_name *crit);
    526   OMPRTL__kmpc_critical,
    527   // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
    528   // global_tid, kmp_critical_name *crit, uintptr_t hint);
    529   OMPRTL__kmpc_critical_with_hint,
    530   // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
    531   // kmp_critical_name *crit);
    532   OMPRTL__kmpc_end_critical,
    533   // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
    534   // global_tid);
    535   OMPRTL__kmpc_cancel_barrier,
    536   // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
    537   OMPRTL__kmpc_barrier,
    538   // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
    539   OMPRTL__kmpc_for_static_fini,
    540   // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
    541   // global_tid);
    542   OMPRTL__kmpc_serialized_parallel,
    543   // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
    544   // global_tid);
    545   OMPRTL__kmpc_end_serialized_parallel,
    546   // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
    547   // kmp_int32 num_threads);
    548   OMPRTL__kmpc_push_num_threads,
    549   // Call to void __kmpc_flush(ident_t *loc);
    550   OMPRTL__kmpc_flush,
    551   // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
    552   OMPRTL__kmpc_master,
    553   // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
    554   OMPRTL__kmpc_end_master,
    555   // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
    556   // int end_part);
    557   OMPRTL__kmpc_omp_taskyield,
    558   // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
    559   OMPRTL__kmpc_single,
    560   // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
    561   OMPRTL__kmpc_end_single,
    562   // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
    563   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
    564   // kmp_routine_entry_t *task_entry);
    565   OMPRTL__kmpc_omp_task_alloc,
    566   // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
    567   // new_task);
    568   OMPRTL__kmpc_omp_task,
    569   // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
    570   // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
    571   // kmp_int32 didit);
    572   OMPRTL__kmpc_copyprivate,
    573   // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
    574   // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
    575   // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
    576   OMPRTL__kmpc_reduce,
    577   // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
    578   // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
    579   // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
    580   // *lck);
    581   OMPRTL__kmpc_reduce_nowait,
    582   // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
    583   // kmp_critical_name *lck);
    584   OMPRTL__kmpc_end_reduce,
    585   // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
    586   // kmp_critical_name *lck);
    587   OMPRTL__kmpc_end_reduce_nowait,
    588   // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
    589   // kmp_task_t * new_task);
    590   OMPRTL__kmpc_omp_task_begin_if0,
    591   // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
    592   // kmp_task_t * new_task);
    593   OMPRTL__kmpc_omp_task_complete_if0,
    594   // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
    595   OMPRTL__kmpc_ordered,
    596   // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
    597   OMPRTL__kmpc_end_ordered,
    598   // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
    599   // global_tid);
    600   OMPRTL__kmpc_omp_taskwait,
    601   // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
    602   OMPRTL__kmpc_taskgroup,
    603   // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
    604   OMPRTL__kmpc_end_taskgroup,
    605   // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
    606   // int proc_bind);
    607   OMPRTL__kmpc_push_proc_bind,
    608   // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
    609   // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
    610   // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
    611   OMPRTL__kmpc_omp_task_with_deps,
    612   // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
    613   // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
    614   // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
    615   OMPRTL__kmpc_omp_wait_deps,
    616   // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
    617   // global_tid, kmp_int32 cncl_kind);
    618   OMPRTL__kmpc_cancellationpoint,
    619   // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
    620   // kmp_int32 cncl_kind);
    621   OMPRTL__kmpc_cancel,
    622   // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
    623   // kmp_int32 num_teams, kmp_int32 thread_limit);
    624   OMPRTL__kmpc_push_num_teams,
    625   // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
    626   // microtask, ...);
    627   OMPRTL__kmpc_fork_teams,
    628   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
    629   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
    630   // sched, kmp_uint64 grainsize, void *task_dup);
    631   OMPRTL__kmpc_taskloop,
    632   // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
    633   // num_dims, struct kmp_dim *dims);
    634   OMPRTL__kmpc_doacross_init,
    635   // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
    636   OMPRTL__kmpc_doacross_fini,
    637   // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
    638   // *vec);
    639   OMPRTL__kmpc_doacross_post,
    640   // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
    641   // *vec);
    642   OMPRTL__kmpc_doacross_wait,
    643 
    644   //
    645   // Offloading related calls
    646   //
    647   // Call to int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
    648   // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
    649   // *arg_types);
    650   OMPRTL__tgt_target,
    651   // Call to int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
    652   // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
    653   // int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
    654   OMPRTL__tgt_target_teams,
    655   // Call to void __tgt_register_lib(__tgt_bin_desc *desc);
    656   OMPRTL__tgt_register_lib,
    657   // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
    658   OMPRTL__tgt_unregister_lib,
    659   // Call to void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
    660   // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
    661   OMPRTL__tgt_target_data_begin,
    662   // Call to void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
    663   // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
    664   OMPRTL__tgt_target_data_end,
    665   // Call to void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
    666   // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
    667   OMPRTL__tgt_target_data_update,
    668 };
    669 
    670 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
    671 /// region.
    672 class CleanupTy final : public EHScopeStack::Cleanup {
    673   PrePostActionTy *Action;
    674 
    675 public:
    676   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
    677   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
    678     if (!CGF.HaveInsertPoint())
    679       return;
    680     Action->Exit(CGF);
    681   }
    682 };
    683 
    684 } // anonymous namespace
    685 
    686 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
    687   CodeGenFunction::RunCleanupsScope Scope(CGF);
    688   if (PrePostAction) {
    689     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
    690     Callback(CodeGen, CGF, *PrePostAction);
    691   } else {
    692     PrePostActionTy Action;
    693     Callback(CodeGen, CGF, Action);
    694   }
    695 }
    696 
    697 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
    698   return CGF.EmitLoadOfPointerLValue(
    699       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
    700       getThreadIDVariable()->getType()->castAs<PointerType>());
    701 }
    702 
    703 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
    704   if (!CGF.HaveInsertPoint())
    705     return;
    706   // 1.2.2 OpenMP Language Terminology
    707   // Structured block - An executable statement with a single entry at the
    708   // top and a single exit at the bottom.
    709   // The point of exit cannot be a branch out of the structured block.
    710   // longjmp() and throw() must not violate the entry/exit criteria.
    711   CGF.EHStack.pushTerminate();
    712   CodeGen(CGF);
    713   CGF.EHStack.popTerminate();
    714 }
    715 
    716 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
    717     CodeGenFunction &CGF) {
    718   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
    719                             getThreadIDVariable()->getType(),
    720                             AlignmentSource::Decl);
    721 }
    722 
    723 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
    724     : CGM(CGM), OffloadEntriesInfoManager(CGM) {
    725   IdentTy = llvm::StructType::create(
    726       "ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */,
    727       CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */,
    728       CGM.Int8PtrTy /* psource */, nullptr);
    729   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
    730 
    731   loadOffloadInfoMetadata();
    732 }
    733 
    734 void CGOpenMPRuntime::clear() {
    735   InternalVars.clear();
    736 }
    737 
    738 static llvm::Function *
    739 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
    740                           const Expr *CombinerInitializer, const VarDecl *In,
    741                           const VarDecl *Out, bool IsCombiner) {
    742   // void .omp_combiner.(Ty *in, Ty *out);
    743   auto &C = CGM.getContext();
    744   QualType PtrTy = C.getPointerType(Ty).withRestrict();
    745   FunctionArgList Args;
    746   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
    747                                /*Id=*/nullptr, PtrTy);
    748   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
    749                               /*Id=*/nullptr, PtrTy);
    750   Args.push_back(&OmpOutParm);
    751   Args.push_back(&OmpInParm);
    752   auto &FnInfo =
    753       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
    754   auto *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
    755   auto *Fn = llvm::Function::Create(
    756       FnTy, llvm::GlobalValue::InternalLinkage,
    757       IsCombiner ? ".omp_combiner." : ".omp_initializer.", &CGM.getModule());
    758   CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, FnInfo);
    759   Fn->addFnAttr(llvm::Attribute::AlwaysInline);
    760   CodeGenFunction CGF(CGM);
    761   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
    762   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
    763   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args);
    764   CodeGenFunction::OMPPrivateScope Scope(CGF);
    765   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
    766   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() -> Address {
    767     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
    768         .getAddress();
    769   });
    770   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
    771   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() -> Address {
    772     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
    773         .getAddress();
    774   });
    775   (void)Scope.Privatize();
    776   CGF.EmitIgnoredExpr(CombinerInitializer);
    777   Scope.ForceCleanup();
    778   CGF.FinishFunction();
    779   return Fn;
    780 }
    781 
    782 void CGOpenMPRuntime::emitUserDefinedReduction(
    783     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
    784   if (UDRMap.count(D) > 0)
    785     return;
    786   auto &C = CGM.getContext();
    787   if (!In || !Out) {
    788     In = &C.Idents.get("omp_in");
    789     Out = &C.Idents.get("omp_out");
    790   }
    791   llvm::Function *Combiner = emitCombinerOrInitializer(
    792       CGM, D->getType(), D->getCombiner(), cast<VarDecl>(D->lookup(In).front()),
    793       cast<VarDecl>(D->lookup(Out).front()),
    794       /*IsCombiner=*/true);
    795   llvm::Function *Initializer = nullptr;
    796   if (auto *Init = D->getInitializer()) {
    797     if (!Priv || !Orig) {
    798       Priv = &C.Idents.get("omp_priv");
    799       Orig = &C.Idents.get("omp_orig");
    800     }
    801     Initializer = emitCombinerOrInitializer(
    802         CGM, D->getType(), Init, cast<VarDecl>(D->lookup(Orig).front()),
    803         cast<VarDecl>(D->lookup(Priv).front()),
    804         /*IsCombiner=*/false);
    805   }
    806   UDRMap.insert(std::make_pair(D, std::make_pair(Combiner, Initializer)));
    807   if (CGF) {
    808     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
    809     Decls.second.push_back(D);
    810   }
    811 }
    812 
    813 std::pair<llvm::Function *, llvm::Function *>
    814 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
    815   auto I = UDRMap.find(D);
    816   if (I != UDRMap.end())
    817     return I->second;
    818   emitUserDefinedReduction(/*CGF=*/nullptr, D);
    819   return UDRMap.lookup(D);
    820 }
    821 
    822 // Layout information for ident_t.
    823 static CharUnits getIdentAlign(CodeGenModule &CGM) {
    824   return CGM.getPointerAlign();
    825 }
    826 static CharUnits getIdentSize(CodeGenModule &CGM) {
    827   assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign()));
    828   return CharUnits::fromQuantity(16) + CGM.getPointerSize();
    829 }
    830 static CharUnits getOffsetOfIdentField(IdentFieldIndex Field) {
    831   // All the fields except the last are i32, so this works beautifully.
    832   return unsigned(Field) * CharUnits::fromQuantity(4);
    833 }
    834 static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr,
    835                                    IdentFieldIndex Field,
    836                                    const llvm::Twine &Name = "") {
    837   auto Offset = getOffsetOfIdentField(Field);
    838   return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name);
    839 }
    840 
    841 llvm::Value *CGOpenMPRuntime::emitParallelOrTeamsOutlinedFunction(
    842     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
    843     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
    844   assert(ThreadIDVar->getType()->isPointerType() &&
    845          "thread id variable must be of type kmp_int32 *");
    846   const CapturedStmt *CS = cast<CapturedStmt>(D.getAssociatedStmt());
    847   CodeGenFunction CGF(CGM, true);
    848   bool HasCancel = false;
    849   if (auto *OPD = dyn_cast<OMPParallelDirective>(&D))
    850     HasCancel = OPD->hasCancel();
    851   else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
    852     HasCancel = OPSD->hasCancel();
    853   else if (auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
    854     HasCancel = OPFD->hasCancel();
    855   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
    856                                     HasCancel);
    857   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
    858   return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
    859 }
    860 
    861 llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction(
    862     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
    863     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
    864     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
    865     bool Tied, unsigned &NumberOfParts) {
    866   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
    867                                               PrePostActionTy &) {
    868     auto *ThreadID = getThreadID(CGF, D.getLocStart());
    869     auto *UpLoc = emitUpdateLocation(CGF, D.getLocStart());
    870     llvm::Value *TaskArgs[] = {
    871         UpLoc, ThreadID,
    872         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
    873                                     TaskTVar->getType()->castAs<PointerType>())
    874             .getPointer()};
    875     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
    876   };
    877   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
    878                                                             UntiedCodeGen);
    879   CodeGen.setAction(Action);
    880   assert(!ThreadIDVar->getType()->isPointerType() &&
    881          "thread id variable must be of type kmp_int32 for tasks");
    882   auto *CS = cast<CapturedStmt>(D.getAssociatedStmt());
    883   auto *TD = dyn_cast<OMPTaskDirective>(&D);
    884   CodeGenFunction CGF(CGM, true);
    885   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
    886                                         InnermostKind,
    887                                         TD ? TD->hasCancel() : false, Action);
    888   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
    889   auto *Res = CGF.GenerateCapturedStmtFunction(*CS);
    890   if (!Tied)
    891     NumberOfParts = Action.getNumberOfParts();
    892   return Res;
    893 }
    894 
    895 Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
    896   CharUnits Align = getIdentAlign(CGM);
    897   llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags);
    898   if (!Entry) {
    899     if (!DefaultOpenMPPSource) {
    900       // Initialize default location for psource field of ident_t structure of
    901       // all ident_t objects. Format is ";file;function;line;column;;".
    902       // Taken from
    903       // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c
    904       DefaultOpenMPPSource =
    905           CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
    906       DefaultOpenMPPSource =
    907           llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
    908     }
    909     auto DefaultOpenMPLocation = new llvm::GlobalVariable(
    910         CGM.getModule(), IdentTy, /*isConstant*/ true,
    911         llvm::GlobalValue::PrivateLinkage, /*Initializer*/ nullptr);
    912     DefaultOpenMPLocation->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
    913     DefaultOpenMPLocation->setAlignment(Align.getQuantity());
    914 
    915     llvm::Constant *Zero = llvm::ConstantInt::get(CGM.Int32Ty, 0, true);
    916     llvm::Constant *Values[] = {Zero,
    917                                 llvm::ConstantInt::get(CGM.Int32Ty, Flags),
    918                                 Zero, Zero, DefaultOpenMPPSource};
    919     llvm::Constant *Init = llvm::ConstantStruct::get(IdentTy, Values);
    920     DefaultOpenMPLocation->setInitializer(Init);
    921     OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation;
    922   }
    923   return Address(Entry, Align);
    924 }
    925 
    926 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
    927                                                  SourceLocation Loc,
    928                                                  unsigned Flags) {
    929   Flags |= OMP_IDENT_KMPC;
    930   // If no debug info is generated - return global default location.
    931   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
    932       Loc.isInvalid())
    933     return getOrCreateDefaultLocation(Flags).getPointer();
    934 
    935   assert(CGF.CurFn && "No function in current CodeGenFunction.");
    936 
    937   Address LocValue = Address::invalid();
    938   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
    939   if (I != OpenMPLocThreadIDMap.end())
    940     LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM));
    941 
    942   // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
    943   // GetOpenMPThreadID was called before this routine.
    944   if (!LocValue.isValid()) {
    945     // Generate "ident_t .kmpc_loc.addr;"
    946     Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM),
    947                                       ".kmpc_loc.addr");
    948     auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
    949     Elem.second.DebugLoc = AI.getPointer();
    950     LocValue = AI;
    951 
    952     CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
    953     CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
    954     CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
    955                              CGM.getSize(getIdentSize(CGF.CGM)));
    956   }
    957 
    958   // char **psource = &.kmpc_loc_<flags>.addr.psource;
    959   Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource);
    960 
    961   auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
    962   if (OMPDebugLoc == nullptr) {
    963     SmallString<128> Buffer2;
    964     llvm::raw_svector_ostream OS2(Buffer2);
    965     // Build debug location
    966     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
    967     OS2 << ";" << PLoc.getFilename() << ";";
    968     if (const FunctionDecl *FD =
    969             dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) {
    970       OS2 << FD->getQualifiedNameAsString();
    971     }
    972     OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
    973     OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
    974     OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
    975   }
    976   // *psource = ";<File>;<Function>;<Line>;<Column>;;";
    977   CGF.Builder.CreateStore(OMPDebugLoc, PSource);
    978 
    979   // Our callers always pass this to a runtime function, so for
    980   // convenience, go ahead and return a naked pointer.
    981   return LocValue.getPointer();
    982 }
    983 
    984 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
    985                                           SourceLocation Loc) {
    986   assert(CGF.CurFn && "No function in current CodeGenFunction.");
    987 
    988   llvm::Value *ThreadID = nullptr;
    989   // Check whether we've already cached a load of the thread id in this
    990   // function.
    991   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
    992   if (I != OpenMPLocThreadIDMap.end()) {
    993     ThreadID = I->second.ThreadID;
    994     if (ThreadID != nullptr)
    995       return ThreadID;
    996   }
    997   if (auto *OMPRegionInfo =
    998           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
    999     if (OMPRegionInfo->getThreadIDVariable()) {
   1000       // Check if this an outlined function with thread id passed as argument.
   1001       auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
   1002       ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal();
   1003       // If value loaded in entry block, cache it and use it everywhere in
   1004       // function.
   1005       if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
   1006         auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
   1007         Elem.second.ThreadID = ThreadID;
   1008       }
   1009       return ThreadID;
   1010     }
   1011   }
   1012 
   1013   // This is not an outlined function region - need to call __kmpc_int32
   1014   // kmpc_global_thread_num(ident_t *loc).
   1015   // Generate thread id value and cache this value for use across the
   1016   // function.
   1017   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
   1018   CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
   1019   ThreadID =
   1020       CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
   1021                           emitUpdateLocation(CGF, Loc));
   1022   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
   1023   Elem.second.ThreadID = ThreadID;
   1024   return ThreadID;
   1025 }
   1026 
   1027 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
   1028   assert(CGF.CurFn && "No function in current CodeGenFunction.");
   1029   if (OpenMPLocThreadIDMap.count(CGF.CurFn))
   1030     OpenMPLocThreadIDMap.erase(CGF.CurFn);
   1031   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
   1032     for(auto *D : FunctionUDRMap[CGF.CurFn]) {
   1033       UDRMap.erase(D);
   1034     }
   1035     FunctionUDRMap.erase(CGF.CurFn);
   1036   }
   1037 }
   1038 
   1039 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
   1040   if (!IdentTy) {
   1041   }
   1042   return llvm::PointerType::getUnqual(IdentTy);
   1043 }
   1044 
   1045 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
   1046   if (!Kmpc_MicroTy) {
   1047     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
   1048     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
   1049                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
   1050     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
   1051   }
   1052   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
   1053 }
   1054 
   1055 llvm::Constant *
   1056 CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
   1057   llvm::Constant *RTLFn = nullptr;
   1058   switch (static_cast<OpenMPRTLFunction>(Function)) {
   1059   case OMPRTL__kmpc_fork_call: {
   1060     // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
   1061     // microtask, ...);
   1062     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1063                                 getKmpc_MicroPointerTy()};
   1064     llvm::FunctionType *FnTy =
   1065         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
   1066     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
   1067     break;
   1068   }
   1069   case OMPRTL__kmpc_global_thread_num: {
   1070     // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
   1071     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
   1072     llvm::FunctionType *FnTy =
   1073         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1074     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
   1075     break;
   1076   }
   1077   case OMPRTL__kmpc_threadprivate_cached: {
   1078     // Build void *__kmpc_threadprivate_cached(ident_t *loc,
   1079     // kmp_int32 global_tid, void *data, size_t size, void ***cache);
   1080     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1081                                 CGM.VoidPtrTy, CGM.SizeTy,
   1082                                 CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
   1083     llvm::FunctionType *FnTy =
   1084         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
   1085     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
   1086     break;
   1087   }
   1088   case OMPRTL__kmpc_critical: {
   1089     // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
   1090     // kmp_critical_name *crit);
   1091     llvm::Type *TypeParams[] = {
   1092         getIdentTyPointerTy(), CGM.Int32Ty,
   1093         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
   1094     llvm::FunctionType *FnTy =
   1095         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1096     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
   1097     break;
   1098   }
   1099   case OMPRTL__kmpc_critical_with_hint: {
   1100     // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
   1101     // kmp_critical_name *crit, uintptr_t hint);
   1102     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1103                                 llvm::PointerType::getUnqual(KmpCriticalNameTy),
   1104                                 CGM.IntPtrTy};
   1105     llvm::FunctionType *FnTy =
   1106         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1107     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
   1108     break;
   1109   }
   1110   case OMPRTL__kmpc_threadprivate_register: {
   1111     // Build void __kmpc_threadprivate_register(ident_t *, void *data,
   1112     // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
   1113     // typedef void *(*kmpc_ctor)(void *);
   1114     auto KmpcCtorTy =
   1115         llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
   1116                                 /*isVarArg*/ false)->getPointerTo();
   1117     // typedef void *(*kmpc_cctor)(void *, void *);
   1118     llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
   1119     auto KmpcCopyCtorTy =
   1120         llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
   1121                                 /*isVarArg*/ false)->getPointerTo();
   1122     // typedef void (*kmpc_dtor)(void *);
   1123     auto KmpcDtorTy =
   1124         llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
   1125             ->getPointerTo();
   1126     llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
   1127                               KmpcCopyCtorTy, KmpcDtorTy};
   1128     auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
   1129                                         /*isVarArg*/ false);
   1130     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
   1131     break;
   1132   }
   1133   case OMPRTL__kmpc_end_critical: {
   1134     // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
   1135     // kmp_critical_name *crit);
   1136     llvm::Type *TypeParams[] = {
   1137         getIdentTyPointerTy(), CGM.Int32Ty,
   1138         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
   1139     llvm::FunctionType *FnTy =
   1140         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1141     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
   1142     break;
   1143   }
   1144   case OMPRTL__kmpc_cancel_barrier: {
   1145     // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
   1146     // global_tid);
   1147     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1148     llvm::FunctionType *FnTy =
   1149         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1150     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
   1151     break;
   1152   }
   1153   case OMPRTL__kmpc_barrier: {
   1154     // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
   1155     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1156     llvm::FunctionType *FnTy =
   1157         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1158     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
   1159     break;
   1160   }
   1161   case OMPRTL__kmpc_for_static_fini: {
   1162     // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
   1163     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1164     llvm::FunctionType *FnTy =
   1165         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1166     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
   1167     break;
   1168   }
   1169   case OMPRTL__kmpc_push_num_threads: {
   1170     // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
   1171     // kmp_int32 num_threads)
   1172     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1173                                 CGM.Int32Ty};
   1174     llvm::FunctionType *FnTy =
   1175         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1176     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
   1177     break;
   1178   }
   1179   case OMPRTL__kmpc_serialized_parallel: {
   1180     // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
   1181     // global_tid);
   1182     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1183     llvm::FunctionType *FnTy =
   1184         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1185     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
   1186     break;
   1187   }
   1188   case OMPRTL__kmpc_end_serialized_parallel: {
   1189     // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
   1190     // global_tid);
   1191     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1192     llvm::FunctionType *FnTy =
   1193         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1194     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
   1195     break;
   1196   }
   1197   case OMPRTL__kmpc_flush: {
   1198     // Build void __kmpc_flush(ident_t *loc);
   1199     llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
   1200     llvm::FunctionType *FnTy =
   1201         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1202     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
   1203     break;
   1204   }
   1205   case OMPRTL__kmpc_master: {
   1206     // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
   1207     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1208     llvm::FunctionType *FnTy =
   1209         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1210     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
   1211     break;
   1212   }
   1213   case OMPRTL__kmpc_end_master: {
   1214     // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
   1215     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1216     llvm::FunctionType *FnTy =
   1217         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1218     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
   1219     break;
   1220   }
   1221   case OMPRTL__kmpc_omp_taskyield: {
   1222     // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
   1223     // int end_part);
   1224     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
   1225     llvm::FunctionType *FnTy =
   1226         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1227     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
   1228     break;
   1229   }
   1230   case OMPRTL__kmpc_single: {
   1231     // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
   1232     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1233     llvm::FunctionType *FnTy =
   1234         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1235     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
   1236     break;
   1237   }
   1238   case OMPRTL__kmpc_end_single: {
   1239     // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
   1240     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1241     llvm::FunctionType *FnTy =
   1242         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1243     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
   1244     break;
   1245   }
   1246   case OMPRTL__kmpc_omp_task_alloc: {
   1247     // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
   1248     // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
   1249     // kmp_routine_entry_t *task_entry);
   1250     assert(KmpRoutineEntryPtrTy != nullptr &&
   1251            "Type kmp_routine_entry_t must be created.");
   1252     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
   1253                                 CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
   1254     // Return void * and then cast to particular kmp_task_t type.
   1255     llvm::FunctionType *FnTy =
   1256         llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
   1257     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
   1258     break;
   1259   }
   1260   case OMPRTL__kmpc_omp_task: {
   1261     // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
   1262     // *new_task);
   1263     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1264                                 CGM.VoidPtrTy};
   1265     llvm::FunctionType *FnTy =
   1266         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1267     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
   1268     break;
   1269   }
   1270   case OMPRTL__kmpc_copyprivate: {
   1271     // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
   1272     // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
   1273     // kmp_int32 didit);
   1274     llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
   1275     auto *CpyFnTy =
   1276         llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
   1277     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
   1278                                 CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
   1279                                 CGM.Int32Ty};
   1280     llvm::FunctionType *FnTy =
   1281         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1282     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
   1283     break;
   1284   }
   1285   case OMPRTL__kmpc_reduce: {
   1286     // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
   1287     // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
   1288     // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
   1289     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
   1290     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
   1291                                                /*isVarArg=*/false);
   1292     llvm::Type *TypeParams[] = {
   1293         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
   1294         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
   1295         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
   1296     llvm::FunctionType *FnTy =
   1297         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1298     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
   1299     break;
   1300   }
   1301   case OMPRTL__kmpc_reduce_nowait: {
   1302     // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
   1303     // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
   1304     // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
   1305     // *lck);
   1306     llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
   1307     auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
   1308                                                /*isVarArg=*/false);
   1309     llvm::Type *TypeParams[] = {
   1310         getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
   1311         CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
   1312         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
   1313     llvm::FunctionType *FnTy =
   1314         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1315     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
   1316     break;
   1317   }
   1318   case OMPRTL__kmpc_end_reduce: {
   1319     // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
   1320     // kmp_critical_name *lck);
   1321     llvm::Type *TypeParams[] = {
   1322         getIdentTyPointerTy(), CGM.Int32Ty,
   1323         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
   1324     llvm::FunctionType *FnTy =
   1325         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1326     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
   1327     break;
   1328   }
   1329   case OMPRTL__kmpc_end_reduce_nowait: {
   1330     // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
   1331     // kmp_critical_name *lck);
   1332     llvm::Type *TypeParams[] = {
   1333         getIdentTyPointerTy(), CGM.Int32Ty,
   1334         llvm::PointerType::getUnqual(KmpCriticalNameTy)};
   1335     llvm::FunctionType *FnTy =
   1336         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1337     RTLFn =
   1338         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
   1339     break;
   1340   }
   1341   case OMPRTL__kmpc_omp_task_begin_if0: {
   1342     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
   1343     // *new_task);
   1344     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1345                                 CGM.VoidPtrTy};
   1346     llvm::FunctionType *FnTy =
   1347         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1348     RTLFn =
   1349         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
   1350     break;
   1351   }
   1352   case OMPRTL__kmpc_omp_task_complete_if0: {
   1353     // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
   1354     // *new_task);
   1355     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1356                                 CGM.VoidPtrTy};
   1357     llvm::FunctionType *FnTy =
   1358         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1359     RTLFn = CGM.CreateRuntimeFunction(FnTy,
   1360                                       /*Name=*/"__kmpc_omp_task_complete_if0");
   1361     break;
   1362   }
   1363   case OMPRTL__kmpc_ordered: {
   1364     // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
   1365     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1366     llvm::FunctionType *FnTy =
   1367         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1368     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
   1369     break;
   1370   }
   1371   case OMPRTL__kmpc_end_ordered: {
   1372     // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
   1373     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1374     llvm::FunctionType *FnTy =
   1375         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1376     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
   1377     break;
   1378   }
   1379   case OMPRTL__kmpc_omp_taskwait: {
   1380     // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
   1381     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1382     llvm::FunctionType *FnTy =
   1383         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1384     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
   1385     break;
   1386   }
   1387   case OMPRTL__kmpc_taskgroup: {
   1388     // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
   1389     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1390     llvm::FunctionType *FnTy =
   1391         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1392     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
   1393     break;
   1394   }
   1395   case OMPRTL__kmpc_end_taskgroup: {
   1396     // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
   1397     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1398     llvm::FunctionType *FnTy =
   1399         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1400     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
   1401     break;
   1402   }
   1403   case OMPRTL__kmpc_push_proc_bind: {
   1404     // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
   1405     // int proc_bind)
   1406     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
   1407     llvm::FunctionType *FnTy =
   1408         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1409     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
   1410     break;
   1411   }
   1412   case OMPRTL__kmpc_omp_task_with_deps: {
   1413     // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
   1414     // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
   1415     // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
   1416     llvm::Type *TypeParams[] = {
   1417         getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
   1418         CGM.VoidPtrTy,         CGM.Int32Ty, CGM.VoidPtrTy};
   1419     llvm::FunctionType *FnTy =
   1420         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
   1421     RTLFn =
   1422         CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
   1423     break;
   1424   }
   1425   case OMPRTL__kmpc_omp_wait_deps: {
   1426     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
   1427     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
   1428     // kmp_depend_info_t *noalias_dep_list);
   1429     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1430                                 CGM.Int32Ty,           CGM.VoidPtrTy,
   1431                                 CGM.Int32Ty,           CGM.VoidPtrTy};
   1432     llvm::FunctionType *FnTy =
   1433         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1434     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
   1435     break;
   1436   }
   1437   case OMPRTL__kmpc_cancellationpoint: {
   1438     // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
   1439     // global_tid, kmp_int32 cncl_kind)
   1440     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
   1441     llvm::FunctionType *FnTy =
   1442         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1443     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
   1444     break;
   1445   }
   1446   case OMPRTL__kmpc_cancel: {
   1447     // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
   1448     // kmp_int32 cncl_kind)
   1449     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
   1450     llvm::FunctionType *FnTy =
   1451         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1452     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
   1453     break;
   1454   }
   1455   case OMPRTL__kmpc_push_num_teams: {
   1456     // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
   1457     // kmp_int32 num_teams, kmp_int32 num_threads)
   1458     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
   1459         CGM.Int32Ty};
   1460     llvm::FunctionType *FnTy =
   1461         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1462     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
   1463     break;
   1464   }
   1465   case OMPRTL__kmpc_fork_teams: {
   1466     // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
   1467     // microtask, ...);
   1468     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1469                                 getKmpc_MicroPointerTy()};
   1470     llvm::FunctionType *FnTy =
   1471         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
   1472     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
   1473     break;
   1474   }
   1475   case OMPRTL__kmpc_taskloop: {
   1476     // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
   1477     // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
   1478     // sched, kmp_uint64 grainsize, void *task_dup);
   1479     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
   1480                                 CGM.IntTy,
   1481                                 CGM.VoidPtrTy,
   1482                                 CGM.IntTy,
   1483                                 CGM.Int64Ty->getPointerTo(),
   1484                                 CGM.Int64Ty->getPointerTo(),
   1485                                 CGM.Int64Ty,
   1486                                 CGM.IntTy,
   1487                                 CGM.IntTy,
   1488                                 CGM.Int64Ty,
   1489                                 CGM.VoidPtrTy};
   1490     llvm::FunctionType *FnTy =
   1491         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1492     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
   1493     break;
   1494   }
   1495   case OMPRTL__kmpc_doacross_init: {
   1496     // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
   1497     // num_dims, struct kmp_dim *dims);
   1498     llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
   1499                                 CGM.Int32Ty,
   1500                                 CGM.Int32Ty,
   1501                                 CGM.VoidPtrTy};
   1502     llvm::FunctionType *FnTy =
   1503         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1504     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
   1505     break;
   1506   }
   1507   case OMPRTL__kmpc_doacross_fini: {
   1508     // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
   1509     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
   1510     llvm::FunctionType *FnTy =
   1511         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1512     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
   1513     break;
   1514   }
   1515   case OMPRTL__kmpc_doacross_post: {
   1516     // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
   1517     // *vec);
   1518     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1519                                 CGM.Int64Ty->getPointerTo()};
   1520     llvm::FunctionType *FnTy =
   1521         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1522     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
   1523     break;
   1524   }
   1525   case OMPRTL__kmpc_doacross_wait: {
   1526     // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
   1527     // *vec);
   1528     llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
   1529                                 CGM.Int64Ty->getPointerTo()};
   1530     llvm::FunctionType *FnTy =
   1531         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1532     RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
   1533     break;
   1534   }
   1535   case OMPRTL__tgt_target: {
   1536     // Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
   1537     // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
   1538     // *arg_types);
   1539     llvm::Type *TypeParams[] = {CGM.Int32Ty,
   1540                                 CGM.VoidPtrTy,
   1541                                 CGM.Int32Ty,
   1542                                 CGM.VoidPtrPtrTy,
   1543                                 CGM.VoidPtrPtrTy,
   1544                                 CGM.SizeTy->getPointerTo(),
   1545                                 CGM.Int32Ty->getPointerTo()};
   1546     llvm::FunctionType *FnTy =
   1547         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1548     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
   1549     break;
   1550   }
   1551   case OMPRTL__tgt_target_teams: {
   1552     // Build int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
   1553     // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
   1554     // int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
   1555     llvm::Type *TypeParams[] = {CGM.Int32Ty,
   1556                                 CGM.VoidPtrTy,
   1557                                 CGM.Int32Ty,
   1558                                 CGM.VoidPtrPtrTy,
   1559                                 CGM.VoidPtrPtrTy,
   1560                                 CGM.SizeTy->getPointerTo(),
   1561                                 CGM.Int32Ty->getPointerTo(),
   1562                                 CGM.Int32Ty,
   1563                                 CGM.Int32Ty};
   1564     llvm::FunctionType *FnTy =
   1565         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1566     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
   1567     break;
   1568   }
   1569   case OMPRTL__tgt_register_lib: {
   1570     // Build void __tgt_register_lib(__tgt_bin_desc *desc);
   1571     QualType ParamTy =
   1572         CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
   1573     llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
   1574     llvm::FunctionType *FnTy =
   1575         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1576     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
   1577     break;
   1578   }
   1579   case OMPRTL__tgt_unregister_lib: {
   1580     // Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
   1581     QualType ParamTy =
   1582         CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
   1583     llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
   1584     llvm::FunctionType *FnTy =
   1585         llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1586     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
   1587     break;
   1588   }
   1589   case OMPRTL__tgt_target_data_begin: {
   1590     // Build void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
   1591     // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
   1592     llvm::Type *TypeParams[] = {CGM.Int32Ty,
   1593                                 CGM.Int32Ty,
   1594                                 CGM.VoidPtrPtrTy,
   1595                                 CGM.VoidPtrPtrTy,
   1596                                 CGM.SizeTy->getPointerTo(),
   1597                                 CGM.Int32Ty->getPointerTo()};
   1598     llvm::FunctionType *FnTy =
   1599         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1600     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
   1601     break;
   1602   }
   1603   case OMPRTL__tgt_target_data_end: {
   1604     // Build void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
   1605     // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
   1606     llvm::Type *TypeParams[] = {CGM.Int32Ty,
   1607                                 CGM.Int32Ty,
   1608                                 CGM.VoidPtrPtrTy,
   1609                                 CGM.VoidPtrPtrTy,
   1610                                 CGM.SizeTy->getPointerTo(),
   1611                                 CGM.Int32Ty->getPointerTo()};
   1612     llvm::FunctionType *FnTy =
   1613         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1614     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
   1615     break;
   1616   }
   1617   case OMPRTL__tgt_target_data_update: {
   1618     // Build void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
   1619     // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
   1620     llvm::Type *TypeParams[] = {CGM.Int32Ty,
   1621                                 CGM.Int32Ty,
   1622                                 CGM.VoidPtrPtrTy,
   1623                                 CGM.VoidPtrPtrTy,
   1624                                 CGM.SizeTy->getPointerTo(),
   1625                                 CGM.Int32Ty->getPointerTo()};
   1626     llvm::FunctionType *FnTy =
   1627         llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1628     RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
   1629     break;
   1630   }
   1631   }
   1632   assert(RTLFn && "Unable to find OpenMP runtime function");
   1633   return RTLFn;
   1634 }
   1635 
   1636 llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize,
   1637                                                              bool IVSigned) {
   1638   assert((IVSize == 32 || IVSize == 64) &&
   1639          "IV size is not compatible with the omp runtime");
   1640   auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
   1641                                        : "__kmpc_for_static_init_4u")
   1642                            : (IVSigned ? "__kmpc_for_static_init_8"
   1643                                        : "__kmpc_for_static_init_8u");
   1644   auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
   1645   auto PtrTy = llvm::PointerType::getUnqual(ITy);
   1646   llvm::Type *TypeParams[] = {
   1647     getIdentTyPointerTy(),                     // loc
   1648     CGM.Int32Ty,                               // tid
   1649     CGM.Int32Ty,                               // schedtype
   1650     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
   1651     PtrTy,                                     // p_lower
   1652     PtrTy,                                     // p_upper
   1653     PtrTy,                                     // p_stride
   1654     ITy,                                       // incr
   1655     ITy                                        // chunk
   1656   };
   1657   llvm::FunctionType *FnTy =
   1658       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1659   return CGM.CreateRuntimeFunction(FnTy, Name);
   1660 }
   1661 
   1662 llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize,
   1663                                                             bool IVSigned) {
   1664   assert((IVSize == 32 || IVSize == 64) &&
   1665          "IV size is not compatible with the omp runtime");
   1666   auto Name =
   1667       IVSize == 32
   1668           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
   1669           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
   1670   auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
   1671   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
   1672                                CGM.Int32Ty,           // tid
   1673                                CGM.Int32Ty,           // schedtype
   1674                                ITy,                   // lower
   1675                                ITy,                   // upper
   1676                                ITy,                   // stride
   1677                                ITy                    // chunk
   1678   };
   1679   llvm::FunctionType *FnTy =
   1680       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
   1681   return CGM.CreateRuntimeFunction(FnTy, Name);
   1682 }
   1683 
   1684 llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize,
   1685                                                             bool IVSigned) {
   1686   assert((IVSize == 32 || IVSize == 64) &&
   1687          "IV size is not compatible with the omp runtime");
   1688   auto Name =
   1689       IVSize == 32
   1690           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
   1691           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
   1692   llvm::Type *TypeParams[] = {
   1693       getIdentTyPointerTy(), // loc
   1694       CGM.Int32Ty,           // tid
   1695   };
   1696   llvm::FunctionType *FnTy =
   1697       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
   1698   return CGM.CreateRuntimeFunction(FnTy, Name);
   1699 }
   1700 
   1701 llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize,
   1702                                                             bool IVSigned) {
   1703   assert((IVSize == 32 || IVSize == 64) &&
   1704          "IV size is not compatible with the omp runtime");
   1705   auto Name =
   1706       IVSize == 32
   1707           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
   1708           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
   1709   auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
   1710   auto PtrTy = llvm::PointerType::getUnqual(ITy);
   1711   llvm::Type *TypeParams[] = {
   1712     getIdentTyPointerTy(),                     // loc
   1713     CGM.Int32Ty,                               // tid
   1714     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
   1715     PtrTy,                                     // p_lower
   1716     PtrTy,                                     // p_upper
   1717     PtrTy                                      // p_stride
   1718   };
   1719   llvm::FunctionType *FnTy =
   1720       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
   1721   return CGM.CreateRuntimeFunction(FnTy, Name);
   1722 }
   1723 
   1724 llvm::Constant *
   1725 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
   1726   assert(!CGM.getLangOpts().OpenMPUseTLS ||
   1727          !CGM.getContext().getTargetInfo().isTLSSupported());
   1728   // Lookup the entry, lazily creating it if necessary.
   1729   return getOrCreateInternalVariable(CGM.Int8PtrPtrTy,
   1730                                      Twine(CGM.getMangledName(VD)) + ".cache.");
   1731 }
   1732 
   1733 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
   1734                                                 const VarDecl *VD,
   1735                                                 Address VDAddr,
   1736                                                 SourceLocation Loc) {
   1737   if (CGM.getLangOpts().OpenMPUseTLS &&
   1738       CGM.getContext().getTargetInfo().isTLSSupported())
   1739     return VDAddr;
   1740 
   1741   auto VarTy = VDAddr.getElementType();
   1742   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
   1743                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
   1744                                                        CGM.Int8PtrTy),
   1745                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
   1746                          getOrCreateThreadPrivateCache(VD)};
   1747   return Address(CGF.EmitRuntimeCall(
   1748       createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
   1749                  VDAddr.getAlignment());
   1750 }
   1751 
   1752 void CGOpenMPRuntime::emitThreadPrivateVarInit(
   1753     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
   1754     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
   1755   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
   1756   // library.
   1757   auto OMPLoc = emitUpdateLocation(CGF, Loc);
   1758   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
   1759                       OMPLoc);
   1760   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
   1761   // to register constructor/destructor for variable.
   1762   llvm::Value *Args[] = {OMPLoc,
   1763                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
   1764                                                        CGM.VoidPtrTy),
   1765                          Ctor, CopyCtor, Dtor};
   1766   CGF.EmitRuntimeCall(
   1767       createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
   1768 }
   1769 
   1770 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
   1771     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
   1772     bool PerformInit, CodeGenFunction *CGF) {
   1773   if (CGM.getLangOpts().OpenMPUseTLS &&
   1774       CGM.getContext().getTargetInfo().isTLSSupported())
   1775     return nullptr;
   1776 
   1777   VD = VD->getDefinition(CGM.getContext());
   1778   if (VD && ThreadPrivateWithDefinition.count(VD) == 0) {
   1779     ThreadPrivateWithDefinition.insert(VD);
   1780     QualType ASTTy = VD->getType();
   1781 
   1782     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
   1783     auto Init = VD->getAnyInitializer();
   1784     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
   1785       // Generate function that re-emits the declaration's initializer into the
   1786       // threadprivate copy of the variable VD
   1787       CodeGenFunction CtorCGF(CGM);
   1788       FunctionArgList Args;
   1789       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
   1790                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
   1791       Args.push_back(&Dst);
   1792 
   1793       auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
   1794           CGM.getContext().VoidPtrTy, Args);
   1795       auto FTy = CGM.getTypes().GetFunctionType(FI);
   1796       auto Fn = CGM.CreateGlobalInitOrDestructFunction(
   1797           FTy, ".__kmpc_global_ctor_.", FI, Loc);
   1798       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
   1799                             Args, SourceLocation());
   1800       auto ArgVal = CtorCGF.EmitLoadOfScalar(
   1801           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
   1802           CGM.getContext().VoidPtrTy, Dst.getLocation());
   1803       Address Arg = Address(ArgVal, VDAddr.getAlignment());
   1804       Arg = CtorCGF.Builder.CreateElementBitCast(Arg,
   1805                                              CtorCGF.ConvertTypeForMem(ASTTy));
   1806       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
   1807                                /*IsInitializer=*/true);
   1808       ArgVal = CtorCGF.EmitLoadOfScalar(
   1809           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
   1810           CGM.getContext().VoidPtrTy, Dst.getLocation());
   1811       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
   1812       CtorCGF.FinishFunction();
   1813       Ctor = Fn;
   1814     }
   1815     if (VD->getType().isDestructedType() != QualType::DK_none) {
   1816       // Generate function that emits destructor call for the threadprivate copy
   1817       // of the variable VD
   1818       CodeGenFunction DtorCGF(CGM);
   1819       FunctionArgList Args;
   1820       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
   1821                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
   1822       Args.push_back(&Dst);
   1823 
   1824       auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
   1825           CGM.getContext().VoidTy, Args);
   1826       auto FTy = CGM.getTypes().GetFunctionType(FI);
   1827       auto Fn = CGM.CreateGlobalInitOrDestructFunction(
   1828           FTy, ".__kmpc_global_dtor_.", FI, Loc);
   1829       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
   1830       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
   1831                             SourceLocation());
   1832       // Create a scope with an artificial location for the body of this function.
   1833       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
   1834       auto ArgVal = DtorCGF.EmitLoadOfScalar(
   1835           DtorCGF.GetAddrOfLocalVar(&Dst),
   1836           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
   1837       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
   1838                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
   1839                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
   1840       DtorCGF.FinishFunction();
   1841       Dtor = Fn;
   1842     }
   1843     // Do not emit init function if it is not required.
   1844     if (!Ctor && !Dtor)
   1845       return nullptr;
   1846 
   1847     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
   1848     auto CopyCtorTy =
   1849         llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
   1850                                 /*isVarArg=*/false)->getPointerTo();
   1851     // Copying constructor for the threadprivate variable.
   1852     // Must be NULL - reserved by runtime, but currently it requires that this
   1853     // parameter is always NULL. Otherwise it fires assertion.
   1854     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
   1855     if (Ctor == nullptr) {
   1856       auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
   1857                                             /*isVarArg=*/false)->getPointerTo();
   1858       Ctor = llvm::Constant::getNullValue(CtorTy);
   1859     }
   1860     if (Dtor == nullptr) {
   1861       auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
   1862                                             /*isVarArg=*/false)->getPointerTo();
   1863       Dtor = llvm::Constant::getNullValue(DtorTy);
   1864     }
   1865     if (!CGF) {
   1866       auto InitFunctionTy =
   1867           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
   1868       auto InitFunction = CGM.CreateGlobalInitOrDestructFunction(
   1869           InitFunctionTy, ".__omp_threadprivate_init_.",
   1870           CGM.getTypes().arrangeNullaryFunction());
   1871       CodeGenFunction InitCGF(CGM);
   1872       FunctionArgList ArgList;
   1873       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
   1874                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
   1875                             Loc);
   1876       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
   1877       InitCGF.FinishFunction();
   1878       return InitFunction;
   1879     }
   1880     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
   1881   }
   1882   return nullptr;
   1883 }
   1884 
   1885 /// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
   1886 /// function. Here is the logic:
   1887 /// if (Cond) {
   1888 ///   ThenGen();
   1889 /// } else {
   1890 ///   ElseGen();
   1891 /// }
   1892 static void emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
   1893                             const RegionCodeGenTy &ThenGen,
   1894                             const RegionCodeGenTy &ElseGen) {
   1895   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
   1896 
   1897   // If the condition constant folds and can be elided, try to avoid emitting
   1898   // the condition and the dead arm of the if/else.
   1899   bool CondConstant;
   1900   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
   1901     if (CondConstant)
   1902       ThenGen(CGF);
   1903     else
   1904       ElseGen(CGF);
   1905     return;
   1906   }
   1907 
   1908   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
   1909   // emit the conditional branch.
   1910   auto ThenBlock = CGF.createBasicBlock("omp_if.then");
   1911   auto ElseBlock = CGF.createBasicBlock("omp_if.else");
   1912   auto ContBlock = CGF.createBasicBlock("omp_if.end");
   1913   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
   1914 
   1915   // Emit the 'then' code.
   1916   CGF.EmitBlock(ThenBlock);
   1917   ThenGen(CGF);
   1918   CGF.EmitBranch(ContBlock);
   1919   // Emit the 'else' code if present.
   1920   // There is no need to emit line number for unconditional branch.
   1921   (void)ApplyDebugLocation::CreateEmpty(CGF);
   1922   CGF.EmitBlock(ElseBlock);
   1923   ElseGen(CGF);
   1924   // There is no need to emit line number for unconditional branch.
   1925   (void)ApplyDebugLocation::CreateEmpty(CGF);
   1926   CGF.EmitBranch(ContBlock);
   1927   // Emit the continuation block for code after the if.
   1928   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
   1929 }
   1930 
   1931 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
   1932                                        llvm::Value *OutlinedFn,
   1933                                        ArrayRef<llvm::Value *> CapturedVars,
   1934                                        const Expr *IfCond) {
   1935   if (!CGF.HaveInsertPoint())
   1936     return;
   1937   auto *RTLoc = emitUpdateLocation(CGF, Loc);
   1938   auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
   1939                                                      PrePostActionTy &) {
   1940     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
   1941     auto &RT = CGF.CGM.getOpenMPRuntime();
   1942     llvm::Value *Args[] = {
   1943         RTLoc,
   1944         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
   1945         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
   1946     llvm::SmallVector<llvm::Value *, 16> RealArgs;
   1947     RealArgs.append(std::begin(Args), std::end(Args));
   1948     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
   1949 
   1950     auto RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
   1951     CGF.EmitRuntimeCall(RTLFn, RealArgs);
   1952   };
   1953   auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
   1954                                                           PrePostActionTy &) {
   1955     auto &RT = CGF.CGM.getOpenMPRuntime();
   1956     auto ThreadID = RT.getThreadID(CGF, Loc);
   1957     // Build calls:
   1958     // __kmpc_serialized_parallel(&Loc, GTid);
   1959     llvm::Value *Args[] = {RTLoc, ThreadID};
   1960     CGF.EmitRuntimeCall(
   1961         RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
   1962 
   1963     // OutlinedFn(&GTid, &zero, CapturedStruct);
   1964     auto ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
   1965     Address ZeroAddr =
   1966         CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
   1967                              /*Name*/ ".zero.addr");
   1968     CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
   1969     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
   1970     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
   1971     OutlinedFnArgs.push_back(ZeroAddr.getPointer());
   1972     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
   1973     CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
   1974 
   1975     // __kmpc_end_serialized_parallel(&Loc, GTid);
   1976     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
   1977     CGF.EmitRuntimeCall(
   1978         RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
   1979         EndArgs);
   1980   };
   1981   if (IfCond)
   1982     emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
   1983   else {
   1984     RegionCodeGenTy ThenRCG(ThenGen);
   1985     ThenRCG(CGF);
   1986   }
   1987 }
   1988 
   1989 // If we're inside an (outlined) parallel region, use the region info's
   1990 // thread-ID variable (it is passed in a first argument of the outlined function
   1991 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
   1992 // regular serial code region, get thread ID by calling kmp_int32
   1993 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
   1994 // return the address of that temp.
   1995 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
   1996                                              SourceLocation Loc) {
   1997   if (auto *OMPRegionInfo =
   1998           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
   1999     if (OMPRegionInfo->getThreadIDVariable())
   2000       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
   2001 
   2002   auto ThreadID = getThreadID(CGF, Loc);
   2003   auto Int32Ty =
   2004       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
   2005   auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
   2006   CGF.EmitStoreOfScalar(ThreadID,
   2007                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
   2008 
   2009   return ThreadIDTemp;
   2010 }
   2011 
   2012 llvm::Constant *
   2013 CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty,
   2014                                              const llvm::Twine &Name) {
   2015   SmallString<256> Buffer;
   2016   llvm::raw_svector_ostream Out(Buffer);
   2017   Out << Name;
   2018   auto RuntimeName = Out.str();
   2019   auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first;
   2020   if (Elem.second) {
   2021     assert(Elem.second->getType()->getPointerElementType() == Ty &&
   2022            "OMP internal variable has different type than requested");
   2023     return &*Elem.second;
   2024   }
   2025 
   2026   return Elem.second = new llvm::GlobalVariable(
   2027              CGM.getModule(), Ty, /*IsConstant*/ false,
   2028              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
   2029              Elem.first());
   2030 }
   2031 
   2032 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
   2033   llvm::Twine Name(".gomp_critical_user_", CriticalName);
   2034   return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var"));
   2035 }
   2036 
   2037 namespace {
   2038 /// Common pre(post)-action for different OpenMP constructs.
   2039 class CommonActionTy final : public PrePostActionTy {
   2040   llvm::Value *EnterCallee;
   2041   ArrayRef<llvm::Value *> EnterArgs;
   2042   llvm::Value *ExitCallee;
   2043   ArrayRef<llvm::Value *> ExitArgs;
   2044   bool Conditional;
   2045   llvm::BasicBlock *ContBlock = nullptr;
   2046 
   2047 public:
   2048   CommonActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
   2049                  llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
   2050                  bool Conditional = false)
   2051       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
   2052         ExitArgs(ExitArgs), Conditional(Conditional) {}
   2053   void Enter(CodeGenFunction &CGF) override {
   2054     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
   2055     if (Conditional) {
   2056       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
   2057       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
   2058       ContBlock = CGF.createBasicBlock("omp_if.end");
   2059       // Generate the branch (If-stmt)
   2060       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
   2061       CGF.EmitBlock(ThenBlock);
   2062     }
   2063   }
   2064   void Done(CodeGenFunction &CGF) {
   2065     // Emit the rest of blocks/branches
   2066     CGF.EmitBranch(ContBlock);
   2067     CGF.EmitBlock(ContBlock, true);
   2068   }
   2069   void Exit(CodeGenFunction &CGF) override {
   2070     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
   2071   }
   2072 };
   2073 } // anonymous namespace
   2074 
   2075 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
   2076                                          StringRef CriticalName,
   2077                                          const RegionCodeGenTy &CriticalOpGen,
   2078                                          SourceLocation Loc, const Expr *Hint) {
   2079   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
   2080   // CriticalOpGen();
   2081   // __kmpc_end_critical(ident_t *, gtid, Lock);
   2082   // Prepare arguments and build a call to __kmpc_critical
   2083   if (!CGF.HaveInsertPoint())
   2084     return;
   2085   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
   2086                          getCriticalRegionLock(CriticalName)};
   2087   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
   2088                                                 std::end(Args));
   2089   if (Hint) {
   2090     EnterArgs.push_back(CGF.Builder.CreateIntCast(
   2091         CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
   2092   }
   2093   CommonActionTy Action(
   2094       createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
   2095                                  : OMPRTL__kmpc_critical),
   2096       EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
   2097   CriticalOpGen.setAction(Action);
   2098   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
   2099 }
   2100 
   2101 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
   2102                                        const RegionCodeGenTy &MasterOpGen,
   2103                                        SourceLocation Loc) {
   2104   if (!CGF.HaveInsertPoint())
   2105     return;
   2106   // if(__kmpc_master(ident_t *, gtid)) {
   2107   //   MasterOpGen();
   2108   //   __kmpc_end_master(ident_t *, gtid);
   2109   // }
   2110   // Prepare arguments and build a call to __kmpc_master
   2111   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
   2112   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
   2113                         createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
   2114                         /*Conditional=*/true);
   2115   MasterOpGen.setAction(Action);
   2116   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
   2117   Action.Done(CGF);
   2118 }
   2119 
   2120 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
   2121                                         SourceLocation Loc) {
   2122   if (!CGF.HaveInsertPoint())
   2123     return;
   2124   // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
   2125   llvm::Value *Args[] = {
   2126       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
   2127       llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
   2128   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
   2129   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
   2130     Region->emitUntiedSwitch(CGF);
   2131 }
   2132 
   2133 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
   2134                                           const RegionCodeGenTy &TaskgroupOpGen,
   2135                                           SourceLocation Loc) {
   2136   if (!CGF.HaveInsertPoint())
   2137     return;
   2138   // __kmpc_taskgroup(ident_t *, gtid);
   2139   // TaskgroupOpGen();
   2140   // __kmpc_end_taskgroup(ident_t *, gtid);
   2141   // Prepare arguments and build a call to __kmpc_taskgroup
   2142   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
   2143   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
   2144                         createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
   2145                         Args);
   2146   TaskgroupOpGen.setAction(Action);
   2147   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
   2148 }
   2149 
   2150 /// Given an array of pointers to variables, project the address of a
   2151 /// given variable.
   2152 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
   2153                                       unsigned Index, const VarDecl *Var) {
   2154   // Pull out the pointer to the variable.
   2155   Address PtrAddr =
   2156       CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize());
   2157   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
   2158 
   2159   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
   2160   Addr = CGF.Builder.CreateElementBitCast(
   2161       Addr, CGF.ConvertTypeForMem(Var->getType()));
   2162   return Addr;
   2163 }
   2164 
   2165 static llvm::Value *emitCopyprivateCopyFunction(
   2166     CodeGenModule &CGM, llvm::Type *ArgsType,
   2167     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
   2168     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) {
   2169   auto &C = CGM.getContext();
   2170   // void copy_func(void *LHSArg, void *RHSArg);
   2171   FunctionArgList Args;
   2172   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
   2173                            C.VoidPtrTy);
   2174   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
   2175                            C.VoidPtrTy);
   2176   Args.push_back(&LHSArg);
   2177   Args.push_back(&RHSArg);
   2178   auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
   2179   auto *Fn = llvm::Function::Create(
   2180       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
   2181       ".omp.copyprivate.copy_func", &CGM.getModule());
   2182   CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
   2183   CodeGenFunction CGF(CGM);
   2184   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
   2185   // Dest = (void*[n])(LHSArg);
   2186   // Src = (void*[n])(RHSArg);
   2187   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   2188       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
   2189       ArgsType), CGF.getPointerAlign());
   2190   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   2191       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
   2192       ArgsType), CGF.getPointerAlign());
   2193   // *(Type0*)Dst[0] = *(Type0*)Src[0];
   2194   // *(Type1*)Dst[1] = *(Type1*)Src[1];
   2195   // ...
   2196   // *(Typen*)Dst[n] = *(Typen*)Src[n];
   2197   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
   2198     auto DestVar = cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
   2199     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
   2200 
   2201     auto SrcVar = cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
   2202     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
   2203 
   2204     auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
   2205     QualType Type = VD->getType();
   2206     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
   2207   }
   2208   CGF.FinishFunction();
   2209   return Fn;
   2210 }
   2211 
   2212 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
   2213                                        const RegionCodeGenTy &SingleOpGen,
   2214                                        SourceLocation Loc,
   2215                                        ArrayRef<const Expr *> CopyprivateVars,
   2216                                        ArrayRef<const Expr *> SrcExprs,
   2217                                        ArrayRef<const Expr *> DstExprs,
   2218                                        ArrayRef<const Expr *> AssignmentOps) {
   2219   if (!CGF.HaveInsertPoint())
   2220     return;
   2221   assert(CopyprivateVars.size() == SrcExprs.size() &&
   2222          CopyprivateVars.size() == DstExprs.size() &&
   2223          CopyprivateVars.size() == AssignmentOps.size());
   2224   auto &C = CGM.getContext();
   2225   // int32 did_it = 0;
   2226   // if(__kmpc_single(ident_t *, gtid)) {
   2227   //   SingleOpGen();
   2228   //   __kmpc_end_single(ident_t *, gtid);
   2229   //   did_it = 1;
   2230   // }
   2231   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
   2232   // <copy_func>, did_it);
   2233 
   2234   Address DidIt = Address::invalid();
   2235   if (!CopyprivateVars.empty()) {
   2236     // int32 did_it = 0;
   2237     auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
   2238     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
   2239     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
   2240   }
   2241   // Prepare arguments and build a call to __kmpc_single
   2242   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
   2243   CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
   2244                         createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
   2245                         /*Conditional=*/true);
   2246   SingleOpGen.setAction(Action);
   2247   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
   2248   if (DidIt.isValid()) {
   2249     // did_it = 1;
   2250     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
   2251   }
   2252   Action.Done(CGF);
   2253   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
   2254   // <copy_func>, did_it);
   2255   if (DidIt.isValid()) {
   2256     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
   2257     auto CopyprivateArrayTy =
   2258         C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
   2259                                /*IndexTypeQuals=*/0);
   2260     // Create a list of all private variables for copyprivate.
   2261     Address CopyprivateList =
   2262         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
   2263     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
   2264       Address Elem = CGF.Builder.CreateConstArrayGEP(
   2265           CopyprivateList, I, CGF.getPointerSize());
   2266       CGF.Builder.CreateStore(
   2267           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   2268               CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
   2269           Elem);
   2270     }
   2271     // Build function that copies private values from single region to all other
   2272     // threads in the corresponding parallel region.
   2273     auto *CpyFn = emitCopyprivateCopyFunction(
   2274         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
   2275         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
   2276     auto *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
   2277     Address CL =
   2278       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
   2279                                                       CGF.VoidPtrTy);
   2280     auto *DidItVal = CGF.Builder.CreateLoad(DidIt);
   2281     llvm::Value *Args[] = {
   2282         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
   2283         getThreadID(CGF, Loc),        // i32 <gtid>
   2284         BufSize,                      // size_t <buf_size>
   2285         CL.getPointer(),              // void *<copyprivate list>
   2286         CpyFn,                        // void (*) (void *, void *) <copy_func>
   2287         DidItVal                      // i32 did_it
   2288     };
   2289     CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
   2290   }
   2291 }
   2292 
   2293 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
   2294                                         const RegionCodeGenTy &OrderedOpGen,
   2295                                         SourceLocation Loc, bool IsThreads) {
   2296   if (!CGF.HaveInsertPoint())
   2297     return;
   2298   // __kmpc_ordered(ident_t *, gtid);
   2299   // OrderedOpGen();
   2300   // __kmpc_end_ordered(ident_t *, gtid);
   2301   // Prepare arguments and build a call to __kmpc_ordered
   2302   if (IsThreads) {
   2303     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
   2304     CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
   2305                           createRuntimeFunction(OMPRTL__kmpc_end_ordered),
   2306                           Args);
   2307     OrderedOpGen.setAction(Action);
   2308     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
   2309     return;
   2310   }
   2311   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
   2312 }
   2313 
   2314 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
   2315                                       OpenMPDirectiveKind Kind, bool EmitChecks,
   2316                                       bool ForceSimpleCall) {
   2317   if (!CGF.HaveInsertPoint())
   2318     return;
   2319   // Build call __kmpc_cancel_barrier(loc, thread_id);
   2320   // Build call __kmpc_barrier(loc, thread_id);
   2321   unsigned Flags;
   2322   if (Kind == OMPD_for)
   2323     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
   2324   else if (Kind == OMPD_sections)
   2325     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
   2326   else if (Kind == OMPD_single)
   2327     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
   2328   else if (Kind == OMPD_barrier)
   2329     Flags = OMP_IDENT_BARRIER_EXPL;
   2330   else
   2331     Flags = OMP_IDENT_BARRIER_IMPL;
   2332   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
   2333   // thread_id);
   2334   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
   2335                          getThreadID(CGF, Loc)};
   2336   if (auto *OMPRegionInfo =
   2337           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
   2338     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
   2339       auto *Result = CGF.EmitRuntimeCall(
   2340           createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
   2341       if (EmitChecks) {
   2342         // if (__kmpc_cancel_barrier()) {
   2343         //   exit from construct;
   2344         // }
   2345         auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
   2346         auto *ContBB = CGF.createBasicBlock(".cancel.continue");
   2347         auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
   2348         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
   2349         CGF.EmitBlock(ExitBB);
   2350         //   exit from construct;
   2351         auto CancelDestination =
   2352             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
   2353         CGF.EmitBranchThroughCleanup(CancelDestination);
   2354         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
   2355       }
   2356       return;
   2357     }
   2358   }
   2359   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
   2360 }
   2361 
   2362 /// \brief Map the OpenMP loop schedule to the runtime enumeration.
   2363 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
   2364                                           bool Chunked, bool Ordered) {
   2365   switch (ScheduleKind) {
   2366   case OMPC_SCHEDULE_static:
   2367     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
   2368                    : (Ordered ? OMP_ord_static : OMP_sch_static);
   2369   case OMPC_SCHEDULE_dynamic:
   2370     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
   2371   case OMPC_SCHEDULE_guided:
   2372     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
   2373   case OMPC_SCHEDULE_runtime:
   2374     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
   2375   case OMPC_SCHEDULE_auto:
   2376     return Ordered ? OMP_ord_auto : OMP_sch_auto;
   2377   case OMPC_SCHEDULE_unknown:
   2378     assert(!Chunked && "chunk was specified but schedule kind not known");
   2379     return Ordered ? OMP_ord_static : OMP_sch_static;
   2380   }
   2381   llvm_unreachable("Unexpected runtime schedule");
   2382 }
   2383 
   2384 /// \brief Map the OpenMP distribute schedule to the runtime enumeration.
   2385 static OpenMPSchedType
   2386 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
   2387   // only static is allowed for dist_schedule
   2388   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
   2389 }
   2390 
   2391 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
   2392                                          bool Chunked) const {
   2393   auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
   2394   return Schedule == OMP_sch_static;
   2395 }
   2396 
   2397 bool CGOpenMPRuntime::isStaticNonchunked(
   2398     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
   2399   auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
   2400   return Schedule == OMP_dist_sch_static;
   2401 }
   2402 
   2403 
   2404 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
   2405   auto Schedule =
   2406       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
   2407   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
   2408   return Schedule != OMP_sch_static;
   2409 }
   2410 
   2411 static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
   2412                                   OpenMPScheduleClauseModifier M1,
   2413                                   OpenMPScheduleClauseModifier M2) {
   2414   int Modifier = 0;
   2415   switch (M1) {
   2416   case OMPC_SCHEDULE_MODIFIER_monotonic:
   2417     Modifier = OMP_sch_modifier_monotonic;
   2418     break;
   2419   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
   2420     Modifier = OMP_sch_modifier_nonmonotonic;
   2421     break;
   2422   case OMPC_SCHEDULE_MODIFIER_simd:
   2423     if (Schedule == OMP_sch_static_chunked)
   2424       Schedule = OMP_sch_static_balanced_chunked;
   2425     break;
   2426   case OMPC_SCHEDULE_MODIFIER_last:
   2427   case OMPC_SCHEDULE_MODIFIER_unknown:
   2428     break;
   2429   }
   2430   switch (M2) {
   2431   case OMPC_SCHEDULE_MODIFIER_monotonic:
   2432     Modifier = OMP_sch_modifier_monotonic;
   2433     break;
   2434   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
   2435     Modifier = OMP_sch_modifier_nonmonotonic;
   2436     break;
   2437   case OMPC_SCHEDULE_MODIFIER_simd:
   2438     if (Schedule == OMP_sch_static_chunked)
   2439       Schedule = OMP_sch_static_balanced_chunked;
   2440     break;
   2441   case OMPC_SCHEDULE_MODIFIER_last:
   2442   case OMPC_SCHEDULE_MODIFIER_unknown:
   2443     break;
   2444   }
   2445   return Schedule | Modifier;
   2446 }
   2447 
   2448 void CGOpenMPRuntime::emitForDispatchInit(CodeGenFunction &CGF,
   2449                                           SourceLocation Loc,
   2450                                           const OpenMPScheduleTy &ScheduleKind,
   2451                                           unsigned IVSize, bool IVSigned,
   2452                                           bool Ordered, llvm::Value *UB,
   2453                                           llvm::Value *Chunk) {
   2454   if (!CGF.HaveInsertPoint())
   2455     return;
   2456   OpenMPSchedType Schedule =
   2457       getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered);
   2458   assert(Ordered ||
   2459          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
   2460           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
   2461           Schedule != OMP_sch_static_balanced_chunked));
   2462   // Call __kmpc_dispatch_init(
   2463   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
   2464   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
   2465   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
   2466 
   2467   // If the Chunk was not specified in the clause - use default value 1.
   2468   if (Chunk == nullptr)
   2469     Chunk = CGF.Builder.getIntN(IVSize, 1);
   2470   llvm::Value *Args[] = {
   2471       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
   2472       CGF.Builder.getInt32(addMonoNonMonoModifier(
   2473           Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
   2474       CGF.Builder.getIntN(IVSize, 0),                   // Lower
   2475       UB,                                               // Upper
   2476       CGF.Builder.getIntN(IVSize, 1),                   // Stride
   2477       Chunk                                             // Chunk
   2478   };
   2479   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
   2480 }
   2481 
   2482 static void emitForStaticInitCall(
   2483     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
   2484     llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule,
   2485     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
   2486     unsigned IVSize, bool Ordered, Address IL, Address LB, Address UB,
   2487     Address ST, llvm::Value *Chunk) {
   2488   if (!CGF.HaveInsertPoint())
   2489      return;
   2490 
   2491    assert(!Ordered);
   2492    assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
   2493           Schedule == OMP_sch_static_balanced_chunked ||
   2494           Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
   2495           Schedule == OMP_dist_sch_static ||
   2496           Schedule == OMP_dist_sch_static_chunked);
   2497 
   2498    // Call __kmpc_for_static_init(
   2499    //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
   2500    //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
   2501    //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
   2502    //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
   2503    if (Chunk == nullptr) {
   2504      assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
   2505              Schedule == OMP_dist_sch_static) &&
   2506             "expected static non-chunked schedule");
   2507      // If the Chunk was not specified in the clause - use default value 1.
   2508        Chunk = CGF.Builder.getIntN(IVSize, 1);
   2509    } else {
   2510      assert((Schedule == OMP_sch_static_chunked ||
   2511              Schedule == OMP_sch_static_balanced_chunked ||
   2512              Schedule == OMP_ord_static_chunked ||
   2513              Schedule == OMP_dist_sch_static_chunked) &&
   2514             "expected static chunked schedule");
   2515    }
   2516    llvm::Value *Args[] = {
   2517        UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier(
   2518                                      Schedule, M1, M2)), // Schedule type
   2519        IL.getPointer(),                                  // &isLastIter
   2520        LB.getPointer(),                                  // &LB
   2521        UB.getPointer(),                                  // &UB
   2522        ST.getPointer(),                                  // &Stride
   2523        CGF.Builder.getIntN(IVSize, 1),                   // Incr
   2524        Chunk                                             // Chunk
   2525    };
   2526    CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
   2527 }
   2528 
   2529 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
   2530                                         SourceLocation Loc,
   2531                                         const OpenMPScheduleTy &ScheduleKind,
   2532                                         unsigned IVSize, bool IVSigned,
   2533                                         bool Ordered, Address IL, Address LB,
   2534                                         Address UB, Address ST,
   2535                                         llvm::Value *Chunk) {
   2536   OpenMPSchedType ScheduleNum =
   2537       getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered);
   2538   auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
   2539   auto *ThreadId = getThreadID(CGF, Loc);
   2540   auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
   2541   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
   2542                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, IVSize,
   2543                         Ordered, IL, LB, UB, ST, Chunk);
   2544 }
   2545 
   2546 void CGOpenMPRuntime::emitDistributeStaticInit(
   2547     CodeGenFunction &CGF, SourceLocation Loc,
   2548     OpenMPDistScheduleClauseKind SchedKind, unsigned IVSize, bool IVSigned,
   2549     bool Ordered, Address IL, Address LB, Address UB, Address ST,
   2550     llvm::Value *Chunk) {
   2551   OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Chunk != nullptr);
   2552   auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
   2553   auto *ThreadId = getThreadID(CGF, Loc);
   2554   auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
   2555   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
   2556                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
   2557                         OMPC_SCHEDULE_MODIFIER_unknown, IVSize, Ordered, IL, LB,
   2558                         UB, ST, Chunk);
   2559 }
   2560 
   2561 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
   2562                                           SourceLocation Loc) {
   2563   if (!CGF.HaveInsertPoint())
   2564     return;
   2565   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
   2566   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
   2567   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
   2568                       Args);
   2569 }
   2570 
   2571 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
   2572                                                  SourceLocation Loc,
   2573                                                  unsigned IVSize,
   2574                                                  bool IVSigned) {
   2575   if (!CGF.HaveInsertPoint())
   2576     return;
   2577   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
   2578   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
   2579   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
   2580 }
   2581 
   2582 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
   2583                                           SourceLocation Loc, unsigned IVSize,
   2584                                           bool IVSigned, Address IL,
   2585                                           Address LB, Address UB,
   2586                                           Address ST) {
   2587   // Call __kmpc_dispatch_next(
   2588   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
   2589   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
   2590   //          kmp_int[32|64] *p_stride);
   2591   llvm::Value *Args[] = {
   2592       emitUpdateLocation(CGF, Loc),
   2593       getThreadID(CGF, Loc),
   2594       IL.getPointer(), // &isLastIter
   2595       LB.getPointer(), // &Lower
   2596       UB.getPointer(), // &Upper
   2597       ST.getPointer()  // &Stride
   2598   };
   2599   llvm::Value *Call =
   2600       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
   2601   return CGF.EmitScalarConversion(
   2602       Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true),
   2603       CGF.getContext().BoolTy, Loc);
   2604 }
   2605 
   2606 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
   2607                                            llvm::Value *NumThreads,
   2608                                            SourceLocation Loc) {
   2609   if (!CGF.HaveInsertPoint())
   2610     return;
   2611   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
   2612   llvm::Value *Args[] = {
   2613       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
   2614       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
   2615   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
   2616                       Args);
   2617 }
   2618 
   2619 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
   2620                                          OpenMPProcBindClauseKind ProcBind,
   2621                                          SourceLocation Loc) {
   2622   if (!CGF.HaveInsertPoint())
   2623     return;
   2624   // Constants for proc bind value accepted by the runtime.
   2625   enum ProcBindTy {
   2626     ProcBindFalse = 0,
   2627     ProcBindTrue,
   2628     ProcBindMaster,
   2629     ProcBindClose,
   2630     ProcBindSpread,
   2631     ProcBindIntel,
   2632     ProcBindDefault
   2633   } RuntimeProcBind;
   2634   switch (ProcBind) {
   2635   case OMPC_PROC_BIND_master:
   2636     RuntimeProcBind = ProcBindMaster;
   2637     break;
   2638   case OMPC_PROC_BIND_close:
   2639     RuntimeProcBind = ProcBindClose;
   2640     break;
   2641   case OMPC_PROC_BIND_spread:
   2642     RuntimeProcBind = ProcBindSpread;
   2643     break;
   2644   case OMPC_PROC_BIND_unknown:
   2645     llvm_unreachable("Unsupported proc_bind value.");
   2646   }
   2647   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
   2648   llvm::Value *Args[] = {
   2649       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
   2650       llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
   2651   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
   2652 }
   2653 
   2654 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
   2655                                 SourceLocation Loc) {
   2656   if (!CGF.HaveInsertPoint())
   2657     return;
   2658   // Build call void __kmpc_flush(ident_t *loc)
   2659   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
   2660                       emitUpdateLocation(CGF, Loc));
   2661 }
   2662 
   2663 namespace {
   2664 /// \brief Indexes of fields for type kmp_task_t.
   2665 enum KmpTaskTFields {
   2666   /// \brief List of shared variables.
   2667   KmpTaskTShareds,
   2668   /// \brief Task routine.
   2669   KmpTaskTRoutine,
   2670   /// \brief Partition id for the untied tasks.
   2671   KmpTaskTPartId,
   2672   /// Function with call of destructors for private variables.
   2673   Data1,
   2674   /// Task priority.
   2675   Data2,
   2676   /// (Taskloops only) Lower bound.
   2677   KmpTaskTLowerBound,
   2678   /// (Taskloops only) Upper bound.
   2679   KmpTaskTUpperBound,
   2680   /// (Taskloops only) Stride.
   2681   KmpTaskTStride,
   2682   /// (Taskloops only) Is last iteration flag.
   2683   KmpTaskTLastIter,
   2684 };
   2685 } // anonymous namespace
   2686 
   2687 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
   2688   // FIXME: Add other entries type when they become supported.
   2689   return OffloadEntriesTargetRegion.empty();
   2690 }
   2691 
   2692 /// \brief Initialize target region entry.
   2693 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
   2694     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
   2695                                     StringRef ParentName, unsigned LineNum,
   2696                                     unsigned Order) {
   2697   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
   2698                                              "only required for the device "
   2699                                              "code generation.");
   2700   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
   2701       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr);
   2702   ++OffloadingEntriesNum;
   2703 }
   2704 
   2705 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
   2706     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
   2707                                   StringRef ParentName, unsigned LineNum,
   2708                                   llvm::Constant *Addr, llvm::Constant *ID) {
   2709   // If we are emitting code for a target, the entry is already initialized,
   2710   // only has to be registered.
   2711   if (CGM.getLangOpts().OpenMPIsDevice) {
   2712     assert(hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
   2713            "Entry must exist.");
   2714     auto &Entry =
   2715         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
   2716     assert(Entry.isValid() && "Entry not initialized!");
   2717     Entry.setAddress(Addr);
   2718     Entry.setID(ID);
   2719     return;
   2720   } else {
   2721     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum++, Addr, ID);
   2722     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
   2723   }
   2724 }
   2725 
   2726 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
   2727     unsigned DeviceID, unsigned FileID, StringRef ParentName,
   2728     unsigned LineNum) const {
   2729   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
   2730   if (PerDevice == OffloadEntriesTargetRegion.end())
   2731     return false;
   2732   auto PerFile = PerDevice->second.find(FileID);
   2733   if (PerFile == PerDevice->second.end())
   2734     return false;
   2735   auto PerParentName = PerFile->second.find(ParentName);
   2736   if (PerParentName == PerFile->second.end())
   2737     return false;
   2738   auto PerLine = PerParentName->second.find(LineNum);
   2739   if (PerLine == PerParentName->second.end())
   2740     return false;
   2741   // Fail if this entry is already registered.
   2742   if (PerLine->second.getAddress() || PerLine->second.getID())
   2743     return false;
   2744   return true;
   2745 }
   2746 
   2747 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
   2748     const OffloadTargetRegionEntryInfoActTy &Action) {
   2749   // Scan all target region entries and perform the provided action.
   2750   for (auto &D : OffloadEntriesTargetRegion)
   2751     for (auto &F : D.second)
   2752       for (auto &P : F.second)
   2753         for (auto &L : P.second)
   2754           Action(D.first, F.first, P.first(), L.first, L.second);
   2755 }
   2756 
   2757 /// \brief Create a Ctor/Dtor-like function whose body is emitted through
   2758 /// \a Codegen. This is used to emit the two functions that register and
   2759 /// unregister the descriptor of the current compilation unit.
   2760 static llvm::Function *
   2761 createOffloadingBinaryDescriptorFunction(CodeGenModule &CGM, StringRef Name,
   2762                                          const RegionCodeGenTy &Codegen) {
   2763   auto &C = CGM.getContext();
   2764   FunctionArgList Args;
   2765   ImplicitParamDecl DummyPtr(C, /*DC=*/nullptr, SourceLocation(),
   2766                              /*Id=*/nullptr, C.VoidPtrTy);
   2767   Args.push_back(&DummyPtr);
   2768 
   2769   CodeGenFunction CGF(CGM);
   2770   GlobalDecl();
   2771   auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
   2772   auto FTy = CGM.getTypes().GetFunctionType(FI);
   2773   auto *Fn =
   2774       CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, SourceLocation());
   2775   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FI, Args, SourceLocation());
   2776   Codegen(CGF);
   2777   CGF.FinishFunction();
   2778   return Fn;
   2779 }
   2780 
   2781 llvm::Function *
   2782 CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
   2783 
   2784   // If we don't have entries or if we are emitting code for the device, we
   2785   // don't need to do anything.
   2786   if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
   2787     return nullptr;
   2788 
   2789   auto &M = CGM.getModule();
   2790   auto &C = CGM.getContext();
   2791 
   2792   // Get list of devices we care about
   2793   auto &Devices = CGM.getLangOpts().OMPTargetTriples;
   2794 
   2795   // We should be creating an offloading descriptor only if there are devices
   2796   // specified.
   2797   assert(!Devices.empty() && "No OpenMP offloading devices??");
   2798 
   2799   // Create the external variables that will point to the begin and end of the
   2800   // host entries section. These will be defined by the linker.
   2801   auto *OffloadEntryTy =
   2802       CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
   2803   llvm::GlobalVariable *HostEntriesBegin = new llvm::GlobalVariable(
   2804       M, OffloadEntryTy, /*isConstant=*/true,
   2805       llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
   2806       ".omp_offloading.entries_begin");
   2807   llvm::GlobalVariable *HostEntriesEnd = new llvm::GlobalVariable(
   2808       M, OffloadEntryTy, /*isConstant=*/true,
   2809       llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
   2810       ".omp_offloading.entries_end");
   2811 
   2812   // Create all device images
   2813   llvm::SmallVector<llvm::Constant *, 4> DeviceImagesEntires;
   2814   auto *DeviceImageTy = cast<llvm::StructType>(
   2815       CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
   2816 
   2817   for (unsigned i = 0; i < Devices.size(); ++i) {
   2818     StringRef T = Devices[i].getTriple();
   2819     auto *ImgBegin = new llvm::GlobalVariable(
   2820         M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
   2821         /*Initializer=*/nullptr,
   2822         Twine(".omp_offloading.img_start.") + Twine(T));
   2823     auto *ImgEnd = new llvm::GlobalVariable(
   2824         M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
   2825         /*Initializer=*/nullptr, Twine(".omp_offloading.img_end.") + Twine(T));
   2826 
   2827     llvm::Constant *Dev =
   2828         llvm::ConstantStruct::get(DeviceImageTy, ImgBegin, ImgEnd,
   2829                                   HostEntriesBegin, HostEntriesEnd, nullptr);
   2830     DeviceImagesEntires.push_back(Dev);
   2831   }
   2832 
   2833   // Create device images global array.
   2834   llvm::ArrayType *DeviceImagesInitTy =
   2835       llvm::ArrayType::get(DeviceImageTy, DeviceImagesEntires.size());
   2836   llvm::Constant *DeviceImagesInit =
   2837       llvm::ConstantArray::get(DeviceImagesInitTy, DeviceImagesEntires);
   2838 
   2839   llvm::GlobalVariable *DeviceImages = new llvm::GlobalVariable(
   2840       M, DeviceImagesInitTy, /*isConstant=*/true,
   2841       llvm::GlobalValue::InternalLinkage, DeviceImagesInit,
   2842       ".omp_offloading.device_images");
   2843   DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
   2844 
   2845   // This is a Zero array to be used in the creation of the constant expressions
   2846   llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
   2847                              llvm::Constant::getNullValue(CGM.Int32Ty)};
   2848 
   2849   // Create the target region descriptor.
   2850   auto *BinaryDescriptorTy = cast<llvm::StructType>(
   2851       CGM.getTypes().ConvertTypeForMem(getTgtBinaryDescriptorQTy()));
   2852   llvm::Constant *TargetRegionsDescriptorInit = llvm::ConstantStruct::get(
   2853       BinaryDescriptorTy, llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()),
   2854       llvm::ConstantExpr::getGetElementPtr(DeviceImagesInitTy, DeviceImages,
   2855                                            Index),
   2856       HostEntriesBegin, HostEntriesEnd, nullptr);
   2857 
   2858   auto *Desc = new llvm::GlobalVariable(
   2859       M, BinaryDescriptorTy, /*isConstant=*/true,
   2860       llvm::GlobalValue::InternalLinkage, TargetRegionsDescriptorInit,
   2861       ".omp_offloading.descriptor");
   2862 
   2863   // Emit code to register or unregister the descriptor at execution
   2864   // startup or closing, respectively.
   2865 
   2866   // Create a variable to drive the registration and unregistration of the
   2867   // descriptor, so we can reuse the logic that emits Ctors and Dtors.
   2868   auto *IdentInfo = &C.Idents.get(".omp_offloading.reg_unreg_var");
   2869   ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), SourceLocation(),
   2870                                 IdentInfo, C.CharTy);
   2871 
   2872   auto *UnRegFn = createOffloadingBinaryDescriptorFunction(
   2873       CGM, ".omp_offloading.descriptor_unreg",
   2874       [&](CodeGenFunction &CGF, PrePostActionTy &) {
   2875         CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
   2876                              Desc);
   2877       });
   2878   auto *RegFn = createOffloadingBinaryDescriptorFunction(
   2879       CGM, ".omp_offloading.descriptor_reg",
   2880       [&](CodeGenFunction &CGF, PrePostActionTy &) {
   2881         CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_register_lib),
   2882                              Desc);
   2883         CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
   2884       });
   2885   return RegFn;
   2886 }
   2887 
   2888 void CGOpenMPRuntime::createOffloadEntry(llvm::Constant *ID,
   2889                                          llvm::Constant *Addr, uint64_t Size) {
   2890   StringRef Name = Addr->getName();
   2891   auto *TgtOffloadEntryType = cast<llvm::StructType>(
   2892       CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()));
   2893   llvm::LLVMContext &C = CGM.getModule().getContext();
   2894   llvm::Module &M = CGM.getModule();
   2895 
   2896   // Make sure the address has the right type.
   2897   llvm::Constant *AddrPtr = llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy);
   2898 
   2899   // Create constant string with the name.
   2900   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
   2901 
   2902   llvm::GlobalVariable *Str =
   2903       new llvm::GlobalVariable(M, StrPtrInit->getType(), /*isConstant=*/true,
   2904                                llvm::GlobalValue::InternalLinkage, StrPtrInit,
   2905                                ".omp_offloading.entry_name");
   2906   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
   2907   llvm::Constant *StrPtr = llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy);
   2908 
   2909   // Create the entry struct.
   2910   llvm::Constant *EntryInit = llvm::ConstantStruct::get(
   2911       TgtOffloadEntryType, AddrPtr, StrPtr,
   2912       llvm::ConstantInt::get(CGM.SizeTy, Size), nullptr);
   2913   llvm::GlobalVariable *Entry = new llvm::GlobalVariable(
   2914       M, TgtOffloadEntryType, true, llvm::GlobalValue::ExternalLinkage,
   2915       EntryInit, ".omp_offloading.entry");
   2916 
   2917   // The entry has to be created in the section the linker expects it to be.
   2918   Entry->setSection(".omp_offloading.entries");
   2919   // We can't have any padding between symbols, so we need to have 1-byte
   2920   // alignment.
   2921   Entry->setAlignment(1);
   2922 }
   2923 
   2924 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
   2925   // Emit the offloading entries and metadata so that the device codegen side
   2926   // can
   2927   // easily figure out what to emit. The produced metadata looks like this:
   2928   //
   2929   // !omp_offload.info = !{!1, ...}
   2930   //
   2931   // Right now we only generate metadata for function that contain target
   2932   // regions.
   2933 
   2934   // If we do not have entries, we dont need to do anything.
   2935   if (OffloadEntriesInfoManager.empty())
   2936     return;
   2937 
   2938   llvm::Module &M = CGM.getModule();
   2939   llvm::LLVMContext &C = M.getContext();
   2940   SmallVector<OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
   2941       OrderedEntries(OffloadEntriesInfoManager.size());
   2942 
   2943   // Create the offloading info metadata node.
   2944   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
   2945 
   2946   // Auxiliar methods to create metadata values and strings.
   2947   auto getMDInt = [&](unsigned v) {
   2948     return llvm::ConstantAsMetadata::get(
   2949         llvm::ConstantInt::get(llvm::Type::getInt32Ty(C), v));
   2950   };
   2951 
   2952   auto getMDString = [&](StringRef v) { return llvm::MDString::get(C, v); };
   2953 
   2954   // Create function that emits metadata for each target region entry;
   2955   auto &&TargetRegionMetadataEmitter = [&](
   2956       unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line,
   2957       OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
   2958     llvm::SmallVector<llvm::Metadata *, 32> Ops;
   2959     // Generate metadata for target regions. Each entry of this metadata
   2960     // contains:
   2961     // - Entry 0 -> Kind of this type of metadata (0).
   2962     // - Entry 1 -> Device ID of the file where the entry was identified.
   2963     // - Entry 2 -> File ID of the file where the entry was identified.
   2964     // - Entry 3 -> Mangled name of the function where the entry was identified.
   2965     // - Entry 4 -> Line in the file where the entry was identified.
   2966     // - Entry 5 -> Order the entry was created.
   2967     // The first element of the metadata node is the kind.
   2968     Ops.push_back(getMDInt(E.getKind()));
   2969     Ops.push_back(getMDInt(DeviceID));
   2970     Ops.push_back(getMDInt(FileID));
   2971     Ops.push_back(getMDString(ParentName));
   2972     Ops.push_back(getMDInt(Line));
   2973     Ops.push_back(getMDInt(E.getOrder()));
   2974 
   2975     // Save this entry in the right position of the ordered entries array.
   2976     OrderedEntries[E.getOrder()] = &E;
   2977 
   2978     // Add metadata to the named metadata node.
   2979     MD->addOperand(llvm::MDNode::get(C, Ops));
   2980   };
   2981 
   2982   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
   2983       TargetRegionMetadataEmitter);
   2984 
   2985   for (auto *E : OrderedEntries) {
   2986     assert(E && "All ordered entries must exist!");
   2987     if (auto *CE =
   2988             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
   2989                 E)) {
   2990       assert(CE->getID() && CE->getAddress() &&
   2991              "Entry ID and Addr are invalid!");
   2992       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0);
   2993     } else
   2994       llvm_unreachable("Unsupported entry kind.");
   2995   }
   2996 }
   2997 
   2998 /// \brief Loads all the offload entries information from the host IR
   2999 /// metadata.
   3000 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
   3001   // If we are in target mode, load the metadata from the host IR. This code has
   3002   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
   3003 
   3004   if (!CGM.getLangOpts().OpenMPIsDevice)
   3005     return;
   3006 
   3007   if (CGM.getLangOpts().OMPHostIRFile.empty())
   3008     return;
   3009 
   3010   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
   3011   if (Buf.getError())
   3012     return;
   3013 
   3014   llvm::LLVMContext C;
   3015   auto ME = llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C);
   3016 
   3017   if (ME.getError())
   3018     return;
   3019 
   3020   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
   3021   if (!MD)
   3022     return;
   3023 
   3024   for (auto I : MD->operands()) {
   3025     llvm::MDNode *MN = cast<llvm::MDNode>(I);
   3026 
   3027     auto getMDInt = [&](unsigned Idx) {
   3028       llvm::ConstantAsMetadata *V =
   3029           cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
   3030       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
   3031     };
   3032 
   3033     auto getMDString = [&](unsigned Idx) {
   3034       llvm::MDString *V = cast<llvm::MDString>(MN->getOperand(Idx));
   3035       return V->getString();
   3036     };
   3037 
   3038     switch (getMDInt(0)) {
   3039     default:
   3040       llvm_unreachable("Unexpected metadata!");
   3041       break;
   3042     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
   3043         OFFLOAD_ENTRY_INFO_TARGET_REGION:
   3044       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
   3045           /*DeviceID=*/getMDInt(1), /*FileID=*/getMDInt(2),
   3046           /*ParentName=*/getMDString(3), /*Line=*/getMDInt(4),
   3047           /*Order=*/getMDInt(5));
   3048       break;
   3049     }
   3050   }
   3051 }
   3052 
   3053 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
   3054   if (!KmpRoutineEntryPtrTy) {
   3055     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
   3056     auto &C = CGM.getContext();
   3057     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
   3058     FunctionProtoType::ExtProtoInfo EPI;
   3059     KmpRoutineEntryPtrQTy = C.getPointerType(
   3060         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
   3061     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
   3062   }
   3063 }
   3064 
   3065 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
   3066                                        QualType FieldTy) {
   3067   auto *Field = FieldDecl::Create(
   3068       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
   3069       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
   3070       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
   3071   Field->setAccess(AS_public);
   3072   DC->addDecl(Field);
   3073   return Field;
   3074 }
   3075 
   3076 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
   3077 
   3078   // Make sure the type of the entry is already created. This is the type we
   3079   // have to create:
   3080   // struct __tgt_offload_entry{
   3081   //   void      *addr;       // Pointer to the offload entry info.
   3082   //                          // (function or global)
   3083   //   char      *name;       // Name of the function or global.
   3084   //   size_t     size;       // Size of the entry info (0 if it a function).
   3085   // };
   3086   if (TgtOffloadEntryQTy.isNull()) {
   3087     ASTContext &C = CGM.getContext();
   3088     auto *RD = C.buildImplicitRecord("__tgt_offload_entry");
   3089     RD->startDefinition();
   3090     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
   3091     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
   3092     addFieldToRecordDecl(C, RD, C.getSizeType());
   3093     RD->completeDefinition();
   3094     TgtOffloadEntryQTy = C.getRecordType(RD);
   3095   }
   3096   return TgtOffloadEntryQTy;
   3097 }
   3098 
   3099 QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
   3100   // These are the types we need to build:
   3101   // struct __tgt_device_image{
   3102   // void   *ImageStart;       // Pointer to the target code start.
   3103   // void   *ImageEnd;         // Pointer to the target code end.
   3104   // // We also add the host entries to the device image, as it may be useful
   3105   // // for the target runtime to have access to that information.
   3106   // __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all
   3107   //                                       // the entries.
   3108   // __tgt_offload_entry  *EntriesEnd;     // End of the table with all the
   3109   //                                       // entries (non inclusive).
   3110   // };
   3111   if (TgtDeviceImageQTy.isNull()) {
   3112     ASTContext &C = CGM.getContext();
   3113     auto *RD = C.buildImplicitRecord("__tgt_device_image");
   3114     RD->startDefinition();
   3115     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
   3116     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
   3117     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
   3118     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
   3119     RD->completeDefinition();
   3120     TgtDeviceImageQTy = C.getRecordType(RD);
   3121   }
   3122   return TgtDeviceImageQTy;
   3123 }
   3124 
   3125 QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
   3126   // struct __tgt_bin_desc{
   3127   //   int32_t              NumDevices;      // Number of devices supported.
   3128   //   __tgt_device_image   *DeviceImages;   // Arrays of device images
   3129   //                                         // (one per device).
   3130   //   __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all the
   3131   //                                         // entries.
   3132   //   __tgt_offload_entry  *EntriesEnd;     // End of the table with all the
   3133   //                                         // entries (non inclusive).
   3134   // };
   3135   if (TgtBinaryDescriptorQTy.isNull()) {
   3136     ASTContext &C = CGM.getContext();
   3137     auto *RD = C.buildImplicitRecord("__tgt_bin_desc");
   3138     RD->startDefinition();
   3139     addFieldToRecordDecl(
   3140         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
   3141     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
   3142     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
   3143     addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
   3144     RD->completeDefinition();
   3145     TgtBinaryDescriptorQTy = C.getRecordType(RD);
   3146   }
   3147   return TgtBinaryDescriptorQTy;
   3148 }
   3149 
   3150 namespace {
   3151 struct PrivateHelpersTy {
   3152   PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
   3153                    const VarDecl *PrivateElemInit)
   3154       : Original(Original), PrivateCopy(PrivateCopy),
   3155         PrivateElemInit(PrivateElemInit) {}
   3156   const VarDecl *Original;
   3157   const VarDecl *PrivateCopy;
   3158   const VarDecl *PrivateElemInit;
   3159 };
   3160 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
   3161 } // anonymous namespace
   3162 
   3163 static RecordDecl *
   3164 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
   3165   if (!Privates.empty()) {
   3166     auto &C = CGM.getContext();
   3167     // Build struct .kmp_privates_t. {
   3168     //         /*  private vars  */
   3169     //       };
   3170     auto *RD = C.buildImplicitRecord(".kmp_privates.t");
   3171     RD->startDefinition();
   3172     for (auto &&Pair : Privates) {
   3173       auto *VD = Pair.second.Original;
   3174       auto Type = VD->getType();
   3175       Type = Type.getNonReferenceType();
   3176       auto *FD = addFieldToRecordDecl(C, RD, Type);
   3177       if (VD->hasAttrs()) {
   3178         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
   3179              E(VD->getAttrs().end());
   3180              I != E; ++I)
   3181           FD->addAttr(*I);
   3182       }
   3183     }
   3184     RD->completeDefinition();
   3185     return RD;
   3186   }
   3187   return nullptr;
   3188 }
   3189 
   3190 static RecordDecl *
   3191 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
   3192                          QualType KmpInt32Ty,
   3193                          QualType KmpRoutineEntryPointerQTy) {
   3194   auto &C = CGM.getContext();
   3195   // Build struct kmp_task_t {
   3196   //         void *              shareds;
   3197   //         kmp_routine_entry_t routine;
   3198   //         kmp_int32           part_id;
   3199   //         kmp_cmplrdata_t data1;
   3200   //         kmp_cmplrdata_t data2;
   3201   // For taskloops additional fields:
   3202   //         kmp_uint64          lb;
   3203   //         kmp_uint64          ub;
   3204   //         kmp_int64           st;
   3205   //         kmp_int32           liter;
   3206   //       };
   3207   auto *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
   3208   UD->startDefinition();
   3209   addFieldToRecordDecl(C, UD, KmpInt32Ty);
   3210   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
   3211   UD->completeDefinition();
   3212   QualType KmpCmplrdataTy = C.getRecordType(UD);
   3213   auto *RD = C.buildImplicitRecord("kmp_task_t");
   3214   RD->startDefinition();
   3215   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
   3216   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
   3217   addFieldToRecordDecl(C, RD, KmpInt32Ty);
   3218   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
   3219   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
   3220   if (isOpenMPTaskLoopDirective(Kind)) {
   3221     QualType KmpUInt64Ty =
   3222         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
   3223     QualType KmpInt64Ty =
   3224         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
   3225     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
   3226     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
   3227     addFieldToRecordDecl(C, RD, KmpInt64Ty);
   3228     addFieldToRecordDecl(C, RD, KmpInt32Ty);
   3229   }
   3230   RD->completeDefinition();
   3231   return RD;
   3232 }
   3233 
   3234 static RecordDecl *
   3235 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
   3236                                      ArrayRef<PrivateDataTy> Privates) {
   3237   auto &C = CGM.getContext();
   3238   // Build struct kmp_task_t_with_privates {
   3239   //         kmp_task_t task_data;
   3240   //         .kmp_privates_t. privates;
   3241   //       };
   3242   auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
   3243   RD->startDefinition();
   3244   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
   3245   if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) {
   3246     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
   3247   }
   3248   RD->completeDefinition();
   3249   return RD;
   3250 }
   3251 
   3252 /// \brief Emit a proxy function which accepts kmp_task_t as the second
   3253 /// argument.
   3254 /// \code
   3255 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
   3256 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
   3257 ///   For taskloops:
   3258 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
   3259 ///   tt->shareds);
   3260 ///   return 0;
   3261 /// }
   3262 /// \endcode
   3263 static llvm::Value *
   3264 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
   3265                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
   3266                       QualType KmpTaskTWithPrivatesPtrQTy,
   3267                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
   3268                       QualType SharedsPtrTy, llvm::Value *TaskFunction,
   3269                       llvm::Value *TaskPrivatesMap) {
   3270   auto &C = CGM.getContext();
   3271   FunctionArgList Args;
   3272   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
   3273   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
   3274                                 /*Id=*/nullptr,
   3275                                 KmpTaskTWithPrivatesPtrQTy.withRestrict());
   3276   Args.push_back(&GtidArg);
   3277   Args.push_back(&TaskTypeArg);
   3278   auto &TaskEntryFnInfo =
   3279       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
   3280   auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
   3281   auto *TaskEntry =
   3282       llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage,
   3283                              ".omp_task_entry.", &CGM.getModule());
   3284   CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo);
   3285   CodeGenFunction CGF(CGM);
   3286   CGF.disableDebugInfo();
   3287   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args);
   3288 
   3289   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
   3290   // tt,
   3291   // For taskloops:
   3292   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
   3293   // tt->task_data.shareds);
   3294   auto *GtidParam = CGF.EmitLoadOfScalar(
   3295       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
   3296   LValue TDBase = CGF.EmitLoadOfPointerLValue(
   3297       CGF.GetAddrOfLocalVar(&TaskTypeArg),
   3298       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
   3299   auto *KmpTaskTWithPrivatesQTyRD =
   3300       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
   3301   LValue Base =
   3302       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
   3303   auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
   3304   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
   3305   auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
   3306   auto *PartidParam = PartIdLVal.getPointer();
   3307 
   3308   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
   3309   auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
   3310   auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3311       CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(),
   3312       CGF.ConvertTypeForMem(SharedsPtrTy));
   3313 
   3314   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
   3315   llvm::Value *PrivatesParam;
   3316   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
   3317     auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
   3318     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3319         PrivatesLVal.getPointer(), CGF.VoidPtrTy);
   3320   } else
   3321     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
   3322 
   3323   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
   3324                                TaskPrivatesMap,
   3325                                CGF.Builder
   3326                                    .CreatePointerBitCastOrAddrSpaceCast(
   3327                                        TDBase.getAddress(), CGF.VoidPtrTy)
   3328                                    .getPointer()};
   3329   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
   3330                                           std::end(CommonArgs));
   3331   if (isOpenMPTaskLoopDirective(Kind)) {
   3332     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
   3333     auto LBLVal = CGF.EmitLValueForField(Base, *LBFI);
   3334     auto *LBParam = CGF.EmitLoadOfLValue(LBLVal, Loc).getScalarVal();
   3335     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
   3336     auto UBLVal = CGF.EmitLValueForField(Base, *UBFI);
   3337     auto *UBParam = CGF.EmitLoadOfLValue(UBLVal, Loc).getScalarVal();
   3338     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
   3339     auto StLVal = CGF.EmitLValueForField(Base, *StFI);
   3340     auto *StParam = CGF.EmitLoadOfLValue(StLVal, Loc).getScalarVal();
   3341     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
   3342     auto LILVal = CGF.EmitLValueForField(Base, *LIFI);
   3343     auto *LIParam = CGF.EmitLoadOfLValue(LILVal, Loc).getScalarVal();
   3344     CallArgs.push_back(LBParam);
   3345     CallArgs.push_back(UBParam);
   3346     CallArgs.push_back(StParam);
   3347     CallArgs.push_back(LIParam);
   3348   }
   3349   CallArgs.push_back(SharedsParam);
   3350 
   3351   CGF.EmitCallOrInvoke(TaskFunction, CallArgs);
   3352   CGF.EmitStoreThroughLValue(
   3353       RValue::get(CGF.Builder.getInt32(/*C=*/0)),
   3354       CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
   3355   CGF.FinishFunction();
   3356   return TaskEntry;
   3357 }
   3358 
   3359 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
   3360                                             SourceLocation Loc,
   3361                                             QualType KmpInt32Ty,
   3362                                             QualType KmpTaskTWithPrivatesPtrQTy,
   3363                                             QualType KmpTaskTWithPrivatesQTy) {
   3364   auto &C = CGM.getContext();
   3365   FunctionArgList Args;
   3366   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
   3367   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
   3368                                 /*Id=*/nullptr,
   3369                                 KmpTaskTWithPrivatesPtrQTy.withRestrict());
   3370   Args.push_back(&GtidArg);
   3371   Args.push_back(&TaskTypeArg);
   3372   FunctionType::ExtInfo Info;
   3373   auto &DestructorFnInfo =
   3374       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
   3375   auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo);
   3376   auto *DestructorFn =
   3377       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
   3378                              ".omp_task_destructor.", &CGM.getModule());
   3379   CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn,
   3380                                     DestructorFnInfo);
   3381   CodeGenFunction CGF(CGM);
   3382   CGF.disableDebugInfo();
   3383   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
   3384                     Args);
   3385 
   3386   LValue Base = CGF.EmitLoadOfPointerLValue(
   3387       CGF.GetAddrOfLocalVar(&TaskTypeArg),
   3388       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
   3389   auto *KmpTaskTWithPrivatesQTyRD =
   3390       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
   3391   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
   3392   Base = CGF.EmitLValueForField(Base, *FI);
   3393   for (auto *Field :
   3394        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
   3395     if (auto DtorKind = Field->getType().isDestructedType()) {
   3396       auto FieldLValue = CGF.EmitLValueForField(Base, Field);
   3397       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
   3398     }
   3399   }
   3400   CGF.FinishFunction();
   3401   return DestructorFn;
   3402 }
   3403 
   3404 /// \brief Emit a privates mapping function for correct handling of private and
   3405 /// firstprivate variables.
   3406 /// \code
   3407 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
   3408 /// **noalias priv1,...,  <tyn> **noalias privn) {
   3409 ///   *priv1 = &.privates.priv1;
   3410 ///   ...;
   3411 ///   *privn = &.privates.privn;
   3412 /// }
   3413 /// \endcode
   3414 static llvm::Value *
   3415 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
   3416                                ArrayRef<const Expr *> PrivateVars,
   3417                                ArrayRef<const Expr *> FirstprivateVars,
   3418                                ArrayRef<const Expr *> LastprivateVars,
   3419                                QualType PrivatesQTy,
   3420                                ArrayRef<PrivateDataTy> Privates) {
   3421   auto &C = CGM.getContext();
   3422   FunctionArgList Args;
   3423   ImplicitParamDecl TaskPrivatesArg(
   3424       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
   3425       C.getPointerType(PrivatesQTy).withConst().withRestrict());
   3426   Args.push_back(&TaskPrivatesArg);
   3427   llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
   3428   unsigned Counter = 1;
   3429   for (auto *E: PrivateVars) {
   3430     Args.push_back(ImplicitParamDecl::Create(
   3431         C, /*DC=*/nullptr, Loc,
   3432         /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
   3433                             .withConst()
   3434                             .withRestrict()));
   3435     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
   3436     PrivateVarsPos[VD] = Counter;
   3437     ++Counter;
   3438   }
   3439   for (auto *E : FirstprivateVars) {
   3440     Args.push_back(ImplicitParamDecl::Create(
   3441         C, /*DC=*/nullptr, Loc,
   3442         /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
   3443                             .withConst()
   3444                             .withRestrict()));
   3445     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
   3446     PrivateVarsPos[VD] = Counter;
   3447     ++Counter;
   3448   }
   3449   for (auto *E: LastprivateVars) {
   3450     Args.push_back(ImplicitParamDecl::Create(
   3451         C, /*DC=*/nullptr, Loc,
   3452         /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
   3453                             .withConst()
   3454                             .withRestrict()));
   3455     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
   3456     PrivateVarsPos[VD] = Counter;
   3457     ++Counter;
   3458   }
   3459   auto &TaskPrivatesMapFnInfo =
   3460       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
   3461   auto *TaskPrivatesMapTy =
   3462       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
   3463   auto *TaskPrivatesMap = llvm::Function::Create(
   3464       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage,
   3465       ".omp_task_privates_map.", &CGM.getModule());
   3466   CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap,
   3467                                     TaskPrivatesMapFnInfo);
   3468   TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
   3469   CodeGenFunction CGF(CGM);
   3470   CGF.disableDebugInfo();
   3471   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
   3472                     TaskPrivatesMapFnInfo, Args);
   3473 
   3474   // *privi = &.privates.privi;
   3475   LValue Base = CGF.EmitLoadOfPointerLValue(
   3476       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
   3477       TaskPrivatesArg.getType()->castAs<PointerType>());
   3478   auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
   3479   Counter = 0;
   3480   for (auto *Field : PrivatesQTyRD->fields()) {
   3481     auto FieldLVal = CGF.EmitLValueForField(Base, Field);
   3482     auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
   3483     auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
   3484     auto RefLoadLVal = CGF.EmitLoadOfPointerLValue(
   3485         RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
   3486     CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
   3487     ++Counter;
   3488   }
   3489   CGF.FinishFunction();
   3490   return TaskPrivatesMap;
   3491 }
   3492 
   3493 static int array_pod_sort_comparator(const PrivateDataTy *P1,
   3494                                      const PrivateDataTy *P2) {
   3495   return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0);
   3496 }
   3497 
   3498 /// Emit initialization for private variables in task-based directives.
   3499 static void emitPrivatesInit(CodeGenFunction &CGF,
   3500                              const OMPExecutableDirective &D,
   3501                              Address KmpTaskSharedsPtr, LValue TDBase,
   3502                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
   3503                              QualType SharedsTy, QualType SharedsPtrTy,
   3504                              const OMPTaskDataTy &Data,
   3505                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
   3506   auto &C = CGF.getContext();
   3507   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
   3508   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
   3509   LValue SrcBase;
   3510   if (!Data.FirstprivateVars.empty()) {
   3511     SrcBase = CGF.MakeAddrLValue(
   3512         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3513             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
   3514         SharedsTy);
   3515   }
   3516   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(
   3517       cast<CapturedStmt>(*D.getAssociatedStmt()));
   3518   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
   3519   for (auto &&Pair : Privates) {
   3520     auto *VD = Pair.second.PrivateCopy;
   3521     auto *Init = VD->getAnyInitializer();
   3522     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
   3523                              !CGF.isTrivialInitializer(Init)))) {
   3524       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
   3525       if (auto *Elem = Pair.second.PrivateElemInit) {
   3526         auto *OriginalVD = Pair.second.Original;
   3527         auto *SharedField = CapturesInfo.lookup(OriginalVD);
   3528         auto SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
   3529         SharedRefLValue = CGF.MakeAddrLValue(
   3530             Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
   3531             SharedRefLValue.getType(), AlignmentSource::Decl);
   3532         QualType Type = OriginalVD->getType();
   3533         if (Type->isArrayType()) {
   3534           // Initialize firstprivate array.
   3535           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
   3536             // Perform simple memcpy.
   3537             CGF.EmitAggregateAssign(PrivateLValue.getAddress(),
   3538                                     SharedRefLValue.getAddress(), Type);
   3539           } else {
   3540             // Initialize firstprivate array using element-by-element
   3541             // intialization.
   3542             CGF.EmitOMPAggregateAssign(
   3543                 PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
   3544                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
   3545                                                   Address SrcElement) {
   3546                   // Clean up any temporaries needed by the initialization.
   3547                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
   3548                   InitScope.addPrivate(
   3549                       Elem, [SrcElement]() -> Address { return SrcElement; });
   3550                   (void)InitScope.Privatize();
   3551                   // Emit initialization for single element.
   3552                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
   3553                       CGF, &CapturesInfo);
   3554                   CGF.EmitAnyExprToMem(Init, DestElement,
   3555                                        Init->getType().getQualifiers(),
   3556                                        /*IsInitializer=*/false);
   3557                 });
   3558           }
   3559         } else {
   3560           CodeGenFunction::OMPPrivateScope InitScope(CGF);
   3561           InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
   3562             return SharedRefLValue.getAddress();
   3563           });
   3564           (void)InitScope.Privatize();
   3565           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
   3566           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
   3567                              /*capturedByInit=*/false);
   3568         }
   3569       } else
   3570         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
   3571     }
   3572     ++FI;
   3573   }
   3574 }
   3575 
   3576 /// Check if duplication function is required for taskloops.
   3577 static bool checkInitIsRequired(CodeGenFunction &CGF,
   3578                                 ArrayRef<PrivateDataTy> Privates) {
   3579   bool InitRequired = false;
   3580   for (auto &&Pair : Privates) {
   3581     auto *VD = Pair.second.PrivateCopy;
   3582     auto *Init = VD->getAnyInitializer();
   3583     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
   3584                                     !CGF.isTrivialInitializer(Init));
   3585   }
   3586   return InitRequired;
   3587 }
   3588 
   3589 
   3590 /// Emit task_dup function (for initialization of
   3591 /// private/firstprivate/lastprivate vars and last_iter flag)
   3592 /// \code
   3593 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
   3594 /// lastpriv) {
   3595 /// // setup lastprivate flag
   3596 ///    task_dst->last = lastpriv;
   3597 /// // could be constructor calls here...
   3598 /// }
   3599 /// \endcode
   3600 static llvm::Value *
   3601 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
   3602                     const OMPExecutableDirective &D,
   3603                     QualType KmpTaskTWithPrivatesPtrQTy,
   3604                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
   3605                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
   3606                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
   3607                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
   3608   auto &C = CGM.getContext();
   3609   FunctionArgList Args;
   3610   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc,
   3611                            /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
   3612   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc,
   3613                            /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
   3614   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc,
   3615                                 /*Id=*/nullptr, C.IntTy);
   3616   Args.push_back(&DstArg);
   3617   Args.push_back(&SrcArg);
   3618   Args.push_back(&LastprivArg);
   3619   auto &TaskDupFnInfo =
   3620       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
   3621   auto *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
   3622   auto *TaskDup =
   3623       llvm::Function::Create(TaskDupTy, llvm::GlobalValue::InternalLinkage,
   3624                              ".omp_task_dup.", &CGM.getModule());
   3625   CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskDup, TaskDupFnInfo);
   3626   CodeGenFunction CGF(CGM);
   3627   CGF.disableDebugInfo();
   3628   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args);
   3629 
   3630   LValue TDBase = CGF.EmitLoadOfPointerLValue(
   3631       CGF.GetAddrOfLocalVar(&DstArg),
   3632       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
   3633   // task_dst->liter = lastpriv;
   3634   if (WithLastIter) {
   3635     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
   3636     LValue Base = CGF.EmitLValueForField(
   3637         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
   3638     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
   3639     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
   3640         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
   3641     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
   3642   }
   3643 
   3644   // Emit initial values for private copies (if any).
   3645   assert(!Privates.empty());
   3646   Address KmpTaskSharedsPtr = Address::invalid();
   3647   if (!Data.FirstprivateVars.empty()) {
   3648     LValue TDBase = CGF.EmitLoadOfPointerLValue(
   3649         CGF.GetAddrOfLocalVar(&SrcArg),
   3650         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
   3651     LValue Base = CGF.EmitLValueForField(
   3652         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
   3653     KmpTaskSharedsPtr = Address(
   3654         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
   3655                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
   3656                                                   KmpTaskTShareds)),
   3657                              Loc),
   3658         CGF.getNaturalTypeAlignment(SharedsTy));
   3659   }
   3660   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
   3661                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
   3662   CGF.FinishFunction();
   3663   return TaskDup;
   3664 }
   3665 
   3666 /// Checks if destructor function is required to be generated.
   3667 /// \return true if cleanups are required, false otherwise.
   3668 static bool
   3669 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
   3670   bool NeedsCleanup = false;
   3671   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
   3672   auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
   3673   for (auto *FD : PrivateRD->fields()) {
   3674     NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
   3675     if (NeedsCleanup)
   3676       break;
   3677   }
   3678   return NeedsCleanup;
   3679 }
   3680 
   3681 CGOpenMPRuntime::TaskResultTy
   3682 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
   3683                               const OMPExecutableDirective &D,
   3684                               llvm::Value *TaskFunction, QualType SharedsTy,
   3685                               Address Shareds, const OMPTaskDataTy &Data) {
   3686   auto &C = CGM.getContext();
   3687   llvm::SmallVector<PrivateDataTy, 4> Privates;
   3688   // Aggregate privates and sort them by the alignment.
   3689   auto I = Data.PrivateCopies.begin();
   3690   for (auto *E : Data.PrivateVars) {
   3691     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
   3692     Privates.push_back(std::make_pair(
   3693         C.getDeclAlign(VD),
   3694         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
   3695                          /*PrivateElemInit=*/nullptr)));
   3696     ++I;
   3697   }
   3698   I = Data.FirstprivateCopies.begin();
   3699   auto IElemInitRef = Data.FirstprivateInits.begin();
   3700   for (auto *E : Data.FirstprivateVars) {
   3701     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
   3702     Privates.push_back(std::make_pair(
   3703         C.getDeclAlign(VD),
   3704         PrivateHelpersTy(
   3705             VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
   3706             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))));
   3707     ++I;
   3708     ++IElemInitRef;
   3709   }
   3710   I = Data.LastprivateCopies.begin();
   3711   for (auto *E : Data.LastprivateVars) {
   3712     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
   3713     Privates.push_back(std::make_pair(
   3714         C.getDeclAlign(VD),
   3715         PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
   3716                          /*PrivateElemInit=*/nullptr)));
   3717     ++I;
   3718   }
   3719   llvm::array_pod_sort(Privates.begin(), Privates.end(),
   3720                        array_pod_sort_comparator);
   3721   auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
   3722   // Build type kmp_routine_entry_t (if not built yet).
   3723   emitKmpRoutineEntryT(KmpInt32Ty);
   3724   // Build type kmp_task_t (if not built yet).
   3725   if (KmpTaskTQTy.isNull()) {
   3726     KmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
   3727         CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
   3728   }
   3729   auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
   3730   // Build particular struct kmp_task_t for the given task.
   3731   auto *KmpTaskTWithPrivatesQTyRD =
   3732       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
   3733   auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
   3734   QualType KmpTaskTWithPrivatesPtrQTy =
   3735       C.getPointerType(KmpTaskTWithPrivatesQTy);
   3736   auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
   3737   auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo();
   3738   auto *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
   3739   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
   3740 
   3741   // Emit initial values for private copies (if any).
   3742   llvm::Value *TaskPrivatesMap = nullptr;
   3743   auto *TaskPrivatesMapTy =
   3744       std::next(cast<llvm::Function>(TaskFunction)->getArgumentList().begin(),
   3745                 3)
   3746           ->getType();
   3747   if (!Privates.empty()) {
   3748     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
   3749     TaskPrivatesMap = emitTaskPrivateMappingFunction(
   3750         CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
   3751         FI->getType(), Privates);
   3752     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3753         TaskPrivatesMap, TaskPrivatesMapTy);
   3754   } else {
   3755     TaskPrivatesMap = llvm::ConstantPointerNull::get(
   3756         cast<llvm::PointerType>(TaskPrivatesMapTy));
   3757   }
   3758   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
   3759   // kmp_task_t *tt);
   3760   auto *TaskEntry = emitProxyTaskFunction(
   3761       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
   3762       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
   3763       TaskPrivatesMap);
   3764 
   3765   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
   3766   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
   3767   // kmp_routine_entry_t *task_entry);
   3768   // Task flags. Format is taken from
   3769   // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h,
   3770   // description of kmp_tasking_flags struct.
   3771   enum {
   3772     TiedFlag = 0x1,
   3773     FinalFlag = 0x2,
   3774     DestructorsFlag = 0x8,
   3775     PriorityFlag = 0x20
   3776   };
   3777   unsigned Flags = Data.Tied ? TiedFlag : 0;
   3778   bool NeedsCleanup = false;
   3779   if (!Privates.empty()) {
   3780     NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
   3781     if (NeedsCleanup)
   3782       Flags = Flags | DestructorsFlag;
   3783   }
   3784   if (Data.Priority.getInt())
   3785     Flags = Flags | PriorityFlag;
   3786   auto *TaskFlags =
   3787       Data.Final.getPointer()
   3788           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
   3789                                      CGF.Builder.getInt32(FinalFlag),
   3790                                      CGF.Builder.getInt32(/*C=*/0))
   3791           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
   3792   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
   3793   auto *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
   3794   llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc),
   3795                               getThreadID(CGF, Loc), TaskFlags,
   3796                               KmpTaskTWithPrivatesTySize, SharedsSize,
   3797                               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3798                                   TaskEntry, KmpRoutineEntryPtrTy)};
   3799   auto *NewTask = CGF.EmitRuntimeCall(
   3800       createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
   3801   auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3802       NewTask, KmpTaskTWithPrivatesPtrTy);
   3803   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
   3804                                                KmpTaskTWithPrivatesQTy);
   3805   LValue TDBase =
   3806       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
   3807   // Fill the data in the resulting kmp_task_t record.
   3808   // Copy shareds if there are any.
   3809   Address KmpTaskSharedsPtr = Address::invalid();
   3810   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
   3811     KmpTaskSharedsPtr =
   3812         Address(CGF.EmitLoadOfScalar(
   3813                     CGF.EmitLValueForField(
   3814                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
   3815                                            KmpTaskTShareds)),
   3816                     Loc),
   3817                 CGF.getNaturalTypeAlignment(SharedsTy));
   3818     CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy);
   3819   }
   3820   // Emit initial values for private copies (if any).
   3821   TaskResultTy Result;
   3822   if (!Privates.empty()) {
   3823     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
   3824                      SharedsTy, SharedsPtrTy, Data, Privates,
   3825                      /*ForDup=*/false);
   3826     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
   3827         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
   3828       Result.TaskDupFn = emitTaskDupFunction(
   3829           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
   3830           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
   3831           /*WithLastIter=*/!Data.LastprivateVars.empty());
   3832     }
   3833   }
   3834   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
   3835   enum { Priority = 0, Destructors = 1 };
   3836   // Provide pointer to function with destructors for privates.
   3837   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
   3838   auto *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl();
   3839   if (NeedsCleanup) {
   3840     llvm::Value *DestructorFn = emitDestructorsFunction(
   3841         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
   3842         KmpTaskTWithPrivatesQTy);
   3843     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
   3844     LValue DestructorsLV = CGF.EmitLValueForField(
   3845         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
   3846     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3847                               DestructorFn, KmpRoutineEntryPtrTy),
   3848                           DestructorsLV);
   3849   }
   3850   // Set priority.
   3851   if (Data.Priority.getInt()) {
   3852     LValue Data2LV = CGF.EmitLValueForField(
   3853         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
   3854     LValue PriorityLV = CGF.EmitLValueForField(
   3855         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
   3856     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
   3857   }
   3858   Result.NewTask = NewTask;
   3859   Result.TaskEntry = TaskEntry;
   3860   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
   3861   Result.TDBase = TDBase;
   3862   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
   3863   return Result;
   3864 }
   3865 
   3866 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
   3867                                    const OMPExecutableDirective &D,
   3868                                    llvm::Value *TaskFunction,
   3869                                    QualType SharedsTy, Address Shareds,
   3870                                    const Expr *IfCond,
   3871                                    const OMPTaskDataTy &Data) {
   3872   if (!CGF.HaveInsertPoint())
   3873     return;
   3874 
   3875   TaskResultTy Result =
   3876       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
   3877   llvm::Value *NewTask = Result.NewTask;
   3878   llvm::Value *TaskEntry = Result.TaskEntry;
   3879   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
   3880   LValue TDBase = Result.TDBase;
   3881   RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
   3882   auto &C = CGM.getContext();
   3883   // Process list of dependences.
   3884   Address DependenciesArray = Address::invalid();
   3885   unsigned NumDependencies = Data.Dependences.size();
   3886   if (NumDependencies) {
   3887     // Dependence kind for RTL.
   3888     enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 };
   3889     enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
   3890     RecordDecl *KmpDependInfoRD;
   3891     QualType FlagsTy =
   3892         C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
   3893     llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
   3894     if (KmpDependInfoTy.isNull()) {
   3895       KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
   3896       KmpDependInfoRD->startDefinition();
   3897       addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
   3898       addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
   3899       addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
   3900       KmpDependInfoRD->completeDefinition();
   3901       KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
   3902     } else
   3903       KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
   3904     CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy);
   3905     // Define type kmp_depend_info[<Dependences.size()>];
   3906     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
   3907         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
   3908         ArrayType::Normal, /*IndexTypeQuals=*/0);
   3909     // kmp_depend_info[<Dependences.size()>] deps;
   3910     DependenciesArray =
   3911         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
   3912     for (unsigned i = 0; i < NumDependencies; ++i) {
   3913       const Expr *E = Data.Dependences[i].second;
   3914       auto Addr = CGF.EmitLValue(E);
   3915       llvm::Value *Size;
   3916       QualType Ty = E->getType();
   3917       if (auto *ASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
   3918         LValue UpAddrLVal =
   3919             CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false);
   3920         llvm::Value *UpAddr =
   3921             CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
   3922         llvm::Value *LowIntPtr =
   3923             CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
   3924         llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
   3925         Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
   3926       } else
   3927         Size = CGF.getTypeSize(Ty);
   3928       auto Base = CGF.MakeAddrLValue(
   3929           CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize),
   3930           KmpDependInfoTy);
   3931       // deps[i].base_addr = &<Dependences[i].second>;
   3932       auto BaseAddrLVal = CGF.EmitLValueForField(
   3933           Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
   3934       CGF.EmitStoreOfScalar(
   3935           CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
   3936           BaseAddrLVal);
   3937       // deps[i].len = sizeof(<Dependences[i].second>);
   3938       auto LenLVal = CGF.EmitLValueForField(
   3939           Base, *std::next(KmpDependInfoRD->field_begin(), Len));
   3940       CGF.EmitStoreOfScalar(Size, LenLVal);
   3941       // deps[i].flags = <Dependences[i].first>;
   3942       RTLDependenceKindTy DepKind;
   3943       switch (Data.Dependences[i].first) {
   3944       case OMPC_DEPEND_in:
   3945         DepKind = DepIn;
   3946         break;
   3947       // Out and InOut dependencies must use the same code.
   3948       case OMPC_DEPEND_out:
   3949       case OMPC_DEPEND_inout:
   3950         DepKind = DepInOut;
   3951         break;
   3952       case OMPC_DEPEND_source:
   3953       case OMPC_DEPEND_sink:
   3954       case OMPC_DEPEND_unknown:
   3955         llvm_unreachable("Unknown task dependence type");
   3956       }
   3957       auto FlagsLVal = CGF.EmitLValueForField(
   3958           Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
   3959       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
   3960                             FlagsLVal);
   3961     }
   3962     DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   3963         CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()),
   3964         CGF.VoidPtrTy);
   3965   }
   3966 
   3967   // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
   3968   // libcall.
   3969   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
   3970   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
   3971   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
   3972   // list is not empty
   3973   auto *ThreadID = getThreadID(CGF, Loc);
   3974   auto *UpLoc = emitUpdateLocation(CGF, Loc);
   3975   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
   3976   llvm::Value *DepTaskArgs[7];
   3977   if (NumDependencies) {
   3978     DepTaskArgs[0] = UpLoc;
   3979     DepTaskArgs[1] = ThreadID;
   3980     DepTaskArgs[2] = NewTask;
   3981     DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
   3982     DepTaskArgs[4] = DependenciesArray.getPointer();
   3983     DepTaskArgs[5] = CGF.Builder.getInt32(0);
   3984     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
   3985   }
   3986   auto &&ThenCodeGen = [this, Loc, &Data, TDBase, KmpTaskTQTyRD,
   3987                         NumDependencies, &TaskArgs,
   3988                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
   3989     if (!Data.Tied) {
   3990       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
   3991       auto PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
   3992       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
   3993     }
   3994     if (NumDependencies) {
   3995       CGF.EmitRuntimeCall(
   3996           createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
   3997     } else {
   3998       CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
   3999                           TaskArgs);
   4000     }
   4001     // Check if parent region is untied and build return for untied task;
   4002     if (auto *Region =
   4003             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
   4004       Region->emitUntiedSwitch(CGF);
   4005   };
   4006 
   4007   llvm::Value *DepWaitTaskArgs[6];
   4008   if (NumDependencies) {
   4009     DepWaitTaskArgs[0] = UpLoc;
   4010     DepWaitTaskArgs[1] = ThreadID;
   4011     DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
   4012     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
   4013     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
   4014     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
   4015   }
   4016   auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
   4017                         NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF,
   4018                                                            PrePostActionTy &) {
   4019     auto &RT = CGF.CGM.getOpenMPRuntime();
   4020     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
   4021     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
   4022     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
   4023     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
   4024     // is specified.
   4025     if (NumDependencies)
   4026       CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
   4027                           DepWaitTaskArgs);
   4028     // Call proxy_task_entry(gtid, new_task);
   4029     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy](
   4030         CodeGenFunction &CGF, PrePostActionTy &Action) {
   4031       Action.Enter(CGF);
   4032       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
   4033       CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs);
   4034     };
   4035 
   4036     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
   4037     // kmp_task_t *new_task);
   4038     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
   4039     // kmp_task_t *new_task);
   4040     RegionCodeGenTy RCG(CodeGen);
   4041     CommonActionTy Action(
   4042         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
   4043         RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
   4044     RCG.setAction(Action);
   4045     RCG(CGF);
   4046   };
   4047 
   4048   if (IfCond)
   4049     emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
   4050   else {
   4051     RegionCodeGenTy ThenRCG(ThenCodeGen);
   4052     ThenRCG(CGF);
   4053   }
   4054 }
   4055 
   4056 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
   4057                                        const OMPLoopDirective &D,
   4058                                        llvm::Value *TaskFunction,
   4059                                        QualType SharedsTy, Address Shareds,
   4060                                        const Expr *IfCond,
   4061                                        const OMPTaskDataTy &Data) {
   4062   if (!CGF.HaveInsertPoint())
   4063     return;
   4064   TaskResultTy Result =
   4065       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
   4066   // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
   4067   // libcall.
   4068   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
   4069   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
   4070   // sched, kmp_uint64 grainsize, void *task_dup);
   4071   llvm::Value *ThreadID = getThreadID(CGF, Loc);
   4072   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
   4073   llvm::Value *IfVal;
   4074   if (IfCond) {
   4075     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
   4076                                       /*isSigned=*/true);
   4077   } else
   4078     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
   4079 
   4080   LValue LBLVal = CGF.EmitLValueForField(
   4081       Result.TDBase,
   4082       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
   4083   auto *LBVar =
   4084       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
   4085   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
   4086                        /*IsInitializer=*/true);
   4087   LValue UBLVal = CGF.EmitLValueForField(
   4088       Result.TDBase,
   4089       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
   4090   auto *UBVar =
   4091       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
   4092   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
   4093                        /*IsInitializer=*/true);
   4094   LValue StLVal = CGF.EmitLValueForField(
   4095       Result.TDBase,
   4096       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
   4097   auto *StVar =
   4098       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
   4099   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
   4100                        /*IsInitializer=*/true);
   4101   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
   4102   llvm::Value *TaskArgs[] = {
   4103       UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(),
   4104       UBLVal.getPointer(), CGF.EmitLoadOfScalar(StLVal, SourceLocation()),
   4105       llvm::ConstantInt::getSigned(CGF.IntTy, Data.Nogroup ? 1 : 0),
   4106       llvm::ConstantInt::getSigned(
   4107           CGF.IntTy, Data.Schedule.getPointer()
   4108                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
   4109                          : NoSchedule),
   4110       Data.Schedule.getPointer()
   4111           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
   4112                                       /*isSigned=*/false)
   4113           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
   4114       Result.TaskDupFn
   4115           ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Result.TaskDupFn,
   4116                                                             CGF.VoidPtrTy)
   4117           : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
   4118   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
   4119 }
   4120 
   4121 /// \brief Emit reduction operation for each element of array (required for
   4122 /// array sections) LHS op = RHS.
   4123 /// \param Type Type of array.
   4124 /// \param LHSVar Variable on the left side of the reduction operation
   4125 /// (references element of array in original variable).
   4126 /// \param RHSVar Variable on the right side of the reduction operation
   4127 /// (references element of array in original variable).
   4128 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
   4129 /// RHSVar.
   4130 static void EmitOMPAggregateReduction(
   4131     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
   4132     const VarDecl *RHSVar,
   4133     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
   4134                                   const Expr *, const Expr *)> &RedOpGen,
   4135     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
   4136     const Expr *UpExpr = nullptr) {
   4137   // Perform element-by-element initialization.
   4138   QualType ElementTy;
   4139   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
   4140   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
   4141 
   4142   // Drill down to the base element type on both arrays.
   4143   auto ArrayTy = Type->getAsArrayTypeUnsafe();
   4144   auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
   4145 
   4146   auto RHSBegin = RHSAddr.getPointer();
   4147   auto LHSBegin = LHSAddr.getPointer();
   4148   // Cast from pointer to array type to pointer to single element.
   4149   auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
   4150   // The basic structure here is a while-do loop.
   4151   auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
   4152   auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
   4153   auto IsEmpty =
   4154       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
   4155   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
   4156 
   4157   // Enter the loop body, making that address the current address.
   4158   auto EntryBB = CGF.Builder.GetInsertBlock();
   4159   CGF.EmitBlock(BodyBB);
   4160 
   4161   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
   4162 
   4163   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
   4164       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
   4165   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
   4166   Address RHSElementCurrent =
   4167       Address(RHSElementPHI,
   4168               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
   4169 
   4170   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
   4171       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
   4172   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
   4173   Address LHSElementCurrent =
   4174       Address(LHSElementPHI,
   4175               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
   4176 
   4177   // Emit copy.
   4178   CodeGenFunction::OMPPrivateScope Scope(CGF);
   4179   Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; });
   4180   Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; });
   4181   Scope.Privatize();
   4182   RedOpGen(CGF, XExpr, EExpr, UpExpr);
   4183   Scope.ForceCleanup();
   4184 
   4185   // Shift the address forward by one element.
   4186   auto LHSElementNext = CGF.Builder.CreateConstGEP1_32(
   4187       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
   4188   auto RHSElementNext = CGF.Builder.CreateConstGEP1_32(
   4189       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
   4190   // Check whether we've reached the end.
   4191   auto Done =
   4192       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
   4193   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
   4194   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
   4195   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
   4196 
   4197   // Done.
   4198   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
   4199 }
   4200 
   4201 /// Emit reduction combiner. If the combiner is a simple expression emit it as
   4202 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
   4203 /// UDR combiner function.
   4204 static void emitReductionCombiner(CodeGenFunction &CGF,
   4205                                   const Expr *ReductionOp) {
   4206   if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
   4207     if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
   4208       if (auto *DRE =
   4209               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
   4210         if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
   4211           std::pair<llvm::Function *, llvm::Function *> Reduction =
   4212               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
   4213           RValue Func = RValue::get(Reduction.first);
   4214           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
   4215           CGF.EmitIgnoredExpr(ReductionOp);
   4216           return;
   4217         }
   4218   CGF.EmitIgnoredExpr(ReductionOp);
   4219 }
   4220 
   4221 static llvm::Value *emitReductionFunction(CodeGenModule &CGM,
   4222                                           llvm::Type *ArgsType,
   4223                                           ArrayRef<const Expr *> Privates,
   4224                                           ArrayRef<const Expr *> LHSExprs,
   4225                                           ArrayRef<const Expr *> RHSExprs,
   4226                                           ArrayRef<const Expr *> ReductionOps) {
   4227   auto &C = CGM.getContext();
   4228 
   4229   // void reduction_func(void *LHSArg, void *RHSArg);
   4230   FunctionArgList Args;
   4231   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
   4232                            C.VoidPtrTy);
   4233   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
   4234                            C.VoidPtrTy);
   4235   Args.push_back(&LHSArg);
   4236   Args.push_back(&RHSArg);
   4237   auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
   4238   auto *Fn = llvm::Function::Create(
   4239       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
   4240       ".omp.reduction.reduction_func", &CGM.getModule());
   4241   CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
   4242   CodeGenFunction CGF(CGM);
   4243   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
   4244 
   4245   // Dst = (void*[n])(LHSArg);
   4246   // Src = (void*[n])(RHSArg);
   4247   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   4248       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
   4249       ArgsType), CGF.getPointerAlign());
   4250   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   4251       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
   4252       ArgsType), CGF.getPointerAlign());
   4253 
   4254   //  ...
   4255   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
   4256   //  ...
   4257   CodeGenFunction::OMPPrivateScope Scope(CGF);
   4258   auto IPriv = Privates.begin();
   4259   unsigned Idx = 0;
   4260   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
   4261     auto RHSVar = cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
   4262     Scope.addPrivate(RHSVar, [&]() -> Address {
   4263       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
   4264     });
   4265     auto LHSVar = cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
   4266     Scope.addPrivate(LHSVar, [&]() -> Address {
   4267       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
   4268     });
   4269     QualType PrivTy = (*IPriv)->getType();
   4270     if (PrivTy->isVariablyModifiedType()) {
   4271       // Get array size and emit VLA type.
   4272       ++Idx;
   4273       Address Elem =
   4274           CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize());
   4275       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
   4276       auto *VLA = CGF.getContext().getAsVariableArrayType(PrivTy);
   4277       auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
   4278       CodeGenFunction::OpaqueValueMapping OpaqueMap(
   4279           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
   4280       CGF.EmitVariablyModifiedType(PrivTy);
   4281     }
   4282   }
   4283   Scope.Privatize();
   4284   IPriv = Privates.begin();
   4285   auto ILHS = LHSExprs.begin();
   4286   auto IRHS = RHSExprs.begin();
   4287   for (auto *E : ReductionOps) {
   4288     if ((*IPriv)->getType()->isArrayType()) {
   4289       // Emit reduction for array section.
   4290       auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
   4291       auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
   4292       EmitOMPAggregateReduction(
   4293           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
   4294           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
   4295             emitReductionCombiner(CGF, E);
   4296           });
   4297     } else
   4298       // Emit reduction for array subscript or single variable.
   4299       emitReductionCombiner(CGF, E);
   4300     ++IPriv;
   4301     ++ILHS;
   4302     ++IRHS;
   4303   }
   4304   Scope.ForceCleanup();
   4305   CGF.FinishFunction();
   4306   return Fn;
   4307 }
   4308 
   4309 static void emitSingleReductionCombiner(CodeGenFunction &CGF,
   4310                                         const Expr *ReductionOp,
   4311                                         const Expr *PrivateRef,
   4312                                         const DeclRefExpr *LHS,
   4313                                         const DeclRefExpr *RHS) {
   4314   if (PrivateRef->getType()->isArrayType()) {
   4315     // Emit reduction for array section.
   4316     auto *LHSVar = cast<VarDecl>(LHS->getDecl());
   4317     auto *RHSVar = cast<VarDecl>(RHS->getDecl());
   4318     EmitOMPAggregateReduction(
   4319         CGF, PrivateRef->getType(), LHSVar, RHSVar,
   4320         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
   4321           emitReductionCombiner(CGF, ReductionOp);
   4322         });
   4323   } else
   4324     // Emit reduction for array subscript or single variable.
   4325     emitReductionCombiner(CGF, ReductionOp);
   4326 }
   4327 
   4328 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
   4329                                     ArrayRef<const Expr *> Privates,
   4330                                     ArrayRef<const Expr *> LHSExprs,
   4331                                     ArrayRef<const Expr *> RHSExprs,
   4332                                     ArrayRef<const Expr *> ReductionOps,
   4333                                     bool WithNowait, bool SimpleReduction) {
   4334   if (!CGF.HaveInsertPoint())
   4335     return;
   4336   // Next code should be emitted for reduction:
   4337   //
   4338   // static kmp_critical_name lock = { 0 };
   4339   //
   4340   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
   4341   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
   4342   //  ...
   4343   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
   4344   //  *(Type<n>-1*)rhs[<n>-1]);
   4345   // }
   4346   //
   4347   // ...
   4348   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
   4349   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
   4350   // RedList, reduce_func, &<lock>)) {
   4351   // case 1:
   4352   //  ...
   4353   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
   4354   //  ...
   4355   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
   4356   // break;
   4357   // case 2:
   4358   //  ...
   4359   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
   4360   //  ...
   4361   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
   4362   // break;
   4363   // default:;
   4364   // }
   4365   //
   4366   // if SimpleReduction is true, only the next code is generated:
   4367   //  ...
   4368   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
   4369   //  ...
   4370 
   4371   auto &C = CGM.getContext();
   4372 
   4373   if (SimpleReduction) {
   4374     CodeGenFunction::RunCleanupsScope Scope(CGF);
   4375     auto IPriv = Privates.begin();
   4376     auto ILHS = LHSExprs.begin();
   4377     auto IRHS = RHSExprs.begin();
   4378     for (auto *E : ReductionOps) {
   4379       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
   4380                                   cast<DeclRefExpr>(*IRHS));
   4381       ++IPriv;
   4382       ++ILHS;
   4383       ++IRHS;
   4384     }
   4385     return;
   4386   }
   4387 
   4388   // 1. Build a list of reduction variables.
   4389   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
   4390   auto Size = RHSExprs.size();
   4391   for (auto *E : Privates) {
   4392     if (E->getType()->isVariablyModifiedType())
   4393       // Reserve place for array size.
   4394       ++Size;
   4395   }
   4396   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
   4397   QualType ReductionArrayTy =
   4398       C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
   4399                              /*IndexTypeQuals=*/0);
   4400   Address ReductionList =
   4401       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
   4402   auto IPriv = Privates.begin();
   4403   unsigned Idx = 0;
   4404   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
   4405     Address Elem =
   4406       CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize());
   4407     CGF.Builder.CreateStore(
   4408         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   4409             CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
   4410         Elem);
   4411     if ((*IPriv)->getType()->isVariablyModifiedType()) {
   4412       // Store array size.
   4413       ++Idx;
   4414       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
   4415                                              CGF.getPointerSize());
   4416       llvm::Value *Size = CGF.Builder.CreateIntCast(
   4417           CGF.getVLASize(
   4418                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
   4419               .first,
   4420           CGF.SizeTy, /*isSigned=*/false);
   4421       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
   4422                               Elem);
   4423     }
   4424   }
   4425 
   4426   // 2. Emit reduce_func().
   4427   auto *ReductionFn = emitReductionFunction(
   4428       CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
   4429       LHSExprs, RHSExprs, ReductionOps);
   4430 
   4431   // 3. Create static kmp_critical_name lock = { 0 };
   4432   auto *Lock = getCriticalRegionLock(".reduction");
   4433 
   4434   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
   4435   // RedList, reduce_func, &<lock>);
   4436   auto *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
   4437   auto *ThreadId = getThreadID(CGF, Loc);
   4438   auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
   4439   auto *RL =
   4440     CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(ReductionList.getPointer(),
   4441                                                     CGF.VoidPtrTy);
   4442   llvm::Value *Args[] = {
   4443       IdentTLoc,                             // ident_t *<loc>
   4444       ThreadId,                              // i32 <gtid>
   4445       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
   4446       ReductionArrayTySize,                  // size_type sizeof(RedList)
   4447       RL,                                    // void *RedList
   4448       ReductionFn, // void (*) (void *, void *) <reduce_func>
   4449       Lock         // kmp_critical_name *&<lock>
   4450   };
   4451   auto Res = CGF.EmitRuntimeCall(
   4452       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
   4453                                        : OMPRTL__kmpc_reduce),
   4454       Args);
   4455 
   4456   // 5. Build switch(res)
   4457   auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
   4458   auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
   4459 
   4460   // 6. Build case 1:
   4461   //  ...
   4462   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
   4463   //  ...
   4464   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
   4465   // break;
   4466   auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
   4467   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
   4468   CGF.EmitBlock(Case1BB);
   4469 
   4470   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
   4471   llvm::Value *EndArgs[] = {
   4472       IdentTLoc, // ident_t *<loc>
   4473       ThreadId,  // i32 <gtid>
   4474       Lock       // kmp_critical_name *&<lock>
   4475   };
   4476   auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps](
   4477       CodeGenFunction &CGF, PrePostActionTy &Action) {
   4478     auto IPriv = Privates.begin();
   4479     auto ILHS = LHSExprs.begin();
   4480     auto IRHS = RHSExprs.begin();
   4481     for (auto *E : ReductionOps) {
   4482       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
   4483                                   cast<DeclRefExpr>(*IRHS));
   4484       ++IPriv;
   4485       ++ILHS;
   4486       ++IRHS;
   4487     }
   4488   };
   4489   RegionCodeGenTy RCG(CodeGen);
   4490   CommonActionTy Action(
   4491       nullptr, llvm::None,
   4492       createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
   4493                                        : OMPRTL__kmpc_end_reduce),
   4494       EndArgs);
   4495   RCG.setAction(Action);
   4496   RCG(CGF);
   4497 
   4498   CGF.EmitBranch(DefaultBB);
   4499 
   4500   // 7. Build case 2:
   4501   //  ...
   4502   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
   4503   //  ...
   4504   // break;
   4505   auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
   4506   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
   4507   CGF.EmitBlock(Case2BB);
   4508 
   4509   auto &&AtomicCodeGen = [Loc, &Privates, &LHSExprs, &RHSExprs, &ReductionOps](
   4510       CodeGenFunction &CGF, PrePostActionTy &Action) {
   4511     auto ILHS = LHSExprs.begin();
   4512     auto IRHS = RHSExprs.begin();
   4513     auto IPriv = Privates.begin();
   4514     for (auto *E : ReductionOps) {
   4515       const Expr *XExpr = nullptr;
   4516       const Expr *EExpr = nullptr;
   4517       const Expr *UpExpr = nullptr;
   4518       BinaryOperatorKind BO = BO_Comma;
   4519       if (auto *BO = dyn_cast<BinaryOperator>(E)) {
   4520         if (BO->getOpcode() == BO_Assign) {
   4521           XExpr = BO->getLHS();
   4522           UpExpr = BO->getRHS();
   4523         }
   4524       }
   4525       // Try to emit update expression as a simple atomic.
   4526       auto *RHSExpr = UpExpr;
   4527       if (RHSExpr) {
   4528         // Analyze RHS part of the whole expression.
   4529         if (auto *ACO = dyn_cast<AbstractConditionalOperator>(
   4530                 RHSExpr->IgnoreParenImpCasts())) {
   4531           // If this is a conditional operator, analyze its condition for
   4532           // min/max reduction operator.
   4533           RHSExpr = ACO->getCond();
   4534         }
   4535         if (auto *BORHS =
   4536                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
   4537           EExpr = BORHS->getRHS();
   4538           BO = BORHS->getOpcode();
   4539         }
   4540       }
   4541       if (XExpr) {
   4542         auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
   4543         auto &&AtomicRedGen = [BO, VD, IPriv,
   4544                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
   4545                                     const Expr *EExpr, const Expr *UpExpr) {
   4546           LValue X = CGF.EmitLValue(XExpr);
   4547           RValue E;
   4548           if (EExpr)
   4549             E = CGF.EmitAnyExpr(EExpr);
   4550           CGF.EmitOMPAtomicSimpleUpdateExpr(
   4551               X, E, BO, /*IsXLHSInRHSPart=*/true,
   4552               llvm::AtomicOrdering::Monotonic, Loc,
   4553               [&CGF, UpExpr, VD, IPriv, Loc](RValue XRValue) {
   4554                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
   4555                 PrivateScope.addPrivate(
   4556                     VD, [&CGF, VD, XRValue, Loc]() -> Address {
   4557                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
   4558                       CGF.emitOMPSimpleStore(
   4559                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
   4560                           VD->getType().getNonReferenceType(), Loc);
   4561                       return LHSTemp;
   4562                     });
   4563                 (void)PrivateScope.Privatize();
   4564                 return CGF.EmitAnyExpr(UpExpr);
   4565               });
   4566         };
   4567         if ((*IPriv)->getType()->isArrayType()) {
   4568           // Emit atomic reduction for array section.
   4569           auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
   4570           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
   4571                                     AtomicRedGen, XExpr, EExpr, UpExpr);
   4572         } else
   4573           // Emit atomic reduction for array subscript or single variable.
   4574           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
   4575       } else {
   4576         // Emit as a critical region.
   4577         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
   4578                                      const Expr *, const Expr *) {
   4579           auto &RT = CGF.CGM.getOpenMPRuntime();
   4580           RT.emitCriticalRegion(
   4581               CGF, ".atomic_reduction",
   4582               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
   4583                 Action.Enter(CGF);
   4584                 emitReductionCombiner(CGF, E);
   4585               },
   4586               Loc);
   4587         };
   4588         if ((*IPriv)->getType()->isArrayType()) {
   4589           auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
   4590           auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
   4591           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
   4592                                     CritRedGen);
   4593         } else
   4594           CritRedGen(CGF, nullptr, nullptr, nullptr);
   4595       }
   4596       ++ILHS;
   4597       ++IRHS;
   4598       ++IPriv;
   4599     }
   4600   };
   4601   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
   4602   if (!WithNowait) {
   4603     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
   4604     llvm::Value *EndArgs[] = {
   4605         IdentTLoc, // ident_t *<loc>
   4606         ThreadId,  // i32 <gtid>
   4607         Lock       // kmp_critical_name *&<lock>
   4608     };
   4609     CommonActionTy Action(nullptr, llvm::None,
   4610                           createRuntimeFunction(OMPRTL__kmpc_end_reduce),
   4611                           EndArgs);
   4612     AtomicRCG.setAction(Action);
   4613     AtomicRCG(CGF);
   4614   } else
   4615     AtomicRCG(CGF);
   4616 
   4617   CGF.EmitBranch(DefaultBB);
   4618   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
   4619 }
   4620 
   4621 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
   4622                                        SourceLocation Loc) {
   4623   if (!CGF.HaveInsertPoint())
   4624     return;
   4625   // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
   4626   // global_tid);
   4627   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
   4628   // Ignore return result until untied tasks are supported.
   4629   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
   4630   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
   4631     Region->emitUntiedSwitch(CGF);
   4632 }
   4633 
   4634 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
   4635                                            OpenMPDirectiveKind InnerKind,
   4636                                            const RegionCodeGenTy &CodeGen,
   4637                                            bool HasCancel) {
   4638   if (!CGF.HaveInsertPoint())
   4639     return;
   4640   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
   4641   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
   4642 }
   4643 
   4644 namespace {
   4645 enum RTCancelKind {
   4646   CancelNoreq = 0,
   4647   CancelParallel = 1,
   4648   CancelLoop = 2,
   4649   CancelSections = 3,
   4650   CancelTaskgroup = 4
   4651 };
   4652 } // anonymous namespace
   4653 
   4654 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
   4655   RTCancelKind CancelKind = CancelNoreq;
   4656   if (CancelRegion == OMPD_parallel)
   4657     CancelKind = CancelParallel;
   4658   else if (CancelRegion == OMPD_for)
   4659     CancelKind = CancelLoop;
   4660   else if (CancelRegion == OMPD_sections)
   4661     CancelKind = CancelSections;
   4662   else {
   4663     assert(CancelRegion == OMPD_taskgroup);
   4664     CancelKind = CancelTaskgroup;
   4665   }
   4666   return CancelKind;
   4667 }
   4668 
   4669 void CGOpenMPRuntime::emitCancellationPointCall(
   4670     CodeGenFunction &CGF, SourceLocation Loc,
   4671     OpenMPDirectiveKind CancelRegion) {
   4672   if (!CGF.HaveInsertPoint())
   4673     return;
   4674   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
   4675   // global_tid, kmp_int32 cncl_kind);
   4676   if (auto *OMPRegionInfo =
   4677           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
   4678     if (OMPRegionInfo->hasCancel()) {
   4679       llvm::Value *Args[] = {
   4680           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
   4681           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
   4682       // Ignore return result until untied tasks are supported.
   4683       auto *Result = CGF.EmitRuntimeCall(
   4684           createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
   4685       // if (__kmpc_cancellationpoint()) {
   4686       //  __kmpc_cancel_barrier();
   4687       //   exit from construct;
   4688       // }
   4689       auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
   4690       auto *ContBB = CGF.createBasicBlock(".cancel.continue");
   4691       auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
   4692       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
   4693       CGF.EmitBlock(ExitBB);
   4694       // __kmpc_cancel_barrier();
   4695       emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
   4696       // exit from construct;
   4697       auto CancelDest =
   4698           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
   4699       CGF.EmitBranchThroughCleanup(CancelDest);
   4700       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
   4701     }
   4702   }
   4703 }
   4704 
   4705 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
   4706                                      const Expr *IfCond,
   4707                                      OpenMPDirectiveKind CancelRegion) {
   4708   if (!CGF.HaveInsertPoint())
   4709     return;
   4710   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
   4711   // kmp_int32 cncl_kind);
   4712   if (auto *OMPRegionInfo =
   4713           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
   4714     auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
   4715                                                         PrePostActionTy &) {
   4716       auto &RT = CGF.CGM.getOpenMPRuntime();
   4717       llvm::Value *Args[] = {
   4718           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
   4719           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
   4720       // Ignore return result until untied tasks are supported.
   4721       auto *Result = CGF.EmitRuntimeCall(
   4722           RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
   4723       // if (__kmpc_cancel()) {
   4724       //  __kmpc_cancel_barrier();
   4725       //   exit from construct;
   4726       // }
   4727       auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
   4728       auto *ContBB = CGF.createBasicBlock(".cancel.continue");
   4729       auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
   4730       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
   4731       CGF.EmitBlock(ExitBB);
   4732       // __kmpc_cancel_barrier();
   4733       RT.emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
   4734       // exit from construct;
   4735       auto CancelDest =
   4736           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
   4737       CGF.EmitBranchThroughCleanup(CancelDest);
   4738       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
   4739     };
   4740     if (IfCond)
   4741       emitOMPIfClause(CGF, IfCond, ThenGen,
   4742                       [](CodeGenFunction &, PrePostActionTy &) {});
   4743     else {
   4744       RegionCodeGenTy ThenRCG(ThenGen);
   4745       ThenRCG(CGF);
   4746     }
   4747   }
   4748 }
   4749 
   4750 /// \brief Obtain information that uniquely identifies a target entry. This
   4751 /// consists of the file and device IDs as well as line number associated with
   4752 /// the relevant entry source location.
   4753 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
   4754                                      unsigned &DeviceID, unsigned &FileID,
   4755                                      unsigned &LineNum) {
   4756 
   4757   auto &SM = C.getSourceManager();
   4758 
   4759   // The loc should be always valid and have a file ID (the user cannot use
   4760   // #pragma directives in macros)
   4761 
   4762   assert(Loc.isValid() && "Source location is expected to be always valid.");
   4763   assert(Loc.isFileID() && "Source location is expected to refer to a file.");
   4764 
   4765   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
   4766   assert(PLoc.isValid() && "Source location is expected to be always valid.");
   4767 
   4768   llvm::sys::fs::UniqueID ID;
   4769   if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
   4770     llvm_unreachable("Source file with target region no longer exists!");
   4771 
   4772   DeviceID = ID.getDevice();
   4773   FileID = ID.getFile();
   4774   LineNum = PLoc.getLine();
   4775 }
   4776 
   4777 void CGOpenMPRuntime::emitTargetOutlinedFunction(
   4778     const OMPExecutableDirective &D, StringRef ParentName,
   4779     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
   4780     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
   4781   assert(!ParentName.empty() && "Invalid target region parent name!");
   4782 
   4783   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
   4784                                    IsOffloadEntry, CodeGen);
   4785 }
   4786 
   4787 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
   4788     const OMPExecutableDirective &D, StringRef ParentName,
   4789     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
   4790     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
   4791   // Create a unique name for the entry function using the source location
   4792   // information of the current target region. The name will be something like:
   4793   //
   4794   // __omp_offloading_DD_FFFF_PP_lBB
   4795   //
   4796   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
   4797   // mangled name of the function that encloses the target region and BB is the
   4798   // line number of the target region.
   4799 
   4800   unsigned DeviceID;
   4801   unsigned FileID;
   4802   unsigned Line;
   4803   getTargetEntryUniqueInfo(CGM.getContext(), D.getLocStart(), DeviceID, FileID,
   4804                            Line);
   4805   SmallString<64> EntryFnName;
   4806   {
   4807     llvm::raw_svector_ostream OS(EntryFnName);
   4808     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
   4809        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
   4810   }
   4811 
   4812   const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
   4813 
   4814   CodeGenFunction CGF(CGM, true);
   4815   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
   4816   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
   4817 
   4818   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
   4819 
   4820   // If this target outline function is not an offload entry, we don't need to
   4821   // register it.
   4822   if (!IsOffloadEntry)
   4823     return;
   4824 
   4825   // The target region ID is used by the runtime library to identify the current
   4826   // target region, so it only has to be unique and not necessarily point to
   4827   // anything. It could be the pointer to the outlined function that implements
   4828   // the target region, but we aren't using that so that the compiler doesn't
   4829   // need to keep that, and could therefore inline the host function if proven
   4830   // worthwhile during optimization. In the other hand, if emitting code for the
   4831   // device, the ID has to be the function address so that it can retrieved from
   4832   // the offloading entry and launched by the runtime library. We also mark the
   4833   // outlined function to have external linkage in case we are emitting code for
   4834   // the device, because these functions will be entry points to the device.
   4835 
   4836   if (CGM.getLangOpts().OpenMPIsDevice) {
   4837     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
   4838     OutlinedFn->setLinkage(llvm::GlobalValue::ExternalLinkage);
   4839   } else
   4840     OutlinedFnID = new llvm::GlobalVariable(
   4841         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
   4842         llvm::GlobalValue::PrivateLinkage,
   4843         llvm::Constant::getNullValue(CGM.Int8Ty), ".omp_offload.region_id");
   4844 
   4845   // Register the information for the entry associated with this target region.
   4846   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
   4847       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID);
   4848 }
   4849 
   4850 /// discard all CompoundStmts intervening between two constructs
   4851 static const Stmt *ignoreCompoundStmts(const Stmt *Body) {
   4852   while (auto *CS = dyn_cast_or_null<CompoundStmt>(Body))
   4853     Body = CS->body_front();
   4854 
   4855   return Body;
   4856 }
   4857 
   4858 /// \brief Emit the num_teams clause of an enclosed teams directive at the
   4859 /// target region scope. If there is no teams directive associated with the
   4860 /// target directive, or if there is no num_teams clause associated with the
   4861 /// enclosed teams directive, return nullptr.
   4862 static llvm::Value *
   4863 emitNumTeamsClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime,
   4864                                      CodeGenFunction &CGF,
   4865                                      const OMPExecutableDirective &D) {
   4866 
   4867   assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
   4868                                               "teams directive expected to be "
   4869                                               "emitted only for the host!");
   4870 
   4871   // FIXME: For the moment we do not support combined directives with target and
   4872   // teams, so we do not expect to get any num_teams clause in the provided
   4873   // directive. Once we support that, this assertion can be replaced by the
   4874   // actual emission of the clause expression.
   4875   assert(D.getSingleClause<OMPNumTeamsClause>() == nullptr &&
   4876          "Not expecting clause in directive.");
   4877 
   4878   // If the current target region has a teams region enclosed, we need to get
   4879   // the number of teams to pass to the runtime function call. This is done
   4880   // by generating the expression in a inlined region. This is required because
   4881   // the expression is captured in the enclosing target environment when the
   4882   // teams directive is not combined with target.
   4883 
   4884   const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
   4885 
   4886   // FIXME: Accommodate other combined directives with teams when they become
   4887   // available.
   4888   if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
   4889           ignoreCompoundStmts(CS.getCapturedStmt()))) {
   4890     if (auto *NTE = TeamsDir->getSingleClause<OMPNumTeamsClause>()) {
   4891       CGOpenMPInnerExprInfo CGInfo(CGF, CS);
   4892       CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
   4893       llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams());
   4894       return CGF.Builder.CreateIntCast(NumTeams, CGF.Int32Ty,
   4895                                        /*IsSigned=*/true);
   4896     }
   4897 
   4898     // If we have an enclosed teams directive but no num_teams clause we use
   4899     // the default value 0.
   4900     return CGF.Builder.getInt32(0);
   4901   }
   4902 
   4903   // No teams associated with the directive.
   4904   return nullptr;
   4905 }
   4906 
   4907 /// \brief Emit the thread_limit clause of an enclosed teams directive at the
   4908 /// target region scope. If there is no teams directive associated with the
   4909 /// target directive, or if there is no thread_limit clause associated with the
   4910 /// enclosed teams directive, return nullptr.
   4911 static llvm::Value *
   4912 emitThreadLimitClauseForTargetDirective(CGOpenMPRuntime &OMPRuntime,
   4913                                         CodeGenFunction &CGF,
   4914                                         const OMPExecutableDirective &D) {
   4915 
   4916   assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
   4917                                               "teams directive expected to be "
   4918                                               "emitted only for the host!");
   4919 
   4920   // FIXME: For the moment we do not support combined directives with target and
   4921   // teams, so we do not expect to get any thread_limit clause in the provided
   4922   // directive. Once we support that, this assertion can be replaced by the
   4923   // actual emission of the clause expression.
   4924   assert(D.getSingleClause<OMPThreadLimitClause>() == nullptr &&
   4925          "Not expecting clause in directive.");
   4926 
   4927   // If the current target region has a teams region enclosed, we need to get
   4928   // the thread limit to pass to the runtime function call. This is done
   4929   // by generating the expression in a inlined region. This is required because
   4930   // the expression is captured in the enclosing target environment when the
   4931   // teams directive is not combined with target.
   4932 
   4933   const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
   4934 
   4935   // FIXME: Accommodate other combined directives with teams when they become
   4936   // available.
   4937   if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
   4938           ignoreCompoundStmts(CS.getCapturedStmt()))) {
   4939     if (auto *TLE = TeamsDir->getSingleClause<OMPThreadLimitClause>()) {
   4940       CGOpenMPInnerExprInfo CGInfo(CGF, CS);
   4941       CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
   4942       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit());
   4943       return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty,
   4944                                        /*IsSigned=*/true);
   4945     }
   4946 
   4947     // If we have an enclosed teams directive but no thread_limit clause we use
   4948     // the default value 0.
   4949     return CGF.Builder.getInt32(0);
   4950   }
   4951 
   4952   // No teams associated with the directive.
   4953   return nullptr;
   4954 }
   4955 
   4956 namespace {
   4957 // \brief Utility to handle information from clauses associated with a given
   4958 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
   4959 // It provides a convenient interface to obtain the information and generate
   4960 // code for that information.
   4961 class MappableExprsHandler {
   4962 public:
   4963   /// \brief Values for bit flags used to specify the mapping type for
   4964   /// offloading.
   4965   enum OpenMPOffloadMappingFlags {
   4966     /// \brief Allocate memory on the device and move data from host to device.
   4967     OMP_MAP_TO = 0x01,
   4968     /// \brief Allocate memory on the device and move data from device to host.
   4969     OMP_MAP_FROM = 0x02,
   4970     /// \brief Always perform the requested mapping action on the element, even
   4971     /// if it was already mapped before.
   4972     OMP_MAP_ALWAYS = 0x04,
   4973     /// \brief Delete the element from the device environment, ignoring the
   4974     /// current reference count associated with the element.
   4975     OMP_MAP_DELETE = 0x08,
   4976     /// \brief The element being mapped is a pointer, therefore the pointee
   4977     /// should be mapped as well.
   4978     OMP_MAP_IS_PTR = 0x10,
   4979     /// \brief This flags signals that an argument is the first one relating to
   4980     /// a map/private clause expression. For some cases a single
   4981     /// map/privatization results in multiple arguments passed to the runtime
   4982     /// library.
   4983     OMP_MAP_FIRST_REF = 0x20,
   4984     /// \brief This flag signals that the reference being passed is a pointer to
   4985     /// private data.
   4986     OMP_MAP_PRIVATE_PTR = 0x80,
   4987     /// \brief Pass the element to the device by value.
   4988     OMP_MAP_PRIVATE_VAL = 0x100,
   4989   };
   4990 
   4991   typedef SmallVector<llvm::Value *, 16> MapValuesArrayTy;
   4992   typedef SmallVector<unsigned, 16> MapFlagsArrayTy;
   4993 
   4994 private:
   4995   /// \brief Directive from where the map clauses were extracted.
   4996   const OMPExecutableDirective &Directive;
   4997 
   4998   /// \brief Function the directive is being generated for.
   4999   CodeGenFunction &CGF;
   5000 
   5001   /// \brief Set of all first private variables in the current directive.
   5002   llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls;
   5003 
   5004   llvm::Value *getExprTypeSize(const Expr *E) const {
   5005     auto ExprTy = E->getType().getCanonicalType();
   5006 
   5007     // Reference types are ignored for mapping purposes.
   5008     if (auto *RefTy = ExprTy->getAs<ReferenceType>())
   5009       ExprTy = RefTy->getPointeeType().getCanonicalType();
   5010 
   5011     // Given that an array section is considered a built-in type, we need to
   5012     // do the calculation based on the length of the section instead of relying
   5013     // on CGF.getTypeSize(E->getType()).
   5014     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
   5015       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
   5016                             OAE->getBase()->IgnoreParenImpCasts())
   5017                             .getCanonicalType();
   5018 
   5019       // If there is no length associated with the expression, that means we
   5020       // are using the whole length of the base.
   5021       if (!OAE->getLength() && OAE->getColonLoc().isValid())
   5022         return CGF.getTypeSize(BaseTy);
   5023 
   5024       llvm::Value *ElemSize;
   5025       if (auto *PTy = BaseTy->getAs<PointerType>())
   5026         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
   5027       else {
   5028         auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
   5029         assert(ATy && "Expecting array type if not a pointer type.");
   5030         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
   5031       }
   5032 
   5033       // If we don't have a length at this point, that is because we have an
   5034       // array section with a single element.
   5035       if (!OAE->getLength())
   5036         return ElemSize;
   5037 
   5038       auto *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
   5039       LengthVal =
   5040           CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
   5041       return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
   5042     }
   5043     return CGF.getTypeSize(ExprTy);
   5044   }
   5045 
   5046   /// \brief Return the corresponding bits for a given map clause modifier. Add
   5047   /// a flag marking the map as a pointer if requested. Add a flag marking the
   5048   /// map as the first one of a series of maps that relate to the same map
   5049   /// expression.
   5050   unsigned getMapTypeBits(OpenMPMapClauseKind MapType,
   5051                           OpenMPMapClauseKind MapTypeModifier, bool AddPtrFlag,
   5052                           bool AddIsFirstFlag) const {
   5053     unsigned Bits = 0u;
   5054     switch (MapType) {
   5055     case OMPC_MAP_alloc:
   5056     case OMPC_MAP_release:
   5057       // alloc and release is the default behavior in the runtime library,  i.e.
   5058       // if we don't pass any bits alloc/release that is what the runtime is
   5059       // going to do. Therefore, we don't need to signal anything for these two
   5060       // type modifiers.
   5061       break;
   5062     case OMPC_MAP_to:
   5063       Bits = OMP_MAP_TO;
   5064       break;
   5065     case OMPC_MAP_from:
   5066       Bits = OMP_MAP_FROM;
   5067       break;
   5068     case OMPC_MAP_tofrom:
   5069       Bits = OMP_MAP_TO | OMP_MAP_FROM;
   5070       break;
   5071     case OMPC_MAP_delete:
   5072       Bits = OMP_MAP_DELETE;
   5073       break;
   5074     default:
   5075       llvm_unreachable("Unexpected map type!");
   5076       break;
   5077     }
   5078     if (AddPtrFlag)
   5079       Bits |= OMP_MAP_IS_PTR;
   5080     if (AddIsFirstFlag)
   5081       Bits |= OMP_MAP_FIRST_REF;
   5082     if (MapTypeModifier == OMPC_MAP_always)
   5083       Bits |= OMP_MAP_ALWAYS;
   5084     return Bits;
   5085   }
   5086 
   5087   /// \brief Return true if the provided expression is a final array section. A
   5088   /// final array section, is one whose length can't be proved to be one.
   5089   bool isFinalArraySectionExpression(const Expr *E) const {
   5090     auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
   5091 
   5092     // It is not an array section and therefore not a unity-size one.
   5093     if (!OASE)
   5094       return false;
   5095 
   5096     // An array section with no colon always refer to a single element.
   5097     if (OASE->getColonLoc().isInvalid())
   5098       return false;
   5099 
   5100     auto *Length = OASE->getLength();
   5101 
   5102     // If we don't have a length we have to check if the array has size 1
   5103     // for this dimension. Also, we should always expect a length if the
   5104     // base type is pointer.
   5105     if (!Length) {
   5106       auto BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
   5107                          OASE->getBase()->IgnoreParenImpCasts())
   5108                          .getCanonicalType();
   5109       if (auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
   5110         return ATy->getSize().getSExtValue() != 1;
   5111       // If we don't have a constant dimension length, we have to consider
   5112       // the current section as having any size, so it is not necessarily
   5113       // unitary. If it happen to be unity size, that's user fault.
   5114       return true;
   5115     }
   5116 
   5117     // Check if the length evaluates to 1.
   5118     llvm::APSInt ConstLength;
   5119     if (!Length->EvaluateAsInt(ConstLength, CGF.getContext()))
   5120       return true; // Can have more that size 1.
   5121 
   5122     return ConstLength.getSExtValue() != 1;
   5123   }
   5124 
   5125   /// \brief Generate the base pointers, section pointers, sizes and map type
   5126   /// bits for the provided map type, map modifier, and expression components.
   5127   /// \a IsFirstComponent should be set to true if the provided set of
   5128   /// components is the first associated with a capture.
   5129   void generateInfoForComponentList(
   5130       OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier,
   5131       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
   5132       MapValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
   5133       MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
   5134       bool IsFirstComponentList) const {
   5135 
   5136     // The following summarizes what has to be generated for each map and the
   5137     // types bellow. The generated information is expressed in this order:
   5138     // base pointer, section pointer, size, flags
   5139     // (to add to the ones that come from the map type and modifier).
   5140     //
   5141     // double d;
   5142     // int i[100];
   5143     // float *p;
   5144     //
   5145     // struct S1 {
   5146     //   int i;
   5147     //   float f[50];
   5148     // }
   5149     // struct S2 {
   5150     //   int i;
   5151     //   float f[50];
   5152     //   S1 s;
   5153     //   double *p;
   5154     //   struct S2 *ps;
   5155     // }
   5156     // S2 s;
   5157     // S2 *ps;
   5158     //
   5159     // map(d)
   5160     // &d, &d, sizeof(double), noflags
   5161     //
   5162     // map(i)
   5163     // &i, &i, 100*sizeof(int), noflags
   5164     //
   5165     // map(i[1:23])
   5166     // &i(=&i[0]), &i[1], 23*sizeof(int), noflags
   5167     //
   5168     // map(p)
   5169     // &p, &p, sizeof(float*), noflags
   5170     //
   5171     // map(p[1:24])
   5172     // p, &p[1], 24*sizeof(float), noflags
   5173     //
   5174     // map(s)
   5175     // &s, &s, sizeof(S2), noflags
   5176     //
   5177     // map(s.i)
   5178     // &s, &(s.i), sizeof(int), noflags
   5179     //
   5180     // map(s.s.f)
   5181     // &s, &(s.i.f), 50*sizeof(int), noflags
   5182     //
   5183     // map(s.p)
   5184     // &s, &(s.p), sizeof(double*), noflags
   5185     //
   5186     // map(s.p[:22], s.a s.b)
   5187     // &s, &(s.p), sizeof(double*), noflags
   5188     // &(s.p), &(s.p[0]), 22*sizeof(double), ptr_flag + extra_flag
   5189     //
   5190     // map(s.ps)
   5191     // &s, &(s.ps), sizeof(S2*), noflags
   5192     //
   5193     // map(s.ps->s.i)
   5194     // &s, &(s.ps), sizeof(S2*), noflags
   5195     // &(s.ps), &(s.ps->s.i), sizeof(int), ptr_flag + extra_flag
   5196     //
   5197     // map(s.ps->ps)
   5198     // &s, &(s.ps), sizeof(S2*), noflags
   5199     // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5200     //
   5201     // map(s.ps->ps->ps)
   5202     // &s, &(s.ps), sizeof(S2*), noflags
   5203     // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5204     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5205     //
   5206     // map(s.ps->ps->s.f[:22])
   5207     // &s, &(s.ps), sizeof(S2*), noflags
   5208     // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5209     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + extra_flag
   5210     //
   5211     // map(ps)
   5212     // &ps, &ps, sizeof(S2*), noflags
   5213     //
   5214     // map(ps->i)
   5215     // ps, &(ps->i), sizeof(int), noflags
   5216     //
   5217     // map(ps->s.f)
   5218     // ps, &(ps->s.f[0]), 50*sizeof(float), noflags
   5219     //
   5220     // map(ps->p)
   5221     // ps, &(ps->p), sizeof(double*), noflags
   5222     //
   5223     // map(ps->p[:22])
   5224     // ps, &(ps->p), sizeof(double*), noflags
   5225     // &(ps->p), &(ps->p[0]), 22*sizeof(double), ptr_flag + extra_flag
   5226     //
   5227     // map(ps->ps)
   5228     // ps, &(ps->ps), sizeof(S2*), noflags
   5229     //
   5230     // map(ps->ps->s.i)
   5231     // ps, &(ps->ps), sizeof(S2*), noflags
   5232     // &(ps->ps), &(ps->ps->s.i), sizeof(int), ptr_flag + extra_flag
   5233     //
   5234     // map(ps->ps->ps)
   5235     // ps, &(ps->ps), sizeof(S2*), noflags
   5236     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5237     //
   5238     // map(ps->ps->ps->ps)
   5239     // ps, &(ps->ps), sizeof(S2*), noflags
   5240     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5241     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5242     //
   5243     // map(ps->ps->ps->s.f[:22])
   5244     // ps, &(ps->ps), sizeof(S2*), noflags
   5245     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
   5246     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), ptr_flag +
   5247     // extra_flag
   5248 
   5249     // Track if the map information being generated is the first for a capture.
   5250     bool IsCaptureFirstInfo = IsFirstComponentList;
   5251 
   5252     // Scan the components from the base to the complete expression.
   5253     auto CI = Components.rbegin();
   5254     auto CE = Components.rend();
   5255     auto I = CI;
   5256 
   5257     // Track if the map information being generated is the first for a list of
   5258     // components.
   5259     bool IsExpressionFirstInfo = true;
   5260     llvm::Value *BP = nullptr;
   5261 
   5262     if (auto *ME = dyn_cast<MemberExpr>(I->getAssociatedExpression())) {
   5263       // The base is the 'this' pointer. The content of the pointer is going
   5264       // to be the base of the field being mapped.
   5265       BP = CGF.EmitScalarExpr(ME->getBase());
   5266     } else {
   5267       // The base is the reference to the variable.
   5268       // BP = &Var.
   5269       BP = CGF.EmitLValue(cast<DeclRefExpr>(I->getAssociatedExpression()))
   5270                .getPointer();
   5271 
   5272       // If the variable is a pointer and is being dereferenced (i.e. is not
   5273       // the last component), the base has to be the pointer itself, not its
   5274       // reference.
   5275       if (I->getAssociatedDeclaration()->getType()->isAnyPointerType() &&
   5276           std::next(I) != CE) {
   5277         auto PtrAddr = CGF.MakeNaturalAlignAddrLValue(
   5278             BP, I->getAssociatedDeclaration()->getType());
   5279         BP = CGF.EmitLoadOfPointerLValue(PtrAddr.getAddress(),
   5280                                          I->getAssociatedDeclaration()
   5281                                              ->getType()
   5282                                              ->getAs<PointerType>())
   5283                  .getPointer();
   5284 
   5285         // We do not need to generate individual map information for the
   5286         // pointer, it can be associated with the combined storage.
   5287         ++I;
   5288       }
   5289     }
   5290 
   5291     for (; I != CE; ++I) {
   5292       auto Next = std::next(I);
   5293 
   5294       // We need to generate the addresses and sizes if this is the last
   5295       // component, if the component is a pointer or if it is an array section
   5296       // whose length can't be proved to be one. If this is a pointer, it
   5297       // becomes the base address for the following components.
   5298 
   5299       // A final array section, is one whose length can't be proved to be one.
   5300       bool IsFinalArraySection =
   5301           isFinalArraySectionExpression(I->getAssociatedExpression());
   5302 
   5303       // Get information on whether the element is a pointer. Have to do a
   5304       // special treatment for array sections given that they are built-in
   5305       // types.
   5306       const auto *OASE =
   5307           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
   5308       bool IsPointer =
   5309           (OASE &&
   5310            OMPArraySectionExpr::getBaseOriginalType(OASE)
   5311                .getCanonicalType()
   5312                ->isAnyPointerType()) ||
   5313           I->getAssociatedExpression()->getType()->isAnyPointerType();
   5314 
   5315       if (Next == CE || IsPointer || IsFinalArraySection) {
   5316 
   5317         // If this is not the last component, we expect the pointer to be
   5318         // associated with an array expression or member expression.
   5319         assert((Next == CE ||
   5320                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
   5321                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
   5322                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
   5323                "Unexpected expression");
   5324 
   5325         // Save the base we are currently using.
   5326         BasePointers.push_back(BP);
   5327 
   5328         auto *LB = CGF.EmitLValue(I->getAssociatedExpression()).getPointer();
   5329         auto *Size = getExprTypeSize(I->getAssociatedExpression());
   5330 
   5331         Pointers.push_back(LB);
   5332         Sizes.push_back(Size);
   5333         // We need to add a pointer flag for each map that comes from the
   5334         // same expression except for the first one. We also need to signal
   5335         // this map is the first one that relates with the current capture
   5336         // (there is a set of entries for each capture).
   5337         Types.push_back(getMapTypeBits(MapType, MapTypeModifier,
   5338                                        !IsExpressionFirstInfo,
   5339                                        IsCaptureFirstInfo));
   5340 
   5341         // If we have a final array section, we are done with this expression.
   5342         if (IsFinalArraySection)
   5343           break;
   5344 
   5345         // The pointer becomes the base for the next element.
   5346         if (Next != CE)
   5347           BP = LB;
   5348 
   5349         IsExpressionFirstInfo = false;
   5350         IsCaptureFirstInfo = false;
   5351         continue;
   5352       }
   5353     }
   5354   }
   5355 
   5356   /// \brief Return the adjusted map modifiers if the declaration a capture
   5357   /// refers to appears in a first-private clause. This is expected to be used
   5358   /// only with directives that start with 'target'.
   5359   unsigned adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap,
   5360                                                unsigned CurrentModifiers) {
   5361     assert(Cap.capturesVariable() && "Expected capture by reference only!");
   5362 
   5363     // A first private variable captured by reference will use only the
   5364     // 'private ptr' and 'map to' flag. Return the right flags if the captured
   5365     // declaration is known as first-private in this handler.
   5366     if (FirstPrivateDecls.count(Cap.getCapturedVar()))
   5367       return MappableExprsHandler::OMP_MAP_PRIVATE_PTR |
   5368              MappableExprsHandler::OMP_MAP_TO;
   5369 
   5370     // We didn't modify anything.
   5371     return CurrentModifiers;
   5372   }
   5373 
   5374 public:
   5375   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
   5376       : Directive(Dir), CGF(CGF) {
   5377     // Extract firstprivate clause information.
   5378     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
   5379       for (const auto *D : C->varlists())
   5380         FirstPrivateDecls.insert(
   5381             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
   5382   }
   5383 
   5384   /// \brief Generate all the base pointers, section pointers, sizes and map
   5385   /// types for the extracted mappable expressions.
   5386   void generateAllInfo(MapValuesArrayTy &BasePointers,
   5387                        MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
   5388                        MapFlagsArrayTy &Types) const {
   5389     BasePointers.clear();
   5390     Pointers.clear();
   5391     Sizes.clear();
   5392     Types.clear();
   5393 
   5394     struct MapInfo {
   5395       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
   5396       OpenMPMapClauseKind MapType;
   5397       OpenMPMapClauseKind MapTypeModifier;
   5398     };
   5399 
   5400     // We have to process the component lists that relate with the same
   5401     // declaration in a single chunk so that we can generate the map flags
   5402     // correctly. Therefore, we organize all lists in a map.
   5403     llvm::DenseMap<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
   5404 
   5405     // Helper function to fill the information map for the different supported
   5406     // clauses.
   5407     auto &&InfoGen =
   5408         [&Info](const ValueDecl *D,
   5409                 OMPClauseMappableExprCommon::MappableExprComponentListRef L,
   5410                 OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapModifier) {
   5411           const ValueDecl *VD =
   5412               D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
   5413           Info[VD].push_back({L, MapType, MapModifier});
   5414         };
   5415 
   5416     for (auto *C : Directive.getClausesOfKind<OMPMapClause>())
   5417       for (auto L : C->component_lists())
   5418         InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifier());
   5419     for (auto *C : Directive.getClausesOfKind<OMPToClause>())
   5420       for (auto L : C->component_lists())
   5421         InfoGen(L.first, L.second, OMPC_MAP_to, OMPC_MAP_unknown);
   5422     for (auto *C : Directive.getClausesOfKind<OMPFromClause>())
   5423       for (auto L : C->component_lists())
   5424         InfoGen(L.first, L.second, OMPC_MAP_from, OMPC_MAP_unknown);
   5425 
   5426     for (auto &M : Info) {
   5427       // We need to know when we generate information for the first component
   5428       // associated with a capture, because the mapping flags depend on it.
   5429       bool IsFirstComponentList = true;
   5430       for (MapInfo &L : M.second) {
   5431         assert(!L.Components.empty() &&
   5432                "Not expecting declaration with no component lists.");
   5433         generateInfoForComponentList(L.MapType, L.MapTypeModifier, L.Components,
   5434                                      BasePointers, Pointers, Sizes, Types,
   5435                                      IsFirstComponentList);
   5436         IsFirstComponentList = false;
   5437       }
   5438     }
   5439   }
   5440 
   5441   /// \brief Generate the base pointers, section pointers, sizes and map types
   5442   /// associated to a given capture.
   5443   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
   5444                               MapValuesArrayTy &BasePointers,
   5445                               MapValuesArrayTy &Pointers,
   5446                               MapValuesArrayTy &Sizes,
   5447                               MapFlagsArrayTy &Types) const {
   5448     assert(!Cap->capturesVariableArrayType() &&
   5449            "Not expecting to generate map info for a variable array type!");
   5450 
   5451     BasePointers.clear();
   5452     Pointers.clear();
   5453     Sizes.clear();
   5454     Types.clear();
   5455 
   5456     const ValueDecl *VD =
   5457         Cap->capturesThis()
   5458             ? nullptr
   5459             : cast<ValueDecl>(Cap->getCapturedVar()->getCanonicalDecl());
   5460 
   5461     // We need to know when we generating information for the first component
   5462     // associated with a capture, because the mapping flags depend on it.
   5463     bool IsFirstComponentList = true;
   5464     for (auto *C : Directive.getClausesOfKind<OMPMapClause>())
   5465       for (auto L : C->decl_component_lists(VD)) {
   5466         assert(L.first == VD &&
   5467                "We got information for the wrong declaration??");
   5468         assert(!L.second.empty() &&
   5469                "Not expecting declaration with no component lists.");
   5470         generateInfoForComponentList(C->getMapType(), C->getMapTypeModifier(),
   5471                                      L.second, BasePointers, Pointers, Sizes,
   5472                                      Types, IsFirstComponentList);
   5473         IsFirstComponentList = false;
   5474       }
   5475 
   5476     return;
   5477   }
   5478 
   5479   /// \brief Generate the default map information for a given capture \a CI,
   5480   /// record field declaration \a RI and captured value \a CV.
   5481   void generateDefaultMapInfo(
   5482       const CapturedStmt::Capture &CI, const FieldDecl &RI, llvm::Value *CV,
   5483       MappableExprsHandler::MapValuesArrayTy &CurBasePointers,
   5484       MappableExprsHandler::MapValuesArrayTy &CurPointers,
   5485       MappableExprsHandler::MapValuesArrayTy &CurSizes,
   5486       MappableExprsHandler::MapFlagsArrayTy &CurMapTypes) {
   5487 
   5488     // Do the default mapping.
   5489     if (CI.capturesThis()) {
   5490       CurBasePointers.push_back(CV);
   5491       CurPointers.push_back(CV);
   5492       const PointerType *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
   5493       CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType()));
   5494       // Default map type.
   5495       CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_TO |
   5496                             MappableExprsHandler::OMP_MAP_FROM);
   5497     } else if (CI.capturesVariableByCopy()) {
   5498       CurBasePointers.push_back(CV);
   5499       CurPointers.push_back(CV);
   5500       if (!RI.getType()->isAnyPointerType()) {
   5501         // We have to signal to the runtime captures passed by value that are
   5502         // not pointers.
   5503         CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL);
   5504         CurSizes.push_back(CGF.getTypeSize(RI.getType()));
   5505       } else {
   5506         // Pointers are implicitly mapped with a zero size and no flags
   5507         // (other than first map that is added for all implicit maps).
   5508         CurMapTypes.push_back(0u);
   5509         CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy));
   5510       }
   5511     } else {
   5512       assert(CI.capturesVariable() && "Expected captured reference.");
   5513       CurBasePointers.push_back(CV);
   5514       CurPointers.push_back(CV);
   5515 
   5516       const ReferenceType *PtrTy =
   5517           cast<ReferenceType>(RI.getType().getTypePtr());
   5518       QualType ElementType = PtrTy->getPointeeType();
   5519       CurSizes.push_back(CGF.getTypeSize(ElementType));
   5520       // The default map type for a scalar/complex type is 'to' because by
   5521       // default the value doesn't have to be retrieved. For an aggregate
   5522       // type, the default is 'tofrom'.
   5523       CurMapTypes.push_back(ElementType->isAggregateType()
   5524                                 ? (MappableExprsHandler::OMP_MAP_TO |
   5525                                    MappableExprsHandler::OMP_MAP_FROM)
   5526                                 : MappableExprsHandler::OMP_MAP_TO);
   5527 
   5528       // If we have a capture by reference we may need to add the private
   5529       // pointer flag if the base declaration shows in some first-private
   5530       // clause.
   5531       CurMapTypes.back() =
   5532           adjustMapModifiersForPrivateClauses(CI, CurMapTypes.back());
   5533     }
   5534     // Every default map produces a single argument, so, it is always the
   5535     // first one.
   5536     CurMapTypes.back() |= MappableExprsHandler::OMP_MAP_FIRST_REF;
   5537   }
   5538 };
   5539 
   5540 enum OpenMPOffloadingReservedDeviceIDs {
   5541   /// \brief Device ID if the device was not defined, runtime should get it
   5542   /// from environment variables in the spec.
   5543   OMP_DEVICEID_UNDEF = -1,
   5544 };
   5545 } // anonymous namespace
   5546 
   5547 /// \brief Emit the arrays used to pass the captures and map information to the
   5548 /// offloading runtime library. If there is no map or capture information,
   5549 /// return nullptr by reference.
   5550 static void
   5551 emitOffloadingArrays(CodeGenFunction &CGF, llvm::Value *&BasePointersArray,
   5552                      llvm::Value *&PointersArray, llvm::Value *&SizesArray,
   5553                      llvm::Value *&MapTypesArray,
   5554                      MappableExprsHandler::MapValuesArrayTy &BasePointers,
   5555                      MappableExprsHandler::MapValuesArrayTy &Pointers,
   5556                      MappableExprsHandler::MapValuesArrayTy &Sizes,
   5557                      MappableExprsHandler::MapFlagsArrayTy &MapTypes) {
   5558   auto &CGM = CGF.CGM;
   5559   auto &Ctx = CGF.getContext();
   5560 
   5561   BasePointersArray = PointersArray = SizesArray = MapTypesArray = nullptr;
   5562 
   5563   if (unsigned PointerNumVal = BasePointers.size()) {
   5564     // Detect if we have any capture size requiring runtime evaluation of the
   5565     // size so that a constant array could be eventually used.
   5566     bool hasRuntimeEvaluationCaptureSize = false;
   5567     for (auto *S : Sizes)
   5568       if (!isa<llvm::Constant>(S)) {
   5569         hasRuntimeEvaluationCaptureSize = true;
   5570         break;
   5571       }
   5572 
   5573     llvm::APInt PointerNumAP(32, PointerNumVal, /*isSigned=*/true);
   5574     QualType PointerArrayType =
   5575         Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
   5576                                  /*IndexTypeQuals=*/0);
   5577 
   5578     BasePointersArray =
   5579         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
   5580     PointersArray =
   5581         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
   5582 
   5583     // If we don't have any VLA types or other types that require runtime
   5584     // evaluation, we can use a constant array for the map sizes, otherwise we
   5585     // need to fill up the arrays as we do for the pointers.
   5586     if (hasRuntimeEvaluationCaptureSize) {
   5587       QualType SizeArrayType = Ctx.getConstantArrayType(
   5588           Ctx.getSizeType(), PointerNumAP, ArrayType::Normal,
   5589           /*IndexTypeQuals=*/0);
   5590       SizesArray =
   5591           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
   5592     } else {
   5593       // We expect all the sizes to be constant, so we collect them to create
   5594       // a constant array.
   5595       SmallVector<llvm::Constant *, 16> ConstSizes;
   5596       for (auto S : Sizes)
   5597         ConstSizes.push_back(cast<llvm::Constant>(S));
   5598 
   5599       auto *SizesArrayInit = llvm::ConstantArray::get(
   5600           llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes);
   5601       auto *SizesArrayGbl = new llvm::GlobalVariable(
   5602           CGM.getModule(), SizesArrayInit->getType(),
   5603           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
   5604           SizesArrayInit, ".offload_sizes");
   5605       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
   5606       SizesArray = SizesArrayGbl;
   5607     }
   5608 
   5609     // The map types are always constant so we don't need to generate code to
   5610     // fill arrays. Instead, we create an array constant.
   5611     llvm::Constant *MapTypesArrayInit =
   5612         llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes);
   5613     auto *MapTypesArrayGbl = new llvm::GlobalVariable(
   5614         CGM.getModule(), MapTypesArrayInit->getType(),
   5615         /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
   5616         MapTypesArrayInit, ".offload_maptypes");
   5617     MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
   5618     MapTypesArray = MapTypesArrayGbl;
   5619 
   5620     for (unsigned i = 0; i < PointerNumVal; ++i) {
   5621       llvm::Value *BPVal = BasePointers[i];
   5622       if (BPVal->getType()->isPointerTy())
   5623         BPVal = CGF.Builder.CreateBitCast(BPVal, CGM.VoidPtrTy);
   5624       else {
   5625         assert(BPVal->getType()->isIntegerTy() &&
   5626                "If not a pointer, the value type must be an integer.");
   5627         BPVal = CGF.Builder.CreateIntToPtr(BPVal, CGM.VoidPtrTy);
   5628       }
   5629       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
   5630           llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), BasePointersArray,
   5631           0, i);
   5632       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
   5633       CGF.Builder.CreateStore(BPVal, BPAddr);
   5634 
   5635       llvm::Value *PVal = Pointers[i];
   5636       if (PVal->getType()->isPointerTy())
   5637         PVal = CGF.Builder.CreateBitCast(PVal, CGM.VoidPtrTy);
   5638       else {
   5639         assert(PVal->getType()->isIntegerTy() &&
   5640                "If not a pointer, the value type must be an integer.");
   5641         PVal = CGF.Builder.CreateIntToPtr(PVal, CGM.VoidPtrTy);
   5642       }
   5643       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
   5644           llvm::ArrayType::get(CGM.VoidPtrTy, PointerNumVal), PointersArray, 0,
   5645           i);
   5646       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
   5647       CGF.Builder.CreateStore(PVal, PAddr);
   5648 
   5649       if (hasRuntimeEvaluationCaptureSize) {
   5650         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
   5651             llvm::ArrayType::get(CGM.SizeTy, PointerNumVal), SizesArray,
   5652             /*Idx0=*/0,
   5653             /*Idx1=*/i);
   5654         Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType()));
   5655         CGF.Builder.CreateStore(
   5656             CGF.Builder.CreateIntCast(Sizes[i], CGM.SizeTy, /*isSigned=*/true),
   5657             SAddr);
   5658       }
   5659     }
   5660   }
   5661 }
   5662 /// \brief Emit the arguments to be passed to the runtime library based on the
   5663 /// arrays of pointers, sizes and map types.
   5664 static void emitOffloadingArraysArgument(
   5665     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
   5666     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
   5667     llvm::Value *&MapTypesArrayArg, llvm::Value *BasePointersArray,
   5668     llvm::Value *PointersArray, llvm::Value *SizesArray,
   5669     llvm::Value *MapTypesArray, unsigned NumElems) {
   5670   auto &CGM = CGF.CGM;
   5671   if (NumElems) {
   5672     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
   5673         llvm::ArrayType::get(CGM.VoidPtrTy, NumElems), BasePointersArray,
   5674         /*Idx0=*/0, /*Idx1=*/0);
   5675     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
   5676         llvm::ArrayType::get(CGM.VoidPtrTy, NumElems), PointersArray,
   5677         /*Idx0=*/0,
   5678         /*Idx1=*/0);
   5679     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
   5680         llvm::ArrayType::get(CGM.SizeTy, NumElems), SizesArray,
   5681         /*Idx0=*/0, /*Idx1=*/0);
   5682     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
   5683         llvm::ArrayType::get(CGM.Int32Ty, NumElems), MapTypesArray,
   5684         /*Idx0=*/0,
   5685         /*Idx1=*/0);
   5686   } else {
   5687     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
   5688     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
   5689     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo());
   5690     MapTypesArrayArg =
   5691         llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo());
   5692   }
   5693 }
   5694 
   5695 void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
   5696                                      const OMPExecutableDirective &D,
   5697                                      llvm::Value *OutlinedFn,
   5698                                      llvm::Value *OutlinedFnID,
   5699                                      const Expr *IfCond, const Expr *Device,
   5700                                      ArrayRef<llvm::Value *> CapturedVars) {
   5701   if (!CGF.HaveInsertPoint())
   5702     return;
   5703 
   5704   assert(OutlinedFn && "Invalid outlined function!");
   5705 
   5706   auto &Ctx = CGF.getContext();
   5707 
   5708   // Fill up the arrays with all the captured variables.
   5709   MappableExprsHandler::MapValuesArrayTy KernelArgs;
   5710   MappableExprsHandler::MapValuesArrayTy BasePointers;
   5711   MappableExprsHandler::MapValuesArrayTy Pointers;
   5712   MappableExprsHandler::MapValuesArrayTy Sizes;
   5713   MappableExprsHandler::MapFlagsArrayTy MapTypes;
   5714 
   5715   MappableExprsHandler::MapValuesArrayTy CurBasePointers;
   5716   MappableExprsHandler::MapValuesArrayTy CurPointers;
   5717   MappableExprsHandler::MapValuesArrayTy CurSizes;
   5718   MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
   5719 
   5720   // Get mappable expression information.
   5721   MappableExprsHandler MEHandler(D, CGF);
   5722 
   5723   const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
   5724   auto RI = CS.getCapturedRecordDecl()->field_begin();
   5725   auto CV = CapturedVars.begin();
   5726   for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
   5727                                             CE = CS.capture_end();
   5728        CI != CE; ++CI, ++RI, ++CV) {
   5729     StringRef Name;
   5730     QualType Ty;
   5731 
   5732     CurBasePointers.clear();
   5733     CurPointers.clear();
   5734     CurSizes.clear();
   5735     CurMapTypes.clear();
   5736 
   5737     // VLA sizes are passed to the outlined region by copy and do not have map
   5738     // information associated.
   5739     if (CI->capturesVariableArrayType()) {
   5740       CurBasePointers.push_back(*CV);
   5741       CurPointers.push_back(*CV);
   5742       CurSizes.push_back(CGF.getTypeSize(RI->getType()));
   5743       // Copy to the device as an argument. No need to retrieve it.
   5744       CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL |
   5745                             MappableExprsHandler::OMP_MAP_FIRST_REF);
   5746     } else {
   5747       // If we have any information in the map clause, we use it, otherwise we
   5748       // just do a default mapping.
   5749       MEHandler.generateInfoForCapture(CI, CurBasePointers, CurPointers,
   5750                                        CurSizes, CurMapTypes);
   5751       if (CurBasePointers.empty())
   5752         MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
   5753                                          CurPointers, CurSizes, CurMapTypes);
   5754     }
   5755     // We expect to have at least an element of information for this capture.
   5756     assert(!CurBasePointers.empty() && "Non-existing map pointer for capture!");
   5757     assert(CurBasePointers.size() == CurPointers.size() &&
   5758            CurBasePointers.size() == CurSizes.size() &&
   5759            CurBasePointers.size() == CurMapTypes.size() &&
   5760            "Inconsistent map information sizes!");
   5761 
   5762     // The kernel args are always the first elements of the base pointers
   5763     // associated with a capture.
   5764     KernelArgs.push_back(CurBasePointers.front());
   5765     // We need to append the results of this capture to what we already have.
   5766     BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
   5767     Pointers.append(CurPointers.begin(), CurPointers.end());
   5768     Sizes.append(CurSizes.begin(), CurSizes.end());
   5769     MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
   5770   }
   5771 
   5772   // Keep track on whether the host function has to be executed.
   5773   auto OffloadErrorQType =
   5774       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true);
   5775   auto OffloadError = CGF.MakeAddrLValue(
   5776       CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"),
   5777       OffloadErrorQType);
   5778   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty),
   5779                         OffloadError);
   5780 
   5781   // Fill up the pointer arrays and transfer execution to the device.
   5782   auto &&ThenGen = [&Ctx, &BasePointers, &Pointers, &Sizes, &MapTypes, Device,
   5783                     OutlinedFnID, OffloadError, OffloadErrorQType,
   5784                     &D](CodeGenFunction &CGF, PrePostActionTy &) {
   5785     auto &RT = CGF.CGM.getOpenMPRuntime();
   5786     // Emit the offloading arrays.
   5787     llvm::Value *BasePointersArray;
   5788     llvm::Value *PointersArray;
   5789     llvm::Value *SizesArray;
   5790     llvm::Value *MapTypesArray;
   5791     emitOffloadingArrays(CGF, BasePointersArray, PointersArray, SizesArray,
   5792                          MapTypesArray, BasePointers, Pointers, Sizes,
   5793                          MapTypes);
   5794     emitOffloadingArraysArgument(CGF, BasePointersArray, PointersArray,
   5795                                  SizesArray, MapTypesArray, BasePointersArray,
   5796                                  PointersArray, SizesArray, MapTypesArray,
   5797                                  BasePointers.size());
   5798 
   5799     // On top of the arrays that were filled up, the target offloading call
   5800     // takes as arguments the device id as well as the host pointer. The host
   5801     // pointer is used by the runtime library to identify the current target
   5802     // region, so it only has to be unique and not necessarily point to
   5803     // anything. It could be the pointer to the outlined function that
   5804     // implements the target region, but we aren't using that so that the
   5805     // compiler doesn't need to keep that, and could therefore inline the host
   5806     // function if proven worthwhile during optimization.
   5807 
   5808     // From this point on, we need to have an ID of the target region defined.
   5809     assert(OutlinedFnID && "Invalid outlined function ID!");
   5810 
   5811     // Emit device ID if any.
   5812     llvm::Value *DeviceID;
   5813     if (Device)
   5814       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
   5815                                            CGF.Int32Ty, /*isSigned=*/true);
   5816     else
   5817       DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
   5818 
   5819     // Emit the number of elements in the offloading arrays.
   5820     llvm::Value *PointerNum = CGF.Builder.getInt32(BasePointers.size());
   5821 
   5822     // Return value of the runtime offloading call.
   5823     llvm::Value *Return;
   5824 
   5825     auto *NumTeams = emitNumTeamsClauseForTargetDirective(RT, CGF, D);
   5826     auto *ThreadLimit = emitThreadLimitClauseForTargetDirective(RT, CGF, D);
   5827 
   5828     // If we have NumTeams defined this means that we have an enclosed teams
   5829     // region. Therefore we also expect to have ThreadLimit defined. These two
   5830     // values should be defined in the presence of a teams directive, regardless
   5831     // of having any clauses associated. If the user is using teams but no
   5832     // clauses, these two values will be the default that should be passed to
   5833     // the runtime library - a 32-bit integer with the value zero.
   5834     if (NumTeams) {
   5835       assert(ThreadLimit && "Thread limit expression should be available along "
   5836                             "with number of teams.");
   5837       llvm::Value *OffloadingArgs[] = {
   5838           DeviceID,          OutlinedFnID,  PointerNum,
   5839           BasePointersArray, PointersArray, SizesArray,
   5840           MapTypesArray,     NumTeams,      ThreadLimit};
   5841       Return = CGF.EmitRuntimeCall(
   5842           RT.createRuntimeFunction(OMPRTL__tgt_target_teams), OffloadingArgs);
   5843     } else {
   5844       llvm::Value *OffloadingArgs[] = {
   5845           DeviceID,      OutlinedFnID, PointerNum,   BasePointersArray,
   5846           PointersArray, SizesArray,   MapTypesArray};
   5847       Return = CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target),
   5848                                    OffloadingArgs);
   5849     }
   5850 
   5851     CGF.EmitStoreOfScalar(Return, OffloadError);
   5852   };
   5853 
   5854   // Notify that the host version must be executed.
   5855   auto &&ElseGen = [OffloadError](CodeGenFunction &CGF, PrePostActionTy &) {
   5856     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/-1u),
   5857                           OffloadError);
   5858   };
   5859 
   5860   // If we have a target function ID it means that we need to support
   5861   // offloading, otherwise, just execute on the host. We need to execute on host
   5862   // regardless of the conditional in the if clause if, e.g., the user do not
   5863   // specify target triples.
   5864   if (OutlinedFnID) {
   5865     if (IfCond)
   5866       emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
   5867     else {
   5868       RegionCodeGenTy ThenRCG(ThenGen);
   5869       ThenRCG(CGF);
   5870     }
   5871   } else {
   5872     RegionCodeGenTy ElseRCG(ElseGen);
   5873     ElseRCG(CGF);
   5874   }
   5875 
   5876   // Check the error code and execute the host version if required.
   5877   auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed");
   5878   auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont");
   5879   auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation());
   5880   auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal);
   5881   CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
   5882 
   5883   CGF.EmitBlock(OffloadFailedBlock);
   5884   CGF.Builder.CreateCall(OutlinedFn, KernelArgs);
   5885   CGF.EmitBranch(OffloadContBlock);
   5886 
   5887   CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
   5888 }
   5889 
   5890 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
   5891                                                     StringRef ParentName) {
   5892   if (!S)
   5893     return;
   5894 
   5895   // If we find a OMP target directive, codegen the outline function and
   5896   // register the result.
   5897   // FIXME: Add other directives with target when they become supported.
   5898   bool isTargetDirective = isa<OMPTargetDirective>(S);
   5899 
   5900   if (isTargetDirective) {
   5901     auto *E = cast<OMPExecutableDirective>(S);
   5902     unsigned DeviceID;
   5903     unsigned FileID;
   5904     unsigned Line;
   5905     getTargetEntryUniqueInfo(CGM.getContext(), E->getLocStart(), DeviceID,
   5906                              FileID, Line);
   5907 
   5908     // Is this a target region that should not be emitted as an entry point? If
   5909     // so just signal we are done with this target region.
   5910     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
   5911                                                             ParentName, Line))
   5912       return;
   5913 
   5914     llvm::Function *Fn;
   5915     llvm::Constant *Addr;
   5916     std::tie(Fn, Addr) =
   5917         CodeGenFunction::EmitOMPTargetDirectiveOutlinedFunction(
   5918             CGM, cast<OMPTargetDirective>(*E), ParentName,
   5919             /*isOffloadEntry=*/true);
   5920     assert(Fn && Addr && "Target region emission failed.");
   5921     return;
   5922   }
   5923 
   5924   if (const OMPExecutableDirective *E = dyn_cast<OMPExecutableDirective>(S)) {
   5925     if (!E->hasAssociatedStmt())
   5926       return;
   5927 
   5928     scanForTargetRegionsFunctions(
   5929         cast<CapturedStmt>(E->getAssociatedStmt())->getCapturedStmt(),
   5930         ParentName);
   5931     return;
   5932   }
   5933 
   5934   // If this is a lambda function, look into its body.
   5935   if (auto *L = dyn_cast<LambdaExpr>(S))
   5936     S = L->getBody();
   5937 
   5938   // Keep looking for target regions recursively.
   5939   for (auto *II : S->children())
   5940     scanForTargetRegionsFunctions(II, ParentName);
   5941 }
   5942 
   5943 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
   5944   auto &FD = *cast<FunctionDecl>(GD.getDecl());
   5945 
   5946   // If emitting code for the host, we do not process FD here. Instead we do
   5947   // the normal code generation.
   5948   if (!CGM.getLangOpts().OpenMPIsDevice)
   5949     return false;
   5950 
   5951   // Try to detect target regions in the function.
   5952   scanForTargetRegionsFunctions(FD.getBody(), CGM.getMangledName(GD));
   5953 
   5954   // We should not emit any function othen that the ones created during the
   5955   // scanning. Therefore, we signal that this function is completely dealt
   5956   // with.
   5957   return true;
   5958 }
   5959 
   5960 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
   5961   if (!CGM.getLangOpts().OpenMPIsDevice)
   5962     return false;
   5963 
   5964   // Check if there are Ctors/Dtors in this declaration and look for target
   5965   // regions in it. We use the complete variant to produce the kernel name
   5966   // mangling.
   5967   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
   5968   if (auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
   5969     for (auto *Ctor : RD->ctors()) {
   5970       StringRef ParentName =
   5971           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
   5972       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
   5973     }
   5974     auto *Dtor = RD->getDestructor();
   5975     if (Dtor) {
   5976       StringRef ParentName =
   5977           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
   5978       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
   5979     }
   5980   }
   5981 
   5982   // If we are in target mode we do not emit any global (declare target is not
   5983   // implemented yet). Therefore we signal that GD was processed in this case.
   5984   return true;
   5985 }
   5986 
   5987 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
   5988   auto *VD = GD.getDecl();
   5989   if (isa<FunctionDecl>(VD))
   5990     return emitTargetFunctions(GD);
   5991 
   5992   return emitTargetGlobalVariable(GD);
   5993 }
   5994 
   5995 llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
   5996   // If we have offloading in the current module, we need to emit the entries
   5997   // now and register the offloading descriptor.
   5998   createOffloadEntriesAndInfoMetadata();
   5999 
   6000   // Create and register the offloading binary descriptors. This is the main
   6001   // entity that captures all the information about offloading in the current
   6002   // compilation unit.
   6003   return createOffloadingBinaryDescriptorRegistration();
   6004 }
   6005 
   6006 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
   6007                                     const OMPExecutableDirective &D,
   6008                                     SourceLocation Loc,
   6009                                     llvm::Value *OutlinedFn,
   6010                                     ArrayRef<llvm::Value *> CapturedVars) {
   6011   if (!CGF.HaveInsertPoint())
   6012     return;
   6013 
   6014   auto *RTLoc = emitUpdateLocation(CGF, Loc);
   6015   CodeGenFunction::RunCleanupsScope Scope(CGF);
   6016 
   6017   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
   6018   llvm::Value *Args[] = {
   6019       RTLoc,
   6020       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
   6021       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
   6022   llvm::SmallVector<llvm::Value *, 16> RealArgs;
   6023   RealArgs.append(std::begin(Args), std::end(Args));
   6024   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
   6025 
   6026   auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
   6027   CGF.EmitRuntimeCall(RTLFn, RealArgs);
   6028 }
   6029 
   6030 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
   6031                                          const Expr *NumTeams,
   6032                                          const Expr *ThreadLimit,
   6033                                          SourceLocation Loc) {
   6034   if (!CGF.HaveInsertPoint())
   6035     return;
   6036 
   6037   auto *RTLoc = emitUpdateLocation(CGF, Loc);
   6038 
   6039   llvm::Value *NumTeamsVal =
   6040       (NumTeams)
   6041           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
   6042                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
   6043           : CGF.Builder.getInt32(0);
   6044 
   6045   llvm::Value *ThreadLimitVal =
   6046       (ThreadLimit)
   6047           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
   6048                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
   6049           : CGF.Builder.getInt32(0);
   6050 
   6051   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
   6052   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
   6053                                      ThreadLimitVal};
   6054   CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
   6055                       PushNumTeamsArgs);
   6056 }
   6057 
   6058 void CGOpenMPRuntime::emitTargetDataCalls(CodeGenFunction &CGF,
   6059                                           const OMPExecutableDirective &D,
   6060                                           const Expr *IfCond,
   6061                                           const Expr *Device,
   6062                                           const RegionCodeGenTy &CodeGen) {
   6063 
   6064   if (!CGF.HaveInsertPoint())
   6065     return;
   6066 
   6067   llvm::Value *BasePointersArray = nullptr;
   6068   llvm::Value *PointersArray = nullptr;
   6069   llvm::Value *SizesArray = nullptr;
   6070   llvm::Value *MapTypesArray = nullptr;
   6071   unsigned NumOfPtrs = 0;
   6072 
   6073   // Generate the code for the opening of the data environment. Capture all the
   6074   // arguments of the runtime call by reference because they are used in the
   6075   // closing of the region.
   6076   auto &&BeginThenGen = [&D, &CGF, &BasePointersArray, &PointersArray,
   6077                          &SizesArray, &MapTypesArray, Device,
   6078                          &NumOfPtrs](CodeGenFunction &CGF, PrePostActionTy &) {
   6079     // Fill up the arrays with all the mapped variables.
   6080     MappableExprsHandler::MapValuesArrayTy BasePointers;
   6081     MappableExprsHandler::MapValuesArrayTy Pointers;
   6082     MappableExprsHandler::MapValuesArrayTy Sizes;
   6083     MappableExprsHandler::MapFlagsArrayTy MapTypes;
   6084 
   6085     // Get map clause information.
   6086     MappableExprsHandler MCHandler(D, CGF);
   6087     MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
   6088     NumOfPtrs = BasePointers.size();
   6089 
   6090     // Fill up the arrays and create the arguments.
   6091     emitOffloadingArrays(CGF, BasePointersArray, PointersArray, SizesArray,
   6092                          MapTypesArray, BasePointers, Pointers, Sizes,
   6093                          MapTypes);
   6094 
   6095     llvm::Value *BasePointersArrayArg = nullptr;
   6096     llvm::Value *PointersArrayArg = nullptr;
   6097     llvm::Value *SizesArrayArg = nullptr;
   6098     llvm::Value *MapTypesArrayArg = nullptr;
   6099     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
   6100                                  SizesArrayArg, MapTypesArrayArg,
   6101                                  BasePointersArray, PointersArray, SizesArray,
   6102                                  MapTypesArray, NumOfPtrs);
   6103 
   6104     // Emit device ID if any.
   6105     llvm::Value *DeviceID = nullptr;
   6106     if (Device)
   6107       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
   6108                                            CGF.Int32Ty, /*isSigned=*/true);
   6109     else
   6110       DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
   6111 
   6112     // Emit the number of elements in the offloading arrays.
   6113     auto *PointerNum = CGF.Builder.getInt32(NumOfPtrs);
   6114 
   6115     llvm::Value *OffloadingArgs[] = {
   6116         DeviceID,         PointerNum,    BasePointersArrayArg,
   6117         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
   6118     auto &RT = CGF.CGM.getOpenMPRuntime();
   6119     CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_begin),
   6120                         OffloadingArgs);
   6121   };
   6122 
   6123   // Generate code for the closing of the data region.
   6124   auto &&EndThenGen = [&CGF, &BasePointersArray, &PointersArray, &SizesArray,
   6125                        &MapTypesArray, Device,
   6126                        &NumOfPtrs](CodeGenFunction &CGF, PrePostActionTy &) {
   6127     assert(BasePointersArray && PointersArray && SizesArray && MapTypesArray &&
   6128            NumOfPtrs && "Invalid data environment closing arguments.");
   6129 
   6130     llvm::Value *BasePointersArrayArg = nullptr;
   6131     llvm::Value *PointersArrayArg = nullptr;
   6132     llvm::Value *SizesArrayArg = nullptr;
   6133     llvm::Value *MapTypesArrayArg = nullptr;
   6134     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
   6135                                  SizesArrayArg, MapTypesArrayArg,
   6136                                  BasePointersArray, PointersArray, SizesArray,
   6137                                  MapTypesArray, NumOfPtrs);
   6138 
   6139     // Emit device ID if any.
   6140     llvm::Value *DeviceID = nullptr;
   6141     if (Device)
   6142       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
   6143                                            CGF.Int32Ty, /*isSigned=*/true);
   6144     else
   6145       DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
   6146 
   6147     // Emit the number of elements in the offloading arrays.
   6148     auto *PointerNum = CGF.Builder.getInt32(NumOfPtrs);
   6149 
   6150     llvm::Value *OffloadingArgs[] = {
   6151         DeviceID,         PointerNum,    BasePointersArrayArg,
   6152         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
   6153     auto &RT = CGF.CGM.getOpenMPRuntime();
   6154     CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_end),
   6155                         OffloadingArgs);
   6156   };
   6157 
   6158   // In the event we get an if clause, we don't have to take any action on the
   6159   // else side.
   6160   auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
   6161 
   6162   if (IfCond) {
   6163     emitOMPIfClause(CGF, IfCond, BeginThenGen, ElseGen);
   6164   } else {
   6165     RegionCodeGenTy BeginThenRCG(BeginThenGen);
   6166     BeginThenRCG(CGF);
   6167   }
   6168 
   6169   CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, CodeGen);
   6170 
   6171   if (IfCond) {
   6172     emitOMPIfClause(CGF, IfCond, EndThenGen, ElseGen);
   6173   } else {
   6174     RegionCodeGenTy EndThenRCG(EndThenGen);
   6175     EndThenRCG(CGF);
   6176   }
   6177 }
   6178 
   6179 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
   6180     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
   6181     const Expr *Device) {
   6182   if (!CGF.HaveInsertPoint())
   6183     return;
   6184 
   6185   assert((isa<OMPTargetEnterDataDirective>(D) ||
   6186           isa<OMPTargetExitDataDirective>(D) ||
   6187           isa<OMPTargetUpdateDirective>(D)) &&
   6188          "Expecting either target enter, exit data, or update directives.");
   6189 
   6190   // Generate the code for the opening of the data environment.
   6191   auto &&ThenGen = [&D, &CGF, Device](CodeGenFunction &CGF, PrePostActionTy &) {
   6192     // Fill up the arrays with all the mapped variables.
   6193     MappableExprsHandler::MapValuesArrayTy BasePointers;
   6194     MappableExprsHandler::MapValuesArrayTy Pointers;
   6195     MappableExprsHandler::MapValuesArrayTy Sizes;
   6196     MappableExprsHandler::MapFlagsArrayTy MapTypes;
   6197 
   6198     // Get map clause information.
   6199     MappableExprsHandler MEHandler(D, CGF);
   6200     MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
   6201 
   6202     llvm::Value *BasePointersArrayArg = nullptr;
   6203     llvm::Value *PointersArrayArg = nullptr;
   6204     llvm::Value *SizesArrayArg = nullptr;
   6205     llvm::Value *MapTypesArrayArg = nullptr;
   6206 
   6207     // Fill up the arrays and create the arguments.
   6208     emitOffloadingArrays(CGF, BasePointersArrayArg, PointersArrayArg,
   6209                          SizesArrayArg, MapTypesArrayArg, BasePointers,
   6210                          Pointers, Sizes, MapTypes);
   6211     emitOffloadingArraysArgument(
   6212         CGF, BasePointersArrayArg, PointersArrayArg, SizesArrayArg,
   6213         MapTypesArrayArg, BasePointersArrayArg, PointersArrayArg, SizesArrayArg,
   6214         MapTypesArrayArg, BasePointers.size());
   6215 
   6216     // Emit device ID if any.
   6217     llvm::Value *DeviceID = nullptr;
   6218     if (Device)
   6219       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
   6220                                            CGF.Int32Ty, /*isSigned=*/true);
   6221     else
   6222       DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
   6223 
   6224     // Emit the number of elements in the offloading arrays.
   6225     auto *PointerNum = CGF.Builder.getInt32(BasePointers.size());
   6226 
   6227     llvm::Value *OffloadingArgs[] = {
   6228         DeviceID,         PointerNum,    BasePointersArrayArg,
   6229         PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
   6230 
   6231     auto &RT = CGF.CGM.getOpenMPRuntime();
   6232     // Select the right runtime function call for each expected standalone
   6233     // directive.
   6234     OpenMPRTLFunction RTLFn;
   6235     switch (D.getDirectiveKind()) {
   6236     default:
   6237       llvm_unreachable("Unexpected standalone target data directive.");
   6238       break;
   6239     case OMPD_target_enter_data:
   6240       RTLFn = OMPRTL__tgt_target_data_begin;
   6241       break;
   6242     case OMPD_target_exit_data:
   6243       RTLFn = OMPRTL__tgt_target_data_end;
   6244       break;
   6245     case OMPD_target_update:
   6246       RTLFn = OMPRTL__tgt_target_data_update;
   6247       break;
   6248     }
   6249     CGF.EmitRuntimeCall(RT.createRuntimeFunction(RTLFn), OffloadingArgs);
   6250   };
   6251 
   6252   // In the event we get an if clause, we don't have to take any action on the
   6253   // else side.
   6254   auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
   6255 
   6256   if (IfCond) {
   6257     emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
   6258   } else {
   6259     RegionCodeGenTy ThenGenRCG(ThenGen);
   6260     ThenGenRCG(CGF);
   6261   }
   6262 }
   6263 
   6264 namespace {
   6265   /// Kind of parameter in a function with 'declare simd' directive.
   6266   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
   6267   /// Attribute set of the parameter.
   6268   struct ParamAttrTy {
   6269     ParamKindTy Kind = Vector;
   6270     llvm::APSInt StrideOrArg;
   6271     llvm::APSInt Alignment;
   6272   };
   6273 } // namespace
   6274 
   6275 static unsigned evaluateCDTSize(const FunctionDecl *FD,
   6276                                 ArrayRef<ParamAttrTy> ParamAttrs) {
   6277   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
   6278   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
   6279   // of that clause. The VLEN value must be power of 2.
   6280   // In other case the notion of the function`s "characteristic data type" (CDT)
   6281   // is used to compute the vector length.
   6282   // CDT is defined in the following order:
   6283   //   a) For non-void function, the CDT is the return type.
   6284   //   b) If the function has any non-uniform, non-linear parameters, then the
   6285   //   CDT is the type of the first such parameter.
   6286   //   c) If the CDT determined by a) or b) above is struct, union, or class
   6287   //   type which is pass-by-value (except for the type that maps to the
   6288   //   built-in complex data type), the characteristic data type is int.
   6289   //   d) If none of the above three cases is applicable, the CDT is int.
   6290   // The VLEN is then determined based on the CDT and the size of vector
   6291   // register of that ISA for which current vector version is generated. The
   6292   // VLEN is computed using the formula below:
   6293   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
   6294   // where vector register size specified in section 3.2.1 Registers and the
   6295   // Stack Frame of original AMD64 ABI document.
   6296   QualType RetType = FD->getReturnType();
   6297   if (RetType.isNull())
   6298     return 0;
   6299   ASTContext &C = FD->getASTContext();
   6300   QualType CDT;
   6301   if (!RetType.isNull() && !RetType->isVoidType())
   6302     CDT = RetType;
   6303   else {
   6304     unsigned Offset = 0;
   6305     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
   6306       if (ParamAttrs[Offset].Kind == Vector)
   6307         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
   6308       ++Offset;
   6309     }
   6310     if (CDT.isNull()) {
   6311       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
   6312         if (ParamAttrs[I + Offset].Kind == Vector) {
   6313           CDT = FD->getParamDecl(I)->getType();
   6314           break;
   6315         }
   6316       }
   6317     }
   6318   }
   6319   if (CDT.isNull())
   6320     CDT = C.IntTy;
   6321   CDT = CDT->getCanonicalTypeUnqualified();
   6322   if (CDT->isRecordType() || CDT->isUnionType())
   6323     CDT = C.IntTy;
   6324   return C.getTypeSize(CDT);
   6325 }
   6326 
   6327 static void
   6328 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
   6329                            llvm::APSInt VLENVal,
   6330                            ArrayRef<ParamAttrTy> ParamAttrs,
   6331                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
   6332   struct ISADataTy {
   6333     char ISA;
   6334     unsigned VecRegSize;
   6335   };
   6336   ISADataTy ISAData[] = {
   6337       {
   6338           'b', 128
   6339       }, // SSE
   6340       {
   6341           'c', 256
   6342       }, // AVX
   6343       {
   6344           'd', 256
   6345       }, // AVX2
   6346       {
   6347           'e', 512
   6348       }, // AVX512
   6349   };
   6350   llvm::SmallVector<char, 2> Masked;
   6351   switch (State) {
   6352   case OMPDeclareSimdDeclAttr::BS_Undefined:
   6353     Masked.push_back('N');
   6354     Masked.push_back('M');
   6355     break;
   6356   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
   6357     Masked.push_back('N');
   6358     break;
   6359   case OMPDeclareSimdDeclAttr::BS_Inbranch:
   6360     Masked.push_back('M');
   6361     break;
   6362   }
   6363   for (auto Mask : Masked) {
   6364     for (auto &Data : ISAData) {
   6365       SmallString<256> Buffer;
   6366       llvm::raw_svector_ostream Out(Buffer);
   6367       Out << "_ZGV" << Data.ISA << Mask;
   6368       if (!VLENVal) {
   6369         Out << llvm::APSInt::getUnsigned(Data.VecRegSize /
   6370                                          evaluateCDTSize(FD, ParamAttrs));
   6371       } else
   6372         Out << VLENVal;
   6373       for (auto &ParamAttr : ParamAttrs) {
   6374         switch (ParamAttr.Kind){
   6375         case LinearWithVarStride:
   6376           Out << 's' << ParamAttr.StrideOrArg;
   6377           break;
   6378         case Linear:
   6379           Out << 'l';
   6380           if (!!ParamAttr.StrideOrArg)
   6381             Out << ParamAttr.StrideOrArg;
   6382           break;
   6383         case Uniform:
   6384           Out << 'u';
   6385           break;
   6386         case Vector:
   6387           Out << 'v';
   6388           break;
   6389         }
   6390         if (!!ParamAttr.Alignment)
   6391           Out << 'a' << ParamAttr.Alignment;
   6392       }
   6393       Out << '_' << Fn->getName();
   6394       Fn->addFnAttr(Out.str());
   6395     }
   6396   }
   6397 }
   6398 
   6399 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
   6400                                               llvm::Function *Fn) {
   6401   ASTContext &C = CGM.getContext();
   6402   FD = FD->getCanonicalDecl();
   6403   // Map params to their positions in function decl.
   6404   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
   6405   if (isa<CXXMethodDecl>(FD))
   6406     ParamPositions.insert({FD, 0});
   6407   unsigned ParamPos = ParamPositions.size();
   6408   for (auto *P : FD->parameters()) {
   6409     ParamPositions.insert({P->getCanonicalDecl(), ParamPos});
   6410     ++ParamPos;
   6411   }
   6412   for (auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
   6413     llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
   6414     // Mark uniform parameters.
   6415     for (auto *E : Attr->uniforms()) {
   6416       E = E->IgnoreParenImpCasts();
   6417       unsigned Pos;
   6418       if (isa<CXXThisExpr>(E))
   6419         Pos = ParamPositions[FD];
   6420       else {
   6421         auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
   6422                         ->getCanonicalDecl();
   6423         Pos = ParamPositions[PVD];
   6424       }
   6425       ParamAttrs[Pos].Kind = Uniform;
   6426     }
   6427     // Get alignment info.
   6428     auto NI = Attr->alignments_begin();
   6429     for (auto *E : Attr->aligneds()) {
   6430       E = E->IgnoreParenImpCasts();
   6431       unsigned Pos;
   6432       QualType ParmTy;
   6433       if (isa<CXXThisExpr>(E)) {
   6434         Pos = ParamPositions[FD];
   6435         ParmTy = E->getType();
   6436       } else {
   6437         auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
   6438                         ->getCanonicalDecl();
   6439         Pos = ParamPositions[PVD];
   6440         ParmTy = PVD->getType();
   6441       }
   6442       ParamAttrs[Pos].Alignment =
   6443           (*NI) ? (*NI)->EvaluateKnownConstInt(C)
   6444                 : llvm::APSInt::getUnsigned(
   6445                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
   6446                           .getQuantity());
   6447       ++NI;
   6448     }
   6449     // Mark linear parameters.
   6450     auto SI = Attr->steps_begin();
   6451     auto MI = Attr->modifiers_begin();
   6452     for (auto *E : Attr->linears()) {
   6453       E = E->IgnoreParenImpCasts();
   6454       unsigned Pos;
   6455       if (isa<CXXThisExpr>(E))
   6456         Pos = ParamPositions[FD];
   6457       else {
   6458         auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
   6459                         ->getCanonicalDecl();
   6460         Pos = ParamPositions[PVD];
   6461       }
   6462       auto &ParamAttr = ParamAttrs[Pos];
   6463       ParamAttr.Kind = Linear;
   6464       if (*SI) {
   6465         if (!(*SI)->EvaluateAsInt(ParamAttr.StrideOrArg, C,
   6466                                   Expr::SE_AllowSideEffects)) {
   6467           if (auto *DRE = cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
   6468             if (auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
   6469               ParamAttr.Kind = LinearWithVarStride;
   6470               ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
   6471                   ParamPositions[StridePVD->getCanonicalDecl()]);
   6472             }
   6473           }
   6474         }
   6475       }
   6476       ++SI;
   6477       ++MI;
   6478     }
   6479     llvm::APSInt VLENVal;
   6480     if (const Expr *VLEN = Attr->getSimdlen())
   6481       VLENVal = VLEN->EvaluateKnownConstInt(C);
   6482     OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
   6483     if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
   6484         CGM.getTriple().getArch() == llvm::Triple::x86_64)
   6485       emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
   6486   }
   6487 }
   6488 
   6489 namespace {
   6490 /// Cleanup action for doacross support.
   6491 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
   6492 public:
   6493   static const int DoacrossFinArgs = 2;
   6494 
   6495 private:
   6496   llvm::Value *RTLFn;
   6497   llvm::Value *Args[DoacrossFinArgs];
   6498 
   6499 public:
   6500   DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef<llvm::Value *> CallArgs)
   6501       : RTLFn(RTLFn) {
   6502     assert(CallArgs.size() == DoacrossFinArgs);
   6503     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
   6504   }
   6505   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
   6506     if (!CGF.HaveInsertPoint())
   6507       return;
   6508     CGF.EmitRuntimeCall(RTLFn, Args);
   6509   }
   6510 };
   6511 } // namespace
   6512 
   6513 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
   6514                                        const OMPLoopDirective &D) {
   6515   if (!CGF.HaveInsertPoint())
   6516     return;
   6517 
   6518   ASTContext &C = CGM.getContext();
   6519   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
   6520   RecordDecl *RD;
   6521   if (KmpDimTy.isNull()) {
   6522     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
   6523     //  kmp_int64 lo; // lower
   6524     //  kmp_int64 up; // upper
   6525     //  kmp_int64 st; // stride
   6526     // };
   6527     RD = C.buildImplicitRecord("kmp_dim");
   6528     RD->startDefinition();
   6529     addFieldToRecordDecl(C, RD, Int64Ty);
   6530     addFieldToRecordDecl(C, RD, Int64Ty);
   6531     addFieldToRecordDecl(C, RD, Int64Ty);
   6532     RD->completeDefinition();
   6533     KmpDimTy = C.getRecordType(RD);
   6534   } else
   6535     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
   6536 
   6537   Address DimsAddr = CGF.CreateMemTemp(KmpDimTy, "dims");
   6538   CGF.EmitNullInitialization(DimsAddr, KmpDimTy);
   6539   enum { LowerFD = 0, UpperFD, StrideFD };
   6540   // Fill dims with data.
   6541   LValue DimsLVal = CGF.MakeAddrLValue(DimsAddr, KmpDimTy);
   6542   // dims.upper = num_iterations;
   6543   LValue UpperLVal =
   6544       CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), UpperFD));
   6545   llvm::Value *NumIterVal = CGF.EmitScalarConversion(
   6546       CGF.EmitScalarExpr(D.getNumIterations()), D.getNumIterations()->getType(),
   6547       Int64Ty, D.getNumIterations()->getExprLoc());
   6548   CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
   6549   // dims.stride = 1;
   6550   LValue StrideLVal =
   6551       CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), StrideFD));
   6552   CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
   6553                         StrideLVal);
   6554 
   6555   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
   6556   // kmp_int32 num_dims, struct kmp_dim * dims);
   6557   llvm::Value *Args[] = {emitUpdateLocation(CGF, D.getLocStart()),
   6558                          getThreadID(CGF, D.getLocStart()),
   6559                          llvm::ConstantInt::getSigned(CGM.Int32Ty, 1),
   6560                          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
   6561                              DimsAddr.getPointer(), CGM.VoidPtrTy)};
   6562 
   6563   llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init);
   6564   CGF.EmitRuntimeCall(RTLFn, Args);
   6565   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
   6566       emitUpdateLocation(CGF, D.getLocEnd()), getThreadID(CGF, D.getLocEnd())};
   6567   llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
   6568   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
   6569                                              llvm::makeArrayRef(FiniArgs));
   6570 }
   6571 
   6572 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
   6573                                           const OMPDependClause *C) {
   6574   QualType Int64Ty =
   6575       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
   6576   const Expr *CounterVal = C->getCounterValue();
   6577   assert(CounterVal);
   6578   llvm::Value *CntVal = CGF.EmitScalarConversion(CGF.EmitScalarExpr(CounterVal),
   6579                                                  CounterVal->getType(), Int64Ty,
   6580                                                  CounterVal->getExprLoc());
   6581   Address CntAddr = CGF.CreateMemTemp(Int64Ty, ".cnt.addr");
   6582   CGF.EmitStoreOfScalar(CntVal, CntAddr, /*Volatile=*/false, Int64Ty);
   6583   llvm::Value *Args[] = {emitUpdateLocation(CGF, C->getLocStart()),
   6584                          getThreadID(CGF, C->getLocStart()),
   6585                          CntAddr.getPointer()};
   6586   llvm::Value *RTLFn;
   6587   if (C->getDependencyKind() == OMPC_DEPEND_source)
   6588     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
   6589   else {
   6590     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
   6591     RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
   6592   }
   6593   CGF.EmitRuntimeCall(RTLFn, Args);
   6594 }
   6595 
   6596