Home | History | Annotate | Download | only in IPO
      1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for equivalent functions that are mergable and folds them.
     11 //
     12 // Order relation is defined on set of functions. It was made through
     13 // special function comparison procedure that returns
     14 // 0 when functions are equal,
     15 // -1 when Left function is less than right function, and
     16 // 1 for opposite case. We need total-ordering, so we need to maintain
     17 // four properties on the functions set:
     18 // a <= a (reflexivity)
     19 // if a <= b and b <= a then a = b (antisymmetry)
     20 // if a <= b and b <= c then a <= c (transitivity).
     21 // for all a and b: a <= b or b <= a (totality).
     22 //
     23 // Comparison iterates through each instruction in each basic block.
     24 // Functions are kept on binary tree. For each new function F we perform
     25 // lookup in binary tree.
     26 // In practice it works the following way:
     27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
     28 // -- "FunctionPtr" instances are stored in std::set collection, so every
     29 //    std::set::insert operation will give you result in log(N) time.
     30 //
     31 // As an optimization, a hash of the function structure is calculated first, and
     32 // two functions are only compared if they have the same hash. This hash is
     33 // cheap to compute, and has the property that if function F == G according to
     34 // the comparison function, then hash(F) == hash(G). This consistency property
     35 // is critical to ensuring all possible merging opportunities are exploited.
     36 // Collisions in the hash affect the speed of the pass but not the correctness
     37 // or determinism of the resulting transformation.
     38 //
     39 // When a match is found the functions are folded. If both functions are
     40 // overridable, we move the functionality into a new internal function and
     41 // leave two overridable thunks to it.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 //
     45 // Future work:
     46 //
     47 // * virtual functions.
     48 //
     49 // Many functions have their address taken by the virtual function table for
     50 // the object they belong to. However, as long as it's only used for a lookup
     51 // and call, this is irrelevant, and we'd like to fold such functions.
     52 //
     53 // * be smarter about bitcasts.
     54 //
     55 // In order to fold functions, we will sometimes add either bitcast instructions
     56 // or bitcast constant expressions. Unfortunately, this can confound further
     57 // analysis since the two functions differ where one has a bitcast and the
     58 // other doesn't. We should learn to look through bitcasts.
     59 //
     60 // * Compare complex types with pointer types inside.
     61 // * Compare cross-reference cases.
     62 // * Compare complex expressions.
     63 //
     64 // All the three issues above could be described as ability to prove that
     65 // fA == fB == fC == fE == fF == fG in example below:
     66 //
     67 //  void fA() {
     68 //    fB();
     69 //  }
     70 //  void fB() {
     71 //    fA();
     72 //  }
     73 //
     74 //  void fE() {
     75 //    fF();
     76 //  }
     77 //  void fF() {
     78 //    fG();
     79 //  }
     80 //  void fG() {
     81 //    fE();
     82 //  }
     83 //
     84 // Simplest cross-reference case (fA <--> fB) was implemented in previous
     85 // versions of MergeFunctions, though it presented only in two function pairs
     86 // in test-suite (that counts >50k functions)
     87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
     88 // could cover much more cases.
     89 //
     90 //===----------------------------------------------------------------------===//
     91 
     92 #include "llvm/ADT/Hashing.h"
     93 #include "llvm/ADT/STLExtras.h"
     94 #include "llvm/ADT/SmallSet.h"
     95 #include "llvm/ADT/Statistic.h"
     96 #include "llvm/IR/CallSite.h"
     97 #include "llvm/IR/Constants.h"
     98 #include "llvm/IR/DataLayout.h"
     99 #include "llvm/IR/IRBuilder.h"
    100 #include "llvm/IR/InlineAsm.h"
    101 #include "llvm/IR/Instructions.h"
    102 #include "llvm/IR/LLVMContext.h"
    103 #include "llvm/IR/Module.h"
    104 #include "llvm/IR/Operator.h"
    105 #include "llvm/IR/ValueHandle.h"
    106 #include "llvm/IR/ValueMap.h"
    107 #include "llvm/Pass.h"
    108 #include "llvm/Support/CommandLine.h"
    109 #include "llvm/Support/Debug.h"
    110 #include "llvm/Support/ErrorHandling.h"
    111 #include "llvm/Support/raw_ostream.h"
    112 #include "llvm/Transforms/IPO.h"
    113 #include <vector>
    114 
    115 using namespace llvm;
    116 
    117 #define DEBUG_TYPE "mergefunc"
    118 
    119 STATISTIC(NumFunctionsMerged, "Number of functions merged");
    120 STATISTIC(NumThunksWritten, "Number of thunks generated");
    121 STATISTIC(NumAliasesWritten, "Number of aliases generated");
    122 STATISTIC(NumDoubleWeak, "Number of new functions created");
    123 
    124 static cl::opt<unsigned> NumFunctionsForSanityCheck(
    125     "mergefunc-sanity",
    126     cl::desc("How many functions in module could be used for "
    127              "MergeFunctions pass sanity check. "
    128              "'0' disables this check. Works only with '-debug' key."),
    129     cl::init(0), cl::Hidden);
    130 
    131 namespace {
    132 
    133 /// GlobalNumberState assigns an integer to each global value in the program,
    134 /// which is used by the comparison routine to order references to globals. This
    135 /// state must be preserved throughout the pass, because Functions and other
    136 /// globals need to maintain their relative order. Globals are assigned a number
    137 /// when they are first visited. This order is deterministic, and so the
    138 /// assigned numbers are as well. When two functions are merged, neither number
    139 /// is updated. If the symbols are weak, this would be incorrect. If they are
    140 /// strong, then one will be replaced at all references to the other, and so
    141 /// direct callsites will now see one or the other symbol, and no update is
    142 /// necessary. Note that if we were guaranteed unique names, we could just
    143 /// compare those, but this would not work for stripped bitcodes or for those
    144 /// few symbols without a name.
    145 class GlobalNumberState {
    146   struct Config : ValueMapConfig<GlobalValue*> {
    147     enum { FollowRAUW = false };
    148   };
    149   // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
    150   // occurs, the mapping does not change. Tracking changes is unnecessary, and
    151   // also problematic for weak symbols (which may be overwritten).
    152   typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
    153   ValueNumberMap GlobalNumbers;
    154   // The next unused serial number to assign to a global.
    155   uint64_t NextNumber;
    156   public:
    157     GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
    158     uint64_t getNumber(GlobalValue* Global) {
    159       ValueNumberMap::iterator MapIter;
    160       bool Inserted;
    161       std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
    162       if (Inserted)
    163         NextNumber++;
    164       return MapIter->second;
    165     }
    166     void clear() {
    167       GlobalNumbers.clear();
    168     }
    169 };
    170 
    171 /// FunctionComparator - Compares two functions to determine whether or not
    172 /// they will generate machine code with the same behaviour. DataLayout is
    173 /// used if available. The comparator always fails conservatively (erring on the
    174 /// side of claiming that two functions are different).
    175 class FunctionComparator {
    176 public:
    177   FunctionComparator(const Function *F1, const Function *F2,
    178                      GlobalNumberState* GN)
    179       : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
    180 
    181   /// Test whether the two functions have equivalent behaviour.
    182   int compare();
    183   /// Hash a function. Equivalent functions will have the same hash, and unequal
    184   /// functions will have different hashes with high probability.
    185   typedef uint64_t FunctionHash;
    186   static FunctionHash functionHash(Function &);
    187 
    188 private:
    189   /// Test whether two basic blocks have equivalent behaviour.
    190   int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const;
    191 
    192   /// Constants comparison.
    193   /// Its analog to lexicographical comparison between hypothetical numbers
    194   /// of next format:
    195   /// <bitcastability-trait><raw-bit-contents>
    196   ///
    197   /// 1. Bitcastability.
    198   /// Check whether L's type could be losslessly bitcasted to R's type.
    199   /// On this stage method, in case when lossless bitcast is not possible
    200   /// method returns -1 or 1, thus also defining which type is greater in
    201   /// context of bitcastability.
    202   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
    203   ///          to the contents comparison.
    204   ///          If types differ, remember types comparison result and check
    205   ///          whether we still can bitcast types.
    206   /// Stage 1: Types that satisfies isFirstClassType conditions are always
    207   ///          greater then others.
    208   /// Stage 2: Vector is greater then non-vector.
    209   ///          If both types are vectors, then vector with greater bitwidth is
    210   ///          greater.
    211   ///          If both types are vectors with the same bitwidth, then types
    212   ///          are bitcastable, and we can skip other stages, and go to contents
    213   ///          comparison.
    214   /// Stage 3: Pointer types are greater than non-pointers. If both types are
    215   ///          pointers of the same address space - go to contents comparison.
    216   ///          Different address spaces: pointer with greater address space is
    217   ///          greater.
    218   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
    219   ///          We don't know how to bitcast them. So, we better don't do it,
    220   ///          and return types comparison result (so it determines the
    221   ///          relationship among constants we don't know how to bitcast).
    222   ///
    223   /// Just for clearance, let's see how the set of constants could look
    224   /// on single dimension axis:
    225   ///
    226   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
    227   /// Where: NFCT - Not a FirstClassType
    228   ///        FCT - FirstClassTyp:
    229   ///
    230   /// 2. Compare raw contents.
    231   /// It ignores types on this stage and only compares bits from L and R.
    232   /// Returns 0, if L and R has equivalent contents.
    233   /// -1 or 1 if values are different.
    234   /// Pretty trivial:
    235   /// 2.1. If contents are numbers, compare numbers.
    236   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
    237   ///    compared by their contents.
    238   /// 2.2. "And so on". Just to avoid discrepancies with comments
    239   /// perhaps it would be better to read the implementation itself.
    240   /// 3. And again about overall picture. Let's look back at how the ordered set
    241   /// of constants will look like:
    242   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
    243   ///
    244   /// Now look, what could be inside [FCT, "others"], for example:
    245   /// [FCT, "others"] =
    246   /// [
    247   ///   [double 0.1], [double 1.23],
    248   ///   [i32 1], [i32 2],
    249   ///   { double 1.0 },       ; StructTyID, NumElements = 1
    250   ///   { i32 1 },            ; StructTyID, NumElements = 1
    251   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
    252   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
    253   /// ]
    254   ///
    255   /// Let's explain the order. Float numbers will be less than integers, just
    256   /// because of cmpType terms: FloatTyID < IntegerTyID.
    257   /// Floats (with same fltSemantics) are sorted according to their value.
    258   /// Then you can see integers, and they are, like a floats,
    259   /// could be easy sorted among each others.
    260   /// The structures. Structures are grouped at the tail, again because of their
    261   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
    262   /// Structures with greater number of elements are greater. Structures with
    263   /// greater elements going first are greater.
    264   /// The same logic with vectors, arrays and other possible complex types.
    265   ///
    266   /// Bitcastable constants.
    267   /// Let's assume, that some constant, belongs to some group of
    268   /// "so-called-equal" values with different types, and at the same time
    269   /// belongs to another group of constants with equal types
    270   /// and "really" equal values.
    271   ///
    272   /// Now, prove that this is impossible:
    273   ///
    274   /// If constant A with type TyA is bitcastable to B with type TyB, then:
    275   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
    276   ///    those should be vectors (if TyA is vector), pointers
    277   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
    278   ///    be equal to TyB.
    279   /// 2. All constants with non-equal, but bitcastable types to TyA, are
    280   ///    bitcastable to B.
    281   ///    Once again, just because we allow it to vectors and pointers only.
    282   ///    This statement could be expanded as below:
    283   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
    284   ///      vector B, and thus bitcastable to B as well.
    285   /// 2.2. All pointers of the same address space, no matter what they point to,
    286   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
    287   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
    288   /// QED.
    289   ///
    290   /// In another words, for pointers and vectors, we ignore top-level type and
    291   /// look at their particular properties (bit-width for vectors, and
    292   /// address space for pointers).
    293   /// If these properties are equal - compare their contents.
    294   int cmpConstants(const Constant *L, const Constant *R) const;
    295 
    296   /// Compares two global values by number. Uses the GlobalNumbersState to
    297   /// identify the same gobals across function calls.
    298   int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const;
    299 
    300   /// Assign or look up previously assigned numbers for the two values, and
    301   /// return whether the numbers are equal. Numbers are assigned in the order
    302   /// visited.
    303   /// Comparison order:
    304   /// Stage 0: Value that is function itself is always greater then others.
    305   ///          If left and right values are references to their functions, then
    306   ///          they are equal.
    307   /// Stage 1: Constants are greater than non-constants.
    308   ///          If both left and right are constants, then the result of
    309   ///          cmpConstants is used as cmpValues result.
    310   /// Stage 2: InlineAsm instances are greater than others. If both left and
    311   ///          right are InlineAsm instances, InlineAsm* pointers casted to
    312   ///          integers and compared as numbers.
    313   /// Stage 3: For all other cases we compare order we meet these values in
    314   ///          their functions. If right value was met first during scanning,
    315   ///          then left value is greater.
    316   ///          In another words, we compare serial numbers, for more details
    317   ///          see comments for sn_mapL and sn_mapR.
    318   int cmpValues(const Value *L, const Value *R) const;
    319 
    320   /// Compare two Instructions for equivalence, similar to
    321   /// Instruction::isSameOperationAs.
    322   ///
    323   /// Stages are listed in "most significant stage first" order:
    324   /// On each stage below, we do comparison between some left and right
    325   /// operation parts. If parts are non-equal, we assign parts comparison
    326   /// result to the operation comparison result and exit from method.
    327   /// Otherwise we proceed to the next stage.
    328   /// Stages:
    329   /// 1. Operations opcodes. Compared as numbers.
    330   /// 2. Number of operands.
    331   /// 3. Operation types. Compared with cmpType method.
    332   /// 4. Compare operation subclass optional data as stream of bytes:
    333   /// just convert it to integers and call cmpNumbers.
    334   /// 5. Compare in operation operand types with cmpType in
    335   /// most significant operand first order.
    336   /// 6. Last stage. Check operations for some specific attributes.
    337   /// For example, for Load it would be:
    338   /// 6.1.Load: volatile (as boolean flag)
    339   /// 6.2.Load: alignment (as integer numbers)
    340   /// 6.3.Load: ordering (as underlying enum class value)
    341   /// 6.4.Load: synch-scope (as integer numbers)
    342   /// 6.5.Load: range metadata (as integer ranges)
    343   /// On this stage its better to see the code, since its not more than 10-15
    344   /// strings for particular instruction, and could change sometimes.
    345   int cmpOperations(const Instruction *L, const Instruction *R) const;
    346 
    347   /// Compare two GEPs for equivalent pointer arithmetic.
    348   /// Parts to be compared for each comparison stage,
    349   /// most significant stage first:
    350   /// 1. Address space. As numbers.
    351   /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
    352   /// 3. Pointer operand type (using cmpType method).
    353   /// 4. Number of operands.
    354   /// 5. Compare operands, using cmpValues method.
    355   int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const;
    356   int cmpGEPs(const GetElementPtrInst *GEPL,
    357               const GetElementPtrInst *GEPR) const {
    358     return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
    359   }
    360 
    361   /// cmpType - compares two types,
    362   /// defines total ordering among the types set.
    363   ///
    364   /// Return values:
    365   /// 0 if types are equal,
    366   /// -1 if Left is less than Right,
    367   /// +1 if Left is greater than Right.
    368   ///
    369   /// Description:
    370   /// Comparison is broken onto stages. Like in lexicographical comparison
    371   /// stage coming first has higher priority.
    372   /// On each explanation stage keep in mind total ordering properties.
    373   ///
    374   /// 0. Before comparison we coerce pointer types of 0 address space to
    375   /// integer.
    376   /// We also don't bother with same type at left and right, so
    377   /// just return 0 in this case.
    378   ///
    379   /// 1. If types are of different kind (different type IDs).
    380   ///    Return result of type IDs comparison, treating them as numbers.
    381   /// 2. If types are integers, check that they have the same width. If they
    382   /// are vectors, check that they have the same count and subtype.
    383   /// 3. Types have the same ID, so check whether they are one of:
    384   /// * Void
    385   /// * Float
    386   /// * Double
    387   /// * X86_FP80
    388   /// * FP128
    389   /// * PPC_FP128
    390   /// * Label
    391   /// * Metadata
    392   /// We can treat these types as equal whenever their IDs are same.
    393   /// 4. If Left and Right are pointers, return result of address space
    394   /// comparison (numbers comparison). We can treat pointer types of same
    395   /// address space as equal.
    396   /// 5. If types are complex.
    397   /// Then both Left and Right are to be expanded and their element types will
    398   /// be checked with the same way. If we get Res != 0 on some stage, return it.
    399   /// Otherwise return 0.
    400   /// 6. For all other cases put llvm_unreachable.
    401   int cmpTypes(Type *TyL, Type *TyR) const;
    402 
    403   int cmpNumbers(uint64_t L, uint64_t R) const;
    404   int cmpOrderings(AtomicOrdering L, AtomicOrdering R) const;
    405   int cmpAPInts(const APInt &L, const APInt &R) const;
    406   int cmpAPFloats(const APFloat &L, const APFloat &R) const;
    407   int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
    408   int cmpMem(StringRef L, StringRef R) const;
    409   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
    410   int cmpRangeMetadata(const MDNode *L, const MDNode *R) const;
    411   int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
    412 
    413   // The two functions undergoing comparison.
    414   const Function *FnL, *FnR;
    415 
    416   /// Assign serial numbers to values from left function, and values from
    417   /// right function.
    418   /// Explanation:
    419   /// Being comparing functions we need to compare values we meet at left and
    420   /// right sides.
    421   /// Its easy to sort things out for external values. It just should be
    422   /// the same value at left and right.
    423   /// But for local values (those were introduced inside function body)
    424   /// we have to ensure they were introduced at exactly the same place,
    425   /// and plays the same role.
    426   /// Let's assign serial number to each value when we meet it first time.
    427   /// Values that were met at same place will be with same serial numbers.
    428   /// In this case it would be good to explain few points about values assigned
    429   /// to BBs and other ways of implementation (see below).
    430   ///
    431   /// 1. Safety of BB reordering.
    432   /// It's safe to change the order of BasicBlocks in function.
    433   /// Relationship with other functions and serial numbering will not be
    434   /// changed in this case.
    435   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
    436   /// from the entry, and then take each terminator. So it doesn't matter how in
    437   /// fact BBs are ordered in function. And since cmpValues are called during
    438   /// this walk, the numbering depends only on how BBs located inside the CFG.
    439   /// So the answer is - yes. We will get the same numbering.
    440   ///
    441   /// 2. Impossibility to use dominance properties of values.
    442   /// If we compare two instruction operands: first is usage of local
    443   /// variable AL from function FL, and second is usage of local variable AR
    444   /// from FR, we could compare their origins and check whether they are
    445   /// defined at the same place.
    446   /// But, we are still not able to compare operands of PHI nodes, since those
    447   /// could be operands from further BBs we didn't scan yet.
    448   /// So it's impossible to use dominance properties in general.
    449   mutable DenseMap<const Value*, int> sn_mapL, sn_mapR;
    450 
    451   // The global state we will use
    452   GlobalNumberState* GlobalNumbers;
    453 };
    454 
    455 class FunctionNode {
    456   mutable AssertingVH<Function> F;
    457   FunctionComparator::FunctionHash Hash;
    458 public:
    459   // Note the hash is recalculated potentially multiple times, but it is cheap.
    460   FunctionNode(Function *F)
    461     : F(F), Hash(FunctionComparator::functionHash(*F))  {}
    462   Function *getFunc() const { return F; }
    463   FunctionComparator::FunctionHash getHash() const { return Hash; }
    464 
    465   /// Replace the reference to the function F by the function G, assuming their
    466   /// implementations are equal.
    467   void replaceBy(Function *G) const {
    468     F = G;
    469   }
    470 
    471   void release() { F = nullptr; }
    472 };
    473 } // end anonymous namespace
    474 
    475 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
    476   if (L < R) return -1;
    477   if (L > R) return 1;
    478   return 0;
    479 }
    480 
    481 int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
    482   if ((int)L < (int)R) return -1;
    483   if ((int)L > (int)R) return 1;
    484   return 0;
    485 }
    486 
    487 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
    488   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
    489     return Res;
    490   if (L.ugt(R)) return 1;
    491   if (R.ugt(L)) return -1;
    492   return 0;
    493 }
    494 
    495 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
    496   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
    497   // then by value interpreted as a bitstring (aka APInt).
    498   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
    499   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
    500                            APFloat::semanticsPrecision(SR)))
    501     return Res;
    502   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
    503                            APFloat::semanticsMaxExponent(SR)))
    504     return Res;
    505   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
    506                            APFloat::semanticsMinExponent(SR)))
    507     return Res;
    508   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
    509                            APFloat::semanticsSizeInBits(SR)))
    510     return Res;
    511   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
    512 }
    513 
    514 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
    515   // Prevent heavy comparison, compare sizes first.
    516   if (int Res = cmpNumbers(L.size(), R.size()))
    517     return Res;
    518 
    519   // Compare strings lexicographically only when it is necessary: only when
    520   // strings are equal in size.
    521   return L.compare(R);
    522 }
    523 
    524 int FunctionComparator::cmpAttrs(const AttributeSet L,
    525                                  const AttributeSet R) const {
    526   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
    527     return Res;
    528 
    529   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
    530     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
    531                            RE = R.end(i);
    532     for (; LI != LE && RI != RE; ++LI, ++RI) {
    533       Attribute LA = *LI;
    534       Attribute RA = *RI;
    535       if (LA < RA)
    536         return -1;
    537       if (RA < LA)
    538         return 1;
    539     }
    540     if (LI != LE)
    541       return 1;
    542     if (RI != RE)
    543       return -1;
    544   }
    545   return 0;
    546 }
    547 
    548 int FunctionComparator::cmpRangeMetadata(const MDNode *L,
    549                                          const MDNode *R) const {
    550   if (L == R)
    551     return 0;
    552   if (!L)
    553     return -1;
    554   if (!R)
    555     return 1;
    556   // Range metadata is a sequence of numbers. Make sure they are the same
    557   // sequence.
    558   // TODO: Note that as this is metadata, it is possible to drop and/or merge
    559   // this data when considering functions to merge. Thus this comparison would
    560   // return 0 (i.e. equivalent), but merging would become more complicated
    561   // because the ranges would need to be unioned. It is not likely that
    562   // functions differ ONLY in this metadata if they are actually the same
    563   // function semantically.
    564   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    565     return Res;
    566   for (size_t I = 0; I < L->getNumOperands(); ++I) {
    567     ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
    568     ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
    569     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
    570       return Res;
    571   }
    572   return 0;
    573 }
    574 
    575 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
    576                                                 const Instruction *R) const {
    577   ImmutableCallSite LCS(L);
    578   ImmutableCallSite RCS(R);
    579 
    580   assert(LCS && RCS && "Must be calls or invokes!");
    581   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
    582 
    583   if (int Res =
    584           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
    585     return Res;
    586 
    587   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
    588     auto OBL = LCS.getOperandBundleAt(i);
    589     auto OBR = RCS.getOperandBundleAt(i);
    590 
    591     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
    592       return Res;
    593 
    594     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
    595       return Res;
    596   }
    597 
    598   return 0;
    599 }
    600 
    601 /// Constants comparison:
    602 /// 1. Check whether type of L constant could be losslessly bitcasted to R
    603 /// type.
    604 /// 2. Compare constant contents.
    605 /// For more details see declaration comments.
    606 int FunctionComparator::cmpConstants(const Constant *L,
    607                                      const Constant *R) const {
    608 
    609   Type *TyL = L->getType();
    610   Type *TyR = R->getType();
    611 
    612   // Check whether types are bitcastable. This part is just re-factored
    613   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
    614   // we also pack into result which type is "less" for us.
    615   int TypesRes = cmpTypes(TyL, TyR);
    616   if (TypesRes != 0) {
    617     // Types are different, but check whether we can bitcast them.
    618     if (!TyL->isFirstClassType()) {
    619       if (TyR->isFirstClassType())
    620         return -1;
    621       // Neither TyL nor TyR are values of first class type. Return the result
    622       // of comparing the types
    623       return TypesRes;
    624     }
    625     if (!TyR->isFirstClassType()) {
    626       if (TyL->isFirstClassType())
    627         return 1;
    628       return TypesRes;
    629     }
    630 
    631     // Vector -> Vector conversions are always lossless if the two vector types
    632     // have the same size, otherwise not.
    633     unsigned TyLWidth = 0;
    634     unsigned TyRWidth = 0;
    635 
    636     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
    637       TyLWidth = VecTyL->getBitWidth();
    638     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
    639       TyRWidth = VecTyR->getBitWidth();
    640 
    641     if (TyLWidth != TyRWidth)
    642       return cmpNumbers(TyLWidth, TyRWidth);
    643 
    644     // Zero bit-width means neither TyL nor TyR are vectors.
    645     if (!TyLWidth) {
    646       PointerType *PTyL = dyn_cast<PointerType>(TyL);
    647       PointerType *PTyR = dyn_cast<PointerType>(TyR);
    648       if (PTyL && PTyR) {
    649         unsigned AddrSpaceL = PTyL->getAddressSpace();
    650         unsigned AddrSpaceR = PTyR->getAddressSpace();
    651         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
    652           return Res;
    653       }
    654       if (PTyL)
    655         return 1;
    656       if (PTyR)
    657         return -1;
    658 
    659       // TyL and TyR aren't vectors, nor pointers. We don't know how to
    660       // bitcast them.
    661       return TypesRes;
    662     }
    663   }
    664 
    665   // OK, types are bitcastable, now check constant contents.
    666 
    667   if (L->isNullValue() && R->isNullValue())
    668     return TypesRes;
    669   if (L->isNullValue() && !R->isNullValue())
    670     return 1;
    671   if (!L->isNullValue() && R->isNullValue())
    672     return -1;
    673 
    674   auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
    675   auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
    676   if (GlobalValueL && GlobalValueR) {
    677     return cmpGlobalValues(GlobalValueL, GlobalValueR);
    678   }
    679 
    680   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
    681     return Res;
    682 
    683   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
    684     const auto *SeqR = cast<ConstantDataSequential>(R);
    685     // This handles ConstantDataArray and ConstantDataVector. Note that we
    686     // compare the two raw data arrays, which might differ depending on the host
    687     // endianness. This isn't a problem though, because the endiness of a module
    688     // will affect the order of the constants, but this order is the same
    689     // for a given input module and host platform.
    690     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
    691   }
    692 
    693   switch (L->getValueID()) {
    694   case Value::UndefValueVal:
    695   case Value::ConstantTokenNoneVal:
    696     return TypesRes;
    697   case Value::ConstantIntVal: {
    698     const APInt &LInt = cast<ConstantInt>(L)->getValue();
    699     const APInt &RInt = cast<ConstantInt>(R)->getValue();
    700     return cmpAPInts(LInt, RInt);
    701   }
    702   case Value::ConstantFPVal: {
    703     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
    704     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
    705     return cmpAPFloats(LAPF, RAPF);
    706   }
    707   case Value::ConstantArrayVal: {
    708     const ConstantArray *LA = cast<ConstantArray>(L);
    709     const ConstantArray *RA = cast<ConstantArray>(R);
    710     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
    711     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
    712     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    713       return Res;
    714     for (uint64_t i = 0; i < NumElementsL; ++i) {
    715       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
    716                                  cast<Constant>(RA->getOperand(i))))
    717         return Res;
    718     }
    719     return 0;
    720   }
    721   case Value::ConstantStructVal: {
    722     const ConstantStruct *LS = cast<ConstantStruct>(L);
    723     const ConstantStruct *RS = cast<ConstantStruct>(R);
    724     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
    725     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
    726     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    727       return Res;
    728     for (unsigned i = 0; i != NumElementsL; ++i) {
    729       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
    730                                  cast<Constant>(RS->getOperand(i))))
    731         return Res;
    732     }
    733     return 0;
    734   }
    735   case Value::ConstantVectorVal: {
    736     const ConstantVector *LV = cast<ConstantVector>(L);
    737     const ConstantVector *RV = cast<ConstantVector>(R);
    738     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
    739     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
    740     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    741       return Res;
    742     for (uint64_t i = 0; i < NumElementsL; ++i) {
    743       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
    744                                  cast<Constant>(RV->getOperand(i))))
    745         return Res;
    746     }
    747     return 0;
    748   }
    749   case Value::ConstantExprVal: {
    750     const ConstantExpr *LE = cast<ConstantExpr>(L);
    751     const ConstantExpr *RE = cast<ConstantExpr>(R);
    752     unsigned NumOperandsL = LE->getNumOperands();
    753     unsigned NumOperandsR = RE->getNumOperands();
    754     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
    755       return Res;
    756     for (unsigned i = 0; i < NumOperandsL; ++i) {
    757       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
    758                                  cast<Constant>(RE->getOperand(i))))
    759         return Res;
    760     }
    761     return 0;
    762   }
    763   case Value::BlockAddressVal: {
    764     const BlockAddress *LBA = cast<BlockAddress>(L);
    765     const BlockAddress *RBA = cast<BlockAddress>(R);
    766     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
    767       return Res;
    768     if (LBA->getFunction() == RBA->getFunction()) {
    769       // They are BBs in the same function. Order by which comes first in the
    770       // BB order of the function. This order is deterministic.
    771       Function* F = LBA->getFunction();
    772       BasicBlock *LBB = LBA->getBasicBlock();
    773       BasicBlock *RBB = RBA->getBasicBlock();
    774       if (LBB == RBB)
    775         return 0;
    776       for(BasicBlock &BB : F->getBasicBlockList()) {
    777         if (&BB == LBB) {
    778           assert(&BB != RBB);
    779           return -1;
    780         }
    781         if (&BB == RBB)
    782           return 1;
    783       }
    784       llvm_unreachable("Basic Block Address does not point to a basic block in "
    785                        "its function.");
    786       return -1;
    787     } else {
    788       // cmpValues said the functions are the same. So because they aren't
    789       // literally the same pointer, they must respectively be the left and
    790       // right functions.
    791       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
    792       // cmpValues will tell us if these are equivalent BasicBlocks, in the
    793       // context of their respective functions.
    794       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
    795     }
    796   }
    797   default: // Unknown constant, abort.
    798     DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
    799     llvm_unreachable("Constant ValueID not recognized.");
    800     return -1;
    801   }
    802 }
    803 
    804 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
    805   return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
    806 }
    807 
    808 /// cmpType - compares two types,
    809 /// defines total ordering among the types set.
    810 /// See method declaration comments for more details.
    811 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
    812   PointerType *PTyL = dyn_cast<PointerType>(TyL);
    813   PointerType *PTyR = dyn_cast<PointerType>(TyR);
    814 
    815   const DataLayout &DL = FnL->getParent()->getDataLayout();
    816   if (PTyL && PTyL->getAddressSpace() == 0)
    817     TyL = DL.getIntPtrType(TyL);
    818   if (PTyR && PTyR->getAddressSpace() == 0)
    819     TyR = DL.getIntPtrType(TyR);
    820 
    821   if (TyL == TyR)
    822     return 0;
    823 
    824   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
    825     return Res;
    826 
    827   switch (TyL->getTypeID()) {
    828   default:
    829     llvm_unreachable("Unknown type!");
    830     // Fall through in Release mode.
    831   case Type::IntegerTyID:
    832     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
    833                       cast<IntegerType>(TyR)->getBitWidth());
    834   case Type::VectorTyID: {
    835     VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
    836     if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
    837       return Res;
    838     return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
    839   }
    840   // TyL == TyR would have returned true earlier, because types are uniqued.
    841   case Type::VoidTyID:
    842   case Type::FloatTyID:
    843   case Type::DoubleTyID:
    844   case Type::X86_FP80TyID:
    845   case Type::FP128TyID:
    846   case Type::PPC_FP128TyID:
    847   case Type::LabelTyID:
    848   case Type::MetadataTyID:
    849   case Type::TokenTyID:
    850     return 0;
    851 
    852   case Type::PointerTyID: {
    853     assert(PTyL && PTyR && "Both types must be pointers here.");
    854     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
    855   }
    856 
    857   case Type::StructTyID: {
    858     StructType *STyL = cast<StructType>(TyL);
    859     StructType *STyR = cast<StructType>(TyR);
    860     if (STyL->getNumElements() != STyR->getNumElements())
    861       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
    862 
    863     if (STyL->isPacked() != STyR->isPacked())
    864       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
    865 
    866     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
    867       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
    868         return Res;
    869     }
    870     return 0;
    871   }
    872 
    873   case Type::FunctionTyID: {
    874     FunctionType *FTyL = cast<FunctionType>(TyL);
    875     FunctionType *FTyR = cast<FunctionType>(TyR);
    876     if (FTyL->getNumParams() != FTyR->getNumParams())
    877       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
    878 
    879     if (FTyL->isVarArg() != FTyR->isVarArg())
    880       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
    881 
    882     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
    883       return Res;
    884 
    885     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
    886       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
    887         return Res;
    888     }
    889     return 0;
    890   }
    891 
    892   case Type::ArrayTyID: {
    893     ArrayType *ATyL = cast<ArrayType>(TyL);
    894     ArrayType *ATyR = cast<ArrayType>(TyR);
    895     if (ATyL->getNumElements() != ATyR->getNumElements())
    896       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
    897     return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
    898   }
    899   }
    900 }
    901 
    902 // Determine whether the two operations are the same except that pointer-to-A
    903 // and pointer-to-B are equivalent. This should be kept in sync with
    904 // Instruction::isSameOperationAs.
    905 // Read method declaration comments for more details.
    906 int FunctionComparator::cmpOperations(const Instruction *L,
    907                                       const Instruction *R) const {
    908   // Differences from Instruction::isSameOperationAs:
    909   //  * replace type comparison with calls to cmpTypes.
    910   //  * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
    911   //  * because of the above, we don't test for the tail bit on calls later on.
    912   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
    913     return Res;
    914 
    915   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    916     return Res;
    917 
    918   if (int Res = cmpTypes(L->getType(), R->getType()))
    919     return Res;
    920 
    921   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
    922                            R->getRawSubclassOptionalData()))
    923     return Res;
    924 
    925   // We have two instructions of identical opcode and #operands.  Check to see
    926   // if all operands are the same type
    927   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
    928     if (int Res =
    929             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
    930       return Res;
    931   }
    932 
    933   // Check special state that is a part of some instructions.
    934   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
    935     if (int Res = cmpTypes(AI->getAllocatedType(),
    936                            cast<AllocaInst>(R)->getAllocatedType()))
    937       return Res;
    938     return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
    939   }
    940   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
    941     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
    942       return Res;
    943     if (int Res =
    944             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
    945       return Res;
    946     if (int Res =
    947             cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
    948       return Res;
    949     if (int Res =
    950             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
    951       return Res;
    952     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
    953         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
    954   }
    955   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
    956     if (int Res =
    957             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
    958       return Res;
    959     if (int Res =
    960             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
    961       return Res;
    962     if (int Res =
    963             cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
    964       return Res;
    965     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
    966   }
    967   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
    968     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
    969   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
    970     if (int Res = cmpNumbers(CI->getCallingConv(),
    971                              cast<CallInst>(R)->getCallingConv()))
    972       return Res;
    973     if (int Res =
    974             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
    975       return Res;
    976     if (int Res = cmpOperandBundlesSchema(CI, R))
    977       return Res;
    978     return cmpRangeMetadata(
    979         CI->getMetadata(LLVMContext::MD_range),
    980         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
    981   }
    982   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
    983     if (int Res = cmpNumbers(II->getCallingConv(),
    984                              cast<InvokeInst>(R)->getCallingConv()))
    985       return Res;
    986     if (int Res =
    987             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
    988       return Res;
    989     if (int Res = cmpOperandBundlesSchema(II, R))
    990       return Res;
    991     return cmpRangeMetadata(
    992         II->getMetadata(LLVMContext::MD_range),
    993         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
    994   }
    995   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
    996     ArrayRef<unsigned> LIndices = IVI->getIndices();
    997     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
    998     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
    999       return Res;
   1000     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
   1001       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
   1002         return Res;
   1003     }
   1004     return 0;
   1005   }
   1006   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
   1007     ArrayRef<unsigned> LIndices = EVI->getIndices();
   1008     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
   1009     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
   1010       return Res;
   1011     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
   1012       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
   1013         return Res;
   1014     }
   1015   }
   1016   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
   1017     if (int Res =
   1018             cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
   1019       return Res;
   1020     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
   1021   }
   1022   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
   1023     if (int Res = cmpNumbers(CXI->isVolatile(),
   1024                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
   1025       return Res;
   1026     if (int Res = cmpNumbers(CXI->isWeak(),
   1027                              cast<AtomicCmpXchgInst>(R)->isWeak()))
   1028       return Res;
   1029     if (int Res =
   1030             cmpOrderings(CXI->getSuccessOrdering(),
   1031                          cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
   1032       return Res;
   1033     if (int Res =
   1034             cmpOrderings(CXI->getFailureOrdering(),
   1035                          cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
   1036       return Res;
   1037     return cmpNumbers(CXI->getSynchScope(),
   1038                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
   1039   }
   1040   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
   1041     if (int Res = cmpNumbers(RMWI->getOperation(),
   1042                              cast<AtomicRMWInst>(R)->getOperation()))
   1043       return Res;
   1044     if (int Res = cmpNumbers(RMWI->isVolatile(),
   1045                              cast<AtomicRMWInst>(R)->isVolatile()))
   1046       return Res;
   1047     if (int Res = cmpOrderings(RMWI->getOrdering(),
   1048                              cast<AtomicRMWInst>(R)->getOrdering()))
   1049       return Res;
   1050     return cmpNumbers(RMWI->getSynchScope(),
   1051                       cast<AtomicRMWInst>(R)->getSynchScope());
   1052   }
   1053   if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
   1054     const PHINode *PNR = cast<PHINode>(R);
   1055     // Ensure that in addition to the incoming values being identical
   1056     // (checked by the caller of this function), the incoming blocks
   1057     // are also identical.
   1058     for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
   1059       if (int Res =
   1060               cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
   1061         return Res;
   1062     }
   1063   }
   1064   return 0;
   1065 }
   1066 
   1067 // Determine whether two GEP operations perform the same underlying arithmetic.
   1068 // Read method declaration comments for more details.
   1069 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
   1070                                 const GEPOperator *GEPR) const {
   1071 
   1072   unsigned int ASL = GEPL->getPointerAddressSpace();
   1073   unsigned int ASR = GEPR->getPointerAddressSpace();
   1074 
   1075   if (int Res = cmpNumbers(ASL, ASR))
   1076     return Res;
   1077 
   1078   // When we have target data, we can reduce the GEP down to the value in bytes
   1079   // added to the address.
   1080   const DataLayout &DL = FnL->getParent()->getDataLayout();
   1081   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
   1082   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
   1083   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
   1084       GEPR->accumulateConstantOffset(DL, OffsetR))
   1085     return cmpAPInts(OffsetL, OffsetR);
   1086   if (int Res = cmpTypes(GEPL->getSourceElementType(),
   1087                          GEPR->getSourceElementType()))
   1088     return Res;
   1089 
   1090   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
   1091     return Res;
   1092 
   1093   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
   1094     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
   1095       return Res;
   1096   }
   1097 
   1098   return 0;
   1099 }
   1100 
   1101 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
   1102                                      const InlineAsm *R) const {
   1103   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
   1104   // the same, otherwise compare the fields.
   1105   if (L == R)
   1106     return 0;
   1107   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
   1108     return Res;
   1109   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
   1110     return Res;
   1111   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
   1112     return Res;
   1113   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
   1114     return Res;
   1115   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
   1116     return Res;
   1117   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
   1118     return Res;
   1119   llvm_unreachable("InlineAsm blocks were not uniqued.");
   1120   return 0;
   1121 }
   1122 
   1123 /// Compare two values used by the two functions under pair-wise comparison. If
   1124 /// this is the first time the values are seen, they're added to the mapping so
   1125 /// that we will detect mismatches on next use.
   1126 /// See comments in declaration for more details.
   1127 int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
   1128   // Catch self-reference case.
   1129   if (L == FnL) {
   1130     if (R == FnR)
   1131       return 0;
   1132     return -1;
   1133   }
   1134   if (R == FnR) {
   1135     if (L == FnL)
   1136       return 0;
   1137     return 1;
   1138   }
   1139 
   1140   const Constant *ConstL = dyn_cast<Constant>(L);
   1141   const Constant *ConstR = dyn_cast<Constant>(R);
   1142   if (ConstL && ConstR) {
   1143     if (L == R)
   1144       return 0;
   1145     return cmpConstants(ConstL, ConstR);
   1146   }
   1147 
   1148   if (ConstL)
   1149     return 1;
   1150   if (ConstR)
   1151     return -1;
   1152 
   1153   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
   1154   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
   1155 
   1156   if (InlineAsmL && InlineAsmR)
   1157     return cmpInlineAsm(InlineAsmL, InlineAsmR);
   1158   if (InlineAsmL)
   1159     return 1;
   1160   if (InlineAsmR)
   1161     return -1;
   1162 
   1163   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
   1164        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
   1165 
   1166   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
   1167 }
   1168 // Test whether two basic blocks have equivalent behaviour.
   1169 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
   1170                                        const BasicBlock *BBR) const {
   1171   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
   1172   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
   1173 
   1174   do {
   1175     if (int Res = cmpValues(&*InstL, &*InstR))
   1176       return Res;
   1177 
   1178     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
   1179     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
   1180 
   1181     if (GEPL && !GEPR)
   1182       return 1;
   1183     if (GEPR && !GEPL)
   1184       return -1;
   1185 
   1186     if (GEPL && GEPR) {
   1187       if (int Res =
   1188               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
   1189         return Res;
   1190       if (int Res = cmpGEPs(GEPL, GEPR))
   1191         return Res;
   1192     } else {
   1193       if (int Res = cmpOperations(&*InstL, &*InstR))
   1194         return Res;
   1195       assert(InstL->getNumOperands() == InstR->getNumOperands());
   1196 
   1197       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
   1198         Value *OpL = InstL->getOperand(i);
   1199         Value *OpR = InstR->getOperand(i);
   1200         if (int Res = cmpValues(OpL, OpR))
   1201           return Res;
   1202         // cmpValues should ensure this is true.
   1203         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
   1204       }
   1205     }
   1206 
   1207     ++InstL;
   1208     ++InstR;
   1209   } while (InstL != InstLE && InstR != InstRE);
   1210 
   1211   if (InstL != InstLE && InstR == InstRE)
   1212     return 1;
   1213   if (InstL == InstLE && InstR != InstRE)
   1214     return -1;
   1215   return 0;
   1216 }
   1217 
   1218 // Test whether the two functions have equivalent behaviour.
   1219 int FunctionComparator::compare() {
   1220   sn_mapL.clear();
   1221   sn_mapR.clear();
   1222 
   1223   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
   1224     return Res;
   1225 
   1226   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
   1227     return Res;
   1228 
   1229   if (FnL->hasGC()) {
   1230     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
   1231       return Res;
   1232   }
   1233 
   1234   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
   1235     return Res;
   1236 
   1237   if (FnL->hasSection()) {
   1238     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
   1239       return Res;
   1240   }
   1241 
   1242   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
   1243     return Res;
   1244 
   1245   // TODO: if it's internal and only used in direct calls, we could handle this
   1246   // case too.
   1247   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
   1248     return Res;
   1249 
   1250   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
   1251     return Res;
   1252 
   1253   assert(FnL->arg_size() == FnR->arg_size() &&
   1254          "Identically typed functions have different numbers of args!");
   1255 
   1256   // Visit the arguments so that they get enumerated in the order they're
   1257   // passed in.
   1258   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
   1259                                     ArgRI = FnR->arg_begin(),
   1260                                     ArgLE = FnL->arg_end();
   1261        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
   1262     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
   1263       llvm_unreachable("Arguments repeat!");
   1264   }
   1265 
   1266   // We do a CFG-ordered walk since the actual ordering of the blocks in the
   1267   // linked list is immaterial. Our walk starts at the entry block for both
   1268   // functions, then takes each block from each terminator in order. As an
   1269   // artifact, this also means that unreachable blocks are ignored.
   1270   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
   1271   SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
   1272 
   1273   FnLBBs.push_back(&FnL->getEntryBlock());
   1274   FnRBBs.push_back(&FnR->getEntryBlock());
   1275 
   1276   VisitedBBs.insert(FnLBBs[0]);
   1277   while (!FnLBBs.empty()) {
   1278     const BasicBlock *BBL = FnLBBs.pop_back_val();
   1279     const BasicBlock *BBR = FnRBBs.pop_back_val();
   1280 
   1281     if (int Res = cmpValues(BBL, BBR))
   1282       return Res;
   1283 
   1284     if (int Res = cmpBasicBlocks(BBL, BBR))
   1285       return Res;
   1286 
   1287     const TerminatorInst *TermL = BBL->getTerminator();
   1288     const TerminatorInst *TermR = BBR->getTerminator();
   1289 
   1290     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
   1291     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
   1292       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
   1293         continue;
   1294 
   1295       FnLBBs.push_back(TermL->getSuccessor(i));
   1296       FnRBBs.push_back(TermR->getSuccessor(i));
   1297     }
   1298   }
   1299   return 0;
   1300 }
   1301 
   1302 namespace {
   1303 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
   1304 // hash of a sequence of 64bit ints, but the entire input does not need to be
   1305 // available at once. This interface is necessary for functionHash because it
   1306 // needs to accumulate the hash as the structure of the function is traversed
   1307 // without saving these values to an intermediate buffer. This form of hashing
   1308 // is not often needed, as usually the object to hash is just read from a
   1309 // buffer.
   1310 class HashAccumulator64 {
   1311   uint64_t Hash;
   1312 public:
   1313   // Initialize to random constant, so the state isn't zero.
   1314   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
   1315   void add(uint64_t V) {
   1316      Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
   1317   }
   1318   // No finishing is required, because the entire hash value is used.
   1319   uint64_t getHash() { return Hash; }
   1320 };
   1321 } // end anonymous namespace
   1322 
   1323 // A function hash is calculated by considering only the number of arguments and
   1324 // whether a function is varargs, the order of basic blocks (given by the
   1325 // successors of each basic block in depth first order), and the order of
   1326 // opcodes of each instruction within each of these basic blocks. This mirrors
   1327 // the strategy compare() uses to compare functions by walking the BBs in depth
   1328 // first order and comparing each instruction in sequence. Because this hash
   1329 // does not look at the operands, it is insensitive to things such as the
   1330 // target of calls and the constants used in the function, which makes it useful
   1331 // when possibly merging functions which are the same modulo constants and call
   1332 // targets.
   1333 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
   1334   HashAccumulator64 H;
   1335   H.add(F.isVarArg());
   1336   H.add(F.arg_size());
   1337 
   1338   SmallVector<const BasicBlock *, 8> BBs;
   1339   SmallSet<const BasicBlock *, 16> VisitedBBs;
   1340 
   1341   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
   1342   // accumulating the hash of the function "structure." (BB and opcode sequence)
   1343   BBs.push_back(&F.getEntryBlock());
   1344   VisitedBBs.insert(BBs[0]);
   1345   while (!BBs.empty()) {
   1346     const BasicBlock *BB = BBs.pop_back_val();
   1347     // This random value acts as a block header, as otherwise the partition of
   1348     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
   1349     H.add(45798);
   1350     for (auto &Inst : *BB) {
   1351       H.add(Inst.getOpcode());
   1352     }
   1353     const TerminatorInst *Term = BB->getTerminator();
   1354     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
   1355       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
   1356         continue;
   1357       BBs.push_back(Term->getSuccessor(i));
   1358     }
   1359   }
   1360   return H.getHash();
   1361 }
   1362 
   1363 
   1364 namespace {
   1365 
   1366 /// MergeFunctions finds functions which will generate identical machine code,
   1367 /// by considering all pointer types to be equivalent. Once identified,
   1368 /// MergeFunctions will fold them by replacing a call to one to a call to a
   1369 /// bitcast of the other.
   1370 ///
   1371 class MergeFunctions : public ModulePass {
   1372 public:
   1373   static char ID;
   1374   MergeFunctions()
   1375     : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(),
   1376       HasGlobalAliases(false) {
   1377     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
   1378   }
   1379 
   1380   bool runOnModule(Module &M) override;
   1381 
   1382 private:
   1383   // The function comparison operator is provided here so that FunctionNodes do
   1384   // not need to become larger with another pointer.
   1385   class FunctionNodeCmp {
   1386     GlobalNumberState* GlobalNumbers;
   1387   public:
   1388     FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
   1389     bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
   1390       // Order first by hashes, then full function comparison.
   1391       if (LHS.getHash() != RHS.getHash())
   1392         return LHS.getHash() < RHS.getHash();
   1393       FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
   1394       return FCmp.compare() == -1;
   1395     }
   1396   };
   1397   typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType;
   1398 
   1399   GlobalNumberState GlobalNumbers;
   1400 
   1401   /// A work queue of functions that may have been modified and should be
   1402   /// analyzed again.
   1403   std::vector<WeakVH> Deferred;
   1404 
   1405   /// Checks the rules of order relation introduced among functions set.
   1406   /// Returns true, if sanity check has been passed, and false if failed.
   1407   bool doSanityCheck(std::vector<WeakVH> &Worklist);
   1408 
   1409   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
   1410   /// equal to one that's already present.
   1411   bool insert(Function *NewFunction);
   1412 
   1413   /// Remove a Function from the FnTree and queue it up for a second sweep of
   1414   /// analysis.
   1415   void remove(Function *F);
   1416 
   1417   /// Find the functions that use this Value and remove them from FnTree and
   1418   /// queue the functions.
   1419   void removeUsers(Value *V);
   1420 
   1421   /// Replace all direct calls of Old with calls of New. Will bitcast New if
   1422   /// necessary to make types match.
   1423   void replaceDirectCallers(Function *Old, Function *New);
   1424 
   1425   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
   1426   /// be converted into a thunk. In either case, it should never be visited
   1427   /// again.
   1428   void mergeTwoFunctions(Function *F, Function *G);
   1429 
   1430   /// Replace G with a thunk or an alias to F. Deletes G.
   1431   void writeThunkOrAlias(Function *F, Function *G);
   1432 
   1433   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
   1434   /// of G with bitcast(F). Deletes G.
   1435   void writeThunk(Function *F, Function *G);
   1436 
   1437   /// Replace G with an alias to F. Deletes G.
   1438   void writeAlias(Function *F, Function *G);
   1439 
   1440   /// Replace function F with function G in the function tree.
   1441   void replaceFunctionInTree(const FunctionNode &FN, Function *G);
   1442 
   1443   /// The set of all distinct functions. Use the insert() and remove() methods
   1444   /// to modify it. The map allows efficient lookup and deferring of Functions.
   1445   FnTreeType FnTree;
   1446   // Map functions to the iterators of the FunctionNode which contains them
   1447   // in the FnTree. This must be updated carefully whenever the FnTree is
   1448   // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
   1449   // dangling iterators into FnTree. The invariant that preserves this is that
   1450   // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
   1451   ValueMap<Function*, FnTreeType::iterator> FNodesInTree;
   1452 
   1453   /// Whether or not the target supports global aliases.
   1454   bool HasGlobalAliases;
   1455 };
   1456 
   1457 } // end anonymous namespace
   1458 
   1459 char MergeFunctions::ID = 0;
   1460 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
   1461 
   1462 ModulePass *llvm::createMergeFunctionsPass() {
   1463   return new MergeFunctions();
   1464 }
   1465 
   1466 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
   1467   if (const unsigned Max = NumFunctionsForSanityCheck) {
   1468     unsigned TripleNumber = 0;
   1469     bool Valid = true;
   1470 
   1471     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
   1472 
   1473     unsigned i = 0;
   1474     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
   1475          I != E && i < Max; ++I, ++i) {
   1476       unsigned j = i;
   1477       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
   1478         Function *F1 = cast<Function>(*I);
   1479         Function *F2 = cast<Function>(*J);
   1480         int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
   1481         int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
   1482 
   1483         // If F1 <= F2, then F2 >= F1, otherwise report failure.
   1484         if (Res1 != -Res2) {
   1485           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
   1486                  << "\n";
   1487           F1->dump();
   1488           F2->dump();
   1489           Valid = false;
   1490         }
   1491 
   1492         if (Res1 == 0)
   1493           continue;
   1494 
   1495         unsigned k = j;
   1496         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
   1497              ++k, ++K, ++TripleNumber) {
   1498           if (K == J)
   1499             continue;
   1500 
   1501           Function *F3 = cast<Function>(*K);
   1502           int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
   1503           int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
   1504 
   1505           bool Transitive = true;
   1506 
   1507           if (Res1 != 0 && Res1 == Res4) {
   1508             // F1 > F2, F2 > F3 => F1 > F3
   1509             Transitive = Res3 == Res1;
   1510           } else if (Res3 != 0 && Res3 == -Res4) {
   1511             // F1 > F3, F3 > F2 => F1 > F2
   1512             Transitive = Res3 == Res1;
   1513           } else if (Res4 != 0 && -Res3 == Res4) {
   1514             // F2 > F3, F3 > F1 => F2 > F1
   1515             Transitive = Res4 == -Res1;
   1516           }
   1517 
   1518           if (!Transitive) {
   1519             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
   1520                    << TripleNumber << "\n";
   1521             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
   1522                    << Res4 << "\n";
   1523             F1->dump();
   1524             F2->dump();
   1525             F3->dump();
   1526             Valid = false;
   1527           }
   1528         }
   1529       }
   1530     }
   1531 
   1532     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
   1533     return Valid;
   1534   }
   1535   return true;
   1536 }
   1537 
   1538 bool MergeFunctions::runOnModule(Module &M) {
   1539   if (skipModule(M))
   1540     return false;
   1541 
   1542   bool Changed = false;
   1543 
   1544   // All functions in the module, ordered by hash. Functions with a unique
   1545   // hash value are easily eliminated.
   1546   std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
   1547     HashedFuncs;
   1548   for (Function &Func : M) {
   1549     if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
   1550       HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
   1551     }
   1552   }
   1553 
   1554   std::stable_sort(
   1555       HashedFuncs.begin(), HashedFuncs.end(),
   1556       [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
   1557          const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
   1558         return a.first < b.first;
   1559       });
   1560 
   1561   auto S = HashedFuncs.begin();
   1562   for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
   1563     // If the hash value matches the previous value or the next one, we must
   1564     // consider merging it. Otherwise it is dropped and never considered again.
   1565     if ((I != S && std::prev(I)->first == I->first) ||
   1566         (std::next(I) != IE && std::next(I)->first == I->first) ) {
   1567       Deferred.push_back(WeakVH(I->second));
   1568     }
   1569   }
   1570 
   1571   do {
   1572     std::vector<WeakVH> Worklist;
   1573     Deferred.swap(Worklist);
   1574 
   1575     DEBUG(doSanityCheck(Worklist));
   1576 
   1577     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
   1578     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
   1579 
   1580     // Insert functions and merge them.
   1581     for (WeakVH &I : Worklist) {
   1582       if (!I)
   1583         continue;
   1584       Function *F = cast<Function>(I);
   1585       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) {
   1586         Changed |= insert(F);
   1587       }
   1588     }
   1589     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
   1590   } while (!Deferred.empty());
   1591 
   1592   FnTree.clear();
   1593   GlobalNumbers.clear();
   1594 
   1595   return Changed;
   1596 }
   1597 
   1598 // Replace direct callers of Old with New.
   1599 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
   1600   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
   1601   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
   1602     Use *U = &*UI;
   1603     ++UI;
   1604     CallSite CS(U->getUser());
   1605     if (CS && CS.isCallee(U)) {
   1606       // Transfer the called function's attributes to the call site. Due to the
   1607       // bitcast we will 'lose' ABI changing attributes because the 'called
   1608       // function' is no longer a Function* but the bitcast. Code that looks up
   1609       // the attributes from the called function will fail.
   1610 
   1611       // FIXME: This is not actually true, at least not anymore. The callsite
   1612       // will always have the same ABI affecting attributes as the callee,
   1613       // because otherwise the original input has UB. Note that Old and New
   1614       // always have matching ABI, so no attributes need to be changed.
   1615       // Transferring other attributes may help other optimizations, but that
   1616       // should be done uniformly and not in this ad-hoc way.
   1617       auto &Context = New->getContext();
   1618       auto NewFuncAttrs = New->getAttributes();
   1619       auto CallSiteAttrs = CS.getAttributes();
   1620 
   1621       CallSiteAttrs = CallSiteAttrs.addAttributes(
   1622           Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
   1623 
   1624       for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) {
   1625         AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx);
   1626         if (Attrs.getNumSlots())
   1627           CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs);
   1628       }
   1629 
   1630       CS.setAttributes(CallSiteAttrs);
   1631 
   1632       remove(CS.getInstruction()->getParent()->getParent());
   1633       U->set(BitcastNew);
   1634     }
   1635   }
   1636 }
   1637 
   1638 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
   1639 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
   1640   if (HasGlobalAliases && G->hasGlobalUnnamedAddr()) {
   1641     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
   1642         G->hasWeakLinkage()) {
   1643       writeAlias(F, G);
   1644       return;
   1645     }
   1646   }
   1647 
   1648   writeThunk(F, G);
   1649 }
   1650 
   1651 // Helper for writeThunk,
   1652 // Selects proper bitcast operation,
   1653 // but a bit simpler then CastInst::getCastOpcode.
   1654 static Value *createCast(IRBuilder<> &Builder, Value *V, Type *DestTy) {
   1655   Type *SrcTy = V->getType();
   1656   if (SrcTy->isStructTy()) {
   1657     assert(DestTy->isStructTy());
   1658     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
   1659     Value *Result = UndefValue::get(DestTy);
   1660     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
   1661       Value *Element = createCast(
   1662           Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
   1663           DestTy->getStructElementType(I));
   1664 
   1665       Result =
   1666           Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
   1667     }
   1668     return Result;
   1669   }
   1670   assert(!DestTy->isStructTy());
   1671   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
   1672     return Builder.CreateIntToPtr(V, DestTy);
   1673   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
   1674     return Builder.CreatePtrToInt(V, DestTy);
   1675   else
   1676     return Builder.CreateBitCast(V, DestTy);
   1677 }
   1678 
   1679 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
   1680 // of G with bitcast(F). Deletes G.
   1681 void MergeFunctions::writeThunk(Function *F, Function *G) {
   1682   if (!G->isInterposable()) {
   1683     // Redirect direct callers of G to F.
   1684     replaceDirectCallers(G, F);
   1685   }
   1686 
   1687   // If G was internal then we may have replaced all uses of G with F. If so,
   1688   // stop here and delete G. There's no need for a thunk.
   1689   if (G->hasLocalLinkage() && G->use_empty()) {
   1690     G->eraseFromParent();
   1691     return;
   1692   }
   1693 
   1694   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
   1695                                     G->getParent());
   1696   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
   1697   IRBuilder<> Builder(BB);
   1698 
   1699   SmallVector<Value *, 16> Args;
   1700   unsigned i = 0;
   1701   FunctionType *FFTy = F->getFunctionType();
   1702   for (Argument & AI : NewG->args()) {
   1703     Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
   1704     ++i;
   1705   }
   1706 
   1707   CallInst *CI = Builder.CreateCall(F, Args);
   1708   CI->setTailCall();
   1709   CI->setCallingConv(F->getCallingConv());
   1710   CI->setAttributes(F->getAttributes());
   1711   if (NewG->getReturnType()->isVoidTy()) {
   1712     Builder.CreateRetVoid();
   1713   } else {
   1714     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
   1715   }
   1716 
   1717   NewG->copyAttributesFrom(G);
   1718   NewG->takeName(G);
   1719   removeUsers(G);
   1720   G->replaceAllUsesWith(NewG);
   1721   G->eraseFromParent();
   1722 
   1723   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
   1724   ++NumThunksWritten;
   1725 }
   1726 
   1727 // Replace G with an alias to F and delete G.
   1728 void MergeFunctions::writeAlias(Function *F, Function *G) {
   1729   auto *GA = GlobalAlias::create(G->getLinkage(), "", F);
   1730   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
   1731   GA->takeName(G);
   1732   GA->setVisibility(G->getVisibility());
   1733   removeUsers(G);
   1734   G->replaceAllUsesWith(GA);
   1735   G->eraseFromParent();
   1736 
   1737   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
   1738   ++NumAliasesWritten;
   1739 }
   1740 
   1741 // Merge two equivalent functions. Upon completion, Function G is deleted.
   1742 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
   1743   if (F->isInterposable()) {
   1744     assert(G->isInterposable());
   1745 
   1746     // Make them both thunks to the same internal function.
   1747     Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
   1748                                    F->getParent());
   1749     H->copyAttributesFrom(F);
   1750     H->takeName(F);
   1751     removeUsers(F);
   1752     F->replaceAllUsesWith(H);
   1753 
   1754     unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
   1755 
   1756     if (HasGlobalAliases) {
   1757       writeAlias(F, G);
   1758       writeAlias(F, H);
   1759     } else {
   1760       writeThunk(F, G);
   1761       writeThunk(F, H);
   1762     }
   1763 
   1764     F->setAlignment(MaxAlignment);
   1765     F->setLinkage(GlobalValue::PrivateLinkage);
   1766     ++NumDoubleWeak;
   1767   } else {
   1768     writeThunkOrAlias(F, G);
   1769   }
   1770 
   1771   ++NumFunctionsMerged;
   1772 }
   1773 
   1774 /// Replace function F by function G.
   1775 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
   1776                                            Function *G) {
   1777   Function *F = FN.getFunc();
   1778   assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
   1779          "The two functions must be equal");
   1780 
   1781   auto I = FNodesInTree.find(F);
   1782   assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
   1783   assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
   1784 
   1785   FnTreeType::iterator IterToFNInFnTree = I->second;
   1786   assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
   1787   // Remove F -> FN and insert G -> FN
   1788   FNodesInTree.erase(I);
   1789   FNodesInTree.insert({G, IterToFNInFnTree});
   1790   // Replace F with G in FN, which is stored inside the FnTree.
   1791   FN.replaceBy(G);
   1792 }
   1793 
   1794 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
   1795 // that was already inserted.
   1796 bool MergeFunctions::insert(Function *NewFunction) {
   1797   std::pair<FnTreeType::iterator, bool> Result =
   1798       FnTree.insert(FunctionNode(NewFunction));
   1799 
   1800   if (Result.second) {
   1801     assert(FNodesInTree.count(NewFunction) == 0);
   1802     FNodesInTree.insert({NewFunction, Result.first});
   1803     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
   1804     return false;
   1805   }
   1806 
   1807   const FunctionNode &OldF = *Result.first;
   1808 
   1809   // Don't merge tiny functions, since it can just end up making the function
   1810   // larger.
   1811   // FIXME: Should still merge them if they are unnamed_addr and produce an
   1812   // alias.
   1813   if (NewFunction->size() == 1) {
   1814     if (NewFunction->front().size() <= 2) {
   1815       DEBUG(dbgs() << NewFunction->getName()
   1816                    << " is to small to bother merging\n");
   1817       return false;
   1818     }
   1819   }
   1820 
   1821   // Impose a total order (by name) on the replacement of functions. This is
   1822   // important when operating on more than one module independently to prevent
   1823   // cycles of thunks calling each other when the modules are linked together.
   1824   //
   1825   // First of all, we process strong functions before weak functions.
   1826   if ((OldF.getFunc()->isInterposable() && !NewFunction->isInterposable()) ||
   1827      (OldF.getFunc()->isInterposable() == NewFunction->isInterposable() &&
   1828        OldF.getFunc()->getName() > NewFunction->getName())) {
   1829     // Swap the two functions.
   1830     Function *F = OldF.getFunc();
   1831     replaceFunctionInTree(*Result.first, NewFunction);
   1832     NewFunction = F;
   1833     assert(OldF.getFunc() != F && "Must have swapped the functions.");
   1834   }
   1835 
   1836   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
   1837                << " == " << NewFunction->getName() << '\n');
   1838 
   1839   Function *DeleteF = NewFunction;
   1840   mergeTwoFunctions(OldF.getFunc(), DeleteF);
   1841   return true;
   1842 }
   1843 
   1844 // Remove a function from FnTree. If it was already in FnTree, add
   1845 // it to Deferred so that we'll look at it in the next round.
   1846 void MergeFunctions::remove(Function *F) {
   1847   auto I = FNodesInTree.find(F);
   1848   if (I != FNodesInTree.end()) {
   1849     DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n");
   1850     FnTree.erase(I->second);
   1851     // I->second has been invalidated, remove it from the FNodesInTree map to
   1852     // preserve the invariant.
   1853     FNodesInTree.erase(I);
   1854     Deferred.emplace_back(F);
   1855   }
   1856 }
   1857 
   1858 // For each instruction used by the value, remove() the function that contains
   1859 // the instruction. This should happen right before a call to RAUW.
   1860 void MergeFunctions::removeUsers(Value *V) {
   1861   std::vector<Value *> Worklist;
   1862   Worklist.push_back(V);
   1863   SmallSet<Value*, 8> Visited;
   1864   Visited.insert(V);
   1865   while (!Worklist.empty()) {
   1866     Value *V = Worklist.back();
   1867     Worklist.pop_back();
   1868 
   1869     for (User *U : V->users()) {
   1870       if (Instruction *I = dyn_cast<Instruction>(U)) {
   1871         remove(I->getParent()->getParent());
   1872       } else if (isa<GlobalValue>(U)) {
   1873         // do nothing
   1874       } else if (Constant *C = dyn_cast<Constant>(U)) {
   1875         for (User *UU : C->users()) {
   1876           if (!Visited.insert(UU).second)
   1877             Worklist.push_back(UU);
   1878         }
   1879       }
   1880     }
   1881   }
   1882 }
   1883