Home | History | Annotate | Download | only in x87
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been modified
     34 // significantly by Google Inc.
     35 // Copyright 2012 the V8 project authors. All rights reserved.
     36 
     37 #include "src/x87/assembler-x87.h"
     38 
     39 #if V8_TARGET_ARCH_X87
     40 
     41 #include "src/base/bits.h"
     42 #include "src/base/cpu.h"
     43 #include "src/disassembler.h"
     44 #include "src/macro-assembler.h"
     45 #include "src/v8.h"
     46 
     47 namespace v8 {
     48 namespace internal {
     49 
     50 // -----------------------------------------------------------------------------
     51 // Implementation of CpuFeatures
     52 
     53 void CpuFeatures::ProbeImpl(bool cross_compile) {
     54   base::CPU cpu;
     55 
     56   // Only use statically determined features for cross compile (snapshot).
     57   if (cross_compile) return;
     58 }
     59 
     60 
     61 void CpuFeatures::PrintTarget() { }
     62 void CpuFeatures::PrintFeatures() { }
     63 
     64 
     65 // -----------------------------------------------------------------------------
     66 // Implementation of Displacement
     67 
     68 void Displacement::init(Label* L, Type type) {
     69   DCHECK(!L->is_bound());
     70   int next = 0;
     71   if (L->is_linked()) {
     72     next = L->pos();
     73     DCHECK(next > 0);  // Displacements must be at positions > 0
     74   }
     75   // Ensure that we _never_ overflow the next field.
     76   DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
     77   data_ = NextField::encode(next) | TypeField::encode(type);
     78 }
     79 
     80 
     81 // -----------------------------------------------------------------------------
     82 // Implementation of RelocInfo
     83 
     84 
     85 const int RelocInfo::kApplyMask =
     86     RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
     87     1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
     88     RelocInfo::kDebugBreakSlotMask;
     89 
     90 
     91 bool RelocInfo::IsCodedSpecially() {
     92   // The deserializer needs to know whether a pointer is specially coded.  Being
     93   // specially coded on IA32 means that it is a relative address, as used by
     94   // branch instructions.  These are also the ones that need changing when a
     95   // code object moves.
     96   return (1 << rmode_) & kApplyMask;
     97 }
     98 
     99 
    100 bool RelocInfo::IsInConstantPool() {
    101   return false;
    102 }
    103 
    104 Address RelocInfo::wasm_memory_reference() {
    105   DCHECK(IsWasmMemoryReference(rmode_));
    106   return Memory::Address_at(pc_);
    107 }
    108 
    109 Address RelocInfo::wasm_global_reference() {
    110   DCHECK(IsWasmGlobalReference(rmode_));
    111   return Memory::Address_at(pc_);
    112 }
    113 
    114 uint32_t RelocInfo::wasm_memory_size_reference() {
    115   DCHECK(IsWasmMemorySizeReference(rmode_));
    116   return Memory::uint32_at(pc_);
    117 }
    118 
    119 uint32_t RelocInfo::wasm_function_table_size_reference() {
    120   DCHECK(IsWasmFunctionTableSizeReference(rmode_));
    121   return Memory::uint32_at(pc_);
    122 }
    123 
    124 void RelocInfo::unchecked_update_wasm_memory_reference(
    125     Address address, ICacheFlushMode flush_mode) {
    126   Memory::Address_at(pc_) = address;
    127 }
    128 
    129 void RelocInfo::unchecked_update_wasm_size(uint32_t size,
    130                                            ICacheFlushMode flush_mode) {
    131   Memory::uint32_at(pc_) = size;
    132 }
    133 
    134 // -----------------------------------------------------------------------------
    135 // Implementation of Operand
    136 
    137 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
    138   // [base + disp/r]
    139   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
    140     // [base]
    141     set_modrm(0, base);
    142     if (base.is(esp)) set_sib(times_1, esp, base);
    143   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    144     // [base + disp8]
    145     set_modrm(1, base);
    146     if (base.is(esp)) set_sib(times_1, esp, base);
    147     set_disp8(disp);
    148   } else {
    149     // [base + disp/r]
    150     set_modrm(2, base);
    151     if (base.is(esp)) set_sib(times_1, esp, base);
    152     set_dispr(disp, rmode);
    153   }
    154 }
    155 
    156 
    157 Operand::Operand(Register base,
    158                  Register index,
    159                  ScaleFactor scale,
    160                  int32_t disp,
    161                  RelocInfo::Mode rmode) {
    162   DCHECK(!index.is(esp));  // illegal addressing mode
    163   // [base + index*scale + disp/r]
    164   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
    165     // [base + index*scale]
    166     set_modrm(0, esp);
    167     set_sib(scale, index, base);
    168   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    169     // [base + index*scale + disp8]
    170     set_modrm(1, esp);
    171     set_sib(scale, index, base);
    172     set_disp8(disp);
    173   } else {
    174     // [base + index*scale + disp/r]
    175     set_modrm(2, esp);
    176     set_sib(scale, index, base);
    177     set_dispr(disp, rmode);
    178   }
    179 }
    180 
    181 
    182 Operand::Operand(Register index,
    183                  ScaleFactor scale,
    184                  int32_t disp,
    185                  RelocInfo::Mode rmode) {
    186   DCHECK(!index.is(esp));  // illegal addressing mode
    187   // [index*scale + disp/r]
    188   set_modrm(0, esp);
    189   set_sib(scale, index, ebp);
    190   set_dispr(disp, rmode);
    191 }
    192 
    193 
    194 bool Operand::is_reg(Register reg) const {
    195   return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
    196       && ((buf_[0] & 0x07) == reg.code());  // register codes match.
    197 }
    198 
    199 
    200 bool Operand::is_reg_only() const {
    201   return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
    202 }
    203 
    204 
    205 Register Operand::reg() const {
    206   DCHECK(is_reg_only());
    207   return Register::from_code(buf_[0] & 0x07);
    208 }
    209 
    210 
    211 // -----------------------------------------------------------------------------
    212 // Implementation of Assembler.
    213 
    214 // Emit a single byte. Must always be inlined.
    215 #define EMIT(x)                                 \
    216   *pc_++ = (x)
    217 
    218 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    219     : AssemblerBase(isolate, buffer, buffer_size) {
    220 // Clear the buffer in debug mode unless it was provided by the
    221 // caller in which case we can't be sure it's okay to overwrite
    222 // existing code in it; see CodePatcher::CodePatcher(...).
    223 #ifdef DEBUG
    224   if (own_buffer_) {
    225     memset(buffer_, 0xCC, buffer_size_);  // int3
    226   }
    227 #endif
    228 
    229   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
    230 }
    231 
    232 
    233 void Assembler::GetCode(CodeDesc* desc) {
    234   // Finalize code (at this point overflow() may be true, but the gap ensures
    235   // that we are still not overlapping instructions and relocation info).
    236   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
    237   // Set up code descriptor.
    238   desc->buffer = buffer_;
    239   desc->buffer_size = buffer_size_;
    240   desc->instr_size = pc_offset();
    241   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    242   desc->origin = this;
    243   desc->constant_pool_size = 0;
    244   desc->unwinding_info_size = 0;
    245   desc->unwinding_info = nullptr;
    246 }
    247 
    248 
    249 void Assembler::Align(int m) {
    250   DCHECK(base::bits::IsPowerOfTwo32(m));
    251   int mask = m - 1;
    252   int addr = pc_offset();
    253   Nop((m - (addr & mask)) & mask);
    254 }
    255 
    256 
    257 bool Assembler::IsNop(Address addr) {
    258   Address a = addr;
    259   while (*a == 0x66) a++;
    260   if (*a == 0x90) return true;
    261   if (a[0] == 0xf && a[1] == 0x1f) return true;
    262   return false;
    263 }
    264 
    265 
    266 void Assembler::Nop(int bytes) {
    267   EnsureSpace ensure_space(this);
    268 
    269   // Older CPUs that do not support SSE2 may not support multibyte NOP
    270   // instructions.
    271   for (; bytes > 0; bytes--) {
    272     EMIT(0x90);
    273   }
    274   return;
    275 }
    276 
    277 
    278 void Assembler::CodeTargetAlign() {
    279   Align(16);  // Preferred alignment of jump targets on ia32.
    280 }
    281 
    282 
    283 void Assembler::cpuid() {
    284   EnsureSpace ensure_space(this);
    285   EMIT(0x0F);
    286   EMIT(0xA2);
    287 }
    288 
    289 
    290 void Assembler::pushad() {
    291   EnsureSpace ensure_space(this);
    292   EMIT(0x60);
    293 }
    294 
    295 
    296 void Assembler::popad() {
    297   EnsureSpace ensure_space(this);
    298   EMIT(0x61);
    299 }
    300 
    301 
    302 void Assembler::pushfd() {
    303   EnsureSpace ensure_space(this);
    304   EMIT(0x9C);
    305 }
    306 
    307 
    308 void Assembler::popfd() {
    309   EnsureSpace ensure_space(this);
    310   EMIT(0x9D);
    311 }
    312 
    313 
    314 void Assembler::push(const Immediate& x) {
    315   EnsureSpace ensure_space(this);
    316   if (x.is_int8()) {
    317     EMIT(0x6a);
    318     EMIT(x.x_);
    319   } else {
    320     EMIT(0x68);
    321     emit(x);
    322   }
    323 }
    324 
    325 
    326 void Assembler::push_imm32(int32_t imm32) {
    327   EnsureSpace ensure_space(this);
    328   EMIT(0x68);
    329   emit(imm32);
    330 }
    331 
    332 
    333 void Assembler::push(Register src) {
    334   EnsureSpace ensure_space(this);
    335   EMIT(0x50 | src.code());
    336 }
    337 
    338 
    339 void Assembler::push(const Operand& src) {
    340   EnsureSpace ensure_space(this);
    341   EMIT(0xFF);
    342   emit_operand(esi, src);
    343 }
    344 
    345 
    346 void Assembler::pop(Register dst) {
    347   DCHECK(reloc_info_writer.last_pc() != NULL);
    348   EnsureSpace ensure_space(this);
    349   EMIT(0x58 | dst.code());
    350 }
    351 
    352 
    353 void Assembler::pop(const Operand& dst) {
    354   EnsureSpace ensure_space(this);
    355   EMIT(0x8F);
    356   emit_operand(eax, dst);
    357 }
    358 
    359 
    360 void Assembler::enter(const Immediate& size) {
    361   EnsureSpace ensure_space(this);
    362   EMIT(0xC8);
    363   emit_w(size);
    364   EMIT(0);
    365 }
    366 
    367 
    368 void Assembler::leave() {
    369   EnsureSpace ensure_space(this);
    370   EMIT(0xC9);
    371 }
    372 
    373 
    374 void Assembler::mov_b(Register dst, const Operand& src) {
    375   CHECK(dst.is_byte_register());
    376   EnsureSpace ensure_space(this);
    377   EMIT(0x8A);
    378   emit_operand(dst, src);
    379 }
    380 
    381 
    382 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
    383   EnsureSpace ensure_space(this);
    384   EMIT(0xC6);
    385   emit_operand(eax, dst);
    386   EMIT(static_cast<int8_t>(src.x_));
    387 }
    388 
    389 
    390 void Assembler::mov_b(const Operand& dst, int8_t imm8) {
    391   EnsureSpace ensure_space(this);
    392   EMIT(0xC6);
    393   emit_operand(eax, dst);
    394   EMIT(imm8);
    395 }
    396 
    397 
    398 void Assembler::mov_b(const Operand& dst, Register src) {
    399   CHECK(src.is_byte_register());
    400   EnsureSpace ensure_space(this);
    401   EMIT(0x88);
    402   emit_operand(src, dst);
    403 }
    404 
    405 
    406 void Assembler::mov_w(Register dst, const Operand& src) {
    407   EnsureSpace ensure_space(this);
    408   EMIT(0x66);
    409   EMIT(0x8B);
    410   emit_operand(dst, src);
    411 }
    412 
    413 
    414 void Assembler::mov_w(const Operand& dst, Register src) {
    415   EnsureSpace ensure_space(this);
    416   EMIT(0x66);
    417   EMIT(0x89);
    418   emit_operand(src, dst);
    419 }
    420 
    421 
    422 void Assembler::mov_w(const Operand& dst, int16_t imm16) {
    423   EnsureSpace ensure_space(this);
    424   EMIT(0x66);
    425   EMIT(0xC7);
    426   emit_operand(eax, dst);
    427   EMIT(static_cast<int8_t>(imm16 & 0xff));
    428   EMIT(static_cast<int8_t>(imm16 >> 8));
    429 }
    430 
    431 
    432 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
    433   EnsureSpace ensure_space(this);
    434   EMIT(0x66);
    435   EMIT(0xC7);
    436   emit_operand(eax, dst);
    437   EMIT(static_cast<int8_t>(src.x_ & 0xff));
    438   EMIT(static_cast<int8_t>(src.x_ >> 8));
    439 }
    440 
    441 
    442 void Assembler::mov(Register dst, int32_t imm32) {
    443   EnsureSpace ensure_space(this);
    444   EMIT(0xB8 | dst.code());
    445   emit(imm32);
    446 }
    447 
    448 
    449 void Assembler::mov(Register dst, const Immediate& x) {
    450   EnsureSpace ensure_space(this);
    451   EMIT(0xB8 | dst.code());
    452   emit(x);
    453 }
    454 
    455 
    456 void Assembler::mov(Register dst, Handle<Object> handle) {
    457   EnsureSpace ensure_space(this);
    458   EMIT(0xB8 | dst.code());
    459   emit(handle);
    460 }
    461 
    462 
    463 void Assembler::mov(Register dst, const Operand& src) {
    464   EnsureSpace ensure_space(this);
    465   EMIT(0x8B);
    466   emit_operand(dst, src);
    467 }
    468 
    469 
    470 void Assembler::mov(Register dst, Register src) {
    471   EnsureSpace ensure_space(this);
    472   EMIT(0x89);
    473   EMIT(0xC0 | src.code() << 3 | dst.code());
    474 }
    475 
    476 
    477 void Assembler::mov(const Operand& dst, const Immediate& x) {
    478   EnsureSpace ensure_space(this);
    479   EMIT(0xC7);
    480   emit_operand(eax, dst);
    481   emit(x);
    482 }
    483 
    484 
    485 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
    486   EnsureSpace ensure_space(this);
    487   EMIT(0xC7);
    488   emit_operand(eax, dst);
    489   emit(handle);
    490 }
    491 
    492 
    493 void Assembler::mov(const Operand& dst, Register src) {
    494   EnsureSpace ensure_space(this);
    495   EMIT(0x89);
    496   emit_operand(src, dst);
    497 }
    498 
    499 
    500 void Assembler::movsx_b(Register dst, const Operand& src) {
    501   EnsureSpace ensure_space(this);
    502   EMIT(0x0F);
    503   EMIT(0xBE);
    504   emit_operand(dst, src);
    505 }
    506 
    507 
    508 void Assembler::movsx_w(Register dst, const Operand& src) {
    509   EnsureSpace ensure_space(this);
    510   EMIT(0x0F);
    511   EMIT(0xBF);
    512   emit_operand(dst, src);
    513 }
    514 
    515 
    516 void Assembler::movzx_b(Register dst, const Operand& src) {
    517   EnsureSpace ensure_space(this);
    518   EMIT(0x0F);
    519   EMIT(0xB6);
    520   emit_operand(dst, src);
    521 }
    522 
    523 
    524 void Assembler::movzx_w(Register dst, const Operand& src) {
    525   EnsureSpace ensure_space(this);
    526   EMIT(0x0F);
    527   EMIT(0xB7);
    528   emit_operand(dst, src);
    529 }
    530 
    531 
    532 void Assembler::cld() {
    533   EnsureSpace ensure_space(this);
    534   EMIT(0xFC);
    535 }
    536 
    537 
    538 void Assembler::rep_movs() {
    539   EnsureSpace ensure_space(this);
    540   EMIT(0xF3);
    541   EMIT(0xA5);
    542 }
    543 
    544 
    545 void Assembler::rep_stos() {
    546   EnsureSpace ensure_space(this);
    547   EMIT(0xF3);
    548   EMIT(0xAB);
    549 }
    550 
    551 
    552 void Assembler::stos() {
    553   EnsureSpace ensure_space(this);
    554   EMIT(0xAB);
    555 }
    556 
    557 
    558 void Assembler::xchg(Register dst, Register src) {
    559   EnsureSpace ensure_space(this);
    560   if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
    561     EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
    562   } else {
    563     EMIT(0x87);
    564     EMIT(0xC0 | src.code() << 3 | dst.code());
    565   }
    566 }
    567 
    568 
    569 void Assembler::xchg(Register dst, const Operand& src) {
    570   EnsureSpace ensure_space(this);
    571   EMIT(0x87);
    572   emit_operand(dst, src);
    573 }
    574 
    575 void Assembler::xchg_b(Register reg, const Operand& op) {
    576   EnsureSpace ensure_space(this);
    577   EMIT(0x86);
    578   emit_operand(reg, op);
    579 }
    580 
    581 void Assembler::xchg_w(Register reg, const Operand& op) {
    582   EnsureSpace ensure_space(this);
    583   EMIT(0x66);
    584   EMIT(0x87);
    585   emit_operand(reg, op);
    586 }
    587 
    588 void Assembler::lock() {
    589   EnsureSpace ensure_space(this);
    590   EMIT(0xF0);
    591 }
    592 
    593 void Assembler::cmpxchg(const Operand& dst, Register src) {
    594   EnsureSpace ensure_space(this);
    595   EMIT(0x0F);
    596   EMIT(0xB1);
    597   emit_operand(src, dst);
    598 }
    599 
    600 void Assembler::cmpxchg_b(const Operand& dst, Register src) {
    601   EnsureSpace ensure_space(this);
    602   EMIT(0x0F);
    603   EMIT(0xB0);
    604   emit_operand(src, dst);
    605 }
    606 
    607 void Assembler::cmpxchg_w(const Operand& dst, Register src) {
    608   EnsureSpace ensure_space(this);
    609   EMIT(0x66);
    610   EMIT(0x0F);
    611   EMIT(0xB1);
    612   emit_operand(src, dst);
    613 }
    614 
    615 void Assembler::adc(Register dst, int32_t imm32) {
    616   EnsureSpace ensure_space(this);
    617   emit_arith(2, Operand(dst), Immediate(imm32));
    618 }
    619 
    620 
    621 void Assembler::adc(Register dst, const Operand& src) {
    622   EnsureSpace ensure_space(this);
    623   EMIT(0x13);
    624   emit_operand(dst, src);
    625 }
    626 
    627 
    628 void Assembler::add(Register dst, const Operand& src) {
    629   EnsureSpace ensure_space(this);
    630   EMIT(0x03);
    631   emit_operand(dst, src);
    632 }
    633 
    634 
    635 void Assembler::add(const Operand& dst, Register src) {
    636   EnsureSpace ensure_space(this);
    637   EMIT(0x01);
    638   emit_operand(src, dst);
    639 }
    640 
    641 
    642 void Assembler::add(const Operand& dst, const Immediate& x) {
    643   DCHECK(reloc_info_writer.last_pc() != NULL);
    644   EnsureSpace ensure_space(this);
    645   emit_arith(0, dst, x);
    646 }
    647 
    648 
    649 void Assembler::and_(Register dst, int32_t imm32) {
    650   and_(dst, Immediate(imm32));
    651 }
    652 
    653 
    654 void Assembler::and_(Register dst, const Immediate& x) {
    655   EnsureSpace ensure_space(this);
    656   emit_arith(4, Operand(dst), x);
    657 }
    658 
    659 
    660 void Assembler::and_(Register dst, const Operand& src) {
    661   EnsureSpace ensure_space(this);
    662   EMIT(0x23);
    663   emit_operand(dst, src);
    664 }
    665 
    666 
    667 void Assembler::and_(const Operand& dst, const Immediate& x) {
    668   EnsureSpace ensure_space(this);
    669   emit_arith(4, dst, x);
    670 }
    671 
    672 
    673 void Assembler::and_(const Operand& dst, Register src) {
    674   EnsureSpace ensure_space(this);
    675   EMIT(0x21);
    676   emit_operand(src, dst);
    677 }
    678 
    679 void Assembler::cmpb(const Operand& op, Immediate imm8) {
    680   DCHECK(imm8.is_int8() || imm8.is_uint8());
    681   EnsureSpace ensure_space(this);
    682   if (op.is_reg(eax)) {
    683     EMIT(0x3C);
    684   } else {
    685     EMIT(0x80);
    686     emit_operand(edi, op);  // edi == 7
    687   }
    688   emit_b(imm8);
    689 }
    690 
    691 
    692 void Assembler::cmpb(const Operand& op, Register reg) {
    693   CHECK(reg.is_byte_register());
    694   EnsureSpace ensure_space(this);
    695   EMIT(0x38);
    696   emit_operand(reg, op);
    697 }
    698 
    699 
    700 void Assembler::cmpb(Register reg, const Operand& op) {
    701   CHECK(reg.is_byte_register());
    702   EnsureSpace ensure_space(this);
    703   EMIT(0x3A);
    704   emit_operand(reg, op);
    705 }
    706 
    707 
    708 void Assembler::cmpw(const Operand& op, Immediate imm16) {
    709   DCHECK(imm16.is_int16());
    710   EnsureSpace ensure_space(this);
    711   EMIT(0x66);
    712   EMIT(0x81);
    713   emit_operand(edi, op);
    714   emit_w(imm16);
    715 }
    716 
    717 void Assembler::cmpw(Register reg, const Operand& op) {
    718   EnsureSpace ensure_space(this);
    719   EMIT(0x66);
    720   EMIT(0x3B);
    721   emit_operand(reg, op);
    722 }
    723 
    724 void Assembler::cmpw(const Operand& op, Register reg) {
    725   EnsureSpace ensure_space(this);
    726   EMIT(0x66);
    727   EMIT(0x39);
    728   emit_operand(reg, op);
    729 }
    730 
    731 void Assembler::cmp(Register reg, int32_t imm32) {
    732   EnsureSpace ensure_space(this);
    733   emit_arith(7, Operand(reg), Immediate(imm32));
    734 }
    735 
    736 
    737 void Assembler::cmp(Register reg, Handle<Object> handle) {
    738   EnsureSpace ensure_space(this);
    739   emit_arith(7, Operand(reg), Immediate(handle));
    740 }
    741 
    742 
    743 void Assembler::cmp(Register reg, const Operand& op) {
    744   EnsureSpace ensure_space(this);
    745   EMIT(0x3B);
    746   emit_operand(reg, op);
    747 }
    748 
    749 void Assembler::cmp(const Operand& op, Register reg) {
    750   EnsureSpace ensure_space(this);
    751   EMIT(0x39);
    752   emit_operand(reg, op);
    753 }
    754 
    755 void Assembler::cmp(const Operand& op, const Immediate& imm) {
    756   EnsureSpace ensure_space(this);
    757   emit_arith(7, op, imm);
    758 }
    759 
    760 
    761 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
    762   EnsureSpace ensure_space(this);
    763   emit_arith(7, op, Immediate(handle));
    764 }
    765 
    766 
    767 void Assembler::cmpb_al(const Operand& op) {
    768   EnsureSpace ensure_space(this);
    769   EMIT(0x38);  // CMP r/m8, r8
    770   emit_operand(eax, op);  // eax has same code as register al.
    771 }
    772 
    773 
    774 void Assembler::cmpw_ax(const Operand& op) {
    775   EnsureSpace ensure_space(this);
    776   EMIT(0x66);
    777   EMIT(0x39);  // CMP r/m16, r16
    778   emit_operand(eax, op);  // eax has same code as register ax.
    779 }
    780 
    781 
    782 void Assembler::dec_b(Register dst) {
    783   CHECK(dst.is_byte_register());
    784   EnsureSpace ensure_space(this);
    785   EMIT(0xFE);
    786   EMIT(0xC8 | dst.code());
    787 }
    788 
    789 
    790 void Assembler::dec_b(const Operand& dst) {
    791   EnsureSpace ensure_space(this);
    792   EMIT(0xFE);
    793   emit_operand(ecx, dst);
    794 }
    795 
    796 
    797 void Assembler::dec(Register dst) {
    798   EnsureSpace ensure_space(this);
    799   EMIT(0x48 | dst.code());
    800 }
    801 
    802 
    803 void Assembler::dec(const Operand& dst) {
    804   EnsureSpace ensure_space(this);
    805   EMIT(0xFF);
    806   emit_operand(ecx, dst);
    807 }
    808 
    809 
    810 void Assembler::cdq() {
    811   EnsureSpace ensure_space(this);
    812   EMIT(0x99);
    813 }
    814 
    815 
    816 void Assembler::idiv(const Operand& src) {
    817   EnsureSpace ensure_space(this);
    818   EMIT(0xF7);
    819   emit_operand(edi, src);
    820 }
    821 
    822 
    823 void Assembler::div(const Operand& src) {
    824   EnsureSpace ensure_space(this);
    825   EMIT(0xF7);
    826   emit_operand(esi, src);
    827 }
    828 
    829 
    830 void Assembler::imul(Register reg) {
    831   EnsureSpace ensure_space(this);
    832   EMIT(0xF7);
    833   EMIT(0xE8 | reg.code());
    834 }
    835 
    836 
    837 void Assembler::imul(Register dst, const Operand& src) {
    838   EnsureSpace ensure_space(this);
    839   EMIT(0x0F);
    840   EMIT(0xAF);
    841   emit_operand(dst, src);
    842 }
    843 
    844 
    845 void Assembler::imul(Register dst, Register src, int32_t imm32) {
    846   imul(dst, Operand(src), imm32);
    847 }
    848 
    849 
    850 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
    851   EnsureSpace ensure_space(this);
    852   if (is_int8(imm32)) {
    853     EMIT(0x6B);
    854     emit_operand(dst, src);
    855     EMIT(imm32);
    856   } else {
    857     EMIT(0x69);
    858     emit_operand(dst, src);
    859     emit(imm32);
    860   }
    861 }
    862 
    863 
    864 void Assembler::inc(Register dst) {
    865   EnsureSpace ensure_space(this);
    866   EMIT(0x40 | dst.code());
    867 }
    868 
    869 
    870 void Assembler::inc(const Operand& dst) {
    871   EnsureSpace ensure_space(this);
    872   EMIT(0xFF);
    873   emit_operand(eax, dst);
    874 }
    875 
    876 
    877 void Assembler::lea(Register dst, const Operand& src) {
    878   EnsureSpace ensure_space(this);
    879   EMIT(0x8D);
    880   emit_operand(dst, src);
    881 }
    882 
    883 
    884 void Assembler::mul(Register src) {
    885   EnsureSpace ensure_space(this);
    886   EMIT(0xF7);
    887   EMIT(0xE0 | src.code());
    888 }
    889 
    890 
    891 void Assembler::neg(Register dst) {
    892   EnsureSpace ensure_space(this);
    893   EMIT(0xF7);
    894   EMIT(0xD8 | dst.code());
    895 }
    896 
    897 
    898 void Assembler::neg(const Operand& dst) {
    899   EnsureSpace ensure_space(this);
    900   EMIT(0xF7);
    901   emit_operand(ebx, dst);
    902 }
    903 
    904 
    905 void Assembler::not_(Register dst) {
    906   EnsureSpace ensure_space(this);
    907   EMIT(0xF7);
    908   EMIT(0xD0 | dst.code());
    909 }
    910 
    911 
    912 void Assembler::not_(const Operand& dst) {
    913   EnsureSpace ensure_space(this);
    914   EMIT(0xF7);
    915   emit_operand(edx, dst);
    916 }
    917 
    918 
    919 void Assembler::or_(Register dst, int32_t imm32) {
    920   EnsureSpace ensure_space(this);
    921   emit_arith(1, Operand(dst), Immediate(imm32));
    922 }
    923 
    924 
    925 void Assembler::or_(Register dst, const Operand& src) {
    926   EnsureSpace ensure_space(this);
    927   EMIT(0x0B);
    928   emit_operand(dst, src);
    929 }
    930 
    931 
    932 void Assembler::or_(const Operand& dst, const Immediate& x) {
    933   EnsureSpace ensure_space(this);
    934   emit_arith(1, dst, x);
    935 }
    936 
    937 
    938 void Assembler::or_(const Operand& dst, Register src) {
    939   EnsureSpace ensure_space(this);
    940   EMIT(0x09);
    941   emit_operand(src, dst);
    942 }
    943 
    944 
    945 void Assembler::rcl(Register dst, uint8_t imm8) {
    946   EnsureSpace ensure_space(this);
    947   DCHECK(is_uint5(imm8));  // illegal shift count
    948   if (imm8 == 1) {
    949     EMIT(0xD1);
    950     EMIT(0xD0 | dst.code());
    951   } else {
    952     EMIT(0xC1);
    953     EMIT(0xD0 | dst.code());
    954     EMIT(imm8);
    955   }
    956 }
    957 
    958 
    959 void Assembler::rcr(Register dst, uint8_t imm8) {
    960   EnsureSpace ensure_space(this);
    961   DCHECK(is_uint5(imm8));  // illegal shift count
    962   if (imm8 == 1) {
    963     EMIT(0xD1);
    964     EMIT(0xD8 | dst.code());
    965   } else {
    966     EMIT(0xC1);
    967     EMIT(0xD8 | dst.code());
    968     EMIT(imm8);
    969   }
    970 }
    971 
    972 
    973 void Assembler::ror(const Operand& dst, uint8_t imm8) {
    974   EnsureSpace ensure_space(this);
    975   DCHECK(is_uint5(imm8));  // illegal shift count
    976   if (imm8 == 1) {
    977     EMIT(0xD1);
    978     emit_operand(ecx, dst);
    979   } else {
    980     EMIT(0xC1);
    981     emit_operand(ecx, dst);
    982     EMIT(imm8);
    983   }
    984 }
    985 
    986 
    987 void Assembler::ror_cl(const Operand& dst) {
    988   EnsureSpace ensure_space(this);
    989   EMIT(0xD3);
    990   emit_operand(ecx, dst);
    991 }
    992 
    993 
    994 void Assembler::sar(const Operand& dst, uint8_t imm8) {
    995   EnsureSpace ensure_space(this);
    996   DCHECK(is_uint5(imm8));  // illegal shift count
    997   if (imm8 == 1) {
    998     EMIT(0xD1);
    999     emit_operand(edi, dst);
   1000   } else {
   1001     EMIT(0xC1);
   1002     emit_operand(edi, dst);
   1003     EMIT(imm8);
   1004   }
   1005 }
   1006 
   1007 
   1008 void Assembler::sar_cl(const Operand& dst) {
   1009   EnsureSpace ensure_space(this);
   1010   EMIT(0xD3);
   1011   emit_operand(edi, dst);
   1012 }
   1013 
   1014 void Assembler::sbb(Register dst, const Operand& src) {
   1015   EnsureSpace ensure_space(this);
   1016   EMIT(0x1B);
   1017   emit_operand(dst, src);
   1018 }
   1019 
   1020 void Assembler::shld(Register dst, Register src, uint8_t shift) {
   1021   DCHECK(is_uint5(shift));
   1022   EnsureSpace ensure_space(this);
   1023   EMIT(0x0F);
   1024   EMIT(0xA4);
   1025   emit_operand(src, Operand(dst));
   1026   EMIT(shift);
   1027 }
   1028 
   1029 void Assembler::shld_cl(Register dst, Register src) {
   1030   EnsureSpace ensure_space(this);
   1031   EMIT(0x0F);
   1032   EMIT(0xA5);
   1033   emit_operand(src, Operand(dst));
   1034 }
   1035 
   1036 
   1037 void Assembler::shl(const Operand& dst, uint8_t imm8) {
   1038   EnsureSpace ensure_space(this);
   1039   DCHECK(is_uint5(imm8));  // illegal shift count
   1040   if (imm8 == 1) {
   1041     EMIT(0xD1);
   1042     emit_operand(esp, dst);
   1043   } else {
   1044     EMIT(0xC1);
   1045     emit_operand(esp, dst);
   1046     EMIT(imm8);
   1047   }
   1048 }
   1049 
   1050 
   1051 void Assembler::shl_cl(const Operand& dst) {
   1052   EnsureSpace ensure_space(this);
   1053   EMIT(0xD3);
   1054   emit_operand(esp, dst);
   1055 }
   1056 
   1057 void Assembler::shr(const Operand& dst, uint8_t imm8) {
   1058   EnsureSpace ensure_space(this);
   1059   DCHECK(is_uint5(imm8));  // illegal shift count
   1060   if (imm8 == 1) {
   1061     EMIT(0xD1);
   1062     emit_operand(ebp, dst);
   1063   } else {
   1064     EMIT(0xC1);
   1065     emit_operand(ebp, dst);
   1066     EMIT(imm8);
   1067   }
   1068 }
   1069 
   1070 
   1071 void Assembler::shr_cl(const Operand& dst) {
   1072   EnsureSpace ensure_space(this);
   1073   EMIT(0xD3);
   1074   emit_operand(ebp, dst);
   1075 }
   1076 
   1077 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
   1078   DCHECK(is_uint5(shift));
   1079   EnsureSpace ensure_space(this);
   1080   EMIT(0x0F);
   1081   EMIT(0xAC);
   1082   emit_operand(dst, Operand(src));
   1083   EMIT(shift);
   1084 }
   1085 
   1086 void Assembler::shrd_cl(const Operand& dst, Register src) {
   1087   EnsureSpace ensure_space(this);
   1088   EMIT(0x0F);
   1089   EMIT(0xAD);
   1090   emit_operand(src, dst);
   1091 }
   1092 
   1093 void Assembler::sub(const Operand& dst, const Immediate& x) {
   1094   EnsureSpace ensure_space(this);
   1095   emit_arith(5, dst, x);
   1096 }
   1097 
   1098 
   1099 void Assembler::sub(Register dst, const Operand& src) {
   1100   EnsureSpace ensure_space(this);
   1101   EMIT(0x2B);
   1102   emit_operand(dst, src);
   1103 }
   1104 
   1105 
   1106 void Assembler::sub(const Operand& dst, Register src) {
   1107   EnsureSpace ensure_space(this);
   1108   EMIT(0x29);
   1109   emit_operand(src, dst);
   1110 }
   1111 
   1112 
   1113 void Assembler::test(Register reg, const Immediate& imm) {
   1114   if (imm.is_uint8()) {
   1115     test_b(reg, imm);
   1116     return;
   1117   }
   1118 
   1119   EnsureSpace ensure_space(this);
   1120   // This is not using emit_arith because test doesn't support
   1121   // sign-extension of 8-bit operands.
   1122   if (reg.is(eax)) {
   1123     EMIT(0xA9);
   1124   } else {
   1125     EMIT(0xF7);
   1126     EMIT(0xC0 | reg.code());
   1127   }
   1128   emit(imm);
   1129 }
   1130 
   1131 
   1132 void Assembler::test(Register reg, const Operand& op) {
   1133   EnsureSpace ensure_space(this);
   1134   EMIT(0x85);
   1135   emit_operand(reg, op);
   1136 }
   1137 
   1138 
   1139 void Assembler::test_b(Register reg, const Operand& op) {
   1140   CHECK(reg.is_byte_register());
   1141   EnsureSpace ensure_space(this);
   1142   EMIT(0x84);
   1143   emit_operand(reg, op);
   1144 }
   1145 
   1146 
   1147 void Assembler::test(const Operand& op, const Immediate& imm) {
   1148   if (op.is_reg_only()) {
   1149     test(op.reg(), imm);
   1150     return;
   1151   }
   1152   if (imm.is_uint8()) {
   1153     return test_b(op, imm);
   1154   }
   1155   EnsureSpace ensure_space(this);
   1156   EMIT(0xF7);
   1157   emit_operand(eax, op);
   1158   emit(imm);
   1159 }
   1160 
   1161 void Assembler::test_b(Register reg, Immediate imm8) {
   1162   DCHECK(imm8.is_uint8());
   1163   EnsureSpace ensure_space(this);
   1164   // Only use test against byte for registers that have a byte
   1165   // variant: eax, ebx, ecx, and edx.
   1166   if (reg.is(eax)) {
   1167     EMIT(0xA8);
   1168     emit_b(imm8);
   1169   } else if (reg.is_byte_register()) {
   1170     emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.x_));
   1171   } else {
   1172     EMIT(0x66);
   1173     EMIT(0xF7);
   1174     EMIT(0xC0 | reg.code());
   1175     emit_w(imm8);
   1176   }
   1177 }
   1178 
   1179 void Assembler::test_b(const Operand& op, Immediate imm8) {
   1180   if (op.is_reg_only()) {
   1181     test_b(op.reg(), imm8);
   1182     return;
   1183   }
   1184   EnsureSpace ensure_space(this);
   1185   EMIT(0xF6);
   1186   emit_operand(eax, op);
   1187   emit_b(imm8);
   1188 }
   1189 
   1190 void Assembler::test_w(Register reg, Immediate imm16) {
   1191   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1192   EnsureSpace ensure_space(this);
   1193   if (reg.is(eax)) {
   1194     EMIT(0xA9);
   1195     emit_w(imm16);
   1196   } else {
   1197     EMIT(0x66);
   1198     EMIT(0xF7);
   1199     EMIT(0xc0 | reg.code());
   1200     emit_w(imm16);
   1201   }
   1202 }
   1203 
   1204 void Assembler::test_w(Register reg, const Operand& op) {
   1205   EnsureSpace ensure_space(this);
   1206   EMIT(0x66);
   1207   EMIT(0x85);
   1208   emit_operand(reg, op);
   1209 }
   1210 
   1211 void Assembler::test_w(const Operand& op, Immediate imm16) {
   1212   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1213   if (op.is_reg_only()) {
   1214     test_w(op.reg(), imm16);
   1215     return;
   1216   }
   1217   EnsureSpace ensure_space(this);
   1218   EMIT(0x66);
   1219   EMIT(0xF7);
   1220   emit_operand(eax, op);
   1221   emit_w(imm16);
   1222 }
   1223 
   1224 void Assembler::xor_(Register dst, int32_t imm32) {
   1225   EnsureSpace ensure_space(this);
   1226   emit_arith(6, Operand(dst), Immediate(imm32));
   1227 }
   1228 
   1229 
   1230 void Assembler::xor_(Register dst, const Operand& src) {
   1231   EnsureSpace ensure_space(this);
   1232   EMIT(0x33);
   1233   emit_operand(dst, src);
   1234 }
   1235 
   1236 
   1237 void Assembler::xor_(const Operand& dst, Register src) {
   1238   EnsureSpace ensure_space(this);
   1239   EMIT(0x31);
   1240   emit_operand(src, dst);
   1241 }
   1242 
   1243 
   1244 void Assembler::xor_(const Operand& dst, const Immediate& x) {
   1245   EnsureSpace ensure_space(this);
   1246   emit_arith(6, dst, x);
   1247 }
   1248 
   1249 
   1250 void Assembler::bt(const Operand& dst, Register src) {
   1251   EnsureSpace ensure_space(this);
   1252   EMIT(0x0F);
   1253   EMIT(0xA3);
   1254   emit_operand(src, dst);
   1255 }
   1256 
   1257 
   1258 void Assembler::bts(const Operand& dst, Register src) {
   1259   EnsureSpace ensure_space(this);
   1260   EMIT(0x0F);
   1261   EMIT(0xAB);
   1262   emit_operand(src, dst);
   1263 }
   1264 
   1265 
   1266 void Assembler::bsr(Register dst, const Operand& src) {
   1267   EnsureSpace ensure_space(this);
   1268   EMIT(0x0F);
   1269   EMIT(0xBD);
   1270   emit_operand(dst, src);
   1271 }
   1272 
   1273 
   1274 void Assembler::bsf(Register dst, const Operand& src) {
   1275   EnsureSpace ensure_space(this);
   1276   EMIT(0x0F);
   1277   EMIT(0xBC);
   1278   emit_operand(dst, src);
   1279 }
   1280 
   1281 
   1282 void Assembler::hlt() {
   1283   EnsureSpace ensure_space(this);
   1284   EMIT(0xF4);
   1285 }
   1286 
   1287 
   1288 void Assembler::int3() {
   1289   EnsureSpace ensure_space(this);
   1290   EMIT(0xCC);
   1291 }
   1292 
   1293 
   1294 void Assembler::nop() {
   1295   EnsureSpace ensure_space(this);
   1296   EMIT(0x90);
   1297 }
   1298 
   1299 
   1300 void Assembler::ret(int imm16) {
   1301   EnsureSpace ensure_space(this);
   1302   DCHECK(is_uint16(imm16));
   1303   if (imm16 == 0) {
   1304     EMIT(0xC3);
   1305   } else {
   1306     EMIT(0xC2);
   1307     EMIT(imm16 & 0xFF);
   1308     EMIT((imm16 >> 8) & 0xFF);
   1309   }
   1310 }
   1311 
   1312 
   1313 void Assembler::ud2() {
   1314   EnsureSpace ensure_space(this);
   1315   EMIT(0x0F);
   1316   EMIT(0x0B);
   1317 }
   1318 
   1319 
   1320 // Labels refer to positions in the (to be) generated code.
   1321 // There are bound, linked, and unused labels.
   1322 //
   1323 // Bound labels refer to known positions in the already
   1324 // generated code. pos() is the position the label refers to.
   1325 //
   1326 // Linked labels refer to unknown positions in the code
   1327 // to be generated; pos() is the position of the 32bit
   1328 // Displacement of the last instruction using the label.
   1329 
   1330 
   1331 void Assembler::print(Label* L) {
   1332   if (L->is_unused()) {
   1333     PrintF("unused label\n");
   1334   } else if (L->is_bound()) {
   1335     PrintF("bound label to %d\n", L->pos());
   1336   } else if (L->is_linked()) {
   1337     Label l = *L;
   1338     PrintF("unbound label");
   1339     while (l.is_linked()) {
   1340       Displacement disp = disp_at(&l);
   1341       PrintF("@ %d ", l.pos());
   1342       disp.print();
   1343       PrintF("\n");
   1344       disp.next(&l);
   1345     }
   1346   } else {
   1347     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
   1348   }
   1349 }
   1350 
   1351 
   1352 void Assembler::bind_to(Label* L, int pos) {
   1353   EnsureSpace ensure_space(this);
   1354   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
   1355   while (L->is_linked()) {
   1356     Displacement disp = disp_at(L);
   1357     int fixup_pos = L->pos();
   1358     if (disp.type() == Displacement::CODE_ABSOLUTE) {
   1359       long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
   1360       internal_reference_positions_.push_back(fixup_pos);
   1361     } else if (disp.type() == Displacement::CODE_RELATIVE) {
   1362       // Relative to Code* heap object pointer.
   1363       long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
   1364     } else {
   1365       if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
   1366         DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
   1367       }
   1368       // Relative address, relative to point after address.
   1369       int imm32 = pos - (fixup_pos + sizeof(int32_t));
   1370       long_at_put(fixup_pos, imm32);
   1371     }
   1372     disp.next(L);
   1373   }
   1374   while (L->is_near_linked()) {
   1375     int fixup_pos = L->near_link_pos();
   1376     int offset_to_next =
   1377         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
   1378     DCHECK(offset_to_next <= 0);
   1379     // Relative address, relative to point after address.
   1380     int disp = pos - fixup_pos - sizeof(int8_t);
   1381     CHECK(0 <= disp && disp <= 127);
   1382     set_byte_at(fixup_pos, disp);
   1383     if (offset_to_next < 0) {
   1384       L->link_to(fixup_pos + offset_to_next, Label::kNear);
   1385     } else {
   1386       L->UnuseNear();
   1387     }
   1388   }
   1389   L->bind_to(pos);
   1390 }
   1391 
   1392 
   1393 void Assembler::bind(Label* L) {
   1394   EnsureSpace ensure_space(this);
   1395   DCHECK(!L->is_bound());  // label can only be bound once
   1396   bind_to(L, pc_offset());
   1397 }
   1398 
   1399 
   1400 void Assembler::call(Label* L) {
   1401   EnsureSpace ensure_space(this);
   1402   if (L->is_bound()) {
   1403     const int long_size = 5;
   1404     int offs = L->pos() - pc_offset();
   1405     DCHECK(offs <= 0);
   1406     // 1110 1000 #32-bit disp.
   1407     EMIT(0xE8);
   1408     emit(offs - long_size);
   1409   } else {
   1410     // 1110 1000 #32-bit disp.
   1411     EMIT(0xE8);
   1412     emit_disp(L, Displacement::OTHER);
   1413   }
   1414 }
   1415 
   1416 
   1417 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
   1418   EnsureSpace ensure_space(this);
   1419   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1420   EMIT(0xE8);
   1421   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1422     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1423   } else {
   1424     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1425   }
   1426 }
   1427 
   1428 
   1429 int Assembler::CallSize(const Operand& adr) {
   1430   // Call size is 1 (opcode) + adr.len_ (operand).
   1431   return 1 + adr.len_;
   1432 }
   1433 
   1434 
   1435 void Assembler::call(const Operand& adr) {
   1436   EnsureSpace ensure_space(this);
   1437   EMIT(0xFF);
   1438   emit_operand(edx, adr);
   1439 }
   1440 
   1441 
   1442 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
   1443   return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
   1444 }
   1445 
   1446 
   1447 void Assembler::call(Handle<Code> code,
   1448                      RelocInfo::Mode rmode,
   1449                      TypeFeedbackId ast_id) {
   1450   EnsureSpace ensure_space(this);
   1451   DCHECK(RelocInfo::IsCodeTarget(rmode)
   1452       || rmode == RelocInfo::CODE_AGE_SEQUENCE);
   1453   EMIT(0xE8);
   1454   emit(code, rmode, ast_id);
   1455 }
   1456 
   1457 
   1458 void Assembler::jmp(Label* L, Label::Distance distance) {
   1459   EnsureSpace ensure_space(this);
   1460   if (L->is_bound()) {
   1461     const int short_size = 2;
   1462     const int long_size  = 5;
   1463     int offs = L->pos() - pc_offset();
   1464     DCHECK(offs <= 0);
   1465     if (is_int8(offs - short_size)) {
   1466       // 1110 1011 #8-bit disp.
   1467       EMIT(0xEB);
   1468       EMIT((offs - short_size) & 0xFF);
   1469     } else {
   1470       // 1110 1001 #32-bit disp.
   1471       EMIT(0xE9);
   1472       emit(offs - long_size);
   1473     }
   1474   } else if (distance == Label::kNear) {
   1475     EMIT(0xEB);
   1476     emit_near_disp(L);
   1477   } else {
   1478     // 1110 1001 #32-bit disp.
   1479     EMIT(0xE9);
   1480     emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
   1481   }
   1482 }
   1483 
   1484 
   1485 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
   1486   EnsureSpace ensure_space(this);
   1487   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1488   EMIT(0xE9);
   1489   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1490     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1491   } else {
   1492     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1493   }
   1494 }
   1495 
   1496 
   1497 void Assembler::jmp(const Operand& adr) {
   1498   EnsureSpace ensure_space(this);
   1499   EMIT(0xFF);
   1500   emit_operand(esp, adr);
   1501 }
   1502 
   1503 
   1504 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
   1505   EnsureSpace ensure_space(this);
   1506   DCHECK(RelocInfo::IsCodeTarget(rmode));
   1507   EMIT(0xE9);
   1508   emit(code, rmode);
   1509 }
   1510 
   1511 
   1512 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
   1513   EnsureSpace ensure_space(this);
   1514   DCHECK(0 <= cc && static_cast<int>(cc) < 16);
   1515   if (L->is_bound()) {
   1516     const int short_size = 2;
   1517     const int long_size  = 6;
   1518     int offs = L->pos() - pc_offset();
   1519     DCHECK(offs <= 0);
   1520     if (is_int8(offs - short_size)) {
   1521       // 0111 tttn #8-bit disp
   1522       EMIT(0x70 | cc);
   1523       EMIT((offs - short_size) & 0xFF);
   1524     } else {
   1525       // 0000 1111 1000 tttn #32-bit disp
   1526       EMIT(0x0F);
   1527       EMIT(0x80 | cc);
   1528       emit(offs - long_size);
   1529     }
   1530   } else if (distance == Label::kNear) {
   1531     EMIT(0x70 | cc);
   1532     emit_near_disp(L);
   1533   } else {
   1534     // 0000 1111 1000 tttn #32-bit disp
   1535     // Note: could eliminate cond. jumps to this jump if condition
   1536     //       is the same however, seems to be rather unlikely case.
   1537     EMIT(0x0F);
   1538     EMIT(0x80 | cc);
   1539     emit_disp(L, Displacement::OTHER);
   1540   }
   1541 }
   1542 
   1543 
   1544 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
   1545   EnsureSpace ensure_space(this);
   1546   DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
   1547   // 0000 1111 1000 tttn #32-bit disp.
   1548   EMIT(0x0F);
   1549   EMIT(0x80 | cc);
   1550   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1551     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1552   } else {
   1553     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1554   }
   1555 }
   1556 
   1557 
   1558 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
   1559   EnsureSpace ensure_space(this);
   1560   // 0000 1111 1000 tttn #32-bit disp
   1561   EMIT(0x0F);
   1562   EMIT(0x80 | cc);
   1563   emit(code, rmode);
   1564 }
   1565 
   1566 
   1567 // FPU instructions.
   1568 
   1569 void Assembler::fld(int i) {
   1570   EnsureSpace ensure_space(this);
   1571   emit_farith(0xD9, 0xC0, i);
   1572 }
   1573 
   1574 
   1575 void Assembler::fstp(int i) {
   1576   EnsureSpace ensure_space(this);
   1577   emit_farith(0xDD, 0xD8, i);
   1578 }
   1579 
   1580 
   1581 void Assembler::fld1() {
   1582   EnsureSpace ensure_space(this);
   1583   EMIT(0xD9);
   1584   EMIT(0xE8);
   1585 }
   1586 
   1587 
   1588 void Assembler::fldpi() {
   1589   EnsureSpace ensure_space(this);
   1590   EMIT(0xD9);
   1591   EMIT(0xEB);
   1592 }
   1593 
   1594 
   1595 void Assembler::fldz() {
   1596   EnsureSpace ensure_space(this);
   1597   EMIT(0xD9);
   1598   EMIT(0xEE);
   1599 }
   1600 
   1601 
   1602 void Assembler::fldln2() {
   1603   EnsureSpace ensure_space(this);
   1604   EMIT(0xD9);
   1605   EMIT(0xED);
   1606 }
   1607 
   1608 
   1609 void Assembler::fld_s(const Operand& adr) {
   1610   EnsureSpace ensure_space(this);
   1611   EMIT(0xD9);
   1612   emit_operand(eax, adr);
   1613 }
   1614 
   1615 
   1616 void Assembler::fld_d(const Operand& adr) {
   1617   EnsureSpace ensure_space(this);
   1618   EMIT(0xDD);
   1619   emit_operand(eax, adr);
   1620 }
   1621 
   1622 
   1623 void Assembler::fstp_s(const Operand& adr) {
   1624   EnsureSpace ensure_space(this);
   1625   EMIT(0xD9);
   1626   emit_operand(ebx, adr);
   1627 }
   1628 
   1629 
   1630 void Assembler::fst_s(const Operand& adr) {
   1631   EnsureSpace ensure_space(this);
   1632   EMIT(0xD9);
   1633   emit_operand(edx, adr);
   1634 }
   1635 
   1636 
   1637 void Assembler::fldcw(const Operand& adr) {
   1638   EnsureSpace ensure_space(this);
   1639   EMIT(0xD9);
   1640   emit_operand(ebp, adr);
   1641 }
   1642 
   1643 
   1644 void Assembler::fnstcw(const Operand& adr) {
   1645   EnsureSpace ensure_space(this);
   1646   EMIT(0xD9);
   1647   emit_operand(edi, adr);
   1648 }
   1649 
   1650 
   1651 void Assembler::fstp_d(const Operand& adr) {
   1652   EnsureSpace ensure_space(this);
   1653   EMIT(0xDD);
   1654   emit_operand(ebx, adr);
   1655 }
   1656 
   1657 
   1658 void Assembler::fst_d(const Operand& adr) {
   1659   EnsureSpace ensure_space(this);
   1660   EMIT(0xDD);
   1661   emit_operand(edx, adr);
   1662 }
   1663 
   1664 
   1665 void Assembler::fild_s(const Operand& adr) {
   1666   EnsureSpace ensure_space(this);
   1667   EMIT(0xDB);
   1668   emit_operand(eax, adr);
   1669 }
   1670 
   1671 
   1672 void Assembler::fild_d(const Operand& adr) {
   1673   EnsureSpace ensure_space(this);
   1674   EMIT(0xDF);
   1675   emit_operand(ebp, adr);
   1676 }
   1677 
   1678 
   1679 void Assembler::fistp_s(const Operand& adr) {
   1680   EnsureSpace ensure_space(this);
   1681   EMIT(0xDB);
   1682   emit_operand(ebx, adr);
   1683 }
   1684 
   1685 
   1686 void Assembler::fisttp_s(const Operand& adr) {
   1687   DCHECK(IsEnabled(SSE3));
   1688   EnsureSpace ensure_space(this);
   1689   EMIT(0xDB);
   1690   emit_operand(ecx, adr);
   1691 }
   1692 
   1693 
   1694 void Assembler::fisttp_d(const Operand& adr) {
   1695   DCHECK(IsEnabled(SSE3));
   1696   EnsureSpace ensure_space(this);
   1697   EMIT(0xDD);
   1698   emit_operand(ecx, adr);
   1699 }
   1700 
   1701 
   1702 void Assembler::fist_s(const Operand& adr) {
   1703   EnsureSpace ensure_space(this);
   1704   EMIT(0xDB);
   1705   emit_operand(edx, adr);
   1706 }
   1707 
   1708 
   1709 void Assembler::fistp_d(const Operand& adr) {
   1710   EnsureSpace ensure_space(this);
   1711   EMIT(0xDF);
   1712   emit_operand(edi, adr);
   1713 }
   1714 
   1715 
   1716 void Assembler::fabs() {
   1717   EnsureSpace ensure_space(this);
   1718   EMIT(0xD9);
   1719   EMIT(0xE1);
   1720 }
   1721 
   1722 
   1723 void Assembler::fchs() {
   1724   EnsureSpace ensure_space(this);
   1725   EMIT(0xD9);
   1726   EMIT(0xE0);
   1727 }
   1728 
   1729 
   1730 void Assembler::fsqrt() {
   1731   EnsureSpace ensure_space(this);
   1732   EMIT(0xD9);
   1733   EMIT(0xFA);
   1734 }
   1735 
   1736 
   1737 void Assembler::fcos() {
   1738   EnsureSpace ensure_space(this);
   1739   EMIT(0xD9);
   1740   EMIT(0xFF);
   1741 }
   1742 
   1743 
   1744 void Assembler::fsin() {
   1745   EnsureSpace ensure_space(this);
   1746   EMIT(0xD9);
   1747   EMIT(0xFE);
   1748 }
   1749 
   1750 
   1751 void Assembler::fptan() {
   1752   EnsureSpace ensure_space(this);
   1753   EMIT(0xD9);
   1754   EMIT(0xF2);
   1755 }
   1756 
   1757 
   1758 void Assembler::fyl2x() {
   1759   EnsureSpace ensure_space(this);
   1760   EMIT(0xD9);
   1761   EMIT(0xF1);
   1762 }
   1763 
   1764 
   1765 void Assembler::f2xm1() {
   1766   EnsureSpace ensure_space(this);
   1767   EMIT(0xD9);
   1768   EMIT(0xF0);
   1769 }
   1770 
   1771 
   1772 void Assembler::fscale() {
   1773   EnsureSpace ensure_space(this);
   1774   EMIT(0xD9);
   1775   EMIT(0xFD);
   1776 }
   1777 
   1778 
   1779 void Assembler::fninit() {
   1780   EnsureSpace ensure_space(this);
   1781   EMIT(0xDB);
   1782   EMIT(0xE3);
   1783 }
   1784 
   1785 
   1786 void Assembler::fadd(int i) {
   1787   EnsureSpace ensure_space(this);
   1788   emit_farith(0xDC, 0xC0, i);
   1789 }
   1790 
   1791 
   1792 void Assembler::fadd_i(int i) {
   1793   EnsureSpace ensure_space(this);
   1794   emit_farith(0xD8, 0xC0, i);
   1795 }
   1796 
   1797 
   1798 void Assembler::fadd_d(const Operand& adr) {
   1799   EnsureSpace ensure_space(this);
   1800   EMIT(0xDC);
   1801   emit_operand(eax, adr);
   1802 }
   1803 
   1804 
   1805 void Assembler::fsub(int i) {
   1806   EnsureSpace ensure_space(this);
   1807   emit_farith(0xDC, 0xE8, i);
   1808 }
   1809 
   1810 
   1811 void Assembler::fsub_i(int i) {
   1812   EnsureSpace ensure_space(this);
   1813   emit_farith(0xD8, 0xE0, i);
   1814 }
   1815 
   1816 
   1817 void Assembler::fsubr_d(const Operand& adr) {
   1818   EnsureSpace ensure_space(this);
   1819   EMIT(0xDC);
   1820   emit_operand(ebp, adr);
   1821 }
   1822 
   1823 
   1824 void Assembler::fsub_d(const Operand& adr) {
   1825   EnsureSpace ensure_space(this);
   1826   EMIT(0xDC);
   1827   emit_operand(esp, adr);
   1828 }
   1829 
   1830 
   1831 void Assembler::fisub_s(const Operand& adr) {
   1832   EnsureSpace ensure_space(this);
   1833   EMIT(0xDA);
   1834   emit_operand(esp, adr);
   1835 }
   1836 
   1837 
   1838 void Assembler::fmul_i(int i) {
   1839   EnsureSpace ensure_space(this);
   1840   emit_farith(0xD8, 0xC8, i);
   1841 }
   1842 
   1843 
   1844 void Assembler::fmul(int i) {
   1845   EnsureSpace ensure_space(this);
   1846   emit_farith(0xDC, 0xC8, i);
   1847 }
   1848 
   1849 
   1850 void Assembler::fmul_d(const Operand& adr) {
   1851   EnsureSpace ensure_space(this);
   1852   EMIT(0xDC);
   1853   emit_operand(ecx, adr);
   1854 }
   1855 
   1856 
   1857 void Assembler::fdiv(int i) {
   1858   EnsureSpace ensure_space(this);
   1859   emit_farith(0xDC, 0xF8, i);
   1860 }
   1861 
   1862 
   1863 void Assembler::fdiv_d(const Operand& adr) {
   1864   EnsureSpace ensure_space(this);
   1865   EMIT(0xDC);
   1866   emit_operand(esi, adr);
   1867 }
   1868 
   1869 
   1870 void Assembler::fdivr_d(const Operand& adr) {
   1871   EnsureSpace ensure_space(this);
   1872   EMIT(0xDC);
   1873   emit_operand(edi, adr);
   1874 }
   1875 
   1876 
   1877 void Assembler::fdiv_i(int i) {
   1878   EnsureSpace ensure_space(this);
   1879   emit_farith(0xD8, 0xF0, i);
   1880 }
   1881 
   1882 
   1883 void Assembler::faddp(int i) {
   1884   EnsureSpace ensure_space(this);
   1885   emit_farith(0xDE, 0xC0, i);
   1886 }
   1887 
   1888 
   1889 void Assembler::fsubp(int i) {
   1890   EnsureSpace ensure_space(this);
   1891   emit_farith(0xDE, 0xE8, i);
   1892 }
   1893 
   1894 
   1895 void Assembler::fsubrp(int i) {
   1896   EnsureSpace ensure_space(this);
   1897   emit_farith(0xDE, 0xE0, i);
   1898 }
   1899 
   1900 
   1901 void Assembler::fmulp(int i) {
   1902   EnsureSpace ensure_space(this);
   1903   emit_farith(0xDE, 0xC8, i);
   1904 }
   1905 
   1906 
   1907 void Assembler::fdivp(int i) {
   1908   EnsureSpace ensure_space(this);
   1909   emit_farith(0xDE, 0xF8, i);
   1910 }
   1911 
   1912 
   1913 void Assembler::fprem() {
   1914   EnsureSpace ensure_space(this);
   1915   EMIT(0xD9);
   1916   EMIT(0xF8);
   1917 }
   1918 
   1919 
   1920 void Assembler::fprem1() {
   1921   EnsureSpace ensure_space(this);
   1922   EMIT(0xD9);
   1923   EMIT(0xF5);
   1924 }
   1925 
   1926 
   1927 void Assembler::fxch(int i) {
   1928   EnsureSpace ensure_space(this);
   1929   emit_farith(0xD9, 0xC8, i);
   1930 }
   1931 
   1932 
   1933 void Assembler::fincstp() {
   1934   EnsureSpace ensure_space(this);
   1935   EMIT(0xD9);
   1936   EMIT(0xF7);
   1937 }
   1938 
   1939 
   1940 void Assembler::ffree(int i) {
   1941   EnsureSpace ensure_space(this);
   1942   emit_farith(0xDD, 0xC0, i);
   1943 }
   1944 
   1945 
   1946 void Assembler::ftst() {
   1947   EnsureSpace ensure_space(this);
   1948   EMIT(0xD9);
   1949   EMIT(0xE4);
   1950 }
   1951 
   1952 
   1953 void Assembler::fxam() {
   1954   EnsureSpace ensure_space(this);
   1955   EMIT(0xD9);
   1956   EMIT(0xE5);
   1957 }
   1958 
   1959 
   1960 void Assembler::fucomp(int i) {
   1961   EnsureSpace ensure_space(this);
   1962   emit_farith(0xDD, 0xE8, i);
   1963 }
   1964 
   1965 
   1966 void Assembler::fucompp() {
   1967   EnsureSpace ensure_space(this);
   1968   EMIT(0xDA);
   1969   EMIT(0xE9);
   1970 }
   1971 
   1972 
   1973 void Assembler::fucomi(int i) {
   1974   EnsureSpace ensure_space(this);
   1975   EMIT(0xDB);
   1976   EMIT(0xE8 + i);
   1977 }
   1978 
   1979 
   1980 void Assembler::fucomip() {
   1981   EnsureSpace ensure_space(this);
   1982   EMIT(0xDF);
   1983   EMIT(0xE9);
   1984 }
   1985 
   1986 
   1987 void Assembler::fcompp() {
   1988   EnsureSpace ensure_space(this);
   1989   EMIT(0xDE);
   1990   EMIT(0xD9);
   1991 }
   1992 
   1993 
   1994 void Assembler::fnstsw_ax() {
   1995   EnsureSpace ensure_space(this);
   1996   EMIT(0xDF);
   1997   EMIT(0xE0);
   1998 }
   1999 
   2000 
   2001 void Assembler::fwait() {
   2002   EnsureSpace ensure_space(this);
   2003   EMIT(0x9B);
   2004 }
   2005 
   2006 
   2007 void Assembler::frndint() {
   2008   EnsureSpace ensure_space(this);
   2009   EMIT(0xD9);
   2010   EMIT(0xFC);
   2011 }
   2012 
   2013 
   2014 void Assembler::fnclex() {
   2015   EnsureSpace ensure_space(this);
   2016   EMIT(0xDB);
   2017   EMIT(0xE2);
   2018 }
   2019 
   2020 
   2021 void Assembler::fnsave(const Operand& adr) {
   2022   EnsureSpace ensure_space(this);
   2023   EMIT(0xDD);
   2024   emit_operand(esi, adr);
   2025 }
   2026 
   2027 
   2028 void Assembler::frstor(const Operand& adr) {
   2029   EnsureSpace ensure_space(this);
   2030   EMIT(0xDD);
   2031   emit_operand(esp, adr);
   2032 }
   2033 
   2034 
   2035 void Assembler::sahf() {
   2036   EnsureSpace ensure_space(this);
   2037   EMIT(0x9E);
   2038 }
   2039 
   2040 
   2041 void Assembler::setcc(Condition cc, Register reg) {
   2042   DCHECK(reg.is_byte_register());
   2043   EnsureSpace ensure_space(this);
   2044   EMIT(0x0F);
   2045   EMIT(0x90 | cc);
   2046   EMIT(0xC0 | reg.code());
   2047 }
   2048 
   2049 
   2050 void Assembler::GrowBuffer() {
   2051   DCHECK(buffer_overflow());
   2052   if (!own_buffer_) FATAL("external code buffer is too small");
   2053 
   2054   // Compute new buffer size.
   2055   CodeDesc desc;  // the new buffer
   2056   desc.buffer_size = 2 * buffer_size_;
   2057 
   2058   // Some internal data structures overflow for very large buffers,
   2059   // they must ensure that kMaximalBufferSize is not too large.
   2060   if (desc.buffer_size > kMaximalBufferSize ||
   2061       static_cast<size_t>(desc.buffer_size) >
   2062           isolate()->heap()->MaxOldGenerationSize()) {
   2063     V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
   2064   }
   2065 
   2066   // Set up new buffer.
   2067   desc.buffer = NewArray<byte>(desc.buffer_size);
   2068   desc.origin = this;
   2069   desc.instr_size = pc_offset();
   2070   desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
   2071 
   2072   // Clear the buffer in debug mode. Use 'int3' instructions to make
   2073   // sure to get into problems if we ever run uninitialized code.
   2074 #ifdef DEBUG
   2075   memset(desc.buffer, 0xCC, desc.buffer_size);
   2076 #endif
   2077 
   2078   // Copy the data.
   2079   int pc_delta = desc.buffer - buffer_;
   2080   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   2081   MemMove(desc.buffer, buffer_, desc.instr_size);
   2082   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
   2083           desc.reloc_size);
   2084 
   2085   DeleteArray(buffer_);
   2086   buffer_ = desc.buffer;
   2087   buffer_size_ = desc.buffer_size;
   2088   pc_ += pc_delta;
   2089   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2090                                reloc_info_writer.last_pc() + pc_delta);
   2091 
   2092   // Relocate internal references.
   2093   for (auto pos : internal_reference_positions_) {
   2094     int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
   2095     *p += pc_delta;
   2096   }
   2097 
   2098   DCHECK(!buffer_overflow());
   2099 }
   2100 
   2101 
   2102 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   2103   DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
   2104   DCHECK(is_uint8(imm8));
   2105   DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
   2106   EMIT(op1);
   2107   EMIT(op2 | dst.code());
   2108   EMIT(imm8);
   2109 }
   2110 
   2111 
   2112 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
   2113   DCHECK((0 <= sel) && (sel <= 7));
   2114   Register ireg = { sel };
   2115   if (x.is_int8()) {
   2116     EMIT(0x83);  // using a sign-extended 8-bit immediate.
   2117     emit_operand(ireg, dst);
   2118     EMIT(x.x_ & 0xFF);
   2119   } else if (dst.is_reg(eax)) {
   2120     EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
   2121     emit(x);
   2122   } else {
   2123     EMIT(0x81);  // using a literal 32-bit immediate.
   2124     emit_operand(ireg, dst);
   2125     emit(x);
   2126   }
   2127 }
   2128 
   2129 
   2130 void Assembler::emit_operand(Register reg, const Operand& adr) {
   2131   const unsigned length = adr.len_;
   2132   DCHECK(length > 0);
   2133 
   2134   // Emit updated ModRM byte containing the given register.
   2135   pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
   2136 
   2137   // Emit the rest of the encoded operand.
   2138   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
   2139   pc_ += length;
   2140 
   2141   // Emit relocation information if necessary.
   2142   if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
   2143     pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
   2144     RecordRelocInfo(adr.rmode_);
   2145     if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
   2146       emit_label(*reinterpret_cast<Label**>(pc_));
   2147     } else {
   2148       pc_ += sizeof(int32_t);
   2149     }
   2150   }
   2151 }
   2152 
   2153 
   2154 void Assembler::emit_label(Label* label) {
   2155   if (label->is_bound()) {
   2156     internal_reference_positions_.push_back(pc_offset());
   2157     emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
   2158   } else {
   2159     emit_disp(label, Displacement::CODE_ABSOLUTE);
   2160   }
   2161 }
   2162 
   2163 
   2164 void Assembler::emit_farith(int b1, int b2, int i) {
   2165   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
   2166   DCHECK(0 <= i &&  i < 8);  // illegal stack offset
   2167   EMIT(b1);
   2168   EMIT(b2 + i);
   2169 }
   2170 
   2171 
   2172 void Assembler::db(uint8_t data) {
   2173   EnsureSpace ensure_space(this);
   2174   EMIT(data);
   2175 }
   2176 
   2177 
   2178 void Assembler::dd(uint32_t data) {
   2179   EnsureSpace ensure_space(this);
   2180   emit(data);
   2181 }
   2182 
   2183 
   2184 void Assembler::dq(uint64_t data) {
   2185   EnsureSpace ensure_space(this);
   2186   emit_q(data);
   2187 }
   2188 
   2189 
   2190 void Assembler::dd(Label* label) {
   2191   EnsureSpace ensure_space(this);
   2192   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2193   emit_label(label);
   2194 }
   2195 
   2196 
   2197 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2198   DCHECK(!RelocInfo::IsNone(rmode));
   2199   // Don't record external references unless the heap will be serialized.
   2200   if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
   2201       !serializer_enabled() && !emit_debug_code()) {
   2202       return;
   2203   }
   2204   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
   2205   reloc_info_writer.Write(&rinfo);
   2206 }
   2207 
   2208 }  // namespace internal
   2209 }  // namespace v8
   2210 
   2211 #endif  // V8_TARGET_ARCH_X87
   2212