Home | History | Annotate | Download | only in AST
      1 //===--- Type.cpp - Type representation and manipulation ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements type-related functionality.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ASTContext.h"
     15 #include "clang/AST/Attr.h"
     16 #include "clang/AST/CharUnits.h"
     17 #include "clang/AST/DeclCXX.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/PrettyPrinter.h"
     22 #include "clang/AST/Type.h"
     23 #include "clang/AST/TypeVisitor.h"
     24 #include "clang/Basic/Specifiers.h"
     25 #include "clang/Basic/TargetInfo.h"
     26 #include "llvm/ADT/APSInt.h"
     27 #include "llvm/ADT/StringExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>
     30 using namespace clang;
     31 
     32 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
     33   return (*this != Other) &&
     34     // CVR qualifiers superset
     35     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
     36     // ObjC GC qualifiers superset
     37     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
     38      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
     39     // Address space superset.
     40     ((getAddressSpace() == Other.getAddressSpace()) ||
     41      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
     42     // Lifetime qualifier superset.
     43     ((getObjCLifetime() == Other.getObjCLifetime()) ||
     44      (hasObjCLifetime() && !Other.hasObjCLifetime()));
     45 }
     46 
     47 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
     48   const Type* ty = getTypePtr();
     49   NamedDecl *ND = nullptr;
     50   if (ty->isPointerType() || ty->isReferenceType())
     51     return ty->getPointeeType().getBaseTypeIdentifier();
     52   else if (ty->isRecordType())
     53     ND = ty->getAs<RecordType>()->getDecl();
     54   else if (ty->isEnumeralType())
     55     ND = ty->getAs<EnumType>()->getDecl();
     56   else if (ty->getTypeClass() == Type::Typedef)
     57     ND = ty->getAs<TypedefType>()->getDecl();
     58   else if (ty->isArrayType())
     59     return ty->castAsArrayTypeUnsafe()->
     60         getElementType().getBaseTypeIdentifier();
     61 
     62   if (ND)
     63     return ND->getIdentifier();
     64   return nullptr;
     65 }
     66 
     67 bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
     68   if (T.isConstQualified())
     69     return true;
     70 
     71   if (const ArrayType *AT = Ctx.getAsArrayType(T))
     72     return AT->getElementType().isConstant(Ctx);
     73 
     74   return T.getAddressSpace() == LangAS::opencl_constant;
     75 }
     76 
     77 unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context,
     78                                                  QualType ElementType,
     79                                                const llvm::APInt &NumElements) {
     80   uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
     81 
     82   // Fast path the common cases so we can avoid the conservative computation
     83   // below, which in common cases allocates "large" APSInt values, which are
     84   // slow.
     85 
     86   // If the element size is a power of 2, we can directly compute the additional
     87   // number of addressing bits beyond those required for the element count.
     88   if (llvm::isPowerOf2_64(ElementSize)) {
     89     return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
     90   }
     91 
     92   // If both the element count and element size fit in 32-bits, we can do the
     93   // computation directly in 64-bits.
     94   if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
     95       (NumElements.getZExtValue() >> 32) == 0) {
     96     uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
     97     return 64 - llvm::countLeadingZeros(TotalSize);
     98   }
     99 
    100   // Otherwise, use APSInt to handle arbitrary sized values.
    101   llvm::APSInt SizeExtended(NumElements, true);
    102   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
    103   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
    104                                               SizeExtended.getBitWidth()) * 2);
    105 
    106   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
    107   TotalSize *= SizeExtended;
    108 
    109   return TotalSize.getActiveBits();
    110 }
    111 
    112 unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) {
    113   unsigned Bits = Context.getTypeSize(Context.getSizeType());
    114 
    115   // Limit the number of bits in size_t so that maximal bit size fits 64 bit
    116   // integer (see PR8256).  We can do this as currently there is no hardware
    117   // that supports full 64-bit virtual space.
    118   if (Bits > 61)
    119     Bits = 61;
    120 
    121   return Bits;
    122 }
    123 
    124 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
    125                                                  QualType et, QualType can,
    126                                                  Expr *e, ArraySizeModifier sm,
    127                                                  unsigned tq,
    128                                                  SourceRange brackets)
    129     : ArrayType(DependentSizedArray, et, can, sm, tq,
    130                 (et->containsUnexpandedParameterPack() ||
    131                  (e && e->containsUnexpandedParameterPack()))),
    132       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
    133 {
    134 }
    135 
    136 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
    137                                       const ASTContext &Context,
    138                                       QualType ET,
    139                                       ArraySizeModifier SizeMod,
    140                                       unsigned TypeQuals,
    141                                       Expr *E) {
    142   ID.AddPointer(ET.getAsOpaquePtr());
    143   ID.AddInteger(SizeMod);
    144   ID.AddInteger(TypeQuals);
    145   E->Profile(ID, Context, true);
    146 }
    147 
    148 DependentSizedExtVectorType::DependentSizedExtVectorType(const
    149                                                          ASTContext &Context,
    150                                                          QualType ElementType,
    151                                                          QualType can,
    152                                                          Expr *SizeExpr,
    153                                                          SourceLocation loc)
    154     : Type(DependentSizedExtVector, can, /*Dependent=*/true,
    155            /*InstantiationDependent=*/true,
    156            ElementType->isVariablyModifiedType(),
    157            (ElementType->containsUnexpandedParameterPack() ||
    158             (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
    159       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
    160       loc(loc)
    161 {
    162 }
    163 
    164 void
    165 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
    166                                      const ASTContext &Context,
    167                                      QualType ElementType, Expr *SizeExpr) {
    168   ID.AddPointer(ElementType.getAsOpaquePtr());
    169   SizeExpr->Profile(ID, Context, true);
    170 }
    171 
    172 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
    173                        VectorKind vecKind)
    174     : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
    175 
    176 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
    177                        QualType canonType, VectorKind vecKind)
    178   : Type(tc, canonType, vecType->isDependentType(),
    179          vecType->isInstantiationDependentType(),
    180          vecType->isVariablyModifiedType(),
    181          vecType->containsUnexpandedParameterPack()),
    182     ElementType(vecType)
    183 {
    184   VectorTypeBits.VecKind = vecKind;
    185   VectorTypeBits.NumElements = nElements;
    186 }
    187 
    188 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
    189 /// element type of the array, potentially with type qualifiers missing.
    190 /// This method should never be used when type qualifiers are meaningful.
    191 const Type *Type::getArrayElementTypeNoTypeQual() const {
    192   // If this is directly an array type, return it.
    193   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
    194     return ATy->getElementType().getTypePtr();
    195 
    196   // If the canonical form of this type isn't the right kind, reject it.
    197   if (!isa<ArrayType>(CanonicalType))
    198     return nullptr;
    199 
    200   // If this is a typedef for an array type, strip the typedef off without
    201   // losing all typedef information.
    202   return cast<ArrayType>(getUnqualifiedDesugaredType())
    203     ->getElementType().getTypePtr();
    204 }
    205 
    206 /// getDesugaredType - Return the specified type with any "sugar" removed from
    207 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
    208 /// the type is already concrete, it returns it unmodified.  This is similar
    209 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
    210 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
    211 /// concrete.
    212 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
    213   SplitQualType split = getSplitDesugaredType(T);
    214   return Context.getQualifiedType(split.Ty, split.Quals);
    215 }
    216 
    217 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
    218                                                   const ASTContext &Context) {
    219   SplitQualType split = type.split();
    220   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
    221   return Context.getQualifiedType(desugar, split.Quals);
    222 }
    223 
    224 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
    225   switch (getTypeClass()) {
    226 #define ABSTRACT_TYPE(Class, Parent)
    227 #define TYPE(Class, Parent) \
    228   case Type::Class: { \
    229     const Class##Type *ty = cast<Class##Type>(this); \
    230     if (!ty->isSugared()) return QualType(ty, 0); \
    231     return ty->desugar(); \
    232   }
    233 #include "clang/AST/TypeNodes.def"
    234   }
    235   llvm_unreachable("bad type kind!");
    236 }
    237 
    238 SplitQualType QualType::getSplitDesugaredType(QualType T) {
    239   QualifierCollector Qs;
    240 
    241   QualType Cur = T;
    242   while (true) {
    243     const Type *CurTy = Qs.strip(Cur);
    244     switch (CurTy->getTypeClass()) {
    245 #define ABSTRACT_TYPE(Class, Parent)
    246 #define TYPE(Class, Parent) \
    247     case Type::Class: { \
    248       const Class##Type *Ty = cast<Class##Type>(CurTy); \
    249       if (!Ty->isSugared()) \
    250         return SplitQualType(Ty, Qs); \
    251       Cur = Ty->desugar(); \
    252       break; \
    253     }
    254 #include "clang/AST/TypeNodes.def"
    255     }
    256   }
    257 }
    258 
    259 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
    260   SplitQualType split = type.split();
    261 
    262   // All the qualifiers we've seen so far.
    263   Qualifiers quals = split.Quals;
    264 
    265   // The last type node we saw with any nodes inside it.
    266   const Type *lastTypeWithQuals = split.Ty;
    267 
    268   while (true) {
    269     QualType next;
    270 
    271     // Do a single-step desugar, aborting the loop if the type isn't
    272     // sugared.
    273     switch (split.Ty->getTypeClass()) {
    274 #define ABSTRACT_TYPE(Class, Parent)
    275 #define TYPE(Class, Parent) \
    276     case Type::Class: { \
    277       const Class##Type *ty = cast<Class##Type>(split.Ty); \
    278       if (!ty->isSugared()) goto done; \
    279       next = ty->desugar(); \
    280       break; \
    281     }
    282 #include "clang/AST/TypeNodes.def"
    283     }
    284 
    285     // Otherwise, split the underlying type.  If that yields qualifiers,
    286     // update the information.
    287     split = next.split();
    288     if (!split.Quals.empty()) {
    289       lastTypeWithQuals = split.Ty;
    290       quals.addConsistentQualifiers(split.Quals);
    291     }
    292   }
    293 
    294  done:
    295   return SplitQualType(lastTypeWithQuals, quals);
    296 }
    297 
    298 QualType QualType::IgnoreParens(QualType T) {
    299   // FIXME: this seems inherently un-qualifiers-safe.
    300   while (const ParenType *PT = T->getAs<ParenType>())
    301     T = PT->getInnerType();
    302   return T;
    303 }
    304 
    305 /// \brief This will check for a T (which should be a Type which can act as
    306 /// sugar, such as a TypedefType) by removing any existing sugar until it
    307 /// reaches a T or a non-sugared type.
    308 template<typename T> static const T *getAsSugar(const Type *Cur) {
    309   while (true) {
    310     if (const T *Sugar = dyn_cast<T>(Cur))
    311       return Sugar;
    312     switch (Cur->getTypeClass()) {
    313 #define ABSTRACT_TYPE(Class, Parent)
    314 #define TYPE(Class, Parent) \
    315     case Type::Class: { \
    316       const Class##Type *Ty = cast<Class##Type>(Cur); \
    317       if (!Ty->isSugared()) return 0; \
    318       Cur = Ty->desugar().getTypePtr(); \
    319       break; \
    320     }
    321 #include "clang/AST/TypeNodes.def"
    322     }
    323   }
    324 }
    325 
    326 template <> const TypedefType *Type::getAs() const {
    327   return getAsSugar<TypedefType>(this);
    328 }
    329 
    330 template <> const TemplateSpecializationType *Type::getAs() const {
    331   return getAsSugar<TemplateSpecializationType>(this);
    332 }
    333 
    334 template <> const AttributedType *Type::getAs() const {
    335   return getAsSugar<AttributedType>(this);
    336 }
    337 
    338 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
    339 /// sugar off the given type.  This should produce an object of the
    340 /// same dynamic type as the canonical type.
    341 const Type *Type::getUnqualifiedDesugaredType() const {
    342   const Type *Cur = this;
    343 
    344   while (true) {
    345     switch (Cur->getTypeClass()) {
    346 #define ABSTRACT_TYPE(Class, Parent)
    347 #define TYPE(Class, Parent) \
    348     case Class: { \
    349       const Class##Type *Ty = cast<Class##Type>(Cur); \
    350       if (!Ty->isSugared()) return Cur; \
    351       Cur = Ty->desugar().getTypePtr(); \
    352       break; \
    353     }
    354 #include "clang/AST/TypeNodes.def"
    355     }
    356   }
    357 }
    358 bool Type::isClassType() const {
    359   if (const RecordType *RT = getAs<RecordType>())
    360     return RT->getDecl()->isClass();
    361   return false;
    362 }
    363 bool Type::isStructureType() const {
    364   if (const RecordType *RT = getAs<RecordType>())
    365     return RT->getDecl()->isStruct();
    366   return false;
    367 }
    368 bool Type::isObjCBoxableRecordType() const {
    369   if (const RecordType *RT = getAs<RecordType>())
    370     return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
    371   return false;
    372 }
    373 bool Type::isInterfaceType() const {
    374   if (const RecordType *RT = getAs<RecordType>())
    375     return RT->getDecl()->isInterface();
    376   return false;
    377 }
    378 bool Type::isStructureOrClassType() const {
    379   if (const RecordType *RT = getAs<RecordType>()) {
    380     RecordDecl *RD = RT->getDecl();
    381     return RD->isStruct() || RD->isClass() || RD->isInterface();
    382   }
    383   return false;
    384 }
    385 bool Type::isVoidPointerType() const {
    386   if (const PointerType *PT = getAs<PointerType>())
    387     return PT->getPointeeType()->isVoidType();
    388   return false;
    389 }
    390 
    391 bool Type::isUnionType() const {
    392   if (const RecordType *RT = getAs<RecordType>())
    393     return RT->getDecl()->isUnion();
    394   return false;
    395 }
    396 
    397 bool Type::isComplexType() const {
    398   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
    399     return CT->getElementType()->isFloatingType();
    400   return false;
    401 }
    402 
    403 bool Type::isComplexIntegerType() const {
    404   // Check for GCC complex integer extension.
    405   return getAsComplexIntegerType();
    406 }
    407 
    408 const ComplexType *Type::getAsComplexIntegerType() const {
    409   if (const ComplexType *Complex = getAs<ComplexType>())
    410     if (Complex->getElementType()->isIntegerType())
    411       return Complex;
    412   return nullptr;
    413 }
    414 
    415 QualType Type::getPointeeType() const {
    416   if (const PointerType *PT = getAs<PointerType>())
    417     return PT->getPointeeType();
    418   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
    419     return OPT->getPointeeType();
    420   if (const BlockPointerType *BPT = getAs<BlockPointerType>())
    421     return BPT->getPointeeType();
    422   if (const ReferenceType *RT = getAs<ReferenceType>())
    423     return RT->getPointeeType();
    424   if (const MemberPointerType *MPT = getAs<MemberPointerType>())
    425     return MPT->getPointeeType();
    426   if (const DecayedType *DT = getAs<DecayedType>())
    427     return DT->getPointeeType();
    428   return QualType();
    429 }
    430 
    431 const RecordType *Type::getAsStructureType() const {
    432   // If this is directly a structure type, return it.
    433   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    434     if (RT->getDecl()->isStruct())
    435       return RT;
    436   }
    437 
    438   // If the canonical form of this type isn't the right kind, reject it.
    439   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    440     if (!RT->getDecl()->isStruct())
    441       return nullptr;
    442 
    443     // If this is a typedef for a structure type, strip the typedef off without
    444     // losing all typedef information.
    445     return cast<RecordType>(getUnqualifiedDesugaredType());
    446   }
    447   return nullptr;
    448 }
    449 
    450 const RecordType *Type::getAsUnionType() const {
    451   // If this is directly a union type, return it.
    452   if (const RecordType *RT = dyn_cast<RecordType>(this)) {
    453     if (RT->getDecl()->isUnion())
    454       return RT;
    455   }
    456 
    457   // If the canonical form of this type isn't the right kind, reject it.
    458   if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
    459     if (!RT->getDecl()->isUnion())
    460       return nullptr;
    461 
    462     // If this is a typedef for a union type, strip the typedef off without
    463     // losing all typedef information.
    464     return cast<RecordType>(getUnqualifiedDesugaredType());
    465   }
    466 
    467   return nullptr;
    468 }
    469 
    470 bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx,
    471                                       const ObjCObjectType *&bound) const {
    472   bound = nullptr;
    473 
    474   const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>();
    475   if (!OPT)
    476     return false;
    477 
    478   // Easy case: id.
    479   if (OPT->isObjCIdType())
    480     return true;
    481 
    482   // If it's not a __kindof type, reject it now.
    483   if (!OPT->isKindOfType())
    484     return false;
    485 
    486   // If it's Class or qualified Class, it's not an object type.
    487   if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
    488     return false;
    489 
    490   // Figure out the type bound for the __kindof type.
    491   bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
    492             ->getAs<ObjCObjectType>();
    493   return true;
    494 }
    495 
    496 bool Type::isObjCClassOrClassKindOfType() const {
    497   const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>();
    498   if (!OPT)
    499     return false;
    500 
    501   // Easy case: Class.
    502   if (OPT->isObjCClassType())
    503     return true;
    504 
    505   // If it's not a __kindof type, reject it now.
    506   if (!OPT->isKindOfType())
    507     return false;
    508 
    509   // If it's Class or qualified Class, it's a class __kindof type.
    510   return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
    511 }
    512 
    513 /// Was this type written with the special inert-in-MRC __unsafe_unretained
    514 /// qualifier?
    515 ///
    516 /// This approximates the answer to the following question: if this
    517 /// translation unit were compiled in ARC, would this type be qualified
    518 /// with __unsafe_unretained?
    519 bool Type::isObjCInertUnsafeUnretainedType() const {
    520   const Type *cur = this;
    521   while (true) {
    522     if (auto attributed = dyn_cast<AttributedType>(cur)) {
    523       if (attributed->getAttrKind() ==
    524             AttributedType::attr_objc_inert_unsafe_unretained)
    525         return true;
    526     }
    527 
    528     // Single-step desugar until we run out of sugar.
    529     QualType next = cur->getLocallyUnqualifiedSingleStepDesugaredType();
    530     if (next.getTypePtr() == cur) return false;
    531     cur = next.getTypePtr();
    532   }
    533 }
    534 
    535 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
    536                                ArrayRef<QualType> typeArgs,
    537                                ArrayRef<ObjCProtocolDecl *> protocols,
    538                                bool isKindOf)
    539   : Type(ObjCObject, Canonical, Base->isDependentType(),
    540          Base->isInstantiationDependentType(),
    541          Base->isVariablyModifiedType(),
    542          Base->containsUnexpandedParameterPack()),
    543     BaseType(Base)
    544 {
    545   ObjCObjectTypeBits.IsKindOf = isKindOf;
    546 
    547   ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
    548   assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
    549          "bitfield overflow in type argument count");
    550   ObjCObjectTypeBits.NumProtocols = protocols.size();
    551   assert(getNumProtocols() == protocols.size() &&
    552          "bitfield overflow in protocol count");
    553   if (!typeArgs.empty())
    554     memcpy(getTypeArgStorage(), typeArgs.data(),
    555            typeArgs.size() * sizeof(QualType));
    556   if (!protocols.empty())
    557     memcpy(getProtocolStorage(), protocols.data(),
    558            protocols.size() * sizeof(ObjCProtocolDecl*));
    559 
    560   for (auto typeArg : typeArgs) {
    561     if (typeArg->isDependentType())
    562       setDependent();
    563     else if (typeArg->isInstantiationDependentType())
    564       setInstantiationDependent();
    565 
    566     if (typeArg->containsUnexpandedParameterPack())
    567       setContainsUnexpandedParameterPack();
    568   }
    569 }
    570 
    571 bool ObjCObjectType::isSpecialized() const {
    572   // If we have type arguments written here, the type is specialized.
    573   if (ObjCObjectTypeBits.NumTypeArgs > 0)
    574     return true;
    575 
    576   // Otherwise, check whether the base type is specialized.
    577   if (auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
    578     // Terminate when we reach an interface type.
    579     if (isa<ObjCInterfaceType>(objcObject))
    580       return false;
    581 
    582     return objcObject->isSpecialized();
    583   }
    584 
    585   // Not specialized.
    586   return false;
    587 }
    588 
    589 ArrayRef<QualType> ObjCObjectType::getTypeArgs() const {
    590   // We have type arguments written on this type.
    591   if (isSpecializedAsWritten())
    592     return getTypeArgsAsWritten();
    593 
    594   // Look at the base type, which might have type arguments.
    595   if (auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
    596     // Terminate when we reach an interface type.
    597     if (isa<ObjCInterfaceType>(objcObject))
    598       return { };
    599 
    600     return objcObject->getTypeArgs();
    601   }
    602 
    603   // No type arguments.
    604   return { };
    605 }
    606 
    607 bool ObjCObjectType::isKindOfType() const {
    608   if (isKindOfTypeAsWritten())
    609     return true;
    610 
    611   // Look at the base type, which might have type arguments.
    612   if (auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
    613     // Terminate when we reach an interface type.
    614     if (isa<ObjCInterfaceType>(objcObject))
    615       return false;
    616 
    617     return objcObject->isKindOfType();
    618   }
    619 
    620   // Not a "__kindof" type.
    621   return false;
    622 }
    623 
    624 QualType ObjCObjectType::stripObjCKindOfTypeAndQuals(
    625            const ASTContext &ctx) const {
    626   if (!isKindOfType() && qual_empty())
    627     return QualType(this, 0);
    628 
    629   // Recursively strip __kindof.
    630   SplitQualType splitBaseType = getBaseType().split();
    631   QualType baseType(splitBaseType.Ty, 0);
    632   if (const ObjCObjectType *baseObj
    633         = splitBaseType.Ty->getAs<ObjCObjectType>()) {
    634     baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
    635   }
    636 
    637   return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
    638                                                     splitBaseType.Quals),
    639                                getTypeArgsAsWritten(),
    640                                /*protocols=*/{ },
    641                                /*isKindOf=*/false);
    642 }
    643 
    644 const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals(
    645                                const ASTContext &ctx) const {
    646   if (!isKindOfType() && qual_empty())
    647     return this;
    648 
    649   QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
    650   return ctx.getObjCObjectPointerType(obj)->castAs<ObjCObjectPointerType>();
    651 }
    652 
    653 namespace {
    654 
    655 template<typename F>
    656 QualType simpleTransform(ASTContext &ctx, QualType type, F &&f);
    657 
    658 /// Visitor used by simpleTransform() to perform the transformation.
    659 template<typename F>
    660 struct SimpleTransformVisitor
    661          : public TypeVisitor<SimpleTransformVisitor<F>, QualType> {
    662   ASTContext &Ctx;
    663   F &&TheFunc;
    664 
    665   QualType recurse(QualType type) {
    666     return simpleTransform(Ctx, type, std::move(TheFunc));
    667   }
    668 
    669 public:
    670   SimpleTransformVisitor(ASTContext &ctx, F &&f) : Ctx(ctx), TheFunc(std::move(f)) { }
    671 
    672   // None of the clients of this transformation can occur where
    673   // there are dependent types, so skip dependent types.
    674 #define TYPE(Class, Base)
    675 #define DEPENDENT_TYPE(Class, Base) \
    676   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
    677 #include "clang/AST/TypeNodes.def"
    678 
    679 #define TRIVIAL_TYPE_CLASS(Class) \
    680   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
    681 
    682   TRIVIAL_TYPE_CLASS(Builtin)
    683 
    684   QualType VisitComplexType(const ComplexType *T) {
    685     QualType elementType = recurse(T->getElementType());
    686     if (elementType.isNull())
    687       return QualType();
    688 
    689     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
    690       return QualType(T, 0);
    691 
    692     return Ctx.getComplexType(elementType);
    693   }
    694 
    695   QualType VisitPointerType(const PointerType *T) {
    696     QualType pointeeType = recurse(T->getPointeeType());
    697     if (pointeeType.isNull())
    698       return QualType();
    699 
    700     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
    701       return QualType(T, 0);
    702 
    703     return Ctx.getPointerType(pointeeType);
    704   }
    705 
    706   QualType VisitBlockPointerType(const BlockPointerType *T) {
    707     QualType pointeeType = recurse(T->getPointeeType());
    708     if (pointeeType.isNull())
    709       return QualType();
    710 
    711     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
    712       return QualType(T, 0);
    713 
    714     return Ctx.getBlockPointerType(pointeeType);
    715   }
    716 
    717   QualType VisitLValueReferenceType(const LValueReferenceType *T) {
    718     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
    719     if (pointeeType.isNull())
    720       return QualType();
    721 
    722     if (pointeeType.getAsOpaquePtr()
    723           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
    724       return QualType(T, 0);
    725 
    726     return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
    727   }
    728 
    729   QualType VisitRValueReferenceType(const RValueReferenceType *T) {
    730     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
    731     if (pointeeType.isNull())
    732       return QualType();
    733 
    734     if (pointeeType.getAsOpaquePtr()
    735           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
    736       return QualType(T, 0);
    737 
    738     return Ctx.getRValueReferenceType(pointeeType);
    739   }
    740 
    741   QualType VisitMemberPointerType(const MemberPointerType *T) {
    742     QualType pointeeType = recurse(T->getPointeeType());
    743     if (pointeeType.isNull())
    744       return QualType();
    745 
    746     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
    747       return QualType(T, 0);
    748 
    749     return Ctx.getMemberPointerType(pointeeType, T->getClass());
    750   }
    751 
    752   QualType VisitConstantArrayType(const ConstantArrayType *T) {
    753     QualType elementType = recurse(T->getElementType());
    754     if (elementType.isNull())
    755       return QualType();
    756 
    757     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
    758       return QualType(T, 0);
    759 
    760     return Ctx.getConstantArrayType(elementType, T->getSize(),
    761                                     T->getSizeModifier(),
    762                                     T->getIndexTypeCVRQualifiers());
    763   }
    764 
    765   QualType VisitVariableArrayType(const VariableArrayType *T) {
    766     QualType elementType = recurse(T->getElementType());
    767     if (elementType.isNull())
    768       return QualType();
    769 
    770     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
    771       return QualType(T, 0);
    772 
    773     return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
    774                                     T->getSizeModifier(),
    775                                     T->getIndexTypeCVRQualifiers(),
    776                                     T->getBracketsRange());
    777   }
    778 
    779   QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
    780     QualType elementType = recurse(T->getElementType());
    781     if (elementType.isNull())
    782       return QualType();
    783 
    784     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
    785       return QualType(T, 0);
    786 
    787     return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
    788                                       T->getIndexTypeCVRQualifiers());
    789   }
    790 
    791   QualType VisitVectorType(const VectorType *T) {
    792     QualType elementType = recurse(T->getElementType());
    793     if (elementType.isNull())
    794       return QualType();
    795 
    796     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
    797       return QualType(T, 0);
    798 
    799     return Ctx.getVectorType(elementType, T->getNumElements(),
    800                              T->getVectorKind());
    801   }
    802 
    803   QualType VisitExtVectorType(const ExtVectorType *T) {
    804     QualType elementType = recurse(T->getElementType());
    805     if (elementType.isNull())
    806       return QualType();
    807 
    808     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
    809       return QualType(T, 0);
    810 
    811     return Ctx.getExtVectorType(elementType, T->getNumElements());
    812   }
    813 
    814   QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
    815     QualType returnType = recurse(T->getReturnType());
    816     if (returnType.isNull())
    817       return QualType();
    818 
    819     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
    820       return QualType(T, 0);
    821 
    822     return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
    823   }
    824 
    825   QualType VisitFunctionProtoType(const FunctionProtoType *T) {
    826     QualType returnType = recurse(T->getReturnType());
    827     if (returnType.isNull())
    828       return QualType();
    829 
    830     // Transform parameter types.
    831     SmallVector<QualType, 4> paramTypes;
    832     bool paramChanged = false;
    833     for (auto paramType : T->getParamTypes()) {
    834       QualType newParamType = recurse(paramType);
    835       if (newParamType.isNull())
    836         return QualType();
    837 
    838       if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
    839         paramChanged = true;
    840 
    841       paramTypes.push_back(newParamType);
    842     }
    843 
    844     // Transform extended info.
    845     FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo();
    846     bool exceptionChanged = false;
    847     if (info.ExceptionSpec.Type == EST_Dynamic) {
    848       SmallVector<QualType, 4> exceptionTypes;
    849       for (auto exceptionType : info.ExceptionSpec.Exceptions) {
    850         QualType newExceptionType = recurse(exceptionType);
    851         if (newExceptionType.isNull())
    852           return QualType();
    853 
    854         if (newExceptionType.getAsOpaquePtr()
    855               != exceptionType.getAsOpaquePtr())
    856           exceptionChanged = true;
    857 
    858         exceptionTypes.push_back(newExceptionType);
    859       }
    860 
    861       if (exceptionChanged) {
    862         info.ExceptionSpec.Exceptions =
    863             llvm::makeArrayRef(exceptionTypes).copy(Ctx);
    864       }
    865     }
    866 
    867     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
    868         !paramChanged && !exceptionChanged)
    869       return QualType(T, 0);
    870 
    871     return Ctx.getFunctionType(returnType, paramTypes, info);
    872   }
    873 
    874   QualType VisitParenType(const ParenType *T) {
    875     QualType innerType = recurse(T->getInnerType());
    876     if (innerType.isNull())
    877       return QualType();
    878 
    879     if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
    880       return QualType(T, 0);
    881 
    882     return Ctx.getParenType(innerType);
    883   }
    884 
    885   TRIVIAL_TYPE_CLASS(Typedef)
    886 
    887   QualType VisitAdjustedType(const AdjustedType *T) {
    888     QualType originalType = recurse(T->getOriginalType());
    889     if (originalType.isNull())
    890       return QualType();
    891 
    892     QualType adjustedType = recurse(T->getAdjustedType());
    893     if (adjustedType.isNull())
    894       return QualType();
    895 
    896     if (originalType.getAsOpaquePtr()
    897           == T->getOriginalType().getAsOpaquePtr() &&
    898         adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
    899       return QualType(T, 0);
    900 
    901     return Ctx.getAdjustedType(originalType, adjustedType);
    902   }
    903 
    904   QualType VisitDecayedType(const DecayedType *T) {
    905     QualType originalType = recurse(T->getOriginalType());
    906     if (originalType.isNull())
    907       return QualType();
    908 
    909     if (originalType.getAsOpaquePtr()
    910           == T->getOriginalType().getAsOpaquePtr())
    911       return QualType(T, 0);
    912 
    913     return Ctx.getDecayedType(originalType);
    914   }
    915 
    916   TRIVIAL_TYPE_CLASS(TypeOfExpr)
    917   TRIVIAL_TYPE_CLASS(TypeOf)
    918   TRIVIAL_TYPE_CLASS(Decltype)
    919   TRIVIAL_TYPE_CLASS(UnaryTransform)
    920   TRIVIAL_TYPE_CLASS(Record)
    921   TRIVIAL_TYPE_CLASS(Enum)
    922 
    923   // FIXME: Non-trivial to implement, but important for C++
    924   TRIVIAL_TYPE_CLASS(Elaborated)
    925 
    926   QualType VisitAttributedType(const AttributedType *T) {
    927     QualType modifiedType = recurse(T->getModifiedType());
    928     if (modifiedType.isNull())
    929       return QualType();
    930 
    931     QualType equivalentType = recurse(T->getEquivalentType());
    932     if (equivalentType.isNull())
    933       return QualType();
    934 
    935     if (modifiedType.getAsOpaquePtr()
    936           == T->getModifiedType().getAsOpaquePtr() &&
    937         equivalentType.getAsOpaquePtr()
    938           == T->getEquivalentType().getAsOpaquePtr())
    939       return QualType(T, 0);
    940 
    941     return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
    942                                  equivalentType);
    943   }
    944 
    945   QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
    946     QualType replacementType = recurse(T->getReplacementType());
    947     if (replacementType.isNull())
    948       return QualType();
    949 
    950     if (replacementType.getAsOpaquePtr()
    951           == T->getReplacementType().getAsOpaquePtr())
    952       return QualType(T, 0);
    953 
    954     return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
    955                                             replacementType);
    956   }
    957 
    958   // FIXME: Non-trivial to implement, but important for C++
    959   TRIVIAL_TYPE_CLASS(TemplateSpecialization)
    960 
    961   QualType VisitAutoType(const AutoType *T) {
    962     if (!T->isDeduced())
    963       return QualType(T, 0);
    964 
    965     QualType deducedType = recurse(T->getDeducedType());
    966     if (deducedType.isNull())
    967       return QualType();
    968 
    969     if (deducedType.getAsOpaquePtr()
    970           == T->getDeducedType().getAsOpaquePtr())
    971       return QualType(T, 0);
    972 
    973     return Ctx.getAutoType(deducedType, T->getKeyword(),
    974                            T->isDependentType());
    975   }
    976 
    977   // FIXME: Non-trivial to implement, but important for C++
    978   TRIVIAL_TYPE_CLASS(PackExpansion)
    979 
    980   QualType VisitObjCObjectType(const ObjCObjectType *T) {
    981     QualType baseType = recurse(T->getBaseType());
    982     if (baseType.isNull())
    983       return QualType();
    984 
    985     // Transform type arguments.
    986     bool typeArgChanged = false;
    987     SmallVector<QualType, 4> typeArgs;
    988     for (auto typeArg : T->getTypeArgsAsWritten()) {
    989       QualType newTypeArg = recurse(typeArg);
    990       if (newTypeArg.isNull())
    991         return QualType();
    992 
    993       if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
    994         typeArgChanged = true;
    995 
    996       typeArgs.push_back(newTypeArg);
    997     }
    998 
    999     if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
   1000         !typeArgChanged)
   1001       return QualType(T, 0);
   1002 
   1003     return Ctx.getObjCObjectType(baseType, typeArgs,
   1004                                  llvm::makeArrayRef(T->qual_begin(),
   1005                                                     T->getNumProtocols()),
   1006                                  T->isKindOfTypeAsWritten());
   1007   }
   1008 
   1009   TRIVIAL_TYPE_CLASS(ObjCInterface)
   1010 
   1011   QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
   1012     QualType pointeeType = recurse(T->getPointeeType());
   1013     if (pointeeType.isNull())
   1014       return QualType();
   1015 
   1016     if (pointeeType.getAsOpaquePtr()
   1017           == T->getPointeeType().getAsOpaquePtr())
   1018       return QualType(T, 0);
   1019 
   1020     return Ctx.getObjCObjectPointerType(pointeeType);
   1021   }
   1022 
   1023   QualType VisitAtomicType(const AtomicType *T) {
   1024     QualType valueType = recurse(T->getValueType());
   1025     if (valueType.isNull())
   1026       return QualType();
   1027 
   1028     if (valueType.getAsOpaquePtr()
   1029           == T->getValueType().getAsOpaquePtr())
   1030       return QualType(T, 0);
   1031 
   1032     return Ctx.getAtomicType(valueType);
   1033   }
   1034 
   1035 #undef TRIVIAL_TYPE_CLASS
   1036 };
   1037 
   1038 /// Perform a simple type transformation that does not change the
   1039 /// semantics of the type.
   1040 template<typename F>
   1041 QualType simpleTransform(ASTContext &ctx, QualType type, F &&f) {
   1042   // Transform the type. If it changed, return the transformed result.
   1043   QualType transformed = f(type);
   1044   if (transformed.getAsOpaquePtr() != type.getAsOpaquePtr())
   1045     return transformed;
   1046 
   1047   // Split out the qualifiers from the type.
   1048   SplitQualType splitType = type.split();
   1049 
   1050   // Visit the type itself.
   1051   SimpleTransformVisitor<F> visitor(ctx, std::move(f));
   1052   QualType result = visitor.Visit(splitType.Ty);
   1053   if (result.isNull())
   1054     return result;
   1055 
   1056   // Reconstruct the transformed type by applying the local qualifiers
   1057   // from the split type.
   1058   return ctx.getQualifiedType(result, splitType.Quals);
   1059 }
   1060 
   1061 } // end anonymous namespace
   1062 
   1063 /// Substitute the given type arguments for Objective-C type
   1064 /// parameters within the given type, recursively.
   1065 QualType QualType::substObjCTypeArgs(
   1066            ASTContext &ctx,
   1067            ArrayRef<QualType> typeArgs,
   1068            ObjCSubstitutionContext context) const {
   1069   return simpleTransform(ctx, *this,
   1070                          [&](QualType type) -> QualType {
   1071     SplitQualType splitType = type.split();
   1072 
   1073     // Replace an Objective-C type parameter reference with the corresponding
   1074     // type argument.
   1075     if (const auto *typedefTy = dyn_cast<TypedefType>(splitType.Ty)) {
   1076       if (auto *typeParam = dyn_cast<ObjCTypeParamDecl>(typedefTy->getDecl())) {
   1077         // If we have type arguments, use them.
   1078         if (!typeArgs.empty()) {
   1079           // FIXME: Introduce SubstObjCTypeParamType ?
   1080           QualType argType = typeArgs[typeParam->getIndex()];
   1081           return ctx.getQualifiedType(argType, splitType.Quals);
   1082         }
   1083 
   1084         switch (context) {
   1085         case ObjCSubstitutionContext::Ordinary:
   1086         case ObjCSubstitutionContext::Parameter:
   1087         case ObjCSubstitutionContext::Superclass:
   1088           // Substitute the bound.
   1089           return ctx.getQualifiedType(typeParam->getUnderlyingType(),
   1090                                       splitType.Quals);
   1091 
   1092         case ObjCSubstitutionContext::Result:
   1093         case ObjCSubstitutionContext::Property: {
   1094           // Substitute the __kindof form of the underlying type.
   1095           const auto *objPtr = typeParam->getUnderlyingType()
   1096             ->castAs<ObjCObjectPointerType>();
   1097 
   1098           // __kindof types, id, and Class don't need an additional
   1099           // __kindof.
   1100           if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
   1101             return ctx.getQualifiedType(typeParam->getUnderlyingType(),
   1102                                         splitType.Quals);
   1103 
   1104           // Add __kindof.
   1105           const auto *obj = objPtr->getObjectType();
   1106           QualType resultTy = ctx.getObjCObjectType(obj->getBaseType(),
   1107                                                     obj->getTypeArgsAsWritten(),
   1108                                                     obj->getProtocols(),
   1109                                                     /*isKindOf=*/true);
   1110 
   1111           // Rebuild object pointer type.
   1112           resultTy = ctx.getObjCObjectPointerType(resultTy);
   1113           return ctx.getQualifiedType(resultTy, splitType.Quals);
   1114         }
   1115         }
   1116       }
   1117     }
   1118 
   1119     // If we have a function type, update the context appropriately.
   1120     if (const auto *funcType = dyn_cast<FunctionType>(splitType.Ty)) {
   1121       // Substitute result type.
   1122       QualType returnType = funcType->getReturnType().substObjCTypeArgs(
   1123                               ctx,
   1124                               typeArgs,
   1125                               ObjCSubstitutionContext::Result);
   1126       if (returnType.isNull())
   1127         return QualType();
   1128 
   1129       // Handle non-prototyped functions, which only substitute into the result
   1130       // type.
   1131       if (isa<FunctionNoProtoType>(funcType)) {
   1132         // If the return type was unchanged, do nothing.
   1133         if (returnType.getAsOpaquePtr()
   1134               == funcType->getReturnType().getAsOpaquePtr())
   1135           return type;
   1136 
   1137         // Otherwise, build a new type.
   1138         return ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
   1139       }
   1140 
   1141       const auto *funcProtoType = cast<FunctionProtoType>(funcType);
   1142 
   1143       // Transform parameter types.
   1144       SmallVector<QualType, 4> paramTypes;
   1145       bool paramChanged = false;
   1146       for (auto paramType : funcProtoType->getParamTypes()) {
   1147         QualType newParamType = paramType.substObjCTypeArgs(
   1148                                   ctx,
   1149                                   typeArgs,
   1150                                   ObjCSubstitutionContext::Parameter);
   1151         if (newParamType.isNull())
   1152           return QualType();
   1153 
   1154         if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
   1155           paramChanged = true;
   1156 
   1157         paramTypes.push_back(newParamType);
   1158       }
   1159 
   1160       // Transform extended info.
   1161       FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
   1162       bool exceptionChanged = false;
   1163       if (info.ExceptionSpec.Type == EST_Dynamic) {
   1164         SmallVector<QualType, 4> exceptionTypes;
   1165         for (auto exceptionType : info.ExceptionSpec.Exceptions) {
   1166           QualType newExceptionType = exceptionType.substObjCTypeArgs(
   1167                                         ctx,
   1168                                         typeArgs,
   1169                                         ObjCSubstitutionContext::Ordinary);
   1170           if (newExceptionType.isNull())
   1171             return QualType();
   1172 
   1173           if (newExceptionType.getAsOpaquePtr()
   1174               != exceptionType.getAsOpaquePtr())
   1175             exceptionChanged = true;
   1176 
   1177           exceptionTypes.push_back(newExceptionType);
   1178         }
   1179 
   1180         if (exceptionChanged) {
   1181           info.ExceptionSpec.Exceptions =
   1182               llvm::makeArrayRef(exceptionTypes).copy(ctx);
   1183         }
   1184       }
   1185 
   1186       if (returnType.getAsOpaquePtr()
   1187             == funcProtoType->getReturnType().getAsOpaquePtr() &&
   1188           !paramChanged && !exceptionChanged)
   1189         return type;
   1190 
   1191       return ctx.getFunctionType(returnType, paramTypes, info);
   1192     }
   1193 
   1194     // Substitute into the type arguments of a specialized Objective-C object
   1195     // type.
   1196     if (const auto *objcObjectType = dyn_cast<ObjCObjectType>(splitType.Ty)) {
   1197       if (objcObjectType->isSpecializedAsWritten()) {
   1198         SmallVector<QualType, 4> newTypeArgs;
   1199         bool anyChanged = false;
   1200         for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
   1201           QualType newTypeArg = typeArg.substObjCTypeArgs(
   1202                                   ctx, typeArgs,
   1203                                   ObjCSubstitutionContext::Ordinary);
   1204           if (newTypeArg.isNull())
   1205             return QualType();
   1206 
   1207           if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
   1208             // If we're substituting based on an unspecialized context type,
   1209             // produce an unspecialized type.
   1210             ArrayRef<ObjCProtocolDecl *> protocols(
   1211                                            objcObjectType->qual_begin(),
   1212                                            objcObjectType->getNumProtocols());
   1213             if (typeArgs.empty() &&
   1214                 context != ObjCSubstitutionContext::Superclass) {
   1215               return ctx.getObjCObjectType(
   1216                        objcObjectType->getBaseType(), { },
   1217                        protocols,
   1218                        objcObjectType->isKindOfTypeAsWritten());
   1219             }
   1220 
   1221             anyChanged = true;
   1222           }
   1223 
   1224           newTypeArgs.push_back(newTypeArg);
   1225         }
   1226 
   1227         if (anyChanged) {
   1228           ArrayRef<ObjCProtocolDecl *> protocols(
   1229                                          objcObjectType->qual_begin(),
   1230                                          objcObjectType->getNumProtocols());
   1231           return ctx.getObjCObjectType(objcObjectType->getBaseType(),
   1232                                        newTypeArgs, protocols,
   1233                                        objcObjectType->isKindOfTypeAsWritten());
   1234         }
   1235       }
   1236 
   1237       return type;
   1238     }
   1239 
   1240     return type;
   1241   });
   1242 }
   1243 
   1244 QualType QualType::substObjCMemberType(QualType objectType,
   1245                                        const DeclContext *dc,
   1246                                        ObjCSubstitutionContext context) const {
   1247   if (auto subs = objectType->getObjCSubstitutions(dc))
   1248     return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
   1249 
   1250   return *this;
   1251 }
   1252 
   1253 QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const {
   1254   // FIXME: Because ASTContext::getAttributedType() is non-const.
   1255   auto &ctx = const_cast<ASTContext &>(constCtx);
   1256   return simpleTransform(ctx, *this,
   1257            [&](QualType type) -> QualType {
   1258              SplitQualType splitType = type.split();
   1259              if (auto *objType = splitType.Ty->getAs<ObjCObjectType>()) {
   1260                if (!objType->isKindOfType())
   1261                  return type;
   1262 
   1263                QualType baseType
   1264                  = objType->getBaseType().stripObjCKindOfType(ctx);
   1265                return ctx.getQualifiedType(
   1266                         ctx.getObjCObjectType(baseType,
   1267                                               objType->getTypeArgsAsWritten(),
   1268                                               objType->getProtocols(),
   1269                                               /*isKindOf=*/false),
   1270                         splitType.Quals);
   1271              }
   1272 
   1273              return type;
   1274            });
   1275 }
   1276 
   1277 QualType QualType::getAtomicUnqualifiedType() const {
   1278   if (auto AT = getTypePtr()->getAs<AtomicType>())
   1279     return AT->getValueType().getUnqualifiedType();
   1280   return getUnqualifiedType();
   1281 }
   1282 
   1283 Optional<ArrayRef<QualType>> Type::getObjCSubstitutions(
   1284                                const DeclContext *dc) const {
   1285   // Look through method scopes.
   1286   if (auto method = dyn_cast<ObjCMethodDecl>(dc))
   1287     dc = method->getDeclContext();
   1288 
   1289   // Find the class or category in which the type we're substituting
   1290   // was declared.
   1291   const ObjCInterfaceDecl *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
   1292   const ObjCCategoryDecl *dcCategoryDecl = nullptr;
   1293   ObjCTypeParamList *dcTypeParams = nullptr;
   1294   if (dcClassDecl) {
   1295     // If the class does not have any type parameters, there's no
   1296     // substitution to do.
   1297     dcTypeParams = dcClassDecl->getTypeParamList();
   1298     if (!dcTypeParams)
   1299       return None;
   1300   } else {
   1301     // If we are in neither a class nor a category, there's no
   1302     // substitution to perform.
   1303     dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
   1304     if (!dcCategoryDecl)
   1305       return None;
   1306 
   1307     // If the category does not have any type parameters, there's no
   1308     // substitution to do.
   1309     dcTypeParams = dcCategoryDecl->getTypeParamList();
   1310     if (!dcTypeParams)
   1311       return None;
   1312 
   1313     dcClassDecl = dcCategoryDecl->getClassInterface();
   1314     if (!dcClassDecl)
   1315       return None;
   1316   }
   1317   assert(dcTypeParams && "No substitutions to perform");
   1318   assert(dcClassDecl && "No class context");
   1319 
   1320   // Find the underlying object type.
   1321   const ObjCObjectType *objectType;
   1322   if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
   1323     objectType = objectPointerType->getObjectType();
   1324   } else if (getAs<BlockPointerType>()) {
   1325     ASTContext &ctx = dc->getParentASTContext();
   1326     objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, { }, { })
   1327                    ->castAs<ObjCObjectType>();;
   1328   } else {
   1329     objectType = getAs<ObjCObjectType>();
   1330   }
   1331 
   1332   /// Extract the class from the receiver object type.
   1333   ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
   1334                                                : nullptr;
   1335   if (!curClassDecl) {
   1336     // If we don't have a context type (e.g., this is "id" or some
   1337     // variant thereof), substitute the bounds.
   1338     return llvm::ArrayRef<QualType>();
   1339   }
   1340 
   1341   // Follow the superclass chain until we've mapped the receiver type
   1342   // to the same class as the context.
   1343   while (curClassDecl != dcClassDecl) {
   1344     // Map to the superclass type.
   1345     QualType superType = objectType->getSuperClassType();
   1346     if (superType.isNull()) {
   1347       objectType = nullptr;
   1348       break;
   1349     }
   1350 
   1351     objectType = superType->castAs<ObjCObjectType>();
   1352     curClassDecl = objectType->getInterface();
   1353   }
   1354 
   1355   // If we don't have a receiver type, or the receiver type does not
   1356   // have type arguments, substitute in the defaults.
   1357   if (!objectType || objectType->isUnspecialized()) {
   1358     return llvm::ArrayRef<QualType>();
   1359   }
   1360 
   1361   // The receiver type has the type arguments we want.
   1362   return objectType->getTypeArgs();
   1363 }
   1364 
   1365 bool Type::acceptsObjCTypeParams() const {
   1366   if (auto *IfaceT = getAsObjCInterfaceType()) {
   1367     if (auto *ID = IfaceT->getInterface()) {
   1368       if (ID->getTypeParamList())
   1369         return true;
   1370     }
   1371   }
   1372 
   1373   return false;
   1374 }
   1375 
   1376 void ObjCObjectType::computeSuperClassTypeSlow() const {
   1377   // Retrieve the class declaration for this type. If there isn't one
   1378   // (e.g., this is some variant of "id" or "Class"), then there is no
   1379   // superclass type.
   1380   ObjCInterfaceDecl *classDecl = getInterface();
   1381   if (!classDecl) {
   1382     CachedSuperClassType.setInt(true);
   1383     return;
   1384   }
   1385 
   1386   // Extract the superclass type.
   1387   const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
   1388   if (!superClassObjTy) {
   1389     CachedSuperClassType.setInt(true);
   1390     return;
   1391   }
   1392 
   1393   ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
   1394   if (!superClassDecl) {
   1395     CachedSuperClassType.setInt(true);
   1396     return;
   1397   }
   1398 
   1399   // If the superclass doesn't have type parameters, then there is no
   1400   // substitution to perform.
   1401   QualType superClassType(superClassObjTy, 0);
   1402   ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
   1403   if (!superClassTypeParams) {
   1404     CachedSuperClassType.setPointerAndInt(
   1405       superClassType->castAs<ObjCObjectType>(), true);
   1406     return;
   1407   }
   1408 
   1409   // If the superclass reference is unspecialized, return it.
   1410   if (superClassObjTy->isUnspecialized()) {
   1411     CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
   1412     return;
   1413   }
   1414 
   1415   // If the subclass is not parameterized, there aren't any type
   1416   // parameters in the superclass reference to substitute.
   1417   ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
   1418   if (!typeParams) {
   1419     CachedSuperClassType.setPointerAndInt(
   1420       superClassType->castAs<ObjCObjectType>(), true);
   1421     return;
   1422   }
   1423 
   1424   // If the subclass type isn't specialized, return the unspecialized
   1425   // superclass.
   1426   if (isUnspecialized()) {
   1427     QualType unspecializedSuper
   1428       = classDecl->getASTContext().getObjCInterfaceType(
   1429           superClassObjTy->getInterface());
   1430     CachedSuperClassType.setPointerAndInt(
   1431       unspecializedSuper->castAs<ObjCObjectType>(),
   1432       true);
   1433     return;
   1434   }
   1435 
   1436   // Substitute the provided type arguments into the superclass type.
   1437   ArrayRef<QualType> typeArgs = getTypeArgs();
   1438   assert(typeArgs.size() == typeParams->size());
   1439   CachedSuperClassType.setPointerAndInt(
   1440     superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
   1441                                      ObjCSubstitutionContext::Superclass)
   1442       ->castAs<ObjCObjectType>(),
   1443     true);
   1444 }
   1445 
   1446 const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const {
   1447   if (auto interfaceDecl = getObjectType()->getInterface()) {
   1448     return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
   1449              ->castAs<ObjCInterfaceType>();
   1450   }
   1451 
   1452   return nullptr;
   1453 }
   1454 
   1455 QualType ObjCObjectPointerType::getSuperClassType() const {
   1456   QualType superObjectType = getObjectType()->getSuperClassType();
   1457   if (superObjectType.isNull())
   1458     return superObjectType;
   1459 
   1460   ASTContext &ctx = getInterfaceDecl()->getASTContext();
   1461   return ctx.getObjCObjectPointerType(superObjectType);
   1462 }
   1463 
   1464 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
   1465   // There is no sugar for ObjCObjectType's, just return the canonical
   1466   // type pointer if it is the right class.  There is no typedef information to
   1467   // return and these cannot be Address-space qualified.
   1468   if (const ObjCObjectType *T = getAs<ObjCObjectType>())
   1469     if (T->getNumProtocols() && T->getInterface())
   1470       return T;
   1471   return nullptr;
   1472 }
   1473 
   1474 bool Type::isObjCQualifiedInterfaceType() const {
   1475   return getAsObjCQualifiedInterfaceType() != nullptr;
   1476 }
   1477 
   1478 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
   1479   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
   1480   // type pointer if it is the right class.
   1481   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
   1482     if (OPT->isObjCQualifiedIdType())
   1483       return OPT;
   1484   }
   1485   return nullptr;
   1486 }
   1487 
   1488 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
   1489   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
   1490   // type pointer if it is the right class.
   1491   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
   1492     if (OPT->isObjCQualifiedClassType())
   1493       return OPT;
   1494   }
   1495   return nullptr;
   1496 }
   1497 
   1498 const ObjCObjectType *Type::getAsObjCInterfaceType() const {
   1499   if (const ObjCObjectType *OT = getAs<ObjCObjectType>()) {
   1500     if (OT->getInterface())
   1501       return OT;
   1502   }
   1503   return nullptr;
   1504 }
   1505 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
   1506   if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
   1507     if (OPT->getInterfaceType())
   1508       return OPT;
   1509   }
   1510   return nullptr;
   1511 }
   1512 
   1513 const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
   1514   QualType PointeeType;
   1515   if (const PointerType *PT = getAs<PointerType>())
   1516     PointeeType = PT->getPointeeType();
   1517   else if (const ReferenceType *RT = getAs<ReferenceType>())
   1518     PointeeType = RT->getPointeeType();
   1519   else
   1520     return nullptr;
   1521 
   1522   if (const RecordType *RT = PointeeType->getAs<RecordType>())
   1523     return dyn_cast<CXXRecordDecl>(RT->getDecl());
   1524 
   1525   return nullptr;
   1526 }
   1527 
   1528 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
   1529   return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
   1530 }
   1531 
   1532 TagDecl *Type::getAsTagDecl() const {
   1533   if (const auto *TT = getAs<TagType>())
   1534     return cast<TagDecl>(TT->getDecl());
   1535   if (const auto *Injected = getAs<InjectedClassNameType>())
   1536     return Injected->getDecl();
   1537 
   1538   return nullptr;
   1539 }
   1540 
   1541 namespace {
   1542   class GetContainedAutoVisitor :
   1543     public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
   1544   public:
   1545     using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
   1546     AutoType *Visit(QualType T) {
   1547       if (T.isNull())
   1548         return nullptr;
   1549       return Visit(T.getTypePtr());
   1550     }
   1551 
   1552     // The 'auto' type itself.
   1553     AutoType *VisitAutoType(const AutoType *AT) {
   1554       return const_cast<AutoType*>(AT);
   1555     }
   1556 
   1557     // Only these types can contain the desired 'auto' type.
   1558     AutoType *VisitPointerType(const PointerType *T) {
   1559       return Visit(T->getPointeeType());
   1560     }
   1561     AutoType *VisitBlockPointerType(const BlockPointerType *T) {
   1562       return Visit(T->getPointeeType());
   1563     }
   1564     AutoType *VisitReferenceType(const ReferenceType *T) {
   1565       return Visit(T->getPointeeTypeAsWritten());
   1566     }
   1567     AutoType *VisitMemberPointerType(const MemberPointerType *T) {
   1568       return Visit(T->getPointeeType());
   1569     }
   1570     AutoType *VisitArrayType(const ArrayType *T) {
   1571       return Visit(T->getElementType());
   1572     }
   1573     AutoType *VisitDependentSizedExtVectorType(
   1574       const DependentSizedExtVectorType *T) {
   1575       return Visit(T->getElementType());
   1576     }
   1577     AutoType *VisitVectorType(const VectorType *T) {
   1578       return Visit(T->getElementType());
   1579     }
   1580     AutoType *VisitFunctionType(const FunctionType *T) {
   1581       return Visit(T->getReturnType());
   1582     }
   1583     AutoType *VisitParenType(const ParenType *T) {
   1584       return Visit(T->getInnerType());
   1585     }
   1586     AutoType *VisitAttributedType(const AttributedType *T) {
   1587       return Visit(T->getModifiedType());
   1588     }
   1589     AutoType *VisitAdjustedType(const AdjustedType *T) {
   1590       return Visit(T->getOriginalType());
   1591     }
   1592   };
   1593 }
   1594 
   1595 AutoType *Type::getContainedAutoType() const {
   1596   return GetContainedAutoVisitor().Visit(this);
   1597 }
   1598 
   1599 bool Type::hasIntegerRepresentation() const {
   1600   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
   1601     return VT->getElementType()->isIntegerType();
   1602   else
   1603     return isIntegerType();
   1604 }
   1605 
   1606 /// \brief Determine whether this type is an integral type.
   1607 ///
   1608 /// This routine determines whether the given type is an integral type per
   1609 /// C++ [basic.fundamental]p7. Although the C standard does not define the
   1610 /// term "integral type", it has a similar term "integer type", and in C++
   1611 /// the two terms are equivalent. However, C's "integer type" includes
   1612 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
   1613 /// parameter is used to determine whether we should be following the C or
   1614 /// C++ rules when determining whether this type is an integral/integer type.
   1615 ///
   1616 /// For cases where C permits "an integer type" and C++ permits "an integral
   1617 /// type", use this routine.
   1618 ///
   1619 /// For cases where C permits "an integer type" and C++ permits "an integral
   1620 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
   1621 ///
   1622 /// \param Ctx The context in which this type occurs.
   1623 ///
   1624 /// \returns true if the type is considered an integral type, false otherwise.
   1625 bool Type::isIntegralType(const ASTContext &Ctx) const {
   1626   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1627     return BT->getKind() >= BuiltinType::Bool &&
   1628            BT->getKind() <= BuiltinType::Int128;
   1629 
   1630   // Complete enum types are integral in C.
   1631   if (!Ctx.getLangOpts().CPlusPlus)
   1632     if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   1633       return ET->getDecl()->isComplete();
   1634 
   1635   return false;
   1636 }
   1637 
   1638 
   1639 bool Type::isIntegralOrUnscopedEnumerationType() const {
   1640   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1641     return BT->getKind() >= BuiltinType::Bool &&
   1642            BT->getKind() <= BuiltinType::Int128;
   1643 
   1644   // Check for a complete enum type; incomplete enum types are not properly an
   1645   // enumeration type in the sense required here.
   1646   // C++0x: However, if the underlying type of the enum is fixed, it is
   1647   // considered complete.
   1648   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   1649     return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
   1650 
   1651   return false;
   1652 }
   1653 
   1654 
   1655 
   1656 bool Type::isCharType() const {
   1657   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1658     return BT->getKind() == BuiltinType::Char_U ||
   1659            BT->getKind() == BuiltinType::UChar ||
   1660            BT->getKind() == BuiltinType::Char_S ||
   1661            BT->getKind() == BuiltinType::SChar;
   1662   return false;
   1663 }
   1664 
   1665 bool Type::isWideCharType() const {
   1666   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1667     return BT->getKind() == BuiltinType::WChar_S ||
   1668            BT->getKind() == BuiltinType::WChar_U;
   1669   return false;
   1670 }
   1671 
   1672 bool Type::isChar16Type() const {
   1673   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1674     return BT->getKind() == BuiltinType::Char16;
   1675   return false;
   1676 }
   1677 
   1678 bool Type::isChar32Type() const {
   1679   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1680     return BT->getKind() == BuiltinType::Char32;
   1681   return false;
   1682 }
   1683 
   1684 /// \brief Determine whether this type is any of the built-in character
   1685 /// types.
   1686 bool Type::isAnyCharacterType() const {
   1687   const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
   1688   if (!BT) return false;
   1689   switch (BT->getKind()) {
   1690   default: return false;
   1691   case BuiltinType::Char_U:
   1692   case BuiltinType::UChar:
   1693   case BuiltinType::WChar_U:
   1694   case BuiltinType::Char16:
   1695   case BuiltinType::Char32:
   1696   case BuiltinType::Char_S:
   1697   case BuiltinType::SChar:
   1698   case BuiltinType::WChar_S:
   1699     return true;
   1700   }
   1701 }
   1702 
   1703 /// isSignedIntegerType - Return true if this is an integer type that is
   1704 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
   1705 /// an enum decl which has a signed representation
   1706 bool Type::isSignedIntegerType() const {
   1707   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
   1708     return BT->getKind() >= BuiltinType::Char_S &&
   1709            BT->getKind() <= BuiltinType::Int128;
   1710   }
   1711 
   1712   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   1713     // Incomplete enum types are not treated as integer types.
   1714     // FIXME: In C++, enum types are never integer types.
   1715     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
   1716       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
   1717   }
   1718 
   1719   return false;
   1720 }
   1721 
   1722 bool Type::isSignedIntegerOrEnumerationType() const {
   1723   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
   1724     return BT->getKind() >= BuiltinType::Char_S &&
   1725            BT->getKind() <= BuiltinType::Int128;
   1726   }
   1727 
   1728   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   1729     if (ET->getDecl()->isComplete())
   1730       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
   1731   }
   1732 
   1733   return false;
   1734 }
   1735 
   1736 bool Type::hasSignedIntegerRepresentation() const {
   1737   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
   1738     return VT->getElementType()->isSignedIntegerOrEnumerationType();
   1739   else
   1740     return isSignedIntegerOrEnumerationType();
   1741 }
   1742 
   1743 /// isUnsignedIntegerType - Return true if this is an integer type that is
   1744 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
   1745 /// decl which has an unsigned representation
   1746 bool Type::isUnsignedIntegerType() const {
   1747   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
   1748     return BT->getKind() >= BuiltinType::Bool &&
   1749            BT->getKind() <= BuiltinType::UInt128;
   1750   }
   1751 
   1752   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   1753     // Incomplete enum types are not treated as integer types.
   1754     // FIXME: In C++, enum types are never integer types.
   1755     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
   1756       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
   1757   }
   1758 
   1759   return false;
   1760 }
   1761 
   1762 bool Type::isUnsignedIntegerOrEnumerationType() const {
   1763   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
   1764     return BT->getKind() >= BuiltinType::Bool &&
   1765     BT->getKind() <= BuiltinType::UInt128;
   1766   }
   1767 
   1768   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
   1769     if (ET->getDecl()->isComplete())
   1770       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
   1771   }
   1772 
   1773   return false;
   1774 }
   1775 
   1776 bool Type::hasUnsignedIntegerRepresentation() const {
   1777   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
   1778     return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
   1779   else
   1780     return isUnsignedIntegerOrEnumerationType();
   1781 }
   1782 
   1783 bool Type::isFloatingType() const {
   1784   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1785     return BT->getKind() >= BuiltinType::Half &&
   1786            BT->getKind() <= BuiltinType::Float128;
   1787   if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
   1788     return CT->getElementType()->isFloatingType();
   1789   return false;
   1790 }
   1791 
   1792 bool Type::hasFloatingRepresentation() const {
   1793   if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
   1794     return VT->getElementType()->isFloatingType();
   1795   else
   1796     return isFloatingType();
   1797 }
   1798 
   1799 bool Type::isRealFloatingType() const {
   1800   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1801     return BT->isFloatingPoint();
   1802   return false;
   1803 }
   1804 
   1805 bool Type::isRealType() const {
   1806   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1807     return BT->getKind() >= BuiltinType::Bool &&
   1808            BT->getKind() <= BuiltinType::Float128;
   1809   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   1810       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
   1811   return false;
   1812 }
   1813 
   1814 bool Type::isArithmeticType() const {
   1815   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
   1816     return BT->getKind() >= BuiltinType::Bool &&
   1817            BT->getKind() <= BuiltinType::Float128;
   1818   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
   1819     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
   1820     // If a body isn't seen by the time we get here, return false.
   1821     //
   1822     // C++0x: Enumerations are not arithmetic types. For now, just return
   1823     // false for scoped enumerations since that will disable any
   1824     // unwanted implicit conversions.
   1825     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
   1826   return isa<ComplexType>(CanonicalType);
   1827 }
   1828 
   1829 Type::ScalarTypeKind Type::getScalarTypeKind() const {
   1830   assert(isScalarType());
   1831 
   1832   const Type *T = CanonicalType.getTypePtr();
   1833   if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
   1834     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
   1835     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
   1836     if (BT->isInteger()) return STK_Integral;
   1837     if (BT->isFloatingPoint()) return STK_Floating;
   1838     llvm_unreachable("unknown scalar builtin type");
   1839   } else if (isa<PointerType>(T)) {
   1840     return STK_CPointer;
   1841   } else if (isa<BlockPointerType>(T)) {
   1842     return STK_BlockPointer;
   1843   } else if (isa<ObjCObjectPointerType>(T)) {
   1844     return STK_ObjCObjectPointer;
   1845   } else if (isa<MemberPointerType>(T)) {
   1846     return STK_MemberPointer;
   1847   } else if (isa<EnumType>(T)) {
   1848     assert(cast<EnumType>(T)->getDecl()->isComplete());
   1849     return STK_Integral;
   1850   } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
   1851     if (CT->getElementType()->isRealFloatingType())
   1852       return STK_FloatingComplex;
   1853     return STK_IntegralComplex;
   1854   }
   1855 
   1856   llvm_unreachable("unknown scalar type");
   1857 }
   1858 
   1859 /// \brief Determines whether the type is a C++ aggregate type or C
   1860 /// aggregate or union type.
   1861 ///
   1862 /// An aggregate type is an array or a class type (struct, union, or
   1863 /// class) that has no user-declared constructors, no private or
   1864 /// protected non-static data members, no base classes, and no virtual
   1865 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
   1866 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
   1867 /// includes union types.
   1868 bool Type::isAggregateType() const {
   1869   if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
   1870     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
   1871       return ClassDecl->isAggregate();
   1872 
   1873     return true;
   1874   }
   1875 
   1876   return isa<ArrayType>(CanonicalType);
   1877 }
   1878 
   1879 /// isConstantSizeType - Return true if this is not a variable sized type,
   1880 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
   1881 /// incomplete types or dependent types.
   1882 bool Type::isConstantSizeType() const {
   1883   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
   1884   assert(!isDependentType() && "This doesn't make sense for dependent types");
   1885   // The VAT must have a size, as it is known to be complete.
   1886   return !isa<VariableArrayType>(CanonicalType);
   1887 }
   1888 
   1889 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
   1890 /// - a type that can describe objects, but which lacks information needed to
   1891 /// determine its size.
   1892 bool Type::isIncompleteType(NamedDecl **Def) const {
   1893   if (Def)
   1894     *Def = nullptr;
   1895 
   1896   switch (CanonicalType->getTypeClass()) {
   1897   default: return false;
   1898   case Builtin:
   1899     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
   1900     // be completed.
   1901     return isVoidType();
   1902   case Enum: {
   1903     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
   1904     if (Def)
   1905       *Def = EnumD;
   1906 
   1907     // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
   1908     if (EnumD->isFixed())
   1909       return false;
   1910 
   1911     return !EnumD->isCompleteDefinition();
   1912   }
   1913   case Record: {
   1914     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
   1915     // forward declaration, but not a full definition (C99 6.2.5p22).
   1916     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
   1917     if (Def)
   1918       *Def = Rec;
   1919     return !Rec->isCompleteDefinition();
   1920   }
   1921   case ConstantArray:
   1922     // An array is incomplete if its element type is incomplete
   1923     // (C++ [dcl.array]p1).
   1924     // We don't handle variable arrays (they're not allowed in C++) or
   1925     // dependent-sized arrays (dependent types are never treated as incomplete).
   1926     return cast<ArrayType>(CanonicalType)->getElementType()
   1927              ->isIncompleteType(Def);
   1928   case IncompleteArray:
   1929     // An array of unknown size is an incomplete type (C99 6.2.5p22).
   1930     return true;
   1931   case MemberPointer: {
   1932     // Member pointers in the MS ABI have special behavior in
   1933     // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
   1934     // to indicate which inheritance model to use.
   1935     auto *MPTy = cast<MemberPointerType>(CanonicalType);
   1936     const Type *ClassTy = MPTy->getClass();
   1937     // Member pointers with dependent class types don't get special treatment.
   1938     if (ClassTy->isDependentType())
   1939       return false;
   1940     const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
   1941     ASTContext &Context = RD->getASTContext();
   1942     // Member pointers not in the MS ABI don't get special treatment.
   1943     if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
   1944       return false;
   1945     // The inheritance attribute might only be present on the most recent
   1946     // CXXRecordDecl, use that one.
   1947     RD = RD->getMostRecentDecl();
   1948     // Nothing interesting to do if the inheritance attribute is already set.
   1949     if (RD->hasAttr<MSInheritanceAttr>())
   1950       return false;
   1951     return true;
   1952   }
   1953   case ObjCObject:
   1954     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
   1955              ->isIncompleteType(Def);
   1956   case ObjCInterface: {
   1957     // ObjC interfaces are incomplete if they are @class, not @interface.
   1958     ObjCInterfaceDecl *Interface
   1959       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
   1960     if (Def)
   1961       *Def = Interface;
   1962     return !Interface->hasDefinition();
   1963   }
   1964   }
   1965 }
   1966 
   1967 bool QualType::isPODType(const ASTContext &Context) const {
   1968   // C++11 has a more relaxed definition of POD.
   1969   if (Context.getLangOpts().CPlusPlus11)
   1970     return isCXX11PODType(Context);
   1971 
   1972   return isCXX98PODType(Context);
   1973 }
   1974 
   1975 bool QualType::isCXX98PODType(const ASTContext &Context) const {
   1976   // The compiler shouldn't query this for incomplete types, but the user might.
   1977   // We return false for that case. Except for incomplete arrays of PODs, which
   1978   // are PODs according to the standard.
   1979   if (isNull())
   1980     return 0;
   1981 
   1982   if ((*this)->isIncompleteArrayType())
   1983     return Context.getBaseElementType(*this).isCXX98PODType(Context);
   1984 
   1985   if ((*this)->isIncompleteType())
   1986     return false;
   1987 
   1988   if (Context.getLangOpts().ObjCAutoRefCount) {
   1989     switch (getObjCLifetime()) {
   1990     case Qualifiers::OCL_ExplicitNone:
   1991       return true;
   1992 
   1993     case Qualifiers::OCL_Strong:
   1994     case Qualifiers::OCL_Weak:
   1995     case Qualifiers::OCL_Autoreleasing:
   1996       return false;
   1997 
   1998     case Qualifiers::OCL_None:
   1999       break;
   2000     }
   2001   }
   2002 
   2003   QualType CanonicalType = getTypePtr()->CanonicalType;
   2004   switch (CanonicalType->getTypeClass()) {
   2005     // Everything not explicitly mentioned is not POD.
   2006   default: return false;
   2007   case Type::VariableArray:
   2008   case Type::ConstantArray:
   2009     // IncompleteArray is handled above.
   2010     return Context.getBaseElementType(*this).isCXX98PODType(Context);
   2011 
   2012   case Type::ObjCObjectPointer:
   2013   case Type::BlockPointer:
   2014   case Type::Builtin:
   2015   case Type::Complex:
   2016   case Type::Pointer:
   2017   case Type::MemberPointer:
   2018   case Type::Vector:
   2019   case Type::ExtVector:
   2020     return true;
   2021 
   2022   case Type::Enum:
   2023     return true;
   2024 
   2025   case Type::Record:
   2026     if (CXXRecordDecl *ClassDecl
   2027           = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
   2028       return ClassDecl->isPOD();
   2029 
   2030     // C struct/union is POD.
   2031     return true;
   2032   }
   2033 }
   2034 
   2035 bool QualType::isTrivialType(const ASTContext &Context) const {
   2036   // The compiler shouldn't query this for incomplete types, but the user might.
   2037   // We return false for that case. Except for incomplete arrays of PODs, which
   2038   // are PODs according to the standard.
   2039   if (isNull())
   2040     return 0;
   2041 
   2042   if ((*this)->isArrayType())
   2043     return Context.getBaseElementType(*this).isTrivialType(Context);
   2044 
   2045   // Return false for incomplete types after skipping any incomplete array
   2046   // types which are expressly allowed by the standard and thus our API.
   2047   if ((*this)->isIncompleteType())
   2048     return false;
   2049 
   2050   if (Context.getLangOpts().ObjCAutoRefCount) {
   2051     switch (getObjCLifetime()) {
   2052     case Qualifiers::OCL_ExplicitNone:
   2053       return true;
   2054 
   2055     case Qualifiers::OCL_Strong:
   2056     case Qualifiers::OCL_Weak:
   2057     case Qualifiers::OCL_Autoreleasing:
   2058       return false;
   2059 
   2060     case Qualifiers::OCL_None:
   2061       if ((*this)->isObjCLifetimeType())
   2062         return false;
   2063       break;
   2064     }
   2065   }
   2066 
   2067   QualType CanonicalType = getTypePtr()->CanonicalType;
   2068   if (CanonicalType->isDependentType())
   2069     return false;
   2070 
   2071   // C++0x [basic.types]p9:
   2072   //   Scalar types, trivial class types, arrays of such types, and
   2073   //   cv-qualified versions of these types are collectively called trivial
   2074   //   types.
   2075 
   2076   // As an extension, Clang treats vector types as Scalar types.
   2077   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
   2078     return true;
   2079   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
   2080     if (const CXXRecordDecl *ClassDecl =
   2081         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   2082       // C++11 [class]p6:
   2083       //   A trivial class is a class that has a default constructor,
   2084       //   has no non-trivial default constructors, and is trivially
   2085       //   copyable.
   2086       return ClassDecl->hasDefaultConstructor() &&
   2087              !ClassDecl->hasNonTrivialDefaultConstructor() &&
   2088              ClassDecl->isTriviallyCopyable();
   2089     }
   2090 
   2091     return true;
   2092   }
   2093 
   2094   // No other types can match.
   2095   return false;
   2096 }
   2097 
   2098 bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
   2099   if ((*this)->isArrayType())
   2100     return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
   2101 
   2102   if (Context.getLangOpts().ObjCAutoRefCount) {
   2103     switch (getObjCLifetime()) {
   2104     case Qualifiers::OCL_ExplicitNone:
   2105       return true;
   2106 
   2107     case Qualifiers::OCL_Strong:
   2108     case Qualifiers::OCL_Weak:
   2109     case Qualifiers::OCL_Autoreleasing:
   2110       return false;
   2111 
   2112     case Qualifiers::OCL_None:
   2113       if ((*this)->isObjCLifetimeType())
   2114         return false;
   2115       break;
   2116     }
   2117   }
   2118 
   2119   // C++11 [basic.types]p9
   2120   //   Scalar types, trivially copyable class types, arrays of such types, and
   2121   //   non-volatile const-qualified versions of these types are collectively
   2122   //   called trivially copyable types.
   2123 
   2124   QualType CanonicalType = getCanonicalType();
   2125   if (CanonicalType->isDependentType())
   2126     return false;
   2127 
   2128   if (CanonicalType.isVolatileQualified())
   2129     return false;
   2130 
   2131   // Return false for incomplete types after skipping any incomplete array types
   2132   // which are expressly allowed by the standard and thus our API.
   2133   if (CanonicalType->isIncompleteType())
   2134     return false;
   2135 
   2136   // As an extension, Clang treats vector types as Scalar types.
   2137   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
   2138     return true;
   2139 
   2140   if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
   2141     if (const CXXRecordDecl *ClassDecl =
   2142           dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   2143       if (!ClassDecl->isTriviallyCopyable()) return false;
   2144     }
   2145 
   2146     return true;
   2147   }
   2148 
   2149   // No other types can match.
   2150   return false;
   2151 }
   2152 
   2153 
   2154 
   2155 bool Type::isLiteralType(const ASTContext &Ctx) const {
   2156   if (isDependentType())
   2157     return false;
   2158 
   2159   // C++1y [basic.types]p10:
   2160   //   A type is a literal type if it is:
   2161   //   -- cv void; or
   2162   if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
   2163     return true;
   2164 
   2165   // C++11 [basic.types]p10:
   2166   //   A type is a literal type if it is:
   2167   //   [...]
   2168   //   -- an array of literal type other than an array of runtime bound; or
   2169   if (isVariableArrayType())
   2170     return false;
   2171   const Type *BaseTy = getBaseElementTypeUnsafe();
   2172   assert(BaseTy && "NULL element type");
   2173 
   2174   // Return false for incomplete types after skipping any incomplete array
   2175   // types; those are expressly allowed by the standard and thus our API.
   2176   if (BaseTy->isIncompleteType())
   2177     return false;
   2178 
   2179   // C++11 [basic.types]p10:
   2180   //   A type is a literal type if it is:
   2181   //    -- a scalar type; or
   2182   // As an extension, Clang treats vector types and complex types as
   2183   // literal types.
   2184   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
   2185       BaseTy->isAnyComplexType())
   2186     return true;
   2187   //    -- a reference type; or
   2188   if (BaseTy->isReferenceType())
   2189     return true;
   2190   //    -- a class type that has all of the following properties:
   2191   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   2192     //    -- a trivial destructor,
   2193     //    -- every constructor call and full-expression in the
   2194     //       brace-or-equal-initializers for non-static data members (if any)
   2195     //       is a constant expression,
   2196     //    -- it is an aggregate type or has at least one constexpr
   2197     //       constructor or constructor template that is not a copy or move
   2198     //       constructor, and
   2199     //    -- all non-static data members and base classes of literal types
   2200     //
   2201     // We resolve DR1361 by ignoring the second bullet.
   2202     if (const CXXRecordDecl *ClassDecl =
   2203         dyn_cast<CXXRecordDecl>(RT->getDecl()))
   2204       return ClassDecl->isLiteral();
   2205 
   2206     return true;
   2207   }
   2208 
   2209   // We treat _Atomic T as a literal type if T is a literal type.
   2210   if (const AtomicType *AT = BaseTy->getAs<AtomicType>())
   2211     return AT->getValueType()->isLiteralType(Ctx);
   2212 
   2213   // If this type hasn't been deduced yet, then conservatively assume that
   2214   // it'll work out to be a literal type.
   2215   if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
   2216     return true;
   2217 
   2218   return false;
   2219 }
   2220 
   2221 bool Type::isStandardLayoutType() const {
   2222   if (isDependentType())
   2223     return false;
   2224 
   2225   // C++0x [basic.types]p9:
   2226   //   Scalar types, standard-layout class types, arrays of such types, and
   2227   //   cv-qualified versions of these types are collectively called
   2228   //   standard-layout types.
   2229   const Type *BaseTy = getBaseElementTypeUnsafe();
   2230   assert(BaseTy && "NULL element type");
   2231 
   2232   // Return false for incomplete types after skipping any incomplete array
   2233   // types which are expressly allowed by the standard and thus our API.
   2234   if (BaseTy->isIncompleteType())
   2235     return false;
   2236 
   2237   // As an extension, Clang treats vector types as Scalar types.
   2238   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
   2239   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   2240     if (const CXXRecordDecl *ClassDecl =
   2241         dyn_cast<CXXRecordDecl>(RT->getDecl()))
   2242       if (!ClassDecl->isStandardLayout())
   2243         return false;
   2244 
   2245     // Default to 'true' for non-C++ class types.
   2246     // FIXME: This is a bit dubious, but plain C structs should trivially meet
   2247     // all the requirements of standard layout classes.
   2248     return true;
   2249   }
   2250 
   2251   // No other types can match.
   2252   return false;
   2253 }
   2254 
   2255 // This is effectively the intersection of isTrivialType and
   2256 // isStandardLayoutType. We implement it directly to avoid redundant
   2257 // conversions from a type to a CXXRecordDecl.
   2258 bool QualType::isCXX11PODType(const ASTContext &Context) const {
   2259   const Type *ty = getTypePtr();
   2260   if (ty->isDependentType())
   2261     return false;
   2262 
   2263   if (Context.getLangOpts().ObjCAutoRefCount) {
   2264     switch (getObjCLifetime()) {
   2265     case Qualifiers::OCL_ExplicitNone:
   2266       return true;
   2267 
   2268     case Qualifiers::OCL_Strong:
   2269     case Qualifiers::OCL_Weak:
   2270     case Qualifiers::OCL_Autoreleasing:
   2271       return false;
   2272 
   2273     case Qualifiers::OCL_None:
   2274       break;
   2275     }
   2276   }
   2277 
   2278   // C++11 [basic.types]p9:
   2279   //   Scalar types, POD classes, arrays of such types, and cv-qualified
   2280   //   versions of these types are collectively called trivial types.
   2281   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
   2282   assert(BaseTy && "NULL element type");
   2283 
   2284   // Return false for incomplete types after skipping any incomplete array
   2285   // types which are expressly allowed by the standard and thus our API.
   2286   if (BaseTy->isIncompleteType())
   2287     return false;
   2288 
   2289   // As an extension, Clang treats vector types as Scalar types.
   2290   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
   2291   if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
   2292     if (const CXXRecordDecl *ClassDecl =
   2293         dyn_cast<CXXRecordDecl>(RT->getDecl())) {
   2294       // C++11 [class]p10:
   2295       //   A POD struct is a non-union class that is both a trivial class [...]
   2296       if (!ClassDecl->isTrivial()) return false;
   2297 
   2298       // C++11 [class]p10:
   2299       //   A POD struct is a non-union class that is both a trivial class and
   2300       //   a standard-layout class [...]
   2301       if (!ClassDecl->isStandardLayout()) return false;
   2302 
   2303       // C++11 [class]p10:
   2304       //   A POD struct is a non-union class that is both a trivial class and
   2305       //   a standard-layout class, and has no non-static data members of type
   2306       //   non-POD struct, non-POD union (or array of such types). [...]
   2307       //
   2308       // We don't directly query the recursive aspect as the requirements for
   2309       // both standard-layout classes and trivial classes apply recursively
   2310       // already.
   2311     }
   2312 
   2313     return true;
   2314   }
   2315 
   2316   // No other types can match.
   2317   return false;
   2318 }
   2319 
   2320 bool Type::isPromotableIntegerType() const {
   2321   if (const BuiltinType *BT = getAs<BuiltinType>())
   2322     switch (BT->getKind()) {
   2323     case BuiltinType::Bool:
   2324     case BuiltinType::Char_S:
   2325     case BuiltinType::Char_U:
   2326     case BuiltinType::SChar:
   2327     case BuiltinType::UChar:
   2328     case BuiltinType::Short:
   2329     case BuiltinType::UShort:
   2330     case BuiltinType::WChar_S:
   2331     case BuiltinType::WChar_U:
   2332     case BuiltinType::Char16:
   2333     case BuiltinType::Char32:
   2334       return true;
   2335     default:
   2336       return false;
   2337     }
   2338 
   2339   // Enumerated types are promotable to their compatible integer types
   2340   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
   2341   if (const EnumType *ET = getAs<EnumType>()){
   2342     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
   2343         || ET->getDecl()->isScoped())
   2344       return false;
   2345 
   2346     return true;
   2347   }
   2348 
   2349   return false;
   2350 }
   2351 
   2352 bool Type::isSpecifierType() const {
   2353   // Note that this intentionally does not use the canonical type.
   2354   switch (getTypeClass()) {
   2355   case Builtin:
   2356   case Record:
   2357   case Enum:
   2358   case Typedef:
   2359   case Complex:
   2360   case TypeOfExpr:
   2361   case TypeOf:
   2362   case TemplateTypeParm:
   2363   case SubstTemplateTypeParm:
   2364   case TemplateSpecialization:
   2365   case Elaborated:
   2366   case DependentName:
   2367   case DependentTemplateSpecialization:
   2368   case ObjCInterface:
   2369   case ObjCObject:
   2370   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
   2371     return true;
   2372   default:
   2373     return false;
   2374   }
   2375 }
   2376 
   2377 ElaboratedTypeKeyword
   2378 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
   2379   switch (TypeSpec) {
   2380   default: return ETK_None;
   2381   case TST_typename: return ETK_Typename;
   2382   case TST_class: return ETK_Class;
   2383   case TST_struct: return ETK_Struct;
   2384   case TST_interface: return ETK_Interface;
   2385   case TST_union: return ETK_Union;
   2386   case TST_enum: return ETK_Enum;
   2387   }
   2388 }
   2389 
   2390 TagTypeKind
   2391 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
   2392   switch(TypeSpec) {
   2393   case TST_class: return TTK_Class;
   2394   case TST_struct: return TTK_Struct;
   2395   case TST_interface: return TTK_Interface;
   2396   case TST_union: return TTK_Union;
   2397   case TST_enum: return TTK_Enum;
   2398   }
   2399 
   2400   llvm_unreachable("Type specifier is not a tag type kind.");
   2401 }
   2402 
   2403 ElaboratedTypeKeyword
   2404 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
   2405   switch (Kind) {
   2406   case TTK_Class: return ETK_Class;
   2407   case TTK_Struct: return ETK_Struct;
   2408   case TTK_Interface: return ETK_Interface;
   2409   case TTK_Union: return ETK_Union;
   2410   case TTK_Enum: return ETK_Enum;
   2411   }
   2412   llvm_unreachable("Unknown tag type kind.");
   2413 }
   2414 
   2415 TagTypeKind
   2416 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
   2417   switch (Keyword) {
   2418   case ETK_Class: return TTK_Class;
   2419   case ETK_Struct: return TTK_Struct;
   2420   case ETK_Interface: return TTK_Interface;
   2421   case ETK_Union: return TTK_Union;
   2422   case ETK_Enum: return TTK_Enum;
   2423   case ETK_None: // Fall through.
   2424   case ETK_Typename:
   2425     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
   2426   }
   2427   llvm_unreachable("Unknown elaborated type keyword.");
   2428 }
   2429 
   2430 bool
   2431 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
   2432   switch (Keyword) {
   2433   case ETK_None:
   2434   case ETK_Typename:
   2435     return false;
   2436   case ETK_Class:
   2437   case ETK_Struct:
   2438   case ETK_Interface:
   2439   case ETK_Union:
   2440   case ETK_Enum:
   2441     return true;
   2442   }
   2443   llvm_unreachable("Unknown elaborated type keyword.");
   2444 }
   2445 
   2446 StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
   2447   switch (Keyword) {
   2448   case ETK_None: return "";
   2449   case ETK_Typename: return "typename";
   2450   case ETK_Class:  return "class";
   2451   case ETK_Struct: return "struct";
   2452   case ETK_Interface: return "__interface";
   2453   case ETK_Union:  return "union";
   2454   case ETK_Enum:   return "enum";
   2455   }
   2456 
   2457   llvm_unreachable("Unknown elaborated type keyword.");
   2458 }
   2459 
   2460 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
   2461                          ElaboratedTypeKeyword Keyword,
   2462                          NestedNameSpecifier *NNS, const IdentifierInfo *Name,
   2463                          ArrayRef<TemplateArgument> Args,
   2464                          QualType Canon)
   2465   : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
   2466                     /*VariablyModified=*/false,
   2467                     NNS && NNS->containsUnexpandedParameterPack()),
   2468     NNS(NNS), Name(Name), NumArgs(Args.size()) {
   2469   assert((!NNS || NNS->isDependent()) &&
   2470          "DependentTemplateSpecializatonType requires dependent qualifier");
   2471   TemplateArgument *ArgBuffer = getArgBuffer();
   2472   for (const TemplateArgument &Arg : Args) {
   2473     if (Arg.containsUnexpandedParameterPack())
   2474       setContainsUnexpandedParameterPack();
   2475 
   2476     new (ArgBuffer++) TemplateArgument(Arg);
   2477   }
   2478 }
   2479 
   2480 void
   2481 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
   2482                                              const ASTContext &Context,
   2483                                              ElaboratedTypeKeyword Keyword,
   2484                                              NestedNameSpecifier *Qualifier,
   2485                                              const IdentifierInfo *Name,
   2486                                              ArrayRef<TemplateArgument> Args) {
   2487   ID.AddInteger(Keyword);
   2488   ID.AddPointer(Qualifier);
   2489   ID.AddPointer(Name);
   2490   for (const TemplateArgument &Arg : Args)
   2491     Arg.Profile(ID, Context);
   2492 }
   2493 
   2494 bool Type::isElaboratedTypeSpecifier() const {
   2495   ElaboratedTypeKeyword Keyword;
   2496   if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
   2497     Keyword = Elab->getKeyword();
   2498   else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
   2499     Keyword = DepName->getKeyword();
   2500   else if (const DependentTemplateSpecializationType *DepTST =
   2501              dyn_cast<DependentTemplateSpecializationType>(this))
   2502     Keyword = DepTST->getKeyword();
   2503   else
   2504     return false;
   2505 
   2506   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
   2507 }
   2508 
   2509 const char *Type::getTypeClassName() const {
   2510   switch (TypeBits.TC) {
   2511 #define ABSTRACT_TYPE(Derived, Base)
   2512 #define TYPE(Derived, Base) case Derived: return #Derived;
   2513 #include "clang/AST/TypeNodes.def"
   2514   }
   2515 
   2516   llvm_unreachable("Invalid type class.");
   2517 }
   2518 
   2519 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
   2520   switch (getKind()) {
   2521   case Void:
   2522     return "void";
   2523   case Bool:
   2524     return Policy.Bool ? "bool" : "_Bool";
   2525   case Char_S:
   2526     return "char";
   2527   case Char_U:
   2528     return "char";
   2529   case SChar:
   2530     return "signed char";
   2531   case Short:
   2532     return "short";
   2533   case Int:
   2534     return "int";
   2535   case Long:
   2536     return "long";
   2537   case LongLong:
   2538     return "long long";
   2539   case Int128:
   2540     return "__int128";
   2541   case UChar:
   2542     return "unsigned char";
   2543   case UShort:
   2544     return "unsigned short";
   2545   case UInt:
   2546     return "unsigned int";
   2547   case ULong:
   2548     return "unsigned long";
   2549   case ULongLong:
   2550     return "unsigned long long";
   2551   case UInt128:
   2552     return "unsigned __int128";
   2553   case Half:
   2554     return Policy.Half ? "half" : "__fp16";
   2555   case Float:
   2556     return "float";
   2557   case Double:
   2558     return "double";
   2559   case LongDouble:
   2560     return "long double";
   2561   case Float128:
   2562     return "__float128";
   2563   case WChar_S:
   2564   case WChar_U:
   2565     return Policy.MSWChar ? "__wchar_t" : "wchar_t";
   2566   case Char16:
   2567     return "char16_t";
   2568   case Char32:
   2569     return "char32_t";
   2570   case NullPtr:
   2571     return "nullptr_t";
   2572   case Overload:
   2573     return "<overloaded function type>";
   2574   case BoundMember:
   2575     return "<bound member function type>";
   2576   case PseudoObject:
   2577     return "<pseudo-object type>";
   2578   case Dependent:
   2579     return "<dependent type>";
   2580   case UnknownAny:
   2581     return "<unknown type>";
   2582   case ARCUnbridgedCast:
   2583     return "<ARC unbridged cast type>";
   2584   case BuiltinFn:
   2585     return "<builtin fn type>";
   2586   case ObjCId:
   2587     return "id";
   2588   case ObjCClass:
   2589     return "Class";
   2590   case ObjCSel:
   2591     return "SEL";
   2592 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   2593   case Id: \
   2594     return "__" #Access " " #ImgType "_t";
   2595 #include "clang/Basic/OpenCLImageTypes.def"
   2596   case OCLSampler:
   2597     return "sampler_t";
   2598   case OCLEvent:
   2599     return "event_t";
   2600   case OCLClkEvent:
   2601     return "clk_event_t";
   2602   case OCLQueue:
   2603     return "queue_t";
   2604   case OCLNDRange:
   2605     return "ndrange_t";
   2606   case OCLReserveID:
   2607     return "reserve_id_t";
   2608   case OMPArraySection:
   2609     return "<OpenMP array section type>";
   2610   }
   2611 
   2612   llvm_unreachable("Invalid builtin type.");
   2613 }
   2614 
   2615 QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
   2616   if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
   2617     return RefType->getPointeeType();
   2618 
   2619   // C++0x [basic.lval]:
   2620   //   Class prvalues can have cv-qualified types; non-class prvalues always
   2621   //   have cv-unqualified types.
   2622   //
   2623   // See also C99 6.3.2.1p2.
   2624   if (!Context.getLangOpts().CPlusPlus ||
   2625       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
   2626     return getUnqualifiedType();
   2627 
   2628   return *this;
   2629 }
   2630 
   2631 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
   2632   switch (CC) {
   2633   case CC_C: return "cdecl";
   2634   case CC_X86StdCall: return "stdcall";
   2635   case CC_X86FastCall: return "fastcall";
   2636   case CC_X86ThisCall: return "thiscall";
   2637   case CC_X86Pascal: return "pascal";
   2638   case CC_X86VectorCall: return "vectorcall";
   2639   case CC_X86_64Win64: return "ms_abi";
   2640   case CC_X86_64SysV: return "sysv_abi";
   2641   case CC_AAPCS: return "aapcs";
   2642   case CC_AAPCS_VFP: return "aapcs-vfp";
   2643   case CC_IntelOclBicc: return "intel_ocl_bicc";
   2644   case CC_SpirFunction: return "spir_function";
   2645   case CC_OpenCLKernel: return "opencl_kernel";
   2646   case CC_Swift: return "swiftcall";
   2647   case CC_PreserveMost: return "preserve_most";
   2648   case CC_PreserveAll: return "preserve_all";
   2649   }
   2650 
   2651   llvm_unreachable("Invalid calling convention.");
   2652 }
   2653 
   2654 FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
   2655                                      QualType canonical,
   2656                                      const ExtProtoInfo &epi)
   2657     : FunctionType(FunctionProto, result, canonical,
   2658                    result->isDependentType(),
   2659                    result->isInstantiationDependentType(),
   2660                    result->isVariablyModifiedType(),
   2661                    result->containsUnexpandedParameterPack(), epi.ExtInfo),
   2662       NumParams(params.size()),
   2663       NumExceptions(epi.ExceptionSpec.Exceptions.size()),
   2664       ExceptionSpecType(epi.ExceptionSpec.Type),
   2665       HasExtParameterInfos(epi.ExtParameterInfos != nullptr),
   2666       Variadic(epi.Variadic), HasTrailingReturn(epi.HasTrailingReturn) {
   2667   assert(NumParams == params.size() && "function has too many parameters");
   2668 
   2669   FunctionTypeBits.TypeQuals = epi.TypeQuals;
   2670   FunctionTypeBits.RefQualifier = epi.RefQualifier;
   2671 
   2672   // Fill in the trailing argument array.
   2673   QualType *argSlot = reinterpret_cast<QualType*>(this+1);
   2674   for (unsigned i = 0; i != NumParams; ++i) {
   2675     if (params[i]->isDependentType())
   2676       setDependent();
   2677     else if (params[i]->isInstantiationDependentType())
   2678       setInstantiationDependent();
   2679 
   2680     if (params[i]->containsUnexpandedParameterPack())
   2681       setContainsUnexpandedParameterPack();
   2682 
   2683     argSlot[i] = params[i];
   2684   }
   2685 
   2686   if (getExceptionSpecType() == EST_Dynamic) {
   2687     // Fill in the exception array.
   2688     QualType *exnSlot = argSlot + NumParams;
   2689     unsigned I = 0;
   2690     for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
   2691       // Note that a dependent exception specification does *not* make
   2692       // a type dependent; it's not even part of the C++ type system.
   2693       if (ExceptionType->isInstantiationDependentType())
   2694         setInstantiationDependent();
   2695 
   2696       if (ExceptionType->containsUnexpandedParameterPack())
   2697         setContainsUnexpandedParameterPack();
   2698 
   2699       exnSlot[I++] = ExceptionType;
   2700     }
   2701   } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
   2702     // Store the noexcept expression and context.
   2703     Expr **noexSlot = reinterpret_cast<Expr **>(argSlot + NumParams);
   2704     *noexSlot = epi.ExceptionSpec.NoexceptExpr;
   2705 
   2706     if (epi.ExceptionSpec.NoexceptExpr) {
   2707       if (epi.ExceptionSpec.NoexceptExpr->isValueDependent() ||
   2708           epi.ExceptionSpec.NoexceptExpr->isInstantiationDependent())
   2709         setInstantiationDependent();
   2710 
   2711       if (epi.ExceptionSpec.NoexceptExpr->containsUnexpandedParameterPack())
   2712         setContainsUnexpandedParameterPack();
   2713     }
   2714   } else if (getExceptionSpecType() == EST_Uninstantiated) {
   2715     // Store the function decl from which we will resolve our
   2716     // exception specification.
   2717     FunctionDecl **slot =
   2718         reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
   2719     slot[0] = epi.ExceptionSpec.SourceDecl;
   2720     slot[1] = epi.ExceptionSpec.SourceTemplate;
   2721     // This exception specification doesn't make the type dependent, because
   2722     // it's not instantiated as part of instantiating the type.
   2723   } else if (getExceptionSpecType() == EST_Unevaluated) {
   2724     // Store the function decl from which we will resolve our
   2725     // exception specification.
   2726     FunctionDecl **slot =
   2727         reinterpret_cast<FunctionDecl **>(argSlot + NumParams);
   2728     slot[0] = epi.ExceptionSpec.SourceDecl;
   2729   }
   2730 
   2731   if (epi.ExtParameterInfos) {
   2732     ExtParameterInfo *extParamInfos =
   2733       const_cast<ExtParameterInfo *>(getExtParameterInfosBuffer());
   2734     for (unsigned i = 0; i != NumParams; ++i)
   2735       extParamInfos[i] = epi.ExtParameterInfos[i];
   2736   }
   2737 }
   2738 
   2739 bool FunctionProtoType::hasDependentExceptionSpec() const {
   2740   if (Expr *NE = getNoexceptExpr())
   2741     return NE->isValueDependent();
   2742   for (QualType ET : exceptions())
   2743     // A pack expansion with a non-dependent pattern is still dependent,
   2744     // because we don't know whether the pattern is in the exception spec
   2745     // or not (that depends on whether the pack has 0 expansions).
   2746     if (ET->isDependentType() || ET->getAs<PackExpansionType>())
   2747       return true;
   2748   return false;
   2749 }
   2750 
   2751 FunctionProtoType::NoexceptResult
   2752 FunctionProtoType::getNoexceptSpec(const ASTContext &ctx) const {
   2753   ExceptionSpecificationType est = getExceptionSpecType();
   2754   if (est == EST_BasicNoexcept)
   2755     return NR_Nothrow;
   2756 
   2757   if (est != EST_ComputedNoexcept)
   2758     return NR_NoNoexcept;
   2759 
   2760   Expr *noexceptExpr = getNoexceptExpr();
   2761   if (!noexceptExpr)
   2762     return NR_BadNoexcept;
   2763   if (noexceptExpr->isValueDependent())
   2764     return NR_Dependent;
   2765 
   2766   llvm::APSInt value;
   2767   bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, nullptr,
   2768                                                    /*evaluated*/false);
   2769   (void)isICE;
   2770   assert(isICE && "AST should not contain bad noexcept expressions.");
   2771 
   2772   return value.getBoolValue() ? NR_Nothrow : NR_Throw;
   2773 }
   2774 
   2775 bool FunctionProtoType::isNothrow(const ASTContext &Ctx,
   2776                                   bool ResultIfDependent) const {
   2777   ExceptionSpecificationType EST = getExceptionSpecType();
   2778   assert(EST != EST_Unevaluated && EST != EST_Uninstantiated);
   2779   if (EST == EST_DynamicNone || EST == EST_BasicNoexcept)
   2780     return true;
   2781 
   2782   if (EST == EST_Dynamic && ResultIfDependent) {
   2783     // A dynamic exception specification is throwing unless every exception
   2784     // type is an (unexpanded) pack expansion type.
   2785     for (unsigned I = 0, N = NumExceptions; I != N; ++I)
   2786       if (!getExceptionType(I)->getAs<PackExpansionType>())
   2787         return false;
   2788     return ResultIfDependent;
   2789   }
   2790 
   2791   if (EST != EST_ComputedNoexcept)
   2792     return false;
   2793 
   2794   NoexceptResult NR = getNoexceptSpec(Ctx);
   2795   if (NR == NR_Dependent)
   2796     return ResultIfDependent;
   2797   return NR == NR_Nothrow;
   2798 }
   2799 
   2800 bool FunctionProtoType::isTemplateVariadic() const {
   2801   for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
   2802     if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
   2803       return true;
   2804 
   2805   return false;
   2806 }
   2807 
   2808 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
   2809                                 const QualType *ArgTys, unsigned NumParams,
   2810                                 const ExtProtoInfo &epi,
   2811                                 const ASTContext &Context) {
   2812 
   2813   // We have to be careful not to get ambiguous profile encodings.
   2814   // Note that valid type pointers are never ambiguous with anything else.
   2815   //
   2816   // The encoding grammar begins:
   2817   //      type type* bool int bool
   2818   // If that final bool is true, then there is a section for the EH spec:
   2819   //      bool type*
   2820   // This is followed by an optional "consumed argument" section of the
   2821   // same length as the first type sequence:
   2822   //      bool*
   2823   // Finally, we have the ext info and trailing return type flag:
   2824   //      int bool
   2825   //
   2826   // There is no ambiguity between the consumed arguments and an empty EH
   2827   // spec because of the leading 'bool' which unambiguously indicates
   2828   // whether the following bool is the EH spec or part of the arguments.
   2829 
   2830   ID.AddPointer(Result.getAsOpaquePtr());
   2831   for (unsigned i = 0; i != NumParams; ++i)
   2832     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
   2833   // This method is relatively performance sensitive, so as a performance
   2834   // shortcut, use one AddInteger call instead of four for the next four
   2835   // fields.
   2836   assert(!(unsigned(epi.Variadic) & ~1) &&
   2837          !(unsigned(epi.TypeQuals) & ~255) &&
   2838          !(unsigned(epi.RefQualifier) & ~3) &&
   2839          !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
   2840          "Values larger than expected.");
   2841   ID.AddInteger(unsigned(epi.Variadic) +
   2842                 (epi.TypeQuals << 1) +
   2843                 (epi.RefQualifier << 9) +
   2844                 (epi.ExceptionSpec.Type << 11));
   2845   if (epi.ExceptionSpec.Type == EST_Dynamic) {
   2846     for (QualType Ex : epi.ExceptionSpec.Exceptions)
   2847       ID.AddPointer(Ex.getAsOpaquePtr());
   2848   } else if (epi.ExceptionSpec.Type == EST_ComputedNoexcept &&
   2849              epi.ExceptionSpec.NoexceptExpr) {
   2850     epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, false);
   2851   } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
   2852              epi.ExceptionSpec.Type == EST_Unevaluated) {
   2853     ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
   2854   }
   2855   if (epi.ExtParameterInfos) {
   2856     for (unsigned i = 0; i != NumParams; ++i)
   2857       ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue());
   2858   }
   2859   epi.ExtInfo.Profile(ID);
   2860   ID.AddBoolean(epi.HasTrailingReturn);
   2861 }
   2862 
   2863 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
   2864                                 const ASTContext &Ctx) {
   2865   Profile(ID, getReturnType(), param_type_begin(), NumParams, getExtProtoInfo(),
   2866           Ctx);
   2867 }
   2868 
   2869 QualType TypedefType::desugar() const {
   2870   return getDecl()->getUnderlyingType();
   2871 }
   2872 
   2873 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
   2874   : Type(TypeOfExpr, can, E->isTypeDependent(),
   2875          E->isInstantiationDependent(),
   2876          E->getType()->isVariablyModifiedType(),
   2877          E->containsUnexpandedParameterPack()),
   2878     TOExpr(E) {
   2879 }
   2880 
   2881 bool TypeOfExprType::isSugared() const {
   2882   return !TOExpr->isTypeDependent();
   2883 }
   2884 
   2885 QualType TypeOfExprType::desugar() const {
   2886   if (isSugared())
   2887     return getUnderlyingExpr()->getType();
   2888 
   2889   return QualType(this, 0);
   2890 }
   2891 
   2892 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
   2893                                       const ASTContext &Context, Expr *E) {
   2894   E->Profile(ID, Context, true);
   2895 }
   2896 
   2897 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
   2898   // C++11 [temp.type]p2: "If an expression e involves a template parameter,
   2899   // decltype(e) denotes a unique dependent type." Hence a decltype type is
   2900   // type-dependent even if its expression is only instantiation-dependent.
   2901   : Type(Decltype, can, E->isInstantiationDependent(),
   2902          E->isInstantiationDependent(),
   2903          E->getType()->isVariablyModifiedType(),
   2904          E->containsUnexpandedParameterPack()),
   2905     E(E),
   2906   UnderlyingType(underlyingType) {
   2907 }
   2908 
   2909 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
   2910 
   2911 QualType DecltypeType::desugar() const {
   2912   if (isSugared())
   2913     return getUnderlyingType();
   2914 
   2915   return QualType(this, 0);
   2916 }
   2917 
   2918 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
   2919   : DecltypeType(E, Context.DependentTy), Context(Context) { }
   2920 
   2921 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
   2922                                     const ASTContext &Context, Expr *E) {
   2923   E->Profile(ID, Context, true);
   2924 }
   2925 
   2926 UnaryTransformType::UnaryTransformType(QualType BaseType,
   2927                                        QualType UnderlyingType,
   2928                                        UTTKind UKind,
   2929                                        QualType CanonicalType)
   2930   : Type(UnaryTransform, CanonicalType, BaseType->isDependentType(),
   2931          BaseType->isInstantiationDependentType(),
   2932          BaseType->isVariablyModifiedType(),
   2933          BaseType->containsUnexpandedParameterPack())
   2934   , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
   2935 {}
   2936 
   2937 DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C,
   2938                                                          QualType BaseType,
   2939                                                          UTTKind UKind)
   2940    : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType())
   2941 {}
   2942 
   2943 
   2944 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
   2945   : Type(TC, can, D->isDependentType(),
   2946          /*InstantiationDependent=*/D->isDependentType(),
   2947          /*VariablyModified=*/false,
   2948          /*ContainsUnexpandedParameterPack=*/false),
   2949     decl(const_cast<TagDecl*>(D)) {}
   2950 
   2951 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
   2952   for (auto I : decl->redecls()) {
   2953     if (I->isCompleteDefinition() || I->isBeingDefined())
   2954       return I;
   2955   }
   2956   // If there's no definition (not even in progress), return what we have.
   2957   return decl;
   2958 }
   2959 
   2960 TagDecl *TagType::getDecl() const {
   2961   return getInterestingTagDecl(decl);
   2962 }
   2963 
   2964 bool TagType::isBeingDefined() const {
   2965   return getDecl()->isBeingDefined();
   2966 }
   2967 
   2968 bool AttributedType::isQualifier() const {
   2969   switch (getAttrKind()) {
   2970   // These are type qualifiers in the traditional C sense: they annotate
   2971   // something about a specific value/variable of a type.  (They aren't
   2972   // always part of the canonical type, though.)
   2973   case AttributedType::attr_address_space:
   2974   case AttributedType::attr_objc_gc:
   2975   case AttributedType::attr_objc_ownership:
   2976   case AttributedType::attr_objc_inert_unsafe_unretained:
   2977   case AttributedType::attr_nonnull:
   2978   case AttributedType::attr_nullable:
   2979   case AttributedType::attr_null_unspecified:
   2980     return true;
   2981 
   2982   // These aren't qualifiers; they rewrite the modified type to be a
   2983   // semantically different type.
   2984   case AttributedType::attr_regparm:
   2985   case AttributedType::attr_vector_size:
   2986   case AttributedType::attr_neon_vector_type:
   2987   case AttributedType::attr_neon_polyvector_type:
   2988   case AttributedType::attr_pcs:
   2989   case AttributedType::attr_pcs_vfp:
   2990   case AttributedType::attr_noreturn:
   2991   case AttributedType::attr_cdecl:
   2992   case AttributedType::attr_fastcall:
   2993   case AttributedType::attr_stdcall:
   2994   case AttributedType::attr_thiscall:
   2995   case AttributedType::attr_pascal:
   2996   case AttributedType::attr_swiftcall:
   2997   case AttributedType::attr_vectorcall:
   2998   case AttributedType::attr_inteloclbicc:
   2999   case AttributedType::attr_preserve_most:
   3000   case AttributedType::attr_preserve_all:
   3001   case AttributedType::attr_ms_abi:
   3002   case AttributedType::attr_sysv_abi:
   3003   case AttributedType::attr_ptr32:
   3004   case AttributedType::attr_ptr64:
   3005   case AttributedType::attr_sptr:
   3006   case AttributedType::attr_uptr:
   3007   case AttributedType::attr_objc_kindof:
   3008     return false;
   3009   }
   3010   llvm_unreachable("bad attributed type kind");
   3011 }
   3012 
   3013 bool AttributedType::isMSTypeSpec() const {
   3014   switch (getAttrKind()) {
   3015   default:  return false;
   3016   case attr_ptr32:
   3017   case attr_ptr64:
   3018   case attr_sptr:
   3019   case attr_uptr:
   3020     return true;
   3021   }
   3022   llvm_unreachable("invalid attr kind");
   3023 }
   3024 
   3025 bool AttributedType::isCallingConv() const {
   3026   switch (getAttrKind()) {
   3027   case attr_ptr32:
   3028   case attr_ptr64:
   3029   case attr_sptr:
   3030   case attr_uptr:
   3031   case attr_address_space:
   3032   case attr_regparm:
   3033   case attr_vector_size:
   3034   case attr_neon_vector_type:
   3035   case attr_neon_polyvector_type:
   3036   case attr_objc_gc:
   3037   case attr_objc_ownership:
   3038   case attr_objc_inert_unsafe_unretained:
   3039   case attr_noreturn:
   3040   case attr_nonnull:
   3041   case attr_nullable:
   3042   case attr_null_unspecified:
   3043   case attr_objc_kindof:
   3044     return false;
   3045 
   3046   case attr_pcs:
   3047   case attr_pcs_vfp:
   3048   case attr_cdecl:
   3049   case attr_fastcall:
   3050   case attr_stdcall:
   3051   case attr_thiscall:
   3052   case attr_swiftcall:
   3053   case attr_vectorcall:
   3054   case attr_pascal:
   3055   case attr_ms_abi:
   3056   case attr_sysv_abi:
   3057   case attr_inteloclbicc:
   3058   case attr_preserve_most:
   3059   case attr_preserve_all:
   3060     return true;
   3061   }
   3062   llvm_unreachable("invalid attr kind");
   3063 }
   3064 
   3065 CXXRecordDecl *InjectedClassNameType::getDecl() const {
   3066   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
   3067 }
   3068 
   3069 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
   3070   return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
   3071 }
   3072 
   3073 SubstTemplateTypeParmPackType::
   3074 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
   3075                               QualType Canon,
   3076                               const TemplateArgument &ArgPack)
   3077   : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
   3078     Replaced(Param),
   3079     Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
   3080 {
   3081 }
   3082 
   3083 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
   3084   return TemplateArgument(llvm::makeArrayRef(Arguments, NumArguments));
   3085 }
   3086 
   3087 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
   3088   Profile(ID, getReplacedParameter(), getArgumentPack());
   3089 }
   3090 
   3091 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
   3092                                            const TemplateTypeParmType *Replaced,
   3093                                             const TemplateArgument &ArgPack) {
   3094   ID.AddPointer(Replaced);
   3095   ID.AddInteger(ArgPack.pack_size());
   3096   for (const auto &P : ArgPack.pack_elements())
   3097     ID.AddPointer(P.getAsType().getAsOpaquePtr());
   3098 }
   3099 
   3100 bool TemplateSpecializationType::
   3101 anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
   3102                               bool &InstantiationDependent) {
   3103   return anyDependentTemplateArguments(Args.arguments(),
   3104                                        InstantiationDependent);
   3105 }
   3106 
   3107 bool TemplateSpecializationType::
   3108 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
   3109                               bool &InstantiationDependent) {
   3110   for (const TemplateArgumentLoc &ArgLoc : Args) {
   3111     if (ArgLoc.getArgument().isDependent()) {
   3112       InstantiationDependent = true;
   3113       return true;
   3114     }
   3115 
   3116     if (ArgLoc.getArgument().isInstantiationDependent())
   3117       InstantiationDependent = true;
   3118   }
   3119   return false;
   3120 }
   3121 
   3122 TemplateSpecializationType::
   3123 TemplateSpecializationType(TemplateName T,
   3124                            ArrayRef<TemplateArgument> Args,
   3125                            QualType Canon, QualType AliasedType)
   3126   : Type(TemplateSpecialization,
   3127          Canon.isNull()? QualType(this, 0) : Canon,
   3128          Canon.isNull()? true : Canon->isDependentType(),
   3129          Canon.isNull()? true : Canon->isInstantiationDependentType(),
   3130          false,
   3131          T.containsUnexpandedParameterPack()),
   3132     Template(T), NumArgs(Args.size()), TypeAlias(!AliasedType.isNull()) {
   3133   assert(!T.getAsDependentTemplateName() &&
   3134          "Use DependentTemplateSpecializationType for dependent template-name");
   3135   assert((T.getKind() == TemplateName::Template ||
   3136           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
   3137           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
   3138          "Unexpected template name for TemplateSpecializationType");
   3139 
   3140   TemplateArgument *TemplateArgs
   3141     = reinterpret_cast<TemplateArgument *>(this + 1);
   3142   for (const TemplateArgument &Arg : Args) {
   3143     // Update instantiation-dependent and variably-modified bits.
   3144     // If the canonical type exists and is non-dependent, the template
   3145     // specialization type can be non-dependent even if one of the type
   3146     // arguments is. Given:
   3147     //   template<typename T> using U = int;
   3148     // U<T> is always non-dependent, irrespective of the type T.
   3149     // However, U<Ts> contains an unexpanded parameter pack, even though
   3150     // its expansion (and thus its desugared type) doesn't.
   3151     if (Arg.isInstantiationDependent())
   3152       setInstantiationDependent();
   3153     if (Arg.getKind() == TemplateArgument::Type &&
   3154         Arg.getAsType()->isVariablyModifiedType())
   3155       setVariablyModified();
   3156     if (Arg.containsUnexpandedParameterPack())
   3157       setContainsUnexpandedParameterPack();
   3158     new (TemplateArgs++) TemplateArgument(Arg);
   3159   }
   3160 
   3161   // Store the aliased type if this is a type alias template specialization.
   3162   if (TypeAlias) {
   3163     TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
   3164     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
   3165   }
   3166 }
   3167 
   3168 void
   3169 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
   3170                                     TemplateName T,
   3171                                     ArrayRef<TemplateArgument> Args,
   3172                                     const ASTContext &Context) {
   3173   T.Profile(ID);
   3174   for (const TemplateArgument &Arg : Args)
   3175     Arg.Profile(ID, Context);
   3176 }
   3177 
   3178 QualType
   3179 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
   3180   if (!hasNonFastQualifiers())
   3181     return QT.withFastQualifiers(getFastQualifiers());
   3182 
   3183   return Context.getQualifiedType(QT, *this);
   3184 }
   3185 
   3186 QualType
   3187 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
   3188   if (!hasNonFastQualifiers())
   3189     return QualType(T, getFastQualifiers());
   3190 
   3191   return Context.getQualifiedType(T, *this);
   3192 }
   3193 
   3194 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
   3195                                  QualType BaseType,
   3196                                  ArrayRef<QualType> typeArgs,
   3197                                  ArrayRef<ObjCProtocolDecl *> protocols,
   3198                                  bool isKindOf) {
   3199   ID.AddPointer(BaseType.getAsOpaquePtr());
   3200   ID.AddInteger(typeArgs.size());
   3201   for (auto typeArg : typeArgs)
   3202     ID.AddPointer(typeArg.getAsOpaquePtr());
   3203   ID.AddInteger(protocols.size());
   3204   for (auto proto : protocols)
   3205     ID.AddPointer(proto);
   3206   ID.AddBoolean(isKindOf);
   3207 }
   3208 
   3209 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
   3210   Profile(ID, getBaseType(), getTypeArgsAsWritten(),
   3211           llvm::makeArrayRef(qual_begin(), getNumProtocols()),
   3212           isKindOfTypeAsWritten());
   3213 }
   3214 
   3215 namespace {
   3216 
   3217 /// \brief The cached properties of a type.
   3218 class CachedProperties {
   3219   Linkage L;
   3220   bool local;
   3221 
   3222 public:
   3223   CachedProperties(Linkage L, bool local) : L(L), local(local) {}
   3224 
   3225   Linkage getLinkage() const { return L; }
   3226   bool hasLocalOrUnnamedType() const { return local; }
   3227 
   3228   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
   3229     Linkage MergedLinkage = minLinkage(L.L, R.L);
   3230     return CachedProperties(MergedLinkage,
   3231                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
   3232   }
   3233 };
   3234 }
   3235 
   3236 static CachedProperties computeCachedProperties(const Type *T);
   3237 
   3238 namespace clang {
   3239 /// The type-property cache.  This is templated so as to be
   3240 /// instantiated at an internal type to prevent unnecessary symbol
   3241 /// leakage.
   3242 template <class Private> class TypePropertyCache {
   3243 public:
   3244   static CachedProperties get(QualType T) {
   3245     return get(T.getTypePtr());
   3246   }
   3247 
   3248   static CachedProperties get(const Type *T) {
   3249     ensure(T);
   3250     return CachedProperties(T->TypeBits.getLinkage(),
   3251                             T->TypeBits.hasLocalOrUnnamedType());
   3252   }
   3253 
   3254   static void ensure(const Type *T) {
   3255     // If the cache is valid, we're okay.
   3256     if (T->TypeBits.isCacheValid()) return;
   3257 
   3258     // If this type is non-canonical, ask its canonical type for the
   3259     // relevant information.
   3260     if (!T->isCanonicalUnqualified()) {
   3261       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
   3262       ensure(CT);
   3263       T->TypeBits.CacheValid = true;
   3264       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
   3265       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
   3266       return;
   3267     }
   3268 
   3269     // Compute the cached properties and then set the cache.
   3270     CachedProperties Result = computeCachedProperties(T);
   3271     T->TypeBits.CacheValid = true;
   3272     T->TypeBits.CachedLinkage = Result.getLinkage();
   3273     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
   3274   }
   3275 };
   3276 }
   3277 
   3278 // Instantiate the friend template at a private class.  In a
   3279 // reasonable implementation, these symbols will be internal.
   3280 // It is terrible that this is the best way to accomplish this.
   3281 namespace { class Private {}; }
   3282 typedef TypePropertyCache<Private> Cache;
   3283 
   3284 static CachedProperties computeCachedProperties(const Type *T) {
   3285   switch (T->getTypeClass()) {
   3286 #define TYPE(Class,Base)
   3287 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
   3288 #include "clang/AST/TypeNodes.def"
   3289     llvm_unreachable("didn't expect a non-canonical type here");
   3290 
   3291 #define TYPE(Class,Base)
   3292 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
   3293 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
   3294 #include "clang/AST/TypeNodes.def"
   3295     // Treat instantiation-dependent types as external.
   3296     assert(T->isInstantiationDependentType());
   3297     return CachedProperties(ExternalLinkage, false);
   3298 
   3299   case Type::Auto:
   3300     // Give non-deduced 'auto' types external linkage. We should only see them
   3301     // here in error recovery.
   3302     return CachedProperties(ExternalLinkage, false);
   3303 
   3304   case Type::Builtin:
   3305     // C++ [basic.link]p8:
   3306     //   A type is said to have linkage if and only if:
   3307     //     - it is a fundamental type (3.9.1); or
   3308     return CachedProperties(ExternalLinkage, false);
   3309 
   3310   case Type::Record:
   3311   case Type::Enum: {
   3312     const TagDecl *Tag = cast<TagType>(T)->getDecl();
   3313 
   3314     // C++ [basic.link]p8:
   3315     //     - it is a class or enumeration type that is named (or has a name
   3316     //       for linkage purposes (7.1.3)) and the name has linkage; or
   3317     //     -  it is a specialization of a class template (14); or
   3318     Linkage L = Tag->getLinkageInternal();
   3319     bool IsLocalOrUnnamed =
   3320       Tag->getDeclContext()->isFunctionOrMethod() ||
   3321       !Tag->hasNameForLinkage();
   3322     return CachedProperties(L, IsLocalOrUnnamed);
   3323   }
   3324 
   3325     // C++ [basic.link]p8:
   3326     //   - it is a compound type (3.9.2) other than a class or enumeration,
   3327     //     compounded exclusively from types that have linkage; or
   3328   case Type::Complex:
   3329     return Cache::get(cast<ComplexType>(T)->getElementType());
   3330   case Type::Pointer:
   3331     return Cache::get(cast<PointerType>(T)->getPointeeType());
   3332   case Type::BlockPointer:
   3333     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
   3334   case Type::LValueReference:
   3335   case Type::RValueReference:
   3336     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
   3337   case Type::MemberPointer: {
   3338     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   3339     return merge(Cache::get(MPT->getClass()),
   3340                  Cache::get(MPT->getPointeeType()));
   3341   }
   3342   case Type::ConstantArray:
   3343   case Type::IncompleteArray:
   3344   case Type::VariableArray:
   3345     return Cache::get(cast<ArrayType>(T)->getElementType());
   3346   case Type::Vector:
   3347   case Type::ExtVector:
   3348     return Cache::get(cast<VectorType>(T)->getElementType());
   3349   case Type::FunctionNoProto:
   3350     return Cache::get(cast<FunctionType>(T)->getReturnType());
   3351   case Type::FunctionProto: {
   3352     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   3353     CachedProperties result = Cache::get(FPT->getReturnType());
   3354     for (const auto &ai : FPT->param_types())
   3355       result = merge(result, Cache::get(ai));
   3356     return result;
   3357   }
   3358   case Type::ObjCInterface: {
   3359     Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
   3360     return CachedProperties(L, false);
   3361   }
   3362   case Type::ObjCObject:
   3363     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
   3364   case Type::ObjCObjectPointer:
   3365     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
   3366   case Type::Atomic:
   3367     return Cache::get(cast<AtomicType>(T)->getValueType());
   3368   case Type::Pipe:
   3369     return Cache::get(cast<PipeType>(T)->getElementType());
   3370   }
   3371 
   3372   llvm_unreachable("unhandled type class");
   3373 }
   3374 
   3375 /// \brief Determine the linkage of this type.
   3376 Linkage Type::getLinkage() const {
   3377   Cache::ensure(this);
   3378   return TypeBits.getLinkage();
   3379 }
   3380 
   3381 bool Type::hasUnnamedOrLocalType() const {
   3382   Cache::ensure(this);
   3383   return TypeBits.hasLocalOrUnnamedType();
   3384 }
   3385 
   3386 static LinkageInfo computeLinkageInfo(QualType T);
   3387 
   3388 static LinkageInfo computeLinkageInfo(const Type *T) {
   3389   switch (T->getTypeClass()) {
   3390 #define TYPE(Class,Base)
   3391 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
   3392 #include "clang/AST/TypeNodes.def"
   3393     llvm_unreachable("didn't expect a non-canonical type here");
   3394 
   3395 #define TYPE(Class,Base)
   3396 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
   3397 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
   3398 #include "clang/AST/TypeNodes.def"
   3399     // Treat instantiation-dependent types as external.
   3400     assert(T->isInstantiationDependentType());
   3401     return LinkageInfo::external();
   3402 
   3403   case Type::Builtin:
   3404     return LinkageInfo::external();
   3405 
   3406   case Type::Auto:
   3407     return LinkageInfo::external();
   3408 
   3409   case Type::Record:
   3410   case Type::Enum:
   3411     return cast<TagType>(T)->getDecl()->getLinkageAndVisibility();
   3412 
   3413   case Type::Complex:
   3414     return computeLinkageInfo(cast<ComplexType>(T)->getElementType());
   3415   case Type::Pointer:
   3416     return computeLinkageInfo(cast<PointerType>(T)->getPointeeType());
   3417   case Type::BlockPointer:
   3418     return computeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
   3419   case Type::LValueReference:
   3420   case Type::RValueReference:
   3421     return computeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
   3422   case Type::MemberPointer: {
   3423     const MemberPointerType *MPT = cast<MemberPointerType>(T);
   3424     LinkageInfo LV = computeLinkageInfo(MPT->getClass());
   3425     LV.merge(computeLinkageInfo(MPT->getPointeeType()));
   3426     return LV;
   3427   }
   3428   case Type::ConstantArray:
   3429   case Type::IncompleteArray:
   3430   case Type::VariableArray:
   3431     return computeLinkageInfo(cast<ArrayType>(T)->getElementType());
   3432   case Type::Vector:
   3433   case Type::ExtVector:
   3434     return computeLinkageInfo(cast<VectorType>(T)->getElementType());
   3435   case Type::FunctionNoProto:
   3436     return computeLinkageInfo(cast<FunctionType>(T)->getReturnType());
   3437   case Type::FunctionProto: {
   3438     const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
   3439     LinkageInfo LV = computeLinkageInfo(FPT->getReturnType());
   3440     for (const auto &ai : FPT->param_types())
   3441       LV.merge(computeLinkageInfo(ai));
   3442     return LV;
   3443   }
   3444   case Type::ObjCInterface:
   3445     return cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
   3446   case Type::ObjCObject:
   3447     return computeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
   3448   case Type::ObjCObjectPointer:
   3449     return computeLinkageInfo(cast<ObjCObjectPointerType>(T)->getPointeeType());
   3450   case Type::Atomic:
   3451     return computeLinkageInfo(cast<AtomicType>(T)->getValueType());
   3452   case Type::Pipe:
   3453     return computeLinkageInfo(cast<PipeType>(T)->getElementType());
   3454   }
   3455 
   3456   llvm_unreachable("unhandled type class");
   3457 }
   3458 
   3459 static LinkageInfo computeLinkageInfo(QualType T) {
   3460   return computeLinkageInfo(T.getTypePtr());
   3461 }
   3462 
   3463 bool Type::isLinkageValid() const {
   3464   if (!TypeBits.isCacheValid())
   3465     return true;
   3466 
   3467   return computeLinkageInfo(getCanonicalTypeInternal()).getLinkage() ==
   3468     TypeBits.getLinkage();
   3469 }
   3470 
   3471 LinkageInfo Type::getLinkageAndVisibility() const {
   3472   if (!isCanonicalUnqualified())
   3473     return computeLinkageInfo(getCanonicalTypeInternal());
   3474 
   3475   LinkageInfo LV = computeLinkageInfo(this);
   3476   assert(LV.getLinkage() == getLinkage());
   3477   return LV;
   3478 }
   3479 
   3480 Optional<NullabilityKind> Type::getNullability(const ASTContext &context) const {
   3481   QualType type(this, 0);
   3482   do {
   3483     // Check whether this is an attributed type with nullability
   3484     // information.
   3485     if (auto attributed = dyn_cast<AttributedType>(type.getTypePtr())) {
   3486       if (auto nullability = attributed->getImmediateNullability())
   3487         return nullability;
   3488     }
   3489 
   3490     // Desugar the type. If desugaring does nothing, we're done.
   3491     QualType desugared = type.getSingleStepDesugaredType(context);
   3492     if (desugared.getTypePtr() == type.getTypePtr())
   3493       return None;
   3494 
   3495     type = desugared;
   3496   } while (true);
   3497 }
   3498 
   3499 bool Type::canHaveNullability() const {
   3500   QualType type = getCanonicalTypeInternal();
   3501 
   3502   switch (type->getTypeClass()) {
   3503   // We'll only see canonical types here.
   3504 #define NON_CANONICAL_TYPE(Class, Parent)       \
   3505   case Type::Class:                             \
   3506     llvm_unreachable("non-canonical type");
   3507 #define TYPE(Class, Parent)
   3508 #include "clang/AST/TypeNodes.def"
   3509 
   3510   // Pointer types.
   3511   case Type::Pointer:
   3512   case Type::BlockPointer:
   3513   case Type::MemberPointer:
   3514   case Type::ObjCObjectPointer:
   3515     return true;
   3516 
   3517   // Dependent types that could instantiate to pointer types.
   3518   case Type::UnresolvedUsing:
   3519   case Type::TypeOfExpr:
   3520   case Type::TypeOf:
   3521   case Type::Decltype:
   3522   case Type::UnaryTransform:
   3523   case Type::TemplateTypeParm:
   3524   case Type::SubstTemplateTypeParmPack:
   3525   case Type::DependentName:
   3526   case Type::DependentTemplateSpecialization:
   3527     return true;
   3528 
   3529   // Dependent template specializations can instantiate to pointer
   3530   // types unless they're known to be specializations of a class
   3531   // template.
   3532   case Type::TemplateSpecialization:
   3533     if (TemplateDecl *templateDecl
   3534           = cast<TemplateSpecializationType>(type.getTypePtr())
   3535               ->getTemplateName().getAsTemplateDecl()) {
   3536       if (isa<ClassTemplateDecl>(templateDecl))
   3537         return false;
   3538     }
   3539     return true;
   3540 
   3541   // auto is considered dependent when it isn't deduced.
   3542   case Type::Auto:
   3543     return !cast<AutoType>(type.getTypePtr())->isDeduced();
   3544 
   3545   case Type::Builtin:
   3546     switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
   3547       // Signed, unsigned, and floating-point types cannot have nullability.
   3548 #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
   3549 #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
   3550 #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
   3551 #define BUILTIN_TYPE(Id, SingletonId)
   3552 #include "clang/AST/BuiltinTypes.def"
   3553       return false;
   3554 
   3555     // Dependent types that could instantiate to a pointer type.
   3556     case BuiltinType::Dependent:
   3557     case BuiltinType::Overload:
   3558     case BuiltinType::BoundMember:
   3559     case BuiltinType::PseudoObject:
   3560     case BuiltinType::UnknownAny:
   3561     case BuiltinType::ARCUnbridgedCast:
   3562       return true;
   3563 
   3564     case BuiltinType::Void:
   3565     case BuiltinType::ObjCId:
   3566     case BuiltinType::ObjCClass:
   3567     case BuiltinType::ObjCSel:
   3568 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
   3569     case BuiltinType::Id:
   3570 #include "clang/Basic/OpenCLImageTypes.def"
   3571     case BuiltinType::OCLSampler:
   3572     case BuiltinType::OCLEvent:
   3573     case BuiltinType::OCLClkEvent:
   3574     case BuiltinType::OCLQueue:
   3575     case BuiltinType::OCLNDRange:
   3576     case BuiltinType::OCLReserveID:
   3577     case BuiltinType::BuiltinFn:
   3578     case BuiltinType::NullPtr:
   3579     case BuiltinType::OMPArraySection:
   3580       return false;
   3581     }
   3582 
   3583   // Non-pointer types.
   3584   case Type::Complex:
   3585   case Type::LValueReference:
   3586   case Type::RValueReference:
   3587   case Type::ConstantArray:
   3588   case Type::IncompleteArray:
   3589   case Type::VariableArray:
   3590   case Type::DependentSizedArray:
   3591   case Type::DependentSizedExtVector:
   3592   case Type::Vector:
   3593   case Type::ExtVector:
   3594   case Type::FunctionProto:
   3595   case Type::FunctionNoProto:
   3596   case Type::Record:
   3597   case Type::Enum:
   3598   case Type::InjectedClassName:
   3599   case Type::PackExpansion:
   3600   case Type::ObjCObject:
   3601   case Type::ObjCInterface:
   3602   case Type::Atomic:
   3603   case Type::Pipe:
   3604     return false;
   3605   }
   3606   llvm_unreachable("bad type kind!");
   3607 }
   3608 
   3609 llvm::Optional<NullabilityKind> AttributedType::getImmediateNullability() const {
   3610   if (getAttrKind() == AttributedType::attr_nonnull)
   3611     return NullabilityKind::NonNull;
   3612   if (getAttrKind() == AttributedType::attr_nullable)
   3613     return NullabilityKind::Nullable;
   3614   if (getAttrKind() == AttributedType::attr_null_unspecified)
   3615     return NullabilityKind::Unspecified;
   3616   return None;
   3617 }
   3618 
   3619 Optional<NullabilityKind> AttributedType::stripOuterNullability(QualType &T) {
   3620   if (auto attributed = dyn_cast<AttributedType>(T.getTypePtr())) {
   3621     if (auto nullability = attributed->getImmediateNullability()) {
   3622       T = attributed->getModifiedType();
   3623       return nullability;
   3624     }
   3625   }
   3626 
   3627   return None;
   3628 }
   3629 
   3630 bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const {
   3631   const ObjCObjectPointerType *objcPtr = getAs<ObjCObjectPointerType>();
   3632   if (!objcPtr)
   3633     return false;
   3634 
   3635   if (objcPtr->isObjCIdType()) {
   3636     // id is always okay.
   3637     return true;
   3638   }
   3639 
   3640   // Blocks are NSObjects.
   3641   if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
   3642     if (iface->getIdentifier() != ctx.getNSObjectName())
   3643       return false;
   3644 
   3645     // Continue to check qualifiers, below.
   3646   } else if (objcPtr->isObjCQualifiedIdType()) {
   3647     // Continue to check qualifiers, below.
   3648   } else {
   3649     return false;
   3650   }
   3651 
   3652   // Check protocol qualifiers.
   3653   for (ObjCProtocolDecl *proto : objcPtr->quals()) {
   3654     // Blocks conform to NSObject and NSCopying.
   3655     if (proto->getIdentifier() != ctx.getNSObjectName() &&
   3656         proto->getIdentifier() != ctx.getNSCopyingName())
   3657       return false;
   3658   }
   3659 
   3660   return true;
   3661 }
   3662 
   3663 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
   3664   if (isObjCARCImplicitlyUnretainedType())
   3665     return Qualifiers::OCL_ExplicitNone;
   3666   return Qualifiers::OCL_Strong;
   3667 }
   3668 
   3669 bool Type::isObjCARCImplicitlyUnretainedType() const {
   3670   assert(isObjCLifetimeType() &&
   3671          "cannot query implicit lifetime for non-inferrable type");
   3672 
   3673   const Type *canon = getCanonicalTypeInternal().getTypePtr();
   3674 
   3675   // Walk down to the base type.  We don't care about qualifiers for this.
   3676   while (const ArrayType *array = dyn_cast<ArrayType>(canon))
   3677     canon = array->getElementType().getTypePtr();
   3678 
   3679   if (const ObjCObjectPointerType *opt
   3680         = dyn_cast<ObjCObjectPointerType>(canon)) {
   3681     // Class and Class<Protocol> don't require retention.
   3682     if (opt->getObjectType()->isObjCClass())
   3683       return true;
   3684   }
   3685 
   3686   return false;
   3687 }
   3688 
   3689 bool Type::isObjCNSObjectType() const {
   3690   if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
   3691     return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
   3692   return false;
   3693 }
   3694 bool Type::isObjCIndependentClassType() const {
   3695   if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
   3696     return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
   3697   return false;
   3698 }
   3699 bool Type::isObjCRetainableType() const {
   3700   return isObjCObjectPointerType() ||
   3701          isBlockPointerType() ||
   3702          isObjCNSObjectType();
   3703 }
   3704 bool Type::isObjCIndirectLifetimeType() const {
   3705   if (isObjCLifetimeType())
   3706     return true;
   3707   if (const PointerType *OPT = getAs<PointerType>())
   3708     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
   3709   if (const ReferenceType *Ref = getAs<ReferenceType>())
   3710     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
   3711   if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
   3712     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
   3713   return false;
   3714 }
   3715 
   3716 /// Returns true if objects of this type have lifetime semantics under
   3717 /// ARC.
   3718 bool Type::isObjCLifetimeType() const {
   3719   const Type *type = this;
   3720   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
   3721     type = array->getElementType().getTypePtr();
   3722   return type->isObjCRetainableType();
   3723 }
   3724 
   3725 /// \brief Determine whether the given type T is a "bridgable" Objective-C type,
   3726 /// which is either an Objective-C object pointer type or an
   3727 bool Type::isObjCARCBridgableType() const {
   3728   return isObjCObjectPointerType() || isBlockPointerType();
   3729 }
   3730 
   3731 /// \brief Determine whether the given type T is a "bridgeable" C type.
   3732 bool Type::isCARCBridgableType() const {
   3733   const PointerType *Pointer = getAs<PointerType>();
   3734   if (!Pointer)
   3735     return false;
   3736 
   3737   QualType Pointee = Pointer->getPointeeType();
   3738   return Pointee->isVoidType() || Pointee->isRecordType();
   3739 }
   3740 
   3741 bool Type::hasSizedVLAType() const {
   3742   if (!isVariablyModifiedType()) return false;
   3743 
   3744   if (const PointerType *ptr = getAs<PointerType>())
   3745     return ptr->getPointeeType()->hasSizedVLAType();
   3746   if (const ReferenceType *ref = getAs<ReferenceType>())
   3747     return ref->getPointeeType()->hasSizedVLAType();
   3748   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
   3749     if (isa<VariableArrayType>(arr) &&
   3750         cast<VariableArrayType>(arr)->getSizeExpr())
   3751       return true;
   3752 
   3753     return arr->getElementType()->hasSizedVLAType();
   3754   }
   3755 
   3756   return false;
   3757 }
   3758 
   3759 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
   3760   switch (type.getObjCLifetime()) {
   3761   case Qualifiers::OCL_None:
   3762   case Qualifiers::OCL_ExplicitNone:
   3763   case Qualifiers::OCL_Autoreleasing:
   3764     break;
   3765 
   3766   case Qualifiers::OCL_Strong:
   3767     return DK_objc_strong_lifetime;
   3768   case Qualifiers::OCL_Weak:
   3769     return DK_objc_weak_lifetime;
   3770   }
   3771 
   3772   /// Currently, the only destruction kind we recognize is C++ objects
   3773   /// with non-trivial destructors.
   3774   const CXXRecordDecl *record =
   3775     type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
   3776   if (record && record->hasDefinition() && !record->hasTrivialDestructor())
   3777     return DK_cxx_destructor;
   3778 
   3779   return DK_none;
   3780 }
   3781 
   3782 CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
   3783   return getClass()->getAsCXXRecordDecl()->getMostRecentDecl();
   3784 }
   3785