1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines common loop utility functions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/AliasAnalysis.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpander.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 #define DEBUG_TYPE "loop-utils" 35 36 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 37 SmallPtrSetImpl<Instruction *> &Set) { 38 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 39 if (!Set.count(dyn_cast<Instruction>(*Use))) 40 return false; 41 return true; 42 } 43 44 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 45 switch (Kind) { 46 default: 47 break; 48 case RK_IntegerAdd: 49 case RK_IntegerMult: 50 case RK_IntegerOr: 51 case RK_IntegerAnd: 52 case RK_IntegerXor: 53 case RK_IntegerMinMax: 54 return true; 55 } 56 return false; 57 } 58 59 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 60 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 61 } 62 63 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 64 switch (Kind) { 65 default: 66 break; 67 case RK_IntegerAdd: 68 case RK_IntegerMult: 69 case RK_FloatAdd: 70 case RK_FloatMult: 71 return true; 72 } 73 return false; 74 } 75 76 Instruction * 77 RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, 78 SmallPtrSetImpl<Instruction *> &Visited, 79 SmallPtrSetImpl<Instruction *> &CI) { 80 if (!Phi->hasOneUse()) 81 return Phi; 82 83 const APInt *M = nullptr; 84 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 85 86 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 87 // with a new integer type of the corresponding bit width. 88 if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), 89 m_And(m_APInt(M), m_Instruction(I))))) { 90 int32_t Bits = (*M + 1).exactLogBase2(); 91 if (Bits > 0) { 92 RT = IntegerType::get(Phi->getContext(), Bits); 93 Visited.insert(Phi); 94 CI.insert(J); 95 return J; 96 } 97 } 98 return Phi; 99 } 100 101 bool RecurrenceDescriptor::getSourceExtensionKind( 102 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, 103 SmallPtrSetImpl<Instruction *> &Visited, 104 SmallPtrSetImpl<Instruction *> &CI) { 105 106 SmallVector<Instruction *, 8> Worklist; 107 bool FoundOneOperand = false; 108 unsigned DstSize = RT->getPrimitiveSizeInBits(); 109 Worklist.push_back(Exit); 110 111 // Traverse the instructions in the reduction expression, beginning with the 112 // exit value. 113 while (!Worklist.empty()) { 114 Instruction *I = Worklist.pop_back_val(); 115 for (Use &U : I->operands()) { 116 117 // Terminate the traversal if the operand is not an instruction, or we 118 // reach the starting value. 119 Instruction *J = dyn_cast<Instruction>(U.get()); 120 if (!J || J == Start) 121 continue; 122 123 // Otherwise, investigate the operation if it is also in the expression. 124 if (Visited.count(J)) { 125 Worklist.push_back(J); 126 continue; 127 } 128 129 // If the operand is not in Visited, it is not a reduction operation, but 130 // it does feed into one. Make sure it is either a single-use sign- or 131 // zero-extend instruction. 132 CastInst *Cast = dyn_cast<CastInst>(J); 133 bool IsSExtInst = isa<SExtInst>(J); 134 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) 135 return false; 136 137 // Ensure the source type of the extend is no larger than the reduction 138 // type. It is not necessary for the types to be identical. 139 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 140 if (SrcSize > DstSize) 141 return false; 142 143 // Furthermore, ensure that all such extends are of the same kind. 144 if (FoundOneOperand) { 145 if (IsSigned != IsSExtInst) 146 return false; 147 } else { 148 FoundOneOperand = true; 149 IsSigned = IsSExtInst; 150 } 151 152 // Lastly, if the source type of the extend matches the reduction type, 153 // add the extend to CI so that we can avoid accounting for it in the 154 // cost model. 155 if (SrcSize == DstSize) 156 CI.insert(Cast); 157 } 158 } 159 return true; 160 } 161 162 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 163 Loop *TheLoop, bool HasFunNoNaNAttr, 164 RecurrenceDescriptor &RedDes) { 165 if (Phi->getNumIncomingValues() != 2) 166 return false; 167 168 // Reduction variables are only found in the loop header block. 169 if (Phi->getParent() != TheLoop->getHeader()) 170 return false; 171 172 // Obtain the reduction start value from the value that comes from the loop 173 // preheader. 174 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 175 176 // ExitInstruction is the single value which is used outside the loop. 177 // We only allow for a single reduction value to be used outside the loop. 178 // This includes users of the reduction, variables (which form a cycle 179 // which ends in the phi node). 180 Instruction *ExitInstruction = nullptr; 181 // Indicates that we found a reduction operation in our scan. 182 bool FoundReduxOp = false; 183 184 // We start with the PHI node and scan for all of the users of this 185 // instruction. All users must be instructions that can be used as reduction 186 // variables (such as ADD). We must have a single out-of-block user. The cycle 187 // must include the original PHI. 188 bool FoundStartPHI = false; 189 190 // To recognize min/max patterns formed by a icmp select sequence, we store 191 // the number of instruction we saw from the recognized min/max pattern, 192 // to make sure we only see exactly the two instructions. 193 unsigned NumCmpSelectPatternInst = 0; 194 InstDesc ReduxDesc(false, nullptr); 195 196 // Data used for determining if the recurrence has been type-promoted. 197 Type *RecurrenceType = Phi->getType(); 198 SmallPtrSet<Instruction *, 4> CastInsts; 199 Instruction *Start = Phi; 200 bool IsSigned = false; 201 202 SmallPtrSet<Instruction *, 8> VisitedInsts; 203 SmallVector<Instruction *, 8> Worklist; 204 205 // Return early if the recurrence kind does not match the type of Phi. If the 206 // recurrence kind is arithmetic, we attempt to look through AND operations 207 // resulting from the type promotion performed by InstCombine. Vector 208 // operations are not limited to the legal integer widths, so we may be able 209 // to evaluate the reduction in the narrower width. 210 if (RecurrenceType->isFloatingPointTy()) { 211 if (!isFloatingPointRecurrenceKind(Kind)) 212 return false; 213 } else { 214 if (!isIntegerRecurrenceKind(Kind)) 215 return false; 216 if (isArithmeticRecurrenceKind(Kind)) 217 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 218 } 219 220 Worklist.push_back(Start); 221 VisitedInsts.insert(Start); 222 223 // A value in the reduction can be used: 224 // - By the reduction: 225 // - Reduction operation: 226 // - One use of reduction value (safe). 227 // - Multiple use of reduction value (not safe). 228 // - PHI: 229 // - All uses of the PHI must be the reduction (safe). 230 // - Otherwise, not safe. 231 // - By one instruction outside of the loop (safe). 232 // - By further instructions outside of the loop (not safe). 233 // - By an instruction that is not part of the reduction (not safe). 234 // This is either: 235 // * An instruction type other than PHI or the reduction operation. 236 // * A PHI in the header other than the initial PHI. 237 while (!Worklist.empty()) { 238 Instruction *Cur = Worklist.back(); 239 Worklist.pop_back(); 240 241 // No Users. 242 // If the instruction has no users then this is a broken chain and can't be 243 // a reduction variable. 244 if (Cur->use_empty()) 245 return false; 246 247 bool IsAPhi = isa<PHINode>(Cur); 248 249 // A header PHI use other than the original PHI. 250 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 251 return false; 252 253 // Reductions of instructions such as Div, and Sub is only possible if the 254 // LHS is the reduction variable. 255 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 256 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 257 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 258 return false; 259 260 // Any reduction instruction must be of one of the allowed kinds. We ignore 261 // the starting value (the Phi or an AND instruction if the Phi has been 262 // type-promoted). 263 if (Cur != Start) { 264 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 265 if (!ReduxDesc.isRecurrence()) 266 return false; 267 } 268 269 // A reduction operation must only have one use of the reduction value. 270 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 271 hasMultipleUsesOf(Cur, VisitedInsts)) 272 return false; 273 274 // All inputs to a PHI node must be a reduction value. 275 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 276 return false; 277 278 if (Kind == RK_IntegerMinMax && 279 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 280 ++NumCmpSelectPatternInst; 281 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 282 ++NumCmpSelectPatternInst; 283 284 // Check whether we found a reduction operator. 285 FoundReduxOp |= !IsAPhi && Cur != Start; 286 287 // Process users of current instruction. Push non-PHI nodes after PHI nodes 288 // onto the stack. This way we are going to have seen all inputs to PHI 289 // nodes once we get to them. 290 SmallVector<Instruction *, 8> NonPHIs; 291 SmallVector<Instruction *, 8> PHIs; 292 for (User *U : Cur->users()) { 293 Instruction *UI = cast<Instruction>(U); 294 295 // Check if we found the exit user. 296 BasicBlock *Parent = UI->getParent(); 297 if (!TheLoop->contains(Parent)) { 298 // Exit if you find multiple outside users or if the header phi node is 299 // being used. In this case the user uses the value of the previous 300 // iteration, in which case we would loose "VF-1" iterations of the 301 // reduction operation if we vectorize. 302 if (ExitInstruction != nullptr || Cur == Phi) 303 return false; 304 305 // The instruction used by an outside user must be the last instruction 306 // before we feed back to the reduction phi. Otherwise, we loose VF-1 307 // operations on the value. 308 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 309 return false; 310 311 ExitInstruction = Cur; 312 continue; 313 } 314 315 // Process instructions only once (termination). Each reduction cycle 316 // value must only be used once, except by phi nodes and min/max 317 // reductions which are represented as a cmp followed by a select. 318 InstDesc IgnoredVal(false, nullptr); 319 if (VisitedInsts.insert(UI).second) { 320 if (isa<PHINode>(UI)) 321 PHIs.push_back(UI); 322 else 323 NonPHIs.push_back(UI); 324 } else if (!isa<PHINode>(UI) && 325 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 326 !isa<SelectInst>(UI)) || 327 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) 328 return false; 329 330 // Remember that we completed the cycle. 331 if (UI == Phi) 332 FoundStartPHI = true; 333 } 334 Worklist.append(PHIs.begin(), PHIs.end()); 335 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 336 } 337 338 // This means we have seen one but not the other instruction of the 339 // pattern or more than just a select and cmp. 340 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 341 NumCmpSelectPatternInst != 2) 342 return false; 343 344 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 345 return false; 346 347 // If we think Phi may have been type-promoted, we also need to ensure that 348 // all source operands of the reduction are either SExtInsts or ZEstInsts. If 349 // so, we will be able to evaluate the reduction in the narrower bit width. 350 if (Start != Phi) 351 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, 352 IsSigned, VisitedInsts, CastInsts)) 353 return false; 354 355 // We found a reduction var if we have reached the original phi node and we 356 // only have a single instruction with out-of-loop users. 357 358 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 359 // is saved as part of the RecurrenceDescriptor. 360 361 // Save the description of this reduction variable. 362 RecurrenceDescriptor RD( 363 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), 364 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 365 RedDes = RD; 366 367 return true; 368 } 369 370 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 371 /// pattern corresponding to a min(X, Y) or max(X, Y). 372 RecurrenceDescriptor::InstDesc 373 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 374 375 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 376 "Expect a select instruction"); 377 Instruction *Cmp = nullptr; 378 SelectInst *Select = nullptr; 379 380 // We must handle the select(cmp()) as a single instruction. Advance to the 381 // select. 382 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 383 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 384 return InstDesc(false, I); 385 return InstDesc(Select, Prev.getMinMaxKind()); 386 } 387 388 // Only handle single use cases for now. 389 if (!(Select = dyn_cast<SelectInst>(I))) 390 return InstDesc(false, I); 391 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 392 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 393 return InstDesc(false, I); 394 if (!Cmp->hasOneUse()) 395 return InstDesc(false, I); 396 397 Value *CmpLeft; 398 Value *CmpRight; 399 400 // Look for a min/max pattern. 401 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 402 return InstDesc(Select, MRK_UIntMin); 403 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 404 return InstDesc(Select, MRK_UIntMax); 405 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 406 return InstDesc(Select, MRK_SIntMax); 407 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 408 return InstDesc(Select, MRK_SIntMin); 409 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 410 return InstDesc(Select, MRK_FloatMin); 411 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 412 return InstDesc(Select, MRK_FloatMax); 413 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 414 return InstDesc(Select, MRK_FloatMin); 415 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 416 return InstDesc(Select, MRK_FloatMax); 417 418 return InstDesc(false, I); 419 } 420 421 RecurrenceDescriptor::InstDesc 422 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 423 InstDesc &Prev, bool HasFunNoNaNAttr) { 424 bool FP = I->getType()->isFloatingPointTy(); 425 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 426 if (!UAI && FP && !I->hasUnsafeAlgebra()) 427 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 428 429 switch (I->getOpcode()) { 430 default: 431 return InstDesc(false, I); 432 case Instruction::PHI: 433 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 434 case Instruction::Sub: 435 case Instruction::Add: 436 return InstDesc(Kind == RK_IntegerAdd, I); 437 case Instruction::Mul: 438 return InstDesc(Kind == RK_IntegerMult, I); 439 case Instruction::And: 440 return InstDesc(Kind == RK_IntegerAnd, I); 441 case Instruction::Or: 442 return InstDesc(Kind == RK_IntegerOr, I); 443 case Instruction::Xor: 444 return InstDesc(Kind == RK_IntegerXor, I); 445 case Instruction::FMul: 446 return InstDesc(Kind == RK_FloatMult, I, UAI); 447 case Instruction::FSub: 448 case Instruction::FAdd: 449 return InstDesc(Kind == RK_FloatAdd, I, UAI); 450 case Instruction::FCmp: 451 case Instruction::ICmp: 452 case Instruction::Select: 453 if (Kind != RK_IntegerMinMax && 454 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 455 return InstDesc(false, I); 456 return isMinMaxSelectCmpPattern(I, Prev); 457 } 458 } 459 460 bool RecurrenceDescriptor::hasMultipleUsesOf( 461 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { 462 unsigned NumUses = 0; 463 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 464 ++Use) { 465 if (Insts.count(dyn_cast<Instruction>(*Use))) 466 ++NumUses; 467 if (NumUses > 1) 468 return true; 469 } 470 471 return false; 472 } 473 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 474 RecurrenceDescriptor &RedDes) { 475 476 BasicBlock *Header = TheLoop->getHeader(); 477 Function &F = *Header->getParent(); 478 bool HasFunNoNaNAttr = 479 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 480 481 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 482 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 483 return true; 484 } 485 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 486 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 487 return true; 488 } 489 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { 490 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 491 return true; 492 } 493 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { 494 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 495 return true; 496 } 497 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { 498 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 499 return true; 500 } 501 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, 502 RedDes)) { 503 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 504 return true; 505 } 506 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { 507 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 508 return true; 509 } 510 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { 511 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 512 return true; 513 } 514 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { 515 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); 516 return true; 517 } 518 // Not a reduction of known type. 519 return false; 520 } 521 522 bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, 523 DominatorTree *DT) { 524 525 // Ensure the phi node is in the loop header and has two incoming values. 526 if (Phi->getParent() != TheLoop->getHeader() || 527 Phi->getNumIncomingValues() != 2) 528 return false; 529 530 // Ensure the loop has a preheader and a single latch block. The loop 531 // vectorizer will need the latch to set up the next iteration of the loop. 532 auto *Preheader = TheLoop->getLoopPreheader(); 533 auto *Latch = TheLoop->getLoopLatch(); 534 if (!Preheader || !Latch) 535 return false; 536 537 // Ensure the phi node's incoming blocks are the loop preheader and latch. 538 if (Phi->getBasicBlockIndex(Preheader) < 0 || 539 Phi->getBasicBlockIndex(Latch) < 0) 540 return false; 541 542 // Get the previous value. The previous value comes from the latch edge while 543 // the initial value comes form the preheader edge. 544 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 545 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) 546 return false; 547 548 // Ensure every user of the phi node is dominated by the previous value. The 549 // dominance requirement ensures the loop vectorizer will not need to 550 // vectorize the initial value prior to the first iteration of the loop. 551 for (User *U : Phi->users()) 552 if (auto *I = dyn_cast<Instruction>(U)) 553 if (!DT->dominates(Previous, I)) 554 return false; 555 556 return true; 557 } 558 559 /// This function returns the identity element (or neutral element) for 560 /// the operation K. 561 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 562 Type *Tp) { 563 switch (K) { 564 case RK_IntegerXor: 565 case RK_IntegerAdd: 566 case RK_IntegerOr: 567 // Adding, Xoring, Oring zero to a number does not change it. 568 return ConstantInt::get(Tp, 0); 569 case RK_IntegerMult: 570 // Multiplying a number by 1 does not change it. 571 return ConstantInt::get(Tp, 1); 572 case RK_IntegerAnd: 573 // AND-ing a number with an all-1 value does not change it. 574 return ConstantInt::get(Tp, -1, true); 575 case RK_FloatMult: 576 // Multiplying a number by 1 does not change it. 577 return ConstantFP::get(Tp, 1.0L); 578 case RK_FloatAdd: 579 // Adding zero to a number does not change it. 580 return ConstantFP::get(Tp, 0.0L); 581 default: 582 llvm_unreachable("Unknown recurrence kind"); 583 } 584 } 585 586 /// This function translates the recurrence kind to an LLVM binary operator. 587 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 588 switch (Kind) { 589 case RK_IntegerAdd: 590 return Instruction::Add; 591 case RK_IntegerMult: 592 return Instruction::Mul; 593 case RK_IntegerOr: 594 return Instruction::Or; 595 case RK_IntegerAnd: 596 return Instruction::And; 597 case RK_IntegerXor: 598 return Instruction::Xor; 599 case RK_FloatMult: 600 return Instruction::FMul; 601 case RK_FloatAdd: 602 return Instruction::FAdd; 603 case RK_IntegerMinMax: 604 return Instruction::ICmp; 605 case RK_FloatMinMax: 606 return Instruction::FCmp; 607 default: 608 llvm_unreachable("Unknown recurrence operation"); 609 } 610 } 611 612 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, 613 MinMaxRecurrenceKind RK, 614 Value *Left, Value *Right) { 615 CmpInst::Predicate P = CmpInst::ICMP_NE; 616 switch (RK) { 617 default: 618 llvm_unreachable("Unknown min/max recurrence kind"); 619 case MRK_UIntMin: 620 P = CmpInst::ICMP_ULT; 621 break; 622 case MRK_UIntMax: 623 P = CmpInst::ICMP_UGT; 624 break; 625 case MRK_SIntMin: 626 P = CmpInst::ICMP_SLT; 627 break; 628 case MRK_SIntMax: 629 P = CmpInst::ICMP_SGT; 630 break; 631 case MRK_FloatMin: 632 P = CmpInst::FCMP_OLT; 633 break; 634 case MRK_FloatMax: 635 P = CmpInst::FCMP_OGT; 636 break; 637 } 638 639 // We only match FP sequences with unsafe algebra, so we can unconditionally 640 // set it on any generated instructions. 641 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 642 FastMathFlags FMF; 643 FMF.setUnsafeAlgebra(); 644 Builder.setFastMathFlags(FMF); 645 646 Value *Cmp; 647 if (RK == MRK_FloatMin || RK == MRK_FloatMax) 648 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 649 else 650 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 651 652 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 653 return Select; 654 } 655 656 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 657 const SCEV *Step) 658 : StartValue(Start), IK(K), Step(Step) { 659 assert(IK != IK_NoInduction && "Not an induction"); 660 661 // Start value type should match the induction kind and the value 662 // itself should not be null. 663 assert(StartValue && "StartValue is null"); 664 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 665 "StartValue is not a pointer for pointer induction"); 666 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 667 "StartValue is not an integer for integer induction"); 668 669 // Check the Step Value. It should be non-zero integer value. 670 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 671 "Step value is zero"); 672 673 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 674 "Step value should be constant for pointer induction"); 675 assert(Step->getType()->isIntegerTy() && "StepValue is not an integer"); 676 } 677 678 int InductionDescriptor::getConsecutiveDirection() const { 679 ConstantInt *ConstStep = getConstIntStepValue(); 680 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 681 return ConstStep->getSExtValue(); 682 return 0; 683 } 684 685 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 686 if (isa<SCEVConstant>(Step)) 687 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 688 return nullptr; 689 } 690 691 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, 692 ScalarEvolution *SE, 693 const DataLayout& DL) const { 694 695 SCEVExpander Exp(*SE, DL, "induction"); 696 switch (IK) { 697 case IK_IntInduction: { 698 assert(Index->getType() == StartValue->getType() && 699 "Index type does not match StartValue type"); 700 701 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 702 // and calculate (Start + Index * Step) for all cases, without 703 // special handling for "isOne" and "isMinusOne". 704 // But in the real life the result code getting worse. We mix SCEV 705 // expressions and ADD/SUB operations and receive redundant 706 // intermediate values being calculated in different ways and 707 // Instcombine is unable to reduce them all. 708 709 if (getConstIntStepValue() && 710 getConstIntStepValue()->isMinusOne()) 711 return B.CreateSub(StartValue, Index); 712 if (getConstIntStepValue() && 713 getConstIntStepValue()->isOne()) 714 return B.CreateAdd(StartValue, Index); 715 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 716 SE->getMulExpr(Step, SE->getSCEV(Index))); 717 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 718 } 719 case IK_PtrInduction: { 720 assert(Index->getType() == Step->getType() && 721 "Index type does not match StepValue type"); 722 assert(isa<SCEVConstant>(Step) && 723 "Expected constant step for pointer induction"); 724 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 725 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 726 return B.CreateGEP(nullptr, StartValue, Index); 727 } 728 case IK_NoInduction: 729 return nullptr; 730 } 731 llvm_unreachable("invalid enum"); 732 } 733 734 bool InductionDescriptor::isInductionPHI(PHINode *Phi, 735 PredicatedScalarEvolution &PSE, 736 InductionDescriptor &D, 737 bool Assume) { 738 Type *PhiTy = Phi->getType(); 739 // We only handle integer and pointer inductions variables. 740 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 741 return false; 742 743 const SCEV *PhiScev = PSE.getSCEV(Phi); 744 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 745 746 // We need this expression to be an AddRecExpr. 747 if (Assume && !AR) 748 AR = PSE.getAsAddRec(Phi); 749 750 if (!AR) { 751 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 752 return false; 753 } 754 755 return isInductionPHI(Phi, PSE.getSE(), D, AR); 756 } 757 758 bool InductionDescriptor::isInductionPHI(PHINode *Phi, 759 ScalarEvolution *SE, 760 InductionDescriptor &D, 761 const SCEV *Expr) { 762 Type *PhiTy = Phi->getType(); 763 // We only handle integer and pointer inductions variables. 764 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 765 return false; 766 767 // Check that the PHI is consecutive. 768 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 769 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 770 771 if (!AR) { 772 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 773 return false; 774 } 775 776 assert(AR->getLoop()->getHeader() == Phi->getParent() && 777 "PHI is an AddRec for a different loop?!"); 778 Value *StartValue = 779 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 780 const SCEV *Step = AR->getStepRecurrence(*SE); 781 // Calculate the pointer stride and check if it is consecutive. 782 // The stride may be a constant or a loop invariant integer value. 783 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 784 if (!ConstStep && !SE->isLoopInvariant(Step, AR->getLoop())) 785 return false; 786 787 if (PhiTy->isIntegerTy()) { 788 D = InductionDescriptor(StartValue, IK_IntInduction, Step); 789 return true; 790 } 791 792 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 793 // Pointer induction should be a constant. 794 if (!ConstStep) 795 return false; 796 797 ConstantInt *CV = ConstStep->getValue(); 798 Type *PointerElementType = PhiTy->getPointerElementType(); 799 // The pointer stride cannot be determined if the pointer element type is not 800 // sized. 801 if (!PointerElementType->isSized()) 802 return false; 803 804 const DataLayout &DL = Phi->getModule()->getDataLayout(); 805 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 806 if (!Size) 807 return false; 808 809 int64_t CVSize = CV->getSExtValue(); 810 if (CVSize % Size) 811 return false; 812 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, 813 true /* signed */); 814 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); 815 return true; 816 } 817 818 /// \brief Returns the instructions that use values defined in the loop. 819 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { 820 SmallVector<Instruction *, 8> UsedOutside; 821 822 for (auto *Block : L->getBlocks()) 823 // FIXME: I believe that this could use copy_if if the Inst reference could 824 // be adapted into a pointer. 825 for (auto &Inst : *Block) { 826 auto Users = Inst.users(); 827 if (std::any_of(Users.begin(), Users.end(), [&](User *U) { 828 auto *Use = cast<Instruction>(U); 829 return !L->contains(Use->getParent()); 830 })) 831 UsedOutside.push_back(&Inst); 832 } 833 834 return UsedOutside; 835 } 836 837 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { 838 // By definition, all loop passes need the LoopInfo analysis and the 839 // Dominator tree it depends on. Because they all participate in the loop 840 // pass manager, they must also preserve these. 841 AU.addRequired<DominatorTreeWrapperPass>(); 842 AU.addPreserved<DominatorTreeWrapperPass>(); 843 AU.addRequired<LoopInfoWrapperPass>(); 844 AU.addPreserved<LoopInfoWrapperPass>(); 845 846 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs 847 // here because users shouldn't directly get them from this header. 848 extern char &LoopSimplifyID; 849 extern char &LCSSAID; 850 AU.addRequiredID(LoopSimplifyID); 851 AU.addPreservedID(LoopSimplifyID); 852 AU.addRequiredID(LCSSAID); 853 AU.addPreservedID(LCSSAID); 854 855 // Loop passes are designed to run inside of a loop pass manager which means 856 // that any function analyses they require must be required by the first loop 857 // pass in the manager (so that it is computed before the loop pass manager 858 // runs) and preserved by all loop pasess in the manager. To make this 859 // reasonably robust, the set needed for most loop passes is maintained here. 860 // If your loop pass requires an analysis not listed here, you will need to 861 // carefully audit the loop pass manager nesting structure that results. 862 AU.addRequired<AAResultsWrapperPass>(); 863 AU.addPreserved<AAResultsWrapperPass>(); 864 AU.addPreserved<BasicAAWrapperPass>(); 865 AU.addPreserved<GlobalsAAWrapperPass>(); 866 AU.addPreserved<SCEVAAWrapperPass>(); 867 AU.addRequired<ScalarEvolutionWrapperPass>(); 868 AU.addPreserved<ScalarEvolutionWrapperPass>(); 869 } 870 871 /// Manually defined generic "LoopPass" dependency initialization. This is used 872 /// to initialize the exact set of passes from above in \c 873 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization 874 /// with: 875 /// 876 /// INITIALIZE_PASS_DEPENDENCY(LoopPass) 877 /// 878 /// As-if "LoopPass" were a pass. 879 void llvm::initializeLoopPassPass(PassRegistry &Registry) { 880 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 881 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 882 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 883 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 884 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 885 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 886 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 887 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 888 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 889 } 890 891 /// \brief Find string metadata for loop 892 /// 893 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 894 /// operand or null otherwise. If the string metadata is not found return 895 /// Optional's not-a-value. 896 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, 897 StringRef Name) { 898 MDNode *LoopID = TheLoop->getLoopID(); 899 // Return none if LoopID is false. 900 if (!LoopID) 901 return None; 902 903 // First operand should refer to the loop id itself. 904 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 905 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 906 907 // Iterate over LoopID operands and look for MDString Metadata 908 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 909 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 910 if (!MD) 911 continue; 912 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 913 if (!S) 914 continue; 915 // Return true if MDString holds expected MetaData. 916 if (Name.equals(S->getString())) 917 switch (MD->getNumOperands()) { 918 case 1: 919 return nullptr; 920 case 2: 921 return &MD->getOperand(1); 922 default: 923 llvm_unreachable("loop metadata has 0 or 1 operand"); 924 } 925 } 926 return None; 927 } 928 929 /// Returns true if the instruction in a loop is guaranteed to execute at least 930 /// once. 931 bool llvm::isGuaranteedToExecute(const Instruction &Inst, 932 const DominatorTree *DT, const Loop *CurLoop, 933 const LoopSafetyInfo *SafetyInfo) { 934 // We have to check to make sure that the instruction dominates all 935 // of the exit blocks. If it doesn't, then there is a path out of the loop 936 // which does not execute this instruction, so we can't hoist it. 937 938 // If the instruction is in the header block for the loop (which is very 939 // common), it is always guaranteed to dominate the exit blocks. Since this 940 // is a common case, and can save some work, check it now. 941 if (Inst.getParent() == CurLoop->getHeader()) 942 // If there's a throw in the header block, we can't guarantee we'll reach 943 // Inst. 944 return !SafetyInfo->HeaderMayThrow; 945 946 // Somewhere in this loop there is an instruction which may throw and make us 947 // exit the loop. 948 if (SafetyInfo->MayThrow) 949 return false; 950 951 // Get the exit blocks for the current loop. 952 SmallVector<BasicBlock *, 8> ExitBlocks; 953 CurLoop->getExitBlocks(ExitBlocks); 954 955 // Verify that the block dominates each of the exit blocks of the loop. 956 for (BasicBlock *ExitBlock : ExitBlocks) 957 if (!DT->dominates(Inst.getParent(), ExitBlock)) 958 return false; 959 960 // As a degenerate case, if the loop is statically infinite then we haven't 961 // proven anything since there are no exit blocks. 962 if (ExitBlocks.empty()) 963 return false; 964 965 // FIXME: In general, we have to prove that the loop isn't an infinite loop. 966 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is 967 // just a special case of this.) 968 return true; 969 } 970