Home | History | Annotate | Download | only in message_loop
      1 // Copyright 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stddef.h>
      6 #include <stdint.h>
      7 
      8 #include <vector>
      9 
     10 #include "base/bind.h"
     11 #include "base/bind_helpers.h"
     12 #include "base/compiler_specific.h"
     13 #include "base/logging.h"
     14 #include "base/macros.h"
     15 #include "base/memory/ptr_util.h"
     16 #include "base/memory/ref_counted.h"
     17 #include "base/message_loop/message_loop.h"
     18 #include "base/message_loop/message_loop_test.h"
     19 #include "base/pending_task.h"
     20 #include "base/posix/eintr_wrapper.h"
     21 #include "base/run_loop.h"
     22 #include "base/single_thread_task_runner.h"
     23 #include "base/synchronization/waitable_event.h"
     24 #include "base/test/test_simple_task_runner.h"
     25 #include "base/threading/platform_thread.h"
     26 #include "base/threading/thread.h"
     27 #include "base/threading/thread_task_runner_handle.h"
     28 #include "build/build_config.h"
     29 #include "testing/gtest/include/gtest/gtest.h"
     30 
     31 #if defined(OS_ANDROID)
     32 #include "base/android/jni_android.h"
     33 #include "base/test/android/java_handler_thread_for_testing.h"
     34 #endif
     35 
     36 #if defined(OS_WIN)
     37 #include "base/message_loop/message_pump_win.h"
     38 #include "base/process/memory.h"
     39 #include "base/strings/string16.h"
     40 #include "base/win/current_module.h"
     41 #include "base/win/scoped_handle.h"
     42 #endif
     43 
     44 namespace base {
     45 
     46 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
     47 // to avoid chopping this file up with so many #ifdefs.
     48 
     49 namespace {
     50 
     51 std::unique_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
     52   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
     53 }
     54 
     55 std::unique_ptr<MessagePump> TypeIOMessagePumpFactory() {
     56   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
     57 }
     58 
     59 std::unique_ptr<MessagePump> TypeUIMessagePumpFactory() {
     60   return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
     61 }
     62 
     63 class Foo : public RefCounted<Foo> {
     64  public:
     65   Foo() : test_count_(0) {
     66   }
     67 
     68   void Test1ConstRef(const std::string& a) {
     69     ++test_count_;
     70     result_.append(a);
     71   }
     72 
     73   int test_count() const { return test_count_; }
     74   const std::string& result() const { return result_; }
     75 
     76  private:
     77   friend class RefCounted<Foo>;
     78 
     79   ~Foo() {}
     80 
     81   int test_count_;
     82   std::string result_;
     83 };
     84 
     85 #if defined(OS_ANDROID)
     86 void AbortMessagePump() {
     87   JNIEnv* env = base::android::AttachCurrentThread();
     88   jclass exception = env->FindClass(
     89       "org/chromium/base/TestSystemMessageHandler$TestException");
     90 
     91   env->ThrowNew(exception,
     92                 "This is a test exception that should be caught in "
     93                 "TestSystemMessageHandler.handleMessage");
     94   static_cast<base::MessageLoopForUI*>(base::MessageLoop::current())->Abort();
     95 }
     96 
     97 void RunTest_AbortDontRunMoreTasks(bool delayed, bool init_java_first) {
     98   WaitableEvent test_done_event(WaitableEvent::ResetPolicy::MANUAL,
     99                                 WaitableEvent::InitialState::NOT_SIGNALED);
    100 
    101   std::unique_ptr<android::JavaHandlerThread> java_thread;
    102   if (init_java_first) {
    103     java_thread =
    104         android::JavaHandlerThreadForTesting::CreateJavaFirst(&test_done_event);
    105   } else {
    106     java_thread = android::JavaHandlerThreadForTesting::Create(
    107         "JavaHandlerThreadForTesting from AbortDontRunMoreTasks",
    108         &test_done_event);
    109   }
    110   java_thread->Start();
    111 
    112   if (delayed) {
    113     java_thread->message_loop()->task_runner()->PostDelayedTask(
    114         FROM_HERE, Bind(&AbortMessagePump), TimeDelta::FromMilliseconds(10));
    115   } else {
    116     java_thread->message_loop()->task_runner()->PostTask(
    117         FROM_HERE, Bind(&AbortMessagePump));
    118   }
    119 
    120   // Wait to ensure we catch the correct exception (and don't crash)
    121   test_done_event.Wait();
    122 
    123   java_thread->Stop();
    124   java_thread.reset();
    125 }
    126 
    127 TEST(MessageLoopTest, JavaExceptionAbort) {
    128   constexpr bool delayed = false;
    129   constexpr bool init_java_first = false;
    130   RunTest_AbortDontRunMoreTasks(delayed, init_java_first);
    131 }
    132 TEST(MessageLoopTest, DelayedJavaExceptionAbort) {
    133   constexpr bool delayed = true;
    134   constexpr bool init_java_first = false;
    135   RunTest_AbortDontRunMoreTasks(delayed, init_java_first);
    136 }
    137 TEST(MessageLoopTest, JavaExceptionAbortInitJavaFirst) {
    138   constexpr bool delayed = false;
    139   constexpr bool init_java_first = true;
    140   RunTest_AbortDontRunMoreTasks(delayed, init_java_first);
    141 }
    142 #endif  // defined(OS_ANDROID)
    143 
    144 #if defined(OS_WIN)
    145 
    146 // This function runs slowly to simulate a large amount of work being done.
    147 static void SlowFunc(TimeDelta pause, int* quit_counter) {
    148     PlatformThread::Sleep(pause);
    149     if (--(*quit_counter) == 0)
    150       MessageLoop::current()->QuitWhenIdle();
    151 }
    152 
    153 // This function records the time when Run was called in a Time object, which is
    154 // useful for building a variety of MessageLoop tests.
    155 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
    156   *run_time = Time::Now();
    157 
    158     // Cause our Run function to take some time to execute.  As a result we can
    159     // count on subsequent RecordRunTimeFunc()s running at a future time,
    160     // without worry about the resolution of our system clock being an issue.
    161   SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
    162 }
    163 
    164 void SubPumpFunc() {
    165   MessageLoop::current()->SetNestableTasksAllowed(true);
    166   MSG msg;
    167   while (GetMessage(&msg, NULL, 0, 0)) {
    168     TranslateMessage(&msg);
    169     DispatchMessage(&msg);
    170   }
    171   MessageLoop::current()->QuitWhenIdle();
    172 }
    173 
    174 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
    175   MessageLoop message_loop(MessageLoop::TYPE_UI);
    176 
    177   // Test that the interval of the timer, used to run the next delayed task, is
    178   // set to a value corresponding to when the next delayed task should run.
    179 
    180   // By setting num_tasks to 1, we ensure that the first task to run causes the
    181   // run loop to exit.
    182   int num_tasks = 1;
    183   Time run_time;
    184 
    185   message_loop.task_runner()->PostTask(FROM_HERE, Bind(&SubPumpFunc));
    186 
    187   // This very delayed task should never run.
    188   message_loop.task_runner()->PostDelayedTask(
    189       FROM_HERE, Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
    190       TimeDelta::FromSeconds(1000));
    191 
    192   // This slightly delayed task should run from within SubPumpFunc.
    193   message_loop.task_runner()->PostDelayedTask(
    194       FROM_HERE, Bind(&PostQuitMessage, 0), TimeDelta::FromMilliseconds(10));
    195 
    196   Time start_time = Time::Now();
    197 
    198   RunLoop().Run();
    199   EXPECT_EQ(1, num_tasks);
    200 
    201   // Ensure that we ran in far less time than the slower timer.
    202   TimeDelta total_time = Time::Now() - start_time;
    203   EXPECT_GT(5000, total_time.InMilliseconds());
    204 
    205   // In case both timers somehow run at nearly the same time, sleep a little
    206   // and then run all pending to force them both to have run.  This is just
    207   // encouraging flakiness if there is any.
    208   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
    209   RunLoop().RunUntilIdle();
    210 
    211   EXPECT_TRUE(run_time.is_null());
    212 }
    213 
    214 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
    215 
    216 enum TaskType {
    217   MESSAGEBOX,
    218   ENDDIALOG,
    219   RECURSIVE,
    220   TIMEDMESSAGELOOP,
    221   QUITMESSAGELOOP,
    222   ORDERED,
    223   PUMPS,
    224   SLEEP,
    225   RUNS,
    226 };
    227 
    228 // Saves the order in which the tasks executed.
    229 struct TaskItem {
    230   TaskItem(TaskType t, int c, bool s)
    231       : type(t),
    232         cookie(c),
    233         start(s) {
    234   }
    235 
    236   TaskType type;
    237   int cookie;
    238   bool start;
    239 
    240   bool operator == (const TaskItem& other) const {
    241     return type == other.type && cookie == other.cookie && start == other.start;
    242   }
    243 };
    244 
    245 std::ostream& operator <<(std::ostream& os, TaskType type) {
    246   switch (type) {
    247   case MESSAGEBOX:        os << "MESSAGEBOX"; break;
    248   case ENDDIALOG:         os << "ENDDIALOG"; break;
    249   case RECURSIVE:         os << "RECURSIVE"; break;
    250   case TIMEDMESSAGELOOP:  os << "TIMEDMESSAGELOOP"; break;
    251   case QUITMESSAGELOOP:   os << "QUITMESSAGELOOP"; break;
    252   case ORDERED:          os << "ORDERED"; break;
    253   case PUMPS:             os << "PUMPS"; break;
    254   case SLEEP:             os << "SLEEP"; break;
    255   default:
    256     NOTREACHED();
    257     os << "Unknown TaskType";
    258     break;
    259   }
    260   return os;
    261 }
    262 
    263 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
    264   if (item.start)
    265     return os << item.type << " " << item.cookie << " starts";
    266   else
    267     return os << item.type << " " << item.cookie << " ends";
    268 }
    269 
    270 class TaskList {
    271  public:
    272   void RecordStart(TaskType type, int cookie) {
    273     TaskItem item(type, cookie, true);
    274     DVLOG(1) << item;
    275     task_list_.push_back(item);
    276   }
    277 
    278   void RecordEnd(TaskType type, int cookie) {
    279     TaskItem item(type, cookie, false);
    280     DVLOG(1) << item;
    281     task_list_.push_back(item);
    282   }
    283 
    284   size_t Size() {
    285     return task_list_.size();
    286   }
    287 
    288   TaskItem Get(int n)  {
    289     return task_list_[n];
    290   }
    291 
    292  private:
    293   std::vector<TaskItem> task_list_;
    294 };
    295 
    296 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
    297 // common controls (like OpenFile) and StartDoc printing function can cause
    298 // implicit message loops.
    299 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
    300   order->RecordStart(MESSAGEBOX, cookie);
    301   if (is_reentrant)
    302     MessageLoop::current()->SetNestableTasksAllowed(true);
    303   MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
    304   order->RecordEnd(MESSAGEBOX, cookie);
    305 }
    306 
    307 // Will end the MessageBox.
    308 void EndDialogFunc(TaskList* order, int cookie) {
    309   order->RecordStart(ENDDIALOG, cookie);
    310   HWND window = GetActiveWindow();
    311   if (window != NULL) {
    312     EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
    313     // Cheap way to signal that the window wasn't found if RunEnd() isn't
    314     // called.
    315     order->RecordEnd(ENDDIALOG, cookie);
    316   }
    317 }
    318 
    319 void RecursiveFunc(TaskList* order, int cookie, int depth,
    320                    bool is_reentrant) {
    321   order->RecordStart(RECURSIVE, cookie);
    322   if (depth > 0) {
    323     if (is_reentrant)
    324       MessageLoop::current()->SetNestableTasksAllowed(true);
    325     ThreadTaskRunnerHandle::Get()->PostTask(
    326         FROM_HERE,
    327         Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
    328   }
    329   order->RecordEnd(RECURSIVE, cookie);
    330 }
    331 
    332 void QuitFunc(TaskList* order, int cookie) {
    333   order->RecordStart(QUITMESSAGELOOP, cookie);
    334   MessageLoop::current()->QuitWhenIdle();
    335   order->RecordEnd(QUITMESSAGELOOP, cookie);
    336 }
    337 
    338 void RecursiveFuncWin(scoped_refptr<SingleThreadTaskRunner> task_runner,
    339                       HANDLE event,
    340                       bool expect_window,
    341                       TaskList* order,
    342                       bool is_reentrant) {
    343   task_runner->PostTask(FROM_HERE,
    344                         Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
    345   task_runner->PostTask(FROM_HERE,
    346                         Bind(&MessageBoxFunc, order, 2, is_reentrant));
    347   task_runner->PostTask(FROM_HERE,
    348                         Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
    349   // The trick here is that for recursive task processing, this task will be
    350   // ran _inside_ the MessageBox message loop, dismissing the MessageBox
    351   // without a chance.
    352   // For non-recursive task processing, this will be executed _after_ the
    353   // MessageBox will have been dismissed by the code below, where
    354   // expect_window_ is true.
    355   task_runner->PostTask(FROM_HERE, Bind(&EndDialogFunc, order, 4));
    356   task_runner->PostTask(FROM_HERE, Bind(&QuitFunc, order, 5));
    357 
    358   // Enforce that every tasks are sent before starting to run the main thread
    359   // message loop.
    360   ASSERT_TRUE(SetEvent(event));
    361 
    362   // Poll for the MessageBox. Don't do this at home! At the speed we do it,
    363   // you will never realize one MessageBox was shown.
    364   for (; expect_window;) {
    365     HWND window = FindWindow(L"#32770", kMessageBoxTitle);
    366     if (window) {
    367       // Dismiss it.
    368       for (;;) {
    369         HWND button = FindWindowEx(window, NULL, L"Button", NULL);
    370         if (button != NULL) {
    371           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
    372           EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
    373           break;
    374         }
    375       }
    376       break;
    377     }
    378   }
    379 }
    380 
    381 // TODO(darin): These tests need to be ported since they test critical
    382 // message loop functionality.
    383 
    384 // A side effect of this test is the generation a beep. Sorry.
    385 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
    386   MessageLoop loop(message_loop_type);
    387 
    388   Thread worker("RecursiveDenial2_worker");
    389   Thread::Options options;
    390   options.message_loop_type = message_loop_type;
    391   ASSERT_EQ(true, worker.StartWithOptions(options));
    392   TaskList order;
    393   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
    394   worker.task_runner()->PostTask(
    395       FROM_HERE, Bind(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
    396                       event.Get(), true, &order, false));
    397   // Let the other thread execute.
    398   WaitForSingleObject(event.Get(), INFINITE);
    399   RunLoop().Run();
    400 
    401   ASSERT_EQ(17u, order.Size());
    402   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
    403   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
    404   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
    405   EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
    406   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
    407   EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
    408   // When EndDialogFunc is processed, the window is already dismissed, hence no
    409   // "end" entry.
    410   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
    411   EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
    412   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
    413   EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
    414   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
    415   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
    416   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
    417   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
    418   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
    419   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
    420   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
    421 }
    422 
    423 // A side effect of this test is the generation a beep. Sorry.  This test also
    424 // needs to process windows messages on the current thread.
    425 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
    426   MessageLoop loop(message_loop_type);
    427 
    428   Thread worker("RecursiveSupport2_worker");
    429   Thread::Options options;
    430   options.message_loop_type = message_loop_type;
    431   ASSERT_EQ(true, worker.StartWithOptions(options));
    432   TaskList order;
    433   win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
    434   worker.task_runner()->PostTask(
    435       FROM_HERE, Bind(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(),
    436                       event.Get(), false, &order, true));
    437   // Let the other thread execute.
    438   WaitForSingleObject(event.Get(), INFINITE);
    439   RunLoop().Run();
    440 
    441   ASSERT_EQ(18u, order.Size());
    442   EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
    443   EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
    444   EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
    445   // Note that this executes in the MessageBox modal loop.
    446   EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
    447   EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
    448   EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
    449   EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
    450   EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
    451   /* The order can subtly change here. The reason is that when RecursiveFunc(1)
    452      is called in the main thread, if it is faster than getting to the
    453      PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
    454      execution can change. We don't care anyway that the order isn't correct.
    455   EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
    456   EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
    457   EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
    458   EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
    459   */
    460   EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
    461   EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
    462   EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
    463   EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
    464   EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
    465   EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
    466 }
    467 
    468 #endif  // defined(OS_WIN)
    469 
    470 void PostNTasksThenQuit(int posts_remaining) {
    471   if (posts_remaining > 1) {
    472     ThreadTaskRunnerHandle::Get()->PostTask(
    473         FROM_HERE, Bind(&PostNTasksThenQuit, posts_remaining - 1));
    474   } else {
    475     MessageLoop::current()->QuitWhenIdle();
    476   }
    477 }
    478 
    479 #if defined(OS_WIN)
    480 
    481 class TestIOHandler : public MessageLoopForIO::IOHandler {
    482  public:
    483   TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
    484 
    485   void OnIOCompleted(MessageLoopForIO::IOContext* context,
    486                      DWORD bytes_transfered,
    487                      DWORD error) override;
    488 
    489   void Init();
    490   void WaitForIO();
    491   OVERLAPPED* context() { return &context_.overlapped; }
    492   DWORD size() { return sizeof(buffer_); }
    493 
    494  private:
    495   char buffer_[48];
    496   MessageLoopForIO::IOContext context_;
    497   HANDLE signal_;
    498   win::ScopedHandle file_;
    499   bool wait_;
    500 };
    501 
    502 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
    503     : signal_(signal), wait_(wait) {
    504   memset(buffer_, 0, sizeof(buffer_));
    505 
    506   file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
    507                        FILE_FLAG_OVERLAPPED, NULL));
    508   EXPECT_TRUE(file_.IsValid());
    509 }
    510 
    511 void TestIOHandler::Init() {
    512   MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
    513 
    514   DWORD read;
    515   EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
    516   EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
    517   if (wait_)
    518     WaitForIO();
    519 }
    520 
    521 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
    522                                   DWORD bytes_transfered, DWORD error) {
    523   ASSERT_TRUE(context == &context_);
    524   ASSERT_TRUE(SetEvent(signal_));
    525 }
    526 
    527 void TestIOHandler::WaitForIO() {
    528   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
    529   EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
    530 }
    531 
    532 void RunTest_IOHandler() {
    533   win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
    534   ASSERT_TRUE(callback_called.IsValid());
    535 
    536   const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
    537   win::ScopedHandle server(
    538       CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    539   ASSERT_TRUE(server.IsValid());
    540 
    541   Thread thread("IOHandler test");
    542   Thread::Options options;
    543   options.message_loop_type = MessageLoop::TYPE_IO;
    544   ASSERT_TRUE(thread.StartWithOptions(options));
    545 
    546   TestIOHandler handler(kPipeName, callback_called.Get(), false);
    547   thread.task_runner()->PostTask(
    548       FROM_HERE, Bind(&TestIOHandler::Init, Unretained(&handler)));
    549   // Make sure the thread runs and sleeps for lack of work.
    550   PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
    551 
    552   const char buffer[] = "Hello there!";
    553   DWORD written;
    554   EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
    555 
    556   DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
    557   EXPECT_EQ(WAIT_OBJECT_0, result);
    558 
    559   thread.Stop();
    560 }
    561 
    562 void RunTest_WaitForIO() {
    563   win::ScopedHandle callback1_called(
    564       CreateEvent(NULL, TRUE, FALSE, NULL));
    565   win::ScopedHandle callback2_called(
    566       CreateEvent(NULL, TRUE, FALSE, NULL));
    567   ASSERT_TRUE(callback1_called.IsValid());
    568   ASSERT_TRUE(callback2_called.IsValid());
    569 
    570   const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
    571   const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
    572   win::ScopedHandle server1(
    573       CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    574   win::ScopedHandle server2(
    575       CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
    576   ASSERT_TRUE(server1.IsValid());
    577   ASSERT_TRUE(server2.IsValid());
    578 
    579   Thread thread("IOHandler test");
    580   Thread::Options options;
    581   options.message_loop_type = MessageLoop::TYPE_IO;
    582   ASSERT_TRUE(thread.StartWithOptions(options));
    583 
    584   TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
    585   TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
    586   thread.task_runner()->PostTask(
    587       FROM_HERE, Bind(&TestIOHandler::Init, Unretained(&handler1)));
    588   // TODO(ajwong): Do we really need such long Sleeps in this function?
    589   // Make sure the thread runs and sleeps for lack of work.
    590   TimeDelta delay = TimeDelta::FromMilliseconds(100);
    591   PlatformThread::Sleep(delay);
    592   thread.task_runner()->PostTask(
    593       FROM_HERE, Bind(&TestIOHandler::Init, Unretained(&handler2)));
    594   PlatformThread::Sleep(delay);
    595 
    596   // At this time handler1 is waiting to be called, and the thread is waiting
    597   // on the Init method of handler2, filtering only handler2 callbacks.
    598 
    599   const char buffer[] = "Hello there!";
    600   DWORD written;
    601   EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
    602   PlatformThread::Sleep(2 * delay);
    603   EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
    604             WaitForSingleObject(callback1_called.Get(), 0))
    605       << "handler1 has not been called";
    606 
    607   EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
    608 
    609   HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
    610   DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
    611   EXPECT_EQ(WAIT_OBJECT_0, result);
    612 
    613   thread.Stop();
    614 }
    615 
    616 #endif  // defined(OS_WIN)
    617 
    618 }  // namespace
    619 
    620 //-----------------------------------------------------------------------------
    621 // Each test is run against each type of MessageLoop.  That way we are sure
    622 // that message loops work properly in all configurations.  Of course, in some
    623 // cases, a unit test may only be for a particular type of loop.
    624 
    625 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
    626 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
    627 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
    628 
    629 #if defined(OS_WIN)
    630 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
    631   RunTest_PostDelayedTask_SharedTimer_SubPump();
    632 }
    633 
    634 // This test occasionally hangs. See http://crbug.com/44567.
    635 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
    636   RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
    637   RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
    638   RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
    639 }
    640 
    641 TEST(MessageLoopTest, RecursiveSupport2) {
    642   // This test requires a UI loop.
    643   RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
    644 }
    645 #endif  // defined(OS_WIN)
    646 
    647 class DummyTaskObserver : public MessageLoop::TaskObserver {
    648  public:
    649   explicit DummyTaskObserver(int num_tasks)
    650       : num_tasks_started_(0),
    651         num_tasks_processed_(0),
    652         num_tasks_(num_tasks) {}
    653 
    654   ~DummyTaskObserver() override {}
    655 
    656   void WillProcessTask(const PendingTask& pending_task) override {
    657     num_tasks_started_++;
    658     EXPECT_LE(num_tasks_started_, num_tasks_);
    659     EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
    660   }
    661 
    662   void DidProcessTask(const PendingTask& pending_task) override {
    663     num_tasks_processed_++;
    664     EXPECT_LE(num_tasks_started_, num_tasks_);
    665     EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
    666   }
    667 
    668   int num_tasks_started() const { return num_tasks_started_; }
    669   int num_tasks_processed() const { return num_tasks_processed_; }
    670 
    671  private:
    672   int num_tasks_started_;
    673   int num_tasks_processed_;
    674   const int num_tasks_;
    675 
    676   DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
    677 };
    678 
    679 TEST(MessageLoopTest, TaskObserver) {
    680   const int kNumPosts = 6;
    681   DummyTaskObserver observer(kNumPosts);
    682 
    683   MessageLoop loop;
    684   loop.AddTaskObserver(&observer);
    685   loop.task_runner()->PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
    686   RunLoop().Run();
    687   loop.RemoveTaskObserver(&observer);
    688 
    689   EXPECT_EQ(kNumPosts, observer.num_tasks_started());
    690   EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
    691 }
    692 
    693 #if defined(OS_WIN)
    694 TEST(MessageLoopTest, IOHandler) {
    695   RunTest_IOHandler();
    696 }
    697 
    698 TEST(MessageLoopTest, WaitForIO) {
    699   RunTest_WaitForIO();
    700 }
    701 
    702 TEST(MessageLoopTest, HighResolutionTimer) {
    703   MessageLoop message_loop;
    704   Time::EnableHighResolutionTimer(true);
    705 
    706   const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
    707   const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
    708 
    709   EXPECT_FALSE(message_loop.HasHighResolutionTasks());
    710   // Post a fast task to enable the high resolution timers.
    711   message_loop.task_runner()->PostDelayedTask(
    712       FROM_HERE, Bind(&PostNTasksThenQuit, 1), kFastTimer);
    713   EXPECT_TRUE(message_loop.HasHighResolutionTasks());
    714   RunLoop().Run();
    715   EXPECT_FALSE(message_loop.HasHighResolutionTasks());
    716   EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
    717   // Check that a slow task does not trigger the high resolution logic.
    718   message_loop.task_runner()->PostDelayedTask(
    719       FROM_HERE, Bind(&PostNTasksThenQuit, 1), kSlowTimer);
    720   EXPECT_FALSE(message_loop.HasHighResolutionTasks());
    721   RunLoop().Run();
    722   EXPECT_FALSE(message_loop.HasHighResolutionTasks());
    723   Time::EnableHighResolutionTimer(false);
    724 }
    725 
    726 #endif  // defined(OS_WIN)
    727 
    728 #if defined(OS_POSIX) && !defined(OS_NACL)
    729 
    730 namespace {
    731 
    732 class QuitDelegate : public MessageLoopForIO::Watcher {
    733  public:
    734   void OnFileCanWriteWithoutBlocking(int fd) override {
    735     MessageLoop::current()->QuitWhenIdle();
    736   }
    737   void OnFileCanReadWithoutBlocking(int fd) override {
    738     MessageLoop::current()->QuitWhenIdle();
    739   }
    740 };
    741 
    742 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
    743   // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
    744   // This could happen when people use the Singleton pattern or atexit.
    745 
    746   // Create a file descriptor.  Doesn't need to be readable or writable,
    747   // as we don't need to actually get any notifications.
    748   // pipe() is just the easiest way to do it.
    749   int pipefds[2];
    750   int err = pipe(pipefds);
    751   ASSERT_EQ(0, err);
    752   int fd = pipefds[1];
    753   {
    754     // Arrange for controller to live longer than message loop.
    755     MessageLoopForIO::FileDescriptorWatcher controller(FROM_HERE);
    756     {
    757       MessageLoopForIO message_loop;
    758 
    759       QuitDelegate delegate;
    760       message_loop.WatchFileDescriptor(fd,
    761           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
    762       // and don't run the message loop, just destroy it.
    763     }
    764   }
    765   if (IGNORE_EINTR(close(pipefds[0])) < 0)
    766     PLOG(ERROR) << "close";
    767   if (IGNORE_EINTR(close(pipefds[1])) < 0)
    768     PLOG(ERROR) << "close";
    769 }
    770 
    771 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
    772   // Verify that it's ok to call StopWatchingFileDescriptor().
    773   // (Errors only showed up in valgrind.)
    774   int pipefds[2];
    775   int err = pipe(pipefds);
    776   ASSERT_EQ(0, err);
    777   int fd = pipefds[1];
    778   {
    779     // Arrange for message loop to live longer than controller.
    780     MessageLoopForIO message_loop;
    781     {
    782       MessageLoopForIO::FileDescriptorWatcher controller(FROM_HERE);
    783 
    784       QuitDelegate delegate;
    785       message_loop.WatchFileDescriptor(fd,
    786           true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
    787       controller.StopWatchingFileDescriptor();
    788     }
    789   }
    790   if (IGNORE_EINTR(close(pipefds[0])) < 0)
    791     PLOG(ERROR) << "close";
    792   if (IGNORE_EINTR(close(pipefds[1])) < 0)
    793     PLOG(ERROR) << "close";
    794 }
    795 
    796 }  // namespace
    797 
    798 #endif  // defined(OS_POSIX) && !defined(OS_NACL)
    799 
    800 namespace {
    801 // Inject a test point for recording the destructor calls for Closure objects
    802 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
    803 // hook the actual destruction, which is not a common operation.
    804 class DestructionObserverProbe :
    805   public RefCounted<DestructionObserverProbe> {
    806  public:
    807   DestructionObserverProbe(bool* task_destroyed,
    808                            bool* destruction_observer_called)
    809       : task_destroyed_(task_destroyed),
    810         destruction_observer_called_(destruction_observer_called) {
    811   }
    812   virtual void Run() {
    813     // This task should never run.
    814     ADD_FAILURE();
    815   }
    816  private:
    817   friend class RefCounted<DestructionObserverProbe>;
    818 
    819   virtual ~DestructionObserverProbe() {
    820     EXPECT_FALSE(*destruction_observer_called_);
    821     *task_destroyed_ = true;
    822   }
    823 
    824   bool* task_destroyed_;
    825   bool* destruction_observer_called_;
    826 };
    827 
    828 class MLDestructionObserver : public MessageLoop::DestructionObserver {
    829  public:
    830   MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
    831       : task_destroyed_(task_destroyed),
    832         destruction_observer_called_(destruction_observer_called),
    833         task_destroyed_before_message_loop_(false) {
    834   }
    835   void WillDestroyCurrentMessageLoop() override {
    836     task_destroyed_before_message_loop_ = *task_destroyed_;
    837     *destruction_observer_called_ = true;
    838   }
    839   bool task_destroyed_before_message_loop() const {
    840     return task_destroyed_before_message_loop_;
    841   }
    842  private:
    843   bool* task_destroyed_;
    844   bool* destruction_observer_called_;
    845   bool task_destroyed_before_message_loop_;
    846 };
    847 
    848 }  // namespace
    849 
    850 TEST(MessageLoopTest, DestructionObserverTest) {
    851   // Verify that the destruction observer gets called at the very end (after
    852   // all the pending tasks have been destroyed).
    853   MessageLoop* loop = new MessageLoop;
    854   const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
    855 
    856   bool task_destroyed = false;
    857   bool destruction_observer_called = false;
    858 
    859   MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
    860   loop->AddDestructionObserver(&observer);
    861   loop->task_runner()->PostDelayedTask(
    862       FROM_HERE, Bind(&DestructionObserverProbe::Run,
    863                       new DestructionObserverProbe(
    864                           &task_destroyed, &destruction_observer_called)),
    865       kDelay);
    866   delete loop;
    867   EXPECT_TRUE(observer.task_destroyed_before_message_loop());
    868   // The task should have been destroyed when we deleted the loop.
    869   EXPECT_TRUE(task_destroyed);
    870   EXPECT_TRUE(destruction_observer_called);
    871 }
    872 
    873 
    874 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
    875 // posts tasks on that message loop.
    876 TEST(MessageLoopTest, ThreadMainTaskRunner) {
    877   MessageLoop loop;
    878 
    879   scoped_refptr<Foo> foo(new Foo());
    880   std::string a("a");
    881   ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
    882       &Foo::Test1ConstRef, foo, a));
    883 
    884   // Post quit task;
    885   ThreadTaskRunnerHandle::Get()->PostTask(
    886       FROM_HERE,
    887       Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
    888 
    889   // Now kick things off
    890   RunLoop().Run();
    891 
    892   EXPECT_EQ(foo->test_count(), 1);
    893   EXPECT_EQ(foo->result(), "a");
    894 }
    895 
    896 TEST(MessageLoopTest, IsType) {
    897   MessageLoop loop(MessageLoop::TYPE_UI);
    898   EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
    899   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
    900   EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
    901 }
    902 
    903 #if defined(OS_WIN)
    904 void EmptyFunction() {}
    905 
    906 void PostMultipleTasks() {
    907   ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
    908                                           base::Bind(&EmptyFunction));
    909   ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
    910                                           base::Bind(&EmptyFunction));
    911 }
    912 
    913 static const int kSignalMsg = WM_USER + 2;
    914 
    915 void PostWindowsMessage(HWND message_hwnd) {
    916   PostMessage(message_hwnd, kSignalMsg, 0, 2);
    917 }
    918 
    919 void EndTest(bool* did_run, HWND hwnd) {
    920   *did_run = true;
    921   PostMessage(hwnd, WM_CLOSE, 0, 0);
    922 }
    923 
    924 int kMyMessageFilterCode = 0x5002;
    925 
    926 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
    927                                   WPARAM wparam, LPARAM lparam) {
    928   if (message == WM_CLOSE)
    929     EXPECT_TRUE(DestroyWindow(hwnd));
    930   if (message != kSignalMsg)
    931     return DefWindowProc(hwnd, message, wparam, lparam);
    932 
    933   switch (lparam) {
    934   case 1:
    935     // First, we post a task that will post multiple no-op tasks to make sure
    936     // that the pump's incoming task queue does not become empty during the
    937     // test.
    938     ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
    939                                             base::Bind(&PostMultipleTasks));
    940     // Next, we post a task that posts a windows message to trigger the second
    941     // stage of the test.
    942     ThreadTaskRunnerHandle::Get()->PostTask(
    943         FROM_HERE, base::Bind(&PostWindowsMessage, hwnd));
    944     break;
    945   case 2:
    946     // Since we're about to enter a modal loop, tell the message loop that we
    947     // intend to nest tasks.
    948     MessageLoop::current()->SetNestableTasksAllowed(true);
    949     bool did_run = false;
    950     ThreadTaskRunnerHandle::Get()->PostTask(
    951         FROM_HERE, base::Bind(&EndTest, &did_run, hwnd));
    952     // Run a nested windows-style message loop and verify that our task runs. If
    953     // it doesn't, then we'll loop here until the test times out.
    954     MSG msg;
    955     while (GetMessage(&msg, 0, 0, 0)) {
    956       if (!CallMsgFilter(&msg, kMyMessageFilterCode))
    957         DispatchMessage(&msg);
    958       // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
    959       // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
    960       // WM_QUIT messages even when running inside a modal loop.
    961       if (msg.message == WM_CLOSE)
    962         break;
    963     }
    964     EXPECT_TRUE(did_run);
    965     MessageLoop::current()->QuitWhenIdle();
    966     break;
    967   }
    968   return 0;
    969 }
    970 
    971 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
    972   MessageLoop loop(MessageLoop::TYPE_UI);
    973   HINSTANCE instance = CURRENT_MODULE();
    974   WNDCLASSEX wc = {0};
    975   wc.cbSize = sizeof(wc);
    976   wc.lpfnWndProc = TestWndProcThunk;
    977   wc.hInstance = instance;
    978   wc.lpszClassName = L"MessageLoopTest_HWND";
    979   ATOM atom = RegisterClassEx(&wc);
    980   ASSERT_TRUE(atom);
    981 
    982   HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
    983                                    HWND_MESSAGE, 0, instance, 0);
    984   ASSERT_TRUE(message_hwnd) << GetLastError();
    985 
    986   ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
    987 
    988   RunLoop().Run();
    989 
    990   ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
    991 }
    992 #endif  // defined(OS_WIN)
    993 
    994 TEST(MessageLoopTest, SetTaskRunner) {
    995   MessageLoop loop;
    996   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
    997 
    998   loop.SetTaskRunner(new_runner);
    999   EXPECT_EQ(new_runner, loop.task_runner());
   1000   EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
   1001 }
   1002 
   1003 TEST(MessageLoopTest, OriginalRunnerWorks) {
   1004   MessageLoop loop;
   1005   scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
   1006   scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
   1007   loop.SetTaskRunner(new_runner);
   1008 
   1009   scoped_refptr<Foo> foo(new Foo());
   1010   original_runner->PostTask(FROM_HERE,
   1011                             Bind(&Foo::Test1ConstRef, foo, "a"));
   1012   RunLoop().RunUntilIdle();
   1013   EXPECT_EQ(1, foo->test_count());
   1014 }
   1015 
   1016 TEST(MessageLoopTest, DeleteUnboundLoop) {
   1017   // It should be possible to delete an unbound message loop on a thread which
   1018   // already has another active loop. This happens when thread creation fails.
   1019   MessageLoop loop;
   1020   std::unique_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
   1021       MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
   1022   unbound_loop.reset();
   1023   EXPECT_EQ(&loop, MessageLoop::current());
   1024   EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
   1025 }
   1026 
   1027 TEST(MessageLoopTest, ThreadName) {
   1028   {
   1029     std::string kThreadName("foo");
   1030     MessageLoop loop;
   1031     PlatformThread::SetName(kThreadName);
   1032     EXPECT_EQ(kThreadName, loop.GetThreadName());
   1033   }
   1034 
   1035   {
   1036     std::string kThreadName("bar");
   1037     base::Thread thread(kThreadName);
   1038     ASSERT_TRUE(thread.StartAndWaitForTesting());
   1039     EXPECT_EQ(kThreadName, thread.message_loop()->GetThreadName());
   1040   }
   1041 }
   1042 
   1043 }  // namespace base
   1044