1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #if V8_TARGET_ARCH_X64 6 7 #include "src/api-arguments.h" 8 #include "src/bootstrapper.h" 9 #include "src/code-stubs.h" 10 #include "src/codegen.h" 11 #include "src/counters.h" 12 #include "src/double.h" 13 #include "src/heap/heap-inl.h" 14 #include "src/ic/handler-compiler.h" 15 #include "src/ic/ic.h" 16 #include "src/ic/stub-cache.h" 17 #include "src/isolate.h" 18 #include "src/objects-inl.h" 19 #include "src/objects/regexp-match-info.h" 20 #include "src/regexp/jsregexp.h" 21 #include "src/regexp/regexp-macro-assembler.h" 22 #include "src/runtime/runtime.h" 23 24 #include "src/x64/code-stubs-x64.h" // Cannot be the first include. 25 26 namespace v8 { 27 namespace internal { 28 29 #define __ ACCESS_MASM(masm) 30 31 void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { 32 __ popq(rcx); 33 __ movq(MemOperand(rsp, rax, times_8, 0), rdi); 34 __ pushq(rdi); 35 __ pushq(rbx); 36 __ pushq(rcx); 37 __ addq(rax, Immediate(3)); 38 __ TailCallRuntime(Runtime::kNewArray); 39 } 40 41 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, 42 ExternalReference miss) { 43 // Update the static counter each time a new code stub is generated. 44 isolate()->counters()->code_stubs()->Increment(); 45 46 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); 47 int param_count = descriptor.GetRegisterParameterCount(); 48 { 49 // Call the runtime system in a fresh internal frame. 50 FrameScope scope(masm, StackFrame::INTERNAL); 51 DCHECK(param_count == 0 || 52 rax.is(descriptor.GetRegisterParameter(param_count - 1))); 53 // Push arguments 54 for (int i = 0; i < param_count; ++i) { 55 __ Push(descriptor.GetRegisterParameter(i)); 56 } 57 __ CallExternalReference(miss, param_count); 58 } 59 60 __ Ret(); 61 } 62 63 64 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { 65 __ PushCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs); 66 const int argument_count = 1; 67 __ PrepareCallCFunction(argument_count); 68 __ LoadAddress(arg_reg_1, 69 ExternalReference::isolate_address(isolate())); 70 71 AllowExternalCallThatCantCauseGC scope(masm); 72 __ CallCFunction( 73 ExternalReference::store_buffer_overflow_function(isolate()), 74 argument_count); 75 __ PopCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs); 76 __ ret(0); 77 } 78 79 80 class FloatingPointHelper : public AllStatic { 81 public: 82 enum ConvertUndefined { 83 CONVERT_UNDEFINED_TO_ZERO, 84 BAILOUT_ON_UNDEFINED 85 }; 86 // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. 87 // If the operands are not both numbers, jump to not_numbers. 88 // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. 89 // NumberOperands assumes both are smis or heap numbers. 90 static void LoadSSE2UnknownOperands(MacroAssembler* masm, 91 Label* not_numbers); 92 }; 93 94 95 void DoubleToIStub::Generate(MacroAssembler* masm) { 96 Register input_reg = this->source(); 97 Register final_result_reg = this->destination(); 98 DCHECK(is_truncating()); 99 100 Label check_negative, process_64_bits, done; 101 102 int double_offset = offset(); 103 104 // Account for return address and saved regs if input is rsp. 105 if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize; 106 107 MemOperand mantissa_operand(MemOperand(input_reg, double_offset)); 108 MemOperand exponent_operand(MemOperand(input_reg, 109 double_offset + kDoubleSize / 2)); 110 111 Register scratch1; 112 Register scratch_candidates[3] = { rbx, rdx, rdi }; 113 for (int i = 0; i < 3; i++) { 114 scratch1 = scratch_candidates[i]; 115 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break; 116 } 117 118 // Since we must use rcx for shifts below, use some other register (rax) 119 // to calculate the result if ecx is the requested return register. 120 Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg; 121 // Save ecx if it isn't the return register and therefore volatile, or if it 122 // is the return register, then save the temp register we use in its stead 123 // for the result. 124 Register save_reg = final_result_reg.is(rcx) ? rax : rcx; 125 __ pushq(scratch1); 126 __ pushq(save_reg); 127 128 bool stash_exponent_copy = !input_reg.is(rsp); 129 __ movl(scratch1, mantissa_operand); 130 __ Movsd(kScratchDoubleReg, mantissa_operand); 131 __ movl(rcx, exponent_operand); 132 if (stash_exponent_copy) __ pushq(rcx); 133 134 __ andl(rcx, Immediate(HeapNumber::kExponentMask)); 135 __ shrl(rcx, Immediate(HeapNumber::kExponentShift)); 136 __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias)); 137 __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits)); 138 __ j(below, &process_64_bits); 139 140 // Result is entirely in lower 32-bits of mantissa 141 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; 142 __ subl(rcx, Immediate(delta)); 143 __ xorl(result_reg, result_reg); 144 __ cmpl(rcx, Immediate(31)); 145 __ j(above, &done); 146 __ shll_cl(scratch1); 147 __ jmp(&check_negative); 148 149 __ bind(&process_64_bits); 150 __ Cvttsd2siq(result_reg, kScratchDoubleReg); 151 __ jmp(&done, Label::kNear); 152 153 // If the double was negative, negate the integer result. 154 __ bind(&check_negative); 155 __ movl(result_reg, scratch1); 156 __ negl(result_reg); 157 if (stash_exponent_copy) { 158 __ cmpl(MemOperand(rsp, 0), Immediate(0)); 159 } else { 160 __ cmpl(exponent_operand, Immediate(0)); 161 } 162 __ cmovl(greater, result_reg, scratch1); 163 164 // Restore registers 165 __ bind(&done); 166 if (stash_exponent_copy) { 167 __ addp(rsp, Immediate(kDoubleSize)); 168 } 169 if (!final_result_reg.is(result_reg)) { 170 DCHECK(final_result_reg.is(rcx)); 171 __ movl(final_result_reg, result_reg); 172 } 173 __ popq(save_reg); 174 __ popq(scratch1); 175 __ ret(0); 176 } 177 178 179 void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, 180 Label* not_numbers) { 181 Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; 182 // Load operand in rdx into xmm0, or branch to not_numbers. 183 __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); 184 __ JumpIfSmi(rdx, &load_smi_rdx); 185 __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx); 186 __ j(not_equal, not_numbers); // Argument in rdx is not a number. 187 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 188 // Load operand in rax into xmm1, or branch to not_numbers. 189 __ JumpIfSmi(rax, &load_smi_rax); 190 191 __ bind(&load_nonsmi_rax); 192 __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx); 193 __ j(not_equal, not_numbers); 194 __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 195 __ jmp(&done); 196 197 __ bind(&load_smi_rdx); 198 __ SmiToInteger32(kScratchRegister, rdx); 199 __ Cvtlsi2sd(xmm0, kScratchRegister); 200 __ JumpIfNotSmi(rax, &load_nonsmi_rax); 201 202 __ bind(&load_smi_rax); 203 __ SmiToInteger32(kScratchRegister, rax); 204 __ Cvtlsi2sd(xmm1, kScratchRegister); 205 __ bind(&done); 206 } 207 208 209 void MathPowStub::Generate(MacroAssembler* masm) { 210 const Register exponent = MathPowTaggedDescriptor::exponent(); 211 DCHECK(exponent.is(rdx)); 212 const Register scratch = rcx; 213 const XMMRegister double_result = xmm3; 214 const XMMRegister double_base = xmm2; 215 const XMMRegister double_exponent = xmm1; 216 const XMMRegister double_scratch = xmm4; 217 218 Label call_runtime, done, exponent_not_smi, int_exponent; 219 220 // Save 1 in double_result - we need this several times later on. 221 __ movp(scratch, Immediate(1)); 222 __ Cvtlsi2sd(double_result, scratch); 223 224 if (exponent_type() == TAGGED) { 225 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); 226 __ SmiToInteger32(exponent, exponent); 227 __ jmp(&int_exponent); 228 229 __ bind(&exponent_not_smi); 230 __ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); 231 } 232 233 if (exponent_type() != INTEGER) { 234 Label fast_power, try_arithmetic_simplification; 235 // Detect integer exponents stored as double. 236 __ DoubleToI(exponent, double_exponent, double_scratch, 237 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification, 238 &try_arithmetic_simplification, 239 &try_arithmetic_simplification); 240 __ jmp(&int_exponent); 241 242 __ bind(&try_arithmetic_simplification); 243 __ Cvttsd2si(exponent, double_exponent); 244 // Skip to runtime if possibly NaN (indicated by the indefinite integer). 245 __ cmpl(exponent, Immediate(0x1)); 246 __ j(overflow, &call_runtime); 247 248 // Using FPU instructions to calculate power. 249 Label fast_power_failed; 250 __ bind(&fast_power); 251 __ fnclex(); // Clear flags to catch exceptions later. 252 // Transfer (B)ase and (E)xponent onto the FPU register stack. 253 __ subp(rsp, Immediate(kDoubleSize)); 254 __ Movsd(Operand(rsp, 0), double_exponent); 255 __ fld_d(Operand(rsp, 0)); // E 256 __ Movsd(Operand(rsp, 0), double_base); 257 __ fld_d(Operand(rsp, 0)); // B, E 258 259 // Exponent is in st(1) and base is in st(0) 260 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) 261 // FYL2X calculates st(1) * log2(st(0)) 262 __ fyl2x(); // X 263 __ fld(0); // X, X 264 __ frndint(); // rnd(X), X 265 __ fsub(1); // rnd(X), X-rnd(X) 266 __ fxch(1); // X - rnd(X), rnd(X) 267 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 268 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) 269 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) 270 __ faddp(1); // 2^(X-rnd(X)), rnd(X) 271 // FSCALE calculates st(0) * 2^st(1) 272 __ fscale(); // 2^X, rnd(X) 273 __ fstp(1); 274 // Bail out to runtime in case of exceptions in the status word. 275 __ fnstsw_ax(); 276 __ testb(rax, Immediate(0x5F)); // Check for all but precision exception. 277 __ j(not_zero, &fast_power_failed, Label::kNear); 278 __ fstp_d(Operand(rsp, 0)); 279 __ Movsd(double_result, Operand(rsp, 0)); 280 __ addp(rsp, Immediate(kDoubleSize)); 281 __ jmp(&done); 282 283 __ bind(&fast_power_failed); 284 __ fninit(); 285 __ addp(rsp, Immediate(kDoubleSize)); 286 __ jmp(&call_runtime); 287 } 288 289 // Calculate power with integer exponent. 290 __ bind(&int_exponent); 291 const XMMRegister double_scratch2 = double_exponent; 292 // Back up exponent as we need to check if exponent is negative later. 293 __ movp(scratch, exponent); // Back up exponent. 294 __ Movsd(double_scratch, double_base); // Back up base. 295 __ Movsd(double_scratch2, double_result); // Load double_exponent with 1. 296 297 // Get absolute value of exponent. 298 Label no_neg, while_true, while_false; 299 __ testl(scratch, scratch); 300 __ j(positive, &no_neg, Label::kNear); 301 __ negl(scratch); 302 __ bind(&no_neg); 303 304 __ j(zero, &while_false, Label::kNear); 305 __ shrl(scratch, Immediate(1)); 306 // Above condition means CF==0 && ZF==0. This means that the 307 // bit that has been shifted out is 0 and the result is not 0. 308 __ j(above, &while_true, Label::kNear); 309 __ Movsd(double_result, double_scratch); 310 __ j(zero, &while_false, Label::kNear); 311 312 __ bind(&while_true); 313 __ shrl(scratch, Immediate(1)); 314 __ Mulsd(double_scratch, double_scratch); 315 __ j(above, &while_true, Label::kNear); 316 __ Mulsd(double_result, double_scratch); 317 __ j(not_zero, &while_true); 318 319 __ bind(&while_false); 320 // If the exponent is negative, return 1/result. 321 __ testl(exponent, exponent); 322 __ j(greater, &done); 323 __ Divsd(double_scratch2, double_result); 324 __ Movsd(double_result, double_scratch2); 325 // Test whether result is zero. Bail out to check for subnormal result. 326 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. 327 __ Xorpd(double_scratch2, double_scratch2); 328 __ Ucomisd(double_scratch2, double_result); 329 // double_exponent aliased as double_scratch2 has already been overwritten 330 // and may not have contained the exponent value in the first place when the 331 // input was a smi. We reset it with exponent value before bailing out. 332 __ j(not_equal, &done); 333 __ Cvtlsi2sd(double_exponent, exponent); 334 335 // Returning or bailing out. 336 __ bind(&call_runtime); 337 // Move base to the correct argument register. Exponent is already in xmm1. 338 __ Movsd(xmm0, double_base); 339 DCHECK(double_exponent.is(xmm1)); 340 { 341 AllowExternalCallThatCantCauseGC scope(masm); 342 __ PrepareCallCFunction(2); 343 __ CallCFunction(ExternalReference::power_double_double_function(isolate()), 344 2); 345 } 346 // Return value is in xmm0. 347 __ Movsd(double_result, xmm0); 348 349 __ bind(&done); 350 __ ret(0); 351 } 352 353 void RegExpExecStub::Generate(MacroAssembler* masm) { 354 // Just jump directly to runtime if native RegExp is not selected at compile 355 // time or if regexp entry in generated code is turned off runtime switch or 356 // at compilation. 357 #ifdef V8_INTERPRETED_REGEXP 358 __ TailCallRuntime(Runtime::kRegExpExec); 359 #else // V8_INTERPRETED_REGEXP 360 361 // Stack frame on entry. 362 // rsp[0] : return address 363 // rsp[8] : last_match_info (expected JSArray) 364 // rsp[16] : previous index 365 // rsp[24] : subject string 366 // rsp[32] : JSRegExp object 367 368 enum RegExpExecStubArgumentIndices { 369 JS_REG_EXP_OBJECT_ARGUMENT_INDEX, 370 SUBJECT_STRING_ARGUMENT_INDEX, 371 PREVIOUS_INDEX_ARGUMENT_INDEX, 372 LAST_MATCH_INFO_ARGUMENT_INDEX, 373 REG_EXP_EXEC_ARGUMENT_COUNT 374 }; 375 376 StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT, 377 ARGUMENTS_DONT_CONTAIN_RECEIVER); 378 Label runtime; 379 // Ensure that a RegExp stack is allocated. 380 ExternalReference address_of_regexp_stack_memory_address = 381 ExternalReference::address_of_regexp_stack_memory_address(isolate()); 382 ExternalReference address_of_regexp_stack_memory_size = 383 ExternalReference::address_of_regexp_stack_memory_size(isolate()); 384 __ Load(kScratchRegister, address_of_regexp_stack_memory_size); 385 __ testp(kScratchRegister, kScratchRegister); 386 __ j(zero, &runtime); 387 388 // Check that the first argument is a JSRegExp object. 389 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); 390 __ JumpIfSmi(rax, &runtime); 391 __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); 392 __ j(not_equal, &runtime); 393 394 // Check that the RegExp has been compiled (data contains a fixed array). 395 __ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset)); 396 if (FLAG_debug_code) { 397 Condition is_smi = masm->CheckSmi(rax); 398 __ Check(NegateCondition(is_smi), 399 kUnexpectedTypeForRegExpDataFixedArrayExpected); 400 __ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister); 401 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); 402 } 403 404 // rax: RegExp data (FixedArray) 405 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. 406 __ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset)); 407 __ cmpl(rbx, Immediate(JSRegExp::IRREGEXP)); 408 __ j(not_equal, &runtime); 409 410 // rax: RegExp data (FixedArray) 411 // Check that the number of captures fit in the static offsets vector buffer. 412 __ SmiToInteger32(rdx, 413 FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset)); 414 // Check (number_of_captures + 1) * 2 <= offsets vector size 415 // Or number_of_captures <= offsets vector size / 2 - 1 416 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); 417 __ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1)); 418 __ j(above, &runtime); 419 420 // Reset offset for possibly sliced string. 421 __ Set(r14, 0); 422 __ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); 423 __ JumpIfSmi(rdi, &runtime); 424 __ movp(r15, rdi); // Make a copy of the original subject string. 425 // rax: RegExp data (FixedArray) 426 // rdi: subject string 427 // r15: subject string 428 // Handle subject string according to its encoding and representation: 429 // (1) Sequential two byte? If yes, go to (9). 430 // (2) Sequential one byte? If yes, go to (5). 431 // (3) Sequential or cons? If not, go to (6). 432 // (4) Cons string. If the string is flat, replace subject with first string 433 // and go to (1). Otherwise bail out to runtime. 434 // (5) One byte sequential. Load regexp code for one byte. 435 // (E) Carry on. 436 /// [...] 437 438 // Deferred code at the end of the stub: 439 // (6) Long external string? If not, go to (10). 440 // (7) External string. Make it, offset-wise, look like a sequential string. 441 // (8) Is the external string one byte? If yes, go to (5). 442 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). 443 // (10) Short external string or not a string? If yes, bail out to runtime. 444 // (11) Sliced or thin string. Replace subject with parent. Go to (1). 445 446 Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */, 447 external_string /* 7 */, check_underlying /* 1 */, 448 not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */; 449 450 __ bind(&check_underlying); 451 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 452 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 453 454 // (1) Sequential two byte? If yes, go to (9). 455 __ andb(rbx, Immediate(kIsNotStringMask | 456 kStringRepresentationMask | 457 kStringEncodingMask | 458 kShortExternalStringMask)); 459 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); 460 __ j(zero, &seq_two_byte_string); // Go to (9). 461 462 // (2) Sequential one byte? If yes, go to (5). 463 // Any other sequential string must be one byte. 464 __ andb(rbx, Immediate(kIsNotStringMask | 465 kStringRepresentationMask | 466 kShortExternalStringMask)); 467 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5). 468 469 // (3) Sequential or cons? If not, go to (6). 470 // We check whether the subject string is a cons, since sequential strings 471 // have already been covered. 472 STATIC_ASSERT(kConsStringTag < kExternalStringTag); 473 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); 474 STATIC_ASSERT(kThinStringTag > kExternalStringTag); 475 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); 476 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); 477 __ cmpp(rbx, Immediate(kExternalStringTag)); 478 __ j(greater_equal, ¬_seq_nor_cons); // Go to (6). 479 480 // (4) Cons string. Check that it's flat. 481 // Replace subject with first string and reload instance type. 482 __ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset), 483 Heap::kempty_stringRootIndex); 484 __ j(not_equal, &runtime); 485 __ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset)); 486 __ jmp(&check_underlying); 487 488 // (5) One byte sequential. Load regexp code for one byte. 489 __ bind(&seq_one_byte_string); 490 // rax: RegExp data (FixedArray) 491 __ movp(r11, FieldOperand(rax, JSRegExp::kDataOneByteCodeOffset)); 492 __ Set(rcx, 1); // Type is one byte. 493 494 // (E) Carry on. String handling is done. 495 __ bind(&check_code); 496 // r11: irregexp code 497 // Check that the irregexp code has been generated for the actual string 498 // encoding. If it has, the field contains a code object otherwise it contains 499 // smi (code flushing support) 500 __ JumpIfSmi(r11, &runtime); 501 502 // rdi: sequential subject string (or look-alike, external string) 503 // r15: original subject string 504 // rcx: encoding of subject string (1 if one_byte, 0 if two_byte); 505 // r11: code 506 // Load used arguments before starting to push arguments for call to native 507 // RegExp code to avoid handling changing stack height. 508 // We have to use r15 instead of rdi to load the length because rdi might 509 // have been only made to look like a sequential string when it actually 510 // is an external string. 511 __ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX)); 512 __ JumpIfNotSmi(rbx, &runtime); 513 __ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset)); 514 __ j(above_equal, &runtime); 515 __ SmiToInteger64(rbx, rbx); 516 517 // rdi: subject string 518 // rbx: previous index 519 // rcx: encoding of subject string (1 if one_byte 0 if two_byte); 520 // r11: code 521 // All checks done. Now push arguments for native regexp code. 522 Counters* counters = isolate()->counters(); 523 __ IncrementCounter(counters->regexp_entry_native(), 1); 524 525 // Isolates: note we add an additional parameter here (isolate pointer). 526 static const int kRegExpExecuteArguments = 9; 527 int argument_slots_on_stack = 528 masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); 529 __ EnterApiExitFrame(argument_slots_on_stack); 530 531 // Argument 9: Pass current isolate address. 532 __ LoadAddress(kScratchRegister, 533 ExternalReference::isolate_address(isolate())); 534 __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize), 535 kScratchRegister); 536 537 // Argument 8: Indicate that this is a direct call from JavaScript. 538 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize), 539 Immediate(1)); 540 541 // Argument 7: Start (high end) of backtracking stack memory area. 542 __ Move(kScratchRegister, address_of_regexp_stack_memory_address); 543 __ movp(r9, Operand(kScratchRegister, 0)); 544 __ Move(kScratchRegister, address_of_regexp_stack_memory_size); 545 __ addp(r9, Operand(kScratchRegister, 0)); 546 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9); 547 548 // Argument 6: Set the number of capture registers to zero to force global 549 // regexps to behave as non-global. This does not affect non-global regexps. 550 // Argument 6 is passed in r9 on Linux and on the stack on Windows. 551 #ifdef _WIN64 552 __ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize), 553 Immediate(0)); 554 #else 555 __ Set(r9, 0); 556 #endif 557 558 // Argument 5: static offsets vector buffer. 559 __ LoadAddress( 560 r8, ExternalReference::address_of_static_offsets_vector(isolate())); 561 // Argument 5 passed in r8 on Linux and on the stack on Windows. 562 #ifdef _WIN64 563 __ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8); 564 #endif 565 566 // rdi: subject string 567 // rbx: previous index 568 // rcx: encoding of subject string (1 if one_byte 0 if two_byte); 569 // r11: code 570 // r14: slice offset 571 // r15: original subject string 572 573 // Argument 2: Previous index. 574 __ movp(arg_reg_2, rbx); 575 576 // Argument 4: End of string data 577 // Argument 3: Start of string data 578 Label setup_two_byte, setup_rest, got_length, length_not_from_slice; 579 // Prepare start and end index of the input. 580 // Load the length from the original sliced string if that is the case. 581 __ addp(rbx, r14); 582 __ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset)); 583 __ addp(r14, arg_reg_3); // Using arg3 as scratch. 584 585 // rbx: start index of the input 586 // r14: end index of the input 587 // r15: original subject string 588 __ testb(rcx, rcx); // Last use of rcx as encoding of subject string. 589 __ j(zero, &setup_two_byte, Label::kNear); 590 __ leap(arg_reg_4, 591 FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize)); 592 __ leap(arg_reg_3, 593 FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize)); 594 __ jmp(&setup_rest, Label::kNear); 595 __ bind(&setup_two_byte); 596 __ leap(arg_reg_4, 597 FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize)); 598 __ leap(arg_reg_3, 599 FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize)); 600 __ bind(&setup_rest); 601 602 // Argument 1: Original subject string. 603 // The original subject is in the previous stack frame. Therefore we have to 604 // use rbp, which points exactly to one pointer size below the previous rsp. 605 // (Because creating a new stack frame pushes the previous rbp onto the stack 606 // and thereby moves up rsp by one kPointerSize.) 607 __ movp(arg_reg_1, r15); 608 609 // Locate the code entry and call it. 610 __ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag)); 611 __ call(r11); 612 613 __ LeaveApiExitFrame(true); 614 615 // Check the result. 616 Label success; 617 Label exception; 618 __ cmpl(rax, Immediate(1)); 619 // We expect exactly one result since we force the called regexp to behave 620 // as non-global. 621 __ j(equal, &success, Label::kNear); 622 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); 623 __ j(equal, &exception); 624 __ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); 625 // If none of the above, it can only be retry. 626 // Handle that in the runtime system. 627 __ j(not_equal, &runtime); 628 629 // For failure return null. 630 __ LoadRoot(rax, Heap::kNullValueRootIndex); 631 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); 632 633 // Load RegExp data. 634 __ bind(&success); 635 __ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX)); 636 __ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); 637 __ SmiToInteger32(rax, 638 FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); 639 // Calculate number of capture registers (number_of_captures + 1) * 2. 640 __ leal(rdx, Operand(rax, rax, times_1, 2)); 641 642 // rdx: Number of capture registers 643 // Check that the last match info is a FixedArray. 644 __ movp(rbx, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX)); 645 __ JumpIfSmi(rbx, &runtime); 646 // Check that the object has fast elements. 647 __ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset)); 648 __ CompareRoot(rax, Heap::kFixedArrayMapRootIndex); 649 __ j(not_equal, &runtime); 650 // Check that the last match info has space for the capture registers and the 651 // additional information. Ensure no overflow in add. 652 STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); 653 __ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); 654 __ subl(rax, Immediate(RegExpMatchInfo::kLastMatchOverhead)); 655 __ cmpl(rdx, rax); 656 __ j(greater, &runtime); 657 658 // rbx: last_match_info (FixedArray) 659 // rdx: number of capture registers 660 // Store the capture count. 661 __ Integer32ToSmi(kScratchRegister, rdx); 662 __ movp(FieldOperand(rbx, RegExpMatchInfo::kNumberOfCapturesOffset), 663 kScratchRegister); 664 // Store last subject and last input. 665 __ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX)); 666 __ movp(FieldOperand(rbx, RegExpMatchInfo::kLastSubjectOffset), rax); 667 __ movp(rcx, rax); 668 __ RecordWriteField(rbx, RegExpMatchInfo::kLastSubjectOffset, rax, rdi, 669 kDontSaveFPRegs); 670 __ movp(rax, rcx); 671 __ movp(FieldOperand(rbx, RegExpMatchInfo::kLastInputOffset), rax); 672 __ RecordWriteField(rbx, RegExpMatchInfo::kLastInputOffset, rax, rdi, 673 kDontSaveFPRegs); 674 675 // Get the static offsets vector filled by the native regexp code. 676 __ LoadAddress( 677 rcx, ExternalReference::address_of_static_offsets_vector(isolate())); 678 679 // rbx: last_match_info (FixedArray) 680 // rcx: offsets vector 681 // rdx: number of capture registers 682 Label next_capture, done; 683 // Capture register counter starts from number of capture registers and 684 // counts down until wrapping after zero. 685 __ bind(&next_capture); 686 __ subp(rdx, Immediate(1)); 687 __ j(negative, &done, Label::kNear); 688 // Read the value from the static offsets vector buffer and make it a smi. 689 __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); 690 __ Integer32ToSmi(rdi, rdi); 691 // Store the smi value in the last match info. 692 __ movp(FieldOperand(rbx, rdx, times_pointer_size, 693 RegExpMatchInfo::kFirstCaptureOffset), 694 rdi); 695 __ jmp(&next_capture); 696 __ bind(&done); 697 698 // Return last match info. 699 __ movp(rax, rbx); 700 __ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize); 701 702 __ bind(&exception); 703 // Result must now be exception. If there is no pending exception already a 704 // stack overflow (on the backtrack stack) was detected in RegExp code but 705 // haven't created the exception yet. Handle that in the runtime system. 706 // TODO(592): Rerunning the RegExp to get the stack overflow exception. 707 ExternalReference pending_exception_address( 708 Isolate::kPendingExceptionAddress, isolate()); 709 Operand pending_exception_operand = 710 masm->ExternalOperand(pending_exception_address, rbx); 711 __ movp(rax, pending_exception_operand); 712 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); 713 __ cmpp(rax, rdx); 714 __ j(equal, &runtime); 715 716 // For exception, throw the exception again. 717 __ TailCallRuntime(Runtime::kRegExpExecReThrow); 718 719 // Do the runtime call to execute the regexp. 720 __ bind(&runtime); 721 __ TailCallRuntime(Runtime::kRegExpExec); 722 723 // Deferred code for string handling. 724 // (6) Long external string? If not, go to (10). 725 __ bind(¬_seq_nor_cons); 726 // Compare flags are still set from (3). 727 __ j(greater, ¬_long_external, Label::kNear); // Go to (10). 728 729 // (7) External string. Short external strings have been ruled out. 730 __ bind(&external_string); 731 __ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset)); 732 __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); 733 if (FLAG_debug_code) { 734 // Assert that we do not have a cons or slice (indirect strings) here. 735 // Sequential strings have already been ruled out. 736 __ testb(rbx, Immediate(kIsIndirectStringMask)); 737 __ Assert(zero, kExternalStringExpectedButNotFound); 738 } 739 __ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset)); 740 // Move the pointer so that offset-wise, it looks like a sequential string. 741 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); 742 __ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 743 STATIC_ASSERT(kTwoByteStringTag == 0); 744 // (8) Is the external string one byte? If yes, go to (5). 745 __ testb(rbx, Immediate(kStringEncodingMask)); 746 __ j(not_zero, &seq_one_byte_string); // Go to (5). 747 748 // rdi: subject string (flat two-byte) 749 // rax: RegExp data (FixedArray) 750 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). 751 __ bind(&seq_two_byte_string); 752 __ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset)); 753 __ Set(rcx, 0); // Type is two byte. 754 __ jmp(&check_code); // Go to (E). 755 756 // (10) Not a string or a short external string? If yes, bail out to runtime. 757 __ bind(¬_long_external); 758 // Catch non-string subject or short external string. 759 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); 760 __ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask)); 761 __ j(not_zero, &runtime); 762 763 // (11) Sliced or thin string. Replace subject with parent. Go to (1). 764 Label thin_string; 765 __ cmpl(rbx, Immediate(kThinStringTag)); 766 __ j(equal, &thin_string, Label::kNear); 767 // Load offset into r14 and replace subject string with parent. 768 __ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset)); 769 __ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset)); 770 __ jmp(&check_underlying); 771 772 __ bind(&thin_string); 773 __ movp(rdi, FieldOperand(rdi, ThinString::kActualOffset)); 774 __ jmp(&check_underlying); 775 #endif // V8_INTERPRETED_REGEXP 776 } 777 778 779 static int NegativeComparisonResult(Condition cc) { 780 DCHECK(cc != equal); 781 DCHECK((cc == less) || (cc == less_equal) 782 || (cc == greater) || (cc == greater_equal)); 783 return (cc == greater || cc == greater_equal) ? LESS : GREATER; 784 } 785 786 787 static void CheckInputType(MacroAssembler* masm, Register input, 788 CompareICState::State expected, Label* fail) { 789 Label ok; 790 if (expected == CompareICState::SMI) { 791 __ JumpIfNotSmi(input, fail); 792 } else if (expected == CompareICState::NUMBER) { 793 __ JumpIfSmi(input, &ok); 794 __ CompareMap(input, masm->isolate()->factory()->heap_number_map()); 795 __ j(not_equal, fail); 796 } 797 // We could be strict about internalized/non-internalized here, but as long as 798 // hydrogen doesn't care, the stub doesn't have to care either. 799 __ bind(&ok); 800 } 801 802 803 static void BranchIfNotInternalizedString(MacroAssembler* masm, 804 Label* label, 805 Register object, 806 Register scratch) { 807 __ JumpIfSmi(object, label); 808 __ movp(scratch, FieldOperand(object, HeapObject::kMapOffset)); 809 __ movzxbp(scratch, 810 FieldOperand(scratch, Map::kInstanceTypeOffset)); 811 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 812 __ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); 813 __ j(not_zero, label); 814 } 815 816 817 void CompareICStub::GenerateGeneric(MacroAssembler* masm) { 818 Label runtime_call, check_unequal_objects, done; 819 Condition cc = GetCondition(); 820 Factory* factory = isolate()->factory(); 821 822 Label miss; 823 CheckInputType(masm, rdx, left(), &miss); 824 CheckInputType(masm, rax, right(), &miss); 825 826 // Compare two smis. 827 Label non_smi, smi_done; 828 __ JumpIfNotBothSmi(rax, rdx, &non_smi); 829 __ subp(rdx, rax); 830 __ j(no_overflow, &smi_done); 831 __ notp(rdx); // Correct sign in case of overflow. rdx cannot be 0 here. 832 __ bind(&smi_done); 833 __ movp(rax, rdx); 834 __ ret(0); 835 __ bind(&non_smi); 836 837 // The compare stub returns a positive, negative, or zero 64-bit integer 838 // value in rax, corresponding to result of comparing the two inputs. 839 // NOTICE! This code is only reached after a smi-fast-case check, so 840 // it is certain that at least one operand isn't a smi. 841 842 // Two identical objects are equal unless they are both NaN or undefined. 843 { 844 Label not_identical; 845 __ cmpp(rax, rdx); 846 __ j(not_equal, ¬_identical, Label::kNear); 847 848 if (cc != equal) { 849 // Check for undefined. undefined OP undefined is false even though 850 // undefined == undefined. 851 __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); 852 Label check_for_nan; 853 __ j(not_equal, &check_for_nan, Label::kNear); 854 __ Set(rax, NegativeComparisonResult(cc)); 855 __ ret(0); 856 __ bind(&check_for_nan); 857 } 858 859 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), 860 // so we do the second best thing - test it ourselves. 861 Label heap_number; 862 // If it's not a heap number, then return equal for (in)equality operator. 863 __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), 864 factory->heap_number_map()); 865 __ j(equal, &heap_number, Label::kNear); 866 if (cc != equal) { 867 __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset)); 868 __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset)); 869 // Call runtime on identical objects. Otherwise return equal. 870 __ cmpb(rcx, Immediate(static_cast<uint8_t>(FIRST_JS_RECEIVER_TYPE))); 871 __ j(above_equal, &runtime_call, Label::kFar); 872 // Call runtime on identical symbols since we need to throw a TypeError. 873 __ cmpb(rcx, Immediate(static_cast<uint8_t>(SYMBOL_TYPE))); 874 __ j(equal, &runtime_call, Label::kFar); 875 } 876 __ Set(rax, EQUAL); 877 __ ret(0); 878 879 __ bind(&heap_number); 880 // It is a heap number, so return equal if it's not NaN. 881 // For NaN, return 1 for every condition except greater and 882 // greater-equal. Return -1 for them, so the comparison yields 883 // false for all conditions except not-equal. 884 __ Set(rax, EQUAL); 885 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 886 __ Ucomisd(xmm0, xmm0); 887 __ setcc(parity_even, rax); 888 // rax is 0 for equal non-NaN heapnumbers, 1 for NaNs. 889 if (cc == greater_equal || cc == greater) { 890 __ negp(rax); 891 } 892 __ ret(0); 893 894 __ bind(¬_identical); 895 } 896 897 if (cc == equal) { // Both strict and non-strict. 898 Label slow; // Fallthrough label. 899 900 // If we're doing a strict equality comparison, we don't have to do 901 // type conversion, so we generate code to do fast comparison for objects 902 // and oddballs. Non-smi numbers and strings still go through the usual 903 // slow-case code. 904 if (strict()) { 905 // If either is a Smi (we know that not both are), then they can only 906 // be equal if the other is a HeapNumber. If so, use the slow case. 907 { 908 Label not_smis; 909 __ SelectNonSmi(rbx, rax, rdx, ¬_smis); 910 911 // Check if the non-smi operand is a heap number. 912 __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), 913 factory->heap_number_map()); 914 // If heap number, handle it in the slow case. 915 __ j(equal, &slow); 916 // Return non-equal. ebx (the lower half of rbx) is not zero. 917 __ movp(rax, rbx); 918 __ ret(0); 919 920 __ bind(¬_smis); 921 } 922 923 // If either operand is a JSObject or an oddball value, then they are not 924 // equal since their pointers are different 925 // There is no test for undetectability in strict equality. 926 927 // If the first object is a JS object, we have done pointer comparison. 928 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); 929 Label first_non_object; 930 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); 931 __ j(below, &first_non_object, Label::kNear); 932 // Return non-zero (rax (not rax) is not zero) 933 Label return_not_equal; 934 STATIC_ASSERT(kHeapObjectTag != 0); 935 __ bind(&return_not_equal); 936 __ ret(0); 937 938 __ bind(&first_non_object); 939 // Check for oddballs: true, false, null, undefined. 940 __ CmpInstanceType(rcx, ODDBALL_TYPE); 941 __ j(equal, &return_not_equal); 942 943 __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx); 944 __ j(above_equal, &return_not_equal); 945 946 // Check for oddballs: true, false, null, undefined. 947 __ CmpInstanceType(rcx, ODDBALL_TYPE); 948 __ j(equal, &return_not_equal); 949 950 // Fall through to the general case. 951 } 952 __ bind(&slow); 953 } 954 955 // Generate the number comparison code. 956 Label non_number_comparison; 957 Label unordered; 958 FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison); 959 __ xorl(rax, rax); 960 __ xorl(rcx, rcx); 961 __ Ucomisd(xmm0, xmm1); 962 963 // Don't base result on EFLAGS when a NaN is involved. 964 __ j(parity_even, &unordered, Label::kNear); 965 // Return a result of -1, 0, or 1, based on EFLAGS. 966 __ setcc(above, rax); 967 __ setcc(below, rcx); 968 __ subp(rax, rcx); 969 __ ret(0); 970 971 // If one of the numbers was NaN, then the result is always false. 972 // The cc is never not-equal. 973 __ bind(&unordered); 974 DCHECK(cc != not_equal); 975 if (cc == less || cc == less_equal) { 976 __ Set(rax, 1); 977 } else { 978 __ Set(rax, -1); 979 } 980 __ ret(0); 981 982 // The number comparison code did not provide a valid result. 983 __ bind(&non_number_comparison); 984 985 // Fast negative check for internalized-to-internalized equality. 986 Label check_for_strings; 987 if (cc == equal) { 988 BranchIfNotInternalizedString( 989 masm, &check_for_strings, rax, kScratchRegister); 990 BranchIfNotInternalizedString( 991 masm, &check_for_strings, rdx, kScratchRegister); 992 993 // We've already checked for object identity, so if both operands are 994 // internalized strings they aren't equal. Register rax (not rax) already 995 // holds a non-zero value, which indicates not equal, so just return. 996 __ ret(0); 997 } 998 999 __ bind(&check_for_strings); 1000 1001 __ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx, 1002 &check_unequal_objects); 1003 1004 // Inline comparison of one-byte strings. 1005 if (cc == equal) { 1006 StringHelper::GenerateFlatOneByteStringEquals(masm, rdx, rax, rcx, rbx); 1007 } else { 1008 StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx, 1009 rdi, r8); 1010 } 1011 1012 #ifdef DEBUG 1013 __ Abort(kUnexpectedFallThroughFromStringComparison); 1014 #endif 1015 1016 __ bind(&check_unequal_objects); 1017 if (cc == equal && !strict()) { 1018 // Not strict equality. Objects are unequal if 1019 // they are both JSObjects and not undetectable, 1020 // and their pointers are different. 1021 Label return_equal, return_unequal, undetectable; 1022 // At most one is a smi, so we can test for smi by adding the two. 1023 // A smi plus a heap object has the low bit set, a heap object plus 1024 // a heap object has the low bit clear. 1025 STATIC_ASSERT(kSmiTag == 0); 1026 STATIC_ASSERT(kSmiTagMask == 1); 1027 __ leap(rcx, Operand(rax, rdx, times_1, 0)); 1028 __ testb(rcx, Immediate(kSmiTagMask)); 1029 __ j(not_zero, &runtime_call, Label::kNear); 1030 1031 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); 1032 __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); 1033 __ testb(FieldOperand(rbx, Map::kBitFieldOffset), 1034 Immediate(1 << Map::kIsUndetectable)); 1035 __ j(not_zero, &undetectable, Label::kNear); 1036 __ testb(FieldOperand(rcx, Map::kBitFieldOffset), 1037 Immediate(1 << Map::kIsUndetectable)); 1038 __ j(not_zero, &return_unequal, Label::kNear); 1039 1040 __ CmpInstanceType(rbx, FIRST_JS_RECEIVER_TYPE); 1041 __ j(below, &runtime_call, Label::kNear); 1042 __ CmpInstanceType(rcx, FIRST_JS_RECEIVER_TYPE); 1043 __ j(below, &runtime_call, Label::kNear); 1044 1045 __ bind(&return_unequal); 1046 // Return non-equal by returning the non-zero object pointer in rax. 1047 __ ret(0); 1048 1049 __ bind(&undetectable); 1050 __ testb(FieldOperand(rcx, Map::kBitFieldOffset), 1051 Immediate(1 << Map::kIsUndetectable)); 1052 __ j(zero, &return_unequal, Label::kNear); 1053 1054 // If both sides are JSReceivers, then the result is false according to 1055 // the HTML specification, which says that only comparisons with null or 1056 // undefined are affected by special casing for document.all. 1057 __ CmpInstanceType(rbx, ODDBALL_TYPE); 1058 __ j(zero, &return_equal, Label::kNear); 1059 __ CmpInstanceType(rcx, ODDBALL_TYPE); 1060 __ j(not_zero, &return_unequal, Label::kNear); 1061 1062 __ bind(&return_equal); 1063 __ Set(rax, EQUAL); 1064 __ ret(0); 1065 } 1066 __ bind(&runtime_call); 1067 1068 if (cc == equal) { 1069 { 1070 FrameScope scope(masm, StackFrame::INTERNAL); 1071 __ Push(rsi); 1072 __ Call(strict() ? isolate()->builtins()->StrictEqual() 1073 : isolate()->builtins()->Equal(), 1074 RelocInfo::CODE_TARGET); 1075 __ Pop(rsi); 1076 } 1077 // Turn true into 0 and false into some non-zero value. 1078 STATIC_ASSERT(EQUAL == 0); 1079 __ LoadRoot(rdx, Heap::kTrueValueRootIndex); 1080 __ subp(rax, rdx); 1081 __ Ret(); 1082 } else { 1083 // Push arguments below the return address to prepare jump to builtin. 1084 __ PopReturnAddressTo(rcx); 1085 __ Push(rdx); 1086 __ Push(rax); 1087 __ Push(Smi::FromInt(NegativeComparisonResult(cc))); 1088 __ PushReturnAddressFrom(rcx); 1089 __ TailCallRuntime(Runtime::kCompare); 1090 } 1091 1092 __ bind(&miss); 1093 GenerateMiss(masm); 1094 } 1095 1096 1097 static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { 1098 // rax : number of arguments to the construct function 1099 // rbx : feedback vector 1100 // rdx : slot in feedback vector (Smi) 1101 // rdi : the function to call 1102 FrameScope scope(masm, StackFrame::INTERNAL); 1103 1104 // Number-of-arguments register must be smi-tagged to call out. 1105 __ Integer32ToSmi(rax, rax); 1106 __ Push(rax); 1107 __ Push(rdi); 1108 __ Integer32ToSmi(rdx, rdx); 1109 __ Push(rdx); 1110 __ Push(rbx); 1111 __ Push(rsi); 1112 1113 __ CallStub(stub); 1114 1115 __ Pop(rsi); 1116 __ Pop(rbx); 1117 __ Pop(rdx); 1118 __ Pop(rdi); 1119 __ Pop(rax); 1120 __ SmiToInteger32(rdx, rdx); 1121 __ SmiToInteger32(rax, rax); 1122 } 1123 1124 1125 static void GenerateRecordCallTarget(MacroAssembler* masm) { 1126 // Cache the called function in a feedback vector slot. Cache states 1127 // are uninitialized, monomorphic (indicated by a JSFunction), and 1128 // megamorphic. 1129 // rax : number of arguments to the construct function 1130 // rbx : feedback vector 1131 // rdx : slot in feedback vector (Smi) 1132 // rdi : the function to call 1133 Isolate* isolate = masm->isolate(); 1134 Label initialize, done, miss, megamorphic, not_array_function; 1135 1136 // Load the cache state into r11. 1137 __ SmiToInteger32(rdx, rdx); 1138 __ movp(r11, 1139 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1140 1141 // A monomorphic cache hit or an already megamorphic state: invoke the 1142 // function without changing the state. 1143 // We don't know if r11 is a WeakCell or a Symbol, but it's harmless to read 1144 // at this position in a symbol (see static asserts in feedback-vector.h). 1145 Label check_allocation_site; 1146 __ cmpp(rdi, FieldOperand(r11, WeakCell::kValueOffset)); 1147 __ j(equal, &done, Label::kFar); 1148 __ CompareRoot(r11, Heap::kmegamorphic_symbolRootIndex); 1149 __ j(equal, &done, Label::kFar); 1150 __ CompareRoot(FieldOperand(r11, HeapObject::kMapOffset), 1151 Heap::kWeakCellMapRootIndex); 1152 __ j(not_equal, &check_allocation_site); 1153 1154 // If the weak cell is cleared, we have a new chance to become monomorphic. 1155 __ CheckSmi(FieldOperand(r11, WeakCell::kValueOffset)); 1156 __ j(equal, &initialize); 1157 __ jmp(&megamorphic); 1158 1159 __ bind(&check_allocation_site); 1160 // If we came here, we need to see if we are the array function. 1161 // If we didn't have a matching function, and we didn't find the megamorph 1162 // sentinel, then we have in the slot either some other function or an 1163 // AllocationSite. 1164 __ CompareRoot(FieldOperand(r11, 0), Heap::kAllocationSiteMapRootIndex); 1165 __ j(not_equal, &miss); 1166 1167 // Make sure the function is the Array() function 1168 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11); 1169 __ cmpp(rdi, r11); 1170 __ j(not_equal, &megamorphic); 1171 __ jmp(&done); 1172 1173 __ bind(&miss); 1174 1175 // A monomorphic miss (i.e, here the cache is not uninitialized) goes 1176 // megamorphic. 1177 __ CompareRoot(r11, Heap::kuninitialized_symbolRootIndex); 1178 __ j(equal, &initialize); 1179 // MegamorphicSentinel is an immortal immovable object (undefined) so no 1180 // write-barrier is needed. 1181 __ bind(&megamorphic); 1182 __ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize), 1183 FeedbackVector::MegamorphicSentinel(isolate)); 1184 __ jmp(&done); 1185 1186 // An uninitialized cache is patched with the function or sentinel to 1187 // indicate the ElementsKind if function is the Array constructor. 1188 __ bind(&initialize); 1189 1190 // Make sure the function is the Array() function 1191 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11); 1192 __ cmpp(rdi, r11); 1193 __ j(not_equal, ¬_array_function); 1194 1195 CreateAllocationSiteStub create_stub(isolate); 1196 CallStubInRecordCallTarget(masm, &create_stub); 1197 __ jmp(&done); 1198 1199 __ bind(¬_array_function); 1200 CreateWeakCellStub weak_cell_stub(isolate); 1201 CallStubInRecordCallTarget(masm, &weak_cell_stub); 1202 1203 __ bind(&done); 1204 // Increment the call count for all function calls. 1205 __ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size, 1206 FixedArray::kHeaderSize + kPointerSize), 1207 Smi::FromInt(1)); 1208 } 1209 1210 1211 void CallConstructStub::Generate(MacroAssembler* masm) { 1212 // rax : number of arguments 1213 // rbx : feedback vector 1214 // rdx : slot in feedback vector (Smi) 1215 // rdi : constructor function 1216 1217 Label non_function; 1218 // Check that the constructor is not a smi. 1219 __ JumpIfSmi(rdi, &non_function); 1220 // Check that constructor is a JSFunction. 1221 __ CmpObjectType(rdi, JS_FUNCTION_TYPE, r11); 1222 __ j(not_equal, &non_function); 1223 1224 GenerateRecordCallTarget(masm); 1225 1226 Label feedback_register_initialized; 1227 // Put the AllocationSite from the feedback vector into rbx, or undefined. 1228 __ movp(rbx, 1229 FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize)); 1230 __ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex); 1231 __ j(equal, &feedback_register_initialized, Label::kNear); 1232 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); 1233 __ bind(&feedback_register_initialized); 1234 1235 __ AssertUndefinedOrAllocationSite(rbx); 1236 1237 // Pass new target to construct stub. 1238 __ movp(rdx, rdi); 1239 1240 // Tail call to the function-specific construct stub (still in the caller 1241 // context at this point). 1242 __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); 1243 __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset)); 1244 __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); 1245 __ jmp(rcx); 1246 1247 __ bind(&non_function); 1248 __ movp(rdx, rdi); 1249 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); 1250 } 1251 1252 bool CEntryStub::NeedsImmovableCode() { 1253 return false; 1254 } 1255 1256 1257 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { 1258 CEntryStub::GenerateAheadOfTime(isolate); 1259 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); 1260 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); 1261 // It is important that the store buffer overflow stubs are generated first. 1262 CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); 1263 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); 1264 CreateWeakCellStub::GenerateAheadOfTime(isolate); 1265 BinaryOpICStub::GenerateAheadOfTime(isolate); 1266 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); 1267 StoreFastElementStub::GenerateAheadOfTime(isolate); 1268 } 1269 1270 1271 void CodeStub::GenerateFPStubs(Isolate* isolate) { 1272 } 1273 1274 1275 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { 1276 CEntryStub stub(isolate, 1, kDontSaveFPRegs); 1277 stub.GetCode(); 1278 CEntryStub save_doubles(isolate, 1, kSaveFPRegs); 1279 save_doubles.GetCode(); 1280 } 1281 1282 1283 void CEntryStub::Generate(MacroAssembler* masm) { 1284 // rax: number of arguments including receiver 1285 // rbx: pointer to C function (C callee-saved) 1286 // rbp: frame pointer of calling JS frame (restored after C call) 1287 // rsp: stack pointer (restored after C call) 1288 // rsi: current context (restored) 1289 // 1290 // If argv_in_register(): 1291 // r15: pointer to the first argument 1292 1293 ProfileEntryHookStub::MaybeCallEntryHook(masm); 1294 1295 #ifdef _WIN64 1296 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the 1297 // stack to be aligned to 16 bytes. It only allows a single-word to be 1298 // returned in register rax. Larger return sizes must be written to an address 1299 // passed as a hidden first argument. 1300 const Register kCCallArg0 = rcx; 1301 const Register kCCallArg1 = rdx; 1302 const Register kCCallArg2 = r8; 1303 const Register kCCallArg3 = r9; 1304 const int kArgExtraStackSpace = 2; 1305 const int kMaxRegisterResultSize = 1; 1306 #else 1307 // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results 1308 // are returned in rax, and a struct of two pointers are returned in rax+rdx. 1309 // Larger return sizes must be written to an address passed as a hidden first 1310 // argument. 1311 const Register kCCallArg0 = rdi; 1312 const Register kCCallArg1 = rsi; 1313 const Register kCCallArg2 = rdx; 1314 const Register kCCallArg3 = rcx; 1315 const int kArgExtraStackSpace = 0; 1316 const int kMaxRegisterResultSize = 2; 1317 #endif // _WIN64 1318 1319 // Enter the exit frame that transitions from JavaScript to C++. 1320 int arg_stack_space = 1321 kArgExtraStackSpace + 1322 (result_size() <= kMaxRegisterResultSize ? 0 : result_size()); 1323 if (argv_in_register()) { 1324 DCHECK(!save_doubles()); 1325 DCHECK(!is_builtin_exit()); 1326 __ EnterApiExitFrame(arg_stack_space); 1327 // Move argc into r14 (argv is already in r15). 1328 __ movp(r14, rax); 1329 } else { 1330 __ EnterExitFrame( 1331 arg_stack_space, save_doubles(), 1332 is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); 1333 } 1334 1335 // rbx: pointer to builtin function (C callee-saved). 1336 // rbp: frame pointer of exit frame (restored after C call). 1337 // rsp: stack pointer (restored after C call). 1338 // r14: number of arguments including receiver (C callee-saved). 1339 // r15: argv pointer (C callee-saved). 1340 1341 // Check stack alignment. 1342 if (FLAG_debug_code) { 1343 __ CheckStackAlignment(); 1344 } 1345 1346 // Call C function. The arguments object will be created by stubs declared by 1347 // DECLARE_RUNTIME_FUNCTION(). 1348 if (result_size() <= kMaxRegisterResultSize) { 1349 // Pass a pointer to the Arguments object as the first argument. 1350 // Return result in single register (rax), or a register pair (rax, rdx). 1351 __ movp(kCCallArg0, r14); // argc. 1352 __ movp(kCCallArg1, r15); // argv. 1353 __ Move(kCCallArg2, ExternalReference::isolate_address(isolate())); 1354 } else { 1355 DCHECK_LE(result_size(), 3); 1356 // Pass a pointer to the result location as the first argument. 1357 __ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace)); 1358 // Pass a pointer to the Arguments object as the second argument. 1359 __ movp(kCCallArg1, r14); // argc. 1360 __ movp(kCCallArg2, r15); // argv. 1361 __ Move(kCCallArg3, ExternalReference::isolate_address(isolate())); 1362 } 1363 __ call(rbx); 1364 1365 if (result_size() > kMaxRegisterResultSize) { 1366 // Read result values stored on stack. Result is stored 1367 // above the the two Arguments object slots on Win64. 1368 DCHECK_LE(result_size(), 3); 1369 __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0)); 1370 __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1)); 1371 if (result_size() > 2) { 1372 __ movq(kReturnRegister2, StackSpaceOperand(kArgExtraStackSpace + 2)); 1373 } 1374 } 1375 // Result is in rax, rdx:rax or r8:rdx:rax - do not destroy these registers! 1376 1377 // Check result for exception sentinel. 1378 Label exception_returned; 1379 __ CompareRoot(rax, Heap::kExceptionRootIndex); 1380 __ j(equal, &exception_returned); 1381 1382 // Check that there is no pending exception, otherwise we 1383 // should have returned the exception sentinel. 1384 if (FLAG_debug_code) { 1385 Label okay; 1386 __ LoadRoot(r14, Heap::kTheHoleValueRootIndex); 1387 ExternalReference pending_exception_address( 1388 Isolate::kPendingExceptionAddress, isolate()); 1389 Operand pending_exception_operand = 1390 masm->ExternalOperand(pending_exception_address); 1391 __ cmpp(r14, pending_exception_operand); 1392 __ j(equal, &okay, Label::kNear); 1393 __ int3(); 1394 __ bind(&okay); 1395 } 1396 1397 // Exit the JavaScript to C++ exit frame. 1398 __ LeaveExitFrame(save_doubles(), !argv_in_register()); 1399 __ ret(0); 1400 1401 // Handling of exception. 1402 __ bind(&exception_returned); 1403 1404 ExternalReference pending_handler_context_address( 1405 Isolate::kPendingHandlerContextAddress, isolate()); 1406 ExternalReference pending_handler_code_address( 1407 Isolate::kPendingHandlerCodeAddress, isolate()); 1408 ExternalReference pending_handler_offset_address( 1409 Isolate::kPendingHandlerOffsetAddress, isolate()); 1410 ExternalReference pending_handler_fp_address( 1411 Isolate::kPendingHandlerFPAddress, isolate()); 1412 ExternalReference pending_handler_sp_address( 1413 Isolate::kPendingHandlerSPAddress, isolate()); 1414 1415 // Ask the runtime for help to determine the handler. This will set rax to 1416 // contain the current pending exception, don't clobber it. 1417 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, 1418 isolate()); 1419 { 1420 FrameScope scope(masm, StackFrame::MANUAL); 1421 __ movp(arg_reg_1, Immediate(0)); // argc. 1422 __ movp(arg_reg_2, Immediate(0)); // argv. 1423 __ Move(arg_reg_3, ExternalReference::isolate_address(isolate())); 1424 __ PrepareCallCFunction(3); 1425 __ CallCFunction(find_handler, 3); 1426 } 1427 1428 // Retrieve the handler context, SP and FP. 1429 __ movp(rsi, masm->ExternalOperand(pending_handler_context_address)); 1430 __ movp(rsp, masm->ExternalOperand(pending_handler_sp_address)); 1431 __ movp(rbp, masm->ExternalOperand(pending_handler_fp_address)); 1432 1433 // If the handler is a JS frame, restore the context to the frame. Note that 1434 // the context will be set to (rsi == 0) for non-JS frames. 1435 Label skip; 1436 __ testp(rsi, rsi); 1437 __ j(zero, &skip, Label::kNear); 1438 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); 1439 __ bind(&skip); 1440 1441 // Compute the handler entry address and jump to it. 1442 __ movp(rdi, masm->ExternalOperand(pending_handler_code_address)); 1443 __ movp(rdx, masm->ExternalOperand(pending_handler_offset_address)); 1444 __ leap(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize)); 1445 __ jmp(rdi); 1446 } 1447 1448 1449 void JSEntryStub::Generate(MacroAssembler* masm) { 1450 Label invoke, handler_entry, exit; 1451 Label not_outermost_js, not_outermost_js_2; 1452 1453 ProfileEntryHookStub::MaybeCallEntryHook(masm); 1454 1455 { // NOLINT. Scope block confuses linter. 1456 MacroAssembler::NoRootArrayScope uninitialized_root_register(masm); 1457 // Set up frame. 1458 __ pushq(rbp); 1459 __ movp(rbp, rsp); 1460 1461 // Push the stack frame type. 1462 __ Push(Immediate(StackFrame::TypeToMarker(type()))); // context slot 1463 ExternalReference context_address(Isolate::kContextAddress, isolate()); 1464 __ Load(kScratchRegister, context_address); 1465 __ Push(kScratchRegister); // context 1466 // Save callee-saved registers (X64/X32/Win64 calling conventions). 1467 __ pushq(r12); 1468 __ pushq(r13); 1469 __ pushq(r14); 1470 __ pushq(r15); 1471 #ifdef _WIN64 1472 __ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 1473 __ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI. 1474 #endif 1475 __ pushq(rbx); 1476 1477 #ifdef _WIN64 1478 // On Win64 XMM6-XMM15 are callee-save 1479 __ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); 1480 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6); 1481 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7); 1482 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8); 1483 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9); 1484 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10); 1485 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11); 1486 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12); 1487 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13); 1488 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14); 1489 __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15); 1490 #endif 1491 1492 // Set up the roots and smi constant registers. 1493 // Needs to be done before any further smi loads. 1494 __ InitializeRootRegister(); 1495 } 1496 1497 // Save copies of the top frame descriptor on the stack. 1498 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate()); 1499 { 1500 Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 1501 __ Push(c_entry_fp_operand); 1502 } 1503 1504 // If this is the outermost JS call, set js_entry_sp value. 1505 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); 1506 __ Load(rax, js_entry_sp); 1507 __ testp(rax, rax); 1508 __ j(not_zero, ¬_outermost_js); 1509 __ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); 1510 __ movp(rax, rbp); 1511 __ Store(js_entry_sp, rax); 1512 Label cont; 1513 __ jmp(&cont); 1514 __ bind(¬_outermost_js); 1515 __ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); 1516 __ bind(&cont); 1517 1518 // Jump to a faked try block that does the invoke, with a faked catch 1519 // block that sets the pending exception. 1520 __ jmp(&invoke); 1521 __ bind(&handler_entry); 1522 handler_offset_ = handler_entry.pos(); 1523 // Caught exception: Store result (exception) in the pending exception 1524 // field in the JSEnv and return a failure sentinel. 1525 ExternalReference pending_exception(Isolate::kPendingExceptionAddress, 1526 isolate()); 1527 __ Store(pending_exception, rax); 1528 __ LoadRoot(rax, Heap::kExceptionRootIndex); 1529 __ jmp(&exit); 1530 1531 // Invoke: Link this frame into the handler chain. 1532 __ bind(&invoke); 1533 __ PushStackHandler(); 1534 1535 // Fake a receiver (NULL). 1536 __ Push(Immediate(0)); // receiver 1537 1538 // Invoke the function by calling through JS entry trampoline builtin and 1539 // pop the faked function when we return. We load the address from an 1540 // external reference instead of inlining the call target address directly 1541 // in the code, because the builtin stubs may not have been generated yet 1542 // at the time this code is generated. 1543 if (type() == StackFrame::ENTRY_CONSTRUCT) { 1544 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, 1545 isolate()); 1546 __ Load(rax, construct_entry); 1547 } else { 1548 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); 1549 __ Load(rax, entry); 1550 } 1551 __ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); 1552 __ call(kScratchRegister); 1553 1554 // Unlink this frame from the handler chain. 1555 __ PopStackHandler(); 1556 1557 __ bind(&exit); 1558 // Check if the current stack frame is marked as the outermost JS frame. 1559 __ Pop(rbx); 1560 __ cmpp(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); 1561 __ j(not_equal, ¬_outermost_js_2); 1562 __ Move(kScratchRegister, js_entry_sp); 1563 __ movp(Operand(kScratchRegister, 0), Immediate(0)); 1564 __ bind(¬_outermost_js_2); 1565 1566 // Restore the top frame descriptor from the stack. 1567 { Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp); 1568 __ Pop(c_entry_fp_operand); 1569 } 1570 1571 // Restore callee-saved registers (X64 conventions). 1572 #ifdef _WIN64 1573 // On Win64 XMM6-XMM15 are callee-save 1574 __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0)); 1575 __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1)); 1576 __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2)); 1577 __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3)); 1578 __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4)); 1579 __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5)); 1580 __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6)); 1581 __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7)); 1582 __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8)); 1583 __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9)); 1584 __ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize)); 1585 #endif 1586 1587 __ popq(rbx); 1588 #ifdef _WIN64 1589 // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI. 1590 __ popq(rsi); 1591 __ popq(rdi); 1592 #endif 1593 __ popq(r15); 1594 __ popq(r14); 1595 __ popq(r13); 1596 __ popq(r12); 1597 __ addp(rsp, Immediate(2 * kPointerSize)); // remove markers 1598 1599 // Restore frame pointer and return. 1600 __ popq(rbp); 1601 __ ret(0); 1602 } 1603 1604 1605 // ------------------------------------------------------------------------- 1606 // StringCharCodeAtGenerator 1607 1608 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { 1609 // If the receiver is a smi trigger the non-string case. 1610 if (check_mode_ == RECEIVER_IS_UNKNOWN) { 1611 __ JumpIfSmi(object_, receiver_not_string_); 1612 1613 // Fetch the instance type of the receiver into result register. 1614 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); 1615 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 1616 // If the receiver is not a string trigger the non-string case. 1617 __ testb(result_, Immediate(kIsNotStringMask)); 1618 __ j(not_zero, receiver_not_string_); 1619 } 1620 1621 // If the index is non-smi trigger the non-smi case. 1622 __ JumpIfNotSmi(index_, &index_not_smi_); 1623 __ bind(&got_smi_index_); 1624 1625 // Check for index out of range. 1626 __ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset)); 1627 __ j(above_equal, index_out_of_range_); 1628 1629 __ SmiToInteger32(index_, index_); 1630 1631 StringCharLoadGenerator::Generate( 1632 masm, object_, index_, result_, &call_runtime_); 1633 1634 __ Integer32ToSmi(result_, result_); 1635 __ bind(&exit_); 1636 } 1637 1638 1639 void StringCharCodeAtGenerator::GenerateSlow( 1640 MacroAssembler* masm, EmbedMode embed_mode, 1641 const RuntimeCallHelper& call_helper) { 1642 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); 1643 1644 Factory* factory = masm->isolate()->factory(); 1645 // Index is not a smi. 1646 __ bind(&index_not_smi_); 1647 // If index is a heap number, try converting it to an integer. 1648 __ CheckMap(index_, 1649 factory->heap_number_map(), 1650 index_not_number_, 1651 DONT_DO_SMI_CHECK); 1652 call_helper.BeforeCall(masm); 1653 if (embed_mode == PART_OF_IC_HANDLER) { 1654 __ Push(LoadWithVectorDescriptor::VectorRegister()); 1655 __ Push(LoadDescriptor::SlotRegister()); 1656 } 1657 __ Push(object_); 1658 __ Push(index_); // Consumed by runtime conversion function. 1659 __ CallRuntime(Runtime::kNumberToSmi); 1660 if (!index_.is(rax)) { 1661 // Save the conversion result before the pop instructions below 1662 // have a chance to overwrite it. 1663 __ movp(index_, rax); 1664 } 1665 __ Pop(object_); 1666 if (embed_mode == PART_OF_IC_HANDLER) { 1667 __ Pop(LoadDescriptor::SlotRegister()); 1668 __ Pop(LoadWithVectorDescriptor::VectorRegister()); 1669 } 1670 // Reload the instance type. 1671 __ movp(result_, FieldOperand(object_, HeapObject::kMapOffset)); 1672 __ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); 1673 call_helper.AfterCall(masm); 1674 // If index is still not a smi, it must be out of range. 1675 __ JumpIfNotSmi(index_, index_out_of_range_); 1676 // Otherwise, return to the fast path. 1677 __ jmp(&got_smi_index_); 1678 1679 // Call runtime. We get here when the receiver is a string and the 1680 // index is a number, but the code of getting the actual character 1681 // is too complex (e.g., when the string needs to be flattened). 1682 __ bind(&call_runtime_); 1683 call_helper.BeforeCall(masm); 1684 __ Push(object_); 1685 __ Integer32ToSmi(index_, index_); 1686 __ Push(index_); 1687 __ CallRuntime(Runtime::kStringCharCodeAtRT); 1688 if (!result_.is(rax)) { 1689 __ movp(result_, rax); 1690 } 1691 call_helper.AfterCall(masm); 1692 __ jmp(&exit_); 1693 1694 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); 1695 } 1696 1697 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, 1698 Register left, 1699 Register right, 1700 Register scratch1, 1701 Register scratch2) { 1702 Register length = scratch1; 1703 1704 // Compare lengths. 1705 Label check_zero_length; 1706 __ movp(length, FieldOperand(left, String::kLengthOffset)); 1707 __ SmiCompare(length, FieldOperand(right, String::kLengthOffset)); 1708 __ j(equal, &check_zero_length, Label::kNear); 1709 __ Move(rax, Smi::FromInt(NOT_EQUAL)); 1710 __ ret(0); 1711 1712 // Check if the length is zero. 1713 Label compare_chars; 1714 __ bind(&check_zero_length); 1715 STATIC_ASSERT(kSmiTag == 0); 1716 __ SmiTest(length); 1717 __ j(not_zero, &compare_chars, Label::kNear); 1718 __ Move(rax, Smi::FromInt(EQUAL)); 1719 __ ret(0); 1720 1721 // Compare characters. 1722 __ bind(&compare_chars); 1723 Label strings_not_equal; 1724 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, 1725 &strings_not_equal, Label::kNear); 1726 1727 // Characters are equal. 1728 __ Move(rax, Smi::FromInt(EQUAL)); 1729 __ ret(0); 1730 1731 // Characters are not equal. 1732 __ bind(&strings_not_equal); 1733 __ Move(rax, Smi::FromInt(NOT_EQUAL)); 1734 __ ret(0); 1735 } 1736 1737 1738 void StringHelper::GenerateCompareFlatOneByteStrings( 1739 MacroAssembler* masm, Register left, Register right, Register scratch1, 1740 Register scratch2, Register scratch3, Register scratch4) { 1741 // Ensure that you can always subtract a string length from a non-negative 1742 // number (e.g. another length). 1743 STATIC_ASSERT(String::kMaxLength < 0x7fffffff); 1744 1745 // Find minimum length and length difference. 1746 __ movp(scratch1, FieldOperand(left, String::kLengthOffset)); 1747 __ movp(scratch4, scratch1); 1748 __ SmiSub(scratch4, 1749 scratch4, 1750 FieldOperand(right, String::kLengthOffset)); 1751 // Register scratch4 now holds left.length - right.length. 1752 const Register length_difference = scratch4; 1753 Label left_shorter; 1754 __ j(less, &left_shorter, Label::kNear); 1755 // The right string isn't longer that the left one. 1756 // Get the right string's length by subtracting the (non-negative) difference 1757 // from the left string's length. 1758 __ SmiSub(scratch1, scratch1, length_difference); 1759 __ bind(&left_shorter); 1760 // Register scratch1 now holds Min(left.length, right.length). 1761 const Register min_length = scratch1; 1762 1763 Label compare_lengths; 1764 // If min-length is zero, go directly to comparing lengths. 1765 __ SmiTest(min_length); 1766 __ j(zero, &compare_lengths, Label::kNear); 1767 1768 // Compare loop. 1769 Label result_not_equal; 1770 GenerateOneByteCharsCompareLoop( 1771 masm, left, right, min_length, scratch2, &result_not_equal, 1772 // In debug-code mode, SmiTest below might push 1773 // the target label outside the near range. 1774 Label::kFar); 1775 1776 // Completed loop without finding different characters. 1777 // Compare lengths (precomputed). 1778 __ bind(&compare_lengths); 1779 __ SmiTest(length_difference); 1780 Label length_not_equal; 1781 __ j(not_zero, &length_not_equal, Label::kNear); 1782 1783 // Result is EQUAL. 1784 __ Move(rax, Smi::FromInt(EQUAL)); 1785 __ ret(0); 1786 1787 Label result_greater; 1788 Label result_less; 1789 __ bind(&length_not_equal); 1790 __ j(greater, &result_greater, Label::kNear); 1791 __ jmp(&result_less, Label::kNear); 1792 __ bind(&result_not_equal); 1793 // Unequal comparison of left to right, either character or length. 1794 __ j(above, &result_greater, Label::kNear); 1795 __ bind(&result_less); 1796 1797 // Result is LESS. 1798 __ Move(rax, Smi::FromInt(LESS)); 1799 __ ret(0); 1800 1801 // Result is GREATER. 1802 __ bind(&result_greater); 1803 __ Move(rax, Smi::FromInt(GREATER)); 1804 __ ret(0); 1805 } 1806 1807 1808 void StringHelper::GenerateOneByteCharsCompareLoop( 1809 MacroAssembler* masm, Register left, Register right, Register length, 1810 Register scratch, Label* chars_not_equal, Label::Distance near_jump) { 1811 // Change index to run from -length to -1 by adding length to string 1812 // start. This means that loop ends when index reaches zero, which 1813 // doesn't need an additional compare. 1814 __ SmiToInteger32(length, length); 1815 __ leap(left, 1816 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize)); 1817 __ leap(right, 1818 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize)); 1819 __ negq(length); 1820 Register index = length; // index = -length; 1821 1822 // Compare loop. 1823 Label loop; 1824 __ bind(&loop); 1825 __ movb(scratch, Operand(left, index, times_1, 0)); 1826 __ cmpb(scratch, Operand(right, index, times_1, 0)); 1827 __ j(not_equal, chars_not_equal, near_jump); 1828 __ incq(index); 1829 __ j(not_zero, &loop); 1830 } 1831 1832 1833 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { 1834 // ----------- S t a t e ------------- 1835 // -- rdx : left 1836 // -- rax : right 1837 // -- rsp[0] : return address 1838 // ----------------------------------- 1839 1840 // Load rcx with the allocation site. We stick an undefined dummy value here 1841 // and replace it with the real allocation site later when we instantiate this 1842 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). 1843 __ Move(rcx, isolate()->factory()->undefined_value()); 1844 1845 // Make sure that we actually patched the allocation site. 1846 if (FLAG_debug_code) { 1847 __ testb(rcx, Immediate(kSmiTagMask)); 1848 __ Assert(not_equal, kExpectedAllocationSite); 1849 __ Cmp(FieldOperand(rcx, HeapObject::kMapOffset), 1850 isolate()->factory()->allocation_site_map()); 1851 __ Assert(equal, kExpectedAllocationSite); 1852 } 1853 1854 // Tail call into the stub that handles binary operations with allocation 1855 // sites. 1856 BinaryOpWithAllocationSiteStub stub(isolate(), state()); 1857 __ TailCallStub(&stub); 1858 } 1859 1860 1861 void CompareICStub::GenerateBooleans(MacroAssembler* masm) { 1862 DCHECK_EQ(CompareICState::BOOLEAN, state()); 1863 Label miss; 1864 Label::Distance const miss_distance = 1865 masm->emit_debug_code() ? Label::kFar : Label::kNear; 1866 1867 __ JumpIfSmi(rdx, &miss, miss_distance); 1868 __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); 1869 __ JumpIfSmi(rax, &miss, miss_distance); 1870 __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); 1871 __ JumpIfNotRoot(rcx, Heap::kBooleanMapRootIndex, &miss, miss_distance); 1872 __ JumpIfNotRoot(rbx, Heap::kBooleanMapRootIndex, &miss, miss_distance); 1873 if (!Token::IsEqualityOp(op())) { 1874 __ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset)); 1875 __ AssertSmi(rax); 1876 __ movp(rdx, FieldOperand(rdx, Oddball::kToNumberOffset)); 1877 __ AssertSmi(rdx); 1878 __ pushq(rax); 1879 __ movq(rax, rdx); 1880 __ popq(rdx); 1881 } 1882 __ subp(rax, rdx); 1883 __ Ret(); 1884 1885 __ bind(&miss); 1886 GenerateMiss(masm); 1887 } 1888 1889 1890 void CompareICStub::GenerateSmis(MacroAssembler* masm) { 1891 DCHECK(state() == CompareICState::SMI); 1892 Label miss; 1893 __ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear); 1894 1895 if (GetCondition() == equal) { 1896 // For equality we do not care about the sign of the result. 1897 __ subp(rax, rdx); 1898 } else { 1899 Label done; 1900 __ subp(rdx, rax); 1901 __ j(no_overflow, &done, Label::kNear); 1902 // Correct sign of result in case of overflow. 1903 __ notp(rdx); 1904 __ bind(&done); 1905 __ movp(rax, rdx); 1906 } 1907 __ ret(0); 1908 1909 __ bind(&miss); 1910 GenerateMiss(masm); 1911 } 1912 1913 1914 void CompareICStub::GenerateNumbers(MacroAssembler* masm) { 1915 DCHECK(state() == CompareICState::NUMBER); 1916 1917 Label generic_stub; 1918 Label unordered, maybe_undefined1, maybe_undefined2; 1919 Label miss; 1920 1921 if (left() == CompareICState::SMI) { 1922 __ JumpIfNotSmi(rdx, &miss); 1923 } 1924 if (right() == CompareICState::SMI) { 1925 __ JumpIfNotSmi(rax, &miss); 1926 } 1927 1928 // Load left and right operand. 1929 Label done, left, left_smi, right_smi; 1930 __ JumpIfSmi(rax, &right_smi, Label::kNear); 1931 __ CompareMap(rax, isolate()->factory()->heap_number_map()); 1932 __ j(not_equal, &maybe_undefined1, Label::kNear); 1933 __ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); 1934 __ jmp(&left, Label::kNear); 1935 __ bind(&right_smi); 1936 __ SmiToInteger32(rcx, rax); // Can't clobber rax yet. 1937 __ Cvtlsi2sd(xmm1, rcx); 1938 1939 __ bind(&left); 1940 __ JumpIfSmi(rdx, &left_smi, Label::kNear); 1941 __ CompareMap(rdx, isolate()->factory()->heap_number_map()); 1942 __ j(not_equal, &maybe_undefined2, Label::kNear); 1943 __ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); 1944 __ jmp(&done); 1945 __ bind(&left_smi); 1946 __ SmiToInteger32(rcx, rdx); // Can't clobber rdx yet. 1947 __ Cvtlsi2sd(xmm0, rcx); 1948 1949 __ bind(&done); 1950 // Compare operands 1951 __ Ucomisd(xmm0, xmm1); 1952 1953 // Don't base result on EFLAGS when a NaN is involved. 1954 __ j(parity_even, &unordered, Label::kNear); 1955 1956 // Return a result of -1, 0, or 1, based on EFLAGS. 1957 // Performing mov, because xor would destroy the flag register. 1958 __ movl(rax, Immediate(0)); 1959 __ movl(rcx, Immediate(0)); 1960 __ setcc(above, rax); // Add one to zero if carry clear and not equal. 1961 __ sbbp(rax, rcx); // Subtract one if below (aka. carry set). 1962 __ ret(0); 1963 1964 __ bind(&unordered); 1965 __ bind(&generic_stub); 1966 CompareICStub stub(isolate(), op(), CompareICState::GENERIC, 1967 CompareICState::GENERIC, CompareICState::GENERIC); 1968 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); 1969 1970 __ bind(&maybe_undefined1); 1971 if (Token::IsOrderedRelationalCompareOp(op())) { 1972 __ Cmp(rax, isolate()->factory()->undefined_value()); 1973 __ j(not_equal, &miss); 1974 __ JumpIfSmi(rdx, &unordered); 1975 __ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx); 1976 __ j(not_equal, &maybe_undefined2, Label::kNear); 1977 __ jmp(&unordered); 1978 } 1979 1980 __ bind(&maybe_undefined2); 1981 if (Token::IsOrderedRelationalCompareOp(op())) { 1982 __ Cmp(rdx, isolate()->factory()->undefined_value()); 1983 __ j(equal, &unordered); 1984 } 1985 1986 __ bind(&miss); 1987 GenerateMiss(masm); 1988 } 1989 1990 1991 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { 1992 DCHECK(state() == CompareICState::INTERNALIZED_STRING); 1993 DCHECK(GetCondition() == equal); 1994 1995 // Registers containing left and right operands respectively. 1996 Register left = rdx; 1997 Register right = rax; 1998 Register tmp1 = rcx; 1999 Register tmp2 = rbx; 2000 2001 // Check that both operands are heap objects. 2002 Label miss; 2003 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 2004 __ j(cond, &miss, Label::kNear); 2005 2006 // Check that both operands are internalized strings. 2007 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 2008 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 2009 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 2010 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 2011 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 2012 __ orp(tmp1, tmp2); 2013 __ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask)); 2014 __ j(not_zero, &miss, Label::kNear); 2015 2016 // Internalized strings are compared by identity. 2017 Label done; 2018 __ cmpp(left, right); 2019 // Make sure rax is non-zero. At this point input operands are 2020 // guaranteed to be non-zero. 2021 DCHECK(right.is(rax)); 2022 __ j(not_equal, &done, Label::kNear); 2023 STATIC_ASSERT(EQUAL == 0); 2024 STATIC_ASSERT(kSmiTag == 0); 2025 __ Move(rax, Smi::FromInt(EQUAL)); 2026 __ bind(&done); 2027 __ ret(0); 2028 2029 __ bind(&miss); 2030 GenerateMiss(masm); 2031 } 2032 2033 2034 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { 2035 DCHECK(state() == CompareICState::UNIQUE_NAME); 2036 DCHECK(GetCondition() == equal); 2037 2038 // Registers containing left and right operands respectively. 2039 Register left = rdx; 2040 Register right = rax; 2041 Register tmp1 = rcx; 2042 Register tmp2 = rbx; 2043 2044 // Check that both operands are heap objects. 2045 Label miss; 2046 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 2047 __ j(cond, &miss, Label::kNear); 2048 2049 // Check that both operands are unique names. This leaves the instance 2050 // types loaded in tmp1 and tmp2. 2051 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 2052 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 2053 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 2054 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 2055 2056 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear); 2057 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear); 2058 2059 // Unique names are compared by identity. 2060 Label done; 2061 __ cmpp(left, right); 2062 // Make sure rax is non-zero. At this point input operands are 2063 // guaranteed to be non-zero. 2064 DCHECK(right.is(rax)); 2065 __ j(not_equal, &done, Label::kNear); 2066 STATIC_ASSERT(EQUAL == 0); 2067 STATIC_ASSERT(kSmiTag == 0); 2068 __ Move(rax, Smi::FromInt(EQUAL)); 2069 __ bind(&done); 2070 __ ret(0); 2071 2072 __ bind(&miss); 2073 GenerateMiss(masm); 2074 } 2075 2076 2077 void CompareICStub::GenerateStrings(MacroAssembler* masm) { 2078 DCHECK(state() == CompareICState::STRING); 2079 Label miss; 2080 2081 bool equality = Token::IsEqualityOp(op()); 2082 2083 // Registers containing left and right operands respectively. 2084 Register left = rdx; 2085 Register right = rax; 2086 Register tmp1 = rcx; 2087 Register tmp2 = rbx; 2088 Register tmp3 = rdi; 2089 2090 // Check that both operands are heap objects. 2091 Condition cond = masm->CheckEitherSmi(left, right, tmp1); 2092 __ j(cond, &miss); 2093 2094 // Check that both operands are strings. This leaves the instance 2095 // types loaded in tmp1 and tmp2. 2096 __ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset)); 2097 __ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset)); 2098 __ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); 2099 __ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); 2100 __ movp(tmp3, tmp1); 2101 STATIC_ASSERT(kNotStringTag != 0); 2102 __ orp(tmp3, tmp2); 2103 __ testb(tmp3, Immediate(kIsNotStringMask)); 2104 __ j(not_zero, &miss); 2105 2106 // Fast check for identical strings. 2107 Label not_same; 2108 __ cmpp(left, right); 2109 __ j(not_equal, ¬_same, Label::kNear); 2110 STATIC_ASSERT(EQUAL == 0); 2111 STATIC_ASSERT(kSmiTag == 0); 2112 __ Move(rax, Smi::FromInt(EQUAL)); 2113 __ ret(0); 2114 2115 // Handle not identical strings. 2116 __ bind(¬_same); 2117 2118 // Check that both strings are internalized strings. If they are, we're done 2119 // because we already know they are not identical. We also know they are both 2120 // strings. 2121 if (equality) { 2122 Label do_compare; 2123 STATIC_ASSERT(kInternalizedTag == 0); 2124 __ orp(tmp1, tmp2); 2125 __ testb(tmp1, Immediate(kIsNotInternalizedMask)); 2126 __ j(not_zero, &do_compare, Label::kNear); 2127 // Make sure rax is non-zero. At this point input operands are 2128 // guaranteed to be non-zero. 2129 DCHECK(right.is(rax)); 2130 __ ret(0); 2131 __ bind(&do_compare); 2132 } 2133 2134 // Check that both strings are sequential one-byte. 2135 Label runtime; 2136 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime); 2137 2138 // Compare flat one-byte strings. Returns when done. 2139 if (equality) { 2140 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, 2141 tmp2); 2142 } else { 2143 StringHelper::GenerateCompareFlatOneByteStrings( 2144 masm, left, right, tmp1, tmp2, tmp3, kScratchRegister); 2145 } 2146 2147 // Handle more complex cases in runtime. 2148 __ bind(&runtime); 2149 if (equality) { 2150 { 2151 FrameScope scope(masm, StackFrame::INTERNAL); 2152 __ Push(left); 2153 __ Push(right); 2154 __ CallRuntime(Runtime::kStringEqual); 2155 } 2156 __ LoadRoot(rdx, Heap::kTrueValueRootIndex); 2157 __ subp(rax, rdx); 2158 __ Ret(); 2159 } else { 2160 __ PopReturnAddressTo(tmp1); 2161 __ Push(left); 2162 __ Push(right); 2163 __ PushReturnAddressFrom(tmp1); 2164 __ TailCallRuntime(Runtime::kStringCompare); 2165 } 2166 2167 __ bind(&miss); 2168 GenerateMiss(masm); 2169 } 2170 2171 2172 void CompareICStub::GenerateReceivers(MacroAssembler* masm) { 2173 DCHECK_EQ(CompareICState::RECEIVER, state()); 2174 Label miss; 2175 Condition either_smi = masm->CheckEitherSmi(rdx, rax); 2176 __ j(either_smi, &miss, Label::kNear); 2177 2178 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); 2179 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); 2180 __ j(below, &miss, Label::kNear); 2181 __ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx); 2182 __ j(below, &miss, Label::kNear); 2183 2184 DCHECK_EQ(equal, GetCondition()); 2185 __ subp(rax, rdx); 2186 __ ret(0); 2187 2188 __ bind(&miss); 2189 GenerateMiss(masm); 2190 } 2191 2192 2193 void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { 2194 Label miss; 2195 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_); 2196 Condition either_smi = masm->CheckEitherSmi(rdx, rax); 2197 __ j(either_smi, &miss, Label::kNear); 2198 2199 __ GetWeakValue(rdi, cell); 2200 __ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rdi); 2201 __ j(not_equal, &miss, Label::kNear); 2202 __ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rdi); 2203 __ j(not_equal, &miss, Label::kNear); 2204 2205 if (Token::IsEqualityOp(op())) { 2206 __ subp(rax, rdx); 2207 __ ret(0); 2208 } else { 2209 __ PopReturnAddressTo(rcx); 2210 __ Push(rdx); 2211 __ Push(rax); 2212 __ Push(Smi::FromInt(NegativeComparisonResult(GetCondition()))); 2213 __ PushReturnAddressFrom(rcx); 2214 __ TailCallRuntime(Runtime::kCompare); 2215 } 2216 2217 __ bind(&miss); 2218 GenerateMiss(masm); 2219 } 2220 2221 2222 void CompareICStub::GenerateMiss(MacroAssembler* masm) { 2223 { 2224 // Call the runtime system in a fresh internal frame. 2225 FrameScope scope(masm, StackFrame::INTERNAL); 2226 __ Push(rdx); 2227 __ Push(rax); 2228 __ Push(rdx); 2229 __ Push(rax); 2230 __ Push(Smi::FromInt(op())); 2231 __ CallRuntime(Runtime::kCompareIC_Miss); 2232 2233 // Compute the entry point of the rewritten stub. 2234 __ leap(rdi, FieldOperand(rax, Code::kHeaderSize)); 2235 __ Pop(rax); 2236 __ Pop(rdx); 2237 } 2238 2239 // Do a tail call to the rewritten stub. 2240 __ jmp(rdi); 2241 } 2242 2243 2244 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, 2245 Label* miss, 2246 Label* done, 2247 Register properties, 2248 Handle<Name> name, 2249 Register r0) { 2250 DCHECK(name->IsUniqueName()); 2251 // If names of slots in range from 1 to kProbes - 1 for the hash value are 2252 // not equal to the name and kProbes-th slot is not used (its name is the 2253 // undefined value), it guarantees the hash table doesn't contain the 2254 // property. It's true even if some slots represent deleted properties 2255 // (their names are the hole value). 2256 for (int i = 0; i < kInlinedProbes; i++) { 2257 // r0 points to properties hash. 2258 // Compute the masked index: (hash + i + i * i) & mask. 2259 Register index = r0; 2260 // Capacity is smi 2^n. 2261 __ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset)); 2262 __ decl(index); 2263 __ andp(index, 2264 Immediate(name->Hash() + NameDictionary::GetProbeOffset(i))); 2265 2266 // Scale the index by multiplying by the entry size. 2267 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 2268 __ leap(index, Operand(index, index, times_2, 0)); // index *= 3. 2269 2270 Register entity_name = r0; 2271 // Having undefined at this place means the name is not contained. 2272 STATIC_ASSERT(kSmiTagSize == 1); 2273 __ movp(entity_name, Operand(properties, 2274 index, 2275 times_pointer_size, 2276 kElementsStartOffset - kHeapObjectTag)); 2277 __ Cmp(entity_name, masm->isolate()->factory()->undefined_value()); 2278 __ j(equal, done); 2279 2280 // Stop if found the property. 2281 __ Cmp(entity_name, Handle<Name>(name)); 2282 __ j(equal, miss); 2283 2284 Label good; 2285 // Check for the hole and skip. 2286 __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex); 2287 __ j(equal, &good, Label::kNear); 2288 2289 // Check if the entry name is not a unique name. 2290 __ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); 2291 __ JumpIfNotUniqueNameInstanceType( 2292 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss); 2293 __ bind(&good); 2294 } 2295 2296 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0, 2297 NEGATIVE_LOOKUP); 2298 __ Push(Handle<Object>(name)); 2299 __ Push(Immediate(name->Hash())); 2300 __ CallStub(&stub); 2301 __ testp(r0, r0); 2302 __ j(not_zero, miss); 2303 __ jmp(done); 2304 } 2305 2306 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { 2307 // This stub overrides SometimesSetsUpAFrame() to return false. That means 2308 // we cannot call anything that could cause a GC from this stub. 2309 // Stack frame on entry: 2310 // rsp[0 * kPointerSize] : return address. 2311 // rsp[1 * kPointerSize] : key's hash. 2312 // rsp[2 * kPointerSize] : key. 2313 // Registers: 2314 // dictionary_: NameDictionary to probe. 2315 // result_: used as scratch. 2316 // index_: will hold an index of entry if lookup is successful. 2317 // might alias with result_. 2318 // Returns: 2319 // result_ is zero if lookup failed, non zero otherwise. 2320 2321 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; 2322 2323 Register scratch = result(); 2324 2325 __ SmiToInteger32(scratch, FieldOperand(dictionary(), kCapacityOffset)); 2326 __ decl(scratch); 2327 __ Push(scratch); 2328 2329 // If names of slots in range from 1 to kProbes - 1 for the hash value are 2330 // not equal to the name and kProbes-th slot is not used (its name is the 2331 // undefined value), it guarantees the hash table doesn't contain the 2332 // property. It's true even if some slots represent deleted properties 2333 // (their names are the null value). 2334 StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER, 2335 kPointerSize); 2336 for (int i = kInlinedProbes; i < kTotalProbes; i++) { 2337 // Compute the masked index: (hash + i + i * i) & mask. 2338 __ movp(scratch, args.GetArgumentOperand(1)); 2339 if (i > 0) { 2340 __ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i))); 2341 } 2342 __ andp(scratch, Operand(rsp, 0)); 2343 2344 // Scale the index by multiplying by the entry size. 2345 STATIC_ASSERT(NameDictionary::kEntrySize == 3); 2346 __ leap(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3. 2347 2348 // Having undefined at this place means the name is not contained. 2349 __ movp(scratch, Operand(dictionary(), index(), times_pointer_size, 2350 kElementsStartOffset - kHeapObjectTag)); 2351 2352 __ Cmp(scratch, isolate()->factory()->undefined_value()); 2353 __ j(equal, ¬_in_dictionary); 2354 2355 // Stop if found the property. 2356 __ cmpp(scratch, args.GetArgumentOperand(0)); 2357 __ j(equal, &in_dictionary); 2358 2359 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { 2360 // If we hit a key that is not a unique name during negative 2361 // lookup we have to bailout as this key might be equal to the 2362 // key we are looking for. 2363 2364 // Check if the entry name is not a unique name. 2365 __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); 2366 __ JumpIfNotUniqueNameInstanceType( 2367 FieldOperand(scratch, Map::kInstanceTypeOffset), 2368 &maybe_in_dictionary); 2369 } 2370 } 2371 2372 __ bind(&maybe_in_dictionary); 2373 // If we are doing negative lookup then probing failure should be 2374 // treated as a lookup success. For positive lookup probing failure 2375 // should be treated as lookup failure. 2376 if (mode() == POSITIVE_LOOKUP) { 2377 __ movp(scratch, Immediate(0)); 2378 __ Drop(1); 2379 __ ret(2 * kPointerSize); 2380 } 2381 2382 __ bind(&in_dictionary); 2383 __ movp(scratch, Immediate(1)); 2384 __ Drop(1); 2385 __ ret(2 * kPointerSize); 2386 2387 __ bind(¬_in_dictionary); 2388 __ movp(scratch, Immediate(0)); 2389 __ Drop(1); 2390 __ ret(2 * kPointerSize); 2391 } 2392 2393 2394 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( 2395 Isolate* isolate) { 2396 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); 2397 stub1.GetCode(); 2398 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); 2399 stub2.GetCode(); 2400 } 2401 2402 2403 // Takes the input in 3 registers: address_ value_ and object_. A pointer to 2404 // the value has just been written into the object, now this stub makes sure 2405 // we keep the GC informed. The word in the object where the value has been 2406 // written is in the address register. 2407 void RecordWriteStub::Generate(MacroAssembler* masm) { 2408 Label skip_to_incremental_noncompacting; 2409 Label skip_to_incremental_compacting; 2410 2411 // The first two instructions are generated with labels so as to get the 2412 // offset fixed up correctly by the bind(Label*) call. We patch it back and 2413 // forth between a compare instructions (a nop in this position) and the 2414 // real branch when we start and stop incremental heap marking. 2415 // See RecordWriteStub::Patch for details. 2416 __ jmp(&skip_to_incremental_noncompacting, Label::kNear); 2417 __ jmp(&skip_to_incremental_compacting, Label::kFar); 2418 2419 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 2420 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2421 MacroAssembler::kReturnAtEnd); 2422 } else { 2423 __ ret(0); 2424 } 2425 2426 __ bind(&skip_to_incremental_noncompacting); 2427 GenerateIncremental(masm, INCREMENTAL); 2428 2429 __ bind(&skip_to_incremental_compacting); 2430 GenerateIncremental(masm, INCREMENTAL_COMPACTION); 2431 2432 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. 2433 // Will be checked in IncrementalMarking::ActivateGeneratedStub. 2434 masm->set_byte_at(0, kTwoByteNopInstruction); 2435 masm->set_byte_at(2, kFiveByteNopInstruction); 2436 } 2437 2438 2439 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { 2440 regs_.Save(masm); 2441 2442 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 2443 Label dont_need_remembered_set; 2444 2445 __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); 2446 __ JumpIfNotInNewSpace(regs_.scratch0(), 2447 regs_.scratch0(), 2448 &dont_need_remembered_set); 2449 2450 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(), 2451 &dont_need_remembered_set); 2452 2453 // First notify the incremental marker if necessary, then update the 2454 // remembered set. 2455 CheckNeedsToInformIncrementalMarker( 2456 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); 2457 InformIncrementalMarker(masm); 2458 regs_.Restore(masm); 2459 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2460 MacroAssembler::kReturnAtEnd); 2461 2462 __ bind(&dont_need_remembered_set); 2463 } 2464 2465 CheckNeedsToInformIncrementalMarker( 2466 masm, kReturnOnNoNeedToInformIncrementalMarker, mode); 2467 InformIncrementalMarker(masm); 2468 regs_.Restore(masm); 2469 __ ret(0); 2470 } 2471 2472 2473 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { 2474 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); 2475 Register address = 2476 arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address(); 2477 DCHECK(!address.is(regs_.object())); 2478 DCHECK(!address.is(arg_reg_1)); 2479 __ Move(address, regs_.address()); 2480 __ Move(arg_reg_1, regs_.object()); 2481 // TODO(gc) Can we just set address arg2 in the beginning? 2482 __ Move(arg_reg_2, address); 2483 __ LoadAddress(arg_reg_3, 2484 ExternalReference::isolate_address(isolate())); 2485 int argument_count = 3; 2486 2487 AllowExternalCallThatCantCauseGC scope(masm); 2488 __ PrepareCallCFunction(argument_count); 2489 __ CallCFunction( 2490 ExternalReference::incremental_marking_record_write_function(isolate()), 2491 argument_count); 2492 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); 2493 } 2494 2495 void RecordWriteStub::Activate(Code* code) { 2496 code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code); 2497 } 2498 2499 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( 2500 MacroAssembler* masm, 2501 OnNoNeedToInformIncrementalMarker on_no_need, 2502 Mode mode) { 2503 Label on_black; 2504 Label need_incremental; 2505 Label need_incremental_pop_object; 2506 2507 // Let's look at the color of the object: If it is not black we don't have 2508 // to inform the incremental marker. 2509 __ JumpIfBlack(regs_.object(), 2510 regs_.scratch0(), 2511 regs_.scratch1(), 2512 &on_black, 2513 Label::kNear); 2514 2515 regs_.Restore(masm); 2516 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 2517 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2518 MacroAssembler::kReturnAtEnd); 2519 } else { 2520 __ ret(0); 2521 } 2522 2523 __ bind(&on_black); 2524 2525 // Get the value from the slot. 2526 __ movp(regs_.scratch0(), Operand(regs_.address(), 0)); 2527 2528 if (mode == INCREMENTAL_COMPACTION) { 2529 Label ensure_not_white; 2530 2531 __ CheckPageFlag(regs_.scratch0(), // Contains value. 2532 regs_.scratch1(), // Scratch. 2533 MemoryChunk::kEvacuationCandidateMask, 2534 zero, 2535 &ensure_not_white, 2536 Label::kNear); 2537 2538 __ CheckPageFlag(regs_.object(), 2539 regs_.scratch1(), // Scratch. 2540 MemoryChunk::kSkipEvacuationSlotsRecordingMask, 2541 zero, 2542 &need_incremental); 2543 2544 __ bind(&ensure_not_white); 2545 } 2546 2547 // We need an extra register for this, so we push the object register 2548 // temporarily. 2549 __ Push(regs_.object()); 2550 __ JumpIfWhite(regs_.scratch0(), // The value. 2551 regs_.scratch1(), // Scratch. 2552 regs_.object(), // Scratch. 2553 &need_incremental_pop_object, Label::kNear); 2554 __ Pop(regs_.object()); 2555 2556 regs_.Restore(masm); 2557 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 2558 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 2559 MacroAssembler::kReturnAtEnd); 2560 } else { 2561 __ ret(0); 2562 } 2563 2564 __ bind(&need_incremental_pop_object); 2565 __ Pop(regs_.object()); 2566 2567 __ bind(&need_incremental); 2568 2569 // Fall through when we need to inform the incremental marker. 2570 } 2571 2572 2573 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { 2574 CEntryStub ces(isolate(), 1, kSaveFPRegs); 2575 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); 2576 int parameter_count_offset = 2577 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset; 2578 __ movp(rbx, MemOperand(rbp, parameter_count_offset)); 2579 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); 2580 __ PopReturnAddressTo(rcx); 2581 int additional_offset = 2582 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0; 2583 __ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset)); 2584 __ jmp(rcx); // Return to IC Miss stub, continuation still on stack. 2585 } 2586 2587 2588 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { 2589 if (masm->isolate()->function_entry_hook() != NULL) { 2590 ProfileEntryHookStub stub(masm->isolate()); 2591 masm->CallStub(&stub); 2592 } 2593 } 2594 2595 2596 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { 2597 // This stub can be called from essentially anywhere, so it needs to save 2598 // all volatile and callee-save registers. 2599 const size_t kNumSavedRegisters = 2; 2600 __ pushq(arg_reg_1); 2601 __ pushq(arg_reg_2); 2602 2603 // Calculate the original stack pointer and store it in the second arg. 2604 __ leap(arg_reg_2, 2605 Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize)); 2606 2607 // Calculate the function address to the first arg. 2608 __ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize)); 2609 __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength)); 2610 2611 // Save the remainder of the volatile registers. 2612 masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); 2613 2614 // Call the entry hook function. 2615 __ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()), 2616 Assembler::RelocInfoNone()); 2617 2618 AllowExternalCallThatCantCauseGC scope(masm); 2619 2620 const int kArgumentCount = 2; 2621 __ PrepareCallCFunction(kArgumentCount); 2622 __ CallCFunction(rax, kArgumentCount); 2623 2624 // Restore volatile regs. 2625 masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2); 2626 __ popq(arg_reg_2); 2627 __ popq(arg_reg_1); 2628 2629 __ Ret(); 2630 } 2631 2632 2633 template<class T> 2634 static void CreateArrayDispatch(MacroAssembler* masm, 2635 AllocationSiteOverrideMode mode) { 2636 if (mode == DISABLE_ALLOCATION_SITES) { 2637 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); 2638 __ TailCallStub(&stub); 2639 } else if (mode == DONT_OVERRIDE) { 2640 int last_index = GetSequenceIndexFromFastElementsKind( 2641 TERMINAL_FAST_ELEMENTS_KIND); 2642 for (int i = 0; i <= last_index; ++i) { 2643 Label next; 2644 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 2645 __ cmpl(rdx, Immediate(kind)); 2646 __ j(not_equal, &next); 2647 T stub(masm->isolate(), kind); 2648 __ TailCallStub(&stub); 2649 __ bind(&next); 2650 } 2651 2652 // If we reached this point there is a problem. 2653 __ Abort(kUnexpectedElementsKindInArrayConstructor); 2654 } else { 2655 UNREACHABLE(); 2656 } 2657 } 2658 2659 2660 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, 2661 AllocationSiteOverrideMode mode) { 2662 // rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES) 2663 // rdx - kind (if mode != DISABLE_ALLOCATION_SITES) 2664 // rax - number of arguments 2665 // rdi - constructor? 2666 // rsp[0] - return address 2667 // rsp[8] - last argument 2668 2669 Label normal_sequence; 2670 if (mode == DONT_OVERRIDE) { 2671 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); 2672 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); 2673 STATIC_ASSERT(FAST_ELEMENTS == 2); 2674 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); 2675 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); 2676 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); 2677 2678 // is the low bit set? If so, we are holey and that is good. 2679 __ testb(rdx, Immediate(1)); 2680 __ j(not_zero, &normal_sequence); 2681 } 2682 2683 // look at the first argument 2684 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); 2685 __ movp(rcx, args.GetArgumentOperand(0)); 2686 __ testp(rcx, rcx); 2687 __ j(zero, &normal_sequence); 2688 2689 if (mode == DISABLE_ALLOCATION_SITES) { 2690 ElementsKind initial = GetInitialFastElementsKind(); 2691 ElementsKind holey_initial = GetHoleyElementsKind(initial); 2692 2693 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), 2694 holey_initial, 2695 DISABLE_ALLOCATION_SITES); 2696 __ TailCallStub(&stub_holey); 2697 2698 __ bind(&normal_sequence); 2699 ArraySingleArgumentConstructorStub stub(masm->isolate(), 2700 initial, 2701 DISABLE_ALLOCATION_SITES); 2702 __ TailCallStub(&stub); 2703 } else if (mode == DONT_OVERRIDE) { 2704 // We are going to create a holey array, but our kind is non-holey. 2705 // Fix kind and retry (only if we have an allocation site in the slot). 2706 __ incl(rdx); 2707 2708 if (FLAG_debug_code) { 2709 Handle<Map> allocation_site_map = 2710 masm->isolate()->factory()->allocation_site_map(); 2711 __ Cmp(FieldOperand(rbx, 0), allocation_site_map); 2712 __ Assert(equal, kExpectedAllocationSite); 2713 } 2714 2715 // Save the resulting elements kind in type info. We can't just store r3 2716 // in the AllocationSite::transition_info field because elements kind is 2717 // restricted to a portion of the field...upper bits need to be left alone. 2718 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 2719 __ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset), 2720 Smi::FromInt(kFastElementsKindPackedToHoley)); 2721 2722 __ bind(&normal_sequence); 2723 int last_index = GetSequenceIndexFromFastElementsKind( 2724 TERMINAL_FAST_ELEMENTS_KIND); 2725 for (int i = 0; i <= last_index; ++i) { 2726 Label next; 2727 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 2728 __ cmpl(rdx, Immediate(kind)); 2729 __ j(not_equal, &next); 2730 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); 2731 __ TailCallStub(&stub); 2732 __ bind(&next); 2733 } 2734 2735 // If we reached this point there is a problem. 2736 __ Abort(kUnexpectedElementsKindInArrayConstructor); 2737 } else { 2738 UNREACHABLE(); 2739 } 2740 } 2741 2742 2743 template<class T> 2744 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { 2745 int to_index = GetSequenceIndexFromFastElementsKind( 2746 TERMINAL_FAST_ELEMENTS_KIND); 2747 for (int i = 0; i <= to_index; ++i) { 2748 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 2749 T stub(isolate, kind); 2750 stub.GetCode(); 2751 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { 2752 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); 2753 stub1.GetCode(); 2754 } 2755 } 2756 } 2757 2758 void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { 2759 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( 2760 isolate); 2761 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( 2762 isolate); 2763 ArrayNArgumentsConstructorStub stub(isolate); 2764 stub.GetCode(); 2765 2766 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; 2767 for (int i = 0; i < 2; i++) { 2768 // For internal arrays we only need a few things 2769 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); 2770 stubh1.GetCode(); 2771 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); 2772 stubh2.GetCode(); 2773 } 2774 } 2775 2776 void ArrayConstructorStub::GenerateDispatchToArrayStub( 2777 MacroAssembler* masm, AllocationSiteOverrideMode mode) { 2778 Label not_zero_case, not_one_case; 2779 __ testp(rax, rax); 2780 __ j(not_zero, ¬_zero_case); 2781 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); 2782 2783 __ bind(¬_zero_case); 2784 __ cmpl(rax, Immediate(1)); 2785 __ j(greater, ¬_one_case); 2786 CreateArrayDispatchOneArgument(masm, mode); 2787 2788 __ bind(¬_one_case); 2789 ArrayNArgumentsConstructorStub stub(masm->isolate()); 2790 __ TailCallStub(&stub); 2791 } 2792 2793 void ArrayConstructorStub::Generate(MacroAssembler* masm) { 2794 // ----------- S t a t e ------------- 2795 // -- rax : argc 2796 // -- rbx : AllocationSite or undefined 2797 // -- rdi : constructor 2798 // -- rdx : new target 2799 // -- rsp[0] : return address 2800 // -- rsp[8] : last argument 2801 // ----------------------------------- 2802 if (FLAG_debug_code) { 2803 // The array construct code is only set for the global and natives 2804 // builtin Array functions which always have maps. 2805 2806 // Initial map for the builtin Array function should be a map. 2807 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 2808 // Will both indicate a NULL and a Smi. 2809 STATIC_ASSERT(kSmiTag == 0); 2810 Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); 2811 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); 2812 __ CmpObjectType(rcx, MAP_TYPE, rcx); 2813 __ Check(equal, kUnexpectedInitialMapForArrayFunction); 2814 2815 // We should either have undefined in rbx or a valid AllocationSite 2816 __ AssertUndefinedOrAllocationSite(rbx); 2817 } 2818 2819 // Enter the context of the Array function. 2820 __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); 2821 2822 Label subclassing; 2823 __ cmpp(rdi, rdx); 2824 __ j(not_equal, &subclassing); 2825 2826 Label no_info; 2827 // If the feedback vector is the undefined value call an array constructor 2828 // that doesn't use AllocationSites. 2829 __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); 2830 __ j(equal, &no_info); 2831 2832 // Only look at the lower 16 bits of the transition info. 2833 __ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset)); 2834 __ SmiToInteger32(rdx, rdx); 2835 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 2836 __ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask)); 2837 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); 2838 2839 __ bind(&no_info); 2840 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); 2841 2842 // Subclassing 2843 __ bind(&subclassing); 2844 StackArgumentsAccessor args(rsp, rax); 2845 __ movp(args.GetReceiverOperand(), rdi); 2846 __ addp(rax, Immediate(3)); 2847 __ PopReturnAddressTo(rcx); 2848 __ Push(rdx); 2849 __ Push(rbx); 2850 __ PushReturnAddressFrom(rcx); 2851 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); 2852 } 2853 2854 2855 void InternalArrayConstructorStub::GenerateCase( 2856 MacroAssembler* masm, ElementsKind kind) { 2857 Label not_zero_case, not_one_case; 2858 Label normal_sequence; 2859 2860 __ testp(rax, rax); 2861 __ j(not_zero, ¬_zero_case); 2862 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); 2863 __ TailCallStub(&stub0); 2864 2865 __ bind(¬_zero_case); 2866 __ cmpl(rax, Immediate(1)); 2867 __ j(greater, ¬_one_case); 2868 2869 if (IsFastPackedElementsKind(kind)) { 2870 // We might need to create a holey array 2871 // look at the first argument 2872 StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER); 2873 __ movp(rcx, args.GetArgumentOperand(0)); 2874 __ testp(rcx, rcx); 2875 __ j(zero, &normal_sequence); 2876 2877 InternalArraySingleArgumentConstructorStub 2878 stub1_holey(isolate(), GetHoleyElementsKind(kind)); 2879 __ TailCallStub(&stub1_holey); 2880 } 2881 2882 __ bind(&normal_sequence); 2883 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); 2884 __ TailCallStub(&stub1); 2885 2886 __ bind(¬_one_case); 2887 ArrayNArgumentsConstructorStub stubN(isolate()); 2888 __ TailCallStub(&stubN); 2889 } 2890 2891 2892 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { 2893 // ----------- S t a t e ------------- 2894 // -- rax : argc 2895 // -- rdi : constructor 2896 // -- rsp[0] : return address 2897 // -- rsp[8] : last argument 2898 // ----------------------------------- 2899 2900 if (FLAG_debug_code) { 2901 // The array construct code is only set for the global and natives 2902 // builtin Array functions which always have maps. 2903 2904 // Initial map for the builtin Array function should be a map. 2905 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 2906 // Will both indicate a NULL and a Smi. 2907 STATIC_ASSERT(kSmiTag == 0); 2908 Condition not_smi = NegateCondition(masm->CheckSmi(rcx)); 2909 __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); 2910 __ CmpObjectType(rcx, MAP_TYPE, rcx); 2911 __ Check(equal, kUnexpectedInitialMapForArrayFunction); 2912 } 2913 2914 // Figure out the right elements kind 2915 __ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); 2916 2917 // Load the map's "bit field 2" into |result|. We only need the first byte, 2918 // but the following masking takes care of that anyway. 2919 __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset)); 2920 // Retrieve elements_kind from bit field 2. 2921 __ DecodeField<Map::ElementsKindBits>(rcx); 2922 2923 if (FLAG_debug_code) { 2924 Label done; 2925 __ cmpl(rcx, Immediate(FAST_ELEMENTS)); 2926 __ j(equal, &done); 2927 __ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS)); 2928 __ Assert(equal, 2929 kInvalidElementsKindForInternalArrayOrInternalPackedArray); 2930 __ bind(&done); 2931 } 2932 2933 Label fast_elements_case; 2934 __ cmpl(rcx, Immediate(FAST_ELEMENTS)); 2935 __ j(equal, &fast_elements_case); 2936 GenerateCase(masm, FAST_HOLEY_ELEMENTS); 2937 2938 __ bind(&fast_elements_case); 2939 GenerateCase(masm, FAST_ELEMENTS); 2940 } 2941 2942 static int Offset(ExternalReference ref0, ExternalReference ref1) { 2943 int64_t offset = (ref0.address() - ref1.address()); 2944 // Check that fits into int. 2945 DCHECK(static_cast<int>(offset) == offset); 2946 return static_cast<int>(offset); 2947 } 2948 2949 // Prepares stack to put arguments (aligns and so on). WIN64 calling 2950 // convention requires to put the pointer to the return value slot into 2951 // rcx (rcx must be preserverd until CallApiFunctionAndReturn). Saves 2952 // context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize 2953 // inside the exit frame (not GCed) accessible via StackSpaceOperand. 2954 static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) { 2955 __ EnterApiExitFrame(arg_stack_space); 2956 } 2957 2958 2959 // Calls an API function. Allocates HandleScope, extracts returned value 2960 // from handle and propagates exceptions. Clobbers r14, r15, rbx and 2961 // caller-save registers. Restores context. On return removes 2962 // stack_space * kPointerSize (GCed). 2963 static void CallApiFunctionAndReturn(MacroAssembler* masm, 2964 Register function_address, 2965 ExternalReference thunk_ref, 2966 Register thunk_last_arg, int stack_space, 2967 Operand* stack_space_operand, 2968 Operand return_value_operand, 2969 Operand* context_restore_operand) { 2970 Label prologue; 2971 Label promote_scheduled_exception; 2972 Label delete_allocated_handles; 2973 Label leave_exit_frame; 2974 Label write_back; 2975 2976 Isolate* isolate = masm->isolate(); 2977 Factory* factory = isolate->factory(); 2978 ExternalReference next_address = 2979 ExternalReference::handle_scope_next_address(isolate); 2980 const int kNextOffset = 0; 2981 const int kLimitOffset = Offset( 2982 ExternalReference::handle_scope_limit_address(isolate), next_address); 2983 const int kLevelOffset = Offset( 2984 ExternalReference::handle_scope_level_address(isolate), next_address); 2985 ExternalReference scheduled_exception_address = 2986 ExternalReference::scheduled_exception_address(isolate); 2987 2988 DCHECK(rdx.is(function_address) || r8.is(function_address)); 2989 // Allocate HandleScope in callee-save registers. 2990 Register prev_next_address_reg = r14; 2991 Register prev_limit_reg = rbx; 2992 Register base_reg = r15; 2993 __ Move(base_reg, next_address); 2994 __ movp(prev_next_address_reg, Operand(base_reg, kNextOffset)); 2995 __ movp(prev_limit_reg, Operand(base_reg, kLimitOffset)); 2996 __ addl(Operand(base_reg, kLevelOffset), Immediate(1)); 2997 2998 if (FLAG_log_timer_events) { 2999 FrameScope frame(masm, StackFrame::MANUAL); 3000 __ PushSafepointRegisters(); 3001 __ PrepareCallCFunction(1); 3002 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 3003 __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 3004 1); 3005 __ PopSafepointRegisters(); 3006 } 3007 3008 Label profiler_disabled; 3009 Label end_profiler_check; 3010 __ Move(rax, ExternalReference::is_profiling_address(isolate)); 3011 __ cmpb(Operand(rax, 0), Immediate(0)); 3012 __ j(zero, &profiler_disabled); 3013 3014 // Third parameter is the address of the actual getter function. 3015 __ Move(thunk_last_arg, function_address); 3016 __ Move(rax, thunk_ref); 3017 __ jmp(&end_profiler_check); 3018 3019 __ bind(&profiler_disabled); 3020 // Call the api function! 3021 __ Move(rax, function_address); 3022 3023 __ bind(&end_profiler_check); 3024 3025 // Call the api function! 3026 __ call(rax); 3027 3028 if (FLAG_log_timer_events) { 3029 FrameScope frame(masm, StackFrame::MANUAL); 3030 __ PushSafepointRegisters(); 3031 __ PrepareCallCFunction(1); 3032 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 3033 __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 3034 1); 3035 __ PopSafepointRegisters(); 3036 } 3037 3038 // Load the value from ReturnValue 3039 __ movp(rax, return_value_operand); 3040 __ bind(&prologue); 3041 3042 // No more valid handles (the result handle was the last one). Restore 3043 // previous handle scope. 3044 __ subl(Operand(base_reg, kLevelOffset), Immediate(1)); 3045 __ movp(Operand(base_reg, kNextOffset), prev_next_address_reg); 3046 __ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset)); 3047 __ j(not_equal, &delete_allocated_handles); 3048 3049 // Leave the API exit frame. 3050 __ bind(&leave_exit_frame); 3051 bool restore_context = context_restore_operand != NULL; 3052 if (restore_context) { 3053 __ movp(rsi, *context_restore_operand); 3054 } 3055 if (stack_space_operand != nullptr) { 3056 __ movp(rbx, *stack_space_operand); 3057 } 3058 __ LeaveApiExitFrame(!restore_context); 3059 3060 // Check if the function scheduled an exception. 3061 __ Move(rdi, scheduled_exception_address); 3062 __ Cmp(Operand(rdi, 0), factory->the_hole_value()); 3063 __ j(not_equal, &promote_scheduled_exception); 3064 3065 #if DEBUG 3066 // Check if the function returned a valid JavaScript value. 3067 Label ok; 3068 Register return_value = rax; 3069 Register map = rcx; 3070 3071 __ JumpIfSmi(return_value, &ok, Label::kNear); 3072 __ movp(map, FieldOperand(return_value, HeapObject::kMapOffset)); 3073 3074 __ CmpInstanceType(map, LAST_NAME_TYPE); 3075 __ j(below_equal, &ok, Label::kNear); 3076 3077 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); 3078 __ j(above_equal, &ok, Label::kNear); 3079 3080 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); 3081 __ j(equal, &ok, Label::kNear); 3082 3083 __ CompareRoot(return_value, Heap::kUndefinedValueRootIndex); 3084 __ j(equal, &ok, Label::kNear); 3085 3086 __ CompareRoot(return_value, Heap::kTrueValueRootIndex); 3087 __ j(equal, &ok, Label::kNear); 3088 3089 __ CompareRoot(return_value, Heap::kFalseValueRootIndex); 3090 __ j(equal, &ok, Label::kNear); 3091 3092 __ CompareRoot(return_value, Heap::kNullValueRootIndex); 3093 __ j(equal, &ok, Label::kNear); 3094 3095 __ Abort(kAPICallReturnedInvalidObject); 3096 3097 __ bind(&ok); 3098 #endif 3099 3100 if (stack_space_operand != nullptr) { 3101 DCHECK_EQ(stack_space, 0); 3102 __ PopReturnAddressTo(rcx); 3103 __ addq(rsp, rbx); 3104 __ jmp(rcx); 3105 } else { 3106 __ ret(stack_space * kPointerSize); 3107 } 3108 3109 // Re-throw by promoting a scheduled exception. 3110 __ bind(&promote_scheduled_exception); 3111 __ TailCallRuntime(Runtime::kPromoteScheduledException); 3112 3113 // HandleScope limit has changed. Delete allocated extensions. 3114 __ bind(&delete_allocated_handles); 3115 __ movp(Operand(base_reg, kLimitOffset), prev_limit_reg); 3116 __ movp(prev_limit_reg, rax); 3117 __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate)); 3118 __ LoadAddress(rax, 3119 ExternalReference::delete_handle_scope_extensions(isolate)); 3120 __ call(rax); 3121 __ movp(rax, prev_limit_reg); 3122 __ jmp(&leave_exit_frame); 3123 } 3124 3125 void CallApiCallbackStub::Generate(MacroAssembler* masm) { 3126 // ----------- S t a t e ------------- 3127 // -- rdi : callee 3128 // -- rbx : call_data 3129 // -- rcx : holder 3130 // -- rdx : api_function_address 3131 // -- rsi : context 3132 // -- rax : number of arguments if argc is a register 3133 // -- rsp[0] : return address 3134 // -- rsp[8] : last argument 3135 // -- ... 3136 // -- rsp[argc * 8] : first argument 3137 // -- rsp[(argc + 1) * 8] : receiver 3138 // ----------------------------------- 3139 3140 Register callee = rdi; 3141 Register call_data = rbx; 3142 Register holder = rcx; 3143 Register api_function_address = rdx; 3144 Register context = rsi; 3145 Register return_address = r8; 3146 3147 typedef FunctionCallbackArguments FCA; 3148 3149 STATIC_ASSERT(FCA::kContextSaveIndex == 6); 3150 STATIC_ASSERT(FCA::kCalleeIndex == 5); 3151 STATIC_ASSERT(FCA::kDataIndex == 4); 3152 STATIC_ASSERT(FCA::kReturnValueOffset == 3); 3153 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); 3154 STATIC_ASSERT(FCA::kIsolateIndex == 1); 3155 STATIC_ASSERT(FCA::kHolderIndex == 0); 3156 STATIC_ASSERT(FCA::kNewTargetIndex == 7); 3157 STATIC_ASSERT(FCA::kArgsLength == 8); 3158 3159 __ PopReturnAddressTo(return_address); 3160 3161 // new target 3162 __ PushRoot(Heap::kUndefinedValueRootIndex); 3163 3164 // context save 3165 __ Push(context); 3166 3167 // callee 3168 __ Push(callee); 3169 3170 // call data 3171 __ Push(call_data); 3172 Register scratch = call_data; 3173 if (!this->call_data_undefined()) { 3174 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 3175 } 3176 // return value 3177 __ Push(scratch); 3178 // return value default 3179 __ Push(scratch); 3180 // isolate 3181 __ Move(scratch, ExternalReference::isolate_address(masm->isolate())); 3182 __ Push(scratch); 3183 // holder 3184 __ Push(holder); 3185 3186 __ movp(scratch, rsp); 3187 // Push return address back on stack. 3188 __ PushReturnAddressFrom(return_address); 3189 3190 if (!this->is_lazy()) { 3191 // load context from callee 3192 __ movp(context, FieldOperand(callee, JSFunction::kContextOffset)); 3193 } 3194 3195 // Allocate the v8::Arguments structure in the arguments' space since 3196 // it's not controlled by GC. 3197 const int kApiStackSpace = 3; 3198 3199 PrepareCallApiFunction(masm, kApiStackSpace); 3200 3201 // FunctionCallbackInfo::implicit_args_. 3202 int argc = this->argc(); 3203 __ movp(StackSpaceOperand(0), scratch); 3204 __ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize)); 3205 // FunctionCallbackInfo::values_. 3206 __ movp(StackSpaceOperand(1), scratch); 3207 // FunctionCallbackInfo::length_. 3208 __ Set(StackSpaceOperand(2), argc); 3209 3210 #if defined(__MINGW64__) || defined(_WIN64) 3211 Register arguments_arg = rcx; 3212 Register callback_arg = rdx; 3213 #else 3214 Register arguments_arg = rdi; 3215 Register callback_arg = rsi; 3216 #endif 3217 3218 // It's okay if api_function_address == callback_arg 3219 // but not arguments_arg 3220 DCHECK(!api_function_address.is(arguments_arg)); 3221 3222 // v8::InvocationCallback's argument. 3223 __ leap(arguments_arg, StackSpaceOperand(0)); 3224 3225 ExternalReference thunk_ref = 3226 ExternalReference::invoke_function_callback(masm->isolate()); 3227 3228 // Accessor for FunctionCallbackInfo and first js arg. 3229 StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1, 3230 ARGUMENTS_DONT_CONTAIN_RECEIVER); 3231 Operand context_restore_operand = args_from_rbp.GetArgumentOperand( 3232 FCA::kArgsLength - FCA::kContextSaveIndex); 3233 Operand length_operand = StackSpaceOperand(2); 3234 Operand return_value_operand = args_from_rbp.GetArgumentOperand( 3235 this->is_store() ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset); 3236 int stack_space = 0; 3237 Operand* stack_space_operand = &length_operand; 3238 stack_space = argc + FCA::kArgsLength + 1; 3239 stack_space_operand = nullptr; 3240 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg, 3241 stack_space, stack_space_operand, 3242 return_value_operand, &context_restore_operand); 3243 } 3244 3245 3246 void CallApiGetterStub::Generate(MacroAssembler* masm) { 3247 #if defined(__MINGW64__) || defined(_WIN64) 3248 Register getter_arg = r8; 3249 Register accessor_info_arg = rdx; 3250 Register name_arg = rcx; 3251 #else 3252 Register getter_arg = rdx; 3253 Register accessor_info_arg = rsi; 3254 Register name_arg = rdi; 3255 #endif 3256 Register api_function_address = r8; 3257 Register receiver = ApiGetterDescriptor::ReceiverRegister(); 3258 Register holder = ApiGetterDescriptor::HolderRegister(); 3259 Register callback = ApiGetterDescriptor::CallbackRegister(); 3260 Register scratch = rax; 3261 DCHECK(!AreAliased(receiver, holder, callback, scratch)); 3262 3263 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property 3264 // name below the exit frame to make GC aware of them. 3265 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); 3266 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); 3267 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); 3268 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); 3269 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); 3270 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); 3271 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); 3272 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); 3273 3274 // Insert additional parameters into the stack frame above return address. 3275 __ PopReturnAddressTo(scratch); 3276 __ Push(receiver); 3277 __ Push(FieldOperand(callback, AccessorInfo::kDataOffset)); 3278 __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); 3279 __ Push(kScratchRegister); // return value 3280 __ Push(kScratchRegister); // return value default 3281 __ PushAddress(ExternalReference::isolate_address(isolate())); 3282 __ Push(holder); 3283 __ Push(Smi::kZero); // should_throw_on_error -> false 3284 __ Push(FieldOperand(callback, AccessorInfo::kNameOffset)); 3285 __ PushReturnAddressFrom(scratch); 3286 3287 // v8::PropertyCallbackInfo::args_ array and name handle. 3288 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; 3289 3290 // Allocate v8::PropertyCallbackInfo in non-GCed stack space. 3291 const int kArgStackSpace = 1; 3292 3293 // Load address of v8::PropertyAccessorInfo::args_ array. 3294 __ leap(scratch, Operand(rsp, 2 * kPointerSize)); 3295 3296 PrepareCallApiFunction(masm, kArgStackSpace); 3297 // Create v8::PropertyCallbackInfo object on the stack and initialize 3298 // it's args_ field. 3299 Operand info_object = StackSpaceOperand(0); 3300 __ movp(info_object, scratch); 3301 3302 __ leap(name_arg, Operand(scratch, -kPointerSize)); 3303 // The context register (rsi) has been saved in PrepareCallApiFunction and 3304 // could be used to pass arguments. 3305 __ leap(accessor_info_arg, info_object); 3306 3307 ExternalReference thunk_ref = 3308 ExternalReference::invoke_accessor_getter_callback(isolate()); 3309 3310 // It's okay if api_function_address == getter_arg 3311 // but not accessor_info_arg or name_arg 3312 DCHECK(!api_function_address.is(accessor_info_arg)); 3313 DCHECK(!api_function_address.is(name_arg)); 3314 __ movp(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset)); 3315 __ movp(api_function_address, 3316 FieldOperand(scratch, Foreign::kForeignAddressOffset)); 3317 3318 // +3 is to skip prolog, return address and name handle. 3319 Operand return_value_operand( 3320 rbp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); 3321 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg, 3322 kStackUnwindSpace, nullptr, return_value_operand, 3323 NULL); 3324 } 3325 3326 #undef __ 3327 3328 } // namespace internal 3329 } // namespace v8 3330 3331 #endif // V8_TARGET_ARCH_X64 3332