Home | History | Annotate | Download | only in sparse_resources
      1 /*------------------------------------------------------------------------
      2  * Vulkan Conformance Tests
      3  * ------------------------
      4  *
      5  * Copyright (c) 2016 The Khronos Group Inc.
      6  *
      7  * Licensed under the Apache License, Version 2.0 (the "License");
      8  * you may not use this file except in compliance with the License.
      9  * You may obtain a copy of the License at
     10  *
     11  *      http://www.apache.org/licenses/LICENSE-2.0
     12  *
     13  * Unless required by applicable law or agreed to in writing, software
     14  * distributed under the License is distributed on an "AS IS" BASIS,
     15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     16  * See the License for the specific language governing permissions and
     17  * limitations under the License.
     18  *
     19  *//*!
     20  * \file
     21  * \brief Sparse buffer tests
     22  *//*--------------------------------------------------------------------*/
     23 
     24 #include "vktSparseResourcesBufferTests.hpp"
     25 #include "vktTestCaseUtil.hpp"
     26 #include "vktTestGroupUtil.hpp"
     27 #include "vktSparseResourcesTestsUtil.hpp"
     28 #include "vktSparseResourcesBase.hpp"
     29 #include "vktSparseResourcesBufferSparseBinding.hpp"
     30 #include "vktSparseResourcesBufferSparseResidency.hpp"
     31 #include "vktSparseResourcesBufferMemoryAliasing.hpp"
     32 
     33 #include "vkRef.hpp"
     34 #include "vkRefUtil.hpp"
     35 #include "vkPlatform.hpp"
     36 #include "vkPrograms.hpp"
     37 #include "vkMemUtil.hpp"
     38 #include "vkBuilderUtil.hpp"
     39 #include "vkQueryUtil.hpp"
     40 #include "vkTypeUtil.hpp"
     41 
     42 #include "tcuTestLog.hpp"
     43 
     44 #include "deUniquePtr.hpp"
     45 #include "deSharedPtr.hpp"
     46 #include "deMath.h"
     47 
     48 #include <string>
     49 #include <vector>
     50 #include <map>
     51 
     52 using namespace vk;
     53 using de::MovePtr;
     54 using de::UniquePtr;
     55 using de::SharedPtr;
     56 using tcu::Vec4;
     57 using tcu::IVec2;
     58 using tcu::IVec4;
     59 
     60 namespace vkt
     61 {
     62 namespace sparse
     63 {
     64 namespace
     65 {
     66 
     67 typedef SharedPtr<UniquePtr<Allocation> > AllocationSp;
     68 
     69 enum
     70 {
     71 	RENDER_SIZE		= 128,				//!< framebuffer size in pixels
     72 	GRID_SIZE		= RENDER_SIZE / 8,	//!< number of grid tiles in a row
     73 };
     74 
     75 enum TestFlagBits
     76 {
     77 												//   sparseBinding is implied
     78 	TEST_FLAG_ALIASED				= 1u << 0,	//!< sparseResidencyAliased
     79 	TEST_FLAG_RESIDENCY				= 1u << 1,	//!< sparseResidencyBuffer
     80 	TEST_FLAG_NON_RESIDENT_STRICT	= 1u << 2,	//!< residencyNonResidentStrict
     81 	TEST_FLAG_ENABLE_DEVICE_GROUPS	= 1u << 3,	//!< device groups are enabled
     82 };
     83 typedef deUint32 TestFlags;
     84 
     85 //! SparseAllocationBuilder output. Owns the allocated memory.
     86 struct SparseAllocation
     87 {
     88 	deUint32							numResourceChunks;
     89 	VkDeviceSize						resourceSize;		//!< buffer size in bytes
     90 	std::vector<AllocationSp>			allocations;		//!< actual allocated memory
     91 	std::vector<VkSparseMemoryBind>		memoryBinds;		//!< memory binds backing the resource
     92 };
     93 
     94 //! Utility to lay out memory allocations for a sparse buffer, including holes and aliased regions.
     95 //! Will allocate memory upon building.
     96 class SparseAllocationBuilder
     97 {
     98 public:
     99 								SparseAllocationBuilder	(void);
    100 
    101 	// \note "chunk" is the smallest (due to alignment) bindable amount of memory
    102 
    103 	SparseAllocationBuilder&	addMemoryHole			(const deUint32 numChunks = 1u);
    104 	SparseAllocationBuilder&	addResourceHole			(const deUint32 numChunks = 1u);
    105 	SparseAllocationBuilder&	addMemoryBind			(const deUint32 numChunks = 1u);
    106 	SparseAllocationBuilder&	addAliasedMemoryBind	(const deUint32 allocationNdx, const deUint32 chunkOffset, const deUint32 numChunks = 1u);
    107 	SparseAllocationBuilder&	addMemoryAllocation		(void);
    108 
    109 	MovePtr<SparseAllocation>	build					(const DeviceInterface&		vk,
    110 														 const VkDevice				device,
    111 														 Allocator&					allocator,
    112 														 VkBufferCreateInfo			referenceCreateInfo,		//!< buffer size is ignored in this info
    113 														 const VkDeviceSize			minChunkSize = 0ull) const;	//!< make sure chunks are at least this big
    114 
    115 private:
    116 	struct MemoryBind
    117 	{
    118 		deUint32	allocationNdx;
    119 		deUint32	resourceChunkNdx;
    120 		deUint32	memoryChunkNdx;
    121 		deUint32	numChunks;
    122 	};
    123 
    124 	deUint32					m_allocationNdx;
    125 	deUint32					m_resourceChunkNdx;
    126 	deUint32					m_memoryChunkNdx;
    127 	std::vector<MemoryBind>		m_memoryBinds;
    128 	std::vector<deUint32>		m_chunksPerAllocation;
    129 
    130 };
    131 
    132 SparseAllocationBuilder::SparseAllocationBuilder (void)
    133 	: m_allocationNdx		(0)
    134 	, m_resourceChunkNdx	(0)
    135 	, m_memoryChunkNdx		(0)
    136 {
    137 	m_chunksPerAllocation.push_back(0);
    138 }
    139 
    140 SparseAllocationBuilder& SparseAllocationBuilder::addMemoryHole (const deUint32 numChunks)
    141 {
    142 	m_memoryChunkNdx						+= numChunks;
    143 	m_chunksPerAllocation[m_allocationNdx]	+= numChunks;
    144 
    145 	return *this;
    146 }
    147 
    148 SparseAllocationBuilder& SparseAllocationBuilder::addResourceHole (const deUint32 numChunks)
    149 {
    150 	m_resourceChunkNdx += numChunks;
    151 
    152 	return *this;
    153 }
    154 
    155 SparseAllocationBuilder& SparseAllocationBuilder::addMemoryAllocation (void)
    156 {
    157 	DE_ASSERT(m_memoryChunkNdx != 0);	// doesn't make sense to have an empty allocation
    158 
    159 	m_allocationNdx  += 1;
    160 	m_memoryChunkNdx  = 0;
    161 	m_chunksPerAllocation.push_back(0);
    162 
    163 	return *this;
    164 }
    165 
    166 SparseAllocationBuilder& SparseAllocationBuilder::addMemoryBind (const deUint32 numChunks)
    167 {
    168 	const MemoryBind memoryBind =
    169 	{
    170 		m_allocationNdx,
    171 		m_resourceChunkNdx,
    172 		m_memoryChunkNdx,
    173 		numChunks
    174 	};
    175 	m_memoryBinds.push_back(memoryBind);
    176 
    177 	m_resourceChunkNdx						+= numChunks;
    178 	m_memoryChunkNdx						+= numChunks;
    179 	m_chunksPerAllocation[m_allocationNdx]	+= numChunks;
    180 
    181 	return *this;
    182 }
    183 
    184 SparseAllocationBuilder& SparseAllocationBuilder::addAliasedMemoryBind	(const deUint32 allocationNdx, const deUint32 chunkOffset, const deUint32 numChunks)
    185 {
    186 	DE_ASSERT(allocationNdx <= m_allocationNdx);
    187 
    188 	const MemoryBind memoryBind =
    189 	{
    190 		allocationNdx,
    191 		m_resourceChunkNdx,
    192 		chunkOffset,
    193 		numChunks
    194 	};
    195 	m_memoryBinds.push_back(memoryBind);
    196 
    197 	m_resourceChunkNdx += numChunks;
    198 
    199 	return *this;
    200 }
    201 
    202 inline VkMemoryRequirements requirementsWithSize (VkMemoryRequirements requirements, const VkDeviceSize size)
    203 {
    204 	requirements.size = size;
    205 	return requirements;
    206 }
    207 
    208 MovePtr<SparseAllocation> SparseAllocationBuilder::build (const DeviceInterface&	vk,
    209 														  const VkDevice			device,
    210 														  Allocator&				allocator,
    211 														  VkBufferCreateInfo		referenceCreateInfo,
    212 														  const VkDeviceSize		minChunkSize) const
    213 {
    214 
    215 	MovePtr<SparseAllocation>	sparseAllocation			(new SparseAllocation());
    216 
    217 								referenceCreateInfo.size	= sizeof(deUint32);
    218 	const Unique<VkBuffer>		refBuffer					(createBuffer(vk, device, &referenceCreateInfo));
    219 	const VkMemoryRequirements	memoryRequirements			= getBufferMemoryRequirements(vk, device, *refBuffer);
    220 	const VkDeviceSize			chunkSize					= std::max(memoryRequirements.alignment, static_cast<VkDeviceSize>(deAlign64(minChunkSize, memoryRequirements.alignment)));
    221 
    222 	for (std::vector<deUint32>::const_iterator numChunksIter = m_chunksPerAllocation.begin(); numChunksIter != m_chunksPerAllocation.end(); ++numChunksIter)
    223 	{
    224 		sparseAllocation->allocations.push_back(makeDeSharedPtr(
    225 			allocator.allocate(requirementsWithSize(memoryRequirements, *numChunksIter * chunkSize), MemoryRequirement::Any)));
    226 	}
    227 
    228 	for (std::vector<MemoryBind>::const_iterator memBindIter = m_memoryBinds.begin(); memBindIter != m_memoryBinds.end(); ++memBindIter)
    229 	{
    230 		const Allocation&			alloc	= **sparseAllocation->allocations[memBindIter->allocationNdx];
    231 		const VkSparseMemoryBind	bind	=
    232 		{
    233 			memBindIter->resourceChunkNdx * chunkSize,							// VkDeviceSize               resourceOffset;
    234 			memBindIter->numChunks * chunkSize,									// VkDeviceSize               size;
    235 			alloc.getMemory(),													// VkDeviceMemory             memory;
    236 			alloc.getOffset() + memBindIter->memoryChunkNdx * chunkSize,		// VkDeviceSize               memoryOffset;
    237 			(VkSparseMemoryBindFlags)0,											// VkSparseMemoryBindFlags    flags;
    238 		};
    239 		sparseAllocation->memoryBinds.push_back(bind);
    240 		referenceCreateInfo.size = std::max(referenceCreateInfo.size, bind.resourceOffset + bind.size);
    241 	}
    242 
    243 	sparseAllocation->resourceSize		= referenceCreateInfo.size;
    244 	sparseAllocation->numResourceChunks = m_resourceChunkNdx;
    245 
    246 	return sparseAllocation;
    247 }
    248 
    249 VkImageCreateInfo makeImageCreateInfo (const VkFormat format, const IVec2& size, const VkImageUsageFlags usage)
    250 {
    251 	const VkImageCreateInfo imageParams =
    252 	{
    253 		VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,			// VkStructureType			sType;
    254 		DE_NULL,										// const void*				pNext;
    255 		(VkImageCreateFlags)0,							// VkImageCreateFlags		flags;
    256 		VK_IMAGE_TYPE_2D,								// VkImageType				imageType;
    257 		format,											// VkFormat					format;
    258 		makeExtent3D(size.x(), size.y(), 1),			// VkExtent3D				extent;
    259 		1u,												// deUint32					mipLevels;
    260 		1u,												// deUint32					arrayLayers;
    261 		VK_SAMPLE_COUNT_1_BIT,							// VkSampleCountFlagBits	samples;
    262 		VK_IMAGE_TILING_OPTIMAL,						// VkImageTiling			tiling;
    263 		usage,											// VkImageUsageFlags		usage;
    264 		VK_SHARING_MODE_EXCLUSIVE,						// VkSharingMode			sharingMode;
    265 		0u,												// deUint32					queueFamilyIndexCount;
    266 		DE_NULL,										// const deUint32*			pQueueFamilyIndices;
    267 		VK_IMAGE_LAYOUT_UNDEFINED,						// VkImageLayout			initialLayout;
    268 	};
    269 	return imageParams;
    270 }
    271 
    272 Move<VkRenderPass> makeRenderPass (const DeviceInterface&	vk,
    273 								   const VkDevice			device,
    274 								   const VkFormat			colorFormat)
    275 {
    276 	const VkAttachmentDescription colorAttachmentDescription =
    277 	{
    278 		(VkAttachmentDescriptionFlags)0,					// VkAttachmentDescriptionFlags		flags;
    279 		colorFormat,										// VkFormat							format;
    280 		VK_SAMPLE_COUNT_1_BIT,								// VkSampleCountFlagBits			samples;
    281 		VK_ATTACHMENT_LOAD_OP_CLEAR,						// VkAttachmentLoadOp				loadOp;
    282 		VK_ATTACHMENT_STORE_OP_STORE,						// VkAttachmentStoreOp				storeOp;
    283 		VK_ATTACHMENT_LOAD_OP_DONT_CARE,					// VkAttachmentLoadOp				stencilLoadOp;
    284 		VK_ATTACHMENT_STORE_OP_DONT_CARE,					// VkAttachmentStoreOp				stencilStoreOp;
    285 		VK_IMAGE_LAYOUT_UNDEFINED,							// VkImageLayout					initialLayout;
    286 		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,			// VkImageLayout					finalLayout;
    287 	};
    288 
    289 	const VkAttachmentReference colorAttachmentRef =
    290 	{
    291 		0u,													// deUint32			attachment;
    292 		VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL			// VkImageLayout	layout;
    293 	};
    294 
    295 	const VkSubpassDescription subpassDescription =
    296 	{
    297 		(VkSubpassDescriptionFlags)0,						// VkSubpassDescriptionFlags		flags;
    298 		VK_PIPELINE_BIND_POINT_GRAPHICS,					// VkPipelineBindPoint				pipelineBindPoint;
    299 		0u,													// deUint32							inputAttachmentCount;
    300 		DE_NULL,											// const VkAttachmentReference*		pInputAttachments;
    301 		1u,													// deUint32							colorAttachmentCount;
    302 		&colorAttachmentRef,								// const VkAttachmentReference*		pColorAttachments;
    303 		DE_NULL,											// const VkAttachmentReference*		pResolveAttachments;
    304 		DE_NULL,											// const VkAttachmentReference*		pDepthStencilAttachment;
    305 		0u,													// deUint32							preserveAttachmentCount;
    306 		DE_NULL												// const deUint32*					pPreserveAttachments;
    307 	};
    308 
    309 	const VkRenderPassCreateInfo renderPassInfo =
    310 	{
    311 		VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,			// VkStructureType					sType;
    312 		DE_NULL,											// const void*						pNext;
    313 		(VkRenderPassCreateFlags)0,							// VkRenderPassCreateFlags			flags;
    314 		1u,													// deUint32							attachmentCount;
    315 		&colorAttachmentDescription,						// const VkAttachmentDescription*	pAttachments;
    316 		1u,													// deUint32							subpassCount;
    317 		&subpassDescription,								// const VkSubpassDescription*		pSubpasses;
    318 		0u,													// deUint32							dependencyCount;
    319 		DE_NULL												// const VkSubpassDependency*		pDependencies;
    320 	};
    321 
    322 	return createRenderPass(vk, device, &renderPassInfo);
    323 }
    324 
    325 Move<VkPipeline> makeGraphicsPipeline (const DeviceInterface&					vk,
    326 									   const VkDevice							device,
    327 									   const VkPipelineLayout					pipelineLayout,
    328 									   const VkRenderPass						renderPass,
    329 									   const IVec2								renderSize,
    330 									   const VkPrimitiveTopology				topology,
    331 									   const deUint32							stageCount,
    332 									   const VkPipelineShaderStageCreateInfo*	pStages)
    333 {
    334 	const VkVertexInputBindingDescription vertexInputBindingDescription =
    335 	{
    336 		0u,								// uint32_t				binding;
    337 		sizeof(Vec4),					// uint32_t				stride;
    338 		VK_VERTEX_INPUT_RATE_VERTEX,	// VkVertexInputRate	inputRate;
    339 	};
    340 
    341 	const VkVertexInputAttributeDescription vertexInputAttributeDescription =
    342 	{
    343 		0u,									// uint32_t			location;
    344 		0u,									// uint32_t			binding;
    345 		VK_FORMAT_R32G32B32A32_SFLOAT,		// VkFormat			format;
    346 		0u,									// uint32_t			offset;
    347 	};
    348 
    349 	const VkPipelineVertexInputStateCreateInfo vertexInputStateInfo =
    350 	{
    351 		VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,		// VkStructureType                             sType;
    352 		DE_NULL,														// const void*                                 pNext;
    353 		(VkPipelineVertexInputStateCreateFlags)0,						// VkPipelineVertexInputStateCreateFlags       flags;
    354 		1u,																// uint32_t                                    vertexBindingDescriptionCount;
    355 		&vertexInputBindingDescription,									// const VkVertexInputBindingDescription*      pVertexBindingDescriptions;
    356 		1u,																// uint32_t                                    vertexAttributeDescriptionCount;
    357 		&vertexInputAttributeDescription,								// const VkVertexInputAttributeDescription*    pVertexAttributeDescriptions;
    358 	};
    359 
    360 	const VkPipelineInputAssemblyStateCreateInfo pipelineInputAssemblyStateInfo =
    361 	{
    362 		VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,	// VkStructureType                             sType;
    363 		DE_NULL,														// const void*                                 pNext;
    364 		(VkPipelineInputAssemblyStateCreateFlags)0,						// VkPipelineInputAssemblyStateCreateFlags     flags;
    365 		topology,														// VkPrimitiveTopology                         topology;
    366 		VK_FALSE,														// VkBool32                                    primitiveRestartEnable;
    367 	};
    368 
    369 	const VkViewport viewport = makeViewport(
    370 		0.0f, 0.0f,
    371 		static_cast<float>(renderSize.x()), static_cast<float>(renderSize.y()),
    372 		0.0f, 1.0f);
    373 
    374 	const VkRect2D scissor = {
    375 		makeOffset2D(0, 0),
    376 		makeExtent2D(static_cast<deUint32>(renderSize.x()), static_cast<deUint32>(renderSize.y())),
    377 	};
    378 
    379 	const VkPipelineViewportStateCreateInfo pipelineViewportStateInfo =
    380 	{
    381 		VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,			// VkStructureType                             sType;
    382 		DE_NULL,														// const void*                                 pNext;
    383 		(VkPipelineViewportStateCreateFlags)0,							// VkPipelineViewportStateCreateFlags          flags;
    384 		1u,																// uint32_t                                    viewportCount;
    385 		&viewport,														// const VkViewport*                           pViewports;
    386 		1u,																// uint32_t                                    scissorCount;
    387 		&scissor,														// const VkRect2D*                             pScissors;
    388 	};
    389 
    390 	const VkPipelineRasterizationStateCreateInfo pipelineRasterizationStateInfo =
    391 	{
    392 		VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,		// VkStructureType                          sType;
    393 		DE_NULL,														// const void*                              pNext;
    394 		(VkPipelineRasterizationStateCreateFlags)0,						// VkPipelineRasterizationStateCreateFlags  flags;
    395 		VK_FALSE,														// VkBool32                                 depthClampEnable;
    396 		VK_FALSE,														// VkBool32                                 rasterizerDiscardEnable;
    397 		VK_POLYGON_MODE_FILL,											// VkPolygonMode							polygonMode;
    398 		VK_CULL_MODE_NONE,												// VkCullModeFlags							cullMode;
    399 		VK_FRONT_FACE_COUNTER_CLOCKWISE,								// VkFrontFace								frontFace;
    400 		VK_FALSE,														// VkBool32									depthBiasEnable;
    401 		0.0f,															// float									depthBiasConstantFactor;
    402 		0.0f,															// float									depthBiasClamp;
    403 		0.0f,															// float									depthBiasSlopeFactor;
    404 		1.0f,															// float									lineWidth;
    405 	};
    406 
    407 	const VkPipelineMultisampleStateCreateInfo pipelineMultisampleStateInfo =
    408 	{
    409 		VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,		// VkStructureType							sType;
    410 		DE_NULL,														// const void*								pNext;
    411 		(VkPipelineMultisampleStateCreateFlags)0,						// VkPipelineMultisampleStateCreateFlags	flags;
    412 		VK_SAMPLE_COUNT_1_BIT,											// VkSampleCountFlagBits					rasterizationSamples;
    413 		VK_FALSE,														// VkBool32									sampleShadingEnable;
    414 		0.0f,															// float									minSampleShading;
    415 		DE_NULL,														// const VkSampleMask*						pSampleMask;
    416 		VK_FALSE,														// VkBool32									alphaToCoverageEnable;
    417 		VK_FALSE														// VkBool32									alphaToOneEnable;
    418 	};
    419 
    420 	const VkStencilOpState stencilOpState = makeStencilOpState(
    421 		VK_STENCIL_OP_KEEP,				// stencil fail
    422 		VK_STENCIL_OP_KEEP,				// depth & stencil pass
    423 		VK_STENCIL_OP_KEEP,				// depth only fail
    424 		VK_COMPARE_OP_ALWAYS,			// compare op
    425 		0u,								// compare mask
    426 		0u,								// write mask
    427 		0u);							// reference
    428 
    429 	VkPipelineDepthStencilStateCreateInfo pipelineDepthStencilStateInfo =
    430 	{
    431 		VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,		// VkStructureType							sType;
    432 		DE_NULL,														// const void*								pNext;
    433 		(VkPipelineDepthStencilStateCreateFlags)0,						// VkPipelineDepthStencilStateCreateFlags	flags;
    434 		VK_FALSE,														// VkBool32									depthTestEnable;
    435 		VK_FALSE,														// VkBool32									depthWriteEnable;
    436 		VK_COMPARE_OP_LESS,												// VkCompareOp								depthCompareOp;
    437 		VK_FALSE,														// VkBool32									depthBoundsTestEnable;
    438 		VK_FALSE,														// VkBool32									stencilTestEnable;
    439 		stencilOpState,													// VkStencilOpState							front;
    440 		stencilOpState,													// VkStencilOpState							back;
    441 		0.0f,															// float									minDepthBounds;
    442 		1.0f,															// float									maxDepthBounds;
    443 	};
    444 
    445 	const VkColorComponentFlags					colorComponentsAll					= VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
    446 	const VkPipelineColorBlendAttachmentState	pipelineColorBlendAttachmentState	=
    447 	{
    448 		VK_FALSE,						// VkBool32					blendEnable;
    449 		VK_BLEND_FACTOR_ONE,			// VkBlendFactor			srcColorBlendFactor;
    450 		VK_BLEND_FACTOR_ZERO,			// VkBlendFactor			dstColorBlendFactor;
    451 		VK_BLEND_OP_ADD,				// VkBlendOp				colorBlendOp;
    452 		VK_BLEND_FACTOR_ONE,			// VkBlendFactor			srcAlphaBlendFactor;
    453 		VK_BLEND_FACTOR_ZERO,			// VkBlendFactor			dstAlphaBlendFactor;
    454 		VK_BLEND_OP_ADD,				// VkBlendOp				alphaBlendOp;
    455 		colorComponentsAll,				// VkColorComponentFlags	colorWriteMask;
    456 	};
    457 
    458 	const VkPipelineColorBlendStateCreateInfo pipelineColorBlendStateInfo =
    459 	{
    460 		VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,		// VkStructureType								sType;
    461 		DE_NULL,														// const void*									pNext;
    462 		(VkPipelineColorBlendStateCreateFlags)0,						// VkPipelineColorBlendStateCreateFlags			flags;
    463 		VK_FALSE,														// VkBool32										logicOpEnable;
    464 		VK_LOGIC_OP_COPY,												// VkLogicOp									logicOp;
    465 		1u,																// deUint32										attachmentCount;
    466 		&pipelineColorBlendAttachmentState,								// const VkPipelineColorBlendAttachmentState*	pAttachments;
    467 		{ 0.0f, 0.0f, 0.0f, 0.0f },										// float										blendConstants[4];
    468 	};
    469 
    470 	const VkGraphicsPipelineCreateInfo graphicsPipelineInfo =
    471 	{
    472 		VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,	// VkStructureType									sType;
    473 		DE_NULL,											// const void*										pNext;
    474 		(VkPipelineCreateFlags)0,							// VkPipelineCreateFlags							flags;
    475 		stageCount,											// deUint32											stageCount;
    476 		pStages,											// const VkPipelineShaderStageCreateInfo*			pStages;
    477 		&vertexInputStateInfo,								// const VkPipelineVertexInputStateCreateInfo*		pVertexInputState;
    478 		&pipelineInputAssemblyStateInfo,					// const VkPipelineInputAssemblyStateCreateInfo*	pInputAssemblyState;
    479 		DE_NULL,											// const VkPipelineTessellationStateCreateInfo*		pTessellationState;
    480 		&pipelineViewportStateInfo,							// const VkPipelineViewportStateCreateInfo*			pViewportState;
    481 		&pipelineRasterizationStateInfo,					// const VkPipelineRasterizationStateCreateInfo*	pRasterizationState;
    482 		&pipelineMultisampleStateInfo,						// const VkPipelineMultisampleStateCreateInfo*		pMultisampleState;
    483 		&pipelineDepthStencilStateInfo,						// const VkPipelineDepthStencilStateCreateInfo*		pDepthStencilState;
    484 		&pipelineColorBlendStateInfo,						// const VkPipelineColorBlendStateCreateInfo*		pColorBlendState;
    485 		DE_NULL,											// const VkPipelineDynamicStateCreateInfo*			pDynamicState;
    486 		pipelineLayout,										// VkPipelineLayout									layout;
    487 		renderPass,											// VkRenderPass										renderPass;
    488 		0u,													// deUint32											subpass;
    489 		DE_NULL,											// VkPipeline										basePipelineHandle;
    490 		0,													// deInt32											basePipelineIndex;
    491 	};
    492 
    493 	return createGraphicsPipeline(vk, device, DE_NULL, &graphicsPipelineInfo);
    494 }
    495 
    496 //! Return true if there are any red (or all zero) pixels in the image
    497 bool imageHasErrorPixels (const tcu::ConstPixelBufferAccess image)
    498 {
    499 	const Vec4 errorColor	= Vec4(1.0f, 0.0f, 0.0f, 1.0f);
    500 	const Vec4 blankColor	= Vec4();
    501 
    502 	for (int y = 0; y < image.getHeight(); ++y)
    503 	for (int x = 0; x < image.getWidth(); ++x)
    504 	{
    505 		const Vec4 color = image.getPixel(x, y);
    506 		if (color == errorColor || color == blankColor)
    507 			return true;
    508 	}
    509 
    510 	return false;
    511 }
    512 
    513 class Renderer
    514 {
    515 public:
    516 	typedef std::map<VkShaderStageFlagBits, const VkSpecializationInfo*>	SpecializationMap;
    517 
    518 	//! Use the delegate to bind descriptor sets, vertex buffers, etc. and make a draw call
    519 	struct Delegate
    520 	{
    521 		virtual			~Delegate		(void) {}
    522 		virtual void	rendererDraw	(const VkPipelineLayout pipelineLayout, const VkCommandBuffer cmdBuffer) const = 0;
    523 	};
    524 
    525 	Renderer (const DeviceInterface&		vk,
    526 			  const VkDevice				device,
    527 			  Allocator&					allocator,
    528 			  const deUint32				queueFamilyIndex,
    529 			  const VkDescriptorSetLayout	descriptorSetLayout,	//!< may be NULL, if no descriptors are used
    530 			  BinaryCollection&				binaryCollection,
    531 			  const std::string&			vertexName,
    532 			  const std::string&			fragmentName,
    533 			  const VkBuffer				colorBuffer,
    534 			  const IVec2&					renderSize,
    535 			  const VkFormat				colorFormat,
    536 			  const Vec4&					clearColor,
    537 			  const VkPrimitiveTopology		topology,
    538 			  SpecializationMap				specMap = SpecializationMap())
    539 		: m_colorBuffer				(colorBuffer)
    540 		, m_renderSize				(renderSize)
    541 		, m_colorFormat				(colorFormat)
    542 		, m_colorSubresourceRange	(makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u))
    543 		, m_clearColor				(clearColor)
    544 		, m_topology				(topology)
    545 		, m_descriptorSetLayout		(descriptorSetLayout)
    546 	{
    547 		m_colorImage		= makeImage		(vk, device, makeImageCreateInfo(m_colorFormat, m_renderSize, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT));
    548 		m_colorImageAlloc	= bindImage		(vk, device, allocator, *m_colorImage, MemoryRequirement::Any);
    549 		m_colorAttachment	= makeImageView	(vk, device, *m_colorImage, VK_IMAGE_VIEW_TYPE_2D, m_colorFormat, m_colorSubresourceRange);
    550 
    551 		m_vertexModule		= createShaderModule	(vk, device, binaryCollection.get(vertexName), 0u);
    552 		m_fragmentModule	= createShaderModule	(vk, device, binaryCollection.get(fragmentName), 0u);
    553 
    554 		const VkPipelineShaderStageCreateInfo pShaderStages[] =
    555 		{
    556 			{
    557 				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,		// VkStructureType						sType;
    558 				DE_NULL,													// const void*							pNext;
    559 				(VkPipelineShaderStageCreateFlags)0,						// VkPipelineShaderStageCreateFlags		flags;
    560 				VK_SHADER_STAGE_VERTEX_BIT,									// VkShaderStageFlagBits				stage;
    561 				*m_vertexModule,											// VkShaderModule						module;
    562 				"main",														// const char*							pName;
    563 				specMap[VK_SHADER_STAGE_VERTEX_BIT],						// const VkSpecializationInfo*			pSpecializationInfo;
    564 			},
    565 			{
    566 				VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,		// VkStructureType						sType;
    567 				DE_NULL,													// const void*							pNext;
    568 				(VkPipelineShaderStageCreateFlags)0,						// VkPipelineShaderStageCreateFlags		flags;
    569 				VK_SHADER_STAGE_FRAGMENT_BIT,								// VkShaderStageFlagBits				stage;
    570 				*m_fragmentModule,											// VkShaderModule						module;
    571 				"main",														// const char*							pName;
    572 				specMap[VK_SHADER_STAGE_FRAGMENT_BIT],						// const VkSpecializationInfo*			pSpecializationInfo;
    573 			}
    574 		};
    575 
    576 		m_renderPass		= makeRenderPass		(vk, device, m_colorFormat);
    577 		m_framebuffer		= makeFramebuffer		(vk, device, *m_renderPass, 1u, &m_colorAttachment.get(),
    578 													 static_cast<deUint32>(m_renderSize.x()), static_cast<deUint32>(m_renderSize.y()));
    579 		m_pipelineLayout	= makePipelineLayout	(vk, device, m_descriptorSetLayout);
    580 		m_pipeline			= makeGraphicsPipeline	(vk, device, *m_pipelineLayout, *m_renderPass, m_renderSize, m_topology, DE_LENGTH_OF_ARRAY(pShaderStages), pShaderStages);
    581 		m_cmdPool			= makeCommandPool		(vk, device, queueFamilyIndex);
    582 		m_cmdBuffer			= allocateCommandBuffer	(vk, device, *m_cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY);
    583 	}
    584 
    585 	void draw (const DeviceInterface&	vk,
    586 			   const VkDevice			device,
    587 			   const VkQueue			queue,
    588 			   const Delegate&			drawDelegate,
    589 			   const bool				useDeviceGroups,
    590 			   const deUint32			deviceID) const
    591 	{
    592 		beginCommandBuffer(vk, *m_cmdBuffer);
    593 
    594 		const VkClearValue			clearValue	= makeClearValueColor(m_clearColor);
    595 		const VkRect2D				renderArea	=
    596 		{
    597 			makeOffset2D(0, 0),
    598 			makeExtent2D(m_renderSize.x(), m_renderSize.y()),
    599 		};
    600 		const VkRenderPassBeginInfo renderPassBeginInfo =
    601 		{
    602 			VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,		// VkStructureType         sType;
    603 			DE_NULL,										// const void*             pNext;
    604 			*m_renderPass,									// VkRenderPass            renderPass;
    605 			*m_framebuffer,									// VkFramebuffer           framebuffer;
    606 			renderArea,										// VkRect2D                renderArea;
    607 			1u,												// uint32_t                clearValueCount;
    608 			&clearValue,									// const VkClearValue*     pClearValues;
    609 		};
    610 		vk.cmdBeginRenderPass(*m_cmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
    611 
    612 		vk.cmdBindPipeline(*m_cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *m_pipeline);
    613 		drawDelegate.rendererDraw(*m_pipelineLayout, *m_cmdBuffer);
    614 
    615 		vk.cmdEndRenderPass(*m_cmdBuffer);
    616 
    617 		// Prepare color image for copy
    618 		{
    619 			const VkImageMemoryBarrier barriers[] =
    620 			{
    621 				{
    622 					VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,						// VkStructureType			sType;
    623 					DE_NULL,													// const void*				pNext;
    624 					VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,						// VkAccessFlags			outputMask;
    625 					VK_ACCESS_TRANSFER_READ_BIT,								// VkAccessFlags			inputMask;
    626 					VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,					// VkImageLayout			oldLayout;
    627 					VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,						// VkImageLayout			newLayout;
    628 					VK_QUEUE_FAMILY_IGNORED,									// deUint32					srcQueueFamilyIndex;
    629 					VK_QUEUE_FAMILY_IGNORED,									// deUint32					destQueueFamilyIndex;
    630 					*m_colorImage,												// VkImage					image;
    631 					m_colorSubresourceRange,									// VkImageSubresourceRange	subresourceRange;
    632 				},
    633 			};
    634 
    635 			vk.cmdPipelineBarrier(*m_cmdBuffer, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u,
    636 				0u, DE_NULL, 0u, DE_NULL, DE_LENGTH_OF_ARRAY(barriers), barriers);
    637 		}
    638 		// Color image -> host buffer
    639 		{
    640 			const VkBufferImageCopy region =
    641 			{
    642 				0ull,																		// VkDeviceSize                bufferOffset;
    643 				0u,																			// uint32_t                    bufferRowLength;
    644 				0u,																			// uint32_t                    bufferImageHeight;
    645 				makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u),			// VkImageSubresourceLayers    imageSubresource;
    646 				makeOffset3D(0, 0, 0),														// VkOffset3D                  imageOffset;
    647 				makeExtent3D(m_renderSize.x(), m_renderSize.y(), 1u),						// VkExtent3D                  imageExtent;
    648 			};
    649 
    650 			vk.cmdCopyImageToBuffer(*m_cmdBuffer, *m_colorImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, m_colorBuffer, 1u, &region);
    651 		}
    652 		// Buffer write barrier
    653 		{
    654 			const VkBufferMemoryBarrier barriers[] =
    655 			{
    656 				{
    657 					VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,		// VkStructureType    sType;
    658 					DE_NULL,										// const void*        pNext;
    659 					VK_ACCESS_TRANSFER_WRITE_BIT,					// VkAccessFlags      srcAccessMask;
    660 					VK_ACCESS_HOST_READ_BIT,						// VkAccessFlags      dstAccessMask;
    661 					VK_QUEUE_FAMILY_IGNORED,						// uint32_t           srcQueueFamilyIndex;
    662 					VK_QUEUE_FAMILY_IGNORED,						// uint32_t           dstQueueFamilyIndex;
    663 					m_colorBuffer,									// VkBuffer           buffer;
    664 					0ull,											// VkDeviceSize       offset;
    665 					VK_WHOLE_SIZE,									// VkDeviceSize       size;
    666 				},
    667 			};
    668 
    669 			vk.cmdPipelineBarrier(*m_cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u,
    670 				0u, DE_NULL, DE_LENGTH_OF_ARRAY(barriers), barriers, DE_NULL, 0u);
    671 		}
    672 
    673 		VK_CHECK(vk.endCommandBuffer(*m_cmdBuffer));
    674 		submitCommandsAndWait(vk, device, queue, *m_cmdBuffer, 0U, DE_NULL, DE_NULL, 0U, DE_NULL, useDeviceGroups, deviceID);
    675 	}
    676 
    677 private:
    678 	const VkBuffer					m_colorBuffer;
    679 	const IVec2						m_renderSize;
    680 	const VkFormat					m_colorFormat;
    681 	const VkImageSubresourceRange	m_colorSubresourceRange;
    682 	const Vec4						m_clearColor;
    683 	const VkPrimitiveTopology		m_topology;
    684 	const VkDescriptorSetLayout		m_descriptorSetLayout;
    685 
    686 	Move<VkImage>					m_colorImage;
    687 	MovePtr<Allocation>				m_colorImageAlloc;
    688 	Move<VkImageView>				m_colorAttachment;
    689 	Move<VkShaderModule>			m_vertexModule;
    690 	Move<VkShaderModule>			m_fragmentModule;
    691 	Move<VkRenderPass>				m_renderPass;
    692 	Move<VkFramebuffer>				m_framebuffer;
    693 	Move<VkPipelineLayout>			m_pipelineLayout;
    694 	Move<VkPipeline>				m_pipeline;
    695 	Move<VkCommandPool>				m_cmdPool;
    696 	Move<VkCommandBuffer>			m_cmdBuffer;
    697 
    698 	// "deleted"
    699 				Renderer	(const Renderer&);
    700 	Renderer&	operator=	(const Renderer&);
    701 };
    702 
    703 void bindSparseBuffer (const DeviceInterface& vk, const VkDevice device, const VkQueue sparseQueue, const VkBuffer buffer, const SparseAllocation& sparseAllocation,
    704 						const bool useDeviceGroups, deUint32 resourceDevId, deUint32 memoryDeviceId)
    705 {
    706 	const VkSparseBufferMemoryBindInfo sparseBufferMemoryBindInfo =
    707 	{
    708 		buffer,														// VkBuffer                     buffer;
    709 		static_cast<deUint32>(sparseAllocation.memoryBinds.size()),	// uint32_t                     bindCount;
    710 		&sparseAllocation.memoryBinds[0],							// const VkSparseMemoryBind*    pBinds;
    711 	};
    712 
    713 	const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
    714 	{
    715 		VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR,		//VkStructureType							sType;
    716 		DE_NULL,													//const void*								pNext;
    717 		resourceDevId,												//deUint32									resourceDeviceIndex;
    718 		memoryDeviceId,												//deUint32									memoryDeviceIndex;
    719 	};
    720 
    721 	const VkBindSparseInfo bindInfo =
    722 	{
    723 		VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,							// VkStructureType                             sType;
    724 		useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,		// const void*                                 pNext;
    725 		0u,															// uint32_t                                    waitSemaphoreCount;
    726 		DE_NULL,													// const VkSemaphore*                          pWaitSemaphores;
    727 		1u,															// uint32_t                                    bufferBindCount;
    728 		&sparseBufferMemoryBindInfo,								// const VkSparseBufferMemoryBindInfo*         pBufferBinds;
    729 		0u,															// uint32_t                                    imageOpaqueBindCount;
    730 		DE_NULL,													// const VkSparseImageOpaqueMemoryBindInfo*    pImageOpaqueBinds;
    731 		0u,															// uint32_t                                    imageBindCount;
    732 		DE_NULL,													// const VkSparseImageMemoryBindInfo*          pImageBinds;
    733 		0u,															// uint32_t                                    signalSemaphoreCount;
    734 		DE_NULL,													// const VkSemaphore*                          pSignalSemaphores;
    735 	};
    736 
    737 	const Unique<VkFence> fence(createFence(vk, device));
    738 
    739 	VK_CHECK(vk.queueBindSparse(sparseQueue, 1u, &bindInfo, *fence));
    740 	VK_CHECK(vk.waitForFences(device, 1u, &fence.get(), VK_TRUE, ~0ull));
    741 }
    742 
    743 class SparseBufferTestInstance : public SparseResourcesBaseInstance, Renderer::Delegate
    744 {
    745 public:
    746 	SparseBufferTestInstance (Context& context, const TestFlags flags)
    747 		: SparseResourcesBaseInstance	(context, (flags & TEST_FLAG_ENABLE_DEVICE_GROUPS) != 0)
    748 		, m_aliased						((flags & TEST_FLAG_ALIASED)   != 0)
    749 		, m_residency					((flags & TEST_FLAG_RESIDENCY) != 0)
    750 		, m_nonResidentStrict			((flags & TEST_FLAG_NON_RESIDENT_STRICT) != 0)
    751 		, m_renderSize					(RENDER_SIZE, RENDER_SIZE)
    752 		, m_colorFormat					(VK_FORMAT_R8G8B8A8_UNORM)
    753 		, m_colorBufferSize				(m_renderSize.x() * m_renderSize.y() * tcu::getPixelSize(mapVkFormat(m_colorFormat)))
    754 	{
    755 		{
    756 			QueueRequirementsVec requirements;
    757 			requirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
    758 			requirements.push_back(QueueRequirements(VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT, 1u));
    759 
    760 			createDeviceSupportingQueues(requirements);
    761 		}
    762 		const VkPhysicalDeviceFeatures	features	= getPhysicalDeviceFeatures(m_context.getInstanceInterface(), getPhysicalDevice());
    763 
    764 		if (!features.sparseBinding)
    765 			TCU_THROW(NotSupportedError, "Missing feature: sparseBinding");
    766 
    767 		if (m_residency && !features.sparseResidencyBuffer)
    768 			TCU_THROW(NotSupportedError, "Missing feature: sparseResidencyBuffer");
    769 
    770 		if (m_aliased && !features.sparseResidencyAliased)
    771 			TCU_THROW(NotSupportedError, "Missing feature: sparseResidencyAliased");
    772 
    773 		if (m_nonResidentStrict && !m_context.getDeviceProperties().sparseProperties.residencyNonResidentStrict)
    774 			TCU_THROW(NotSupportedError, "Missing sparse property: residencyNonResidentStrict");
    775 
    776 		const DeviceInterface& vk		= getDeviceInterface();
    777 		m_sparseQueue					= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0u);
    778 		m_universalQueue				= getQueue(VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT, 0u);
    779 
    780 		m_sharedQueueFamilyIndices[0]	= m_sparseQueue.queueFamilyIndex;
    781 		m_sharedQueueFamilyIndices[1]	= m_universalQueue.queueFamilyIndex;
    782 
    783 		m_colorBuffer					= makeBuffer(vk, getDevice(), makeBufferCreateInfo(m_colorBufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT));
    784 		m_colorBufferAlloc				= bindBuffer(vk, getDevice(), getAllocator(), *m_colorBuffer, MemoryRequirement::HostVisible);
    785 
    786 		deMemset(m_colorBufferAlloc->getHostPtr(), 0, static_cast<std::size_t>(m_colorBufferSize));
    787 		flushMappedMemoryRange(vk, getDevice(), m_colorBufferAlloc->getMemory(), m_colorBufferAlloc->getOffset(), m_colorBufferSize);
    788 	}
    789 
    790 protected:
    791 	VkBufferCreateInfo getSparseBufferCreateInfo (const VkBufferUsageFlags usage) const
    792 	{
    793 		VkBufferCreateFlags	flags = VK_BUFFER_CREATE_SPARSE_BINDING_BIT;
    794 		if (m_residency)
    795 			flags |= VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT;
    796 		if (m_aliased)
    797 			flags |= VK_BUFFER_CREATE_SPARSE_ALIASED_BIT;
    798 
    799 		VkBufferCreateInfo referenceBufferCreateInfo =
    800 		{
    801 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,				// VkStructureType        sType;
    802 			DE_NULL,											// const void*            pNext;
    803 			flags,												// VkBufferCreateFlags    flags;
    804 			0u,	// override later								// VkDeviceSize           size;
    805 			VK_BUFFER_USAGE_TRANSFER_DST_BIT | usage,			// VkBufferUsageFlags     usage;
    806 			VK_SHARING_MODE_EXCLUSIVE,							// VkSharingMode          sharingMode;
    807 			0u,													// uint32_t               queueFamilyIndexCount;
    808 			DE_NULL,											// const uint32_t*        pQueueFamilyIndices;
    809 		};
    810 
    811 		if (m_sparseQueue.queueFamilyIndex != m_universalQueue.queueFamilyIndex)
    812 		{
    813 			referenceBufferCreateInfo.sharingMode			= VK_SHARING_MODE_CONCURRENT;
    814 			referenceBufferCreateInfo.queueFamilyIndexCount	= DE_LENGTH_OF_ARRAY(m_sharedQueueFamilyIndices);
    815 			referenceBufferCreateInfo.pQueueFamilyIndices	= m_sharedQueueFamilyIndices;
    816 		}
    817 
    818 		return referenceBufferCreateInfo;
    819 	}
    820 
    821 	void draw (const VkPrimitiveTopology	topology,
    822 			   const VkDescriptorSetLayout	descriptorSetLayout	= DE_NULL,
    823 			   Renderer::SpecializationMap	specMap				= Renderer::SpecializationMap(),
    824 			   bool							useDeviceGroups		= false,
    825 			   deUint32						deviceID			= 0)
    826 	{
    827 		const UniquePtr<Renderer> renderer(new Renderer(
    828 			getDeviceInterface(), getDevice(), getAllocator(), m_universalQueue.queueFamilyIndex, descriptorSetLayout,
    829 			m_context.getBinaryCollection(), "vert", "frag", *m_colorBuffer, m_renderSize, m_colorFormat, Vec4(1.0f, 0.0f, 0.0f, 1.0f), topology, specMap));
    830 
    831 		renderer->draw(getDeviceInterface(), getDevice(), m_universalQueue.queueHandle, *this, useDeviceGroups, deviceID);
    832 	}
    833 
    834 	bool isResultImageCorrect (void) const
    835 	{
    836 		invalidateMappedMemoryRange(getDeviceInterface(), getDevice(), m_colorBufferAlloc->getMemory(), 0ull, m_colorBufferSize);
    837 
    838 		const tcu::ConstPixelBufferAccess resultImage (mapVkFormat(m_colorFormat), m_renderSize.x(), m_renderSize.y(), 1u, m_colorBufferAlloc->getHostPtr());
    839 
    840 		m_context.getTestContext().getLog()
    841 			<< tcu::LogImageSet("Result", "Result") << tcu::LogImage("color0", "", resultImage) << tcu::TestLog::EndImageSet;
    842 
    843 		return !imageHasErrorPixels(resultImage);
    844 	}
    845 
    846 	const bool							m_aliased;
    847 	const bool							m_residency;
    848 	const bool							m_nonResidentStrict;
    849 
    850 	Queue								m_sparseQueue;
    851 	Queue								m_universalQueue;
    852 
    853 private:
    854 	const IVec2							m_renderSize;
    855 	const VkFormat						m_colorFormat;
    856 	const VkDeviceSize					m_colorBufferSize;
    857 
    858 	Move<VkBuffer>						m_colorBuffer;
    859 	MovePtr<Allocation>					m_colorBufferAlloc;
    860 
    861 	deUint32							m_sharedQueueFamilyIndices[2];
    862 };
    863 
    864 void initProgramsDrawWithUBO (vk::SourceCollections& programCollection, const TestFlags flags)
    865 {
    866 	// Vertex shader
    867 	{
    868 		std::ostringstream src;
    869 		src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
    870 			<< "\n"
    871 			<< "layout(location = 0) in vec4 in_position;\n"
    872 			<< "\n"
    873 			<< "out gl_PerVertex {\n"
    874 			<< "    vec4 gl_Position;\n"
    875 			<< "};\n"
    876 			<< "\n"
    877 			<< "void main(void)\n"
    878 			<< "{\n"
    879 			<< "    gl_Position = in_position;\n"
    880 			<< "}\n";
    881 
    882 		programCollection.glslSources.add("vert") << glu::VertexSource(src.str());
    883 	}
    884 
    885 	// Fragment shader
    886 	{
    887 		const bool			aliased				= (flags & TEST_FLAG_ALIASED) != 0;
    888 		const bool			residency			= (flags & TEST_FLAG_RESIDENCY) != 0;
    889 		const bool			nonResidentStrict	= (flags & TEST_FLAG_NON_RESIDENT_STRICT) != 0;
    890 		const std::string	valueExpr			= (aliased ? "ivec4(3*(ndx % nonAliasedSize) ^ 127, 0, 0, 0)" : "ivec4(3*ndx ^ 127, 0, 0, 0)");
    891 
    892 		std::ostringstream src;
    893 		src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
    894 			<< "\n"
    895 			<< "layout(location = 0) out vec4 o_color;\n"
    896 			<< "\n"
    897 			<< "layout(constant_id = 1) const int dataSize  = 1;\n"
    898 			<< "layout(constant_id = 2) const int chunkSize = 1;\n"
    899 			<< "\n"
    900 			<< "layout(set = 0, binding = 0, std140) uniform SparseBuffer {\n"
    901 			<< "    ivec4 data[dataSize];\n"
    902 			<< "} ubo;\n"
    903 			<< "\n"
    904 			<< "void main(void)\n"
    905 			<< "{\n"
    906 			<< "    const int fragNdx        = int(gl_FragCoord.x) + " << RENDER_SIZE << " * int(gl_FragCoord.y);\n"
    907 			<< "    const int pageSize       = " << RENDER_SIZE << " * " << RENDER_SIZE << ";\n"
    908 			<< "    const int numChunks      = dataSize / chunkSize;\n";
    909 
    910 		if (aliased)
    911 			src << "    const int nonAliasedSize = (numChunks > 1 ? dataSize - chunkSize : dataSize);\n";
    912 
    913 		src << "    bool      ok             = true;\n"
    914 			<< "\n"
    915 			<< "    for (int ndx = fragNdx; ndx < dataSize; ndx += pageSize)\n"
    916 			<< "    {\n";
    917 
    918 		if (residency && nonResidentStrict)
    919 		{
    920 			src << "        if (ndx >= chunkSize && ndx < 2*chunkSize)\n"
    921 				<< "            ok = ok && (ubo.data[ndx] == ivec4(0));\n"
    922 				<< "        else\n"
    923 				<< "            ok = ok && (ubo.data[ndx] == " + valueExpr + ");\n";
    924 		}
    925 		else if (residency)
    926 		{
    927 			src << "        if (ndx >= chunkSize && ndx < 2*chunkSize)\n"
    928 				<< "            continue;\n"
    929 				<< "        ok = ok && (ubo.data[ndx] == " << valueExpr << ");\n";
    930 		}
    931 		else
    932 			src << "        ok = ok && (ubo.data[ndx] == " << valueExpr << ");\n";
    933 
    934 		src << "    }\n"
    935 			<< "\n"
    936 			<< "    if (ok)\n"
    937 			<< "        o_color = vec4(0.0, 1.0, 0.0, 1.0);\n"
    938 			<< "    else\n"
    939 			<< "        o_color = vec4(1.0, 0.0, 0.0, 1.0);\n"
    940 			<< "}\n";
    941 
    942 		programCollection.glslSources.add("frag") << glu::FragmentSource(src.str());
    943 	}
    944 }
    945 
    946 //! Sparse buffer backing a UBO
    947 class UBOTestInstance : public SparseBufferTestInstance
    948 {
    949 public:
    950 	UBOTestInstance (Context& context, const TestFlags flags)
    951 		: SparseBufferTestInstance	(context, flags)
    952 	{
    953 	}
    954 
    955 	void rendererDraw (const VkPipelineLayout pipelineLayout, const VkCommandBuffer cmdBuffer) const
    956 	{
    957 		const DeviceInterface&	vk				= getDeviceInterface();
    958 		const VkDeviceSize		vertexOffset	= 0ull;
    959 
    960 		vk.cmdBindVertexBuffers	(cmdBuffer, 0u, 1u, &m_vertexBuffer.get(), &vertexOffset);
    961 		vk.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0u, 1u, &m_descriptorSet.get(), 0u, DE_NULL);
    962 		vk.cmdDraw				(cmdBuffer, 4u, 1u, 0u, 0u);
    963 	}
    964 
    965 	tcu::TestStatus iterate (void)
    966 	{
    967 		const DeviceInterface&		vk					= getDeviceInterface();
    968 		MovePtr<SparseAllocation>	sparseAllocation;
    969 		Move<VkBuffer>				sparseBuffer;
    970 		Move<VkBuffer>				sparseBufferAliased;
    971 		bool						setupDescriptors	= true;
    972 
    973 		// Go through all physical devices
    974 		for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
    975 		{
    976 			const deUint32	firstDeviceID	= physDevID;
    977 			const deUint32	secondDeviceID	= (firstDeviceID + 1) % m_numPhysicalDevices;
    978 
    979 			// Set up the sparse buffer
    980 			{
    981 				VkBufferCreateInfo	referenceBufferCreateInfo	= getSparseBufferCreateInfo(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
    982 				const VkDeviceSize	minChunkSize				= 512u;	// make sure the smallest allocation is at least this big
    983 				deUint32			numMaxChunks				= 0u;
    984 
    985 				// Check how many chunks we can allocate given the alignment and size requirements of UBOs
    986 				{
    987 					const UniquePtr<SparseAllocation> minAllocation(SparseAllocationBuilder()
    988 						.addMemoryBind()
    989 						.build(vk, getDevice(), getAllocator(), referenceBufferCreateInfo, minChunkSize));
    990 
    991 					numMaxChunks = deMaxu32(static_cast<deUint32>(m_context.getDeviceProperties().limits.maxUniformBufferRange / minAllocation->resourceSize), 1u);
    992 				}
    993 
    994 				if (numMaxChunks < 4)
    995 				{
    996 					sparseAllocation = SparseAllocationBuilder()
    997 						.addMemoryBind()
    998 						.build(vk, getDevice(), getAllocator(), referenceBufferCreateInfo, minChunkSize);
    999 				}
   1000 				else
   1001 				{
   1002 					// Try to use a non-trivial memory allocation scheme to make it different from a non-sparse binding
   1003 					SparseAllocationBuilder builder;
   1004 					builder.addMemoryBind();
   1005 
   1006 					if (m_residency)
   1007 						builder.addResourceHole();
   1008 
   1009 					builder
   1010 						.addMemoryAllocation()
   1011 						.addMemoryHole()
   1012 						.addMemoryBind();
   1013 
   1014 					if (m_aliased)
   1015 						builder.addAliasedMemoryBind(0u, 0u);
   1016 
   1017 					sparseAllocation = builder.build(vk, getDevice(), getAllocator(), referenceBufferCreateInfo, minChunkSize);
   1018 					DE_ASSERT(sparseAllocation->resourceSize <= m_context.getDeviceProperties().limits.maxUniformBufferRange);
   1019 				}
   1020 
   1021 				// Create the buffer
   1022 				referenceBufferCreateInfo.size	= sparseAllocation->resourceSize;
   1023 				sparseBuffer					= makeBuffer(vk, getDevice(), referenceBufferCreateInfo);
   1024 				bindSparseBuffer(vk, getDevice(), m_sparseQueue.queueHandle, *sparseBuffer, *sparseAllocation, usingDeviceGroups(), firstDeviceID, secondDeviceID);
   1025 
   1026 				if (m_aliased)
   1027 				{
   1028 					sparseBufferAliased = makeBuffer(vk, getDevice(), referenceBufferCreateInfo);
   1029 					bindSparseBuffer(vk, getDevice(), m_sparseQueue.queueHandle, *sparseBufferAliased, *sparseAllocation, usingDeviceGroups(), firstDeviceID, secondDeviceID);
   1030 				}
   1031 			}
   1032 
   1033 			// Set uniform data
   1034 			{
   1035 				const bool					hasAliasedChunk		= (m_aliased && sparseAllocation->memoryBinds.size() > 1u);
   1036 				const VkDeviceSize			chunkSize			= sparseAllocation->resourceSize / sparseAllocation->numResourceChunks;
   1037 				const VkDeviceSize			stagingBufferSize	= sparseAllocation->resourceSize - (hasAliasedChunk ? chunkSize : 0);
   1038 				const deUint32				numBufferEntries	= static_cast<deUint32>(stagingBufferSize / sizeof(IVec4));
   1039 
   1040 				const Unique<VkBuffer>		stagingBuffer		(makeBuffer(vk, getDevice(), makeBufferCreateInfo(stagingBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT)));
   1041 				const UniquePtr<Allocation>	stagingBufferAlloc	(bindBuffer(vk, getDevice(), getAllocator(), *stagingBuffer, MemoryRequirement::HostVisible));
   1042 
   1043 				{
   1044 					// If aliased chunk is used, the staging buffer is smaller than the sparse buffer and we don't overwrite the last chunk
   1045 					IVec4* const pData = static_cast<IVec4*>(stagingBufferAlloc->getHostPtr());
   1046 					for (deUint32 i = 0; i < numBufferEntries; ++i)
   1047 						pData[i] = IVec4(3*i ^ 127, 0, 0, 0);
   1048 
   1049 					flushMappedMemoryRange(vk, getDevice(), stagingBufferAlloc->getMemory(), stagingBufferAlloc->getOffset(), stagingBufferSize);
   1050 
   1051 					const VkBufferCopy copyRegion =
   1052 					{
   1053 						0ull,						// VkDeviceSize    srcOffset;
   1054 						0ull,						// VkDeviceSize    dstOffset;
   1055 						stagingBufferSize,			// VkDeviceSize    size;
   1056 					};
   1057 
   1058 					const Unique<VkCommandPool>		cmdPool		(makeCommandPool(vk, getDevice(), m_universalQueue.queueFamilyIndex));
   1059 					const Unique<VkCommandBuffer>	cmdBuffer	(allocateCommandBuffer(vk, getDevice(), *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
   1060 
   1061 					beginCommandBuffer	(vk, *cmdBuffer);
   1062 					vk.cmdCopyBuffer	(*cmdBuffer, *stagingBuffer, *sparseBuffer, 1u, &copyRegion);
   1063 					endCommandBuffer	(vk, *cmdBuffer);
   1064 
   1065 					submitCommandsAndWait(vk, getDevice(), m_universalQueue.queueHandle, *cmdBuffer, 0u, DE_NULL, DE_NULL, 0, DE_NULL, usingDeviceGroups(), firstDeviceID);
   1066 					// Once the fence is signaled, the write is also available to the aliasing buffer.
   1067 				}
   1068 			}
   1069 
   1070 			// Make sure that we don't try to access a larger range than is allowed. This only applies to a single chunk case.
   1071 			const deUint32 maxBufferRange = deMinu32(static_cast<deUint32>(sparseAllocation->resourceSize), m_context.getDeviceProperties().limits.maxUniformBufferRange);
   1072 
   1073 			// Descriptor sets
   1074 			{
   1075 				// Setup only once
   1076 				if (setupDescriptors)
   1077 				{
   1078 					m_descriptorSetLayout = DescriptorSetLayoutBuilder()
   1079 						.addSingleBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT)
   1080 						.build(vk, getDevice());
   1081 
   1082 					m_descriptorPool = DescriptorPoolBuilder()
   1083 						.addType(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER)
   1084 						.build(vk, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
   1085 
   1086 					m_descriptorSet = makeDescriptorSet(vk, getDevice(), *m_descriptorPool, *m_descriptorSetLayout);
   1087 					setupDescriptors = false;
   1088 				}
   1089 
   1090 				const VkBuffer					buffer				= (m_aliased ? *sparseBufferAliased : *sparseBuffer);
   1091 				const VkDescriptorBufferInfo	sparseBufferInfo	= makeDescriptorBufferInfo(buffer, 0ull, maxBufferRange);
   1092 
   1093 				DescriptorSetUpdateBuilder()
   1094 					.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, &sparseBufferInfo)
   1095 					.update(vk, getDevice());
   1096 			}
   1097 
   1098 			// Vertex data
   1099 			{
   1100 				const Vec4 vertexData[] =
   1101 				{
   1102 					Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
   1103 					Vec4(-1.0f,  1.0f, 0.0f, 1.0f),
   1104 					Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
   1105 					Vec4( 1.0f,  1.0f, 0.0f, 1.0f),
   1106 				};
   1107 
   1108 				const VkDeviceSize	vertexBufferSize	= sizeof(vertexData);
   1109 
   1110 				m_vertexBuffer		= makeBuffer(vk, getDevice(), makeBufferCreateInfo(vertexBufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT));
   1111 				m_vertexBufferAlloc	= bindBuffer(vk, getDevice(), getAllocator(), *m_vertexBuffer, MemoryRequirement::HostVisible);
   1112 
   1113 				deMemcpy(m_vertexBufferAlloc->getHostPtr(), &vertexData[0], vertexBufferSize);
   1114 				flushMappedMemoryRange(vk, getDevice(), m_vertexBufferAlloc->getMemory(), m_vertexBufferAlloc->getOffset(), vertexBufferSize);
   1115 			}
   1116 
   1117 			// Draw
   1118 			{
   1119 				std::vector<deInt32> specializationData;
   1120 				{
   1121 					const deUint32	numBufferEntries	= maxBufferRange / static_cast<deUint32>(sizeof(IVec4));
   1122 					const deUint32	numEntriesPerChunk	= numBufferEntries / sparseAllocation->numResourceChunks;
   1123 
   1124 					specializationData.push_back(numBufferEntries);
   1125 					specializationData.push_back(numEntriesPerChunk);
   1126 				}
   1127 
   1128 				const VkSpecializationMapEntry	specMapEntries[] =
   1129 				{
   1130 					{
   1131 						1u,					// uint32_t    constantID;
   1132 						0u,					// uint32_t    offset;
   1133 						sizeof(deInt32),	// size_t      size;
   1134 					},
   1135 					{
   1136 						2u,					// uint32_t    constantID;
   1137 						sizeof(deInt32),	// uint32_t    offset;
   1138 						sizeof(deInt32),	// size_t      size;
   1139 					},
   1140 				};
   1141 
   1142 				const VkSpecializationInfo specInfo =
   1143 				{
   1144 					DE_LENGTH_OF_ARRAY(specMapEntries),		// uint32_t                           mapEntryCount;
   1145 					specMapEntries,							// const VkSpecializationMapEntry*    pMapEntries;
   1146 					sizeInBytes(specializationData),		// size_t                             dataSize;
   1147 					getDataOrNullptr(specializationData),	// const void*                        pData;
   1148 				};
   1149 
   1150 				Renderer::SpecializationMap	specMap;
   1151 				specMap[VK_SHADER_STAGE_FRAGMENT_BIT] = &specInfo;
   1152 
   1153 				draw(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, *m_descriptorSetLayout, specMap, usingDeviceGroups(), firstDeviceID);
   1154 			}
   1155 
   1156 			if(!isResultImageCorrect())
   1157 				return tcu::TestStatus::fail("Some buffer values were incorrect");
   1158 		}
   1159 		return tcu::TestStatus::pass("Pass");
   1160 	}
   1161 
   1162 private:
   1163 	Move<VkBuffer>					m_vertexBuffer;
   1164 	MovePtr<Allocation>				m_vertexBufferAlloc;
   1165 
   1166 	Move<VkDescriptorSetLayout>		m_descriptorSetLayout;
   1167 	Move<VkDescriptorPool>			m_descriptorPool;
   1168 	Move<VkDescriptorSet>			m_descriptorSet;
   1169 };
   1170 
   1171 void initProgramsDrawGrid (vk::SourceCollections& programCollection, const TestFlags flags)
   1172 {
   1173 	DE_UNREF(flags);
   1174 
   1175 	// Vertex shader
   1176 	{
   1177 		std::ostringstream src;
   1178 		src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
   1179 			<< "\n"
   1180 			<< "layout(location = 0) in  vec4 in_position;\n"
   1181 			<< "layout(location = 0) out int  out_ndx;\n"
   1182 			<< "\n"
   1183 			<< "out gl_PerVertex {\n"
   1184 			<< "    vec4 gl_Position;\n"
   1185 			<< "};\n"
   1186 			<< "\n"
   1187 			<< "void main(void)\n"
   1188 			<< "{\n"
   1189 			<< "    gl_Position = in_position;\n"
   1190 			<< "    out_ndx     = gl_VertexIndex;\n"
   1191 			<< "}\n";
   1192 
   1193 		programCollection.glslSources.add("vert") << glu::VertexSource(src.str());
   1194 	}
   1195 
   1196 	// Fragment shader
   1197 	{
   1198 		std::ostringstream src;
   1199 		src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
   1200 			<< "\n"
   1201 			<< "layout(location = 0) flat in  int  in_ndx;\n"
   1202 			<< "layout(location = 0)      out vec4 o_color;\n"
   1203 			<< "\n"
   1204 			<< "void main(void)\n"
   1205 			<< "{\n"
   1206 			<< "    if (in_ndx % 2 == 0)\n"
   1207 			<< "        o_color = vec4(vec3(1.0), 1.0);\n"
   1208 			<< "    else\n"
   1209 			<< "        o_color = vec4(vec3(0.75), 1.0);\n"
   1210 			<< "}\n";
   1211 
   1212 		programCollection.glslSources.add("frag") << glu::FragmentSource(src.str());
   1213 	}
   1214 }
   1215 
   1216 //! Generate vertex positions for a grid of tiles composed of two triangles each (6 vertices)
   1217 void generateGrid (void* pRawData, const float step, const float ox, const float oy, const deUint32 numX, const deUint32 numY, const float z = 0.0f)
   1218 {
   1219 	typedef Vec4 (*TilePtr)[6];
   1220 
   1221 	TilePtr const pData = static_cast<TilePtr>(pRawData);
   1222 	{
   1223 		for (deUint32 iy = 0; iy < numY; ++iy)
   1224 		for (deUint32 ix = 0; ix < numX; ++ix)
   1225 		{
   1226 			const deUint32	ndx	= ix + numX * iy;
   1227 			const float		x	= ox + step * static_cast<float>(ix);
   1228 			const float		y	= oy + step * static_cast<float>(iy);
   1229 
   1230 			pData[ndx][0] = Vec4(x + step,	y,			z, 1.0f);
   1231 			pData[ndx][1] = Vec4(x,			y,			z, 1.0f);
   1232 			pData[ndx][2] = Vec4(x,			y + step,	z, 1.0f);
   1233 
   1234 			pData[ndx][3] = Vec4(x,			y + step,	z, 1.0f);
   1235 			pData[ndx][4] = Vec4(x + step,	y + step,	z, 1.0f);
   1236 			pData[ndx][5] = Vec4(x + step,	y,			z, 1.0f);
   1237 		}
   1238 	}
   1239 }
   1240 
   1241 //! Base test for a sparse buffer backing a vertex/index buffer
   1242 class DrawGridTestInstance : public SparseBufferTestInstance
   1243 {
   1244 public:
   1245 	DrawGridTestInstance (Context& context, const TestFlags flags, const VkBufferUsageFlags usage, const VkDeviceSize minChunkSize)
   1246 		: SparseBufferTestInstance	(context, flags)
   1247 	{
   1248 		const DeviceInterface&	vk							= getDeviceInterface();
   1249 		VkBufferCreateInfo		referenceBufferCreateInfo	= getSparseBufferCreateInfo(usage);
   1250 
   1251 		{
   1252 			// Allocate two chunks, each covering half of the viewport
   1253 			SparseAllocationBuilder builder;
   1254 			builder.addMemoryBind();
   1255 
   1256 			if (m_residency)
   1257 				builder.addResourceHole();
   1258 
   1259 			builder
   1260 				.addMemoryAllocation()
   1261 				.addMemoryHole()
   1262 				.addMemoryBind();
   1263 
   1264 			if (m_aliased)
   1265 				builder.addAliasedMemoryBind(0u, 0u);
   1266 
   1267 			m_sparseAllocation	= builder.build(vk, getDevice(), getAllocator(), referenceBufferCreateInfo, minChunkSize);
   1268 		}
   1269 
   1270 		// Create the buffer
   1271 		referenceBufferCreateInfo.size	= m_sparseAllocation->resourceSize;
   1272 		m_sparseBuffer					= makeBuffer(vk, getDevice(), referenceBufferCreateInfo);
   1273 
   1274 
   1275 		m_perDrawBufferOffset	= m_sparseAllocation->resourceSize / m_sparseAllocation->numResourceChunks;
   1276 		m_stagingBufferSize		= 2 * m_perDrawBufferOffset;
   1277 		m_stagingBuffer			= makeBuffer(vk, getDevice(), makeBufferCreateInfo(m_stagingBufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT));
   1278 		m_stagingBufferAlloc	= bindBuffer(vk, getDevice(), getAllocator(), *m_stagingBuffer, MemoryRequirement::HostVisible);
   1279 
   1280 
   1281 	}
   1282 
   1283 	tcu::TestStatus iterate (void)
   1284 	{
   1285 		const DeviceInterface&	vk	= getDeviceInterface();
   1286 
   1287 		for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
   1288 		{
   1289 			const deUint32	firstDeviceID	= physDevID;
   1290 			const deUint32	secondDeviceID	= (firstDeviceID + 1) % m_numPhysicalDevices;
   1291 
   1292 			// Bind the memory
   1293 			bindSparseBuffer(vk, getDevice(), m_sparseQueue.queueHandle, *m_sparseBuffer, *m_sparseAllocation, usingDeviceGroups(), firstDeviceID, secondDeviceID);
   1294 
   1295 			initializeBuffers();
   1296 
   1297 			// Upload to the sparse buffer
   1298 			{
   1299 				flushMappedMemoryRange(vk, getDevice(), m_stagingBufferAlloc->getMemory(), m_stagingBufferAlloc->getOffset(), m_stagingBufferSize);
   1300 
   1301 				VkDeviceSize	firstChunkOffset	= 0ull;
   1302 				VkDeviceSize	secondChunkOffset	= m_perDrawBufferOffset;
   1303 
   1304 				if (m_residency)
   1305 					secondChunkOffset += m_perDrawBufferOffset;
   1306 
   1307 				if (m_aliased)
   1308 					firstChunkOffset = secondChunkOffset + m_perDrawBufferOffset;
   1309 
   1310 				const VkBufferCopy copyRegions[] =
   1311 				{
   1312 					{
   1313 						0ull,						// VkDeviceSize    srcOffset;
   1314 						firstChunkOffset,			// VkDeviceSize    dstOffset;
   1315 						m_perDrawBufferOffset,		// VkDeviceSize    size;
   1316 					},
   1317 					{
   1318 						m_perDrawBufferOffset,		// VkDeviceSize    srcOffset;
   1319 						secondChunkOffset,			// VkDeviceSize    dstOffset;
   1320 						m_perDrawBufferOffset,		// VkDeviceSize    size;
   1321 					},
   1322 				};
   1323 
   1324 				const Unique<VkCommandPool>		cmdPool		(makeCommandPool(vk, getDevice(), m_universalQueue.queueFamilyIndex));
   1325 				const Unique<VkCommandBuffer>	cmdBuffer	(allocateCommandBuffer(vk, getDevice(), *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
   1326 
   1327 				beginCommandBuffer	(vk, *cmdBuffer);
   1328 				vk.cmdCopyBuffer	(*cmdBuffer, *m_stagingBuffer, *m_sparseBuffer, DE_LENGTH_OF_ARRAY(copyRegions), copyRegions);
   1329 				endCommandBuffer	(vk, *cmdBuffer);
   1330 
   1331 				submitCommandsAndWait(vk, getDevice(), m_universalQueue.queueHandle, *cmdBuffer, 0u, DE_NULL, DE_NULL, 0, DE_NULL, usingDeviceGroups(), firstDeviceID);
   1332 			}
   1333 
   1334 
   1335 			Renderer::SpecializationMap	specMap;
   1336 			draw(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, DE_NULL, specMap, usingDeviceGroups(), firstDeviceID);
   1337 
   1338 			if(!isResultImageCorrect())
   1339 				return tcu::TestStatus::fail("Some buffer values were incorrect");
   1340 		}
   1341 		return tcu::TestStatus::pass("Pass");
   1342 	}
   1343 
   1344 protected:
   1345 	virtual void				initializeBuffers		(void) = 0;
   1346 
   1347 	VkDeviceSize				m_perDrawBufferOffset;
   1348 
   1349 	VkDeviceSize				m_stagingBufferSize;
   1350 	Move<VkBuffer>				m_stagingBuffer;
   1351 	MovePtr<Allocation>			m_stagingBufferAlloc;
   1352 
   1353 	MovePtr<SparseAllocation>	m_sparseAllocation;
   1354 	Move<VkBuffer>				m_sparseBuffer;
   1355 };
   1356 
   1357 //! Sparse buffer backing a vertex input buffer
   1358 class VertexBufferTestInstance : public DrawGridTestInstance
   1359 {
   1360 public:
   1361 	VertexBufferTestInstance (Context& context, const TestFlags flags)
   1362 		: DrawGridTestInstance	(context,
   1363 								 flags,
   1364 								 VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
   1365 								 GRID_SIZE * GRID_SIZE * 6 * sizeof(Vec4))
   1366 	{
   1367 	}
   1368 
   1369 	void rendererDraw (const VkPipelineLayout pipelineLayout, const VkCommandBuffer cmdBuffer) const
   1370 	{
   1371 		DE_UNREF(pipelineLayout);
   1372 
   1373 		m_context.getTestContext().getLog()
   1374 			<< tcu::TestLog::Message << "Drawing a grid of triangles backed by a sparse vertex buffer. There should be no red pixels visible." << tcu::TestLog::EndMessage;
   1375 
   1376 		const DeviceInterface&	vk				= getDeviceInterface();
   1377 		const deUint32			vertexCount		= 6 * (GRID_SIZE * GRID_SIZE) / 2;
   1378 		VkDeviceSize			vertexOffset	= 0ull;
   1379 
   1380 		vk.cmdBindVertexBuffers	(cmdBuffer, 0u, 1u, &m_sparseBuffer.get(), &vertexOffset);
   1381 		vk.cmdDraw				(cmdBuffer, vertexCount, 1u, 0u, 0u);
   1382 
   1383 		vertexOffset += m_perDrawBufferOffset * (m_residency ? 2 : 1);
   1384 
   1385 		vk.cmdBindVertexBuffers	(cmdBuffer, 0u, 1u, &m_sparseBuffer.get(), &vertexOffset);
   1386 		vk.cmdDraw				(cmdBuffer, vertexCount, 1u, 0u, 0u);
   1387 	}
   1388 
   1389 	void initializeBuffers (void)
   1390 	{
   1391 		deUint8*	pData	= static_cast<deUint8*>(m_stagingBufferAlloc->getHostPtr());
   1392 		const float	step	= 2.0f / static_cast<float>(GRID_SIZE);
   1393 
   1394 		// Prepare data for two draw calls
   1395 		generateGrid(pData,							step, -1.0f, -1.0f, GRID_SIZE, GRID_SIZE/2);
   1396 		generateGrid(pData + m_perDrawBufferOffset,	step, -1.0f,  0.0f, GRID_SIZE, GRID_SIZE/2);
   1397 	}
   1398 };
   1399 
   1400 //! Sparse buffer backing an index buffer
   1401 class IndexBufferTestInstance : public DrawGridTestInstance
   1402 {
   1403 public:
   1404 	IndexBufferTestInstance (Context& context, const TestFlags flags)
   1405 		: DrawGridTestInstance	(context,
   1406 								 flags,
   1407 								 VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
   1408 								 GRID_SIZE * GRID_SIZE * 6 * sizeof(deUint32))
   1409 		, m_halfVertexCount		(6 * (GRID_SIZE * GRID_SIZE) / 2)
   1410 	{
   1411 	}
   1412 
   1413 	void rendererDraw (const VkPipelineLayout pipelineLayout, const VkCommandBuffer cmdBuffer) const
   1414 	{
   1415 		DE_UNREF(pipelineLayout);
   1416 
   1417 		m_context.getTestContext().getLog()
   1418 			<< tcu::TestLog::Message << "Drawing a grid of triangles from a sparse index buffer. There should be no red pixels visible." << tcu::TestLog::EndMessage;
   1419 
   1420 		const DeviceInterface&	vk				= getDeviceInterface();
   1421 		const VkDeviceSize		vertexOffset	= 0ull;
   1422 		VkDeviceSize			indexOffset		= 0ull;
   1423 
   1424 		vk.cmdBindVertexBuffers	(cmdBuffer, 0u, 1u, &m_vertexBuffer.get(), &vertexOffset);
   1425 
   1426 		vk.cmdBindIndexBuffer	(cmdBuffer, *m_sparseBuffer, indexOffset, VK_INDEX_TYPE_UINT32);
   1427 		vk.cmdDrawIndexed		(cmdBuffer, m_halfVertexCount, 1u, 0u, 0, 0u);
   1428 
   1429 		indexOffset += m_perDrawBufferOffset * (m_residency ? 2 : 1);
   1430 
   1431 		vk.cmdBindIndexBuffer	(cmdBuffer, *m_sparseBuffer, indexOffset, VK_INDEX_TYPE_UINT32);
   1432 		vk.cmdDrawIndexed		(cmdBuffer, m_halfVertexCount, 1u, 0u, 0, 0u);
   1433 	}
   1434 
   1435 	void initializeBuffers (void)
   1436 	{
   1437 		// Vertex buffer
   1438 		const DeviceInterface&	vk					= getDeviceInterface();
   1439 		const VkDeviceSize		vertexBufferSize	= 2 * m_halfVertexCount * sizeof(Vec4);
   1440 								m_vertexBuffer		= makeBuffer(vk, getDevice(), makeBufferCreateInfo(vertexBufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT));
   1441 								m_vertexBufferAlloc	= bindBuffer(vk, getDevice(), getAllocator(), *m_vertexBuffer, MemoryRequirement::HostVisible);
   1442 
   1443 		{
   1444 			const float	step = 2.0f / static_cast<float>(GRID_SIZE);
   1445 
   1446 			generateGrid(m_vertexBufferAlloc->getHostPtr(), step, -1.0f, -1.0f, GRID_SIZE, GRID_SIZE);
   1447 
   1448 			flushMappedMemoryRange(vk, getDevice(), m_vertexBufferAlloc->getMemory(), m_vertexBufferAlloc->getOffset(), vertexBufferSize);
   1449 		}
   1450 
   1451 		// Sparse index buffer
   1452 		for (deUint32 chunkNdx = 0u; chunkNdx < 2; ++chunkNdx)
   1453 		{
   1454 			deUint8* const	pData		= static_cast<deUint8*>(m_stagingBufferAlloc->getHostPtr()) + chunkNdx * m_perDrawBufferOffset;
   1455 			deUint32* const	pIndexData	= reinterpret_cast<deUint32*>(pData);
   1456 			const deUint32	ndxBase		= chunkNdx * m_halfVertexCount;
   1457 
   1458 			for (deUint32 i = 0u; i < m_halfVertexCount; ++i)
   1459 				pIndexData[i] = ndxBase + i;
   1460 		}
   1461 	}
   1462 
   1463 private:
   1464 	const deUint32			m_halfVertexCount;
   1465 	Move<VkBuffer>			m_vertexBuffer;
   1466 	MovePtr<Allocation>		m_vertexBufferAlloc;
   1467 };
   1468 
   1469 //! Draw from a sparse indirect buffer
   1470 class IndirectBufferTestInstance : public DrawGridTestInstance
   1471 {
   1472 public:
   1473 	IndirectBufferTestInstance (Context& context, const TestFlags flags)
   1474 		: DrawGridTestInstance	(context,
   1475 								 flags,
   1476 								 VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT,
   1477 								 sizeof(VkDrawIndirectCommand))
   1478 	{
   1479 	}
   1480 
   1481 	void rendererDraw (const VkPipelineLayout pipelineLayout, const VkCommandBuffer cmdBuffer) const
   1482 	{
   1483 		DE_UNREF(pipelineLayout);
   1484 
   1485 		m_context.getTestContext().getLog()
   1486 			<< tcu::TestLog::Message << "Drawing two triangles covering the whole viewport. There should be no red pixels visible." << tcu::TestLog::EndMessage;
   1487 
   1488 		const DeviceInterface&	vk				= getDeviceInterface();
   1489 		const VkDeviceSize		vertexOffset	= 0ull;
   1490 		VkDeviceSize			indirectOffset	= 0ull;
   1491 
   1492 		vk.cmdBindVertexBuffers	(cmdBuffer, 0u, 1u, &m_vertexBuffer.get(), &vertexOffset);
   1493 		vk.cmdDrawIndirect		(cmdBuffer, *m_sparseBuffer, indirectOffset, 1u, 0u);
   1494 
   1495 		indirectOffset += m_perDrawBufferOffset * (m_residency ? 2 : 1);
   1496 
   1497 		vk.cmdDrawIndirect		(cmdBuffer, *m_sparseBuffer, indirectOffset, 1u, 0u);
   1498 	}
   1499 
   1500 	void initializeBuffers (void)
   1501 	{
   1502 		// Vertex buffer
   1503 		const DeviceInterface&	vk					= getDeviceInterface();
   1504 		const VkDeviceSize		vertexBufferSize	= 2 * 3 * sizeof(Vec4);
   1505 								m_vertexBuffer		= makeBuffer(vk, getDevice(), makeBufferCreateInfo(vertexBufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT));
   1506 								m_vertexBufferAlloc	= bindBuffer(vk, getDevice(), getAllocator(), *m_vertexBuffer, MemoryRequirement::HostVisible);
   1507 
   1508 		{
   1509 			generateGrid(m_vertexBufferAlloc->getHostPtr(), 2.0f, -1.0f, -1.0f, 1, 1);
   1510 			flushMappedMemoryRange(vk, getDevice(), m_vertexBufferAlloc->getMemory(), m_vertexBufferAlloc->getOffset(), vertexBufferSize);
   1511 		}
   1512 
   1513 		// Indirect buffer
   1514 		for (deUint32 chunkNdx = 0u; chunkNdx < 2; ++chunkNdx)
   1515 		{
   1516 			deUint8* const					pData		= static_cast<deUint8*>(m_stagingBufferAlloc->getHostPtr()) + chunkNdx * m_perDrawBufferOffset;
   1517 			VkDrawIndirectCommand* const	pCmdData	= reinterpret_cast<VkDrawIndirectCommand*>(pData);
   1518 
   1519 			pCmdData->firstVertex	= 3u * chunkNdx;
   1520 			pCmdData->firstInstance	= 0u;
   1521 			pCmdData->vertexCount	= 3u;
   1522 			pCmdData->instanceCount	= 1u;
   1523 		}
   1524 	}
   1525 
   1526 private:
   1527 	Move<VkBuffer>			m_vertexBuffer;
   1528 	MovePtr<Allocation>		m_vertexBufferAlloc;
   1529 };
   1530 
   1531 //! Similar to the class in vktTestCaseUtil.hpp, but uses Arg0 directly rather than through a InstanceFunction1
   1532 template<typename Arg0>
   1533 class FunctionProgramsSimple1
   1534 {
   1535 public:
   1536 	typedef void	(*Function)				(vk::SourceCollections& dst, Arg0 arg0);
   1537 					FunctionProgramsSimple1	(Function func) : m_func(func)							{}
   1538 	void			init					(vk::SourceCollections& dst, const Arg0& arg0) const	{ m_func(dst, arg0); }
   1539 
   1540 private:
   1541 	const Function	m_func;
   1542 };
   1543 
   1544 //! Convenience function to create a TestCase based on a freestanding initPrograms and a TestInstance implementation
   1545 template<typename TestInstanceT, typename Arg0>
   1546 TestCase* createTestInstanceWithPrograms (tcu::TestContext&									testCtx,
   1547 										  const std::string&								name,
   1548 										  const std::string&								desc,
   1549 										  typename FunctionProgramsSimple1<Arg0>::Function	initPrograms,
   1550 										  Arg0												arg0)
   1551 {
   1552 	return new InstanceFactory1<TestInstanceT, Arg0, FunctionProgramsSimple1<Arg0> >(
   1553 		testCtx, tcu::NODETYPE_SELF_VALIDATE, name, desc, FunctionProgramsSimple1<Arg0>(initPrograms), arg0);
   1554 }
   1555 
   1556 void populateTestGroup (tcu::TestCaseGroup* parentGroup)
   1557 {
   1558 	const struct
   1559 	{
   1560 		std::string		name;
   1561 		TestFlags		flags;
   1562 	} groups[] =
   1563 	{
   1564 		{ "sparse_binding",										0u,													},
   1565 		{ "sparse_binding_aliased",								TEST_FLAG_ALIASED,									},
   1566 		{ "sparse_residency",									TEST_FLAG_RESIDENCY,								},
   1567 		{ "sparse_residency_aliased",							TEST_FLAG_RESIDENCY | TEST_FLAG_ALIASED,			},
   1568 		{ "sparse_residency_non_resident_strict",				TEST_FLAG_RESIDENCY | TEST_FLAG_NON_RESIDENT_STRICT,},
   1569 	};
   1570 
   1571 	const int numGroupsIncludingNonResidentStrict	= DE_LENGTH_OF_ARRAY(groups);
   1572 	const int numGroupsDefaultList					= numGroupsIncludingNonResidentStrict - 1;
   1573 	std::string devGroupPrefix						= "device_group_";
   1574 
   1575 	// Transfer
   1576 	{
   1577 		MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(parentGroup->getTestContext(), "transfer", ""));
   1578 		{
   1579 			MovePtr<tcu::TestCaseGroup> subGroup(new tcu::TestCaseGroup(parentGroup->getTestContext(), "sparse_binding", ""));
   1580 			addBufferSparseBindingTests(subGroup.get(), false);
   1581 			group->addChild(subGroup.release());
   1582 
   1583 			MovePtr<tcu::TestCaseGroup> subGroupDeviceGroups(new tcu::TestCaseGroup(parentGroup->getTestContext(), "device_group_sparse_binding", ""));
   1584 			addBufferSparseBindingTests(subGroupDeviceGroups.get(), true);
   1585 			group->addChild(subGroupDeviceGroups.release());
   1586 		}
   1587 		parentGroup->addChild(group.release());
   1588 	}
   1589 
   1590 	// SSBO
   1591 	{
   1592 		MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(parentGroup->getTestContext(), "ssbo", ""));
   1593 		{
   1594 			MovePtr<tcu::TestCaseGroup> subGroup(new tcu::TestCaseGroup(parentGroup->getTestContext(), "sparse_binding_aliased", ""));
   1595 			addBufferSparseMemoryAliasingTests(subGroup.get(), false);
   1596 			group->addChild(subGroup.release());
   1597 
   1598 			MovePtr<tcu::TestCaseGroup> subGroupDeviceGroups(new tcu::TestCaseGroup(parentGroup->getTestContext(), "device_group_sparse_binding_aliased", ""));
   1599 			addBufferSparseMemoryAliasingTests(subGroupDeviceGroups.get(), true);
   1600 			group->addChild(subGroupDeviceGroups.release());
   1601 		}
   1602 		{
   1603 			MovePtr<tcu::TestCaseGroup> subGroup(new tcu::TestCaseGroup(parentGroup->getTestContext(), "sparse_residency", ""));
   1604 			addBufferSparseResidencyTests(subGroup.get(), false);
   1605 			group->addChild(subGroup.release());
   1606 
   1607 			MovePtr<tcu::TestCaseGroup> subGroupDeviceGroups(new tcu::TestCaseGroup(parentGroup->getTestContext(), "device_group_sparse_residency", ""));
   1608 			addBufferSparseResidencyTests(subGroupDeviceGroups.get(), true);
   1609 			group->addChild(subGroupDeviceGroups.release());
   1610 		}
   1611 		parentGroup->addChild(group.release());
   1612 	}
   1613 
   1614 	// UBO
   1615 	{
   1616 		MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(parentGroup->getTestContext(), "ubo", ""));
   1617 
   1618 		for (int groupNdx = 0u; groupNdx < numGroupsIncludingNonResidentStrict; ++groupNdx)
   1619 		{
   1620 			group->addChild(createTestInstanceWithPrograms<UBOTestInstance>(group->getTestContext(), groups[groupNdx].name.c_str(), "", initProgramsDrawWithUBO, groups[groupNdx].flags));
   1621 		}
   1622 		for (int groupNdx = 0u; groupNdx < numGroupsIncludingNonResidentStrict; ++groupNdx)
   1623 		{
   1624 			group->addChild(createTestInstanceWithPrograms<UBOTestInstance>(group->getTestContext(), (devGroupPrefix + groups[groupNdx].name).c_str(), "", initProgramsDrawWithUBO, groups[groupNdx].flags | TEST_FLAG_ENABLE_DEVICE_GROUPS));
   1625 		}
   1626 		parentGroup->addChild(group.release());
   1627 	}
   1628 
   1629 	// Vertex buffer
   1630 	{
   1631 		MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(parentGroup->getTestContext(), "vertex_buffer", ""));
   1632 
   1633 		for (int groupNdx = 0u; groupNdx < numGroupsDefaultList; ++groupNdx)
   1634 		{
   1635 			group->addChild(createTestInstanceWithPrograms<VertexBufferTestInstance>(group->getTestContext(), groups[groupNdx].name.c_str(), "", initProgramsDrawGrid, groups[groupNdx].flags));
   1636 		}
   1637 		for (int groupNdx = 0u; groupNdx < numGroupsDefaultList; ++groupNdx)
   1638 		{
   1639 			group->addChild(createTestInstanceWithPrograms<VertexBufferTestInstance>(group->getTestContext(), (devGroupPrefix + groups[groupNdx].name).c_str(), "", initProgramsDrawGrid, groups[groupNdx].flags | TEST_FLAG_ENABLE_DEVICE_GROUPS));
   1640 		}
   1641 
   1642 		parentGroup->addChild(group.release());
   1643 	}
   1644 
   1645 	// Index buffer
   1646 	{
   1647 		MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(parentGroup->getTestContext(), "index_buffer", ""));
   1648 
   1649 		for (int groupNdx = 0u; groupNdx < numGroupsDefaultList; ++groupNdx)
   1650 		{
   1651 			group->addChild(createTestInstanceWithPrograms<IndexBufferTestInstance>(group->getTestContext(), groups[groupNdx].name.c_str(), "", initProgramsDrawGrid, groups[groupNdx].flags));
   1652 		}
   1653 		for (int groupNdx = 0u; groupNdx < numGroupsDefaultList; ++groupNdx)
   1654 		{
   1655 			group->addChild(createTestInstanceWithPrograms<IndexBufferTestInstance>(group->getTestContext(), (devGroupPrefix + groups[groupNdx].name).c_str(), "", initProgramsDrawGrid, groups[groupNdx].flags | TEST_FLAG_ENABLE_DEVICE_GROUPS));
   1656 		}
   1657 
   1658 		parentGroup->addChild(group.release());
   1659 	}
   1660 
   1661 	// Indirect buffer
   1662 	{
   1663 		MovePtr<tcu::TestCaseGroup> group(new tcu::TestCaseGroup(parentGroup->getTestContext(), "indirect_buffer", ""));
   1664 
   1665 		for (int groupNdx = 0u; groupNdx < numGroupsDefaultList; ++groupNdx)
   1666 		{
   1667 			group->addChild(createTestInstanceWithPrograms<IndirectBufferTestInstance>(group->getTestContext(), groups[groupNdx].name.c_str(), "", initProgramsDrawGrid, groups[groupNdx].flags));
   1668 		}
   1669 		for (int groupNdx = 0u; groupNdx < numGroupsDefaultList; ++groupNdx)
   1670 		{
   1671 			group->addChild(createTestInstanceWithPrograms<IndirectBufferTestInstance>(group->getTestContext(), (devGroupPrefix +  groups[groupNdx].name).c_str(), "", initProgramsDrawGrid, groups[groupNdx].flags | TEST_FLAG_ENABLE_DEVICE_GROUPS));
   1672 		}
   1673 
   1674 		parentGroup->addChild(group.release());
   1675 	}
   1676 }
   1677 
   1678 } // anonymous ns
   1679 
   1680 tcu::TestCaseGroup* createSparseBufferTests (tcu::TestContext& testCtx)
   1681 {
   1682 	return createTestGroup(testCtx, "buffer", "Sparse buffer usage tests", populateTestGroup);
   1683 }
   1684 
   1685 } // sparse
   1686 } // vkt
   1687