1 /* 2 * Copyright 2008 Corbin Simpson <MostAwesomeDude (at) gmail.com> 3 * Copyright 2009 Marek Olk <maraeo (at) gmail.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * on the rights to use, copy, modify, merge, publish, distribute, sub 9 * license, and/or sell copies of the Software, and to permit persons to whom 10 * the Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, 20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */ 23 24 #include "draw/draw_context.h" 25 26 #include "util/u_framebuffer.h" 27 #include "util/u_half.h" 28 #include "util/u_helpers.h" 29 #include "util/u_math.h" 30 #include "util/u_mm.h" 31 #include "util/u_memory.h" 32 #include "util/u_pack_color.h" 33 #include "util/u_transfer.h" 34 35 #include "tgsi/tgsi_parse.h" 36 37 #include "pipe/p_config.h" 38 39 #include "r300_cb.h" 40 #include "r300_context.h" 41 #include "r300_emit.h" 42 #include "r300_reg.h" 43 #include "r300_screen.h" 44 #include "r300_screen_buffer.h" 45 #include "r300_state_inlines.h" 46 #include "r300_fs.h" 47 #include "r300_texture.h" 48 #include "r300_vs.h" 49 50 /* r300_state: Functions used to intialize state context by translating 51 * Gallium state objects into semi-native r300 state objects. */ 52 53 #define UPDATE_STATE(cso, atom) \ 54 if (cso != atom.state) { \ 55 atom.state = cso; \ 56 r300_mark_atom_dirty(r300, &(atom)); \ 57 } 58 59 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA, 60 unsigned dstRGB, unsigned dstA) 61 { 62 /* If the blend equation is ADD or REVERSE_SUBTRACT, 63 * SRC_ALPHA == 0, and the following state is set, the colorbuffer 64 * will not be changed. 65 * Notice that the dst factors are the src factors inverted. */ 66 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 67 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 68 srcRGB == PIPE_BLENDFACTOR_ZERO) && 69 (srcA == PIPE_BLENDFACTOR_SRC_COLOR || 70 srcA == PIPE_BLENDFACTOR_SRC_ALPHA || 71 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 72 srcA == PIPE_BLENDFACTOR_ZERO) && 73 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 74 dstRGB == PIPE_BLENDFACTOR_ONE) && 75 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 76 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 77 dstA == PIPE_BLENDFACTOR_ONE); 78 } 79 80 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA, 81 unsigned dstRGB, unsigned dstA) 82 { 83 /* If the blend equation is ADD or REVERSE_SUBTRACT, 84 * SRC_ALPHA == 1, and the following state is set, the colorbuffer 85 * will not be changed. 86 * Notice that the dst factors are the src factors inverted. */ 87 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 88 srcRGB == PIPE_BLENDFACTOR_ZERO) && 89 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 90 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 91 srcA == PIPE_BLENDFACTOR_ZERO) && 92 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 93 dstRGB == PIPE_BLENDFACTOR_ONE) && 94 (dstA == PIPE_BLENDFACTOR_SRC_COLOR || 95 dstA == PIPE_BLENDFACTOR_SRC_ALPHA || 96 dstA == PIPE_BLENDFACTOR_ONE); 97 } 98 99 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA, 100 unsigned dstRGB, unsigned dstA) 101 { 102 /* If the blend equation is ADD or REVERSE_SUBTRACT, 103 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer 104 * will not be changed. 105 * Notice that the dst factors are the src factors inverted. */ 106 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR || 107 srcRGB == PIPE_BLENDFACTOR_ZERO) && 108 (srcA == PIPE_BLENDFACTOR_ZERO) && 109 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 110 dstRGB == PIPE_BLENDFACTOR_ONE) && 111 (dstA == PIPE_BLENDFACTOR_ONE); 112 } 113 114 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA, 115 unsigned dstRGB, unsigned dstA) 116 { 117 /* If the blend equation is ADD or REVERSE_SUBTRACT, 118 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer 119 * will not be changed. 120 * Notice that the dst factors are the src factors inverted. */ 121 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 122 srcRGB == PIPE_BLENDFACTOR_ZERO) && 123 (srcA == PIPE_BLENDFACTOR_ZERO) && 124 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR || 125 dstRGB == PIPE_BLENDFACTOR_ONE) && 126 (dstA == PIPE_BLENDFACTOR_ONE); 127 } 128 129 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA, 130 unsigned dstRGB, unsigned dstA) 131 { 132 /* If the blend equation is ADD or REVERSE_SUBTRACT, 133 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set, 134 * the colorbuffer will not be changed. 135 * Notice that the dst factors are the src factors inverted. */ 136 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR || 137 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 138 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 139 srcRGB == PIPE_BLENDFACTOR_ZERO) && 140 (srcA == PIPE_BLENDFACTOR_SRC_COLOR || 141 srcA == PIPE_BLENDFACTOR_SRC_ALPHA || 142 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || 143 srcA == PIPE_BLENDFACTOR_ZERO) && 144 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 145 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 146 dstRGB == PIPE_BLENDFACTOR_ONE) && 147 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 148 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 149 dstA == PIPE_BLENDFACTOR_ONE); 150 } 151 152 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA, 153 unsigned dstRGB, unsigned dstA) 154 { 155 /* If the blend equation is ADD or REVERSE_SUBTRACT, 156 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set, 157 * the colorbuffer will not be changed. 158 * Notice that the dst factors are the src factors inverted. */ 159 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || 160 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 161 srcRGB == PIPE_BLENDFACTOR_ZERO) && 162 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 163 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 164 srcA == PIPE_BLENDFACTOR_ZERO) && 165 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR || 166 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 167 dstRGB == PIPE_BLENDFACTOR_ONE) && 168 (dstA == PIPE_BLENDFACTOR_SRC_COLOR || 169 dstA == PIPE_BLENDFACTOR_SRC_ALPHA || 170 dstA == PIPE_BLENDFACTOR_ONE); 171 } 172 173 static unsigned blend_discard_conditionally(unsigned eqRGB, unsigned eqA, 174 unsigned dstRGB, unsigned dstA, 175 unsigned srcRGB, unsigned srcA) 176 { 177 unsigned blend_control = 0; 178 179 /* Optimization: discard pixels which don't change the colorbuffer. 180 * 181 * The code below is non-trivial and some math is involved. 182 * 183 * Discarding pixels must be disabled when FP16 AA is enabled. 184 * This is a hardware bug. Also, this implementation wouldn't work 185 * with FP blending enabled and equation clamping disabled. 186 * 187 * Equations other than ADD are rarely used and therefore won't be 188 * optimized. */ 189 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) && 190 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) { 191 /* ADD: X+Y 192 * REVERSE_SUBTRACT: Y-X 193 * 194 * The idea is: 195 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1, 196 * then CB will not be changed. 197 * 198 * Given the srcFactor and dstFactor variables, we can derive 199 * what src and dst should be equal to and discard appropriate 200 * pixels. 201 */ 202 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) { 203 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0; 204 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA, 205 dstRGB, dstA)) { 206 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1; 207 } else if (blend_discard_if_src_color_0(srcRGB, srcA, 208 dstRGB, dstA)) { 209 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0; 210 } else if (blend_discard_if_src_color_1(srcRGB, srcA, 211 dstRGB, dstA)) { 212 blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1; 213 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA, 214 dstRGB, dstA)) { 215 blend_control |= 216 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0; 217 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA, 218 dstRGB, dstA)) { 219 blend_control |= 220 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1; 221 } 222 } 223 return blend_control; 224 } 225 226 /* The hardware colormask is clunky a must be swizzled depending on the format. 227 * This was figured out by trial-and-error. */ 228 static unsigned bgra_cmask(unsigned mask) 229 { 230 return ((mask & PIPE_MASK_R) << 2) | 231 ((mask & PIPE_MASK_B) >> 2) | 232 (mask & (PIPE_MASK_G | PIPE_MASK_A)); 233 } 234 235 static unsigned rgba_cmask(unsigned mask) 236 { 237 return mask & PIPE_MASK_RGBA; 238 } 239 240 static unsigned rrrr_cmask(unsigned mask) 241 { 242 return (mask & PIPE_MASK_R) | 243 ((mask & PIPE_MASK_R) << 1) | 244 ((mask & PIPE_MASK_R) << 2) | 245 ((mask & PIPE_MASK_R) << 3); 246 } 247 248 static unsigned aaaa_cmask(unsigned mask) 249 { 250 return ((mask & PIPE_MASK_A) >> 3) | 251 ((mask & PIPE_MASK_A) >> 2) | 252 ((mask & PIPE_MASK_A) >> 1) | 253 (mask & PIPE_MASK_A); 254 } 255 256 static unsigned grrg_cmask(unsigned mask) 257 { 258 return ((mask & PIPE_MASK_R) << 1) | 259 ((mask & PIPE_MASK_R) << 2) | 260 ((mask & PIPE_MASK_G) >> 1) | 261 ((mask & PIPE_MASK_G) << 2); 262 } 263 264 static unsigned arra_cmask(unsigned mask) 265 { 266 return ((mask & PIPE_MASK_R) << 1) | 267 ((mask & PIPE_MASK_R) << 2) | 268 ((mask & PIPE_MASK_A) >> 3) | 269 (mask & PIPE_MASK_A); 270 } 271 272 static unsigned blend_read_enable(unsigned eqRGB, unsigned eqA, 273 unsigned dstRGB, unsigned dstA, 274 unsigned srcRGB, unsigned srcA, 275 boolean src_alpha_optz) 276 { 277 unsigned blend_control = 0; 278 279 /* Optimization: some operations do not require the destination color. 280 * 281 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled, 282 * otherwise blending gives incorrect results. It seems to be 283 * a hardware bug. */ 284 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN || 285 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX || 286 dstRGB != PIPE_BLENDFACTOR_ZERO || 287 dstA != PIPE_BLENDFACTOR_ZERO || 288 srcRGB == PIPE_BLENDFACTOR_DST_COLOR || 289 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA || 290 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR || 291 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA || 292 srcA == PIPE_BLENDFACTOR_DST_COLOR || 293 srcA == PIPE_BLENDFACTOR_DST_ALPHA || 294 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR || 295 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA || 296 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) { 297 /* Enable reading from the colorbuffer. */ 298 blend_control |= R300_READ_ENABLE; 299 300 if (src_alpha_optz) { 301 /* Optimization: Depending on incoming pixels, we can 302 * conditionally disable the reading in hardware... */ 303 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN && 304 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) { 305 /* Disable reading if SRC_ALPHA == 0. */ 306 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || 307 dstRGB == PIPE_BLENDFACTOR_ZERO) && 308 (dstA == PIPE_BLENDFACTOR_SRC_COLOR || 309 dstA == PIPE_BLENDFACTOR_SRC_ALPHA || 310 dstA == PIPE_BLENDFACTOR_ZERO) && 311 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR && 312 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA && 313 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR && 314 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) { 315 blend_control |= R500_SRC_ALPHA_0_NO_READ; 316 } 317 318 /* Disable reading if SRC_ALPHA == 1. */ 319 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 320 dstRGB == PIPE_BLENDFACTOR_ZERO) && 321 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || 322 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || 323 dstA == PIPE_BLENDFACTOR_ZERO) && 324 (srcRGB != PIPE_BLENDFACTOR_DST_COLOR && 325 srcRGB != PIPE_BLENDFACTOR_DST_ALPHA && 326 srcRGB != PIPE_BLENDFACTOR_INV_DST_COLOR && 327 srcRGB != PIPE_BLENDFACTOR_INV_DST_ALPHA)) { 328 blend_control |= R500_SRC_ALPHA_1_NO_READ; 329 } 330 } 331 } 332 } 333 return blend_control; 334 } 335 336 /* Create a new blend state based on the CSO blend state. 337 * 338 * This encompasses alpha blending, logic/raster ops, and blend dithering. */ 339 static void* r300_create_blend_state(struct pipe_context* pipe, 340 const struct pipe_blend_state* state) 341 { 342 struct r300_screen* r300screen = r300_screen(pipe->screen); 343 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state); 344 uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */ 345 uint32_t blend_control_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */ 346 uint32_t blend_control_noalpha = 0; /* R300_RB3D_CBLEND: 0x4e04 */ 347 uint32_t blend_control_noalpha_noclamp = 0; /* R300_RB3D_CBLEND: 0x4e04 */ 348 uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */ 349 uint32_t alpha_blend_control_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */ 350 uint32_t alpha_blend_control_noalpha = 0; /* R300_RB3D_ABLEND: 0x4e08 */ 351 uint32_t alpha_blend_control_noalpha_noclamp = 0; /* R300_RB3D_ABLEND: 0x4e08 */ 352 uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */ 353 uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */ 354 int i; 355 356 const unsigned eqRGB = state->rt[0].rgb_func; 357 const unsigned srcRGB = state->rt[0].rgb_src_factor; 358 const unsigned dstRGB = state->rt[0].rgb_dst_factor; 359 360 const unsigned eqA = state->rt[0].alpha_func; 361 const unsigned srcA = state->rt[0].alpha_src_factor; 362 const unsigned dstA = state->rt[0].alpha_dst_factor; 363 364 unsigned srcRGBX = srcRGB; 365 unsigned dstRGBX = dstRGB; 366 CB_LOCALS; 367 368 blend->state = *state; 369 370 /* force DST_ALPHA to ONE where we can */ 371 switch (srcRGBX) { 372 case PIPE_BLENDFACTOR_DST_ALPHA: 373 srcRGBX = PIPE_BLENDFACTOR_ONE; 374 break; 375 case PIPE_BLENDFACTOR_INV_DST_ALPHA: 376 srcRGBX = PIPE_BLENDFACTOR_ZERO; 377 break; 378 } 379 380 switch (dstRGBX) { 381 case PIPE_BLENDFACTOR_DST_ALPHA: 382 dstRGBX = PIPE_BLENDFACTOR_ONE; 383 break; 384 case PIPE_BLENDFACTOR_INV_DST_ALPHA: 385 dstRGBX = PIPE_BLENDFACTOR_ZERO; 386 break; 387 } 388 389 /* Get blending register values. */ 390 if (state->rt[0].blend_enable) { 391 unsigned blend_eq, blend_eq_noclamp; 392 393 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha, 394 * this is just the crappy D3D naming */ 395 blend_control = blend_control_noclamp = 396 R300_ALPHA_BLEND_ENABLE | 397 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) | 398 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT); 399 400 blend_control_noalpha = blend_control_noalpha_noclamp = 401 R300_ALPHA_BLEND_ENABLE | 402 ( r300_translate_blend_factor(srcRGBX) << R300_SRC_BLEND_SHIFT) | 403 ( r300_translate_blend_factor(dstRGBX) << R300_DST_BLEND_SHIFT); 404 405 blend_eq = r300_translate_blend_function(eqRGB, TRUE); 406 blend_eq_noclamp = r300_translate_blend_function(eqRGB, FALSE); 407 408 blend_control |= blend_eq; 409 blend_control_noalpha |= blend_eq; 410 blend_control_noclamp |= blend_eq_noclamp; 411 blend_control_noalpha_noclamp |= blend_eq_noclamp; 412 413 /* Optimization: some operations do not require the destination color. */ 414 blend_control |= blend_read_enable(eqRGB, eqA, dstRGB, dstA, 415 srcRGB, srcA, r300screen->caps.is_r500); 416 blend_control_noclamp |= blend_read_enable(eqRGB, eqA, dstRGB, dstA, 417 srcRGB, srcA, FALSE); 418 blend_control_noalpha |= blend_read_enable(eqRGB, eqA, dstRGBX, dstA, 419 srcRGBX, srcA, r300screen->caps.is_r500); 420 blend_control_noalpha_noclamp |= blend_read_enable(eqRGB, eqA, dstRGBX, dstA, 421 srcRGBX, srcA, FALSE); 422 423 /* Optimization: discard pixels which don't change the colorbuffer. 424 * It cannot be used with FP16 AA. */ 425 blend_control |= blend_discard_conditionally(eqRGB, eqA, dstRGB, dstA, 426 srcRGB, srcA); 427 blend_control_noalpha |= blend_discard_conditionally(eqRGB, eqA, dstRGBX, dstA, 428 srcRGBX, srcA); 429 430 /* separate alpha */ 431 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { 432 blend_control |= R300_SEPARATE_ALPHA_ENABLE; 433 blend_control_noclamp |= R300_SEPARATE_ALPHA_ENABLE; 434 435 alpha_blend_control = alpha_blend_control_noclamp = 436 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) | 437 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT); 438 alpha_blend_control |= r300_translate_blend_function(eqA, TRUE); 439 alpha_blend_control_noclamp |= r300_translate_blend_function(eqA, FALSE); 440 } 441 if (srcA != srcRGBX || dstA != dstRGBX || eqA != eqRGB) { 442 blend_control_noalpha |= R300_SEPARATE_ALPHA_ENABLE; 443 blend_control_noalpha_noclamp |= R300_SEPARATE_ALPHA_ENABLE; 444 445 alpha_blend_control_noalpha = alpha_blend_control_noalpha_noclamp = 446 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) | 447 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT); 448 alpha_blend_control_noalpha |= r300_translate_blend_function(eqA, TRUE); 449 alpha_blend_control_noalpha_noclamp |= r300_translate_blend_function(eqA, FALSE); 450 } 451 } 452 453 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */ 454 if (state->logicop_enable) { 455 rop = R300_RB3D_ROPCNTL_ROP_ENABLE | 456 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT; 457 } 458 459 /* Neither fglrx nor classic r300 ever set this, regardless of dithering 460 * state. Since it's an optional implementation detail, we can leave it 461 * out and never dither. 462 * 463 * This could be revisited if we ever get quality or conformance hints. 464 * 465 if (state->dither) { 466 dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT | 467 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT; 468 } 469 */ 470 471 /* Build a command buffer. */ 472 { 473 unsigned (*func[COLORMASK_NUM_SWIZZLES])(unsigned) = { 474 bgra_cmask, 475 rgba_cmask, 476 rrrr_cmask, 477 aaaa_cmask, 478 grrg_cmask, 479 arra_cmask, 480 bgra_cmask, 481 rgba_cmask 482 }; 483 484 for (i = 0; i < COLORMASK_NUM_SWIZZLES; i++) { 485 boolean has_alpha = i != COLORMASK_RGBX && i != COLORMASK_BGRX; 486 487 BEGIN_CB(blend->cb_clamp[i], 8); 488 OUT_CB_REG(R300_RB3D_ROPCNTL, rop); 489 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); 490 OUT_CB(has_alpha ? blend_control : blend_control_noalpha); 491 OUT_CB(has_alpha ? alpha_blend_control : alpha_blend_control_noalpha); 492 OUT_CB(func[i](state->rt[0].colormask)); 493 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); 494 END_CB; 495 } 496 } 497 498 /* Build a command buffer (for RGBA16F). */ 499 BEGIN_CB(blend->cb_noclamp, 8); 500 OUT_CB_REG(R300_RB3D_ROPCNTL, rop); 501 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); 502 OUT_CB(blend_control_noclamp); 503 OUT_CB(alpha_blend_control_noclamp); 504 OUT_CB(rgba_cmask(state->rt[0].colormask)); 505 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); 506 END_CB; 507 508 /* Build a command buffer (for RGB16F). */ 509 BEGIN_CB(blend->cb_noclamp_noalpha, 8); 510 OUT_CB_REG(R300_RB3D_ROPCNTL, rop); 511 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); 512 OUT_CB(blend_control_noalpha_noclamp); 513 OUT_CB(alpha_blend_control_noalpha_noclamp); 514 OUT_CB(rgba_cmask(state->rt[0].colormask)); 515 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); 516 END_CB; 517 518 /* The same as above, but with no colorbuffer reads and writes. */ 519 BEGIN_CB(blend->cb_no_readwrite, 8); 520 OUT_CB_REG(R300_RB3D_ROPCNTL, rop); 521 OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); 522 OUT_CB(0); 523 OUT_CB(0); 524 OUT_CB(0); 525 OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); 526 END_CB; 527 528 return (void*)blend; 529 } 530 531 /* Bind blend state. */ 532 static void r300_bind_blend_state(struct pipe_context* pipe, 533 void* state) 534 { 535 struct r300_context* r300 = r300_context(pipe); 536 struct r300_blend_state *blend = (struct r300_blend_state*)state; 537 boolean last_alpha_to_one = r300->alpha_to_one; 538 boolean last_alpha_to_coverage = r300->alpha_to_coverage; 539 540 UPDATE_STATE(state, r300->blend_state); 541 542 if (!blend) 543 return; 544 545 r300->alpha_to_one = blend->state.alpha_to_one; 546 r300->alpha_to_coverage = blend->state.alpha_to_coverage; 547 548 if (r300->alpha_to_one != last_alpha_to_one && r300->msaa_enable && 549 r300->fs_status == FRAGMENT_SHADER_VALID) { 550 r300->fs_status = FRAGMENT_SHADER_MAYBE_DIRTY; 551 } 552 553 if (r300->alpha_to_coverage != last_alpha_to_coverage && 554 r300->msaa_enable) { 555 r300_mark_atom_dirty(r300, &r300->dsa_state); 556 } 557 } 558 559 /* Free blend state. */ 560 static void r300_delete_blend_state(struct pipe_context* pipe, 561 void* state) 562 { 563 FREE(state); 564 } 565 566 /* Convert float to 10bit integer */ 567 static unsigned float_to_fixed10(float f) 568 { 569 return CLAMP((unsigned)(f * 1023.9f), 0, 1023); 570 } 571 572 /* Set blend color. 573 * Setup both R300 and R500 registers, figure out later which one to write. */ 574 static void r300_set_blend_color(struct pipe_context* pipe, 575 const struct pipe_blend_color* color) 576 { 577 struct r300_context* r300 = r300_context(pipe); 578 struct pipe_framebuffer_state *fb = r300->fb_state.state; 579 struct r300_blend_color_state *state = 580 (struct r300_blend_color_state*)r300->blend_color_state.state; 581 struct pipe_blend_color c; 582 struct pipe_surface *cb; 583 float tmp; 584 CB_LOCALS; 585 586 state->state = *color; /* Save it, so that we can reuse it in set_fb_state */ 587 c = *color; 588 cb = fb->nr_cbufs ? r300_get_nonnull_cb(fb, 0) : NULL; 589 590 /* The blend color is dependent on the colorbuffer format. */ 591 if (cb) { 592 switch (cb->format) { 593 case PIPE_FORMAT_R8_UNORM: 594 case PIPE_FORMAT_L8_UNORM: 595 case PIPE_FORMAT_I8_UNORM: 596 c.color[1] = c.color[0]; 597 break; 598 599 case PIPE_FORMAT_A8_UNORM: 600 c.color[1] = c.color[3]; 601 break; 602 603 case PIPE_FORMAT_R8G8_UNORM: 604 c.color[2] = c.color[1]; 605 break; 606 607 case PIPE_FORMAT_L8A8_UNORM: 608 case PIPE_FORMAT_R8A8_UNORM: 609 c.color[2] = c.color[3]; 610 break; 611 612 case PIPE_FORMAT_R8G8B8A8_UNORM: 613 case PIPE_FORMAT_R8G8B8X8_UNORM: 614 tmp = c.color[0]; 615 c.color[0] = c.color[2]; 616 c.color[2] = tmp; 617 break; 618 619 default:; 620 } 621 } 622 623 if (r300->screen->caps.is_r500) { 624 BEGIN_CB(state->cb, 3); 625 OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2); 626 627 switch (cb ? cb->format : 0) { 628 case PIPE_FORMAT_R16G16B16A16_FLOAT: 629 case PIPE_FORMAT_R16G16B16X16_FLOAT: 630 OUT_CB(util_float_to_half(c.color[2]) | 631 (util_float_to_half(c.color[3]) << 16)); 632 OUT_CB(util_float_to_half(c.color[0]) | 633 (util_float_to_half(c.color[1]) << 16)); 634 break; 635 636 default: 637 OUT_CB(float_to_fixed10(c.color[0]) | 638 (float_to_fixed10(c.color[3]) << 16)); 639 OUT_CB(float_to_fixed10(c.color[2]) | 640 (float_to_fixed10(c.color[1]) << 16)); 641 } 642 643 END_CB; 644 } else { 645 union util_color uc; 646 util_pack_color(c.color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc); 647 648 BEGIN_CB(state->cb, 2); 649 OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui[0]); 650 END_CB; 651 } 652 653 r300_mark_atom_dirty(r300, &r300->blend_color_state); 654 } 655 656 static void r300_set_clip_state(struct pipe_context* pipe, 657 const struct pipe_clip_state* state) 658 { 659 struct r300_context* r300 = r300_context(pipe); 660 struct r300_clip_state *clip = 661 (struct r300_clip_state*)r300->clip_state.state; 662 CB_LOCALS; 663 664 if (r300->screen->caps.has_tcl) { 665 BEGIN_CB(clip->cb, r300->clip_state.size); 666 OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG, 667 (r300->screen->caps.is_r500 ? 668 R500_PVS_UCP_START : R300_PVS_UCP_START)); 669 OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4); 670 OUT_CB_TABLE(state->ucp, 6 * 4); 671 END_CB; 672 673 r300_mark_atom_dirty(r300, &r300->clip_state); 674 } else { 675 draw_set_clip_state(r300->draw, state); 676 } 677 } 678 679 /* Create a new depth, stencil, and alpha state based on the CSO dsa state. 680 * 681 * This contains the depth buffer, stencil buffer, alpha test, and such. 682 * On the Radeon, depth and stencil buffer setup are intertwined, which is 683 * the reason for some of the strange-looking assignments across registers. */ 684 static void* r300_create_dsa_state(struct pipe_context* pipe, 685 const struct pipe_depth_stencil_alpha_state* state) 686 { 687 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500; 688 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state); 689 CB_LOCALS; 690 uint32_t alpha_value_fp16 = 0; 691 uint32_t z_buffer_control = 0; 692 uint32_t z_stencil_control = 0; 693 uint32_t stencil_ref_mask = 0; 694 uint32_t stencil_ref_bf = 0; 695 696 dsa->dsa = *state; 697 698 /* Depth test setup. - separate write mask depth for decomp flush */ 699 if (state->depth.writemask) { 700 z_buffer_control |= R300_Z_WRITE_ENABLE; 701 } 702 703 if (state->depth.enabled) { 704 z_buffer_control |= R300_Z_ENABLE; 705 706 z_stencil_control |= 707 (r300_translate_depth_stencil_function(state->depth.func) << 708 R300_Z_FUNC_SHIFT); 709 } 710 711 /* Stencil buffer setup. */ 712 if (state->stencil[0].enabled) { 713 z_buffer_control |= R300_STENCIL_ENABLE; 714 z_stencil_control |= 715 (r300_translate_depth_stencil_function(state->stencil[0].func) << 716 R300_S_FRONT_FUNC_SHIFT) | 717 (r300_translate_stencil_op(state->stencil[0].fail_op) << 718 R300_S_FRONT_SFAIL_OP_SHIFT) | 719 (r300_translate_stencil_op(state->stencil[0].zpass_op) << 720 R300_S_FRONT_ZPASS_OP_SHIFT) | 721 (r300_translate_stencil_op(state->stencil[0].zfail_op) << 722 R300_S_FRONT_ZFAIL_OP_SHIFT); 723 724 stencil_ref_mask = 725 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) | 726 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT); 727 728 if (state->stencil[1].enabled) { 729 dsa->two_sided = TRUE; 730 731 z_buffer_control |= R300_STENCIL_FRONT_BACK; 732 z_stencil_control |= 733 (r300_translate_depth_stencil_function(state->stencil[1].func) << 734 R300_S_BACK_FUNC_SHIFT) | 735 (r300_translate_stencil_op(state->stencil[1].fail_op) << 736 R300_S_BACK_SFAIL_OP_SHIFT) | 737 (r300_translate_stencil_op(state->stencil[1].zpass_op) << 738 R300_S_BACK_ZPASS_OP_SHIFT) | 739 (r300_translate_stencil_op(state->stencil[1].zfail_op) << 740 R300_S_BACK_ZFAIL_OP_SHIFT); 741 742 stencil_ref_bf = 743 (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) | 744 (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT); 745 746 if (is_r500) { 747 z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK; 748 } else { 749 dsa->two_sided_stencil_ref = 750 (state->stencil[0].valuemask != state->stencil[1].valuemask || 751 state->stencil[0].writemask != state->stencil[1].writemask); 752 } 753 } 754 } 755 756 /* Alpha test setup. */ 757 if (state->alpha.enabled) { 758 dsa->alpha_function = 759 r300_translate_alpha_function(state->alpha.func) | 760 R300_FG_ALPHA_FUNC_ENABLE; 761 762 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value); 763 alpha_value_fp16 = util_float_to_half(state->alpha.ref_value); 764 } 765 766 BEGIN_CB(&dsa->cb_begin, 8); 767 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); 768 OUT_CB(z_buffer_control); 769 OUT_CB(z_stencil_control); 770 OUT_CB(stencil_ref_mask); 771 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, stencil_ref_bf); 772 OUT_CB_REG(R500_FG_ALPHA_VALUE, alpha_value_fp16); 773 END_CB; 774 775 BEGIN_CB(dsa->cb_zb_no_readwrite, 8); 776 OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); 777 OUT_CB(0); 778 OUT_CB(0); 779 OUT_CB(0); 780 OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0); 781 OUT_CB_REG(R500_FG_ALPHA_VALUE, alpha_value_fp16); 782 END_CB; 783 784 return (void*)dsa; 785 } 786 787 static void r300_dsa_inject_stencilref(struct r300_context *r300) 788 { 789 struct r300_dsa_state *dsa = 790 (struct r300_dsa_state*)r300->dsa_state.state; 791 792 if (!dsa) 793 return; 794 795 dsa->stencil_ref_mask = 796 (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) | 797 r300->stencil_ref.ref_value[0]; 798 dsa->stencil_ref_bf = 799 (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) | 800 r300->stencil_ref.ref_value[1]; 801 } 802 803 /* Bind DSA state. */ 804 static void r300_bind_dsa_state(struct pipe_context* pipe, 805 void* state) 806 { 807 struct r300_context* r300 = r300_context(pipe); 808 809 if (!state) { 810 return; 811 } 812 813 UPDATE_STATE(state, r300->dsa_state); 814 815 r300_mark_atom_dirty(r300, &r300->hyperz_state); /* Will be updated before the emission. */ 816 r300_dsa_inject_stencilref(r300); 817 } 818 819 /* Free DSA state. */ 820 static void r300_delete_dsa_state(struct pipe_context* pipe, 821 void* state) 822 { 823 FREE(state); 824 } 825 826 static void r300_set_stencil_ref(struct pipe_context* pipe, 827 const struct pipe_stencil_ref* sr) 828 { 829 struct r300_context* r300 = r300_context(pipe); 830 831 r300->stencil_ref = *sr; 832 833 r300_dsa_inject_stencilref(r300); 834 r300_mark_atom_dirty(r300, &r300->dsa_state); 835 } 836 837 static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index, 838 const char *binding) 839 { 840 struct pipe_resource *tex = surf->texture; 841 struct r300_resource *rtex = r300_resource(tex); 842 843 fprintf(stderr, 844 "r300: %s[%i] Dim: %ix%i, Firstlayer: %i, " 845 "Lastlayer: %i, Level: %i, Format: %s\n" 846 847 "r300: TEX: Macro: %s, Micro: %s, " 848 "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n", 849 850 binding, index, surf->width, surf->height, 851 surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level, 852 util_format_short_name(surf->format), 853 854 rtex->tex.macrotile[0] ? "YES" : " NO", 855 rtex->tex.microtile ? "YES" : " NO", 856 tex->width0, tex->height0, tex->depth0, 857 tex->last_level, util_format_short_name(surf->format)); 858 } 859 860 void r300_mark_fb_state_dirty(struct r300_context *r300, 861 enum r300_fb_state_change change) 862 { 863 struct pipe_framebuffer_state *state = r300->fb_state.state; 864 865 r300_mark_atom_dirty(r300, &r300->gpu_flush); 866 r300_mark_atom_dirty(r300, &r300->fb_state); 867 868 /* What is marked as dirty depends on the enum r300_fb_state_change. */ 869 if (change == R300_CHANGED_FB_STATE) { 870 r300_mark_atom_dirty(r300, &r300->aa_state); 871 r300_mark_atom_dirty(r300, &r300->dsa_state); /* for AlphaRef */ 872 r300_set_blend_color(&r300->context, r300->blend_color_state.state); 873 } 874 875 if (change == R300_CHANGED_FB_STATE || 876 change == R300_CHANGED_HYPERZ_FLAG) { 877 r300_mark_atom_dirty(r300, &r300->hyperz_state); 878 } 879 880 if (change == R300_CHANGED_FB_STATE || 881 change == R300_CHANGED_MULTIWRITE) { 882 r300_mark_atom_dirty(r300, &r300->fb_state_pipelined); 883 } 884 885 /* Now compute the fb_state atom size. */ 886 r300->fb_state.size = 2 + (8 * state->nr_cbufs); 887 888 if (r300->cbzb_clear) 889 r300->fb_state.size += 10; 890 else if (state->zsbuf) { 891 r300->fb_state.size += 10; 892 if (r300->hyperz_enabled) 893 r300->fb_state.size += 8; 894 } 895 896 if (r300->cmask_in_use) { 897 r300->fb_state.size += 6; 898 if (r300->screen->caps.is_r500 && r300->screen->info.drm_minor >= 29) { 899 r300->fb_state.size += 3; 900 } 901 } 902 903 /* The size of the rest of atoms stays the same. */ 904 } 905 906 static void 907 r300_set_framebuffer_state(struct pipe_context* pipe, 908 const struct pipe_framebuffer_state* state) 909 { 910 struct r300_context* r300 = r300_context(pipe); 911 struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state; 912 struct pipe_framebuffer_state *current_state = r300->fb_state.state; 913 unsigned max_width, max_height, i; 914 uint32_t zbuffer_bpp = 0; 915 boolean unlock_zbuffer = FALSE; 916 917 if (r300->screen->caps.is_r500) { 918 max_width = max_height = 4096; 919 } else if (r300->screen->caps.is_r400) { 920 max_width = max_height = 4021; 921 } else { 922 max_width = max_height = 2560; 923 } 924 925 if (state->width > max_width || state->height > max_height) { 926 fprintf(stderr, "r300: Implementation error: Render targets are too " 927 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__); 928 return; 929 } 930 931 if (current_state->zsbuf && r300->zmask_in_use && !r300->locked_zbuffer) { 932 /* There is a zmask in use, what are we gonna do? */ 933 if (state->zsbuf) { 934 if (!pipe_surface_equal(current_state->zsbuf, state->zsbuf)) { 935 /* Decompress the currently bound zbuffer before we bind another one. */ 936 r300_decompress_zmask(r300); 937 r300->hiz_in_use = FALSE; 938 } 939 } else { 940 /* We don't bind another zbuffer, so lock the current one. */ 941 pipe_surface_reference(&r300->locked_zbuffer, current_state->zsbuf); 942 } 943 } else if (r300->locked_zbuffer) { 944 /* We have a locked zbuffer now, what are we gonna do? */ 945 if (state->zsbuf) { 946 if (!pipe_surface_equal(r300->locked_zbuffer, state->zsbuf)) { 947 /* We are binding some other zbuffer, so decompress the locked one, 948 * it gets unlocked automatically. */ 949 r300_decompress_zmask_locked_unsafe(r300); 950 r300->hiz_in_use = FALSE; 951 } else { 952 /* We are binding the locked zbuffer again, so unlock it. */ 953 unlock_zbuffer = TRUE; 954 } 955 } 956 } 957 assert(state->zsbuf || (r300->locked_zbuffer && !unlock_zbuffer) || !r300->zmask_in_use); 958 959 /* If zsbuf is set from NULL to non-NULL or vice versa.. */ 960 if (!!current_state->zsbuf != !!state->zsbuf) { 961 r300_mark_atom_dirty(r300, &r300->dsa_state); 962 } 963 964 util_copy_framebuffer_state(r300->fb_state.state, state); 965 966 /* Remove trailing NULL colorbuffers. */ 967 while (current_state->nr_cbufs && !current_state->cbufs[current_state->nr_cbufs-1]) 968 current_state->nr_cbufs--; 969 970 /* Set whether CMASK can be used. */ 971 r300->cmask_in_use = 972 state->nr_cbufs == 1 && state->cbufs[0] && 973 r300->screen->cmask_resource == state->cbufs[0]->texture; 974 975 /* Need to reset clamping or colormask. */ 976 r300_mark_atom_dirty(r300, &r300->blend_state); 977 978 /* Re-swizzle the blend color. */ 979 r300_set_blend_color(pipe, &((struct r300_blend_color_state*)r300->blend_color_state.state)->state); 980 981 if (unlock_zbuffer) { 982 pipe_surface_reference(&r300->locked_zbuffer, NULL); 983 } 984 985 r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE); 986 987 if (state->zsbuf) { 988 switch (util_format_get_blocksize(state->zsbuf->format)) { 989 case 2: 990 zbuffer_bpp = 16; 991 break; 992 case 4: 993 zbuffer_bpp = 24; 994 break; 995 } 996 997 /* Polygon offset depends on the zbuffer bit depth. */ 998 if (r300->zbuffer_bpp != zbuffer_bpp) { 999 r300->zbuffer_bpp = zbuffer_bpp; 1000 1001 if (r300->polygon_offset_enabled) 1002 r300_mark_atom_dirty(r300, &r300->rs_state); 1003 } 1004 } 1005 1006 r300->num_samples = util_framebuffer_get_num_samples(state); 1007 1008 /* Set up AA config. */ 1009 if (r300->num_samples > 1) { 1010 switch (r300->num_samples) { 1011 case 2: 1012 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE | 1013 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2; 1014 break; 1015 case 4: 1016 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE | 1017 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4; 1018 break; 1019 case 6: 1020 aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE | 1021 R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6; 1022 break; 1023 } 1024 } else { 1025 aa->aa_config = 0; 1026 } 1027 1028 if (DBG_ON(r300, DBG_FB)) { 1029 fprintf(stderr, "r300: set_framebuffer_state:\n"); 1030 for (i = 0; i < state->nr_cbufs; i++) { 1031 if (state->cbufs[i]) 1032 r300_print_fb_surf_info(state->cbufs[i], i, "CB"); 1033 } 1034 if (state->zsbuf) { 1035 r300_print_fb_surf_info(state->zsbuf, 0, "ZB"); 1036 } 1037 } 1038 } 1039 1040 /* Create fragment shader state. */ 1041 static void* r300_create_fs_state(struct pipe_context* pipe, 1042 const struct pipe_shader_state* shader) 1043 { 1044 struct r300_fragment_shader* fs = NULL; 1045 1046 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader); 1047 1048 /* Copy state directly into shader. */ 1049 fs->state = *shader; 1050 fs->state.tokens = tgsi_dup_tokens(shader->tokens); 1051 1052 return (void*)fs; 1053 } 1054 1055 void r300_mark_fs_code_dirty(struct r300_context *r300) 1056 { 1057 struct r300_fragment_shader* fs = r300_fs(r300); 1058 1059 r300_mark_atom_dirty(r300, &r300->fs); 1060 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state); 1061 r300_mark_atom_dirty(r300, &r300->fs_constants); 1062 r300->fs.size = fs->shader->cb_code_size; 1063 1064 if (r300->screen->caps.is_r500) { 1065 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7; 1066 r300->fs_constants.size = fs->shader->externals_count * 4 + 3; 1067 } else { 1068 r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5; 1069 r300->fs_constants.size = fs->shader->externals_count * 4 + 1; 1070 } 1071 1072 ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table = 1073 fs->shader->code.constants_remap_table; 1074 } 1075 1076 /* Bind fragment shader state. */ 1077 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader) 1078 { 1079 struct r300_context* r300 = r300_context(pipe); 1080 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader; 1081 1082 if (!fs) { 1083 r300->fs.state = NULL; 1084 return; 1085 } 1086 1087 r300->fs.state = fs; 1088 r300->fs_status = FRAGMENT_SHADER_DIRTY; 1089 1090 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */ 1091 } 1092 1093 /* Delete fragment shader state. */ 1094 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader) 1095 { 1096 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader; 1097 struct r300_fragment_shader_code *tmp, *ptr = fs->first; 1098 1099 while (ptr) { 1100 tmp = ptr; 1101 ptr = ptr->next; 1102 rc_constants_destroy(&tmp->code.constants); 1103 FREE(tmp->cb_code); 1104 FREE(tmp); 1105 } 1106 FREE((void*)fs->state.tokens); 1107 FREE(shader); 1108 } 1109 1110 static void r300_set_polygon_stipple(struct pipe_context* pipe, 1111 const struct pipe_poly_stipple* state) 1112 { 1113 } 1114 1115 /* Create a new rasterizer state based on the CSO rasterizer state. 1116 * 1117 * This is a very large chunk of state, and covers most of the graphics 1118 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks. 1119 * 1120 * In a not entirely unironic sidenote, this state has nearly nothing to do 1121 * with the actual block on the Radeon called the rasterizer (RS). */ 1122 static void* r300_create_rs_state(struct pipe_context* pipe, 1123 const struct pipe_rasterizer_state* state) 1124 { 1125 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state); 1126 uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */ 1127 uint32_t vap_clip_cntl; /* R300_VAP_CLIP_CNTL: 0x221C */ 1128 uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */ 1129 uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */ 1130 uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */ 1131 uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */ 1132 uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */ 1133 uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */ 1134 uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */ 1135 uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */ 1136 uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */ 1137 uint32_t round_mode; /* R300_GA_ROUND_MODE: 0x428c */ 1138 1139 /* Point sprites texture coordinates, 0: lower left, 1: upper right */ 1140 float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */ 1141 float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */ 1142 float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */ 1143 float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */ 1144 boolean vclamp = !r300_context(pipe)->screen->caps.is_r500; 1145 CB_LOCALS; 1146 1147 /* Copy rasterizer state. */ 1148 rs->rs = *state; 1149 rs->rs_draw = *state; 1150 1151 rs->rs.sprite_coord_enable = state->point_quad_rasterization * 1152 state->sprite_coord_enable; 1153 1154 /* Override some states for Draw. */ 1155 rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */ 1156 rs->rs_draw.offset_point = 0; 1157 rs->rs_draw.offset_line = 0; 1158 rs->rs_draw.offset_tri = 0; 1159 rs->rs_draw.offset_clamp = 0; 1160 1161 #ifdef PIPE_ARCH_LITTLE_ENDIAN 1162 vap_control_status = R300_VC_NO_SWAP; 1163 #else 1164 vap_control_status = R300_VC_32BIT_SWAP; 1165 #endif 1166 1167 /* If no TCL engine is present, turn off the HW TCL. */ 1168 if (!r300_screen(pipe->screen)->caps.has_tcl) { 1169 vap_control_status |= R300_VAP_TCL_BYPASS; 1170 } 1171 1172 /* Point size width and height. */ 1173 point_size = 1174 pack_float_16_6x(state->point_size) | 1175 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT); 1176 1177 /* Point size clamping. */ 1178 if (state->point_size_per_vertex) { 1179 /* Per-vertex point size. 1180 * Clamp to [0, max FB size] */ 1181 float min_psiz = util_get_min_point_size(state); 1182 float max_psiz = pipe->screen->get_paramf(pipe->screen, 1183 PIPE_CAPF_MAX_POINT_WIDTH); 1184 point_minmax = 1185 (pack_float_16_6x(min_psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) | 1186 (pack_float_16_6x(max_psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT); 1187 } else { 1188 /* We cannot disable the point-size vertex output, 1189 * so clamp it. */ 1190 float psiz = state->point_size; 1191 point_minmax = 1192 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) | 1193 (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT); 1194 } 1195 1196 /* Line control. */ 1197 line_control = pack_float_16_6x(state->line_width) | 1198 R300_GA_LINE_CNTL_END_TYPE_COMP; 1199 1200 /* Enable polygon mode */ 1201 polygon_mode = 0; 1202 if (state->fill_front != PIPE_POLYGON_MODE_FILL || 1203 state->fill_back != PIPE_POLYGON_MODE_FILL) { 1204 polygon_mode = R300_GA_POLY_MODE_DUAL; 1205 } 1206 1207 /* Front face */ 1208 if (state->front_ccw) 1209 cull_mode = R300_FRONT_FACE_CCW; 1210 else 1211 cull_mode = R300_FRONT_FACE_CW; 1212 1213 /* Polygon offset */ 1214 polygon_offset_enable = 0; 1215 if (util_get_offset(state, state->fill_front)) { 1216 polygon_offset_enable |= R300_FRONT_ENABLE; 1217 } 1218 if (util_get_offset(state, state->fill_back)) { 1219 polygon_offset_enable |= R300_BACK_ENABLE; 1220 } 1221 1222 rs->polygon_offset_enable = polygon_offset_enable != 0; 1223 1224 /* Polygon mode */ 1225 if (polygon_mode) { 1226 polygon_mode |= 1227 r300_translate_polygon_mode_front(state->fill_front); 1228 polygon_mode |= 1229 r300_translate_polygon_mode_back(state->fill_back); 1230 } 1231 1232 if (state->cull_face & PIPE_FACE_FRONT) { 1233 cull_mode |= R300_CULL_FRONT; 1234 } 1235 if (state->cull_face & PIPE_FACE_BACK) { 1236 cull_mode |= R300_CULL_BACK; 1237 } 1238 1239 if (state->line_stipple_enable) { 1240 line_stipple_config = 1241 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE | 1242 (fui((float)state->line_stipple_factor) & 1243 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK); 1244 /* XXX this might need to be scaled up */ 1245 line_stipple_value = state->line_stipple_pattern; 1246 } else { 1247 line_stipple_config = 0; 1248 line_stipple_value = 0; 1249 } 1250 1251 if (state->flatshade) { 1252 rs->color_control = R300_SHADE_MODEL_FLAT; 1253 } else { 1254 rs->color_control = R300_SHADE_MODEL_SMOOTH; 1255 } 1256 1257 clip_rule = state->scissor ? 0xAAAA : 0xFFFF; 1258 1259 /* Point sprites coord mode */ 1260 if (rs->rs.sprite_coord_enable) { 1261 switch (state->sprite_coord_mode) { 1262 case PIPE_SPRITE_COORD_UPPER_LEFT: 1263 point_texcoord_top = 0.0f; 1264 point_texcoord_bottom = 1.0f; 1265 break; 1266 case PIPE_SPRITE_COORD_LOWER_LEFT: 1267 point_texcoord_top = 1.0f; 1268 point_texcoord_bottom = 0.0f; 1269 break; 1270 } 1271 } 1272 1273 if (r300_screen(pipe->screen)->caps.has_tcl) { 1274 vap_clip_cntl = (state->clip_plane_enable & 63) | 1275 R300_PS_UCP_MODE_CLIP_AS_TRIFAN; 1276 } else { 1277 vap_clip_cntl = R300_CLIP_DISABLE; 1278 } 1279 1280 /* Vertex color clamping. FP20 means no clamping. */ 1281 round_mode = 1282 R300_GA_ROUND_MODE_GEOMETRY_ROUND_NEAREST | 1283 (!vclamp ? (R300_GA_ROUND_MODE_RGB_CLAMP_FP20 | 1284 R300_GA_ROUND_MODE_ALPHA_CLAMP_FP20) : 0); 1285 1286 /* Build the main command buffer. */ 1287 BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE); 1288 OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status); 1289 OUT_CB_REG(R300_VAP_CLIP_CNTL, vap_clip_cntl); 1290 OUT_CB_REG(R300_GA_POINT_SIZE, point_size); 1291 OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2); 1292 OUT_CB(point_minmax); 1293 OUT_CB(line_control); 1294 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2); 1295 OUT_CB(polygon_offset_enable); 1296 rs->cull_mode_index = 11; 1297 OUT_CB(cull_mode); 1298 OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config); 1299 OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value); 1300 OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode); 1301 OUT_CB_REG(R300_GA_ROUND_MODE, round_mode); 1302 OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule); 1303 OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4); 1304 OUT_CB_32F(point_texcoord_left); 1305 OUT_CB_32F(point_texcoord_bottom); 1306 OUT_CB_32F(point_texcoord_right); 1307 OUT_CB_32F(point_texcoord_top); 1308 END_CB; 1309 1310 /* Build the two command buffers for polygon offset setup. */ 1311 if (polygon_offset_enable) { 1312 float scale = state->offset_scale * 12; 1313 float offset = state->offset_units * 4; 1314 1315 BEGIN_CB(rs->cb_poly_offset_zb16, 5); 1316 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4); 1317 OUT_CB_32F(scale); 1318 OUT_CB_32F(offset); 1319 OUT_CB_32F(scale); 1320 OUT_CB_32F(offset); 1321 END_CB; 1322 1323 offset = state->offset_units * 2; 1324 1325 BEGIN_CB(rs->cb_poly_offset_zb24, 5); 1326 OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4); 1327 OUT_CB_32F(scale); 1328 OUT_CB_32F(offset); 1329 OUT_CB_32F(scale); 1330 OUT_CB_32F(offset); 1331 END_CB; 1332 } 1333 1334 return (void*)rs; 1335 } 1336 1337 /* Bind rasterizer state. */ 1338 static void r300_bind_rs_state(struct pipe_context* pipe, void* state) 1339 { 1340 struct r300_context* r300 = r300_context(pipe); 1341 struct r300_rs_state* rs = (struct r300_rs_state*)state; 1342 int last_sprite_coord_enable = r300->sprite_coord_enable; 1343 boolean last_two_sided_color = r300->two_sided_color; 1344 boolean last_msaa_enable = r300->msaa_enable; 1345 boolean last_flatshade = r300->flatshade; 1346 boolean last_clip_halfz = r300->clip_halfz; 1347 1348 if (r300->draw && rs) { 1349 draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state); 1350 } 1351 1352 if (rs) { 1353 r300->polygon_offset_enabled = rs->polygon_offset_enable; 1354 r300->sprite_coord_enable = rs->rs.sprite_coord_enable; 1355 r300->two_sided_color = rs->rs.light_twoside; 1356 r300->msaa_enable = rs->rs.multisample; 1357 r300->flatshade = rs->rs.flatshade; 1358 r300->clip_halfz = rs->rs.clip_halfz; 1359 } else { 1360 r300->polygon_offset_enabled = FALSE; 1361 r300->sprite_coord_enable = 0; 1362 r300->two_sided_color = FALSE; 1363 r300->msaa_enable = FALSE; 1364 r300->flatshade = FALSE; 1365 r300->clip_halfz = FALSE; 1366 } 1367 1368 UPDATE_STATE(state, r300->rs_state); 1369 r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0); 1370 1371 if (last_sprite_coord_enable != r300->sprite_coord_enable || 1372 last_two_sided_color != r300->two_sided_color || 1373 last_flatshade != r300->flatshade) { 1374 r300_mark_atom_dirty(r300, &r300->rs_block_state); 1375 } 1376 1377 if (last_msaa_enable != r300->msaa_enable) { 1378 if (r300->alpha_to_coverage) { 1379 r300_mark_atom_dirty(r300, &r300->dsa_state); 1380 } 1381 1382 if (r300->alpha_to_one && 1383 r300->fs_status == FRAGMENT_SHADER_VALID) { 1384 r300->fs_status = FRAGMENT_SHADER_MAYBE_DIRTY; 1385 } 1386 } 1387 1388 if (r300->screen->caps.has_tcl && last_clip_halfz != r300->clip_halfz) { 1389 r300_mark_atom_dirty(r300, &r300->vs_state); 1390 } 1391 } 1392 1393 /* Free rasterizer state. */ 1394 static void r300_delete_rs_state(struct pipe_context* pipe, void* state) 1395 { 1396 FREE(state); 1397 } 1398 1399 static void* 1400 r300_create_sampler_state(struct pipe_context* pipe, 1401 const struct pipe_sampler_state* state) 1402 { 1403 struct r300_context* r300 = r300_context(pipe); 1404 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state); 1405 boolean is_r500 = r300->screen->caps.is_r500; 1406 int lod_bias; 1407 1408 sampler->state = *state; 1409 1410 /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG 1411 * or MIN filter is NEAREST. Since texwrap produces same results 1412 * for CLAMP and CLAMP_TO_EDGE, we use them instead. */ 1413 if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST || 1414 sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) { 1415 /* Wrap S. */ 1416 if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP) 1417 sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE; 1418 else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP) 1419 sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; 1420 1421 /* Wrap T. */ 1422 if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP) 1423 sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE; 1424 else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP) 1425 sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; 1426 1427 /* Wrap R. */ 1428 if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP) 1429 sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE; 1430 else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP) 1431 sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; 1432 } 1433 1434 sampler->filter0 |= 1435 (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) | 1436 (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) | 1437 (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT); 1438 1439 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter, 1440 state->mag_img_filter, 1441 state->min_mip_filter, 1442 state->max_anisotropy > 1); 1443 1444 sampler->filter0 |= r300_anisotropy(state->max_anisotropy); 1445 1446 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */ 1447 /* We must pass these to the merge function to clamp them properly. */ 1448 sampler->min_lod = (unsigned)MAX2(state->min_lod, 0); 1449 sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0); 1450 1451 lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1); 1452 1453 sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK; 1454 1455 /* This is very high quality anisotropic filtering for R5xx. 1456 * It's good for benchmarking the performance of texturing but 1457 * in practice we don't want to slow down the driver because it's 1458 * a pretty good performance killer. Feel free to play with it. */ 1459 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) { 1460 sampler->filter1 |= r500_anisotropy(state->max_anisotropy); 1461 } 1462 1463 /* R500-specific fixups and optimizations */ 1464 if (r300->screen->caps.is_r500) { 1465 sampler->filter1 |= R500_BORDER_FIX; 1466 } 1467 1468 return (void*)sampler; 1469 } 1470 1471 static void r300_bind_sampler_states(struct pipe_context* pipe, 1472 enum pipe_shader_type shader, 1473 unsigned start, unsigned count, 1474 void** states) 1475 { 1476 struct r300_context* r300 = r300_context(pipe); 1477 struct r300_textures_state* state = 1478 (struct r300_textures_state*)r300->textures_state.state; 1479 unsigned tex_units = r300->screen->caps.num_tex_units; 1480 1481 assert(start == 0); 1482 1483 if (shader != PIPE_SHADER_FRAGMENT) 1484 return; 1485 1486 if (count > tex_units) 1487 return; 1488 1489 memcpy(state->sampler_states, states, sizeof(void*) * count); 1490 state->sampler_state_count = count; 1491 1492 r300_mark_atom_dirty(r300, &r300->textures_state); 1493 } 1494 1495 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state) 1496 { 1497 FREE(state); 1498 } 1499 1500 static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num) 1501 { 1502 /* This looks like a hack, but I believe it's suppose to work like 1503 * that. To illustrate how this works, let's assume you have 5 textures. 1504 * From docs, 5 and the successive numbers are: 1505 * 1506 * FOURTH_1 = 5 1507 * FOURTH_2 = 6 1508 * FOURTH_3 = 7 1509 * EIGHTH_0 = 8 1510 * EIGHTH_1 = 9 1511 * 1512 * First 3 textures will get 3/4 of size of the cache, divived evenly 1513 * between them. The last 1/4 of the cache must be divided between 1514 * the last 2 textures, each will therefore get 1/8 of the cache. 1515 * Why not just to use "5 + texture_index" ? 1516 * 1517 * This simple trick works for all "num" <= 16. 1518 */ 1519 if (num <= 1) 1520 return R300_TX_CACHE(R300_TX_CACHE_WHOLE); 1521 else 1522 return R300_TX_CACHE(num + index); 1523 } 1524 1525 static void r300_set_sampler_views(struct pipe_context* pipe, 1526 enum pipe_shader_type shader, 1527 unsigned start, unsigned count, 1528 struct pipe_sampler_view** views) 1529 { 1530 struct r300_context* r300 = r300_context(pipe); 1531 struct r300_textures_state* state = 1532 (struct r300_textures_state*)r300->textures_state.state; 1533 struct r300_resource *texture; 1534 unsigned i, real_num_views = 0, view_index = 0; 1535 unsigned tex_units = r300->screen->caps.num_tex_units; 1536 boolean dirty_tex = FALSE; 1537 1538 if (shader != PIPE_SHADER_FRAGMENT) 1539 return; 1540 1541 assert(start == 0); /* non-zero not handled yet */ 1542 1543 if (count > tex_units) { 1544 return; 1545 } 1546 1547 /* Calculate the real number of views. */ 1548 for (i = 0; i < count; i++) { 1549 if (views[i]) 1550 real_num_views++; 1551 } 1552 1553 for (i = 0; i < count; i++) { 1554 pipe_sampler_view_reference( 1555 (struct pipe_sampler_view**)&state->sampler_views[i], 1556 views[i]); 1557 1558 if (!views[i]) { 1559 continue; 1560 } 1561 1562 /* A new sampler view (= texture)... */ 1563 dirty_tex = TRUE; 1564 1565 /* Set the texrect factor in the fragment shader. 1566 * Needed for RECT and NPOT fallback. */ 1567 texture = r300_resource(views[i]->texture); 1568 if (texture->tex.is_npot) { 1569 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state); 1570 } 1571 1572 state->sampler_views[i]->texcache_region = 1573 r300_assign_texture_cache_region(view_index, real_num_views); 1574 view_index++; 1575 } 1576 1577 for (i = count; i < tex_units; i++) { 1578 if (state->sampler_views[i]) { 1579 pipe_sampler_view_reference( 1580 (struct pipe_sampler_view**)&state->sampler_views[i], 1581 NULL); 1582 } 1583 } 1584 1585 state->sampler_view_count = count; 1586 1587 r300_mark_atom_dirty(r300, &r300->textures_state); 1588 1589 if (dirty_tex) { 1590 r300_mark_atom_dirty(r300, &r300->texture_cache_inval); 1591 } 1592 } 1593 1594 struct pipe_sampler_view * 1595 r300_create_sampler_view_custom(struct pipe_context *pipe, 1596 struct pipe_resource *texture, 1597 const struct pipe_sampler_view *templ, 1598 unsigned width0_override, 1599 unsigned height0_override) 1600 { 1601 struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view); 1602 struct r300_resource *tex = r300_resource(texture); 1603 boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500; 1604 boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle; 1605 1606 if (view) { 1607 unsigned hwformat; 1608 1609 view->base = *templ; 1610 view->base.reference.count = 1; 1611 view->base.context = pipe; 1612 view->base.texture = NULL; 1613 pipe_resource_reference(&view->base.texture, texture); 1614 1615 view->width0_override = width0_override; 1616 view->height0_override = height0_override; 1617 view->swizzle[0] = templ->swizzle_r; 1618 view->swizzle[1] = templ->swizzle_g; 1619 view->swizzle[2] = templ->swizzle_b; 1620 view->swizzle[3] = templ->swizzle_a; 1621 1622 hwformat = r300_translate_texformat(templ->format, 1623 view->swizzle, 1624 is_r500, 1625 dxtc_swizzle); 1626 1627 if (hwformat == ~0) { 1628 fprintf(stderr, "r300: Ooops. Got unsupported format %s in %s.\n", 1629 util_format_short_name(templ->format), __func__); 1630 } 1631 assert(hwformat != ~0); 1632 1633 r300_texture_setup_format_state(r300_screen(pipe->screen), tex, 1634 templ->format, 0, 1635 width0_override, height0_override, 1636 &view->format); 1637 view->format.format1 |= hwformat; 1638 if (is_r500) { 1639 view->format.format2 |= r500_tx_format_msb_bit(templ->format); 1640 } 1641 } 1642 1643 return (struct pipe_sampler_view*)view; 1644 } 1645 1646 static struct pipe_sampler_view * 1647 r300_create_sampler_view(struct pipe_context *pipe, 1648 struct pipe_resource *texture, 1649 const struct pipe_sampler_view *templ) 1650 { 1651 return r300_create_sampler_view_custom(pipe, texture, templ, 1652 r300_resource(texture)->tex.width0, 1653 r300_resource(texture)->tex.height0); 1654 } 1655 1656 1657 static void 1658 r300_sampler_view_destroy(struct pipe_context *pipe, 1659 struct pipe_sampler_view *view) 1660 { 1661 pipe_resource_reference(&view->texture, NULL); 1662 FREE(view); 1663 } 1664 1665 static void r300_set_sample_mask(struct pipe_context *pipe, 1666 unsigned mask) 1667 { 1668 struct r300_context* r300 = r300_context(pipe); 1669 1670 *((unsigned*)r300->sample_mask.state) = mask; 1671 1672 r300_mark_atom_dirty(r300, &r300->sample_mask); 1673 } 1674 1675 static void r300_set_scissor_states(struct pipe_context* pipe, 1676 unsigned start_slot, 1677 unsigned num_scissors, 1678 const struct pipe_scissor_state* state) 1679 { 1680 struct r300_context* r300 = r300_context(pipe); 1681 1682 memcpy(r300->scissor_state.state, state, 1683 sizeof(struct pipe_scissor_state)); 1684 1685 r300_mark_atom_dirty(r300, &r300->scissor_state); 1686 } 1687 1688 static void r300_set_viewport_states(struct pipe_context* pipe, 1689 unsigned start_slot, 1690 unsigned num_viewports, 1691 const struct pipe_viewport_state* state) 1692 { 1693 struct r300_context* r300 = r300_context(pipe); 1694 struct r300_viewport_state* viewport = 1695 (struct r300_viewport_state*)r300->viewport_state.state; 1696 1697 r300->viewport = *state; 1698 1699 if (r300->draw) { 1700 draw_set_viewport_states(r300->draw, start_slot, num_viewports, state); 1701 viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT; 1702 return; 1703 } 1704 1705 /* Do the transform in HW. */ 1706 viewport->vte_control = R300_VTX_W0_FMT; 1707 1708 if (state->scale[0] != 1.0f) { 1709 viewport->xscale = state->scale[0]; 1710 viewport->vte_control |= R300_VPORT_X_SCALE_ENA; 1711 } 1712 if (state->scale[1] != 1.0f) { 1713 viewport->yscale = state->scale[1]; 1714 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA; 1715 } 1716 if (state->scale[2] != 1.0f) { 1717 viewport->zscale = state->scale[2]; 1718 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA; 1719 } 1720 if (state->translate[0] != 0.0f) { 1721 viewport->xoffset = state->translate[0]; 1722 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA; 1723 } 1724 if (state->translate[1] != 0.0f) { 1725 viewport->yoffset = state->translate[1]; 1726 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA; 1727 } 1728 if (state->translate[2] != 0.0f) { 1729 viewport->zoffset = state->translate[2]; 1730 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA; 1731 } 1732 1733 r300_mark_atom_dirty(r300, &r300->viewport_state); 1734 if (r300->fs.state && r300_fs(r300)->shader && 1735 r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) { 1736 r300_mark_atom_dirty(r300, &r300->fs_rc_constant_state); 1737 } 1738 } 1739 1740 static void r300_set_vertex_buffers_hwtcl(struct pipe_context* pipe, 1741 unsigned start_slot, unsigned count, 1742 const struct pipe_vertex_buffer* buffers) 1743 { 1744 struct r300_context* r300 = r300_context(pipe); 1745 1746 util_set_vertex_buffers_count(r300->vertex_buffer, 1747 &r300->nr_vertex_buffers, 1748 buffers, start_slot, count); 1749 1750 /* There must be at least one vertex buffer set, otherwise it locks up. */ 1751 if (!r300->nr_vertex_buffers) { 1752 util_set_vertex_buffers_count(r300->vertex_buffer, 1753 &r300->nr_vertex_buffers, 1754 &r300->dummy_vb, 0, 1); 1755 } 1756 1757 r300->vertex_arrays_dirty = TRUE; 1758 } 1759 1760 static void r300_set_vertex_buffers_swtcl(struct pipe_context* pipe, 1761 unsigned start_slot, unsigned count, 1762 const struct pipe_vertex_buffer* buffers) 1763 { 1764 struct r300_context* r300 = r300_context(pipe); 1765 unsigned i; 1766 1767 util_set_vertex_buffers_count(r300->vertex_buffer, 1768 &r300->nr_vertex_buffers, 1769 buffers, start_slot, count); 1770 draw_set_vertex_buffers(r300->draw, start_slot, count, buffers); 1771 1772 if (!buffers) 1773 return; 1774 1775 for (i = 0; i < count; i++) { 1776 if (buffers[i].user_buffer) { 1777 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i, 1778 buffers[i].user_buffer, ~0); 1779 } else if (buffers[i].buffer) { 1780 draw_set_mapped_vertex_buffer(r300->draw, start_slot + i, 1781 r300_resource(buffers[i].buffer)->malloced_buffer, ~0); 1782 } 1783 } 1784 } 1785 1786 static void r300_set_index_buffer_hwtcl(struct pipe_context* pipe, 1787 const struct pipe_index_buffer *ib) 1788 { 1789 struct r300_context* r300 = r300_context(pipe); 1790 1791 if (ib) { 1792 pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer); 1793 memcpy(&r300->index_buffer, ib, sizeof(*ib)); 1794 } else { 1795 pipe_resource_reference(&r300->index_buffer.buffer, NULL); 1796 } 1797 } 1798 1799 static void r300_set_index_buffer_swtcl(struct pipe_context* pipe, 1800 const struct pipe_index_buffer *ib) 1801 { 1802 struct r300_context* r300 = r300_context(pipe); 1803 1804 if (ib) { 1805 const void *buf = NULL; 1806 if (ib->user_buffer) { 1807 buf = ib->user_buffer; 1808 } else if (ib->buffer) { 1809 buf = r300_resource(ib->buffer)->malloced_buffer; 1810 } 1811 draw_set_indexes(r300->draw, 1812 (const ubyte *) buf + ib->offset, 1813 ib->index_size, ~0); 1814 } 1815 } 1816 1817 /* Initialize the PSC tables. */ 1818 static void r300_vertex_psc(struct r300_vertex_element_state *velems) 1819 { 1820 struct r300_vertex_stream_state *vstream = &velems->vertex_stream; 1821 uint16_t type, swizzle; 1822 enum pipe_format format; 1823 unsigned i; 1824 1825 /* Vertex shaders have no semantics on their inputs, 1826 * so PSC should just route stuff based on the vertex elements, 1827 * and not on attrib information. */ 1828 for (i = 0; i < velems->count; i++) { 1829 format = velems->velem[i].src_format; 1830 1831 type = r300_translate_vertex_data_type(format); 1832 if (type == R300_INVALID_FORMAT) { 1833 fprintf(stderr, "r300: Bad vertex format %s.\n", 1834 util_format_short_name(format)); 1835 assert(0); 1836 abort(); 1837 } 1838 1839 type |= i << R300_DST_VEC_LOC_SHIFT; 1840 swizzle = r300_translate_vertex_data_swizzle(format); 1841 1842 if (i & 1) { 1843 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16; 1844 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16; 1845 } else { 1846 vstream->vap_prog_stream_cntl[i >> 1] |= type; 1847 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle; 1848 } 1849 } 1850 1851 /* Set the last vector in the PSC. */ 1852 if (i) { 1853 i -= 1; 1854 } 1855 vstream->vap_prog_stream_cntl[i >> 1] |= 1856 (R300_LAST_VEC << (i & 1 ? 16 : 0)); 1857 1858 vstream->count = (i >> 1) + 1; 1859 } 1860 1861 static void* r300_create_vertex_elements_state(struct pipe_context* pipe, 1862 unsigned count, 1863 const struct pipe_vertex_element* attribs) 1864 { 1865 struct r300_vertex_element_state *velems; 1866 unsigned i; 1867 struct pipe_vertex_element dummy_attrib = {0}; 1868 1869 /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */ 1870 if (!count) { 1871 dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM; 1872 attribs = &dummy_attrib; 1873 count = 1; 1874 } else if (count > 16) { 1875 fprintf(stderr, "r300: More than 16 vertex elements are not supported," 1876 " requested %i, using 16.\n", count); 1877 count = 16; 1878 } 1879 1880 velems = CALLOC_STRUCT(r300_vertex_element_state); 1881 if (!velems) 1882 return NULL; 1883 1884 velems->count = count; 1885 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count); 1886 1887 if (r300_screen(pipe->screen)->caps.has_tcl) { 1888 /* Setup PSC. 1889 * The unused components will be replaced by (..., 0, 1). */ 1890 r300_vertex_psc(velems); 1891 1892 for (i = 0; i < count; i++) { 1893 velems->format_size[i] = 1894 align(util_format_get_blocksize(velems->velem[i].src_format), 4); 1895 velems->vertex_size_dwords += velems->format_size[i] / 4; 1896 } 1897 } 1898 1899 return velems; 1900 } 1901 1902 static void r300_bind_vertex_elements_state(struct pipe_context *pipe, 1903 void *state) 1904 { 1905 struct r300_context *r300 = r300_context(pipe); 1906 struct r300_vertex_element_state *velems = state; 1907 1908 if (!velems) { 1909 return; 1910 } 1911 1912 r300->velems = velems; 1913 1914 if (r300->draw) { 1915 draw_set_vertex_elements(r300->draw, velems->count, velems->velem); 1916 return; 1917 } 1918 1919 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state); 1920 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2; 1921 r300->vertex_arrays_dirty = TRUE; 1922 } 1923 1924 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state) 1925 { 1926 FREE(state); 1927 } 1928 1929 static void* r300_create_vs_state(struct pipe_context* pipe, 1930 const struct pipe_shader_state* shader) 1931 { 1932 struct r300_context* r300 = r300_context(pipe); 1933 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader); 1934 1935 /* Copy state directly into shader. */ 1936 vs->state = *shader; 1937 vs->state.tokens = tgsi_dup_tokens(shader->tokens); 1938 1939 if (r300->screen->caps.has_tcl) { 1940 r300_init_vs_outputs(r300, vs); 1941 r300_translate_vertex_shader(r300, vs); 1942 } else { 1943 r300_draw_init_vertex_shader(r300, vs); 1944 } 1945 1946 return vs; 1947 } 1948 1949 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader) 1950 { 1951 struct r300_context* r300 = r300_context(pipe); 1952 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader; 1953 1954 if (!vs) { 1955 r300->vs_state.state = NULL; 1956 return; 1957 } 1958 if (vs == r300->vs_state.state) { 1959 return; 1960 } 1961 r300->vs_state.state = vs; 1962 1963 /* The majority of the RS block bits is dependent on the vertex shader. */ 1964 r300_mark_atom_dirty(r300, &r300->rs_block_state); /* Will be updated before the emission. */ 1965 1966 if (r300->screen->caps.has_tcl) { 1967 unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2; 1968 r300_mark_atom_dirty(r300, &r300->vs_state); 1969 r300->vs_state.size = vs->code.length + 9 + 1970 (R300_VS_MAX_FC_OPS * fc_op_dwords + 4); 1971 1972 r300_mark_atom_dirty(r300, &r300->vs_constants); 1973 r300->vs_constants.size = 1974 2 + 1975 (vs->externals_count ? vs->externals_count * 4 + 3 : 0) + 1976 (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0); 1977 1978 ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table = 1979 vs->code.constants_remap_table; 1980 1981 r300_mark_atom_dirty(r300, &r300->pvs_flush); 1982 } else { 1983 draw_bind_vertex_shader(r300->draw, 1984 (struct draw_vertex_shader*)vs->draw_vs); 1985 } 1986 } 1987 1988 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader) 1989 { 1990 struct r300_context* r300 = r300_context(pipe); 1991 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader; 1992 1993 if (r300->screen->caps.has_tcl) { 1994 rc_constants_destroy(&vs->code.constants); 1995 FREE(vs->code.constants_remap_table); 1996 } else { 1997 draw_delete_vertex_shader(r300->draw, 1998 (struct draw_vertex_shader*)vs->draw_vs); 1999 } 2000 2001 FREE((void*)vs->state.tokens); 2002 FREE(shader); 2003 } 2004 2005 static void r300_set_constant_buffer(struct pipe_context *pipe, 2006 uint shader, uint index, 2007 const struct pipe_constant_buffer *cb) 2008 { 2009 struct r300_context* r300 = r300_context(pipe); 2010 struct r300_constant_buffer *cbuf; 2011 uint32_t *mapped; 2012 2013 if (!cb || (!cb->buffer && !cb->user_buffer)) 2014 return; 2015 2016 switch (shader) { 2017 case PIPE_SHADER_VERTEX: 2018 cbuf = (struct r300_constant_buffer*)r300->vs_constants.state; 2019 break; 2020 case PIPE_SHADER_FRAGMENT: 2021 cbuf = (struct r300_constant_buffer*)r300->fs_constants.state; 2022 break; 2023 default: 2024 return; 2025 } 2026 2027 2028 if (cb->user_buffer) 2029 mapped = (uint32_t*)cb->user_buffer; 2030 else { 2031 struct r300_resource *rbuf = r300_resource(cb->buffer); 2032 2033 if (rbuf && rbuf->malloced_buffer) 2034 mapped = (uint32_t*)rbuf->malloced_buffer; 2035 else 2036 return; 2037 } 2038 2039 if (shader == PIPE_SHADER_FRAGMENT || 2040 (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) { 2041 cbuf->ptr = mapped; 2042 } 2043 2044 if (shader == PIPE_SHADER_VERTEX) { 2045 if (r300->screen->caps.has_tcl) { 2046 struct r300_vertex_shader *vs = 2047 (struct r300_vertex_shader*)r300->vs_state.state; 2048 2049 if (!vs) { 2050 cbuf->buffer_base = 0; 2051 return; 2052 } 2053 2054 cbuf->buffer_base = r300->vs_const_base; 2055 r300->vs_const_base += vs->code.constants.Count; 2056 if (r300->vs_const_base > R500_MAX_PVS_CONST_VECS) { 2057 r300->vs_const_base = vs->code.constants.Count; 2058 cbuf->buffer_base = 0; 2059 r300_mark_atom_dirty(r300, &r300->pvs_flush); 2060 } 2061 r300_mark_atom_dirty(r300, &r300->vs_constants); 2062 } else if (r300->draw) { 2063 draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX, 2064 0, mapped, cb->buffer_size); 2065 } 2066 } else if (shader == PIPE_SHADER_FRAGMENT) { 2067 r300_mark_atom_dirty(r300, &r300->fs_constants); 2068 } 2069 } 2070 2071 static void r300_texture_barrier(struct pipe_context *pipe, unsigned flags) 2072 { 2073 struct r300_context *r300 = r300_context(pipe); 2074 2075 r300_mark_atom_dirty(r300, &r300->gpu_flush); 2076 r300_mark_atom_dirty(r300, &r300->texture_cache_inval); 2077 } 2078 2079 static void r300_memory_barrier(struct pipe_context *pipe, unsigned flags) 2080 { 2081 } 2082 2083 void r300_init_state_functions(struct r300_context* r300) 2084 { 2085 r300->context.create_blend_state = r300_create_blend_state; 2086 r300->context.bind_blend_state = r300_bind_blend_state; 2087 r300->context.delete_blend_state = r300_delete_blend_state; 2088 2089 r300->context.set_blend_color = r300_set_blend_color; 2090 2091 r300->context.set_clip_state = r300_set_clip_state; 2092 r300->context.set_sample_mask = r300_set_sample_mask; 2093 2094 r300->context.set_constant_buffer = r300_set_constant_buffer; 2095 2096 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state; 2097 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state; 2098 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state; 2099 2100 r300->context.set_stencil_ref = r300_set_stencil_ref; 2101 2102 r300->context.set_framebuffer_state = r300_set_framebuffer_state; 2103 2104 r300->context.create_fs_state = r300_create_fs_state; 2105 r300->context.bind_fs_state = r300_bind_fs_state; 2106 r300->context.delete_fs_state = r300_delete_fs_state; 2107 2108 r300->context.set_polygon_stipple = r300_set_polygon_stipple; 2109 2110 r300->context.create_rasterizer_state = r300_create_rs_state; 2111 r300->context.bind_rasterizer_state = r300_bind_rs_state; 2112 r300->context.delete_rasterizer_state = r300_delete_rs_state; 2113 2114 r300->context.create_sampler_state = r300_create_sampler_state; 2115 r300->context.bind_sampler_states = r300_bind_sampler_states; 2116 r300->context.delete_sampler_state = r300_delete_sampler_state; 2117 2118 r300->context.set_sampler_views = r300_set_sampler_views; 2119 r300->context.create_sampler_view = r300_create_sampler_view; 2120 r300->context.sampler_view_destroy = r300_sampler_view_destroy; 2121 2122 r300->context.set_scissor_states = r300_set_scissor_states; 2123 2124 r300->context.set_viewport_states = r300_set_viewport_states; 2125 2126 if (r300->screen->caps.has_tcl) { 2127 r300->context.set_vertex_buffers = r300_set_vertex_buffers_hwtcl; 2128 r300->context.set_index_buffer = r300_set_index_buffer_hwtcl; 2129 } else { 2130 r300->context.set_vertex_buffers = r300_set_vertex_buffers_swtcl; 2131 r300->context.set_index_buffer = r300_set_index_buffer_swtcl; 2132 } 2133 2134 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state; 2135 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state; 2136 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state; 2137 2138 r300->context.create_vs_state = r300_create_vs_state; 2139 r300->context.bind_vs_state = r300_bind_vs_state; 2140 r300->context.delete_vs_state = r300_delete_vs_state; 2141 2142 r300->context.texture_barrier = r300_texture_barrier; 2143 r300->context.memory_barrier = r300_memory_barrier; 2144 } 2145