Home | History | Annotate | Download | only in libaudioclient
      1 /*
      2 **
      3 ** Copyright 2007, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 //#define LOG_NDEBUG 0
     19 #define LOG_TAG "AudioTrack"
     20 
     21 #include <inttypes.h>
     22 #include <math.h>
     23 #include <sys/resource.h>
     24 
     25 #include <audio_utils/clock.h>
     26 #include <audio_utils/primitives.h>
     27 #include <binder/IPCThreadState.h>
     28 #include <media/AudioTrack.h>
     29 #include <utils/Log.h>
     30 #include <private/media/AudioTrackShared.h>
     31 #include <media/IAudioFlinger.h>
     32 #include <media/AudioParameter.h>
     33 #include <media/AudioPolicyHelper.h>
     34 #include <media/AudioResamplerPublic.h>
     35 #include <media/MediaAnalyticsItem.h>
     36 #include <media/TypeConverter.h>
     37 
     38 #define WAIT_PERIOD_MS                  10
     39 #define WAIT_STREAM_END_TIMEOUT_SEC     120
     40 static const int kMaxLoopCountNotifications = 32;
     41 
     42 namespace android {
     43 // ---------------------------------------------------------------------------
     44 
     45 using media::VolumeShaper;
     46 
     47 // TODO: Move to a separate .h
     48 
     49 template <typename T>
     50 static inline const T &min(const T &x, const T &y) {
     51     return x < y ? x : y;
     52 }
     53 
     54 template <typename T>
     55 static inline const T &max(const T &x, const T &y) {
     56     return x > y ? x : y;
     57 }
     58 
     59 static inline nsecs_t framesToNanoseconds(ssize_t frames, uint32_t sampleRate, float speed)
     60 {
     61     return ((double)frames * 1000000000) / ((double)sampleRate * speed);
     62 }
     63 
     64 static int64_t convertTimespecToUs(const struct timespec &tv)
     65 {
     66     return tv.tv_sec * 1000000ll + tv.tv_nsec / 1000;
     67 }
     68 
     69 // TODO move to audio_utils.
     70 static inline struct timespec convertNsToTimespec(int64_t ns) {
     71     struct timespec tv;
     72     tv.tv_sec = static_cast<time_t>(ns / NANOS_PER_SECOND);
     73     tv.tv_nsec = static_cast<long>(ns % NANOS_PER_SECOND);
     74     return tv;
     75 }
     76 
     77 // current monotonic time in microseconds.
     78 static int64_t getNowUs()
     79 {
     80     struct timespec tv;
     81     (void) clock_gettime(CLOCK_MONOTONIC, &tv);
     82     return convertTimespecToUs(tv);
     83 }
     84 
     85 // FIXME: we don't use the pitch setting in the time stretcher (not working);
     86 // instead we emulate it using our sample rate converter.
     87 static const bool kFixPitch = true; // enable pitch fix
     88 static inline uint32_t adjustSampleRate(uint32_t sampleRate, float pitch)
     89 {
     90     return kFixPitch ? (sampleRate * pitch + 0.5) : sampleRate;
     91 }
     92 
     93 static inline float adjustSpeed(float speed, float pitch)
     94 {
     95     return kFixPitch ? speed / max(pitch, AUDIO_TIMESTRETCH_PITCH_MIN_DELTA) : speed;
     96 }
     97 
     98 static inline float adjustPitch(float pitch)
     99 {
    100     return kFixPitch ? AUDIO_TIMESTRETCH_PITCH_NORMAL : pitch;
    101 }
    102 
    103 // static
    104 status_t AudioTrack::getMinFrameCount(
    105         size_t* frameCount,
    106         audio_stream_type_t streamType,
    107         uint32_t sampleRate)
    108 {
    109     if (frameCount == NULL) {
    110         return BAD_VALUE;
    111     }
    112 
    113     // FIXME handle in server, like createTrack_l(), possible missing info:
    114     //          audio_io_handle_t output
    115     //          audio_format_t format
    116     //          audio_channel_mask_t channelMask
    117     //          audio_output_flags_t flags (FAST)
    118     uint32_t afSampleRate;
    119     status_t status;
    120     status = AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);
    121     if (status != NO_ERROR) {
    122         ALOGE("Unable to query output sample rate for stream type %d; status %d",
    123                 streamType, status);
    124         return status;
    125     }
    126     size_t afFrameCount;
    127     status = AudioSystem::getOutputFrameCount(&afFrameCount, streamType);
    128     if (status != NO_ERROR) {
    129         ALOGE("Unable to query output frame count for stream type %d; status %d",
    130                 streamType, status);
    131         return status;
    132     }
    133     uint32_t afLatency;
    134     status = AudioSystem::getOutputLatency(&afLatency, streamType);
    135     if (status != NO_ERROR) {
    136         ALOGE("Unable to query output latency for stream type %d; status %d",
    137                 streamType, status);
    138         return status;
    139     }
    140 
    141     // When called from createTrack, speed is 1.0f (normal speed).
    142     // This is rechecked again on setting playback rate (TODO: on setting sample rate, too).
    143     *frameCount = AudioSystem::calculateMinFrameCount(afLatency, afFrameCount, afSampleRate,
    144                                               sampleRate, 1.0f /*, 0 notificationsPerBufferReq*/);
    145 
    146     // The formula above should always produce a non-zero value under normal circumstances:
    147     // AudioTrack.SAMPLE_RATE_HZ_MIN <= sampleRate <= AudioTrack.SAMPLE_RATE_HZ_MAX.
    148     // Return error in the unlikely event that it does not, as that's part of the API contract.
    149     if (*frameCount == 0) {
    150         ALOGE("AudioTrack::getMinFrameCount failed for streamType %d, sampleRate %u",
    151                 streamType, sampleRate);
    152         return BAD_VALUE;
    153     }
    154     ALOGV("getMinFrameCount=%zu: afFrameCount=%zu, afSampleRate=%u, afLatency=%u",
    155             *frameCount, afFrameCount, afSampleRate, afLatency);
    156     return NO_ERROR;
    157 }
    158 
    159 // ---------------------------------------------------------------------------
    160 
    161 static std::string audioContentTypeString(audio_content_type_t value) {
    162     std::string contentType;
    163     if (AudioContentTypeConverter::toString(value, contentType)) {
    164         return contentType;
    165     }
    166     char rawbuffer[16];  // room for "%d"
    167     snprintf(rawbuffer, sizeof(rawbuffer), "%d", value);
    168     return rawbuffer;
    169 }
    170 
    171 static std::string audioUsageString(audio_usage_t value) {
    172     std::string usage;
    173     if (UsageTypeConverter::toString(value, usage)) {
    174         return usage;
    175     }
    176     char rawbuffer[16];  // room for "%d"
    177     snprintf(rawbuffer, sizeof(rawbuffer), "%d", value);
    178     return rawbuffer;
    179 }
    180 
    181 void AudioTrack::MediaMetrics::gather(const AudioTrack *track)
    182 {
    183 
    184     // key for media statistics is defined in the header
    185     // attrs for media statistics
    186     // NB: these are matched with public Java API constants defined
    187     // in frameworks/base/media/java/android/media/AudioTrack.java
    188     // These must be kept synchronized with the constants there.
    189     static constexpr char kAudioTrackStreamType[] = "android.media.audiotrack.streamtype";
    190     static constexpr char kAudioTrackContentType[] = "android.media.audiotrack.type";
    191     static constexpr char kAudioTrackUsage[] = "android.media.audiotrack.usage";
    192     static constexpr char kAudioTrackSampleRate[] = "android.media.audiotrack.samplerate";
    193     static constexpr char kAudioTrackChannelMask[] = "android.media.audiotrack.channelmask";
    194 
    195     // NB: These are not yet exposed as public Java API constants.
    196     static constexpr char kAudioTrackUnderrunFrames[] = "android.media.audiotrack.underrunframes";
    197     static constexpr char kAudioTrackStartupGlitch[] = "android.media.audiotrack.glitch.startup";
    198 
    199     // only if we're in a good state...
    200     // XXX: shall we gather alternative info if failing?
    201     const status_t lstatus = track->initCheck();
    202     if (lstatus != NO_ERROR) {
    203         ALOGD("no metrics gathered, track status=%d", (int) lstatus);
    204         return;
    205     }
    206 
    207     // constructor guarantees mAnalyticsItem is valid
    208 
    209     const int32_t underrunFrames = track->getUnderrunFrames();
    210     if (underrunFrames != 0) {
    211         mAnalyticsItem->setInt32(kAudioTrackUnderrunFrames, underrunFrames);
    212     }
    213 
    214     if (track->mTimestampStartupGlitchReported) {
    215         mAnalyticsItem->setInt32(kAudioTrackStartupGlitch, 1);
    216     }
    217 
    218     if (track->mStreamType != -1) {
    219         // deprecated, but this will tell us who still uses it.
    220         mAnalyticsItem->setInt32(kAudioTrackStreamType, track->mStreamType);
    221     }
    222     // XXX: consider including from mAttributes: source type
    223     mAnalyticsItem->setCString(kAudioTrackContentType,
    224                                audioContentTypeString(track->mAttributes.content_type).c_str());
    225     mAnalyticsItem->setCString(kAudioTrackUsage,
    226                                audioUsageString(track->mAttributes.usage).c_str());
    227     mAnalyticsItem->setInt32(kAudioTrackSampleRate, track->mSampleRate);
    228     mAnalyticsItem->setInt64(kAudioTrackChannelMask, track->mChannelMask);
    229 }
    230 
    231 // hand the user a snapshot of the metrics.
    232 status_t AudioTrack::getMetrics(MediaAnalyticsItem * &item)
    233 {
    234     mMediaMetrics.gather(this);
    235     MediaAnalyticsItem *tmp = mMediaMetrics.dup();
    236     if (tmp == nullptr) {
    237         return BAD_VALUE;
    238     }
    239     item = tmp;
    240     return NO_ERROR;
    241 }
    242 
    243 AudioTrack::AudioTrack()
    244     : mStatus(NO_INIT),
    245       mState(STATE_STOPPED),
    246       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
    247       mPreviousSchedulingGroup(SP_DEFAULT),
    248       mPausedPosition(0),
    249       mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE),
    250       mRoutedDeviceId(AUDIO_PORT_HANDLE_NONE)
    251 {
    252     mAttributes.content_type = AUDIO_CONTENT_TYPE_UNKNOWN;
    253     mAttributes.usage = AUDIO_USAGE_UNKNOWN;
    254     mAttributes.flags = 0x0;
    255     strcpy(mAttributes.tags, "");
    256 }
    257 
    258 AudioTrack::AudioTrack(
    259         audio_stream_type_t streamType,
    260         uint32_t sampleRate,
    261         audio_format_t format,
    262         audio_channel_mask_t channelMask,
    263         size_t frameCount,
    264         audio_output_flags_t flags,
    265         callback_t cbf,
    266         void* user,
    267         int32_t notificationFrames,
    268         audio_session_t sessionId,
    269         transfer_type transferType,
    270         const audio_offload_info_t *offloadInfo,
    271         uid_t uid,
    272         pid_t pid,
    273         const audio_attributes_t* pAttributes,
    274         bool doNotReconnect,
    275         float maxRequiredSpeed,
    276         audio_port_handle_t selectedDeviceId)
    277     : mStatus(NO_INIT),
    278       mState(STATE_STOPPED),
    279       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
    280       mPreviousSchedulingGroup(SP_DEFAULT),
    281       mPausedPosition(0)
    282 {
    283     (void)set(streamType, sampleRate, format, channelMask,
    284             frameCount, flags, cbf, user, notificationFrames,
    285             0 /*sharedBuffer*/, false /*threadCanCallJava*/, sessionId, transferType,
    286             offloadInfo, uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed, selectedDeviceId);
    287 }
    288 
    289 AudioTrack::AudioTrack(
    290         audio_stream_type_t streamType,
    291         uint32_t sampleRate,
    292         audio_format_t format,
    293         audio_channel_mask_t channelMask,
    294         const sp<IMemory>& sharedBuffer,
    295         audio_output_flags_t flags,
    296         callback_t cbf,
    297         void* user,
    298         int32_t notificationFrames,
    299         audio_session_t sessionId,
    300         transfer_type transferType,
    301         const audio_offload_info_t *offloadInfo,
    302         uid_t uid,
    303         pid_t pid,
    304         const audio_attributes_t* pAttributes,
    305         bool doNotReconnect,
    306         float maxRequiredSpeed)
    307     : mStatus(NO_INIT),
    308       mState(STATE_STOPPED),
    309       mPreviousPriority(ANDROID_PRIORITY_NORMAL),
    310       mPreviousSchedulingGroup(SP_DEFAULT),
    311       mPausedPosition(0),
    312       mSelectedDeviceId(AUDIO_PORT_HANDLE_NONE)
    313 {
    314     (void)set(streamType, sampleRate, format, channelMask,
    315             0 /*frameCount*/, flags, cbf, user, notificationFrames,
    316             sharedBuffer, false /*threadCanCallJava*/, sessionId, transferType, offloadInfo,
    317             uid, pid, pAttributes, doNotReconnect, maxRequiredSpeed);
    318 }
    319 
    320 AudioTrack::~AudioTrack()
    321 {
    322     // pull together the numbers, before we clean up our structures
    323     mMediaMetrics.gather(this);
    324 
    325     if (mStatus == NO_ERROR) {
    326         // Make sure that callback function exits in the case where
    327         // it is looping on buffer full condition in obtainBuffer().
    328         // Otherwise the callback thread will never exit.
    329         stop();
    330         if (mAudioTrackThread != 0) {
    331             mProxy->interrupt();
    332             mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
    333             mAudioTrackThread->requestExitAndWait();
    334             mAudioTrackThread.clear();
    335         }
    336         // No lock here: worst case we remove a NULL callback which will be a nop
    337         if (mDeviceCallback != 0 && mOutput != AUDIO_IO_HANDLE_NONE) {
    338             AudioSystem::removeAudioDeviceCallback(this, mOutput);
    339         }
    340         IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
    341         mAudioTrack.clear();
    342         mCblkMemory.clear();
    343         mSharedBuffer.clear();
    344         IPCThreadState::self()->flushCommands();
    345         ALOGV("~AudioTrack, releasing session id %d from %d on behalf of %d",
    346                 mSessionId, IPCThreadState::self()->getCallingPid(), mClientPid);
    347         AudioSystem::releaseAudioSessionId(mSessionId, mClientPid);
    348     }
    349 }
    350 
    351 status_t AudioTrack::set(
    352         audio_stream_type_t streamType,
    353         uint32_t sampleRate,
    354         audio_format_t format,
    355         audio_channel_mask_t channelMask,
    356         size_t frameCount,
    357         audio_output_flags_t flags,
    358         callback_t cbf,
    359         void* user,
    360         int32_t notificationFrames,
    361         const sp<IMemory>& sharedBuffer,
    362         bool threadCanCallJava,
    363         audio_session_t sessionId,
    364         transfer_type transferType,
    365         const audio_offload_info_t *offloadInfo,
    366         uid_t uid,
    367         pid_t pid,
    368         const audio_attributes_t* pAttributes,
    369         bool doNotReconnect,
    370         float maxRequiredSpeed,
    371         audio_port_handle_t selectedDeviceId)
    372 {
    373     status_t status;
    374     uint32_t channelCount;
    375     pid_t callingPid;
    376     pid_t myPid;
    377 
    378     ALOGV("set(): streamType %d, sampleRate %u, format %#x, channelMask %#x, frameCount %zu, "
    379           "flags #%x, notificationFrames %d, sessionId %d, transferType %d, uid %d, pid %d",
    380           streamType, sampleRate, format, channelMask, frameCount, flags, notificationFrames,
    381           sessionId, transferType, uid, pid);
    382 
    383     mThreadCanCallJava = threadCanCallJava;
    384     mSelectedDeviceId = selectedDeviceId;
    385     mSessionId = sessionId;
    386 
    387     switch (transferType) {
    388     case TRANSFER_DEFAULT:
    389         if (sharedBuffer != 0) {
    390             transferType = TRANSFER_SHARED;
    391         } else if (cbf == NULL || threadCanCallJava) {
    392             transferType = TRANSFER_SYNC;
    393         } else {
    394             transferType = TRANSFER_CALLBACK;
    395         }
    396         break;
    397     case TRANSFER_CALLBACK:
    398         if (cbf == NULL || sharedBuffer != 0) {
    399             ALOGE("Transfer type TRANSFER_CALLBACK but cbf == NULL || sharedBuffer != 0");
    400             status = BAD_VALUE;
    401             goto exit;
    402         }
    403         break;
    404     case TRANSFER_OBTAIN:
    405     case TRANSFER_SYNC:
    406         if (sharedBuffer != 0) {
    407             ALOGE("Transfer type TRANSFER_OBTAIN but sharedBuffer != 0");
    408             status = BAD_VALUE;
    409             goto exit;
    410         }
    411         break;
    412     case TRANSFER_SHARED:
    413         if (sharedBuffer == 0) {
    414             ALOGE("Transfer type TRANSFER_SHARED but sharedBuffer == 0");
    415             status = BAD_VALUE;
    416             goto exit;
    417         }
    418         break;
    419     default:
    420         ALOGE("Invalid transfer type %d", transferType);
    421         status = BAD_VALUE;
    422         goto exit;
    423     }
    424     mSharedBuffer = sharedBuffer;
    425     mTransfer = transferType;
    426     mDoNotReconnect = doNotReconnect;
    427 
    428     ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %zu", sharedBuffer->pointer(),
    429             sharedBuffer->size());
    430 
    431     ALOGV("set() streamType %d frameCount %zu flags %04x", streamType, frameCount, flags);
    432 
    433     // invariant that mAudioTrack != 0 is true only after set() returns successfully
    434     if (mAudioTrack != 0) {
    435         ALOGE("Track already in use");
    436         status = INVALID_OPERATION;
    437         goto exit;
    438     }
    439 
    440     // handle default values first.
    441     if (streamType == AUDIO_STREAM_DEFAULT) {
    442         streamType = AUDIO_STREAM_MUSIC;
    443     }
    444     if (pAttributes == NULL) {
    445         if (uint32_t(streamType) >= AUDIO_STREAM_PUBLIC_CNT) {
    446             ALOGE("Invalid stream type %d", streamType);
    447             status = BAD_VALUE;
    448             goto exit;
    449         }
    450         mStreamType = streamType;
    451 
    452     } else {
    453         // stream type shouldn't be looked at, this track has audio attributes
    454         memcpy(&mAttributes, pAttributes, sizeof(audio_attributes_t));
    455         ALOGV("Building AudioTrack with attributes: usage=%d content=%d flags=0x%x tags=[%s]",
    456                 mAttributes.usage, mAttributes.content_type, mAttributes.flags, mAttributes.tags);
    457         mStreamType = AUDIO_STREAM_DEFAULT;
    458         if ((mAttributes.flags & AUDIO_FLAG_HW_AV_SYNC) != 0) {
    459             flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_HW_AV_SYNC);
    460         }
    461         if ((mAttributes.flags & AUDIO_FLAG_LOW_LATENCY) != 0) {
    462             flags = (audio_output_flags_t) (flags | AUDIO_OUTPUT_FLAG_FAST);
    463         }
    464         // check deep buffer after flags have been modified above
    465         if (flags == AUDIO_OUTPUT_FLAG_NONE && (mAttributes.flags & AUDIO_FLAG_DEEP_BUFFER) != 0) {
    466             flags = AUDIO_OUTPUT_FLAG_DEEP_BUFFER;
    467         }
    468     }
    469 
    470     // these below should probably come from the audioFlinger too...
    471     if (format == AUDIO_FORMAT_DEFAULT) {
    472         format = AUDIO_FORMAT_PCM_16_BIT;
    473     } else if (format == AUDIO_FORMAT_IEC61937) { // HDMI pass-through?
    474         mAttributes.flags |= AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO;
    475     }
    476 
    477     // validate parameters
    478     if (!audio_is_valid_format(format)) {
    479         ALOGE("Invalid format %#x", format);
    480         status = BAD_VALUE;
    481         goto exit;
    482     }
    483     mFormat = format;
    484 
    485     if (!audio_is_output_channel(channelMask)) {
    486         ALOGE("Invalid channel mask %#x", channelMask);
    487         status = BAD_VALUE;
    488         goto exit;
    489     }
    490     mChannelMask = channelMask;
    491     channelCount = audio_channel_count_from_out_mask(channelMask);
    492     mChannelCount = channelCount;
    493 
    494     // force direct flag if format is not linear PCM
    495     // or offload was requested
    496     if ((flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
    497             || !audio_is_linear_pcm(format)) {
    498         ALOGV( (flags & AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD)
    499                     ? "Offload request, forcing to Direct Output"
    500                     : "Not linear PCM, forcing to Direct Output");
    501         flags = (audio_output_flags_t)
    502                 // FIXME why can't we allow direct AND fast?
    503                 ((flags | AUDIO_OUTPUT_FLAG_DIRECT) & ~AUDIO_OUTPUT_FLAG_FAST);
    504     }
    505 
    506     // force direct flag if HW A/V sync requested
    507     if ((flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) != 0) {
    508         flags = (audio_output_flags_t)(flags | AUDIO_OUTPUT_FLAG_DIRECT);
    509     }
    510 
    511     if (flags & AUDIO_OUTPUT_FLAG_DIRECT) {
    512         if (audio_has_proportional_frames(format)) {
    513             mFrameSize = channelCount * audio_bytes_per_sample(format);
    514         } else {
    515             mFrameSize = sizeof(uint8_t);
    516         }
    517     } else {
    518         ALOG_ASSERT(audio_has_proportional_frames(format));
    519         mFrameSize = channelCount * audio_bytes_per_sample(format);
    520         // createTrack will return an error if PCM format is not supported by server,
    521         // so no need to check for specific PCM formats here
    522     }
    523 
    524     // sampling rate must be specified for direct outputs
    525     if (sampleRate == 0 && (flags & AUDIO_OUTPUT_FLAG_DIRECT) != 0) {
    526         status = BAD_VALUE;
    527         goto exit;
    528     }
    529     mSampleRate = sampleRate;
    530     mOriginalSampleRate = sampleRate;
    531     mPlaybackRate = AUDIO_PLAYBACK_RATE_DEFAULT;
    532     // 1.0 <= mMaxRequiredSpeed <= AUDIO_TIMESTRETCH_SPEED_MAX
    533     mMaxRequiredSpeed = min(max(maxRequiredSpeed, 1.0f), AUDIO_TIMESTRETCH_SPEED_MAX);
    534 
    535     // Make copy of input parameter offloadInfo so that in the future:
    536     //  (a) createTrack_l doesn't need it as an input parameter
    537     //  (b) we can support re-creation of offloaded tracks
    538     if (offloadInfo != NULL) {
    539         mOffloadInfoCopy = *offloadInfo;
    540         mOffloadInfo = &mOffloadInfoCopy;
    541     } else {
    542         mOffloadInfo = NULL;
    543         memset(&mOffloadInfoCopy, 0, sizeof(audio_offload_info_t));
    544     }
    545 
    546     mVolume[AUDIO_INTERLEAVE_LEFT] = 1.0f;
    547     mVolume[AUDIO_INTERLEAVE_RIGHT] = 1.0f;
    548     mSendLevel = 0.0f;
    549     // mFrameCount is initialized in createTrack_l
    550     mReqFrameCount = frameCount;
    551     if (notificationFrames >= 0) {
    552         mNotificationFramesReq = notificationFrames;
    553         mNotificationsPerBufferReq = 0;
    554     } else {
    555         if (!(flags & AUDIO_OUTPUT_FLAG_FAST)) {
    556             ALOGE("notificationFrames=%d not permitted for non-fast track",
    557                     notificationFrames);
    558             status = BAD_VALUE;
    559             goto exit;
    560         }
    561         if (frameCount > 0) {
    562             ALOGE("notificationFrames=%d not permitted with non-zero frameCount=%zu",
    563                     notificationFrames, frameCount);
    564             status = BAD_VALUE;
    565             goto exit;
    566         }
    567         mNotificationFramesReq = 0;
    568         const uint32_t minNotificationsPerBuffer = 1;
    569         const uint32_t maxNotificationsPerBuffer = 8;
    570         mNotificationsPerBufferReq = min(maxNotificationsPerBuffer,
    571                 max((uint32_t) -notificationFrames, minNotificationsPerBuffer));
    572         ALOGW_IF(mNotificationsPerBufferReq != (uint32_t) -notificationFrames,
    573                 "notificationFrames=%d clamped to the range -%u to -%u",
    574                 notificationFrames, minNotificationsPerBuffer, maxNotificationsPerBuffer);
    575     }
    576     mNotificationFramesAct = 0;
    577     callingPid = IPCThreadState::self()->getCallingPid();
    578     myPid = getpid();
    579     if (uid == AUDIO_UID_INVALID || (callingPid != myPid)) {
    580         mClientUid = IPCThreadState::self()->getCallingUid();
    581     } else {
    582         mClientUid = uid;
    583     }
    584     if (pid == -1 || (callingPid != myPid)) {
    585         mClientPid = callingPid;
    586     } else {
    587         mClientPid = pid;
    588     }
    589     mAuxEffectId = 0;
    590     mOrigFlags = mFlags = flags;
    591     mCbf = cbf;
    592 
    593     if (cbf != NULL) {
    594         mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);
    595         mAudioTrackThread->run("AudioTrack", ANDROID_PRIORITY_AUDIO, 0 /*stack*/);
    596         // thread begins in paused state, and will not reference us until start()
    597     }
    598 
    599     // create the IAudioTrack
    600     status = createTrack_l();
    601 
    602     if (status != NO_ERROR) {
    603         if (mAudioTrackThread != 0) {
    604             mAudioTrackThread->requestExit();   // see comment in AudioTrack.h
    605             mAudioTrackThread->requestExitAndWait();
    606             mAudioTrackThread.clear();
    607         }
    608         goto exit;
    609     }
    610 
    611     mUserData = user;
    612     mLoopCount = 0;
    613     mLoopStart = 0;
    614     mLoopEnd = 0;
    615     mLoopCountNotified = 0;
    616     mMarkerPosition = 0;
    617     mMarkerReached = false;
    618     mNewPosition = 0;
    619     mUpdatePeriod = 0;
    620     mPosition = 0;
    621     mReleased = 0;
    622     mStartNs = 0;
    623     mStartFromZeroUs = 0;
    624     AudioSystem::acquireAudioSessionId(mSessionId, mClientPid);
    625     mSequence = 1;
    626     mObservedSequence = mSequence;
    627     mInUnderrun = false;
    628     mPreviousTimestampValid = false;
    629     mTimestampStartupGlitchReported = false;
    630     mRetrogradeMotionReported = false;
    631     mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
    632     mStartTs.mPosition = 0;
    633     mUnderrunCountOffset = 0;
    634     mFramesWritten = 0;
    635     mFramesWrittenServerOffset = 0;
    636     mFramesWrittenAtRestore = -1; // -1 is a unique initializer.
    637     mVolumeHandler = new media::VolumeHandler();
    638 
    639 exit:
    640     mStatus = status;
    641     return status;
    642 }
    643 
    644 // -------------------------------------------------------------------------
    645 
    646 status_t AudioTrack::start()
    647 {
    648     AutoMutex lock(mLock);
    649 
    650     if (mState == STATE_ACTIVE) {
    651         return INVALID_OPERATION;
    652     }
    653 
    654     mInUnderrun = true;
    655 
    656     State previousState = mState;
    657     if (previousState == STATE_PAUSED_STOPPING) {
    658         mState = STATE_STOPPING;
    659     } else {
    660         mState = STATE_ACTIVE;
    661     }
    662     (void) updateAndGetPosition_l();
    663 
    664     // save start timestamp
    665     if (isOffloadedOrDirect_l()) {
    666         if (getTimestamp_l(mStartTs) != OK) {
    667             mStartTs.mPosition = 0;
    668         }
    669     } else {
    670         if (getTimestamp_l(&mStartEts) != OK) {
    671             mStartEts.clear();
    672         }
    673     }
    674     mStartNs = systemTime(); // save this for timestamp adjustment after starting.
    675     if (previousState == STATE_STOPPED || previousState == STATE_FLUSHED) {
    676         // reset current position as seen by client to 0
    677         mPosition = 0;
    678         mPreviousTimestampValid = false;
    679         mTimestampStartupGlitchReported = false;
    680         mRetrogradeMotionReported = false;
    681         mPreviousLocation = ExtendedTimestamp::LOCATION_INVALID;
    682 
    683         if (!isOffloadedOrDirect_l()
    684                 && mStartEts.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] > 0) {
    685             // Server side has consumed something, but is it finished consuming?
    686             // It is possible since flush and stop are asynchronous that the server
    687             // is still active at this point.
    688             ALOGV("start: server read:%lld  cumulative flushed:%lld  client written:%lld",
    689                     (long long)(mFramesWrittenServerOffset
    690                             + mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER]),
    691                     (long long)mStartEts.mFlushed,
    692                     (long long)mFramesWritten);
    693             // mStartEts is already adjusted by mFramesWrittenServerOffset, so we delta adjust.
    694             mFramesWrittenServerOffset -= mStartEts.mPosition[ExtendedTimestamp::LOCATION_SERVER];
    695         }
    696         mFramesWritten = 0;
    697         mProxy->clearTimestamp(); // need new server push for valid timestamp
    698         mMarkerReached = false;
    699 
    700         // For offloaded tracks, we don't know if the hardware counters are really zero here,
    701         // since the flush is asynchronous and stop may not fully drain.
    702         // We save the time when the track is started to later verify whether
    703         // the counters are realistic (i.e. start from zero after this time).
    704         mStartFromZeroUs = mStartNs / 1000;
    705 
    706         // force refresh of remaining frames by processAudioBuffer() as last
    707         // write before stop could be partial.
    708         mRefreshRemaining = true;
    709     }
    710     mNewPosition = mPosition + mUpdatePeriod;
    711     int32_t flags = android_atomic_and(~(CBLK_STREAM_END_DONE | CBLK_DISABLED), &mCblk->mFlags);
    712 
    713     status_t status = NO_ERROR;
    714     if (!(flags & CBLK_INVALID)) {
    715         status = mAudioTrack->start();
    716         if (status == DEAD_OBJECT) {
    717             flags |= CBLK_INVALID;
    718         }
    719     }
    720     if (flags & CBLK_INVALID) {
    721         status = restoreTrack_l("start");
    722     }
    723 
    724     // resume or pause the callback thread as needed.
    725     sp<AudioTrackThread> t = mAudioTrackThread;
    726     if (status == NO_ERROR) {
    727         if (t != 0) {
    728             if (previousState == STATE_STOPPING) {
    729                 mProxy->interrupt();
    730             } else {
    731                 t->resume();
    732             }
    733         } else {
    734             mPreviousPriority = getpriority(PRIO_PROCESS, 0);
    735             get_sched_policy(0, &mPreviousSchedulingGroup);
    736             androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
    737         }
    738 
    739         // Start our local VolumeHandler for restoration purposes.
    740         mVolumeHandler->setStarted();
    741     } else {
    742         ALOGE("start() status %d", status);
    743         mState = previousState;
    744         if (t != 0) {
    745             if (previousState != STATE_STOPPING) {
    746                 t->pause();
    747             }
    748         } else {
    749             setpriority(PRIO_PROCESS, 0, mPreviousPriority);
    750             set_sched_policy(0, mPreviousSchedulingGroup);
    751         }
    752     }
    753 
    754     return status;
    755 }
    756 
    757 void AudioTrack::stop()
    758 {
    759     AutoMutex lock(mLock);
    760     if (mState != STATE_ACTIVE && mState != STATE_PAUSED) {
    761         return;
    762     }
    763 
    764     if (isOffloaded_l()) {
    765         mState = STATE_STOPPING;
    766     } else {
    767         mState = STATE_STOPPED;
    768         ALOGD_IF(mSharedBuffer == nullptr,
    769                 "stop() called with %u frames delivered", mReleased.value());
    770         mReleased = 0;
    771     }
    772 
    773     mProxy->stop(); // notify server not to read beyond current client position until start().
    774     mProxy->interrupt();
    775     mAudioTrack->stop();
    776 
    777     // Note: legacy handling - stop does not clear playback marker
    778     // and periodic update counter, but flush does for streaming tracks.
    779 
    780     if (mSharedBuffer != 0) {
    781         // clear buffer position and loop count.
    782         mStaticProxy->setBufferPositionAndLoop(0 /* position */,
    783                 0 /* loopStart */, 0 /* loopEnd */, 0 /* loopCount */);
    784     }
    785 
    786     sp<AudioTrackThread> t = mAudioTrackThread;
    787     if (t != 0) {
    788         if (!isOffloaded_l()) {
    789             t->pause();
    790         }
    791     } else {
    792         setpriority(PRIO_PROCESS, 0, mPreviousPriority);
    793         set_sched_policy(0, mPreviousSchedulingGroup);
    794     }
    795 }
    796 
    797 bool AudioTrack::stopped() const
    798 {
    799     AutoMutex lock(mLock);
    800     return mState != STATE_ACTIVE;
    801 }
    802 
    803 void AudioTrack::flush()
    804 {
    805     if (mSharedBuffer != 0) {
    806         return;
    807     }
    808     AutoMutex lock(mLock);
    809     if (mState == STATE_ACTIVE) {
    810         return;
    811     }
    812     flush_l();
    813 }
    814 
    815 void AudioTrack::flush_l()
    816 {
    817     ALOG_ASSERT(mState != STATE_ACTIVE);
    818 
    819     // clear playback marker and periodic update counter
    820     mMarkerPosition = 0;
    821     mMarkerReached = false;
    822     mUpdatePeriod = 0;
    823     mRefreshRemaining = true;
    824 
    825     mState = STATE_FLUSHED;
    826     mReleased = 0;
    827     if (isOffloaded_l()) {
    828         mProxy->interrupt();
    829     }
    830     mProxy->flush();
    831     mAudioTrack->flush();
    832 }
    833 
    834 void AudioTrack::pause()
    835 {
    836     AutoMutex lock(mLock);
    837     if (mState == STATE_ACTIVE) {
    838         mState = STATE_PAUSED;
    839     } else if (mState == STATE_STOPPING) {
    840         mState = STATE_PAUSED_STOPPING;
    841     } else {
    842         return;
    843     }
    844     mProxy->interrupt();
    845     mAudioTrack->pause();
    846 
    847     if (isOffloaded_l()) {
    848         if (mOutput != AUDIO_IO_HANDLE_NONE) {
    849             // An offload output can be re-used between two audio tracks having
    850             // the same configuration. A timestamp query for a paused track
    851             // while the other is running would return an incorrect time.
    852             // To fix this, cache the playback position on a pause() and return
    853             // this time when requested until the track is resumed.
    854 
    855             // OffloadThread sends HAL pause in its threadLoop. Time saved
    856             // here can be slightly off.
    857 
    858             // TODO: check return code for getRenderPosition.
    859 
    860             uint32_t halFrames;
    861             AudioSystem::getRenderPosition(mOutput, &halFrames, &mPausedPosition);
    862             ALOGV("AudioTrack::pause for offload, cache current position %u", mPausedPosition);
    863         }
    864     }
    865 }
    866 
    867 status_t AudioTrack::setVolume(float left, float right)
    868 {
    869     // This duplicates a test by AudioTrack JNI, but that is not the only caller
    870     if (isnanf(left) || left < GAIN_FLOAT_ZERO || left > GAIN_FLOAT_UNITY ||
    871             isnanf(right) || right < GAIN_FLOAT_ZERO || right > GAIN_FLOAT_UNITY) {
    872         return BAD_VALUE;
    873     }
    874 
    875     AutoMutex lock(mLock);
    876     mVolume[AUDIO_INTERLEAVE_LEFT] = left;
    877     mVolume[AUDIO_INTERLEAVE_RIGHT] = right;
    878 
    879     mProxy->setVolumeLR(gain_minifloat_pack(gain_from_float(left), gain_from_float(right)));
    880 
    881     if (isOffloaded_l()) {
    882         mAudioTrack->signal();
    883     }
    884     return NO_ERROR;
    885 }
    886 
    887 status_t AudioTrack::setVolume(float volume)
    888 {
    889     return setVolume(volume, volume);
    890 }
    891 
    892 status_t AudioTrack::setAuxEffectSendLevel(float level)
    893 {
    894     // This duplicates a test by AudioTrack JNI, but that is not the only caller
    895     if (isnanf(level) || level < GAIN_FLOAT_ZERO || level > GAIN_FLOAT_UNITY) {
    896         return BAD_VALUE;
    897     }
    898 
    899     AutoMutex lock(mLock);
    900     mSendLevel = level;
    901     mProxy->setSendLevel(level);
    902 
    903     return NO_ERROR;
    904 }
    905 
    906 void AudioTrack::getAuxEffectSendLevel(float* level) const
    907 {
    908     if (level != NULL) {
    909         *level = mSendLevel;
    910     }
    911 }
    912 
    913 status_t AudioTrack::setSampleRate(uint32_t rate)
    914 {
    915     AutoMutex lock(mLock);
    916     if (rate == mSampleRate) {
    917         return NO_ERROR;
    918     }
    919     if (isOffloadedOrDirect_l() || (mFlags & AUDIO_OUTPUT_FLAG_FAST)) {
    920         return INVALID_OPERATION;
    921     }
    922     if (mOutput == AUDIO_IO_HANDLE_NONE) {
    923         return NO_INIT;
    924     }
    925     // NOTE: it is theoretically possible, but highly unlikely, that a device change
    926     // could mean a previously allowed sampling rate is no longer allowed.
    927     uint32_t afSamplingRate;
    928     if (AudioSystem::getSamplingRate(mOutput, &afSamplingRate) != NO_ERROR) {
    929         return NO_INIT;
    930     }
    931     // pitch is emulated by adjusting speed and sampleRate
    932     const uint32_t effectiveSampleRate = adjustSampleRate(rate, mPlaybackRate.mPitch);
    933     if (rate == 0 || effectiveSampleRate > afSamplingRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
    934         return BAD_VALUE;
    935     }
    936     // TODO: Should we also check if the buffer size is compatible?
    937 
    938     mSampleRate = rate;
    939     mProxy->setSampleRate(effectiveSampleRate);
    940 
    941     return NO_ERROR;
    942 }
    943 
    944 uint32_t AudioTrack::getSampleRate() const
    945 {
    946     AutoMutex lock(mLock);
    947 
    948     // sample rate can be updated during playback by the offloaded decoder so we need to
    949     // query the HAL and update if needed.
    950 // FIXME use Proxy return channel to update the rate from server and avoid polling here
    951     if (isOffloadedOrDirect_l()) {
    952         if (mOutput != AUDIO_IO_HANDLE_NONE) {
    953             uint32_t sampleRate = 0;
    954             status_t status = AudioSystem::getSamplingRate(mOutput, &sampleRate);
    955             if (status == NO_ERROR) {
    956                 mSampleRate = sampleRate;
    957             }
    958         }
    959     }
    960     return mSampleRate;
    961 }
    962 
    963 uint32_t AudioTrack::getOriginalSampleRate() const
    964 {
    965     return mOriginalSampleRate;
    966 }
    967 
    968 status_t AudioTrack::setPlaybackRate(const AudioPlaybackRate &playbackRate)
    969 {
    970     AutoMutex lock(mLock);
    971     if (isAudioPlaybackRateEqual(playbackRate, mPlaybackRate)) {
    972         return NO_ERROR;
    973     }
    974     if (isOffloadedOrDirect_l()) {
    975         return INVALID_OPERATION;
    976     }
    977     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
    978         return INVALID_OPERATION;
    979     }
    980 
    981     ALOGV("setPlaybackRate (input): mSampleRate:%u  mSpeed:%f  mPitch:%f",
    982             mSampleRate, playbackRate.mSpeed, playbackRate.mPitch);
    983     // pitch is emulated by adjusting speed and sampleRate
    984     const uint32_t effectiveRate = adjustSampleRate(mSampleRate, playbackRate.mPitch);
    985     const float effectiveSpeed = adjustSpeed(playbackRate.mSpeed, playbackRate.mPitch);
    986     const float effectivePitch = adjustPitch(playbackRate.mPitch);
    987     AudioPlaybackRate playbackRateTemp = playbackRate;
    988     playbackRateTemp.mSpeed = effectiveSpeed;
    989     playbackRateTemp.mPitch = effectivePitch;
    990 
    991     ALOGV("setPlaybackRate (effective): mSampleRate:%u  mSpeed:%f  mPitch:%f",
    992             effectiveRate, effectiveSpeed, effectivePitch);
    993 
    994     if (!isAudioPlaybackRateValid(playbackRateTemp)) {
    995         ALOGW("setPlaybackRate(%f, %f) failed (effective rate out of bounds)",
    996                 playbackRate.mSpeed, playbackRate.mPitch);
    997         return BAD_VALUE;
    998     }
    999     // Check if the buffer size is compatible.
   1000     if (!isSampleRateSpeedAllowed_l(effectiveRate, effectiveSpeed)) {
   1001         ALOGW("setPlaybackRate(%f, %f) failed (buffer size)",
   1002                 playbackRate.mSpeed, playbackRate.mPitch);
   1003         return BAD_VALUE;
   1004     }
   1005 
   1006     // Check resampler ratios are within bounds
   1007     if ((uint64_t)effectiveRate > (uint64_t)mSampleRate *
   1008             (uint64_t)AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
   1009         ALOGW("setPlaybackRate(%f, %f) failed. Resample rate exceeds max accepted value",
   1010                 playbackRate.mSpeed, playbackRate.mPitch);
   1011         return BAD_VALUE;
   1012     }
   1013 
   1014     if ((uint64_t)effectiveRate * (uint64_t)AUDIO_RESAMPLER_UP_RATIO_MAX < (uint64_t)mSampleRate) {
   1015         ALOGW("setPlaybackRate(%f, %f) failed. Resample rate below min accepted value",
   1016                         playbackRate.mSpeed, playbackRate.mPitch);
   1017         return BAD_VALUE;
   1018     }
   1019     mPlaybackRate = playbackRate;
   1020     //set effective rates
   1021     mProxy->setPlaybackRate(playbackRateTemp);
   1022     mProxy->setSampleRate(effectiveRate); // FIXME: not quite "atomic" with setPlaybackRate
   1023     return NO_ERROR;
   1024 }
   1025 
   1026 const AudioPlaybackRate& AudioTrack::getPlaybackRate() const
   1027 {
   1028     AutoMutex lock(mLock);
   1029     return mPlaybackRate;
   1030 }
   1031 
   1032 ssize_t AudioTrack::getBufferSizeInFrames()
   1033 {
   1034     AutoMutex lock(mLock);
   1035     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
   1036         return NO_INIT;
   1037     }
   1038     return (ssize_t) mProxy->getBufferSizeInFrames();
   1039 }
   1040 
   1041 status_t AudioTrack::getBufferDurationInUs(int64_t *duration)
   1042 {
   1043     if (duration == nullptr) {
   1044         return BAD_VALUE;
   1045     }
   1046     AutoMutex lock(mLock);
   1047     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
   1048         return NO_INIT;
   1049     }
   1050     ssize_t bufferSizeInFrames = (ssize_t) mProxy->getBufferSizeInFrames();
   1051     if (bufferSizeInFrames < 0) {
   1052         return (status_t)bufferSizeInFrames;
   1053     }
   1054     *duration = (int64_t)((double)bufferSizeInFrames * 1000000
   1055             / ((double)mSampleRate * mPlaybackRate.mSpeed));
   1056     return NO_ERROR;
   1057 }
   1058 
   1059 ssize_t AudioTrack::setBufferSizeInFrames(size_t bufferSizeInFrames)
   1060 {
   1061     AutoMutex lock(mLock);
   1062     if (mOutput == AUDIO_IO_HANDLE_NONE || mProxy.get() == 0) {
   1063         return NO_INIT;
   1064     }
   1065     // Reject if timed track or compressed audio.
   1066     if (!audio_is_linear_pcm(mFormat)) {
   1067         return INVALID_OPERATION;
   1068     }
   1069     return (ssize_t) mProxy->setBufferSizeInFrames((uint32_t) bufferSizeInFrames);
   1070 }
   1071 
   1072 status_t AudioTrack::setLoop(uint32_t loopStart, uint32_t loopEnd, int loopCount)
   1073 {
   1074     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
   1075         return INVALID_OPERATION;
   1076     }
   1077 
   1078     if (loopCount == 0) {
   1079         ;
   1080     } else if (loopCount >= -1 && loopStart < loopEnd && loopEnd <= mFrameCount &&
   1081             loopEnd - loopStart >= MIN_LOOP) {
   1082         ;
   1083     } else {
   1084         return BAD_VALUE;
   1085     }
   1086 
   1087     AutoMutex lock(mLock);
   1088     // See setPosition() regarding setting parameters such as loop points or position while active
   1089     if (mState == STATE_ACTIVE) {
   1090         return INVALID_OPERATION;
   1091     }
   1092     setLoop_l(loopStart, loopEnd, loopCount);
   1093     return NO_ERROR;
   1094 }
   1095 
   1096 void AudioTrack::setLoop_l(uint32_t loopStart, uint32_t loopEnd, int loopCount)
   1097 {
   1098     // We do not update the periodic notification point.
   1099     // mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
   1100     mLoopCount = loopCount;
   1101     mLoopEnd = loopEnd;
   1102     mLoopStart = loopStart;
   1103     mLoopCountNotified = loopCount;
   1104     mStaticProxy->setLoop(loopStart, loopEnd, loopCount);
   1105 
   1106     // Waking the AudioTrackThread is not needed as this cannot be called when active.
   1107 }
   1108 
   1109 status_t AudioTrack::setMarkerPosition(uint32_t marker)
   1110 {
   1111     // The only purpose of setting marker position is to get a callback
   1112     if (mCbf == NULL || isOffloadedOrDirect()) {
   1113         return INVALID_OPERATION;
   1114     }
   1115 
   1116     AutoMutex lock(mLock);
   1117     mMarkerPosition = marker;
   1118     mMarkerReached = false;
   1119 
   1120     sp<AudioTrackThread> t = mAudioTrackThread;
   1121     if (t != 0) {
   1122         t->wake();
   1123     }
   1124     return NO_ERROR;
   1125 }
   1126 
   1127 status_t AudioTrack::getMarkerPosition(uint32_t *marker) const
   1128 {
   1129     if (isOffloadedOrDirect()) {
   1130         return INVALID_OPERATION;
   1131     }
   1132     if (marker == NULL) {
   1133         return BAD_VALUE;
   1134     }
   1135 
   1136     AutoMutex lock(mLock);
   1137     mMarkerPosition.getValue(marker);
   1138 
   1139     return NO_ERROR;
   1140 }
   1141 
   1142 status_t AudioTrack::setPositionUpdatePeriod(uint32_t updatePeriod)
   1143 {
   1144     // The only purpose of setting position update period is to get a callback
   1145     if (mCbf == NULL || isOffloadedOrDirect()) {
   1146         return INVALID_OPERATION;
   1147     }
   1148 
   1149     AutoMutex lock(mLock);
   1150     mNewPosition = updateAndGetPosition_l() + updatePeriod;
   1151     mUpdatePeriod = updatePeriod;
   1152 
   1153     sp<AudioTrackThread> t = mAudioTrackThread;
   1154     if (t != 0) {
   1155         t->wake();
   1156     }
   1157     return NO_ERROR;
   1158 }
   1159 
   1160 status_t AudioTrack::getPositionUpdatePeriod(uint32_t *updatePeriod) const
   1161 {
   1162     if (isOffloadedOrDirect()) {
   1163         return INVALID_OPERATION;
   1164     }
   1165     if (updatePeriod == NULL) {
   1166         return BAD_VALUE;
   1167     }
   1168 
   1169     AutoMutex lock(mLock);
   1170     *updatePeriod = mUpdatePeriod;
   1171 
   1172     return NO_ERROR;
   1173 }
   1174 
   1175 status_t AudioTrack::setPosition(uint32_t position)
   1176 {
   1177     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
   1178         return INVALID_OPERATION;
   1179     }
   1180     if (position > mFrameCount) {
   1181         return BAD_VALUE;
   1182     }
   1183 
   1184     AutoMutex lock(mLock);
   1185     // Currently we require that the player is inactive before setting parameters such as position
   1186     // or loop points.  Otherwise, there could be a race condition: the application could read the
   1187     // current position, compute a new position or loop parameters, and then set that position or
   1188     // loop parameters but it would do the "wrong" thing since the position has continued to advance
   1189     // in the mean time.  If we ever provide a sequencer in server, we could allow a way for the app
   1190     // to specify how it wants to handle such scenarios.
   1191     if (mState == STATE_ACTIVE) {
   1192         return INVALID_OPERATION;
   1193     }
   1194     // After setting the position, use full update period before notification.
   1195     mNewPosition = updateAndGetPosition_l() + mUpdatePeriod;
   1196     mStaticProxy->setBufferPosition(position);
   1197 
   1198     // Waking the AudioTrackThread is not needed as this cannot be called when active.
   1199     return NO_ERROR;
   1200 }
   1201 
   1202 status_t AudioTrack::getPosition(uint32_t *position)
   1203 {
   1204     if (position == NULL) {
   1205         return BAD_VALUE;
   1206     }
   1207 
   1208     AutoMutex lock(mLock);
   1209     // FIXME: offloaded and direct tracks call into the HAL for render positions
   1210     // for compressed/synced data; however, we use proxy position for pure linear pcm data
   1211     // as we do not know the capability of the HAL for pcm position support and standby.
   1212     // There may be some latency differences between the HAL position and the proxy position.
   1213     if (isOffloadedOrDirect_l() && !isPurePcmData_l()) {
   1214         uint32_t dspFrames = 0;
   1215 
   1216         if (isOffloaded_l() && ((mState == STATE_PAUSED) || (mState == STATE_PAUSED_STOPPING))) {
   1217             ALOGV("getPosition called in paused state, return cached position %u", mPausedPosition);
   1218             *position = mPausedPosition;
   1219             return NO_ERROR;
   1220         }
   1221 
   1222         if (mOutput != AUDIO_IO_HANDLE_NONE) {
   1223             uint32_t halFrames; // actually unused
   1224             (void) AudioSystem::getRenderPosition(mOutput, &halFrames, &dspFrames);
   1225             // FIXME: on getRenderPosition() error, we return OK with frame position 0.
   1226         }
   1227         // FIXME: dspFrames may not be zero in (mState == STATE_STOPPED || mState == STATE_FLUSHED)
   1228         // due to hardware latency. We leave this behavior for now.
   1229         *position = dspFrames;
   1230     } else {
   1231         if (mCblk->mFlags & CBLK_INVALID) {
   1232             (void) restoreTrack_l("getPosition");
   1233             // FIXME: for compatibility with the Java API we ignore the restoreTrack_l()
   1234             // error here (e.g. DEAD_OBJECT) and return OK with the last recorded server position.
   1235         }
   1236 
   1237         // IAudioTrack::stop() isn't synchronous; we don't know when presentation completes
   1238         *position = (mState == STATE_STOPPED || mState == STATE_FLUSHED) ?
   1239                 0 : updateAndGetPosition_l().value();
   1240     }
   1241     return NO_ERROR;
   1242 }
   1243 
   1244 status_t AudioTrack::getBufferPosition(uint32_t *position)
   1245 {
   1246     if (mSharedBuffer == 0) {
   1247         return INVALID_OPERATION;
   1248     }
   1249     if (position == NULL) {
   1250         return BAD_VALUE;
   1251     }
   1252 
   1253     AutoMutex lock(mLock);
   1254     *position = mStaticProxy->getBufferPosition();
   1255     return NO_ERROR;
   1256 }
   1257 
   1258 status_t AudioTrack::reload()
   1259 {
   1260     if (mSharedBuffer == 0 || isOffloadedOrDirect()) {
   1261         return INVALID_OPERATION;
   1262     }
   1263 
   1264     AutoMutex lock(mLock);
   1265     // See setPosition() regarding setting parameters such as loop points or position while active
   1266     if (mState == STATE_ACTIVE) {
   1267         return INVALID_OPERATION;
   1268     }
   1269     mNewPosition = mUpdatePeriod;
   1270     (void) updateAndGetPosition_l();
   1271     mPosition = 0;
   1272     mPreviousTimestampValid = false;
   1273 #if 0
   1274     // The documentation is not clear on the behavior of reload() and the restoration
   1275     // of loop count. Historically we have not restored loop count, start, end,
   1276     // but it makes sense if one desires to repeat playing a particular sound.
   1277     if (mLoopCount != 0) {
   1278         mLoopCountNotified = mLoopCount;
   1279         mStaticProxy->setLoop(mLoopStart, mLoopEnd, mLoopCount);
   1280     }
   1281 #endif
   1282     mStaticProxy->setBufferPosition(0);
   1283     return NO_ERROR;
   1284 }
   1285 
   1286 audio_io_handle_t AudioTrack::getOutput() const
   1287 {
   1288     AutoMutex lock(mLock);
   1289     return mOutput;
   1290 }
   1291 
   1292 status_t AudioTrack::setOutputDevice(audio_port_handle_t deviceId) {
   1293     AutoMutex lock(mLock);
   1294     if (mSelectedDeviceId != deviceId) {
   1295         mSelectedDeviceId = deviceId;
   1296         if (mStatus == NO_ERROR) {
   1297             android_atomic_or(CBLK_INVALID, &mCblk->mFlags);
   1298             mProxy->interrupt();
   1299         }
   1300     }
   1301     return NO_ERROR;
   1302 }
   1303 
   1304 audio_port_handle_t AudioTrack::getOutputDevice() {
   1305     AutoMutex lock(mLock);
   1306     return mSelectedDeviceId;
   1307 }
   1308 
   1309 // must be called with mLock held
   1310 void AudioTrack::updateRoutedDeviceId_l()
   1311 {
   1312     // if the track is inactive, do not update actual device as the output stream maybe routed
   1313     // to a device not relevant to this client because of other active use cases.
   1314     if (mState != STATE_ACTIVE) {
   1315         return;
   1316     }
   1317     if (mOutput != AUDIO_IO_HANDLE_NONE) {
   1318         audio_port_handle_t deviceId = AudioSystem::getDeviceIdForIo(mOutput);
   1319         if (deviceId != AUDIO_PORT_HANDLE_NONE) {
   1320             mRoutedDeviceId = deviceId;
   1321         }
   1322     }
   1323 }
   1324 
   1325 audio_port_handle_t AudioTrack::getRoutedDeviceId() {
   1326     AutoMutex lock(mLock);
   1327     updateRoutedDeviceId_l();
   1328     return mRoutedDeviceId;
   1329 }
   1330 
   1331 status_t AudioTrack::attachAuxEffect(int effectId)
   1332 {
   1333     AutoMutex lock(mLock);
   1334     status_t status = mAudioTrack->attachAuxEffect(effectId);
   1335     if (status == NO_ERROR) {
   1336         mAuxEffectId = effectId;
   1337     }
   1338     return status;
   1339 }
   1340 
   1341 audio_stream_type_t AudioTrack::streamType() const
   1342 {
   1343     if (mStreamType == AUDIO_STREAM_DEFAULT) {
   1344         return audio_attributes_to_stream_type(&mAttributes);
   1345     }
   1346     return mStreamType;
   1347 }
   1348 
   1349 uint32_t AudioTrack::latency()
   1350 {
   1351     AutoMutex lock(mLock);
   1352     updateLatency_l();
   1353     return mLatency;
   1354 }
   1355 
   1356 // -------------------------------------------------------------------------
   1357 
   1358 // must be called with mLock held
   1359 void AudioTrack::updateLatency_l()
   1360 {
   1361     status_t status = AudioSystem::getLatency(mOutput, &mAfLatency);
   1362     if (status != NO_ERROR) {
   1363         ALOGW("getLatency(%d) failed status %d", mOutput, status);
   1364     } else {
   1365         // FIXME don't believe this lie
   1366         mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate;
   1367     }
   1368 }
   1369 
   1370 // TODO Move this macro to a common header file for enum to string conversion in audio framework.
   1371 #define MEDIA_CASE_ENUM(name) case name: return #name
   1372 const char * AudioTrack::convertTransferToText(transfer_type transferType) {
   1373     switch (transferType) {
   1374         MEDIA_CASE_ENUM(TRANSFER_DEFAULT);
   1375         MEDIA_CASE_ENUM(TRANSFER_CALLBACK);
   1376         MEDIA_CASE_ENUM(TRANSFER_OBTAIN);
   1377         MEDIA_CASE_ENUM(TRANSFER_SYNC);
   1378         MEDIA_CASE_ENUM(TRANSFER_SHARED);
   1379         default:
   1380             return "UNRECOGNIZED";
   1381     }
   1382 }
   1383 
   1384 status_t AudioTrack::createTrack_l()
   1385 {
   1386     status_t status;
   1387     bool callbackAdded = false;
   1388 
   1389     const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();
   1390     if (audioFlinger == 0) {
   1391         ALOGE("Could not get audioflinger");
   1392         status = NO_INIT;
   1393         goto exit;
   1394     }
   1395 
   1396     {
   1397     // mFlags (not mOrigFlags) is modified depending on whether fast request is accepted.
   1398     // After fast request is denied, we will request again if IAudioTrack is re-created.
   1399     // Client can only express a preference for FAST.  Server will perform additional tests.
   1400     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
   1401         // either of these use cases:
   1402         // use case 1: shared buffer
   1403         bool sharedBuffer = mSharedBuffer != 0;
   1404         bool transferAllowed =
   1405             // use case 2: callback transfer mode
   1406             (mTransfer == TRANSFER_CALLBACK) ||
   1407             // use case 3: obtain/release mode
   1408             (mTransfer == TRANSFER_OBTAIN) ||
   1409             // use case 4: synchronous write
   1410             ((mTransfer == TRANSFER_SYNC) && mThreadCanCallJava);
   1411 
   1412         bool fastAllowed = sharedBuffer || transferAllowed;
   1413         if (!fastAllowed) {
   1414             ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by client, not shared buffer and transfer = %s",
   1415                   convertTransferToText(mTransfer));
   1416             mFlags = (audio_output_flags_t) (mFlags & ~AUDIO_OUTPUT_FLAG_FAST);
   1417         }
   1418     }
   1419 
   1420     IAudioFlinger::CreateTrackInput input;
   1421     if (mStreamType != AUDIO_STREAM_DEFAULT) {
   1422         stream_type_to_audio_attributes(mStreamType, &input.attr);
   1423     } else {
   1424         input.attr = mAttributes;
   1425     }
   1426     input.config = AUDIO_CONFIG_INITIALIZER;
   1427     input.config.sample_rate = mSampleRate;
   1428     input.config.channel_mask = mChannelMask;
   1429     input.config.format = mFormat;
   1430     input.config.offload_info = mOffloadInfoCopy;
   1431     input.clientInfo.clientUid = mClientUid;
   1432     input.clientInfo.clientPid = mClientPid;
   1433     input.clientInfo.clientTid = -1;
   1434     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
   1435         // It is currently meaningless to request SCHED_FIFO for a Java thread.  Even if the
   1436         // application-level code follows all non-blocking design rules, the language runtime
   1437         // doesn't also follow those rules, so the thread will not benefit overall.
   1438         if (mAudioTrackThread != 0 && !mThreadCanCallJava) {
   1439             input.clientInfo.clientTid = mAudioTrackThread->getTid();
   1440         }
   1441     }
   1442     input.sharedBuffer = mSharedBuffer;
   1443     input.notificationsPerBuffer = mNotificationsPerBufferReq;
   1444     input.speed = 1.0;
   1445     if (audio_has_proportional_frames(mFormat) && mSharedBuffer == 0 &&
   1446             (mFlags & AUDIO_OUTPUT_FLAG_FAST) == 0) {
   1447         input.speed  = !isPurePcmData_l() || isOffloadedOrDirect_l() ? 1.0f :
   1448                         max(mMaxRequiredSpeed, mPlaybackRate.mSpeed);
   1449     }
   1450     input.flags = mFlags;
   1451     input.frameCount = mReqFrameCount;
   1452     input.notificationFrameCount = mNotificationFramesReq;
   1453     input.selectedDeviceId = mSelectedDeviceId;
   1454     input.sessionId = mSessionId;
   1455 
   1456     IAudioFlinger::CreateTrackOutput output;
   1457 
   1458     sp<IAudioTrack> track = audioFlinger->createTrack(input,
   1459                                                       output,
   1460                                                       &status);
   1461 
   1462     if (status != NO_ERROR || output.outputId == AUDIO_IO_HANDLE_NONE) {
   1463         ALOGE("AudioFlinger could not create track, status: %d output %d", status, output.outputId);
   1464         if (status == NO_ERROR) {
   1465             status = NO_INIT;
   1466         }
   1467         goto exit;
   1468     }
   1469     ALOG_ASSERT(track != 0);
   1470 
   1471     mFrameCount = output.frameCount;
   1472     mNotificationFramesAct = (uint32_t)output.notificationFrameCount;
   1473     mRoutedDeviceId = output.selectedDeviceId;
   1474     mSessionId = output.sessionId;
   1475 
   1476     mSampleRate = output.sampleRate;
   1477     if (mOriginalSampleRate == 0) {
   1478         mOriginalSampleRate = mSampleRate;
   1479     }
   1480 
   1481     mAfFrameCount = output.afFrameCount;
   1482     mAfSampleRate = output.afSampleRate;
   1483     mAfLatency = output.afLatencyMs;
   1484 
   1485     mLatency = mAfLatency + (1000LL * mFrameCount) / mSampleRate;
   1486 
   1487     // AudioFlinger now owns the reference to the I/O handle,
   1488     // so we are no longer responsible for releasing it.
   1489 
   1490     // FIXME compare to AudioRecord
   1491     sp<IMemory> iMem = track->getCblk();
   1492     if (iMem == 0) {
   1493         ALOGE("Could not get control block");
   1494         status = NO_INIT;
   1495         goto exit;
   1496     }
   1497     void *iMemPointer = iMem->pointer();
   1498     if (iMemPointer == NULL) {
   1499         ALOGE("Could not get control block pointer");
   1500         status = NO_INIT;
   1501         goto exit;
   1502     }
   1503     // invariant that mAudioTrack != 0 is true only after set() returns successfully
   1504     if (mAudioTrack != 0) {
   1505         IInterface::asBinder(mAudioTrack)->unlinkToDeath(mDeathNotifier, this);
   1506         mDeathNotifier.clear();
   1507     }
   1508     mAudioTrack = track;
   1509     mCblkMemory = iMem;
   1510     IPCThreadState::self()->flushCommands();
   1511 
   1512     audio_track_cblk_t* cblk = static_cast<audio_track_cblk_t*>(iMemPointer);
   1513     mCblk = cblk;
   1514 
   1515     mAwaitBoost = false;
   1516     if (mFlags & AUDIO_OUTPUT_FLAG_FAST) {
   1517         if (output.flags & AUDIO_OUTPUT_FLAG_FAST) {
   1518             ALOGI("AUDIO_OUTPUT_FLAG_FAST successful; frameCount %zu -> %zu",
   1519                   mReqFrameCount, mFrameCount);
   1520             if (!mThreadCanCallJava) {
   1521                 mAwaitBoost = true;
   1522             }
   1523         } else {
   1524             ALOGW("AUDIO_OUTPUT_FLAG_FAST denied by server; frameCount %zu -> %zu", mReqFrameCount,
   1525                   mFrameCount);
   1526         }
   1527     }
   1528     mFlags = output.flags;
   1529 
   1530     //mOutput != output includes the case where mOutput == AUDIO_IO_HANDLE_NONE for first creation
   1531     if (mDeviceCallback != 0 && mOutput != output.outputId) {
   1532         if (mOutput != AUDIO_IO_HANDLE_NONE) {
   1533             AudioSystem::removeAudioDeviceCallback(this, mOutput);
   1534         }
   1535         AudioSystem::addAudioDeviceCallback(this, output.outputId);
   1536         callbackAdded = true;
   1537     }
   1538 
   1539     // We retain a copy of the I/O handle, but don't own the reference
   1540     mOutput = output.outputId;
   1541     mRefreshRemaining = true;
   1542 
   1543     // Starting address of buffers in shared memory.  If there is a shared buffer, buffers
   1544     // is the value of pointer() for the shared buffer, otherwise buffers points
   1545     // immediately after the control block.  This address is for the mapping within client
   1546     // address space.  AudioFlinger::TrackBase::mBuffer is for the server address space.
   1547     void* buffers;
   1548     if (mSharedBuffer == 0) {
   1549         buffers = cblk + 1;
   1550     } else {
   1551         buffers = mSharedBuffer->pointer();
   1552         if (buffers == NULL) {
   1553             ALOGE("Could not get buffer pointer");
   1554             status = NO_INIT;
   1555             goto exit;
   1556         }
   1557     }
   1558 
   1559     mAudioTrack->attachAuxEffect(mAuxEffectId);
   1560 
   1561     // If IAudioTrack is re-created, don't let the requested frameCount
   1562     // decrease.  This can confuse clients that cache frameCount().
   1563     if (mFrameCount > mReqFrameCount) {
   1564         mReqFrameCount = mFrameCount;
   1565     }
   1566 
   1567     // reset server position to 0 as we have new cblk.
   1568     mServer = 0;
   1569 
   1570     // update proxy
   1571     if (mSharedBuffer == 0) {
   1572         mStaticProxy.clear();
   1573         mProxy = new AudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize);
   1574     } else {
   1575         mStaticProxy = new StaticAudioTrackClientProxy(cblk, buffers, mFrameCount, mFrameSize);
   1576         mProxy = mStaticProxy;
   1577     }
   1578 
   1579     mProxy->setVolumeLR(gain_minifloat_pack(
   1580             gain_from_float(mVolume[AUDIO_INTERLEAVE_LEFT]),
   1581             gain_from_float(mVolume[AUDIO_INTERLEAVE_RIGHT])));
   1582 
   1583     mProxy->setSendLevel(mSendLevel);
   1584     const uint32_t effectiveSampleRate = adjustSampleRate(mSampleRate, mPlaybackRate.mPitch);
   1585     const float effectiveSpeed = adjustSpeed(mPlaybackRate.mSpeed, mPlaybackRate.mPitch);
   1586     const float effectivePitch = adjustPitch(mPlaybackRate.mPitch);
   1587     mProxy->setSampleRate(effectiveSampleRate);
   1588 
   1589     AudioPlaybackRate playbackRateTemp = mPlaybackRate;
   1590     playbackRateTemp.mSpeed = effectiveSpeed;
   1591     playbackRateTemp.mPitch = effectivePitch;
   1592     mProxy->setPlaybackRate(playbackRateTemp);
   1593     mProxy->setMinimum(mNotificationFramesAct);
   1594 
   1595     mDeathNotifier = new DeathNotifier(this);
   1596     IInterface::asBinder(mAudioTrack)->linkToDeath(mDeathNotifier, this);
   1597 
   1598     }
   1599 
   1600 exit:
   1601     if (status != NO_ERROR && callbackAdded) {
   1602         // note: mOutput is always valid is callbackAdded is true
   1603         AudioSystem::removeAudioDeviceCallback(this, mOutput);
   1604     }
   1605 
   1606     mStatus = status;
   1607 
   1608     // sp<IAudioTrack> track destructor will cause releaseOutput() to be called by AudioFlinger
   1609     return status;
   1610 }
   1611 
   1612 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount, size_t *nonContig)
   1613 {
   1614     if (audioBuffer == NULL) {
   1615         if (nonContig != NULL) {
   1616             *nonContig = 0;
   1617         }
   1618         return BAD_VALUE;
   1619     }
   1620     if (mTransfer != TRANSFER_OBTAIN) {
   1621         audioBuffer->frameCount = 0;
   1622         audioBuffer->size = 0;
   1623         audioBuffer->raw = NULL;
   1624         if (nonContig != NULL) {
   1625             *nonContig = 0;
   1626         }
   1627         return INVALID_OPERATION;
   1628     }
   1629 
   1630     const struct timespec *requested;
   1631     struct timespec timeout;
   1632     if (waitCount == -1) {
   1633         requested = &ClientProxy::kForever;
   1634     } else if (waitCount == 0) {
   1635         requested = &ClientProxy::kNonBlocking;
   1636     } else if (waitCount > 0) {
   1637         long long ms = WAIT_PERIOD_MS * (long long) waitCount;
   1638         timeout.tv_sec = ms / 1000;
   1639         timeout.tv_nsec = (int) (ms % 1000) * 1000000;
   1640         requested = &timeout;
   1641     } else {
   1642         ALOGE("%s invalid waitCount %d", __func__, waitCount);
   1643         requested = NULL;
   1644     }
   1645     return obtainBuffer(audioBuffer, requested, NULL /*elapsed*/, nonContig);
   1646 }
   1647 
   1648 status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, const struct timespec *requested,
   1649         struct timespec *elapsed, size_t *nonContig)
   1650 {
   1651     // previous and new IAudioTrack sequence numbers are used to detect track re-creation
   1652     uint32_t oldSequence = 0;
   1653     uint32_t newSequence;
   1654 
   1655     Proxy::Buffer buffer;
   1656     status_t status = NO_ERROR;
   1657 
   1658     static const int32_t kMaxTries = 5;
   1659     int32_t tryCounter = kMaxTries;
   1660 
   1661     do {
   1662         // obtainBuffer() is called with mutex unlocked, so keep extra references to these fields to
   1663         // keep them from going away if another thread re-creates the track during obtainBuffer()
   1664         sp<AudioTrackClientProxy> proxy;
   1665         sp<IMemory> iMem;
   1666 
   1667         {   // start of lock scope
   1668             AutoMutex lock(mLock);
   1669 
   1670             newSequence = mSequence;
   1671             // did previous obtainBuffer() fail due to media server death or voluntary invalidation?
   1672             if (status == DEAD_OBJECT) {
   1673                 // re-create track, unless someone else has already done so
   1674                 if (newSequence == oldSequence) {
   1675                     status = restoreTrack_l("obtainBuffer");
   1676                     if (status != NO_ERROR) {
   1677                         buffer.mFrameCount = 0;
   1678                         buffer.mRaw = NULL;
   1679                         buffer.mNonContig = 0;
   1680                         break;
   1681                     }
   1682                 }
   1683             }
   1684             oldSequence = newSequence;
   1685 
   1686             if (status == NOT_ENOUGH_DATA) {
   1687                 restartIfDisabled();
   1688             }
   1689 
   1690             // Keep the extra references
   1691             proxy = mProxy;
   1692             iMem = mCblkMemory;
   1693 
   1694             if (mState == STATE_STOPPING) {
   1695                 status = -EINTR;
   1696                 buffer.mFrameCount = 0;
   1697                 buffer.mRaw = NULL;
   1698                 buffer.mNonContig = 0;
   1699                 break;
   1700             }
   1701 
   1702             // Non-blocking if track is stopped or paused
   1703             if (mState != STATE_ACTIVE) {
   1704                 requested = &ClientProxy::kNonBlocking;
   1705             }
   1706 
   1707         }   // end of lock scope
   1708 
   1709         buffer.mFrameCount = audioBuffer->frameCount;
   1710         // FIXME starts the requested timeout and elapsed over from scratch
   1711         status = proxy->obtainBuffer(&buffer, requested, elapsed);
   1712     } while (((status == DEAD_OBJECT) || (status == NOT_ENOUGH_DATA)) && (tryCounter-- > 0));
   1713 
   1714     audioBuffer->frameCount = buffer.mFrameCount;
   1715     audioBuffer->size = buffer.mFrameCount * mFrameSize;
   1716     audioBuffer->raw = buffer.mRaw;
   1717     if (nonContig != NULL) {
   1718         *nonContig = buffer.mNonContig;
   1719     }
   1720     return status;
   1721 }
   1722 
   1723 void AudioTrack::releaseBuffer(const Buffer* audioBuffer)
   1724 {
   1725     // FIXME add error checking on mode, by adding an internal version
   1726     if (mTransfer == TRANSFER_SHARED) {
   1727         return;
   1728     }
   1729 
   1730     size_t stepCount = audioBuffer->size / mFrameSize;
   1731     if (stepCount == 0) {
   1732         return;
   1733     }
   1734 
   1735     Proxy::Buffer buffer;
   1736     buffer.mFrameCount = stepCount;
   1737     buffer.mRaw = audioBuffer->raw;
   1738 
   1739     AutoMutex lock(mLock);
   1740     mReleased += stepCount;
   1741     mInUnderrun = false;
   1742     mProxy->releaseBuffer(&buffer);
   1743 
   1744     // restart track if it was disabled by audioflinger due to previous underrun
   1745     restartIfDisabled();
   1746 }
   1747 
   1748 void AudioTrack::restartIfDisabled()
   1749 {
   1750     int32_t flags = android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags);
   1751     if ((mState == STATE_ACTIVE) && (flags & CBLK_DISABLED)) {
   1752         ALOGW("releaseBuffer() track %p disabled due to previous underrun, restarting", this);
   1753         // FIXME ignoring status
   1754         mAudioTrack->start();
   1755     }
   1756 }
   1757 
   1758 // -------------------------------------------------------------------------
   1759 
   1760 ssize_t AudioTrack::write(const void* buffer, size_t userSize, bool blocking)
   1761 {
   1762     if (mTransfer != TRANSFER_SYNC) {
   1763         return INVALID_OPERATION;
   1764     }
   1765 
   1766     if (isDirect()) {
   1767         AutoMutex lock(mLock);
   1768         int32_t flags = android_atomic_and(
   1769                             ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END),
   1770                             &mCblk->mFlags);
   1771         if (flags & CBLK_INVALID) {
   1772             return DEAD_OBJECT;
   1773         }
   1774     }
   1775 
   1776     if (ssize_t(userSize) < 0 || (buffer == NULL && userSize != 0)) {
   1777         // Sanity-check: user is most-likely passing an error code, and it would
   1778         // make the return value ambiguous (actualSize vs error).
   1779         ALOGE("AudioTrack::write(buffer=%p, size=%zu (%zd)", buffer, userSize, userSize);
   1780         return BAD_VALUE;
   1781     }
   1782 
   1783     size_t written = 0;
   1784     Buffer audioBuffer;
   1785 
   1786     while (userSize >= mFrameSize) {
   1787         audioBuffer.frameCount = userSize / mFrameSize;
   1788 
   1789         status_t err = obtainBuffer(&audioBuffer,
   1790                 blocking ? &ClientProxy::kForever : &ClientProxy::kNonBlocking);
   1791         if (err < 0) {
   1792             if (written > 0) {
   1793                 break;
   1794             }
   1795             if (err == TIMED_OUT || err == -EINTR) {
   1796                 err = WOULD_BLOCK;
   1797             }
   1798             return ssize_t(err);
   1799         }
   1800 
   1801         size_t toWrite = audioBuffer.size;
   1802         memcpy(audioBuffer.i8, buffer, toWrite);
   1803         buffer = ((const char *) buffer) + toWrite;
   1804         userSize -= toWrite;
   1805         written += toWrite;
   1806 
   1807         releaseBuffer(&audioBuffer);
   1808     }
   1809 
   1810     if (written > 0) {
   1811         mFramesWritten += written / mFrameSize;
   1812     }
   1813     return written;
   1814 }
   1815 
   1816 // -------------------------------------------------------------------------
   1817 
   1818 nsecs_t AudioTrack::processAudioBuffer()
   1819 {
   1820     // Currently the AudioTrack thread is not created if there are no callbacks.
   1821     // Would it ever make sense to run the thread, even without callbacks?
   1822     // If so, then replace this by checks at each use for mCbf != NULL.
   1823     LOG_ALWAYS_FATAL_IF(mCblk == NULL);
   1824 
   1825     mLock.lock();
   1826     if (mAwaitBoost) {
   1827         mAwaitBoost = false;
   1828         mLock.unlock();
   1829         static const int32_t kMaxTries = 5;
   1830         int32_t tryCounter = kMaxTries;
   1831         uint32_t pollUs = 10000;
   1832         do {
   1833             int policy = sched_getscheduler(0) & ~SCHED_RESET_ON_FORK;
   1834             if (policy == SCHED_FIFO || policy == SCHED_RR) {
   1835                 break;
   1836             }
   1837             usleep(pollUs);
   1838             pollUs <<= 1;
   1839         } while (tryCounter-- > 0);
   1840         if (tryCounter < 0) {
   1841             ALOGE("did not receive expected priority boost on time");
   1842         }
   1843         // Run again immediately
   1844         return 0;
   1845     }
   1846 
   1847     // Can only reference mCblk while locked
   1848     int32_t flags = android_atomic_and(
   1849         ~(CBLK_UNDERRUN | CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL | CBLK_BUFFER_END), &mCblk->mFlags);
   1850 
   1851     // Check for track invalidation
   1852     if (flags & CBLK_INVALID) {
   1853         // for offloaded tracks restoreTrack_l() will just update the sequence and clear
   1854         // AudioSystem cache. We should not exit here but after calling the callback so
   1855         // that the upper layers can recreate the track
   1856         if (!isOffloadedOrDirect_l() || (mSequence == mObservedSequence)) {
   1857             status_t status __unused = restoreTrack_l("processAudioBuffer");
   1858             // FIXME unused status
   1859             // after restoration, continue below to make sure that the loop and buffer events
   1860             // are notified because they have been cleared from mCblk->mFlags above.
   1861         }
   1862     }
   1863 
   1864     bool waitStreamEnd = mState == STATE_STOPPING;
   1865     bool active = mState == STATE_ACTIVE;
   1866 
   1867     // Manage underrun callback, must be done under lock to avoid race with releaseBuffer()
   1868     bool newUnderrun = false;
   1869     if (flags & CBLK_UNDERRUN) {
   1870 #if 0
   1871         // Currently in shared buffer mode, when the server reaches the end of buffer,
   1872         // the track stays active in continuous underrun state.  It's up to the application
   1873         // to pause or stop the track, or set the position to a new offset within buffer.
   1874         // This was some experimental code to auto-pause on underrun.   Keeping it here
   1875         // in "if 0" so we can re-visit this if we add a real sequencer for shared memory content.
   1876         if (mTransfer == TRANSFER_SHARED) {
   1877             mState = STATE_PAUSED;
   1878             active = false;
   1879         }
   1880 #endif
   1881         if (!mInUnderrun) {
   1882             mInUnderrun = true;
   1883             newUnderrun = true;
   1884         }
   1885     }
   1886 
   1887     // Get current position of server
   1888     Modulo<uint32_t> position(updateAndGetPosition_l());
   1889 
   1890     // Manage marker callback
   1891     bool markerReached = false;
   1892     Modulo<uint32_t> markerPosition(mMarkerPosition);
   1893     // uses 32 bit wraparound for comparison with position.
   1894     if (!mMarkerReached && markerPosition.value() > 0 && position >= markerPosition) {
   1895         mMarkerReached = markerReached = true;
   1896     }
   1897 
   1898     // Determine number of new position callback(s) that will be needed, while locked
   1899     size_t newPosCount = 0;
   1900     Modulo<uint32_t> newPosition(mNewPosition);
   1901     uint32_t updatePeriod = mUpdatePeriod;
   1902     // FIXME fails for wraparound, need 64 bits
   1903     if (updatePeriod > 0 && position >= newPosition) {
   1904         newPosCount = ((position - newPosition).value() / updatePeriod) + 1;
   1905         mNewPosition += updatePeriod * newPosCount;
   1906     }
   1907 
   1908     // Cache other fields that will be needed soon
   1909     uint32_t sampleRate = mSampleRate;
   1910     float speed = mPlaybackRate.mSpeed;
   1911     const uint32_t notificationFrames = mNotificationFramesAct;
   1912     if (mRefreshRemaining) {
   1913         mRefreshRemaining = false;
   1914         mRemainingFrames = notificationFrames;
   1915         mRetryOnPartialBuffer = false;
   1916     }
   1917     size_t misalignment = mProxy->getMisalignment();
   1918     uint32_t sequence = mSequence;
   1919     sp<AudioTrackClientProxy> proxy = mProxy;
   1920 
   1921     // Determine the number of new loop callback(s) that will be needed, while locked.
   1922     int loopCountNotifications = 0;
   1923     uint32_t loopPeriod = 0; // time in frames for next EVENT_LOOP_END or EVENT_BUFFER_END
   1924 
   1925     if (mLoopCount > 0) {
   1926         int loopCount;
   1927         size_t bufferPosition;
   1928         mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
   1929         loopPeriod = ((loopCount > 0) ? mLoopEnd : mFrameCount) - bufferPosition;
   1930         loopCountNotifications = min(mLoopCountNotified - loopCount, kMaxLoopCountNotifications);
   1931         mLoopCountNotified = loopCount; // discard any excess notifications
   1932     } else if (mLoopCount < 0) {
   1933         // FIXME: We're not accurate with notification count and position with infinite looping
   1934         // since loopCount from server side will always return -1 (we could decrement it).
   1935         size_t bufferPosition = mStaticProxy->getBufferPosition();
   1936         loopCountNotifications = int((flags & (CBLK_LOOP_CYCLE | CBLK_LOOP_FINAL)) != 0);
   1937         loopPeriod = mLoopEnd - bufferPosition;
   1938     } else if (/* mLoopCount == 0 && */ mSharedBuffer != 0) {
   1939         size_t bufferPosition = mStaticProxy->getBufferPosition();
   1940         loopPeriod = mFrameCount - bufferPosition;
   1941     }
   1942 
   1943     // These fields don't need to be cached, because they are assigned only by set():
   1944     //     mTransfer, mCbf, mUserData, mFormat, mFrameSize, mFlags
   1945     // mFlags is also assigned by createTrack_l(), but not the bit we care about.
   1946 
   1947     mLock.unlock();
   1948 
   1949     // get anchor time to account for callbacks.
   1950     const nsecs_t timeBeforeCallbacks = systemTime();
   1951 
   1952     if (waitStreamEnd) {
   1953         // FIXME:  Instead of blocking in proxy->waitStreamEndDone(), Callback thread
   1954         // should wait on proxy futex and handle CBLK_STREAM_END_DONE within this function
   1955         // (and make sure we don't callback for more data while we're stopping).
   1956         // This helps with position, marker notifications, and track invalidation.
   1957         struct timespec timeout;
   1958         timeout.tv_sec = WAIT_STREAM_END_TIMEOUT_SEC;
   1959         timeout.tv_nsec = 0;
   1960 
   1961         status_t status = proxy->waitStreamEndDone(&timeout);
   1962         switch (status) {
   1963         case NO_ERROR:
   1964         case DEAD_OBJECT:
   1965         case TIMED_OUT:
   1966             if (status != DEAD_OBJECT) {
   1967                 // for DEAD_OBJECT, we do not send a EVENT_STREAM_END after stop();
   1968                 // instead, the application should handle the EVENT_NEW_IAUDIOTRACK.
   1969                 mCbf(EVENT_STREAM_END, mUserData, NULL);
   1970             }
   1971             {
   1972                 AutoMutex lock(mLock);
   1973                 // The previously assigned value of waitStreamEnd is no longer valid,
   1974                 // since the mutex has been unlocked and either the callback handler
   1975                 // or another thread could have re-started the AudioTrack during that time.
   1976                 waitStreamEnd = mState == STATE_STOPPING;
   1977                 if (waitStreamEnd) {
   1978                     mState = STATE_STOPPED;
   1979                     mReleased = 0;
   1980                 }
   1981             }
   1982             if (waitStreamEnd && status != DEAD_OBJECT) {
   1983                return NS_INACTIVE;
   1984             }
   1985             break;
   1986         }
   1987         return 0;
   1988     }
   1989 
   1990     // perform callbacks while unlocked
   1991     if (newUnderrun) {
   1992         mCbf(EVENT_UNDERRUN, mUserData, NULL);
   1993     }
   1994     while (loopCountNotifications > 0) {
   1995         mCbf(EVENT_LOOP_END, mUserData, NULL);
   1996         --loopCountNotifications;
   1997     }
   1998     if (flags & CBLK_BUFFER_END) {
   1999         mCbf(EVENT_BUFFER_END, mUserData, NULL);
   2000     }
   2001     if (markerReached) {
   2002         mCbf(EVENT_MARKER, mUserData, &markerPosition);
   2003     }
   2004     while (newPosCount > 0) {
   2005         size_t temp = newPosition.value(); // FIXME size_t != uint32_t
   2006         mCbf(EVENT_NEW_POS, mUserData, &temp);
   2007         newPosition += updatePeriod;
   2008         newPosCount--;
   2009     }
   2010 
   2011     if (mObservedSequence != sequence) {
   2012         mObservedSequence = sequence;
   2013         mCbf(EVENT_NEW_IAUDIOTRACK, mUserData, NULL);
   2014         // for offloaded tracks, just wait for the upper layers to recreate the track
   2015         if (isOffloadedOrDirect()) {
   2016             return NS_INACTIVE;
   2017         }
   2018     }
   2019 
   2020     // if inactive, then don't run me again until re-started
   2021     if (!active) {
   2022         return NS_INACTIVE;
   2023     }
   2024 
   2025     // Compute the estimated time until the next timed event (position, markers, loops)
   2026     // FIXME only for non-compressed audio
   2027     uint32_t minFrames = ~0;
   2028     if (!markerReached && position < markerPosition) {
   2029         minFrames = (markerPosition - position).value();
   2030     }
   2031     if (loopPeriod > 0 && loopPeriod < minFrames) {
   2032         // loopPeriod is already adjusted for actual position.
   2033         minFrames = loopPeriod;
   2034     }
   2035     if (updatePeriod > 0) {
   2036         minFrames = min(minFrames, (newPosition - position).value());
   2037     }
   2038 
   2039     // If > 0, poll periodically to recover from a stuck server.  A good value is 2.
   2040     static const uint32_t kPoll = 0;
   2041     if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
   2042         minFrames = kPoll * notificationFrames;
   2043     }
   2044 
   2045     // This "fudge factor" avoids soaking CPU, and compensates for late progress by server
   2046     static const nsecs_t kWaitPeriodNs = WAIT_PERIOD_MS * 1000000LL;
   2047     const nsecs_t timeAfterCallbacks = systemTime();
   2048 
   2049     // Convert frame units to time units
   2050     nsecs_t ns = NS_WHENEVER;
   2051     if (minFrames != (uint32_t) ~0) {
   2052         // AudioFlinger consumption of client data may be irregular when coming out of device
   2053         // standby since the kernel buffers require filling. This is throttled to no more than 2x
   2054         // the expected rate in the MixerThread. Hence, we reduce the estimated time to wait by one
   2055         // half (but no more than half a second) to improve callback accuracy during these temporary
   2056         // data surges.
   2057         const nsecs_t estimatedNs = framesToNanoseconds(minFrames, sampleRate, speed);
   2058         constexpr nsecs_t maxThrottleCompensationNs = 500000000LL;
   2059         ns = estimatedNs - min(estimatedNs / 2, maxThrottleCompensationNs) + kWaitPeriodNs;
   2060         ns -= (timeAfterCallbacks - timeBeforeCallbacks);  // account for callback time
   2061         // TODO: Should we warn if the callback time is too long?
   2062         if (ns < 0) ns = 0;
   2063     }
   2064 
   2065     // If not supplying data by EVENT_MORE_DATA, then we're done
   2066     if (mTransfer != TRANSFER_CALLBACK) {
   2067         return ns;
   2068     }
   2069 
   2070     // EVENT_MORE_DATA callback handling.
   2071     // Timing for linear pcm audio data formats can be derived directly from the
   2072     // buffer fill level.
   2073     // Timing for compressed data is not directly available from the buffer fill level,
   2074     // rather indirectly from waiting for blocking mode callbacks or waiting for obtain()
   2075     // to return a certain fill level.
   2076 
   2077     struct timespec timeout;
   2078     const struct timespec *requested = &ClientProxy::kForever;
   2079     if (ns != NS_WHENEVER) {
   2080         timeout.tv_sec = ns / 1000000000LL;
   2081         timeout.tv_nsec = ns % 1000000000LL;
   2082         ALOGV("timeout %ld.%03d", timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
   2083         requested = &timeout;
   2084     }
   2085 
   2086     size_t writtenFrames = 0;
   2087     while (mRemainingFrames > 0) {
   2088 
   2089         Buffer audioBuffer;
   2090         audioBuffer.frameCount = mRemainingFrames;
   2091         size_t nonContig;
   2092         status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
   2093         LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
   2094                 "obtainBuffer() err=%d frameCount=%zu", err, audioBuffer.frameCount);
   2095         requested = &ClientProxy::kNonBlocking;
   2096         size_t avail = audioBuffer.frameCount + nonContig;
   2097         ALOGV("obtainBuffer(%u) returned %zu = %zu + %zu err %d",
   2098                 mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
   2099         if (err != NO_ERROR) {
   2100             if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR ||
   2101                     (isOffloaded() && (err == DEAD_OBJECT))) {
   2102                 // FIXME bug 25195759
   2103                 return 1000000;
   2104             }
   2105             ALOGE("Error %d obtaining an audio buffer, giving up.", err);
   2106             return NS_NEVER;
   2107         }
   2108 
   2109         if (mRetryOnPartialBuffer && audio_has_proportional_frames(mFormat)) {
   2110             mRetryOnPartialBuffer = false;
   2111             if (avail < mRemainingFrames) {
   2112                 if (ns > 0) { // account for obtain time
   2113                     const nsecs_t timeNow = systemTime();
   2114                     ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
   2115                 }
   2116                 nsecs_t myns = framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
   2117                 if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
   2118                     ns = myns;
   2119                 }
   2120                 return ns;
   2121             }
   2122         }
   2123 
   2124         size_t reqSize = audioBuffer.size;
   2125         mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);
   2126         size_t writtenSize = audioBuffer.size;
   2127 
   2128         // Sanity check on returned size
   2129         if (ssize_t(writtenSize) < 0 || writtenSize > reqSize) {
   2130             ALOGE("EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
   2131                     reqSize, ssize_t(writtenSize));
   2132             return NS_NEVER;
   2133         }
   2134 
   2135         if (writtenSize == 0) {
   2136             // The callback is done filling buffers
   2137             // Keep this thread going to handle timed events and
   2138             // still try to get more data in intervals of WAIT_PERIOD_MS
   2139             // but don't just loop and block the CPU, so wait
   2140 
   2141             // mCbf(EVENT_MORE_DATA, ...) might either
   2142             // (1) Block until it can fill the buffer, returning 0 size on EOS.
   2143             // (2) Block until it can fill the buffer, returning 0 data (silence) on EOS.
   2144             // (3) Return 0 size when no data is available, does not wait for more data.
   2145             //
   2146             // (1) and (2) occurs with AudioPlayer/AwesomePlayer; (3) occurs with NuPlayer.
   2147             // We try to compute the wait time to avoid a tight sleep-wait cycle,
   2148             // especially for case (3).
   2149             //
   2150             // The decision to support (1) and (2) affect the sizing of mRemainingFrames
   2151             // and this loop; whereas for case (3) we could simply check once with the full
   2152             // buffer size and skip the loop entirely.
   2153 
   2154             nsecs_t myns;
   2155             if (audio_has_proportional_frames(mFormat)) {
   2156                 // time to wait based on buffer occupancy
   2157                 const nsecs_t datans = mRemainingFrames <= avail ? 0 :
   2158                         framesToNanoseconds(mRemainingFrames - avail, sampleRate, speed);
   2159                 // audio flinger thread buffer size (TODO: adjust for fast tracks)
   2160                 // FIXME: use mAfFrameCountHAL instead of mAfFrameCount below for fast tracks.
   2161                 const nsecs_t afns = framesToNanoseconds(mAfFrameCount, mAfSampleRate, speed);
   2162                 // add a half the AudioFlinger buffer time to avoid soaking CPU if datans is 0.
   2163                 myns = datans + (afns / 2);
   2164             } else {
   2165                 // FIXME: This could ping quite a bit if the buffer isn't full.
   2166                 // Note that when mState is stopping we waitStreamEnd, so it never gets here.
   2167                 myns = kWaitPeriodNs;
   2168             }
   2169             if (ns > 0) { // account for obtain and callback time
   2170                 const nsecs_t timeNow = systemTime();
   2171                 ns = max((nsecs_t)0, ns - (timeNow - timeAfterCallbacks));
   2172             }
   2173             if (ns < 0 /* NS_WHENEVER */ || myns < ns) {
   2174                 ns = myns;
   2175             }
   2176             return ns;
   2177         }
   2178 
   2179         size_t releasedFrames = writtenSize / mFrameSize;
   2180         audioBuffer.frameCount = releasedFrames;
   2181         mRemainingFrames -= releasedFrames;
   2182         if (misalignment >= releasedFrames) {
   2183             misalignment -= releasedFrames;
   2184         } else {
   2185             misalignment = 0;
   2186         }
   2187 
   2188         releaseBuffer(&audioBuffer);
   2189         writtenFrames += releasedFrames;
   2190 
   2191         // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
   2192         // if callback doesn't like to accept the full chunk
   2193         if (writtenSize < reqSize) {
   2194             continue;
   2195         }
   2196 
   2197         // There could be enough non-contiguous frames available to satisfy the remaining request
   2198         if (mRemainingFrames <= nonContig) {
   2199             continue;
   2200         }
   2201 
   2202 #if 0
   2203         // This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
   2204         // sum <= notificationFrames.  It replaces that series by at most two EVENT_MORE_DATA
   2205         // that total to a sum == notificationFrames.
   2206         if (0 < misalignment && misalignment <= mRemainingFrames) {
   2207             mRemainingFrames = misalignment;
   2208             return ((double)mRemainingFrames * 1100000000) / ((double)sampleRate * speed);
   2209         }
   2210 #endif
   2211 
   2212     }
   2213     if (writtenFrames > 0) {
   2214         AutoMutex lock(mLock);
   2215         mFramesWritten += writtenFrames;
   2216     }
   2217     mRemainingFrames = notificationFrames;
   2218     mRetryOnPartialBuffer = true;
   2219 
   2220     // A lot has transpired since ns was calculated, so run again immediately and re-calculate
   2221     return 0;
   2222 }
   2223 
   2224 status_t AudioTrack::restoreTrack_l(const char *from)
   2225 {
   2226     ALOGW("dead IAudioTrack, %s, creating a new one from %s()",
   2227           isOffloadedOrDirect_l() ? "Offloaded or Direct" : "PCM", from);
   2228     ++mSequence;
   2229 
   2230     // refresh the audio configuration cache in this process to make sure we get new
   2231     // output parameters and new IAudioFlinger in createTrack_l()
   2232     AudioSystem::clearAudioConfigCache();
   2233 
   2234     if (isOffloadedOrDirect_l() || mDoNotReconnect) {
   2235         // FIXME re-creation of offloaded and direct tracks is not yet implemented;
   2236         // reconsider enabling for linear PCM encodings when position can be preserved.
   2237         return DEAD_OBJECT;
   2238     }
   2239 
   2240     // Save so we can return count since creation.
   2241     mUnderrunCountOffset = getUnderrunCount_l();
   2242 
   2243     // save the old static buffer position
   2244     uint32_t staticPosition = 0;
   2245     size_t bufferPosition = 0;
   2246     int loopCount = 0;
   2247     if (mStaticProxy != 0) {
   2248         mStaticProxy->getBufferPositionAndLoopCount(&bufferPosition, &loopCount);
   2249         staticPosition = mStaticProxy->getPosition().unsignedValue();
   2250     }
   2251 
   2252     // See b/74409267. Connecting to a BT A2DP device supporting multiple codecs
   2253     // causes a lot of churn on the service side, and it can reject starting
   2254     // playback of a previously created track. May also apply to other cases.
   2255     const int INITIAL_RETRIES = 3;
   2256     int retries = INITIAL_RETRIES;
   2257 retry:
   2258     if (retries < INITIAL_RETRIES) {
   2259         // See the comment for clearAudioConfigCache at the start of the function.
   2260         AudioSystem::clearAudioConfigCache();
   2261     }
   2262     mFlags = mOrigFlags;
   2263 
   2264     // If a new IAudioTrack is successfully created, createTrack_l() will modify the
   2265     // following member variables: mAudioTrack, mCblkMemory and mCblk.
   2266     // It will also delete the strong references on previous IAudioTrack and IMemory.
   2267     // If a new IAudioTrack cannot be created, the previous (dead) instance will be left intact.
   2268     status_t result = createTrack_l();
   2269 
   2270     if (result != NO_ERROR) {
   2271         ALOGW("%s(): createTrack_l failed, do not retry", __func__);
   2272         retries = 0;
   2273     } else {
   2274         // take the frames that will be lost by track recreation into account in saved position
   2275         // For streaming tracks, this is the amount we obtained from the user/client
   2276         // (not the number actually consumed at the server - those are already lost).
   2277         if (mStaticProxy == 0) {
   2278             mPosition = mReleased;
   2279         }
   2280         // Continue playback from last known position and restore loop.
   2281         if (mStaticProxy != 0) {
   2282             if (loopCount != 0) {
   2283                 mStaticProxy->setBufferPositionAndLoop(bufferPosition,
   2284                         mLoopStart, mLoopEnd, loopCount);
   2285             } else {
   2286                 mStaticProxy->setBufferPosition(bufferPosition);
   2287                 if (bufferPosition == mFrameCount) {
   2288                     ALOGD("restoring track at end of static buffer");
   2289                 }
   2290             }
   2291         }
   2292         // restore volume handler
   2293         mVolumeHandler->forall([this](const VolumeShaper &shaper) -> VolumeShaper::Status {
   2294             sp<VolumeShaper::Operation> operationToEnd =
   2295                     new VolumeShaper::Operation(shaper.mOperation);
   2296             // TODO: Ideally we would restore to the exact xOffset position
   2297             // as returned by getVolumeShaperState(), but we don't have that
   2298             // information when restoring at the client unless we periodically poll
   2299             // the server or create shared memory state.
   2300             //
   2301             // For now, we simply advance to the end of the VolumeShaper effect
   2302             // if it has been started.
   2303             if (shaper.isStarted()) {
   2304                 operationToEnd->setNormalizedTime(1.f);
   2305             }
   2306             return mAudioTrack->applyVolumeShaper(shaper.mConfiguration, operationToEnd);
   2307         });
   2308 
   2309         if (mState == STATE_ACTIVE) {
   2310             result = mAudioTrack->start();
   2311         }
   2312         // server resets to zero so we offset
   2313         mFramesWrittenServerOffset =
   2314                 mStaticProxy.get() != nullptr ? staticPosition : mFramesWritten;
   2315         mFramesWrittenAtRestore = mFramesWrittenServerOffset;
   2316     }
   2317     if (result != NO_ERROR) {
   2318         ALOGW("%s() failed status %d, retries %d", __func__, result, retries);
   2319         if (--retries > 0) {
   2320             goto retry;
   2321         }
   2322         mState = STATE_STOPPED;
   2323         mReleased = 0;
   2324     }
   2325 
   2326     return result;
   2327 }
   2328 
   2329 Modulo<uint32_t> AudioTrack::updateAndGetPosition_l()
   2330 {
   2331     // This is the sole place to read server consumed frames
   2332     Modulo<uint32_t> newServer(mProxy->getPosition());
   2333     const int32_t delta = (newServer - mServer).signedValue();
   2334     // TODO There is controversy about whether there can be "negative jitter" in server position.
   2335     //      This should be investigated further, and if possible, it should be addressed.
   2336     //      A more definite failure mode is infrequent polling by client.
   2337     //      One could call (void)getPosition_l() in releaseBuffer(),
   2338     //      so mReleased and mPosition are always lock-step as best possible.
   2339     //      That should ensure delta never goes negative for infrequent polling
   2340     //      unless the server has more than 2^31 frames in its buffer,
   2341     //      in which case the use of uint32_t for these counters has bigger issues.
   2342     ALOGE_IF(delta < 0,
   2343             "detected illegal retrograde motion by the server: mServer advanced by %d",
   2344             delta);
   2345     mServer = newServer;
   2346     if (delta > 0) { // avoid retrograde
   2347         mPosition += delta;
   2348     }
   2349     return mPosition;
   2350 }
   2351 
   2352 bool AudioTrack::isSampleRateSpeedAllowed_l(uint32_t sampleRate, float speed)
   2353 {
   2354     updateLatency_l();
   2355     // applicable for mixing tracks only (not offloaded or direct)
   2356     if (mStaticProxy != 0) {
   2357         return true; // static tracks do not have issues with buffer sizing.
   2358     }
   2359     const size_t minFrameCount =
   2360             AudioSystem::calculateMinFrameCount(mAfLatency, mAfFrameCount, mAfSampleRate,
   2361                                             sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
   2362     const bool allowed = mFrameCount >= minFrameCount;
   2363     ALOGD_IF(!allowed,
   2364             "isSampleRateSpeedAllowed_l denied "
   2365             "mAfLatency:%u  mAfFrameCount:%zu  mAfSampleRate:%u  sampleRate:%u  speed:%f "
   2366             "mFrameCount:%zu < minFrameCount:%zu",
   2367             mAfLatency, mAfFrameCount, mAfSampleRate, sampleRate, speed,
   2368             mFrameCount, minFrameCount);
   2369     return allowed;
   2370 }
   2371 
   2372 status_t AudioTrack::setParameters(const String8& keyValuePairs)
   2373 {
   2374     AutoMutex lock(mLock);
   2375     return mAudioTrack->setParameters(keyValuePairs);
   2376 }
   2377 
   2378 status_t AudioTrack::selectPresentation(int presentationId, int programId)
   2379 {
   2380     AutoMutex lock(mLock);
   2381     AudioParameter param = AudioParameter();
   2382     param.addInt(String8(AudioParameter::keyPresentationId), presentationId);
   2383     param.addInt(String8(AudioParameter::keyProgramId), programId);
   2384     ALOGV("PresentationId/ProgramId[%s]",param.toString().string());
   2385 
   2386     return mAudioTrack->setParameters(param.toString());
   2387 }
   2388 
   2389 VolumeShaper::Status AudioTrack::applyVolumeShaper(
   2390         const sp<VolumeShaper::Configuration>& configuration,
   2391         const sp<VolumeShaper::Operation>& operation)
   2392 {
   2393     AutoMutex lock(mLock);
   2394     mVolumeHandler->setIdIfNecessary(configuration);
   2395     VolumeShaper::Status status = mAudioTrack->applyVolumeShaper(configuration, operation);
   2396 
   2397     if (status == DEAD_OBJECT) {
   2398         if (restoreTrack_l("applyVolumeShaper") == OK) {
   2399             status = mAudioTrack->applyVolumeShaper(configuration, operation);
   2400         }
   2401     }
   2402     if (status >= 0) {
   2403         // save VolumeShaper for restore
   2404         mVolumeHandler->applyVolumeShaper(configuration, operation);
   2405         if (mState == STATE_ACTIVE || mState == STATE_STOPPING) {
   2406             mVolumeHandler->setStarted();
   2407         }
   2408     } else {
   2409         // warn only if not an expected restore failure.
   2410         ALOGW_IF(!((isOffloadedOrDirect_l() || mDoNotReconnect) && status == DEAD_OBJECT),
   2411                 "applyVolumeShaper failed: %d", status);
   2412     }
   2413     return status;
   2414 }
   2415 
   2416 sp<VolumeShaper::State> AudioTrack::getVolumeShaperState(int id)
   2417 {
   2418     AutoMutex lock(mLock);
   2419     sp<VolumeShaper::State> state = mAudioTrack->getVolumeShaperState(id);
   2420     if (state.get() == nullptr && (mCblk->mFlags & CBLK_INVALID) != 0) {
   2421         if (restoreTrack_l("getVolumeShaperState") == OK) {
   2422             state = mAudioTrack->getVolumeShaperState(id);
   2423         }
   2424     }
   2425     return state;
   2426 }
   2427 
   2428 status_t AudioTrack::getTimestamp(ExtendedTimestamp *timestamp)
   2429 {
   2430     if (timestamp == nullptr) {
   2431         return BAD_VALUE;
   2432     }
   2433     AutoMutex lock(mLock);
   2434     return getTimestamp_l(timestamp);
   2435 }
   2436 
   2437 status_t AudioTrack::getTimestamp_l(ExtendedTimestamp *timestamp)
   2438 {
   2439     if (mCblk->mFlags & CBLK_INVALID) {
   2440         const status_t status = restoreTrack_l("getTimestampExtended");
   2441         if (status != OK) {
   2442             // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
   2443             // recommending that the track be recreated.
   2444             return DEAD_OBJECT;
   2445         }
   2446     }
   2447     // check for offloaded/direct here in case restoring somehow changed those flags.
   2448     if (isOffloadedOrDirect_l()) {
   2449         return INVALID_OPERATION; // not supported
   2450     }
   2451     status_t status = mProxy->getTimestamp(timestamp);
   2452     LOG_ALWAYS_FATAL_IF(status != OK, "status %d not allowed from proxy getTimestamp", status);
   2453     bool found = false;
   2454     timestamp->mPosition[ExtendedTimestamp::LOCATION_CLIENT] = mFramesWritten;
   2455     timestamp->mTimeNs[ExtendedTimestamp::LOCATION_CLIENT] = 0;
   2456     // server side frame offset in case AudioTrack has been restored.
   2457     for (int i = ExtendedTimestamp::LOCATION_SERVER;
   2458             i < ExtendedTimestamp::LOCATION_MAX; ++i) {
   2459         if (timestamp->mTimeNs[i] >= 0) {
   2460             // apply server offset (frames flushed is ignored
   2461             // so we don't report the jump when the flush occurs).
   2462             timestamp->mPosition[i] += mFramesWrittenServerOffset;
   2463             found = true;
   2464         }
   2465     }
   2466     return found ? OK : WOULD_BLOCK;
   2467 }
   2468 
   2469 status_t AudioTrack::getTimestamp(AudioTimestamp& timestamp)
   2470 {
   2471     AutoMutex lock(mLock);
   2472     return getTimestamp_l(timestamp);
   2473 }
   2474 
   2475 status_t AudioTrack::getTimestamp_l(AudioTimestamp& timestamp)
   2476 {
   2477     bool previousTimestampValid = mPreviousTimestampValid;
   2478     // Set false here to cover all the error return cases.
   2479     mPreviousTimestampValid = false;
   2480 
   2481     switch (mState) {
   2482     case STATE_ACTIVE:
   2483     case STATE_PAUSED:
   2484         break; // handle below
   2485     case STATE_FLUSHED:
   2486     case STATE_STOPPED:
   2487         return WOULD_BLOCK;
   2488     case STATE_STOPPING:
   2489     case STATE_PAUSED_STOPPING:
   2490         if (!isOffloaded_l()) {
   2491             return INVALID_OPERATION;
   2492         }
   2493         break; // offloaded tracks handled below
   2494     default:
   2495         LOG_ALWAYS_FATAL("Invalid mState in getTimestamp(): %d", mState);
   2496         break;
   2497     }
   2498 
   2499     if (mCblk->mFlags & CBLK_INVALID) {
   2500         const status_t status = restoreTrack_l("getTimestamp");
   2501         if (status != OK) {
   2502             // per getTimestamp() API doc in header, we return DEAD_OBJECT here,
   2503             // recommending that the track be recreated.
   2504             return DEAD_OBJECT;
   2505         }
   2506     }
   2507 
   2508     // The presented frame count must always lag behind the consumed frame count.
   2509     // To avoid a race, read the presented frames first.  This ensures that presented <= consumed.
   2510 
   2511     status_t status;
   2512     if (isOffloadedOrDirect_l()) {
   2513         // use Binder to get timestamp
   2514         status = mAudioTrack->getTimestamp(timestamp);
   2515     } else {
   2516         // read timestamp from shared memory
   2517         ExtendedTimestamp ets;
   2518         status = mProxy->getTimestamp(&ets);
   2519         if (status == OK) {
   2520             ExtendedTimestamp::Location location;
   2521             status = ets.getBestTimestamp(&timestamp, &location);
   2522 
   2523             if (status == OK) {
   2524                 updateLatency_l();
   2525                 // It is possible that the best location has moved from the kernel to the server.
   2526                 // In this case we adjust the position from the previous computed latency.
   2527                 if (location == ExtendedTimestamp::LOCATION_SERVER) {
   2528                     ALOGW_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_KERNEL,
   2529                             "getTimestamp() location moved from kernel to server");
   2530                     // check that the last kernel OK time info exists and the positions
   2531                     // are valid (if they predate the current track, the positions may
   2532                     // be zero or negative).
   2533                     const int64_t frames =
   2534                             (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
   2535                             ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0 ||
   2536                             ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] <= 0 ||
   2537                             ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] <= 0)
   2538                             ?
   2539                             int64_t((double)mAfLatency * mSampleRate * mPlaybackRate.mSpeed
   2540                                     / 1000)
   2541                             :
   2542                             (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
   2543                             - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK]);
   2544                     ALOGV("frame adjustment:%lld  timestamp:%s",
   2545                             (long long)frames, ets.toString().c_str());
   2546                     if (frames >= ets.mPosition[location]) {
   2547                         timestamp.mPosition = 0;
   2548                     } else {
   2549                         timestamp.mPosition = (uint32_t)(ets.mPosition[location] - frames);
   2550                     }
   2551                 } else if (location == ExtendedTimestamp::LOCATION_KERNEL) {
   2552                     ALOGV_IF(mPreviousLocation == ExtendedTimestamp::LOCATION_SERVER,
   2553                             "getTimestamp() location moved from server to kernel");
   2554                 }
   2555 
   2556                 // We update the timestamp time even when paused.
   2557                 if (mState == STATE_PAUSED /* not needed: STATE_PAUSED_STOPPING */) {
   2558                     const int64_t now = systemTime();
   2559                     const int64_t at = audio_utils_ns_from_timespec(&timestamp.mTime);
   2560                     const int64_t lag =
   2561                             (ets.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] < 0 ||
   2562                                 ets.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] < 0)
   2563                             ? int64_t(mAfLatency * 1000000LL)
   2564                             : (ets.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK]
   2565                              - ets.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK])
   2566                              * NANOS_PER_SECOND / mSampleRate;
   2567                     const int64_t limit = now - lag; // no earlier than this limit
   2568                     if (at < limit) {
   2569                         ALOGV("timestamp pause lag:%lld adjusting from %lld to %lld",
   2570                                 (long long)lag, (long long)at, (long long)limit);
   2571                         timestamp.mTime = convertNsToTimespec(limit);
   2572                     }
   2573                 }
   2574                 mPreviousLocation = location;
   2575             } else {
   2576                 // right after AudioTrack is started, one may not find a timestamp
   2577                 ALOGV("getBestTimestamp did not find timestamp");
   2578             }
   2579         }
   2580         if (status == INVALID_OPERATION) {
   2581             // INVALID_OPERATION occurs when no timestamp has been issued by the server;
   2582             // other failures are signaled by a negative time.
   2583             // If we come out of FLUSHED or STOPPED where the position is known
   2584             // to be zero we convert this to WOULD_BLOCK (with the implicit meaning of
   2585             // "zero" for NuPlayer).  We don't convert for track restoration as position
   2586             // does not reset.
   2587             ALOGV("timestamp server offset:%lld restore frames:%lld",
   2588                     (long long)mFramesWrittenServerOffset, (long long)mFramesWrittenAtRestore);
   2589             if (mFramesWrittenServerOffset != mFramesWrittenAtRestore) {
   2590                 status = WOULD_BLOCK;
   2591             }
   2592         }
   2593     }
   2594     if (status != NO_ERROR) {
   2595         ALOGV_IF(status != WOULD_BLOCK, "getTimestamp error:%#x", status);
   2596         return status;
   2597     }
   2598     if (isOffloadedOrDirect_l()) {
   2599         if (isOffloaded_l() && (mState == STATE_PAUSED || mState == STATE_PAUSED_STOPPING)) {
   2600             // use cached paused position in case another offloaded track is running.
   2601             timestamp.mPosition = mPausedPosition;
   2602             clock_gettime(CLOCK_MONOTONIC, &timestamp.mTime);
   2603             // TODO: adjust for delay
   2604             return NO_ERROR;
   2605         }
   2606 
   2607         // Check whether a pending flush or stop has completed, as those commands may
   2608         // be asynchronous or return near finish or exhibit glitchy behavior.
   2609         //
   2610         // Originally this showed up as the first timestamp being a continuation of
   2611         // the previous song under gapless playback.
   2612         // However, we sometimes see zero timestamps, then a glitch of
   2613         // the previous song's position, and then correct timestamps afterwards.
   2614         if (mStartFromZeroUs != 0 && mSampleRate != 0) {
   2615             static const int kTimeJitterUs = 100000; // 100 ms
   2616             static const int k1SecUs = 1000000;
   2617 
   2618             const int64_t timeNow = getNowUs();
   2619 
   2620             if (timeNow < mStartFromZeroUs + k1SecUs) { // within first second of starting
   2621                 const int64_t timestampTimeUs = convertTimespecToUs(timestamp.mTime);
   2622                 if (timestampTimeUs < mStartFromZeroUs) {
   2623                     return WOULD_BLOCK;  // stale timestamp time, occurs before start.
   2624                 }
   2625                 const int64_t deltaTimeUs = timestampTimeUs - mStartFromZeroUs;
   2626                 const int64_t deltaPositionByUs = (double)timestamp.mPosition * 1000000
   2627                         / ((double)mSampleRate * mPlaybackRate.mSpeed);
   2628 
   2629                 if (deltaPositionByUs > deltaTimeUs + kTimeJitterUs) {
   2630                     // Verify that the counter can't count faster than the sample rate
   2631                     // since the start time.  If greater, then that means we may have failed
   2632                     // to completely flush or stop the previous playing track.
   2633                     ALOGW_IF(!mTimestampStartupGlitchReported,
   2634                             "getTimestamp startup glitch detected"
   2635                             " deltaTimeUs(%lld) deltaPositionUs(%lld) tsmPosition(%u)",
   2636                             (long long)deltaTimeUs, (long long)deltaPositionByUs,
   2637                             timestamp.mPosition);
   2638                     mTimestampStartupGlitchReported = true;
   2639                     if (previousTimestampValid
   2640                             && mPreviousTimestamp.mPosition == 0 /* should be true if valid */) {
   2641                         timestamp = mPreviousTimestamp;
   2642                         mPreviousTimestampValid = true;
   2643                         return NO_ERROR;
   2644                     }
   2645                     return WOULD_BLOCK;
   2646                 }
   2647                 if (deltaPositionByUs != 0) {
   2648                     mStartFromZeroUs = 0; // don't check again, we got valid nonzero position.
   2649                 }
   2650             } else {
   2651                 mStartFromZeroUs = 0; // don't check again, start time expired.
   2652             }
   2653             mTimestampStartupGlitchReported = false;
   2654         }
   2655     } else {
   2656         // Update the mapping between local consumed (mPosition) and server consumed (mServer)
   2657         (void) updateAndGetPosition_l();
   2658         // Server consumed (mServer) and presented both use the same server time base,
   2659         // and server consumed is always >= presented.
   2660         // The delta between these represents the number of frames in the buffer pipeline.
   2661         // If this delta between these is greater than the client position, it means that
   2662         // actually presented is still stuck at the starting line (figuratively speaking),
   2663         // waiting for the first frame to go by.  So we can't report a valid timestamp yet.
   2664         // Note: We explicitly use non-Modulo comparison here - potential wrap issue when
   2665         // mPosition exceeds 32 bits.
   2666         // TODO Remove when timestamp is updated to contain pipeline status info.
   2667         const int32_t pipelineDepthInFrames = (mServer - timestamp.mPosition).signedValue();
   2668         if (pipelineDepthInFrames > 0 /* should be true, but we check anyways */
   2669                 && (uint32_t)pipelineDepthInFrames > mPosition.value()) {
   2670             return INVALID_OPERATION;
   2671         }
   2672         // Convert timestamp position from server time base to client time base.
   2673         // TODO The following code should work OK now because timestamp.mPosition is 32-bit.
   2674         // But if we change it to 64-bit then this could fail.
   2675         // Use Modulo computation here.
   2676         timestamp.mPosition = (mPosition - mServer + timestamp.mPosition).value();
   2677         // Immediately after a call to getPosition_l(), mPosition and
   2678         // mServer both represent the same frame position.  mPosition is
   2679         // in client's point of view, and mServer is in server's point of
   2680         // view.  So the difference between them is the "fudge factor"
   2681         // between client and server views due to stop() and/or new
   2682         // IAudioTrack.  And timestamp.mPosition is initially in server's
   2683         // point of view, so we need to apply the same fudge factor to it.
   2684     }
   2685 
   2686     // Prevent retrograde motion in timestamp.
   2687     // This is sometimes caused by erratic reports of the available space in the ALSA drivers.
   2688     if (status == NO_ERROR) {
   2689         // previousTimestampValid is set to false when starting after a stop or flush.
   2690         if (previousTimestampValid) {
   2691             const int64_t previousTimeNanos =
   2692                     audio_utils_ns_from_timespec(&mPreviousTimestamp.mTime);
   2693             int64_t currentTimeNanos = audio_utils_ns_from_timespec(&timestamp.mTime);
   2694 
   2695             // Fix stale time when checking timestamp right after start().
   2696             //
   2697             // For offload compatibility, use a default lag value here.
   2698             // Any time discrepancy between this update and the pause timestamp is handled
   2699             // by the retrograde check afterwards.
   2700             const int64_t lagNs = int64_t(mAfLatency * 1000000LL);
   2701             const int64_t limitNs = mStartNs - lagNs;
   2702             if (currentTimeNanos < limitNs) {
   2703                 ALOGD("correcting timestamp time for pause, "
   2704                         "currentTimeNanos: %lld < limitNs: %lld < mStartNs: %lld",
   2705                         (long long)currentTimeNanos, (long long)limitNs, (long long)mStartNs);
   2706                 timestamp.mTime = convertNsToTimespec(limitNs);
   2707                 currentTimeNanos = limitNs;
   2708             }
   2709 
   2710             // retrograde check
   2711             if (currentTimeNanos < previousTimeNanos) {
   2712                 ALOGW("retrograde timestamp time corrected, %lld < %lld",
   2713                         (long long)currentTimeNanos, (long long)previousTimeNanos);
   2714                 timestamp.mTime = mPreviousTimestamp.mTime;
   2715                 // currentTimeNanos not used below.
   2716             }
   2717 
   2718             // Looking at signed delta will work even when the timestamps
   2719             // are wrapping around.
   2720             int32_t deltaPosition = (Modulo<uint32_t>(timestamp.mPosition)
   2721                     - mPreviousTimestamp.mPosition).signedValue();
   2722             if (deltaPosition < 0) {
   2723                 // Only report once per position instead of spamming the log.
   2724                 if (!mRetrogradeMotionReported) {
   2725                     ALOGW("retrograde timestamp position corrected, %d = %u - %u",
   2726                             deltaPosition,
   2727                             timestamp.mPosition,
   2728                             mPreviousTimestamp.mPosition);
   2729                     mRetrogradeMotionReported = true;
   2730                 }
   2731             } else {
   2732                 mRetrogradeMotionReported = false;
   2733             }
   2734             if (deltaPosition < 0) {
   2735                 timestamp.mPosition = mPreviousTimestamp.mPosition;
   2736                 deltaPosition = 0;
   2737             }
   2738 #if 0
   2739             // Uncomment this to verify audio timestamp rate.
   2740             const int64_t deltaTime =
   2741                     audio_utils_ns_from_timespec(&timestamp.mTime) - previousTimeNanos;
   2742             if (deltaTime != 0) {
   2743                 const int64_t computedSampleRate =
   2744                         deltaPosition * (long long)NANOS_PER_SECOND / deltaTime;
   2745                 ALOGD("computedSampleRate:%u  sampleRate:%u",
   2746                         (unsigned)computedSampleRate, mSampleRate);
   2747             }
   2748 #endif
   2749         }
   2750         mPreviousTimestamp = timestamp;
   2751         mPreviousTimestampValid = true;
   2752     }
   2753 
   2754     return status;
   2755 }
   2756 
   2757 String8 AudioTrack::getParameters(const String8& keys)
   2758 {
   2759     audio_io_handle_t output = getOutput();
   2760     if (output != AUDIO_IO_HANDLE_NONE) {
   2761         return AudioSystem::getParameters(output, keys);
   2762     } else {
   2763         return String8::empty();
   2764     }
   2765 }
   2766 
   2767 bool AudioTrack::isOffloaded() const
   2768 {
   2769     AutoMutex lock(mLock);
   2770     return isOffloaded_l();
   2771 }
   2772 
   2773 bool AudioTrack::isDirect() const
   2774 {
   2775     AutoMutex lock(mLock);
   2776     return isDirect_l();
   2777 }
   2778 
   2779 bool AudioTrack::isOffloadedOrDirect() const
   2780 {
   2781     AutoMutex lock(mLock);
   2782     return isOffloadedOrDirect_l();
   2783 }
   2784 
   2785 
   2786 status_t AudioTrack::dump(int fd, const Vector<String16>& args __unused) const
   2787 {
   2788     String8 result;
   2789 
   2790     result.append(" AudioTrack::dump\n");
   2791     result.appendFormat("  status(%d), state(%d), session Id(%d), flags(%#x)\n",
   2792                         mStatus, mState, mSessionId, mFlags);
   2793     result.appendFormat("  stream type(%d), left - right volume(%f, %f)\n",
   2794                         (mStreamType == AUDIO_STREAM_DEFAULT) ?
   2795                                 audio_attributes_to_stream_type(&mAttributes) : mStreamType,
   2796                         mVolume[AUDIO_INTERLEAVE_LEFT], mVolume[AUDIO_INTERLEAVE_RIGHT]);
   2797     result.appendFormat("  format(%#x), channel mask(%#x), channel count(%u)\n",
   2798                   mFormat, mChannelMask, mChannelCount);
   2799     result.appendFormat("  sample rate(%u), original sample rate(%u), speed(%f)\n",
   2800                   mSampleRate, mOriginalSampleRate, mPlaybackRate.mSpeed);
   2801     result.appendFormat("  frame count(%zu), req. frame count(%zu)\n",
   2802                   mFrameCount, mReqFrameCount);
   2803     result.appendFormat("  notif. frame count(%u), req. notif. frame count(%u),"
   2804             " req. notif. per buff(%u)\n",
   2805              mNotificationFramesAct, mNotificationFramesReq, mNotificationsPerBufferReq);
   2806     result.appendFormat("  latency (%d), selected device Id(%d), routed device Id(%d)\n",
   2807                         mLatency, mSelectedDeviceId, mRoutedDeviceId);
   2808     result.appendFormat("  output(%d) AF latency (%u) AF frame count(%zu) AF SampleRate(%u)\n",
   2809                         mOutput, mAfLatency, mAfFrameCount, mAfSampleRate);
   2810     ::write(fd, result.string(), result.size());
   2811     return NO_ERROR;
   2812 }
   2813 
   2814 uint32_t AudioTrack::getUnderrunCount() const
   2815 {
   2816     AutoMutex lock(mLock);
   2817     return getUnderrunCount_l();
   2818 }
   2819 
   2820 uint32_t AudioTrack::getUnderrunCount_l() const
   2821 {
   2822     return mProxy->getUnderrunCount() + mUnderrunCountOffset;
   2823 }
   2824 
   2825 uint32_t AudioTrack::getUnderrunFrames() const
   2826 {
   2827     AutoMutex lock(mLock);
   2828     return mProxy->getUnderrunFrames();
   2829 }
   2830 
   2831 status_t AudioTrack::addAudioDeviceCallback(const sp<AudioSystem::AudioDeviceCallback>& callback)
   2832 {
   2833     if (callback == 0) {
   2834         ALOGW("%s adding NULL callback!", __FUNCTION__);
   2835         return BAD_VALUE;
   2836     }
   2837     AutoMutex lock(mLock);
   2838     if (mDeviceCallback.unsafe_get() == callback.get()) {
   2839         ALOGW("%s adding same callback!", __FUNCTION__);
   2840         return INVALID_OPERATION;
   2841     }
   2842     status_t status = NO_ERROR;
   2843     if (mOutput != AUDIO_IO_HANDLE_NONE) {
   2844         if (mDeviceCallback != 0) {
   2845             ALOGW("%s callback already present!", __FUNCTION__);
   2846             AudioSystem::removeAudioDeviceCallback(this, mOutput);
   2847         }
   2848         status = AudioSystem::addAudioDeviceCallback(this, mOutput);
   2849     }
   2850     mDeviceCallback = callback;
   2851     return status;
   2852 }
   2853 
   2854 status_t AudioTrack::removeAudioDeviceCallback(
   2855         const sp<AudioSystem::AudioDeviceCallback>& callback)
   2856 {
   2857     if (callback == 0) {
   2858         ALOGW("%s removing NULL callback!", __FUNCTION__);
   2859         return BAD_VALUE;
   2860     }
   2861     AutoMutex lock(mLock);
   2862     if (mDeviceCallback.unsafe_get() != callback.get()) {
   2863         ALOGW("%s removing different callback!", __FUNCTION__);
   2864         return INVALID_OPERATION;
   2865     }
   2866     mDeviceCallback.clear();
   2867     if (mOutput != AUDIO_IO_HANDLE_NONE) {
   2868         AudioSystem::removeAudioDeviceCallback(this, mOutput);
   2869     }
   2870     return NO_ERROR;
   2871 }
   2872 
   2873 
   2874 void AudioTrack::onAudioDeviceUpdate(audio_io_handle_t audioIo,
   2875                                  audio_port_handle_t deviceId)
   2876 {
   2877     sp<AudioSystem::AudioDeviceCallback> callback;
   2878     {
   2879         AutoMutex lock(mLock);
   2880         if (audioIo != mOutput) {
   2881             return;
   2882         }
   2883         callback = mDeviceCallback.promote();
   2884         // only update device if the track is active as route changes due to other use cases are
   2885         // irrelevant for this client
   2886         if (mState == STATE_ACTIVE) {
   2887             mRoutedDeviceId = deviceId;
   2888         }
   2889     }
   2890     if (callback.get() != nullptr) {
   2891         callback->onAudioDeviceUpdate(mOutput, mRoutedDeviceId);
   2892     }
   2893 }
   2894 
   2895 status_t AudioTrack::pendingDuration(int32_t *msec, ExtendedTimestamp::Location location)
   2896 {
   2897     if (msec == nullptr ||
   2898             (location != ExtendedTimestamp::LOCATION_SERVER
   2899                     && location != ExtendedTimestamp::LOCATION_KERNEL)) {
   2900         return BAD_VALUE;
   2901     }
   2902     AutoMutex lock(mLock);
   2903     // inclusive of offloaded and direct tracks.
   2904     //
   2905     // It is possible, but not enabled, to allow duration computation for non-pcm
   2906     // audio_has_proportional_frames() formats because currently they have
   2907     // the drain rate equivalent to the pcm sample rate * framesize.
   2908     if (!isPurePcmData_l()) {
   2909         return INVALID_OPERATION;
   2910     }
   2911     ExtendedTimestamp ets;
   2912     if (getTimestamp_l(&ets) == OK
   2913             && ets.mTimeNs[location] > 0) {
   2914         int64_t diff = ets.mPosition[ExtendedTimestamp::LOCATION_CLIENT]
   2915                 - ets.mPosition[location];
   2916         if (diff < 0) {
   2917             *msec = 0;
   2918         } else {
   2919             // ms is the playback time by frames
   2920             int64_t ms = (int64_t)((double)diff * 1000 /
   2921                     ((double)mSampleRate * mPlaybackRate.mSpeed));
   2922             // clockdiff is the timestamp age (negative)
   2923             int64_t clockdiff = (mState != STATE_ACTIVE) ? 0 :
   2924                     ets.mTimeNs[location]
   2925                     + ets.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_MONOTONIC]
   2926                     - systemTime(SYSTEM_TIME_MONOTONIC);
   2927 
   2928             //ALOGV("ms: %lld  clockdiff: %lld", (long long)ms, (long long)clockdiff);
   2929             static const int NANOS_PER_MILLIS = 1000000;
   2930             *msec = (int32_t)(ms + clockdiff / NANOS_PER_MILLIS);
   2931         }
   2932         return NO_ERROR;
   2933     }
   2934     if (location != ExtendedTimestamp::LOCATION_SERVER) {
   2935         return INVALID_OPERATION; // LOCATION_KERNEL is not available
   2936     }
   2937     // use server position directly (offloaded and direct arrive here)
   2938     updateAndGetPosition_l();
   2939     int32_t diff = (Modulo<uint32_t>(mFramesWritten) - mPosition).signedValue();
   2940     *msec = (diff <= 0) ? 0
   2941             : (int32_t)((double)diff * 1000 / ((double)mSampleRate * mPlaybackRate.mSpeed));
   2942     return NO_ERROR;
   2943 }
   2944 
   2945 bool AudioTrack::hasStarted()
   2946 {
   2947     AutoMutex lock(mLock);
   2948     switch (mState) {
   2949     case STATE_STOPPED:
   2950         if (isOffloadedOrDirect_l()) {
   2951             // check if we have started in the past to return true.
   2952             return mStartFromZeroUs > 0;
   2953         }
   2954         // A normal audio track may still be draining, so
   2955         // check if stream has ended.  This covers fasttrack position
   2956         // instability and start/stop without any data written.
   2957         if (mProxy->getStreamEndDone()) {
   2958             return true;
   2959         }
   2960         // fall through
   2961     case STATE_ACTIVE:
   2962     case STATE_STOPPING:
   2963         break;
   2964     case STATE_PAUSED:
   2965     case STATE_PAUSED_STOPPING:
   2966     case STATE_FLUSHED:
   2967         return false;  // we're not active
   2968     default:
   2969         LOG_ALWAYS_FATAL("Invalid mState in hasStarted(): %d", mState);
   2970         break;
   2971     }
   2972 
   2973     // wait indicates whether we need to wait for a timestamp.
   2974     // This is conservatively figured - if we encounter an unexpected error
   2975     // then we will not wait.
   2976     bool wait = false;
   2977     if (isOffloadedOrDirect_l()) {
   2978         AudioTimestamp ts;
   2979         status_t status = getTimestamp_l(ts);
   2980         if (status == WOULD_BLOCK) {
   2981             wait = true;
   2982         } else if (status == OK) {
   2983             wait = (ts.mPosition == 0 || ts.mPosition == mStartTs.mPosition);
   2984         }
   2985         ALOGV("hasStarted wait:%d  ts:%u  start position:%lld",
   2986                 (int)wait,
   2987                 ts.mPosition,
   2988                 (long long)mStartTs.mPosition);
   2989     } else {
   2990         int location = ExtendedTimestamp::LOCATION_SERVER; // for ALOG
   2991         ExtendedTimestamp ets;
   2992         status_t status = getTimestamp_l(&ets);
   2993         if (status == WOULD_BLOCK) {  // no SERVER or KERNEL frame info in ets
   2994             wait = true;
   2995         } else if (status == OK) {
   2996             for (location = ExtendedTimestamp::LOCATION_KERNEL;
   2997                     location >= ExtendedTimestamp::LOCATION_SERVER; --location) {
   2998                 if (ets.mTimeNs[location] < 0 || mStartEts.mTimeNs[location] < 0) {
   2999                     continue;
   3000                 }
   3001                 wait = ets.mPosition[location] == 0
   3002                         || ets.mPosition[location] == mStartEts.mPosition[location];
   3003                 break;
   3004             }
   3005         }
   3006         ALOGV("hasStarted wait:%d  ets:%lld  start position:%lld",
   3007                 (int)wait,
   3008                 (long long)ets.mPosition[location],
   3009                 (long long)mStartEts.mPosition[location]);
   3010     }
   3011     return !wait;
   3012 }
   3013 
   3014 // =========================================================================
   3015 
   3016 void AudioTrack::DeathNotifier::binderDied(const wp<IBinder>& who __unused)
   3017 {
   3018     sp<AudioTrack> audioTrack = mAudioTrack.promote();
   3019     if (audioTrack != 0) {
   3020         AutoMutex lock(audioTrack->mLock);
   3021         audioTrack->mProxy->binderDied();
   3022     }
   3023 }
   3024 
   3025 // =========================================================================
   3026 
   3027 AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava)
   3028     : Thread(bCanCallJava), mReceiver(receiver), mPaused(true), mPausedInt(false), mPausedNs(0LL),
   3029       mIgnoreNextPausedInt(false)
   3030 {
   3031 }
   3032 
   3033 AudioTrack::AudioTrackThread::~AudioTrackThread()
   3034 {
   3035 }
   3036 
   3037 bool AudioTrack::AudioTrackThread::threadLoop()
   3038 {
   3039     {
   3040         AutoMutex _l(mMyLock);
   3041         if (mPaused) {
   3042             // TODO check return value and handle or log
   3043             mMyCond.wait(mMyLock);
   3044             // caller will check for exitPending()
   3045             return true;
   3046         }
   3047         if (mIgnoreNextPausedInt) {
   3048             mIgnoreNextPausedInt = false;
   3049             mPausedInt = false;
   3050         }
   3051         if (mPausedInt) {
   3052             // TODO use futex instead of condition, for event flag "or"
   3053             if (mPausedNs > 0) {
   3054                 // TODO check return value and handle or log
   3055                 (void) mMyCond.waitRelative(mMyLock, mPausedNs);
   3056             } else {
   3057                 // TODO check return value and handle or log
   3058                 mMyCond.wait(mMyLock);
   3059             }
   3060             mPausedInt = false;
   3061             return true;
   3062         }
   3063     }
   3064     if (exitPending()) {
   3065         return false;
   3066     }
   3067     nsecs_t ns = mReceiver.processAudioBuffer();
   3068     switch (ns) {
   3069     case 0:
   3070         return true;
   3071     case NS_INACTIVE:
   3072         pauseInternal();
   3073         return true;
   3074     case NS_NEVER:
   3075         return false;
   3076     case NS_WHENEVER:
   3077         // Event driven: call wake() when callback notifications conditions change.
   3078         ns = INT64_MAX;
   3079         // fall through
   3080     default:
   3081         LOG_ALWAYS_FATAL_IF(ns < 0, "processAudioBuffer() returned %" PRId64, ns);
   3082         pauseInternal(ns);
   3083         return true;
   3084     }
   3085 }
   3086 
   3087 void AudioTrack::AudioTrackThread::requestExit()
   3088 {
   3089     // must be in this order to avoid a race condition
   3090     Thread::requestExit();
   3091     resume();
   3092 }
   3093 
   3094 void AudioTrack::AudioTrackThread::pause()
   3095 {
   3096     AutoMutex _l(mMyLock);
   3097     mPaused = true;
   3098 }
   3099 
   3100 void AudioTrack::AudioTrackThread::resume()
   3101 {
   3102     AutoMutex _l(mMyLock);
   3103     mIgnoreNextPausedInt = true;
   3104     if (mPaused || mPausedInt) {
   3105         mPaused = false;
   3106         mPausedInt = false;
   3107         mMyCond.signal();
   3108     }
   3109 }
   3110 
   3111 void AudioTrack::AudioTrackThread::wake()
   3112 {
   3113     AutoMutex _l(mMyLock);
   3114     if (!mPaused) {
   3115         // wake() might be called while servicing a callback - ignore the next
   3116         // pause time and call processAudioBuffer.
   3117         mIgnoreNextPausedInt = true;
   3118         if (mPausedInt && mPausedNs > 0) {
   3119             // audio track is active and internally paused with timeout.
   3120             mPausedInt = false;
   3121             mMyCond.signal();
   3122         }
   3123     }
   3124 }
   3125 
   3126 void AudioTrack::AudioTrackThread::pauseInternal(nsecs_t ns)
   3127 {
   3128     AutoMutex _l(mMyLock);
   3129     mPausedInt = true;
   3130     mPausedNs = ns;
   3131 }
   3132 
   3133 } // namespace android
   3134