Home | History | Annotate | Download | only in psci
      1 /*
      2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 #include <arch.h>
      8 #include <arch_helpers.h>
      9 #include <assert.h>
     10 #include <bl_common.h>
     11 #include <context.h>
     12 #include <context_mgmt.h>
     13 #include <debug.h>
     14 #include <platform.h>
     15 #include <string.h>
     16 #include <utils.h>
     17 #include "psci_private.h"
     18 
     19 /*
     20  * SPD power management operations, expected to be supplied by the registered
     21  * SPD on successful SP initialization
     22  */
     23 const spd_pm_ops_t *psci_spd_pm;
     24 
     25 /*
     26  * PSCI requested local power state map. This array is used to store the local
     27  * power states requested by a CPU for power levels from level 1 to
     28  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
     29  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
     30  * CPU are the same.
     31  *
     32  * During state coordination, the platform is passed an array containing the
     33  * local states requested for a particular non cpu power domain by each cpu
     34  * within the domain.
     35  *
     36  * TODO: Dense packing of the requested states will cause cache thrashing
     37  * when multiple power domains write to it. If we allocate the requested
     38  * states at each power level in a cache-line aligned per-domain memory,
     39  * the cache thrashing can be avoided.
     40  */
     41 static plat_local_state_t
     42 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
     43 
     44 
     45 /*******************************************************************************
     46  * Arrays that hold the platform's power domain tree information for state
     47  * management of power domains.
     48  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
     49  * which is an ancestor of a CPU power domain.
     50  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
     51  ******************************************************************************/
     52 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
     53 #if USE_COHERENT_MEM
     54 __section("tzfw_coherent_mem")
     55 #endif
     56 ;
     57 
     58 /* Lock for PSCI state coordination */
     59 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
     60 
     61 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
     62 
     63 /*******************************************************************************
     64  * Pointer to functions exported by the platform to complete power mgmt. ops
     65  ******************************************************************************/
     66 const plat_psci_ops_t *psci_plat_pm_ops;
     67 
     68 /******************************************************************************
     69  * Check that the maximum power level supported by the platform makes sense
     70  *****************************************************************************/
     71 CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
     72 		PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
     73 		assert_platform_max_pwrlvl_check);
     74 
     75 /*
     76  * The plat_local_state used by the platform is one of these types: RUN,
     77  * RETENTION and OFF. The platform can define further sub-states for each type
     78  * apart from RUN. This categorization is done to verify the sanity of the
     79  * psci_power_state passed by the platform and to print debug information. The
     80  * categorization is done on the basis of the following conditions:
     81  *
     82  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
     83  *
     84  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
     85  *    STATE_TYPE_RETN.
     86  *
     87  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
     88  *    STATE_TYPE_OFF.
     89  */
     90 typedef enum plat_local_state_type {
     91 	STATE_TYPE_RUN = 0,
     92 	STATE_TYPE_RETN,
     93 	STATE_TYPE_OFF
     94 } plat_local_state_type_t;
     95 
     96 /* The macro used to categorize plat_local_state. */
     97 #define find_local_state_type(plat_local_state)					\
     98 		((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE)	\
     99 		? STATE_TYPE_OFF : STATE_TYPE_RETN)				\
    100 		: STATE_TYPE_RUN)
    101 
    102 /******************************************************************************
    103  * Check that the maximum retention level supported by the platform is less
    104  * than the maximum off level.
    105  *****************************************************************************/
    106 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
    107 		assert_platform_max_off_and_retn_state_check);
    108 
    109 /******************************************************************************
    110  * This function ensures that the power state parameter in a CPU_SUSPEND request
    111  * is valid. If so, it returns the requested states for each power level.
    112  *****************************************************************************/
    113 int psci_validate_power_state(unsigned int power_state,
    114 			      psci_power_state_t *state_info)
    115 {
    116 	/* Check SBZ bits in power state are zero */
    117 	if (psci_check_power_state(power_state))
    118 		return PSCI_E_INVALID_PARAMS;
    119 
    120 	assert(psci_plat_pm_ops->validate_power_state);
    121 
    122 	/* Validate the power_state using platform pm_ops */
    123 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
    124 }
    125 
    126 /******************************************************************************
    127  * This function retrieves the `psci_power_state_t` for system suspend from
    128  * the platform.
    129  *****************************************************************************/
    130 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
    131 {
    132 	/*
    133 	 * Assert that the required pm_ops hook is implemented to ensure that
    134 	 * the capability detected during psci_setup() is valid.
    135 	 */
    136 	assert(psci_plat_pm_ops->get_sys_suspend_power_state);
    137 
    138 	/*
    139 	 * Query the platform for the power_state required for system suspend
    140 	 */
    141 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
    142 }
    143 
    144 /*******************************************************************************
    145  * This function verifies that the all the other cores in the system have been
    146  * turned OFF and the current CPU is the last running CPU in the system.
    147  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
    148  * otherwise.
    149  ******************************************************************************/
    150 unsigned int psci_is_last_on_cpu(void)
    151 {
    152 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
    153 
    154 	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
    155 		if (cpu_idx == my_idx) {
    156 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
    157 			continue;
    158 		}
    159 
    160 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
    161 			return 0;
    162 	}
    163 
    164 	return 1;
    165 }
    166 
    167 /*******************************************************************************
    168  * Routine to return the maximum power level to traverse to after a cpu has
    169  * been physically powered up. It is expected to be called immediately after
    170  * reset from assembler code.
    171  ******************************************************************************/
    172 static unsigned int get_power_on_target_pwrlvl(void)
    173 {
    174 	unsigned int pwrlvl;
    175 
    176 	/*
    177 	 * Assume that this cpu was suspended and retrieve its target power
    178 	 * level. If it is invalid then it could only have been turned off
    179 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
    180 	 * cpu can be turned off to.
    181 	 */
    182 	pwrlvl = psci_get_suspend_pwrlvl();
    183 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
    184 		pwrlvl = PLAT_MAX_PWR_LVL;
    185 	return pwrlvl;
    186 }
    187 
    188 /******************************************************************************
    189  * Helper function to update the requested local power state array. This array
    190  * does not store the requested state for the CPU power level. Hence an
    191  * assertion is added to prevent us from accessing the wrong index.
    192  *****************************************************************************/
    193 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
    194 					 unsigned int cpu_idx,
    195 					 plat_local_state_t req_pwr_state)
    196 {
    197 	/*
    198 	 * This should never happen, we have this here to avoid
    199 	 * "array subscript is above array bounds" errors in GCC.
    200 	 */
    201 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
    202 #pragma GCC diagnostic push
    203 #pragma GCC diagnostic ignored "-Warray-bounds"
    204 	psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
    205 #pragma GCC diagnostic pop
    206 }
    207 
    208 /******************************************************************************
    209  * This function initializes the psci_req_local_pwr_states.
    210  *****************************************************************************/
    211 void psci_init_req_local_pwr_states(void)
    212 {
    213 	/* Initialize the requested state of all non CPU power domains as OFF */
    214 	memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
    215 			sizeof(psci_req_local_pwr_states));
    216 }
    217 
    218 /******************************************************************************
    219  * Helper function to return a reference to an array containing the local power
    220  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
    221  * array will be the number of cpu power domains of which this power domain is
    222  * an ancestor. These requested states will be used to determine a suitable
    223  * target state for this power domain during psci state coordination. An
    224  * assertion is added to prevent us from accessing the CPU power level.
    225  *****************************************************************************/
    226 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
    227 							 unsigned int cpu_idx)
    228 {
    229 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
    230 
    231 	return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
    232 }
    233 
    234 /*
    235  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
    236  * memory.
    237  *
    238  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
    239  * it's accessed by both cached and non-cached participants. To serve the common
    240  * minimum, perform a cache flush before read and after write so that non-cached
    241  * participants operate on latest data in main memory.
    242  *
    243  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
    244  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
    245  * In both cases, no cache operations are required.
    246  */
    247 
    248 /*
    249  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
    250  * after any required cache maintenance operation.
    251  */
    252 static plat_local_state_t get_non_cpu_pd_node_local_state(
    253 		unsigned int parent_idx)
    254 {
    255 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
    256 	flush_dcache_range(
    257 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
    258 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
    259 #endif
    260 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
    261 }
    262 
    263 /*
    264  * Update local state of non-CPU power domain node from a cached CPU; perform
    265  * any required cache maintenance operation afterwards.
    266  */
    267 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
    268 		plat_local_state_t state)
    269 {
    270 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
    271 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
    272 	flush_dcache_range(
    273 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
    274 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
    275 #endif
    276 }
    277 
    278 /******************************************************************************
    279  * Helper function to return the current local power state of each power domain
    280  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
    281  * function will be called after a cpu is powered on to find the local state
    282  * each power domain has emerged from.
    283  *****************************************************************************/
    284 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
    285 				      psci_power_state_t *target_state)
    286 {
    287 	unsigned int parent_idx, lvl;
    288 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
    289 
    290 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
    291 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
    292 
    293 	/* Copy the local power state from node to state_info */
    294 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
    295 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
    296 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
    297 	}
    298 
    299 	/* Set the the higher levels to RUN */
    300 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
    301 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
    302 }
    303 
    304 /******************************************************************************
    305  * Helper function to set the target local power state that each power domain
    306  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
    307  * enter. This function will be called after coordination of requested power
    308  * states has been done for each power level.
    309  *****************************************************************************/
    310 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
    311 					const psci_power_state_t *target_state)
    312 {
    313 	unsigned int parent_idx, lvl;
    314 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
    315 
    316 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
    317 
    318 	/*
    319 	 * Need to flush as local_state might be accessed with Data Cache
    320 	 * disabled during power on
    321 	 */
    322 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
    323 
    324 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
    325 
    326 	/* Copy the local_state from state_info */
    327 	for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
    328 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
    329 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
    330 	}
    331 }
    332 
    333 
    334 /*******************************************************************************
    335  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
    336  ******************************************************************************/
    337 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
    338 				      unsigned int end_lvl,
    339 				      unsigned int node_index[])
    340 {
    341 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
    342 	unsigned int i;
    343 
    344 	for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
    345 		*node_index++ = parent_node;
    346 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
    347 	}
    348 }
    349 
    350 /******************************************************************************
    351  * This function is invoked post CPU power up and initialization. It sets the
    352  * affinity info state, target power state and requested power state for the
    353  * current CPU and all its ancestor power domains to RUN.
    354  *****************************************************************************/
    355 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
    356 {
    357 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
    358 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
    359 
    360 	/* Reset the local_state to RUN for the non cpu power domains. */
    361 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
    362 		set_non_cpu_pd_node_local_state(parent_idx,
    363 				PSCI_LOCAL_STATE_RUN);
    364 		psci_set_req_local_pwr_state(lvl,
    365 					     cpu_idx,
    366 					     PSCI_LOCAL_STATE_RUN);
    367 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
    368 	}
    369 
    370 	/* Set the affinity info state to ON */
    371 	psci_set_aff_info_state(AFF_STATE_ON);
    372 
    373 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
    374 	psci_flush_cpu_data(psci_svc_cpu_data);
    375 }
    376 
    377 /******************************************************************************
    378  * This function is passed the local power states requested for each power
    379  * domain (state_info) between the current CPU domain and its ancestors until
    380  * the target power level (end_pwrlvl). It updates the array of requested power
    381  * states with this information.
    382  *
    383  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
    384  * retrieves the states requested by all the cpus of which the power domain at
    385  * that level is an ancestor. It passes this information to the platform to
    386  * coordinate and return the target power state. If the target state for a level
    387  * is RUN then subsequent levels are not considered. At the CPU level, state
    388  * coordination is not required. Hence, the requested and the target states are
    389  * the same.
    390  *
    391  * The 'state_info' is updated with the target state for each level between the
    392  * CPU and the 'end_pwrlvl' and returned to the caller.
    393  *
    394  * This function will only be invoked with data cache enabled and while
    395  * powering down a core.
    396  *****************************************************************************/
    397 void psci_do_state_coordination(unsigned int end_pwrlvl,
    398 				psci_power_state_t *state_info)
    399 {
    400 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
    401 	unsigned int start_idx, ncpus;
    402 	plat_local_state_t target_state, *req_states;
    403 
    404 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
    405 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
    406 
    407 	/* For level 0, the requested state will be equivalent
    408 	   to target state */
    409 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
    410 
    411 		/* First update the requested power state */
    412 		psci_set_req_local_pwr_state(lvl, cpu_idx,
    413 					     state_info->pwr_domain_state[lvl]);
    414 
    415 		/* Get the requested power states for this power level */
    416 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
    417 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
    418 
    419 		/*
    420 		 * Let the platform coordinate amongst the requested states at
    421 		 * this power level and return the target local power state.
    422 		 */
    423 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
    424 		target_state = plat_get_target_pwr_state(lvl,
    425 							 req_states,
    426 							 ncpus);
    427 
    428 		state_info->pwr_domain_state[lvl] = target_state;
    429 
    430 		/* Break early if the negotiated target power state is RUN */
    431 		if (is_local_state_run(state_info->pwr_domain_state[lvl]))
    432 			break;
    433 
    434 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
    435 	}
    436 
    437 	/*
    438 	 * This is for cases when we break out of the above loop early because
    439 	 * the target power state is RUN at a power level < end_pwlvl.
    440 	 * We update the requested power state from state_info and then
    441 	 * set the target state as RUN.
    442 	 */
    443 	for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
    444 		psci_set_req_local_pwr_state(lvl, cpu_idx,
    445 					     state_info->pwr_domain_state[lvl]);
    446 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
    447 
    448 	}
    449 
    450 	/* Update the target state in the power domain nodes */
    451 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
    452 }
    453 
    454 /******************************************************************************
    455  * This function validates a suspend request by making sure that if a standby
    456  * state is requested then no power level is turned off and the highest power
    457  * level is placed in a standby/retention state.
    458  *
    459  * It also ensures that the state level X will enter is not shallower than the
    460  * state level X + 1 will enter.
    461  *
    462  * This validation will be enabled only for DEBUG builds as the platform is
    463  * expected to perform these validations as well.
    464  *****************************************************************************/
    465 int psci_validate_suspend_req(const psci_power_state_t *state_info,
    466 			      unsigned int is_power_down_state)
    467 {
    468 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
    469 	plat_local_state_t state;
    470 	plat_local_state_type_t req_state_type, deepest_state_type;
    471 	int i;
    472 
    473 	/* Find the target suspend power level */
    474 	target_lvl = psci_find_target_suspend_lvl(state_info);
    475 	if (target_lvl == PSCI_INVALID_PWR_LVL)
    476 		return PSCI_E_INVALID_PARAMS;
    477 
    478 	/* All power domain levels are in a RUN state to begin with */
    479 	deepest_state_type = STATE_TYPE_RUN;
    480 
    481 	for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
    482 		state = state_info->pwr_domain_state[i];
    483 		req_state_type = find_local_state_type(state);
    484 
    485 		/*
    486 		 * While traversing from the highest power level to the lowest,
    487 		 * the state requested for lower levels has to be the same or
    488 		 * deeper i.e. equal to or greater than the state at the higher
    489 		 * levels. If this condition is true, then the requested state
    490 		 * becomes the deepest state encountered so far.
    491 		 */
    492 		if (req_state_type < deepest_state_type)
    493 			return PSCI_E_INVALID_PARAMS;
    494 		deepest_state_type = req_state_type;
    495 	}
    496 
    497 	/* Find the highest off power level */
    498 	max_off_lvl = psci_find_max_off_lvl(state_info);
    499 
    500 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
    501 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
    502 	if (target_lvl != max_off_lvl)
    503 		max_retn_lvl = target_lvl;
    504 
    505 	/*
    506 	 * If this is not a request for a power down state then max off level
    507 	 * has to be invalid and max retention level has to be a valid power
    508 	 * level.
    509 	 */
    510 	if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
    511 				    max_retn_lvl == PSCI_INVALID_PWR_LVL))
    512 		return PSCI_E_INVALID_PARAMS;
    513 
    514 	return PSCI_E_SUCCESS;
    515 }
    516 
    517 /******************************************************************************
    518  * This function finds the highest power level which will be powered down
    519  * amongst all the power levels specified in the 'state_info' structure
    520  *****************************************************************************/
    521 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
    522 {
    523 	int i;
    524 
    525 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
    526 		if (is_local_state_off(state_info->pwr_domain_state[i]))
    527 			return i;
    528 	}
    529 
    530 	return PSCI_INVALID_PWR_LVL;
    531 }
    532 
    533 /******************************************************************************
    534  * This functions finds the level of the highest power domain which will be
    535  * placed in a low power state during a suspend operation.
    536  *****************************************************************************/
    537 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
    538 {
    539 	int i;
    540 
    541 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
    542 		if (!is_local_state_run(state_info->pwr_domain_state[i]))
    543 			return i;
    544 	}
    545 
    546 	return PSCI_INVALID_PWR_LVL;
    547 }
    548 
    549 /*******************************************************************************
    550  * This function is passed a cpu_index and the highest level in the topology
    551  * tree that the operation should be applied to. It picks up locks in order of
    552  * increasing power domain level in the range specified.
    553  ******************************************************************************/
    554 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
    555 				   unsigned int cpu_idx)
    556 {
    557 	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
    558 	unsigned int level;
    559 
    560 	/* No locking required for level 0. Hence start locking from level 1 */
    561 	for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
    562 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
    563 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
    564 	}
    565 }
    566 
    567 /*******************************************************************************
    568  * This function is passed a cpu_index and the highest level in the topology
    569  * tree that the operation should be applied to. It releases the locks in order
    570  * of decreasing power domain level in the range specified.
    571  ******************************************************************************/
    572 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
    573 				   unsigned int cpu_idx)
    574 {
    575 	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
    576 	int level;
    577 
    578 	/* Get the parent nodes */
    579 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
    580 
    581 	/* Unlock top down. No unlocking required for level 0. */
    582 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
    583 		parent_idx = parent_nodes[level - 1];
    584 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
    585 	}
    586 }
    587 
    588 /*******************************************************************************
    589  * Simple routine to determine whether a mpidr is valid or not.
    590  ******************************************************************************/
    591 int psci_validate_mpidr(u_register_t mpidr)
    592 {
    593 	if (plat_core_pos_by_mpidr(mpidr) < 0)
    594 		return PSCI_E_INVALID_PARAMS;
    595 
    596 	return PSCI_E_SUCCESS;
    597 }
    598 
    599 /*******************************************************************************
    600  * This function determines the full entrypoint information for the requested
    601  * PSCI entrypoint on power on/resume and returns it.
    602  ******************************************************************************/
    603 #ifdef AARCH32
    604 static int psci_get_ns_ep_info(entry_point_info_t *ep,
    605 			       uintptr_t entrypoint,
    606 			       u_register_t context_id)
    607 {
    608 	u_register_t ep_attr;
    609 	unsigned int aif, ee, mode;
    610 	u_register_t scr = read_scr();
    611 	u_register_t ns_sctlr, sctlr;
    612 
    613 	/* Switch to non secure state */
    614 	write_scr(scr | SCR_NS_BIT);
    615 	isb();
    616 	ns_sctlr = read_sctlr();
    617 
    618 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
    619 
    620 	/* Return to original state */
    621 	write_scr(scr);
    622 	isb();
    623 	ee = 0;
    624 
    625 	ep_attr = NON_SECURE | EP_ST_DISABLE;
    626 	if (sctlr & SCTLR_EE_BIT) {
    627 		ep_attr |= EP_EE_BIG;
    628 		ee = 1;
    629 	}
    630 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
    631 
    632 	ep->pc = entrypoint;
    633 	zeromem(&ep->args, sizeof(ep->args));
    634 	ep->args.arg0 = context_id;
    635 
    636 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
    637 
    638 	/*
    639 	 * TODO: Choose async. exception bits if HYP mode is not
    640 	 * implemented according to the values of SCR.{AW, FW} bits
    641 	 */
    642 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
    643 
    644 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
    645 
    646 	return PSCI_E_SUCCESS;
    647 }
    648 
    649 #else
    650 static int psci_get_ns_ep_info(entry_point_info_t *ep,
    651 			       uintptr_t entrypoint,
    652 			       u_register_t context_id)
    653 {
    654 	u_register_t ep_attr, sctlr;
    655 	unsigned int daif, ee, mode;
    656 	u_register_t ns_scr_el3 = read_scr_el3();
    657 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
    658 
    659 	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
    660 	ee = 0;
    661 
    662 	ep_attr = NON_SECURE | EP_ST_DISABLE;
    663 	if (sctlr & SCTLR_EE_BIT) {
    664 		ep_attr |= EP_EE_BIG;
    665 		ee = 1;
    666 	}
    667 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
    668 
    669 	ep->pc = entrypoint;
    670 	zeromem(&ep->args, sizeof(ep->args));
    671 	ep->args.arg0 = context_id;
    672 
    673 	/*
    674 	 * Figure out whether the cpu enters the non-secure address space
    675 	 * in aarch32 or aarch64
    676 	 */
    677 	if (ns_scr_el3 & SCR_RW_BIT) {
    678 
    679 		/*
    680 		 * Check whether a Thumb entry point has been provided for an
    681 		 * aarch64 EL
    682 		 */
    683 		if (entrypoint & 0x1)
    684 			return PSCI_E_INVALID_ADDRESS;
    685 
    686 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
    687 
    688 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
    689 	} else {
    690 
    691 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
    692 
    693 		/*
    694 		 * TODO: Choose async. exception bits if HYP mode is not
    695 		 * implemented according to the values of SCR.{AW, FW} bits
    696 		 */
    697 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
    698 
    699 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
    700 	}
    701 
    702 	return PSCI_E_SUCCESS;
    703 }
    704 #endif
    705 
    706 /*******************************************************************************
    707  * This function validates the entrypoint with the platform layer if the
    708  * appropriate pm_ops hook is exported by the platform and returns the
    709  * 'entry_point_info'.
    710  ******************************************************************************/
    711 int psci_validate_entry_point(entry_point_info_t *ep,
    712 			      uintptr_t entrypoint,
    713 			      u_register_t context_id)
    714 {
    715 	int rc;
    716 
    717 	/* Validate the entrypoint using platform psci_ops */
    718 	if (psci_plat_pm_ops->validate_ns_entrypoint) {
    719 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
    720 		if (rc != PSCI_E_SUCCESS)
    721 			return PSCI_E_INVALID_ADDRESS;
    722 	}
    723 
    724 	/*
    725 	 * Verify and derive the re-entry information for
    726 	 * the non-secure world from the non-secure state from
    727 	 * where this call originated.
    728 	 */
    729 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
    730 	return rc;
    731 }
    732 
    733 /*******************************************************************************
    734  * Generic handler which is called when a cpu is physically powered on. It
    735  * traverses the node information and finds the highest power level powered
    736  * off and performs generic, architectural, platform setup and state management
    737  * to power on that power level and power levels below it.
    738  * e.g. For a cpu that's been powered on, it will call the platform specific
    739  * code to enable the gic cpu interface and for a cluster it will enable
    740  * coherency at the interconnect level in addition to gic cpu interface.
    741  ******************************************************************************/
    742 void psci_warmboot_entrypoint(void)
    743 {
    744 	unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
    745 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
    746 
    747 	/*
    748 	 * Verify that we have been explicitly turned ON or resumed from
    749 	 * suspend.
    750 	 */
    751 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
    752 		ERROR("Unexpected affinity info state");
    753 		panic();
    754 	}
    755 
    756 	/*
    757 	 * Get the maximum power domain level to traverse to after this cpu
    758 	 * has been physically powered up.
    759 	 */
    760 	end_pwrlvl = get_power_on_target_pwrlvl();
    761 
    762 	/*
    763 	 * This function acquires the lock corresponding to each power level so
    764 	 * that by the time all locks are taken, the system topology is snapshot
    765 	 * and state management can be done safely.
    766 	 */
    767 	psci_acquire_pwr_domain_locks(end_pwrlvl,
    768 				      cpu_idx);
    769 
    770 #if ENABLE_PSCI_STAT
    771 	plat_psci_stat_accounting_stop(&state_info);
    772 #endif
    773 
    774 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
    775 
    776 	/*
    777 	 * This CPU could be resuming from suspend or it could have just been
    778 	 * turned on. To distinguish between these 2 cases, we examine the
    779 	 * affinity state of the CPU:
    780 	 *  - If the affinity state is ON_PENDING then it has just been
    781 	 *    turned on.
    782 	 *  - Else it is resuming from suspend.
    783 	 *
    784 	 * Depending on the type of warm reset identified, choose the right set
    785 	 * of power management handler and perform the generic, architecture
    786 	 * and platform specific handling.
    787 	 */
    788 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
    789 		psci_cpu_on_finish(cpu_idx, &state_info);
    790 	else
    791 		psci_cpu_suspend_finish(cpu_idx, &state_info);
    792 
    793 	/*
    794 	 * Set the requested and target state of this CPU and all the higher
    795 	 * power domains which are ancestors of this CPU to run.
    796 	 */
    797 	psci_set_pwr_domains_to_run(end_pwrlvl);
    798 
    799 #if ENABLE_PSCI_STAT
    800 	/*
    801 	 * Update PSCI stats.
    802 	 * Caches are off when writing stats data on the power down path.
    803 	 * Since caches are now enabled, it's necessary to do cache
    804 	 * maintenance before reading that same data.
    805 	 */
    806 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
    807 #endif
    808 
    809 	/*
    810 	 * This loop releases the lock corresponding to each power level
    811 	 * in the reverse order to which they were acquired.
    812 	 */
    813 	psci_release_pwr_domain_locks(end_pwrlvl,
    814 				      cpu_idx);
    815 }
    816 
    817 /*******************************************************************************
    818  * This function initializes the set of hooks that PSCI invokes as part of power
    819  * management operation. The power management hooks are expected to be provided
    820  * by the SPD, after it finishes all its initialization
    821  ******************************************************************************/
    822 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
    823 {
    824 	assert(pm);
    825 	psci_spd_pm = pm;
    826 
    827 	if (pm->svc_migrate)
    828 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
    829 
    830 	if (pm->svc_migrate_info)
    831 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
    832 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
    833 }
    834 
    835 /*******************************************************************************
    836  * This function invokes the migrate info hook in the spd_pm_ops. It performs
    837  * the necessary return value validation. If the Secure Payload is UP and
    838  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
    839  * is resident through the mpidr parameter. Else the value of the parameter on
    840  * return is undefined.
    841  ******************************************************************************/
    842 int psci_spd_migrate_info(u_register_t *mpidr)
    843 {
    844 	int rc;
    845 
    846 	if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
    847 		return PSCI_E_NOT_SUPPORTED;
    848 
    849 	rc = psci_spd_pm->svc_migrate_info(mpidr);
    850 
    851 	assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
    852 		|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
    853 
    854 	return rc;
    855 }
    856 
    857 
    858 /*******************************************************************************
    859  * This function prints the state of all power domains present in the
    860  * system
    861  ******************************************************************************/
    862 void psci_print_power_domain_map(void)
    863 {
    864 #if LOG_LEVEL >= LOG_LEVEL_INFO
    865 	unsigned int idx;
    866 	plat_local_state_t state;
    867 	plat_local_state_type_t state_type;
    868 
    869 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
    870 	static const char * const psci_state_type_str[] = {
    871 		"ON",
    872 		"RETENTION",
    873 		"OFF",
    874 	};
    875 
    876 	INFO("PSCI Power Domain Map:\n");
    877 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
    878 							idx++) {
    879 		state_type = find_local_state_type(
    880 				psci_non_cpu_pd_nodes[idx].local_state);
    881 		INFO("  Domain Node : Level %u, parent_node %d,"
    882 				" State %s (0x%x)\n",
    883 				psci_non_cpu_pd_nodes[idx].level,
    884 				psci_non_cpu_pd_nodes[idx].parent_node,
    885 				psci_state_type_str[state_type],
    886 				psci_non_cpu_pd_nodes[idx].local_state);
    887 	}
    888 
    889 	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
    890 		state = psci_get_cpu_local_state_by_idx(idx);
    891 		state_type = find_local_state_type(state);
    892 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
    893 				" State %s (0x%x)\n",
    894 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
    895 				psci_cpu_pd_nodes[idx].parent_node,
    896 				psci_state_type_str[state_type],
    897 				psci_get_cpu_local_state_by_idx(idx));
    898 	}
    899 #endif
    900 }
    901 
    902 /******************************************************************************
    903  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
    904  * have ever been powered up would have set its MPDIR value to something other
    905  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
    906  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
    907  * meaningful only when called on the primary CPU during early boot.
    908  *****************************************************************************/
    909 int psci_secondaries_brought_up(void)
    910 {
    911 	unsigned int idx, n_valid = 0;
    912 
    913 	for (idx = 0; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
    914 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
    915 			n_valid++;
    916 	}
    917 
    918 	assert(n_valid);
    919 
    920 	return (n_valid > 1);
    921 }
    922 
    923 #if ENABLE_PLAT_COMPAT
    924 /*******************************************************************************
    925  * PSCI Compatibility helper function to return the 'power_state' parameter of
    926  * the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA
    927  * if not invoked within CPU_SUSPEND for the current CPU.
    928  ******************************************************************************/
    929 int psci_get_suspend_powerstate(void)
    930 {
    931 	/* Sanity check to verify that CPU is within CPU_SUSPEND */
    932 	if (psci_get_aff_info_state() == AFF_STATE_ON &&
    933 		!is_local_state_run(psci_get_cpu_local_state()))
    934 		return psci_power_state_compat[plat_my_core_pos()];
    935 
    936 	return PSCI_INVALID_DATA;
    937 }
    938 
    939 /*******************************************************************************
    940  * PSCI Compatibility helper function to return the state id of the current
    941  * cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA
    942  * if not invoked within CPU_SUSPEND for the current CPU.
    943  ******************************************************************************/
    944 int psci_get_suspend_stateid(void)
    945 {
    946 	unsigned int power_state;
    947 	power_state = psci_get_suspend_powerstate();
    948 	if (power_state != PSCI_INVALID_DATA)
    949 		return psci_get_pstate_id(power_state);
    950 
    951 	return PSCI_INVALID_DATA;
    952 }
    953 
    954 /*******************************************************************************
    955  * PSCI Compatibility helper function to return the state id encoded in the
    956  * 'power_state' parameter of the CPU specified by 'mpidr'. Returns
    957  * PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND.
    958  ******************************************************************************/
    959 int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
    960 {
    961 	int cpu_idx = plat_core_pos_by_mpidr(mpidr);
    962 
    963 	if (cpu_idx == -1)
    964 		return PSCI_INVALID_DATA;
    965 
    966 	/* Sanity check to verify that the CPU is in CPU_SUSPEND */
    967 	if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
    968 		!is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
    969 		return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);
    970 
    971 	return PSCI_INVALID_DATA;
    972 }
    973 
    974 /*******************************************************************************
    975  * This function returns highest affinity level which is in OFF
    976  * state. The affinity instance with which the level is associated is
    977  * determined by the caller.
    978  ******************************************************************************/
    979 unsigned int psci_get_max_phys_off_afflvl(void)
    980 {
    981 	psci_power_state_t state_info;
    982 
    983 	zeromem(&state_info, sizeof(state_info));
    984 	psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info);
    985 
    986 	return psci_find_target_suspend_lvl(&state_info);
    987 }
    988 
    989 /*******************************************************************************
    990  * PSCI Compatibility helper function to return target affinity level requested
    991  * for the CPU_SUSPEND. This function assumes affinity levels correspond to
    992  * power domain levels on the platform.
    993  ******************************************************************************/
    994 int psci_get_suspend_afflvl(void)
    995 {
    996 	return psci_get_suspend_pwrlvl();
    997 }
    998 
    999 #endif
   1000 
   1001 /*******************************************************************************
   1002  * Initiate power down sequence, by calling power down operations registered for
   1003  * this CPU.
   1004  ******************************************************************************/
   1005 void psci_do_pwrdown_sequence(unsigned int power_level)
   1006 {
   1007 #if HW_ASSISTED_COHERENCY
   1008 	/*
   1009 	 * With hardware-assisted coherency, the CPU drivers only initiate the
   1010 	 * power down sequence, without performing cache-maintenance operations
   1011 	 * in software. Data caches and MMU remain enabled both before and after
   1012 	 * this call.
   1013 	 */
   1014 	prepare_cpu_pwr_dwn(power_level);
   1015 #else
   1016 	/*
   1017 	 * Without hardware-assisted coherency, the CPU drivers disable data
   1018 	 * caches and MMU, then perform cache-maintenance operations in
   1019 	 * software.
   1020 	 *
   1021 	 * We ought to call prepare_cpu_pwr_dwn() to initiate power down
   1022 	 * sequence. We currently have data caches and MMU enabled, but the
   1023 	 * function will return with data caches and MMU disabled. We must
   1024 	 * ensure that the stack memory is flushed out to memory before we start
   1025 	 * popping from it again.
   1026 	 */
   1027 	psci_do_pwrdown_cache_maintenance(power_level);
   1028 #endif
   1029 }
   1030